WorldWideScience

Sample records for brachypodium distachyon grain

  1. Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja

    (Hordeum vulgare). This thesis focuses on domestication of grasses – the cereal ancestors, starch in the grass Brachypodium distachyon, and its comparison to domesticated cereal. Grasses can potentially be used for the reintroduction of the lost grass traits, like health-promoting carbohydrates. Therefore......, we compared grain starch metabolism in a wild grass, and in a cereal (Brachypodium and barley, respectively). Genes of Brachypodium starch metabolism were identified and annotated, including important motifs such as transit peptides and putative carbohydrate-binding modules (CBMs). Some of the...... starch granules were bimodally distributed into distinct small B-type (2.5-10 μm) and very small C-type (0.5-2.5 μm), and had a shape characterised by concave disks with depressions in the centre. The expression profiles of most genes of starch biosynthesis in grain were distinctly different. Typ...

  2. Effects of glyphosate on brachypodium distachyon

    OpenAIRE

    Altıntaş, Ayşegul; Altintas, Aysegul

    2010-01-01

    Glyphosate is a non-selective herbicide used widely as the most popular weed management tool, especially since the commercialization of glyphosate-resistant crops. Due to overuse, several weed species have evolved resistance towards glyphosate and this trend threatens the future of world food production. Brachypodium distachyon has been proposed as a model organism specifically for economically important crops such as wheat and barley. Thus, evaluating the effects of glyphosate on Brachypodiu...

  3. Starch bioengineering in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan Tommy; Glaring, Mikkel Andreas;

    2011-01-01

    Brachypodium distachyon was recently introduced as a model plant for temperate cereals (Opanowicz et al., 2008). We aim to establish Brachypodium as a model for cereal starch metabolism. Grain starch from two lines: Bd21 and Bd21-3 are being characterized. Microscopic, chemical and structural data...... including amylopectin chain length distribution, phosphate content and amylose content provided further evidence for the close relationship to temperate cereals even though starch content and starch granule size were considerably lower than that for barley (Hordeum vulgare). Bioinformatics analyses...... identified starch biosynthesis genes including seven soluble starch synthases (SS), three granule bound starch syntheses (GBSS), four starch branching enzymes (SBE), two glucan- and one phosphoglucan- water dikinases (GWD, PWD). Phylogenetic analysis based on the SS genes provided evidence for a close...

  4. Transcriptome analysis of hormone-induced gene expression in Brachypodium distachyon

    OpenAIRE

    Yusuke Kakei; Keiichi Mochida; Tetsuya Sakurai; Takuhiro Yoshida; Kazuo Shinozaki; Yukihisa Shimada

    2015-01-01

    Brachypodium distachyon is a new model plant closely related to wheat and other cereals. In this study, we performed a comprehensive analysis of hormone-regulated genes in Brachypodium distachyon using RNA sequencing technology. Brachypodium distachyon seedlings were treated with eight phytohormones (auxin, cytokinine, brassinosteroid, gibberelline, abscisic acid, ethylene, jasmonate and salicylic acid) and two inhibitors, Brz220 (brassinosteroid biosynthesis inhibitor) and prohexadione (gibb...

  5. Genome sequencing and analysis of the model grass Brachypodium distachyon.

    Science.gov (United States)

    2010-02-11

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops. PMID:20148030

  6. Infection of Brachypodium distachyon with selected grass rust pathogens.

    Science.gov (United States)

    Ayliffe, Michael; Singh, Davinder; Park, Robert; Moscou, Matthew; Pryor, Tony

    2013-08-01

    The model temperate grass Brachypodium distachyon is considered a nonhost for wheat rust diseases caused by Puccinia graminis f. sp. tritici, P. triticina, and P. striiformis. Up to 140 Brachypodium accessions were infected with these three rust species, in addition to P. graminis ff. spp. avena and phalaridis. Related B. distachyon lines showed similar cytological nonhost resistance (NHR) phenotypes, and an inverse relationship between P. graminis f. sp. tritici and P. striiformis growth was observed in many lines, with accessions that allowed the most growth of P. graminis f. sp. tritici showing the least P. striiformis development and vice versa. Callose deposition patterns during infection by all three rust species showed similarity to the wheat basal defense response while cell death that resulted in autofluorescence did not appear to be a major component of the defense response. Infection of B. distachyon with P. graminis f. sp. avena and P. graminis f. sp. phalaridis produced much greater colonization, indicating that P. graminis rusts with Poeae hosts show greater ability to infect B. distachyon than those with Triticeae hosts. P. striiformis infection of progeny from two B. distachyon families demonstrated that these NHR phenotypes are highly heritable and appear to be under relatively simple genetic control, making this species a powerful tool for elucidating the molecular basis of NHR to cereal rust pathogens. PMID:23594350

  7. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L.

    Directory of Open Access Journals (Sweden)

    Chong Zhu

    Full Text Available Protein disulfide isomerases (PDI are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2 contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2 induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the

  8. Cell wall composition and biomass recalcitrance differences within a set of Brachypodium distachyon inbred lines

    Science.gov (United States)

    Brachypodium distachyon (Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species, owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. We assessed the extent of natural variation for tr...

  9. Use of Agrobacterium rhizogenes Strain 18r12v and Paromomycin Selection for Transformation of Brachypodium distachyon and Brachypodium sylvaticum

    Science.gov (United States)

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; Vogel, John P.; Thilmony, Roger

    2016-01-01

    The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This study demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticum. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. tumefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation. PMID:27252729

  10. QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L.

    NARCIS (Netherlands)

    Barbieri, M.; Marcel, T.C.; Niks, R.E.; Francia, E.; Pasquariello, M.; Mazzamurro, V.; Garvin, D.F.; Pecchioni, N.

    2012-01-01

    The potential of the model grass Brachypodium distachyon L. (Brachypodium) for studying grass–pathogen interactions is still underexploited. We aimed to identify genomic regions in Brachypodium associated with quantitative resistance to the false brome rust fungus Puccinia brachypodii. The inbred li

  11. Genome-Wide Evolutionary Characterization and Expression Analyses of WRKY Family Genes in Brachypodium distachyon

    OpenAIRE

    WEN, FENG; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-01-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phyl...

  12. Cell Walls and the Developmental Anatomy of the Brachypodium distachyon Stem Internode

    OpenAIRE

    Matos, Dominick A.; Whitney, Ian P.; Harrington, Michael J; Hazen, Samuel P

    2013-01-01

    While many aspects of plant cell wall polymer structure are known, their spatial and temporal distribution within the stem are not well understood. Here, we studied vascular system and fiber development, which has implication for both biofuel feedstock conversion efficiency and crop yield. The subject of this study, Brachypodium distachyon, has emerged as a grass model for food and energy crop research. Here, we conducted our investigation using B. distachyon by applying various histological ...

  13. Brachypodium distachyon as a model system for studies of copper transport in cereal crops

    Directory of Open Access Journals (Sweden)

    Ha-il eJung

    2014-05-01

    Full Text Available Copper (Cu is an essential micronutrient that performs a remarkable array of functions in plants including photosynthesis, cell wall remodeling, flowering, and seed set. Of the world's major cereal crops, wheat, barley, and oat are the most sensitive to Cu deficiency. Cu deficient soils include alkaline soils, which occupy approximately 30% of the world’s arable lands, and organic soils that occupy an estimated 19% of arable land in Europe. We used Brachypodium distachyon (brachypodium as a proxy for wheat and other grain cereals to initiate analyses of the molecular mechanisms underlying their increased susceptibility to Cu deficiency. In this report, we focus on members of the CTR/COPT family of Cu transporters because their homologs in A. thaliana are transcriptionally upregulated in Cu-limited conditions and are involved either in Cu uptake from soils into epidermal cells in the root, or long-distance transport and distribution of Cu in photosynthetic tissues. We found that of five COPT proteins in brachypodium, BdCOPT3 and BdCOPT4 localize to the plasma membrane and are transcriptionally upregulated in roots and leaves by Cu deficiency. We also found that BdCOPT3, BdCOPT4, and BdCOPT5 confer low affinity Cu transport, in contrast to their counterparts in A. thaliana that confer high affinity Cu transport. These data suggest that increased sensitivity to Cu deficiency in some grass species may arise from lower efficiency and, possibly, other properties of components of Cu uptake and tissue partitioning systems and reinforce the importance of using brachypodium as a model for the comprehensive analyses of Cu homeostasis in cereal crops.

  14. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines

    Science.gov (United States)

    Natural variation provides a powerful opportunity to study the genetic basis of biological traits. Brachypodium distachyon is a broadly distributed diploid model grass with a small genome and a large collection of diverse inbred lines. As a step towards understanding the genetic basis of the natura...

  15. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  16. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses

    Directory of Open Access Journals (Sweden)

    Li Chuan

    2012-05-01

    Full Text Available Abstract Background Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition protein (IRIP genes, fructosyltransferase (FST genes, and many C-repeat binding factor (CBF genes are Pooideae specific and important in low temperature responses. Here we used comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand its potential as a model species for agriculturally important temperate grasses. Results Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. Conclusions We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.

  17. Molecular characterization and evolutionary origins of farinin genes in Brachypodium distachyon L.

    Science.gov (United States)

    Subburaj, Saminathan; Luo, Nana; Lu, Xiaobing; Li, Xiaohui; Cao, Hui; Hu, Yingkao; Li, Jiarui; Yan, Yueming

    2016-08-01

    Farinins are one of the oldest members of the gluten family in wheat and Aegilops species, and they influence dough properties. Here, we performed the first detailed molecular genetic study on farinin genes in Brachypodium distachyon L., the model species for Triticum aestivum. A total of 51 b-type farinin genes were cloned and characterized, including 27 functional and 24 non-functional pseudogenes from 14 different B. distachyon accessions. All genes were highly similar to those previously reported from wheat and Aegilops species. The identification of deduced amino acid sequences showed that b-type farinins across Triticeae genomes could be classified as b1-, b2-, b3-, and b4-type farinins; however, B. distachyon had only b3- and b4-type farinins. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed that farinin genes are transcribed into mRNA in B. distachyon at much lower levels than in Triticeae, despite the presence of cis-acting elements in promoter regions. Phylogenetic analysis suggested that Brachypodium farinins may have closer relationships with common wheat and further confirmed four different types of b-type farinins in Triticeae and Brachypodium genomes, corresponding to b1, b2, b3 (group 1), and b4 (group 2). A putative evolutionary origin model of farinin genes in Brachypodium, Triticum, and the related species suggests that all b-type farinins diverged from their common ancestor ~3.2 million years ago (MYA). The b3 and b4 types could be considered older in the farinin family. The results explain the loss of b1- and b2-type farinin alleles in Brachypodium. PMID:26519166

  18. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon

    OpenAIRE

    Bukh, Christian; Nord-Larsen, Pia Haugaard; Rasmussen, Søren K.

    2012-01-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem w...

  19. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L.

    OpenAIRE

    Lv, Dong-Wen; Li, Xin; Zhang, Ming; Gu, Ai-Qin; Zhen, Shou-Min; Wang, Chang; Li, Xiao-hui; Yan, Yue-Ming

    2014-01-01

    Background Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during...

  20. DNA methylation patterns of Brachypodium distachyon chromosomes and their alteration by 5-azacytidine treatment

    OpenAIRE

    Borowska, Natalia; Idziak, Dominika; Hasterok, Robert

    2011-01-01

    Sequential immunolocalisation of 5-methylcytosine (5-MeC) and fluorescence in situ hybridisation with chromosome-specific BAC clones were performed on Brachypodium distachyon mitotic metaphase chromosomes to determine specific DNA methylation patterns of each chromosome in the complement. In the majority of cells examined, chromosomes Bd4 and Bd5, which bear the loci of 5S and 35S ribosomal DNA, respectively, had characteristic 5-MeC patterns. In contrast, the distribution of 5-MeC along the ...

  1. Cell walls and the developmental anatomy of the Brachypodium distachyon stem internode.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available While many aspects of plant cell wall polymer structure are known, their spatial and temporal distribution within the stem are not well understood. Here, we studied vascular system and fiber development, which has implication for both biofuel feedstock conversion efficiency and crop yield. The subject of this study, Brachypodium distachyon, has emerged as a grass model for food and energy crop research. Here, we conducted our investigation using B. distachyon by applying various histological approaches and Fourier transform infrared spectroscopy to the stem internode from three key developmental stages. While vascular bundle size and number did not change over time, the size of the interfascicular region increased dramatically, as did cell wall thickness. We also describe internal stem internode anatomy and demonstrate that lignin deposition continues after crystalline cellulose and xylan accumulation ceases. The vascular bundle anatomy of B. distachyon appears to be highly similar to domesticated grasses. While the arrangement of bundles within the stem is highly variable across grasses, B. distachyon appears to be a suitable model for the rind of large C4 grass crops. A better understanding of growth and various anatomical and cell wall features of B. distachyon will further our understanding of plant biomass accumulation processes.

  2. Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon.

    Science.gov (United States)

    Kang, Hanhan; Zhang, Meng; Zhou, Shumei; Guo, Qifang; Chen, Fengjuan; Wu, Jiajie; Wang, Wei

    2016-07-01

    Ubiquitination plays an important role in regulating plant's development and adaptability to abiotic stress. To investigate the possible functions of a wheat monoubiquitin gene Ta-Ub2 in abiotic stress in monocot and compare it with that in dicot, we generated transgenic Brachypodium plants overexpressing Ta-Ub2 under the control of CaMV35s and stress-inducible RD29A promoters. The constitutive expression of Ta-Ub2 displayed slight growth inhibition in the growth of transgenic Brachypodium distachyon under the control conditions. However, this inhibition was minimized by expression of Ta-Ub2 under the control of stress-inducible RD29A promoter. Compared with WT, the transgenic plants preserved more water and showed higher enzymatic antioxidants under drought stress, which might be related to the change in the expression of some antioxidant genes. The expression of C-repeat binding factors transcription factor genes in the transgenic B. distachyon lines were upregulated under water stress. Salt and cold tolerances of transgenic B. distachyon were also improved. Although the phenotypic changes in the transgenic plants were different, overexpression of Ta-Ub2 improved the abiotic stress tolerance in both dicot and monocot plants. The improvement in Ta-Ub2 transgenic plants in abiotic stress tolerance might be, at least partly, through regulating the gene expression and increasing the enzymatic antioxidants. PMID:27181952

  3. Genome Wide Analysis of Nucleotide-Binding Site Disease Resistance Genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Shenglong Tan

    2012-01-01

    Full Text Available Nucleotide-binding site (NBS disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Many R-genes have been identified in various plant species. However, little is known about the NBS-encoding genes in Brachypodium distachyon. In this study, using computational analysis of the B. distachyon genome, we identified 126 regular NBS-encoding genes and characterized them on the bases of structural diversity, conserved protein motifs, chromosomal locations, gene duplications, promoter region, and phylogenetic relationships. EST hits and full-length cDNA sequences (from Brachypodium database of 126 R-like candidates supported their existence. Based on the occurrence of conserved protein motifs such as coiled-coil (CC, NBS, leucine-rich repeat (LRR, these regular NBS-LRR genes were classified into four subgroups: CC-NBS-LRR, NBS-LRR, CC-NBS, and X-NBS. Further expression analysis of the regular NBS-encoding genes in Brachypodium database revealed that these genes are expressed in a wide range of libraries, including those constructed from various developmental stages, tissue types, and drought challenged or nonchallenged tissue.

  4. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Ludmila [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Bragg, Jennifer [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Wu, Jiajie [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Yang, Xiaohan [ORNL; Tuskan, Gerald A [ORNL; Vogel, John [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights

  5. Phylogenetic, molecular, and biochemical characterization of caffeic aicd O-methyltransferase (COMT) gene family in Brachypodium distachyon

    Science.gov (United States)

    Caffeic acid O-methyltransferase (COMT) is one of the important enzymes controlling lignin monomer production in plant cell wall synthesis. Analysis of the genome sequence of new grass model Brachypodium distachyon identified four COMT gene homologues, designated as BdCOMT1, BdCOMT2, BdCOMT3, and ...

  6. Analysis of saccharification in Brachypodium distachyon stems under mild conditions of hydrolysis

    Directory of Open Access Journals (Sweden)

    Statham Emily R

    2008-10-01

    Full Text Available Abstract Background Brachypodium distachyon constitutes an excellent model species for grasses. It is a small, easily propagated, temperate grass with a rapid life cycle and a small genome. It is a self-fertile plant that can be transformed with high efficiency using Agrobacteria and callus derived from immature embryos. In addition, considerable genetic and genomic resources are becoming available for this species in the form of mapping populations, large expressed sequence tag collections, T-DNA insertion lines and, in the near future, the complete genome sequence. The development of Brachypodium as a model species is of particular value in the areas of cell wall and biomass research, where differences between dicots and grasses are greatest. Here we explore the effect of mild conditions of pretreatment and hydrolysis in Brachypodium stem segments as a contribution for the establishment of sensitive screening of the saccharification properties in different genetic materials. Results The non-cellulosic monosaccharide composition of Brachypodium is closely related to grasses of agricultural importance and significantly different from the dicot model Arabidopsis thaliana. Diluted acid pretreatment of stem segments produced significant release of sugars and negatively affected the amount of sugars obtained by enzymatic hydrolysis. Monosaccharide and oligosaccharide analysis showed that the hemicellulose fraction is the main target of the enzymatic activity under the modest hydrolytic conditions used in our assays. Scanning electron microscopy analysis of the treated materials showed progressive exposure of fibrils in the stem segments. Conclusion Results presented here indicate that under mild conditions cellulose and hemicellulose are hydrolysed to differing extents, with hemicellulose hydrolysis predominating. We anticipate that the sub-optimal conditions for hydrolysis identified here will provide a sensitive assay to detect variations in

  7. The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes

    Directory of Open Access Journals (Sweden)

    Anderson Olin D

    2008-07-01

    Full Text Available Abstract Background Wheat, barley, and rye, of tribe Triticeae in the Poaceae, are among the most important crops worldwide but they present many challenges to genomics-aided crop improvement. Brachypodium distachyon, a close relative of those cereals has recently emerged as a model for grass functional genomics. Sequencing of the nuclear and organelle genomes of Brachypodium is one of the first steps towards making this species available as a tool for researchers interested in cereals biology. Findings The chloroplast genome of Brachypodium distachyon was sequenced by a combinational approach using BAC end and shotgun sequences derived from a selected BAC containing the entire chloroplast genome. Comparative analysis indicated that the chloroplast genome is conserved in gene number and organization with respect to those of other cereals. However, several Brachypodium genes evolve at a faster rate than those in other grasses. Sequence analysis reveals that rice and wheat have a ~2.1 kb deletion in their plastid genomes and this deletion must have occurred independently in both species. Conclusion We demonstrate that BAC libraries can be used to sequence plastid, and likely other organellar, genomes. As expected, the Brachypodium chloroplast genome is very similar to those of other sequenced grasses. The phylogenetic analyses and the pattern of insertions and deletions in the chloroplast genome confirmed that Brachypodium is a close relative of the tribe Triticeae. Nevertheless, we show that some large indels can arise multiple times and may confound phylogenetic reconstruction.

  8. Expression profiling of marker genes responsive to the defence-associated phytohormones salicylic acid, jasmonic acid and ethylene in Brachypodium distachyon

    OpenAIRE

    Kouzai, Yusuke; Kimura, Mamiko; Yamanaka, Yurie; Watanabe, Megumi; Matsui, Hidenori; Yamamoto, Mikihiro; Ichinose, Yuki; Toyoda, Kazuhiro; Onda, Yoshihiko; Mochida, Keiichi; Noutoshi, Yoshiteru

    2016-01-01

    Background Brachypodium distachyon is a promising model plants for grasses. Infections of Brachypodium by various pathogens that severely impair crop production have been reported, and the species accordingly provides an alternative platform for investigating molecular mechanisms of pathogen virulence and plant disease resistance. To date, we have a broad picture of plant immunity only in Arabidopsis and rice; therefore, Brachypodium may constitute a counterpart that displays the commonality ...

  9. Molecular and Physiological Analysis of Growth-Limiting Drought Stress in Brachypodium distachyon Leaves

    Institute of Scientific and Technical Information of China (English)

    Wim Verelst; Edoardo Bertolini; Stefanie De Bodt; Klaas Vandepoele; Marlies Demeulenaere; Mario Enrico Pè; Dirk Inzé

    2013-01-01

    The drought-tolerant grass Brachypodium distachyon is an emerging model species for temperate grasses and cereal crops.To explore the usefulness of this species for drought studies,a reproducible in vivo drought assay was developed.Spontaneous soil drying led to a 45% reduction in leaf size,and this was mostly due to a decrease in cell expansion,whereas cell division remained largely unaffected by drought.To investigate the molecular basis of the observed leaf growth reduction,the third Brachypodium leaf was dissected in three zones,namely proliferation,expansion,and mature zones,and subjected to transcriptome analysis,based on a whole-genome tiling array.This approach allowed us to highlight that transcriptome profiles of different developmental leaf zones respond differently to drought.Several genes and functional processes involved in drought tolerance were identified.The transcriptome data suggest an increased energy availability in the proliferation zones,along with an up-regulation of sterol synthesis that may influence membrane fluidity.This information may be used to improve the tolerance of temperate cereals to drought,which is undoubtedly one of the major environmental challenges faced by agriculture today and in the near future.

  10. Proteome and Phosphoproteome Characterization Reveals New Response and Defense Mechanisms of Brachypodium distachyon Leaves under Salt Stress*

    OpenAIRE

    Lv, Dong-Wen; Subburaj, Saminathan; Cao, Min; Yan, Xing; Li, Xiaohui; Appels, Rudi; Sun, Dong-Fa; Ma, Wujun; Yan, Yue-Ming

    2013-01-01

    Salinity is a major abiotic stress affecting plant growth and development. Understanding the molecular mechanisms of salt response and defense in plants will help in efforts to improve the salt tolerance of crops. Brachypodium distachyon is a new model plant for wheat, barley, and several potential biofuel grasses. In the current study, proteome and phosphoproteome changes induced by salt stress were the focus. The Bd21 leaves were initially treated with salt in concentrations ranging from 80...

  11. Brachypodium distachyon T-DNA insertion lines: a model pathosystem to study nonhost resistance to wheat stripe rust.

    Science.gov (United States)

    An, Tianyue; Cai, Yanli; Zhao, Suzhen; Zhou, Jianghong; Song, Bo; Bux, Hadi; Qi, Xiaoquan

    2016-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases and can cause severe yield losses in many regions of the world. Because of the large size and complexity of wheat genome, it is difficult to study the molecular mechanism of interaction between wheat and PST. Brachypodium distachyon has become a model system for temperate grasses' functional genomics research. The phenotypic evaluation showed that the response of Brachypodium distachyon to PST was nonhost resistance (NHR), which allowed us to present this plant-pathogen system as a model to explore the immune response and the molecular mechanism underlying wheat and PST. Here we reported the generation of about 7,000 T-DNA insertion lines based on a highly efficient Agrobacterium-mediated transformation system. Hundreds of mutants either more susceptible or more resistant to PST than that of the wild type Bd21 were obtained. The three putative target genes, Bradi5g17540, BdMYB102 and Bradi5g11590, of three T-DNA insertion mutants could be involved in NHR of Brachypodium distachyon to wheat stripe rust. The systemic pathologic study of this T-DNA mutants would broaden our knowledge of NHR, and assist in breeding wheat cultivars with durable resistance. PMID:27138687

  12. Brachypodium distachyon T-DNA insertion lines: a model pathosystem to study nonhost resistance to wheat stripe rust

    Science.gov (United States)

    An, Tianyue; Cai, Yanli; Zhao, Suzhen; Zhou, Jianghong; Song, Bo; Bux, Hadi; Qi, Xiaoquan

    2016-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases and can cause severe yield losses in many regions of the world. Because of the large size and complexity of wheat genome, it is difficult to study the molecular mechanism of interaction between wheat and PST. Brachypodium distachyon has become a model system for temperate grasses’ functional genomics research. The phenotypic evaluation showed that the response of Brachypodium distachyon to PST was nonhost resistance (NHR), which allowed us to present this plant-pathogen system as a model to explore the immune response and the molecular mechanism underlying wheat and PST. Here we reported the generation of about 7,000 T-DNA insertion lines based on a highly efficient Agrobacterium-mediated transformation system. Hundreds of mutants either more susceptible or more resistant to PST than that of the wild type Bd21 were obtained. The three putative target genes, Bradi5g17540, BdMYB102 and Bradi5g11590, of three T-DNA insertion mutants could be involved in NHR of Brachypodium distachyon to wheat stripe rust. The systemic pathologic study of this T-DNA mutants would broaden our knowledge of NHR, and assist in breeding wheat cultivars with durable resistance. PMID:27138687

  13. Final technical report for: Insertional Mutagenesis of Brachypodium distachyon DE-AI02-07ER64452

    Energy Technology Data Exchange (ETDEWEB)

    John, Vogel P. [DOE Joint Genome Institute, Walnut Creek, CA (United States)

    2015-10-29

    Several bioenergy grasses are poised to become a major source of energy in the United States. Despite their increasing importance, we know little about the basic biology underlying the traits that control the utility of grasses as energy crops. Better knowledge of grass biology (e.g. identification of the genes that control cell wall composition, plant architecture, cell size, cell division, reproduction, nutrient uptake, carbon flux, etc.) could be used to design rational strategies for crop improvement and shorten the time required to domesticate these species. The use of an appropriate model system is an efficient way to gain this knowledge. Brachypodium distachyon is a small annual grass with all the attributes needed to be a modern model organism including simple growth requirements, fast generation time, small stature, small genome size and self-fertility. These attributes led to the recommendation in the DOE’s “Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda” report to propose developing and using B. distachyon as a model for energy crops to accelerate their domestication. Strategic investments (e.g. genome sequencing) in B. distachyon by the DOE are now bearing fruit and B. distachyon is being used as a model grass by hundreds of laboratories worldwide. Sequence indexed insertional mutants are an extremely powerful tool for both forward and reverse genetics. They allow researchers to order mutants in any gene tagged in the collection by simply emailing a request. The goal of this project was to create a collection of sequence indexed insertional mutants (T-DNA lines) for the model grass Brachypodium distachyon in order to facilitate research by the scientific community. During the course of this grant we created a collection of 23,649 B. distachyon T-DNA lines and identified 26,112 unique insertion sites. The collection can be queried through the project website (http://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium

  14. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  15. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  16. An integrated physical, genetic and cytogenetic map of Brachypodium distachyon, a model system for grass research.

    Directory of Open Access Journals (Sweden)

    Melanie Febrer

    Full Text Available The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS assemblies using BAC end sequences (BES. The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent validation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation.

  17. Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in Brachypodium distachyon

    Institute of Scientific and Technical Information of China (English)

    Richard Poir; Vincent Chochois; Xavier R.R.Sirault; John P.Vogel; Michelle Watt; Robert T.Furbank

    2014-01-01

    This work evaluates the phenotypic response of the model grass (Brachypodium distachyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots. Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose-response curve. Shoot biovolume and biomass, root length and biomass, and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight (R2>0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as 1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response to nitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determina-tion of genomic regions associated with superior nutrient use efficiency.

  18. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    Science.gov (United States)

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots. PMID:26873699

  19. Infection of Brachypodium distachyon by Formae Speciales of Puccinia graminis: Early Infection Events and Host-Pathogen Incompatibility

    OpenAIRE

    Figueroa, Melania; Alderman, Stephen; Garvin, David F; Pfender, William F.

    2013-01-01

    Puccinia graminis causes stem rust, a serious disease of cereals and forage grasses. Important formae speciales of P. graminis and their typical hosts are P. graminis f. sp. tritici (Pg-tr) in wheat and barley, P. graminis f. sp. lolii (Pg-lo) in perennial ryegrass and tall fescue, and P. graminis f. sp. phlei-pratensis (Pg-pp) in timothy grass. Brachypodium distachyon is an emerging genetic model to study fungal disease resistance in cereals and temperate grasses. We characterized the P. gra...

  20. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Directory of Open Access Journals (Sweden)

    François Gagné-Bourque

    Full Text Available Plant growth-promoting bacteria (PGB induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to

  1. Brachypodium distachyon line Bd3-1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein

    NARCIS (Netherlands)

    Lee, M.Y.; Yan, L.J.; Gorter, F.A.; Kim, B.Y.T.; Cui, Y.; Hu, Y.; Yuan, C.; Grindheim, J.; Ganesan, U.; Liu, Z.Y.; Han, C.G.; Yu, J.L.; Li, D.W.; Jackson, A.O.

    2012-01-01

    Barley stripe mosaic virus North Dakota 18 (ND18), Beijing (BJ), Xinjiang (Xi), Type (TY) and CV21 strains are unable to infect the Brachypodium distachyon Bd3-1 inbred line, which harbours a resistance gene designated Bsr1, but the Norwich (NW) strain is virulent on Bd3-1. Analysis of ND18 and NW g

  2. Functional conservation and diversification of APETALA1/FRUITFULL genes in Brachypodium distachyon.

    Science.gov (United States)

    Li, Qi; Wang, Ye; Wang, Fuxiang; Guo, Yuyu; Duan, Xueqing; Sun, Jinhao; An, Hailong

    2016-08-01

    The duplicated grass APETALA1/FRUITFULL (AP1/FUL) genes have distinct but overlapping patterns of expression, suggesting their discrete roles in transition to flowering, specification of spikelet meristem identity and specification of floral organ identity. In this study, we analyzed the expression patterns and functions of four AP1/FUL paralogs (BdVRN1, BdFUL2, BdFUL3 and BdFUL4) in Brachypodium distachyon, a model plant for the temperate cereals and related grasses. Among the four genes tested, only BdVRN1 could remember the prolonged cold treatment. The recently duplicated BdVRN1 and BdFUL2 genes were expressed in a highly consistent manner and ectopic expressions of them caused similar phenotypes such as extremely early flowering and severe morphological alterations of floral organs, indicating their redundant roles in floral transition, inflorescence development and floral organ identity. In comparison, ectopic expressions of BdFUL3 and BdFUL4 only caused a moderate early flowering phenotype, suggesting their divergent function. In yeast two-hybrid assay, both BdVRN1 and BdFUL2 physically interact with SEP proteins but only BdFUL2 is able to form a homodimer. BdVRN1 also interacts weakly with BdFUL2. Our results indicate that, since the separation of AP1/FUL genes in grasses, the process of sub- or neo-functionalization has occurred and paralogs function redundantly and/or separately in flowering competence and inflorescence development. PMID:26856680

  3. Final technical report for Phenomic Analysis of Natural and Induced Variation in Brachypodium Distachyon DE-SC0001526

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, John P.

    2014-12-17

    The goal of this project was to apply high-throughput, non-destructive phenotyping (phenomics) to collections of natural variants and induced mutants of the model grass Brachypodium distachyon and characterize a small subset of that material in detail. B. distachyon is well suited to this phenomic approach because its small size and rapid generation time allow researchers to grow many plants under carefully controlled conditions. In addition, the simple diploid genetics, high quality genome sequence and existence of numerous experimental tools available for B. distachyon allow us to rapidly identify genes affecting specific phenotypes. Our phenomic analysis revealed great diversity in biofuel-relevant traits like growth rate, biomass and photosynthetic rate. This clearly demonstrated the feasibility of applying a phenomic approach to the model grass B. distachyon. We also demonstrated the utility of B. distachyon for studying mature root system, something that is virtually impossible to do with biomass crops. We showed tremendous natural variation in root architecture that can potentially be used to design crops with superior nutrient and water harvesting capability. Finally, we demonstrated the speed with which we can link specific genes to specific phenotypes by studying two mutants in detail. Importantly, in both cases, the specific biological lessons learned were grass-specific and could not have been learned from a dicot model system. Furthermore, one of the genes affects cell wall integrity and thus may be a useful target in the context of biomass crop improvement. Ultimately, all this information can be used to accelerate the creation of improved biomass crops.

  4. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  5. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Yu Cui

    Full Text Available The ND18 strain of Barley stripe mosaic virus (BSMV infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25 °C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F(6:7 recombinant inbred line (RIL population from a cross between Bd3-1 and Bd21 and used the RILs, and an F(2 population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1. We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.

  6. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility.

    Directory of Open Access Journals (Sweden)

    Melania Figueroa

    Full Text Available Puccinia graminis causes stem rust, a serious disease of cereals and forage grasses. Important formae speciales of P. graminis and their typical hosts are P. graminis f. sp. tritici (Pg-tr in wheat and barley, P. graminis f. sp. lolii (Pg-lo in perennial ryegrass and tall fescue, and P. graminis f. sp. phlei-pratensis (Pg-pp in timothy grass. Brachypodium distachyon is an emerging genetic model to study fungal disease resistance in cereals and temperate grasses. We characterized the P. graminis-Brachypodium pathosystem to evaluate its potential for investigating incompatibility and non-host resistance to P. graminis. Inoculation of eight Brachypodium inbred lines with Pg-tr, Pg-lo or Pg-pp resulted in sporulating lesions later accompanied by necrosis. Histological analysis of early infection events in one Brachypodium inbred line (Bd1-1 indicated that Pg-lo and Pg-pp were markedly more efficient than Pg-tr at establishing a biotrophic interaction. Formation of appressoria was completed (60-70% of germinated spores by 12 h post-inoculation (hpi under dark and wet conditions, and after 4 h of subsequent light exposure fungal penetration structures (penetration peg, substomatal vesicle and primary infection hyphae had developed. Brachypodium Bd1-1 exhibited pre-haustorial resistance to Pg-tr, i.e. infection usually stopped at appressorial formation. By 68 hpi, only 0.3% and 0.7% of the Pg-tr urediniospores developed haustoria and colonies, respectively. In contrast, development of advanced infection structures by Pg-lo and Pg-pp was significantly more common; however, Brachypodium displayed post-haustorial resistance to these isolates. By 68 hpi the percentage of urediniospores that only develop a haustorium mother cell or haustorium in Pg-lo and Pg-pp reached 8% and 5%, respectively. The formation of colonies reached 14% and 13%, respectively. We conclude that Brachypodium is an apt grass model to study the molecular and genetic components of

  7. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility.

    Science.gov (United States)

    Figueroa, Melania; Alderman, Stephen; Garvin, David F; Pfender, William F

    2013-01-01

    Puccinia graminis causes stem rust, a serious disease of cereals and forage grasses. Important formae speciales of P. graminis and their typical hosts are P. graminis f. sp. tritici (Pg-tr) in wheat and barley, P. graminis f. sp. lolii (Pg-lo) in perennial ryegrass and tall fescue, and P. graminis f. sp. phlei-pratensis (Pg-pp) in timothy grass. Brachypodium distachyon is an emerging genetic model to study fungal disease resistance in cereals and temperate grasses. We characterized the P. graminis-Brachypodium pathosystem to evaluate its potential for investigating incompatibility and non-host resistance to P. graminis. Inoculation of eight Brachypodium inbred lines with Pg-tr, Pg-lo or Pg-pp resulted in sporulating lesions later accompanied by necrosis. Histological analysis of early infection events in one Brachypodium inbred line (Bd1-1) indicated that Pg-lo and Pg-pp were markedly more efficient than Pg-tr at establishing a biotrophic interaction. Formation of appressoria was completed (60-70% of germinated spores) by 12 h post-inoculation (hpi) under dark and wet conditions, and after 4 h of subsequent light exposure fungal penetration structures (penetration peg, substomatal vesicle and primary infection hyphae) had developed. Brachypodium Bd1-1 exhibited pre-haustorial resistance to Pg-tr, i.e. infection usually stopped at appressorial formation. By 68 hpi, only 0.3% and 0.7% of the Pg-tr urediniospores developed haustoria and colonies, respectively. In contrast, development of advanced infection structures by Pg-lo and Pg-pp was significantly more common; however, Brachypodium displayed post-haustorial resistance to these isolates. By 68 hpi the percentage of urediniospores that only develop a haustorium mother cell or haustorium in Pg-lo and Pg-pp reached 8% and 5%, respectively. The formation of colonies reached 14% and 13%, respectively. We conclude that Brachypodium is an apt grass model to study the molecular and genetic components of incompatiblity

  8. Addressing the Role of microRNAs in Reprogramming Leaf Growth during Drought Stress in Brachypodium distachyon

    Institute of Scientific and Technical Information of China (English)

    Edoardo Bertolini; Wim Verelst; David Stephen Horner; Luca Gianfranceschi; Viviana Piccolo; Dirk Inzé; Mario Enrico Pè

    2013-01-01

    Plant responses to drought are regulated by complex genetic and epigenetic networks leading to rapid reprogramming of plant growth,miRNAs have been widely indicated as key players in the regulation of growth and development.The role of miRNAs in drought response was investigated in young leaves of Brachypodium distachyon,a drought-tolerant monocot model species.Adopting an in vivo drought assay,shown to cause a dramatic reduction in leaf size,mostly due to reduced cell expansion,small RNA libraries were produced from proliferating and expanding leaf cells.Next-generation sequencing data were analyzed using an in-house bioinformatics pipeline allowing the identification of 66 annotated miRNA genes and 122 new high confidence predictions greatly expanding the number of known Brachypodium miRNAs.In addition,we identified four TAS3 loci and a large number of siRNA-producing loci that show characteristics suggesting that they may represent young miRNA genes.Most miRNAs showed a high expression level,consistent with their involvement in early leaf development and cell identity.Proliferating and expanding leaf cells respond differently to drought treatment and differential expression analyses suggest novel evidence for an miRNA regulatory network controlling cell division in both normal and stressed conditions and demonstrate that drought triggers a genetic reprogramming of leaf growth in which miRNAs are deeply involved.

  9. The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling

    Directory of Open Access Journals (Sweden)

    Hernando-Amado Sara

    2012-11-01

    Full Text Available Abstract Background Transcription factors (TFs are proteins that have played a central role both in evolution and in domestication, and are major regulators of development in living organisms. Plant genome sequences reveal that approximately 7% of all genes encode putative TFs. The DOF (DNA binding with One Finger TF family has been associated with vital processes exclusive to higher plants and to their close ancestors (algae, mosses and ferns. These are seed maturation and germination, light-mediated regulation, phytohormone and plant responses to biotic and abiotic stresses, etc. In Hordeum vulgare and Oryza sativa, 26 and 30 different Dof genes, respectively, have been annotated. Brachypodium distachyon has been the first Pooideae grass to be sequenced and, due to its genomic, morphological and physiological characteristics, has emerged as the model system for temperate cereals, such as wheat and barley. Results Through searches in the B. distachyon genome, 27 Dof genes have been identified and a phylogenetic comparison with the Oryza sativa and the Hordeum vulgare DOFs has been performed. To explore the evolutionary relationship among these DOF proteins, a combined phylogenetic tree has been constructed with the Brachypodium DOFs and those from rice and barley. This phylogenetic analysis has classified the DOF proteins into four Major Cluster of Orthologous Groups (MCOGs. Using RT-qPCR analysis the expression profiles of the annotated BdDof genes across four organs (leaves, roots, spikes and seeds has been investigated. These results have led to a classification of the BdDof genes into two groups, according to their expression levels. The genes highly or preferentially expressed in seeds have been subjected to a more detailed expression analysis (maturation, dry stage and germination. Conclusions Comparison of the expression profiles of the Brachypodium Dof genes with the published functions of closely related DOF sequences from the cereal

  10. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    Directory of Open Access Journals (Sweden)

    Nilsson Lena

    2010-11-01

    Full Text Available Abstract Background Gene silencing vectors based on Barley stripe mosaic virus (BSMV are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species have created a need for tools to study gene function in these species. Results Here we demonstrate the successful BSMV-mediated virus induced gene silencing (VIGS of three different genes in barley roots, i.e. the barley homologues of the IPS1, PHR1, and PHO2 genes known to participate in Pi uptake and reallocation in Arabidopsis. Attempts to silence two other genes, the Pi transporter gene HvPht1;1 and the endo-β-1,4-glucanase gene HvCel1, in barley roots were unsuccessful, probably due to instability of the plant gene inserts in the viral vector. In B. distachyon leaves, significant silencing of the PHYTOENE DESATURASE (BdPDS gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa and diploid (A. strigosa oat. Finally, two modifications of the BSMV vector are presented, allowing ligation-free cloning of DNA fragments into the BSMV-γ component. Conclusions Our results show that BSMV can be used as a vector for gene silencing in barley roots and in B. distachyon leaves and possibly roots, opening up possibilities for using VIGS to study cereal root biology and to exploit the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too

  11. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress.

    Science.gov (United States)

    Lv, Dong-Wen; Subburaj, Saminathan; Cao, Min; Yan, Xing; Li, Xiaohui; Appels, Rudi; Sun, Dong-Fa; Ma, Wujun; Yan, Yue-Ming

    2014-02-01

    Salinity is a major abiotic stress affecting plant growth and development. Understanding the molecular mechanisms of salt response and defense in plants will help in efforts to improve the salt tolerance of crops. Brachypodium distachyon is a new model plant for wheat, barley, and several potential biofuel grasses. In the current study, proteome and phosphoproteome changes induced by salt stress were the focus. The Bd21 leaves were initially treated with salt in concentrations ranging from 80 to 320 mm and then underwent a recovery process prior to proteome analysis. A total of 80 differentially expressed protein spots corresponding to 60 unique proteins were identified. The sample treated with a median salt level of 240 mm and the control were selected for phosphopeptide purification using TiO2 microcolumns and LC-MS/MS for phosphoproteome analysis to identify the phosphorylation sites and phosphoproteins. A total of 1509 phosphoproteins and 2839 phosphorylation sites were identified. Among them, 468 phosphoproteins containing 496 phosphorylation sites demonstrated significant changes at the phosphorylation level. Nine phosphorylation motifs were extracted from the 496 phosphorylation sites. Of the 60 unique differentially expressed proteins, 14 were also identified as phosphoproteins. Many proteins and phosphoproteins, as well as potential signal pathways associated with salt response and defense, were found, including three 14-3-3s (GF14A, GF14B, and 14-3-3A) for signal transduction and several ABA signal-associated proteins such as ABF2, TRAB1, and SAPK8. Finally, a schematic salt response and defense mechanism in B. distachyon was proposed. PMID:24335353

  12. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon.

    Science.gov (United States)

    Kapp, Nikki; Barnes, William J; Richard, Tom L; Anderson, Charles T

    2015-07-01

    Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses. PMID:25922482

  13. Large-scale collection and analysis of full-length cDNAs from Brachypodium distachyon and integration with Pooideae sequence resources.

    Directory of Open Access Journals (Sweden)

    Keiichi Mochida

    Full Text Available A comprehensive collection of full-length cDNAs is essential for correct structural gene annotation and functional analyses of genes. We constructed a mixed full-length cDNA library from 21 different tissues of Brachypodium distachyon Bd21, and obtained 78,163 high quality expressed sequence tags (ESTs from both ends of ca. 40,000 clones (including 16,079 contigs. We updated gene structure annotations of Brachypodium genes based on full-length cDNA sequences in comparison with the latest publicly available annotations. About 10,000 non-redundant gene models were supported by full-length cDNAs; ca. 6,000 showed some transcription unit modifications. We also found ca. 580 novel gene models, including 362 newly identified in Bd21. Using the updated transcription start sites, we searched a total of 580 plant cis-motifs in the -3 kb promoter regions and determined a genome-wide Brachypodium promoter architecture. Furthermore, we integrated the Brachypodium full-length cDNAs and updated gene structures with available sequence resources in wheat and barley in a web-accessible database, the RIKEN Brachypodium FL cDNA database. The database represents a "one-stop" information resource for all genomic information in the Pooideae, facilitating functional analysis of genes in this model grass plant and seamless knowledge transfer to the Triticeae crops.

  14. Identification of genes that regulate phosphate acquisition and plant performance during arbuscular my corrhizal symbiosis in medicago truncatula and brachypodium distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Maria J [Boyce Thompson Institute, Ithaca, NY (United States); Hudson, Matthew E [Univ. of Illinois, Champaign, IL (United States)

    2015-11-24

    Most vascular flowering plants have the ability to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots and can have a profound effect on plant productivity, largely through improvements in plant mineral nutrition. Within the root cortical cells, the plant and fungus create novel interfaces specialized for nutrient transfer, while the fungus also develops a network of hyphae in the rhizosphere. Through this hyphal network, the fungus acquires and delivers phosphate and nitrogen to the root. In return, the plant provides the fungus with carbon. In addition, to enhancing plant mineral nutrition, the AM symbiosis has an important role in the carbon cycle, and positive effects on soil health. Here we identified and characterized plant genes involved in the regulation and functioning of the AM symbiosis in Medicago truncatula and Brachypodium distachyon. This included the identification and and characterization of a M. truncatula transcription factors that are required for symbiosis. Additionally, we investigated the molecular basis of functional diversity among AM symbioses in B. distachyon and analysed the transcriptome of Brachypodium distachyon during symbiosis.

  15. In silico sequence analysis and homology modeling of predicted beta-amylase 7-like protein in Brachypodium distachyon L.

    Directory of Open Access Journals (Sweden)

    ERTUĞRUL FILIZ

    2014-04-01

    Full Text Available Beta-amylase (β-amylase, EC 3.2.1.2 is an enzyme that catalyses hydrolysis of glucosidic bonds in polysaccharides. In this study, we analyzed protein sequence of predicted beta-amylase 7-like protein in Brachypodium distachyon. pI (isoelectric point value was found as 5.23 in acidic character, while the instability index (II was found as 50.28 with accepted unstable protein. The prediction of subcellular localization was revealed that the protein may reside in chloroplast by using CELLO v.2.5. The 3D structure of protein was performed using comparative homology modeling with SWISS-MODEL. The accuracy of the predicted 3D structure was checked using Ramachandran plot analysis showed that 95.4% in favored region. The results of our study contribute to understanding of β-amylase protein structure in grass species and will be scientific base for 3D modeling of beta-amylase proteins in further studies.

  16. Analysis of two heterologous flowering genes in ¤Brachypodium distachyon¤ demonstrates its potential as a grass model plant

    DEFF Research Database (Denmark)

    Olsen, P.; Lenk, I.; Jensen, Christian S.;

    2006-01-01

    date up to 10 weeks in plants of the T, generation. Furthermore, a positive correlation between Terminal Flower 1 expression level and delay in heading date was apparent for most of the lines. The short life cycle and fast transformation system of B. distachyon allowed heading date analyses in the T-1......Despite the great contribution of model organisms, such as Arabidopsis and rice to understand biological processes in plants, these models are less valuable for functional studies of particular genes from temperate grass crop species. Therefore a new model plant is required, displaying features...... including close phylogenetic relationship to the temperate grasses, vernalisation requirement, high transformation efficiency, small genome size and a rapid life cycle. These requirements are all fulfilled by the small annual grass Brachypodium distachyon. As a first step towards implementing this plant as...

  17. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass.

    Directory of Open Access Journals (Sweden)

    Till Meineke

    Full Text Available The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat with the C4 grasses Zea mays (maize and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108-117 mg ethanol·g(-1 dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type.

  18. Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens.

    Science.gov (United States)

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M; Qi, Mingsheng; Whitham, Steven A; Bogdanove, Adam J; Bellincampi, Daniela; Zabotina, Olga A

    2013-05-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782

  19. Pushing the boundaries of resistance: insights from Brachypodium-rust interactions

    Directory of Open Access Journals (Sweden)

    Melania eFigueroa

    2015-07-01

    Full Text Available The implications of global population growth urge transformation of current food and bioenergy production systems to sustainability. Members of the family Poaceae are of particular importance both in food security and for their applications as biofuel substrates. For centuries, rust fungi have threatened the production of valuable crops such as wheat, barley, oat and other small grains; similarly, biofuel crops can also be susceptible to these pathogens. Emerging rust pathogenic races with increased virulence and recurrent rust epidemics around the world point out the vulnerability of monocultures. Basic research in plant immunity, especially in model plants, can make contributions to understanding plant resistance mechanisms and improve disease management strategies. The development of the grass Brachypodium distachyon as a genetically tractable model for monocots, especially temperate cereals and grasses, offers the possibility to overcome the experimental challenges presented by the genetic and genomic complexities of economically valuable crop plants. The numerous resources and tools available in Brachypodium have opened new doors to investigate the underlying molecular and genetic bases of plant-microbe interactions in grasses and evidence demonstrating the applicability and advantages of working with B. distachyon is increasing. Importantly, several interactions between B. distachyon and devastating plant pathogens, such rust fungi, have been examined in the context of non-host resistance. Here, we discuss the use of B. distachyon in these various pathosystems. Exploiting B. distachyon to understand the mechanisms underpinning disease resistance to non-adapted rust fungi may provide effective and durable approaches to fend off these pathogens. The close phylogenetic relationship among Brachypodium spp. and grasses with industrial and agronomic value support harnessing this model plant to improve cropping systems and encourage its use in

  20. Analysis of two heterologous flowering genes in ¤Brachypodium distachyon¤ demonstrates its potential as a grass model plant

    DEFF Research Database (Denmark)

    Olsen, P.; Lenk, I.; Jensen, Christian S.; Petersen, K.; Andersen, C.H.; Didion, T.; Nielsen, K.K.

    2006-01-01

    date up to 10 weeks in plants of the T, generation. Furthermore, a positive correlation between Terminal Flower 1 expression level and delay in heading date was apparent for most of the lines. The short life cycle and fast transformation system of B. distachyon allowed heading date analyses in the T-1...... our preferred test bed for ryegrass flowering genes we expressed two Terminal Flower I orthologs, LpTFL1 and TFL1 from perennial ryegrass and Arabidopsis, respectively, in two different B. distochyon accessions. Our results confirm that both LpTFL1 and TFL1 act as floral repressors, delaying heading...

  1. Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting

    Science.gov (United States)

    Betekhtin, Alexander; Jenkins, Glyn; Hasterok, Robert

    2014-01-01

    Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP) which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20) three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30), and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40). On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon. PMID:25493646

  2. Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting.

    Science.gov (United States)

    Betekhtin, Alexander; Jenkins, Glyn; Hasterok, Robert

    2014-01-01

    Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP) which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20) three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30), and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40). On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon. PMID:25493646

  3. Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting.

    Directory of Open Access Journals (Sweden)

    Alexander Betekhtin

    Full Text Available Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20 three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30, and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40. On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon.

  4. Genome-Wide Sequence Comparison of Centromeric Regions and BAC-Landing on Chromosomes Provide New Insights into Centromere Evolution Among Wheat, Brachypodium, and Rice

    Science.gov (United States)

    As an emerging model system, the nearly finished sequence of Brachypodium distachyon will provide new insights into comparative and functional genomics of grass species. However, centromeres of B. distachyon are unlikely to be sequenced and assembled precisely similar to many other sequenced organis...

  5. Orthology between genomes of Brachypodium, wheat and rice

    Directory of Open Access Journals (Sweden)

    Balyan Harindra S

    2009-05-01

    Full Text Available Abstract Background In the past, rice genome served as a good model for studies involving comparative genomics of grass species. More recently, however, Brachypodium distachyon genome has emerged as a better model system for genomes of temperate cereals including wheat. During the present study, Brachypodium EST contigs were utilized to resolve orthologous relationships among the genomes of Brachypodium, wheat and rice. Findings Comparative sequence analysis of 3,818 Brachypodium EST (bEST contigs and 3,792 physically mapped wheat EST (wEST contigs revealed that as many as 449 bEST contigs were orthologous to 1,154 wEST loci that were bin-mapped on all the 21 wheat chromosomes. Similarly 743 bEST contigs were orthologous to specific rice genome sequences distributed on all the 12 rice chromosomes. As many as 183 bEST contigs were orthologous to both wheat and rice genome sequences, which harbored as many as 17 SSRs conserved across the three species. Primers developed for 12 of these 17 conserved SSRs were used for a wet-lab experiment, which resolved relatively high level of conservation among the genomes of Brachypodium, wheat and rice. Conclusion The present study confirmed that Brachypodium is a better model than rice for analysis of the genomes of temperate cereals like wheat and barley. The whole genome sequence of Brachypodium, which should become available in the near future, will further facilitate greatly the studies involving comparative genomics of cereals.

  6. 以色列二穗短柄草休眠及遗传多样性分析%Seed Dormancy and Genetic Diversity of Brachypodium distachyon from Israel

    Institute of Scientific and Technical Information of China (English)

    黄青; 薛文韬; 严俊; 赵钢; 程剑平

    2015-01-01

    [Objective]To estimate the seed dormancy and its genetic diversity of B .distachyon in Israel,B .distachyon of 13 genotypes from different areas of Israel were tested for their dormancy depth and EST-SSR diversity.[Method]In the dormancy measurements,the maximum germina-tion rate (Gmax )was measured and the equation of Gmax dynamic was fitted.The fragments ampli-fied by SSR were separated by PEGA gel with develop method of silver staining.[Results]A-mong the 13 genotypes,seed dormancy of EG5 was the deepest but the seeds of Ko12 and SB2 germinated faster compared to the others.The cluster results of SSR amplified fragments showed that there was similar genetic structure between Bd and Sha4 population.[Conclusion]Large differences were found in seed dormancy among the different genotypes in Israel.The genotype from Shlomi of north area of Israel was related to the B .distachyon populations from Turkey.%【目的】为探讨以色列地区二穗短柄草的休眠及其遗传多样性,对来自以色列不同地区的13个基因型二穗短柄草进行籽粒休眠深度和 EST-SSR 标记遗传位点多态性分析。【方法】休眠深度分别测定籽粒在40℃高温不同贮藏时间下的最大发芽率(Gmax ),并对其 Gmax 进行动态方程拟合;SSR 标记的扩增片段采用 PEGA 凝胶电泳分离并用银染法进行显影。【结果】13个基因型中,EG5休眠最深,而基因型 Ko12和 SB2休眠较浅。SSR 标记扩增片段的聚类分析中,Sha4与 Bd 群体的基因型遗传结构较类似。【结论】以色列不同地区籽粒休眠深度差异较大;北部Shlomi 地区的基因型与土耳其地区的二穗短柄草有较近的亲缘关系。

  7. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Green, Pamela J. [Univ. of Delaware, Newark, DE (United States)

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  8. Insight into the karyotype evolution of brachypodium species using comparative chromosome barcoding.

    Science.gov (United States)

    Idziak, Dominika; Hazuka, Iwona; Poliwczak, Beata; Wiszynska, Anna; Wolny, Elzbieta; Hasterok, Robert

    2014-01-01

    Paleogenomic studies based on bioinformatic analyses of DNA sequences have enabled unprecedented insight into the evolution of grass genomes. They have revealed that nested chromosome fusions played an important role in the divergence of modern grasses. Nowadays, studies on karyotype evolution based on the sequence analysis can also be effectively complemented by the fine-scale cytomolecular approach. In this work, we studied the karyotype evolution of small genome grasses using BAC-FISH based comparative chromosome barcoding in four Brachypodium species: diploid B. distachyon (2n = 10) and B. sylvaticum (2n = 18), diploid (2n = 18) and allopolyploid (2n = 28) B. pinnatum as well as B. phoenicoides (2n = 28). Using BAC clones derived from the B. distachyon genomic libraries for the chromosomes Bd2 and Bd3, we identified the descending dysploidy events that were common for diploids with x = 9 and B. distachyon as well as two nested chromosome fusions that were specific only for B. distachyon. We suggest that dysploidy events that are shared by different lineages of the genus had already appeared in their common ancestor. We also show that additional structural rearrangements, such as translocations and duplications, contributed to increasing genome diversification in the species analysed. No chromosomes structured exactly like Bd2 and Bd3 were found in B. pinnatum (2n = 28) and B. phoenicoides. The structure of Bd2 and Bd3 homeologues belonging to the two genomes in the allopolyploids resembled the structure of their counterparts in the 2n = 18 diploids. These findings reinforce the hypothesis which excludes B. distachyon as a potential parent for Eurasian perennial Brachypodium allopolyploids. Our cytomolecular data elucidate some mechanisms of the descending dysploidy in monocots and enable reconstructions of the evolutionary events which shaped the extant karyotypes in both the genus Brachypodium and in grasses as a whole. PMID:24675822

  9. The Brachypodium-Puccinia graminis system: Solving a puzzle to uncover the underlying mechanisms of non-host resistance and plant immunity

    Science.gov (United States)

    Brachypodium distachyon is regarded as non-host to the causal agent of stem rust in wheat and barley, P. graminis f. sp. tritici (Pgt), and a near-host to the pathogens of forage grasses, P. graminis f. sp. lolii (Pgl) and P. graminis f. sp. phlei-pratensis (Pgp). Given the devastating effect of ste...

  10. Genome Sequencing and Analysis of the Model Grass Brachypodium Distachyon.

    Science.gov (United States)

    Three subfamilies of grasses, the Ehrhartoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the compl...

  11. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response

    Directory of Open Access Journals (Sweden)

    Chong Kang

    2009-09-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are endogenous small RNAs having large-scale regulatory effects on plant development and stress responses. Extensive studies of miRNAs have only been performed in a few model plants. Although miRNAs are proved to be involved in plant cold stress responses, little is known for winter-habit monocots. Brachypodium distachyon, with close evolutionary relationship to cool-season cereals, has recently emerged as a novel model plant. There are few reports of Brachypodium miRNAs. Results High-throughput sequencing and whole-genome-wide data mining led to the identification of 27 conserved miRNAs, as well as 129 predicted miRNAs in Brachypodium. For multiple-member conserved miRNA families, their sizes in Brachypodium were much smaller than those in rice and Populus. The genome organization of miR395 family in Brachypodium was quite different from that in rice. The expression of 3 conserved miRNAs and 25 predicted miRNAs showed significant changes in response to cold stress. Among these miRNAs, some were cold-induced and some were cold-suppressed, but all the conserved miRNAs were up-regulated under cold stress condition. Conclusion Our results suggest that Brachypodium miRNAs are composed of a set of conserved miRNAs and a large proportion of non-conserved miRNAs with low expression levels. Both kinds of miRNAs were involved in cold stress response, but all the conserved miRNAs were up-regulated, implying an important role for cold-induced miRNAs. The different size and genome organization of miRNA families in Brachypodium and rice suggest that the frequency of duplication events or the selection pressure on duplicated miRNAs are different between these two closely related plant species.

  12. Transcriptome-wide Analysis Of Vernalization Reveals Conserved and Species-specific Mechanisms in Brachypodium

    Institute of Scientific and Technical Information of China (English)

    Qing Huan; Zhiwei Mao; Jingyu Zhang; Yunyuan Xu; Kang Chong

    2013-01-01

    Several temperate cereals need vernalization to promote flowering.Little,however,is known about the vernalization-memory-related genes,and almost no comparative analysis has been performed.Here,RNA-Seq was used for transcriptome analysis in non-vernalized,vernalized and post-vernalized Brachypodium distachyon (L.) Beauv.seedlings.In total,the expression of 1,665 genes showed significant changes (fold change ≥4) in response to vernalization.Among them,674 putative vernalization-memory-related genes with a constant response to vernalization were significantly enriched in transcriptional regulation and monooxygenase-mediated biological processes.Comparative analysis of vernalization-memory-related genes with barley demonstrated that the oxidative-stress response was the most conserved pathway between these two plant species.Moreover,Brachypodium preferred to regulate transcription and protein phosphorylation processes,while vernalization-memory-related genes,whose products are cytoplasmic membrane-bound-vesicle-located proteins,were preferred to be regulated in barley.Correlation analysis of the vernalization-related genes with barley revealed that the vernalization mechanism was conserved between these two plant species.In summary,vernalization,including its memory mechanism,is conserved between Brachypodium and barley,although several species-specific features also exist.The data reported here will provide primary resources for subsequent functional research in vernalization.

  13. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination.

    Science.gov (United States)

    Barrero, Jose M; Downie, A Bruce; Xu, Qian; Gubler, Frank

    2014-03-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8'-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  14. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium.

    Science.gov (United States)

    Pacheco-Villalobos, David; Díaz-Moreno, Sara M; van der Schuren, Alja; Tamaki, Takayuki; Kang, Yeon Hee; Gujas, Bojan; Novak, Ondrej; Jaspert, Nina; Li, Zhenni; Wolf, Sebastian; Oecking, Claudia; Ljung, Karin; Bulone, Vincent; Hardtke, Christian S

    2016-05-01

    The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots. PMID:27169463

  15. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium[OPEN

    Science.gov (United States)

    Pacheco-Villalobos, David; Tamaki, Takayuki; Gujas, Bojan; Jaspert, Nina; Oecking, Claudia; Bulone, Vincent; Hardtke, Christian S.

    2016-01-01

    The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana. However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots. PMID:27169463

  16. Characterization of FLOWERING LOCUS T1 (FT1 gene in Brachypodium and wheat.

    Directory of Open Access Journals (Sweden)

    Bo Lv

    Full Text Available The phase transition from vegetative to reproductive growth is a critical event in the life cycle of flowering plants. FLOWERING LOCUS T (FT plays a central role in the regulation of this transition by integrating signals from multiple flowering pathways in the leaves and transmitting them to the shoot apical meristem. In this study, we characterized FT homologs in the temperate grasses Brachypodium distachyon and polyploid wheat using transgenic and mutant approaches. Downregulation of FT1 by RNAi was associated with a significant downregulation of the FT-like genes FT2 and FT4 in Brachypodium and FT2 and FT5 in wheat. In a transgenic wheat line carrying a highly-expressed FT1 allele, FT2 and FT3 were upregulated under both long and short days. Overexpression of FT1 caused extremely early flowering during shoot regeneration in both Brachypodium and hexaploid wheat, and resulted in insufficient vegetative tissue to support the production of viable seeds. Downregulation of FT1 transcripts by RNA interference (RNAi resulted in non-flowering Brachypodium plants and late flowering plants (2-4 weeks delay in wheat. A similar delay in heading time was observed in tetraploid wheat plants carrying mutations for both FT-A1 and FT-B1. Plants homozygous only for mutations in FT-B1 flowered later than plants homozygous only for mutations in FT-A1, which corresponded with higher transcript levels of FT-B1 relative to FT-A1 in the early stages of development. Taken together, our data indicate that FT1 plays a critical role in the regulation of flowering in Brachypodium and wheat, and that this role is associated with the simultaneous regulation of other FT-like genes. The differential effects of mutations in FT-A1 and FT-B1 on wheat heading time suggest that different allelic combinations of FT1 homoeologs could be used to adjust wheat heading time to improve adaptation to changing environments.

  17. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Science.gov (United States)

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  18. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants

    DEFF Research Database (Denmark)

    Marriott, Poppy E; Sibout, Richard; Lapierre, Catherine;

    2014-01-01

    Lignocellulosic plant biomass is an attractive feedstock for the production of sustainable biofuels, but the commercialization of such products is hampered by the high costs of processing this material into fermentable sugars (saccharification). One approach to lowering these costs is to produce...... saccharification with an industrial polysaccharide-degrading enzyme mixture. From an initial screen of 2,400 M2 plants, we selected 12 lines that showed heritable improvements in saccharification, mostly with no significant reduction in plant size or stem strength. Characterization of these putative mutants...

  19. Update on the genomics and basic biology of Brachypodium: International Brachypodium Initiative (IBI)

    Science.gov (United States)

    The scientific presentations at the First International Brachypodium Conference (abstracts available at www.brachy2013.unimore.it) are evidence of the widespread adoption of Brachypodium as a model system. Furthermore, the wide range of topics presented (genome evolution, roots, abiotic and biotic s...

  20. Centromere synteny among Brachypodium, wheat, and rice

    Science.gov (United States)

    Rice, wheat and Brachypodium are plant genetic models with variable genome complexity and basic chromosome numbers, representing two subfamilies of the Poaceae. Centromeres are prominent chromosome landmarks, but their fate during this convoluted chromosome evolution has been more difficult to deter...

  1. Protein (Viridiplantae): 357158162 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available EDICTED: L-ascorbate oxidase-like Brachypodium distachyon MELLGANPRLLCCLFLCFFSSLAMSQAKTVHEKWDISYHFKSPDCVRKLA...HYGMQRSAGLNGMIIVSPAEPEPFSYDGEHDVFLNDWWHKSTYEQAAGLASVPIEWVGEPKSLLINGRGRFNCSALAASGGAAAACNATSPDCAVQVFAVVPGRTYRF

  2. Protein (Viridiplantae): 357160409 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PAVFNLVTIDTGSTISWVQCQYCIVHCYTQDQRAGPTFNTSSSSTYRRVGCSAQVCHDMHVSQNIPSGCVEEEDSCIYSLRYASGEYSAGYLSQDRLTLANSYS...IQKFIFGCGSDNRYNGHSAGIIGFGNKSYSFFNQIAQLTNYSAFSYCFPSNQENEGFLSIGPYVRDSNKLILTQLFDYGAHLPVY...83 PREDICTED: aspartic proteinase nepenthesin-1-like Brachypodium distachyon MVQAANIPDSAVIGDDSIRKNQFFMGISLGT

  3. Protein (Viridiplantae): 357111000 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available EDICTED: uncharacterized protein LOC100830854 Brachypodium distachyon MFGTPSSSPLFGTPSSAPSFGTPSTTPAFGAAFSAPAFGTPSSTPAFGTPSSTPAF...GTPSSTPAFGAPSSTPAFWTPSSTSAFGTPSSTPAFGAAPSPSPSPFGFQQQATPSPSPFGFA...GGGGGQITTQMAPVAPLPLSPSDRDIQAIVDAYKEDPGNPRYAFRHLLFSVTDPSQRVKPVAASDIMWAEAMGKLECMDSADRERLWPQLVQGFKDLSGRLKLQDEVL

  4. A Brachypodium UDP-Glycosyltransferase Confers Root Tolerance to Deoxynivalenol and Resistance to Fusarium Infection.

    Science.gov (United States)

    Pasquet, Jean-Claude; Changenet, Valentin; Macadré, Catherine; Boex-Fontvieille, Edouard; Soulhat, Camille; Bouchabké-Coussa, Oumaya; Dalmais, Marion; Atanasova-Pénichon, Vessela; Bendahmane, Abdelhafid; Saindrenan, Patrick; Dufresne, Marie

    2016-09-01

    Fusarium head blight (FHB) is a cereal disease caused by Fusarium graminearum, a fungus able to produce type B trichothecenes on cereals, including deoxynivalenol (DON), which is harmful for humans and animals. Resistance to FHB is quantitative, and the mechanisms underlying resistance are poorly understood. Resistance has been related to the ability to conjugate DON into a glucosylated form, deoxynivalenol-3-O-glucose (D3G), by secondary metabolism UDP-glucosyltransferases (UGTs). However, functional analyses have never been performed within a single host species. Here, using the model cereal species Brachypodium distachyon, we show that the Bradi5g03300 UGT converts DON into D3G in planta. We present evidence that a mutation in Bradi5g03300 increases root sensitivity to DON and the susceptibility of spikes to F. graminearum, while overexpression confers increased root tolerance to the mycotoxin and spike resistance to the fungus. The dynamics of expression and conjugation suggest that the speed of DON conjugation rather than the increase of D3G per se is a critical factor explaining the higher resistance of the overexpressing lines. A detached glumes assay showed that overexpression but not mutation of the Bradi5g03300 gene alters primary infection by F. graminearum, highlighting the involvement of DON in early steps of infection. Together, these results indicate that early and efficient UGT-mediated conjugation of DON is necessary and sufficient to establish resistance to primary infection by F. graminearum and highlight a novel strategy to promote FHB resistance in cereals. PMID:27378816

  5. Cell wall composition and digestibility alterations in Brachypodium distachyon achieved through reduced expression of the UDP-arabinopyranose mutase

    Science.gov (United States)

    Nucleotide-activated sugars are essential substrates for plant cell wall carbohydrate-polymer biosynthetic glycosyltransferase enzymes. The most prevalent sugars in grass cell walls include glucose (Glc), xylose (Xyl), and arabinose (Ara). These sugars are biosynthetically related via the uridine di...

  6. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    DEFF Research Database (Denmark)

    Pacak, Andrzej; Geisler, Katrin; Jørgensen, Bodil;

    2010-01-01

    PHYTOENE DESATURASE (BdPDS) gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa) and diploid (A. strigosa) oat. Finally, two modifications of the BSMV vector are...

  7. A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat

    Science.gov (United States)

    The wheat high molecular weight (HMW)-glutenins are important seed storage proteins that determine bread-making quality in hexaploid wheat (Triticum aestivum). In this study, detailed comparative sequence analyses of large orthologous HMW-glutenin genomic regions from eight grass species, represent...

  8. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon

    OpenAIRE

    Kapp, Nikki; Barnes, William J.; Richard, Tom L.; Anderson, Charles T.

    2015-01-01

    Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detec...

  9. Using the Model Perennial Grass Brachypodium sylvaticum to Engineer Resistance to Multiple Abiotic Stresses

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Sean; Reguera, Maria; Sade, Nir; Cartwright, Amy; Tobias, Christian; Thilmony, Roger; Blumwald, Eduardo; Vogel, John

    2015-03-20

    We are using the perennial model grass Brachypodium sylvaticum to identify combinations of transgenes that enhance tolerance to multiple, simultaneous abiotic stresses. The most successful transgene combinations will ultimately be used to create improved switchgrass (Panicum virgatum L.) cultivars. To further develop B. sylvaticum as a perennial model grass, and facilitate our planned transcriptional profiling, we are sequencing and annotating the genome. We have generated ~40x genome coverage using PacBio sequencing of the largest possible size selected libraries (18, 22, 25 kb). Our initial assembly using only long-read sequence contained 320 Mb of sequence with an N50 contig length of 315 kb and an N95 contig length of 40 kb. This assembly consists of 2,430 contigs, the largest of which was 1.6 Mb. The estimated genome size based on c-values is 340 Mb indicating that about 20 Mb of presumably repetitive DNA remains yet unassembled. Significantly, this assembly is far superior to an assembly created from paired-end short-read sequence, ~100x genome coverage. The short-read-only assembly contained only 226 Mb of sequence in 19k contigs. To aid the assembly of the scaffolds into chromosome-scale assemblies we produced an F2 mapping population and have genotyped 480 individuals using a genotype by sequence approach. One of the reasons for using B. sylvaticum as a model system is to determine if the transgenes adversely affect perenniality and winter hardiness. Toward this goal, we examined the freezing tolerance of wild type B. sylvaticum lines to determine the optimal conditions for testing the freezing tolerance of the transgenics. A survey of seven accessions noted significant natural variation in freezing tolerance. Seedling or adult Ain-1 plants, the line used for transformation, survived an 8 hour challenge down to -6 oC and 50% survived a challenge down to -9 oC. Thus, we will be able to easily determine if the transgenes compromise freezing tolerance. In the

  10. Structure and Dynamics of Brachypodium Primary Cell Wall Polysaccharides from Two-Dimensional 13C Solid-State Nuclear Magnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tuo [Ames Lab., Ames, IA (United States); Salazar, Andre [Iowa State Univ., Ames, IA (United States); Zabotina, Olga A. [Iowa State Univ., Ames, IA (United States); Hong, Mei [Ames Lab., Ames, IA (United States)

    2014-04-10

    The polysaccharide structure and dynamics in the primary cell wall of the model grass Brachypodium distachyon are investigated for the first time using solid-state nuclear magnetic resonance (NMR). While both grass and non-grass cell walls contain cellulose as the main structural scaffold, the former contains xylan with arabinose and glucuronic acid substitutions as the main hemicellulose, with a small amount of xyloglucan (XyG) and pectins, while the latter contains XyG as the main hemicellulose and significant amounts of pectins. We labeled the Brachypodium cell wall with 13C to allow two-dimensional (2D) 13C correlation NMR experiments under magic-angle spinning. Well-resolved 2D spectra are obtained in which the 13C signals of cellulose, glucuronoarabinoxylan (GAX), and other matrix polysaccharides can be assigned. The assigned 13C chemical shifts indicate that there are a large number of arabinose and xylose linkages in the wall, and GAX is significantly branched at the developmental stage of 2 weeks. 2D 13C–13C correlation spectra measured with long spin diffusion mixing times indicate that the branched GAX approaches cellulose microfibrils on the nanometer scale, contrary to the conventional model in which only unbranched GAX can bind cellulose. The GAX chains are highly dynamic, with average order parameters of 0.4. Biexponential 13C T1 and 1H T relaxation indicates that there are two dynamically distinct domains in GAX: the more rigid domain may be responsible for cross-linking cellulose microfibrils, while the more mobile domain may fill the interfibrillar space. This dynamic heterogeneity is more pronounced than that of the non-grass hemicellulose, XyG, suggesting that GAX adopts the mixed characteristics of XyG and pectins. Moderate differences in cellulose rigidity are observed between the Brachypodium and Arabidopsis cell walls

  11. Brachypodium sylvaticum, a model for perennial grasses: transformation and inbred line development.

    Directory of Open Access Journals (Sweden)

    Michael A Steinwand

    Full Text Available Perennial species offer significant advantages as crops including reduced soil erosion, lower energy inputs after the first year, deeper root systems that access more soil moisture, and decreased fertilizer inputs due to the remobilization of nutrients at the end of the growing season. These advantages are particularly relevant for emerging biomass crops and it is projected that perennial grasses will be among the most important dedicated biomass crops. The advantages offered by perennial crops could also prove favorable for incorporation into annual grain crops like wheat, rice, sorghum and barley, especially under the dryer and more variable climate conditions projected for many grain-producing regions. Thus, it would be useful to have a perennial model system to test biotechnological approaches to crop improvement and for fundamental research. The perennial grass Brachypodiumsylvaticum is a candidate for such a model because it is diploid, has a small genome, is self-fertile, has a modest stature, and short generation time. Its close relationship to the annual model Brachypodiumdistachyon will facilitate comparative studies and allow researchers to leverage the resources developed for B. distachyon. Here we report on the development of two keystone resources that are essential for a model plant: high-efficiency transformation and inbred lines. Using Agrobacterium tumefaciens-mediated transformation we achieved an average transformation efficiency of 67%. We also surveyed the genetic diversity of 19 accessions from the National Plant Germplasm System using SSR markers and created 15 inbred lines.

  12. Protein (Viridiplantae): 357124711 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LPPSDETCYPCSAPSTSYDAPHYASEDPSPYAHHQKPQPAYGFRPQQEQKQQHQQPSYGDDSGYGSKPQAAYGFRP...QEEEQQSYGSGYGSKPQPAYGFRPQQEEEQSYGSGYGSKPQRTEEDTYGSGYGRKPQEEVSYGSGYGSKPQAEESYGSGYGTRPQQEESYGSGYGSKPQ...3628 PREDICTED: uncharacterized protein At5g39570-like Brachypodium distachyon MATAYYGSSRSRDAPTDEPDDFDEFDSTPYGGGYDLFVTFGRP...VEQSYGSEYGSGYGRKPQGEESYGSGYGNRPQGGEEYGSGGYGGRKKQEDSYGSSEHGYGRKTEDDSYGGSGYGYGKKAQVEDEGAYGSGYQKPKPYGEETQGSYGYGEEKPRYQSGGYEKPSYGGGEEYQGSHGRKKHDDDDDSDDEKKKRYEKHHNRRHHDYDD ...

  13. Protein (Viridiplantae): 357168562 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available TED: LOW QUALITY PROTEIN: dihydroflavonol-4-reductase-like, partial Brachypodium distachyon KVGADHDTRITPMSSE...LIYVIKGGPNAISDMSWHIVDVHDVADALLLVYEKPELSGRYICAPNXISTKVVLELLKKTYPDYNYVMCKVGADHDTRITPISSKKLRNLGWKPRKLEETLLDSVEYCXETGILQDVEGRAYRLPNVFLFFHAIEE ...

  14. Protein (Viridiplantae): 357112535 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 368:1152 PREDICTED: putative calmodulin-like protein 6-like Brachypodium distachyon MCPGGRYAGLDIPAGAGAADLRPAFDVLDADHD...GRISREDLKSFYAKAGAHEPFDDDDIAAMIAAADADHDGFVQYDEFEGLLGRAAATGTAGGCRSAMEDAFRLMDRDGDGKVGFEDLKAYLGWAGMPVADDEIRAMIGMAGDVDGGVGLEAFARVLAVDLDGIL ...

  15. Protein (Viridiplantae): 357114965 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available FSTFSAAAFALRLHVPTLIEQGILDECGNVTRNETIRLSPKMPPIEAAEIPWASLSSSPERRKVIIQNLLKTNPAIQQADTVICNTFEAIESEALAMVPHALP...FLTHCGWNSTMEGVRHGVPLLCWPYFADQFCNQSYVCNVWRNGVKLCADERGVMTKEEIRSKVARLMGDEETRVRAAVWKDAACASIAEGGSSRLNLLKLVDLLTEQ ... ...AAETGGGGGDAVLPDGIHMVSFPDGMGPDGDRTDIAMLADGLPAAMLGPLQEMIRSRKTRWVIADVSMSWALDLADPAAGVRVAL...VGPLEAAAASRSAGQFWPEDPACLPWLDAQARGSVVYVAFGSFTVFDAARFQELAGGLELTGRPFLWVVRPNFTAGVGEDWFEAFRRRVEGKGLVVGWAPQQRVLSHPAVAC... PREDICTED: UDP-glycosyltransferase 83A1-like Brachypodium distachyon MAAPLAPRPHVMVLPFPAQGHVMPLMELSHRLVHHGLQVVFVNTDFNHGRVLQAL

  16. Protein (Viridiplantae): 357125940 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available REDICTED: uncharacterized protein LOC100835393 Brachypodium distachyon MASSFAFGTSGAAGSTASPFSFTTAPSAFSSSPAPAFGSSPAPAFGSSPFSSSAAASST...TTPGLFGATSSTAVTPGLFGATPAAATTPSIFGATSSAASTPSLFSTPATGFGFGSSASGATTATTAAPTPSFGFGLNSAAAPSSTAATSAPAPGFGPPTGSALFGST...PAAPLFGNIAASSPATTATTAPSVGFSLPAATTASAPSFGFTPSSGSTTTGSTTPSLFSSAPSASAFSIPNNASAAPTTPASAPTSGFSLATSQAAPAPS...TSAATTTAPSTTTSAFPSFSLQASTPASTSTLATQSALFGAPATAASTSATSTTTSQATSSALQASSTGPTTTAITPAASQAPKLPS...PTFGSSLFGSAPASAAAPTTASSPSPFGFGSTGFGIGQPTSSSASTLFGAPAASAAATTPSLFGSATTNPSPFGAPAASATA

  17. Protein (Viridiplantae): 357120817 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 7:3537 15368:3537 PREDICTED: uncharacterized protein LOC100824467 Brachypodium distachyon MGAMTMASSSLALRPRASASSSSPPSRPPHDAAALPARRRPAT...ENTLRRLSASVEPDRRPAAAETTSAMRLYSVAPYPLLLAALLPGAEPVASAFAPFV

  18. Protein (Viridiplantae): 357127851 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GASTTPSFGTSTSAFSFGSSPAFGQTAPATGSTPFGTNPSPFGAQTSPFGVQTAAPAFGQGPHGNQSGGSRIQPYVQTPDADSATSGSQPAAKLDSISAMPA...FANTTPSLFNTSSTSTNPFGTGLSIGNNSQSAGLFQSSPAIGQQPFGQQSSTSAFSAGIFNTSNLGMTGGLFSSSSSPFLTSTFQQSAPGQTPSLFS...EDICTED: uncharacterized protein LOC100833671 Brachypodium distachyon MFGSTNPFGQSSPAFGASPTPAFGAASSNFGSGSLFGQ...KPSFGGFGSSPSQSSPFGSTFQQTQPTFGNSTFGATTTPAFGTTTTPSFGATATPAFGSTSTSLFGASSTPAFGSTPFGSNTTPSFGSSSTTAFGVSSAPAF...YKDKSHEELRWEDYQRGDKGGPNTSVAPVANSFASPQPSFQTNPPTTGNLFAKSSPFTSGGFGAPSNPFSAPTANQFAQTSSSAFSANTSPSL

  19. Dicty_cDB: SHB481 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 5_075 Brachypodium distachyon developing spike EST library Brachypodium distachyon cDNA clone 5484_C09_E18, ...257_H11_P21, mRNA sequence. 42 7.6 1 DV474787 |DV474787.1 5484_C09_E18ZE5_075 Brachypodium distachyon developing

  20. Die Felsen-Zwenke (Brachypodium rupestre) in Hessen

    OpenAIRE

    Hemm, Klaus; Buttler, Karl Peter; König, Andreas

    2007-01-01

    Aus Hessen war Brachypodium rupestre bisher nur von einem Fundort veröffentlicht. Durch gezielte Suche und einen Zufallsfund kamen in den letzten Jahren fünf weitere hinzu. Die Wuchsorte sind anthropogene Böschungen von Straßen und Hochwasserrückhaltebecken, nur in einem Fall wachsen die Pflanzen auf einem naturnahen Standort in einer extensiv bewirtschafteten Stromtalwiese. Die Vorkommen gehen wahrscheinlich alle auf Ansaat zurück, entweder auf direkte Ansaat am Wuchsort oder ausgehend von d...

  1. Update on the genomics and basic biology of Brachypodium

    DEFF Research Database (Denmark)

    Catalan, Pilar; Chalhoub, Boulos; Chochois, Vincent; Garvin, David F.; Hasterok, Robert; Manzaneda, Antonio J.; Mur, Luis A.J.; Pecchioni, Nicola; Rasmussen, Søren Kjærsgaard; Vogel, John P.; Voxeur, Aline

    2014-01-01

    , abiotic and biotic stress, comparative genomics, natural diversity, and cell walls) demonstrates that the Brachypodium research community has achieved a critical mass of tools and has transitioned from resource development to addressing biological questions, particularly those unique to grasses...

  2. Factores transcripcionales de la clase DOF en Brachypodium distachyon: caracterización molecular de BdDOF24 durante la germinación de las semillas

    OpenAIRE

    González de la Calle, Virginia

    2014-01-01

    La semilla es el órgano que garantiza la propagación y continuidad evolutiva de las plantas espermatofitas y constituye un elemento indispensable en la alimentación humana y animal. La semilla de cereales acumula en el endospermo durante la maduración, mayoritariamente, almidón y proteínas de reserva. Estas reservas son hidrolizadas en la germinación por hidrolasas sintetizadas en la aleurona en respuesta a giberelinas (GA), siendo la principal fuente de energía hasta que la plántula emergent...

  3. Characterization of Phosphate Transporters BdPT4 and BdPT8 in Mycorrhizal and Non-Mychorrhizal Brachypodium distachyon

    DEFF Research Database (Denmark)

    Clausen, Signe Sandbech

    BdPT proteins were expressed in cells where direct PTs are believed to perform their function, as well as in the vascular tissue. In NM plants, BdPT4 was localized to the plasma membrane whereas BdPT8 accumulated in the endoplasmic reticulum (ER) in the secretory pathway. A similar expression pattern......Phosphorus (P) is an essential plant nutrient in agricultural production but the P rock reserves used for production of fertilizers are currently being depleted. One approach to reduce the demand on P fertilizers is to optimize the phosphate (Pi) uptake and utilization efficiency of crop plants to...... support maximal growth at a low nutrient supply. Roots of most plant species are colonized by arbuscular mycorrhiza (AM) fungi, which increase the uptake of nutrients, in particular P. In grasses, however, AM colonization may result in growth depressions, which have conventionally been ascribed to fungal...

  4. Protein (Viridiplantae): 357138813 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GAGPVAFKDVFVDGHDAPPLPLPEGHVYVDVEALPSSNRAHGLRLYRGVWMAENWIRGIAHIRSGGLTARPGDVVLASPPKCGTTWLKALAFATMARAAH...IQPHVSFSDVFEHACEGKSLCGLIWDHILGYWNASSHTVDXRFLRYEELLRETAGNVRKLAQFLGQPFSVSEEESGMAEAIVELCSLDKLSSLEVNKAGEMGSHVTNQTAPYFRKGGAGDWTNHMTPQMAHRFDDVMWDKLHGSGLAFT ... ...5368:3130 PREDICTED: LOW QUALITY PROTEIN: flavonol 4'-sulfotransferase-like Brachypodium distachyon MASPQAHL...PPAGAGDHGKHPLLWHSPHDCVPFIETFFGAGWGNKLDALPSPRLMATHMSKSLIPHPSTLLMACKKITKLMIRDPKDMVVSMWHFIRK

  5. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium.

    Directory of Open Access Journals (Sweden)

    Humira Sonah

    Full Text Available Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice and dicots (Arabidopsis, Medicago and Populus was performed. A total of 797,863 simple sequence repeats (SSRs were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database 'BraMi' (Brachypodium microsatellite markers of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot-dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium

  6. Interstellar Grains

    OpenAIRE

    Draine, B. T.

    2000-01-01

    Our current understanding of interstellar dust is summarized at an introductory level. Submicron-sized interstellar dust grains absorb and scatter light, and reradiate the absorbed energy in the infrared. The grain population spans a range of sizes, from molecules containing only tens of atoms, to particles containing 10^{10} atoms. Most of the grain mass appears to be due to two types of solid, in approximately equal amounts: amorphous silicate mineral, and carbonaceous material. Approximate...

  7. Acclimatization of Photosynthetic Apparatus of Tor Grass (Brachypodium pinnatum) during Expansion

    Science.gov (United States)

    Bąba, Wojciech; Kalaji, Hazem M.; Kompała-Bąba, Agnieszka; Goltsev, Vasilij

    2016-01-01

    The aim of this study was to understand the acclimatization mechanisms of photosynthetic apparatus in Brachypodium pinnatum (L.) P. Beauv grass during its expansion. Twelve populations differentiated by age: young (30–50 years old), intermediate age (ca. 100 y) and old (>300 y) were studied. It was confirmed that the decrease of the number of genotypes as a result of environmental stress and competition were reflected in changes in chlorophyll fluorescence (ChlF) parameters. The old stands were dominated by a few genotypes which seem to be the best acclimatized to the self-shading/competition by lowering their photosynthetic performance during light-phase of photosynthesis. On the other hand, the 'high-speed' photosynthetic rate observed in the young populations can be seen as acclimatization to very adverse conditions. Our results clearly confirm that ChlF is a powerful method of inferring physiological mechanisms of the expansion of tor grass. The Principal Component and Redundancy Analyses, followed with k-means classification, allowed to find the differentiation of groups of distinct ChlF parameters and enabled us to relate them to changes in genotypic diversity of populations. We conclude that the plastic morphological and physiological response to changeable habitat light conditions with its optimum in half-shade refers to its forest-steppe origin. PMID:27275605

  8. Grain Spectroscopy

    Science.gov (United States)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  9. Microbiota of kefir grains

    Directory of Open Access Journals (Sweden)

    Tomislav Pogačić

    2013-03-01

    Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.

  10. Marketing Farm Grain Crops.

    Science.gov (United States)

    Ridenour, Harlan E.

    This vocational agriculture curriculum on grain marketing contains three parts: teacher guide, student manual, and student workbook. All three are coordinated and cross-referenced. The course is designed to give students of grain marketing a thorough background in the subject and provide practical help in developing grain marketing strategies for…

  11. Interstellar grains in elliptical galaxies grain evolution

    CERN Document Server

    Tsai, J C; Tsai, John C; Mathews, William G

    1995-01-01

    We consider the lifecycle of dust introduced into the hot interstellar medium in isolated elliptical galaxies. Dust grains are ejected into galactic-scale cooling flows in large ellipticals by normal mass loss from evolving red giants. Newly introduced dust rapidly enters the hot gas environment and is sputtered away by thermal collisions with ions. Before the grains are completely sputtered away, they emit prodigious amounts of infrared radiation which may contribute to the large far infrared luminosities observed in ellipticals. In order to study the global properties of grains in ellipticals we construct a new series of King-type galactic models which are consistent with the fundamental plane, galactic mass to light ratios and other relevant observational correlations. We describe a new ``continuity'' procedure to construct simple time-dependent gas dynamic models for cooling flows. In all galaxy models, although grains can flow a considerable distance from their radius of origin before being sputtered awa...

  12. Microbiota of kefir grains

    OpenAIRE

    Tomislav Pogačić; Sanja Šinko; Šimun Zamberlin; Dubravka Samaržija

    2013-01-01

    Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities f...

  13. GrainSpotter

    DEFF Research Database (Denmark)

    Schmidt, Søren

    2014-01-01

    A new approach for indexing multigrain diffraction data is presented. It is based on the use of a monochromatic beam simultaneously illuminating all grains. By operating in sub-volumes of Rodrigues space, a powerful vertex-finding algorithm can be applied, with a running time that is compatible...... with online analysis. The resulting program, GrainSpotter, is sufficiently fast to enable online analysis during synchrotron sessions. The program applies outlier rejection schemes, leading to more robust and accurate data. By simulations it is shown that several thousand grains can be retrieved. A new...... method to derive partial symmetries, called pseudo-twins, is introduced. Uniquely, GrainSpotter includes an analysis of pseudo-twins, which is shown to be critical to avoid erroneous grains resulting from the indexing....

  14. Artabas of grain or artabas of grains?

    OpenAIRE

    Clarysse, Willy

    2014-01-01

    Survey of the use of the singular and plural with Greek words for grain. The original plural gives way to the singular in the course of the Hellenistic period, but the plural reappears in the later Roman period for barley, whereas wheat, for which σῖτος is then used rather than πυρός, occurs in the singular. There are, however, a number of exceptions to the general picture, often depending on the case in which the words occur.

  15. Film grain synthesis and its application to re-graining

    Science.gov (United States)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  16. Composite Circumstellar Dust Grains

    CERN Document Server

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  17. Computerized radioautographic grain counting

    International Nuclear Information System (INIS)

    In recent years, radiolabeling techniques have become fundamental assays in physiology and biochemistry experiments. They also have assumed increasingly important roles in morphologic studies. Characteristically, radioautographic analysis of structure has been qualitative rather than quantitative, however, microcomputers have opened the door to several methods for quantifying grain counts and density. The overall goal of this chapter is to describe grain counting using the Bioquant, an image analysis package based originally on the Apple II+, and now available for several popular microcomputers. The authors discuss their image analysis procedures by applying them to a study of development in the central nervous system

  18. Clinical application of minimally invasive Brachypodium hip replacement in treatment of avascular necrosis of femoral head%微创短柄人工髋关节置换术治疗股骨头坏死的临床应用

    Institute of Scientific and Technical Information of China (English)

    张明辉; 李国军; 陈欣欣; 王晓

    2015-01-01

    目的::评价微创短柄人工髋关节置换术治疗股骨头坏死的临床效果。方法:对我院2008年3月~2010年3月23例无菌性股骨头坏死病人行微创短柄人工髋关节置换术治疗,术后进行临床结果分析和评价。结果:23例均获得随访,平均随访36个月,按照Harris[1]评分标准评分:优18,良4,可1,差0.优良率为95.6%。结论:保留了股骨颈的短柄人工髋关节置换术,更符合人体生物力学特点,术后并发症低,为中青年股骨头坏死患者的治疗提供了一个新方法。%Objective:To evaluate the clinical effect of minimally invasive Brachypodium hip replacement in the treatment of avascular necrosis of the femoral head. Methods:23 aseptic osteonecrosis cases were treated with Brachypodium hip replacement surgery from March 2008 to March 2010, and analysis and evaluate the operation outcomes. Results:All cases were followed up for an average 36 months, ac-cording to Harris[1] Grading rating:18 excellent, 4 good,1 ok, no poor, excellent rate 95. 6%. Conclusion:The minimally invasive Brachypodium hip arthroplasty could retain femoral neck, which conform to biomechanics, reduce postoperative complications. It might be a new approach for young patients with osteonecrosis.

  19. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  20. Grain Marketing Tools: A Survey of Illinois Grain Elevators

    OpenAIRE

    Whitacre, Rick C.; Spaulding, Aslihan D.

    2007-01-01

    As with most sectors of the agriculture economy, the U. S. country grain elevator industry has experienced considerable consolidation and concentration. By the same token, the country elevator's customer base (grain producers and landlords) has also changed rather dramatically as grain production takes place on larger and fewer farms. The profitability of operating a country elevator is directly related to the volume of grain the country elevator purchases over the course of a marketing year....

  1. FINE GRAIN NUCLEAR EMULSION

    Science.gov (United States)

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  2. Oxalate in grain amaranth.

    Science.gov (United States)

    Gélinas, Bruce; Seguin, Philippe

    2007-06-13

    Grain amaranth (Amaranthus spp.) is a widely adaptable C4 pseudo-cereal crop that has interesting nutritional characteristics including high protein and calcium concentrations and a lack of gluten. To date, no antinutrient has been found at problematic levels in grain amaranth; however, oxalate has not been thoroughly studied. Dietary oxalate is a potential risk factor for kidney stone development, and its presence in food lowers calcium and magnesium availability. Oxalate concentration and forms and calcium and magnesium concentrations were determined in 30 field-grown grain amaranth genotypes from the species A. cruentus, A. hybrid, and A. hypochondriacus. The effects of seeding date and fertilization with calcium ammonium nitrate were evaluated in field experiments conducted in multiple environments; the effects of cooking were also evaluated. Mean total oxalate concentration in the 30 genotypes analyzed was 229 mg/100 g, with values ranging between 178 and 278 mg/100 g, the greatest proportion being insoluble (average of 80%). Calcium concentration averaged 186 mg/100 g and ranged between 134 and 370 mg/100 g, whereas magnesium averaged 280 mg/100 g and ranged between 230 and 387 mg/100 g. Fertilization only marginally increased total oxalate concentration and had no effects on other variables. Seeding date had no effects on any of the variables studied. Boiling increased the proportion of soluble oxalate but did not affect total oxalate concentration. Grain amaranth can be considered a high oxalate source, however, as most is in insoluble form, and due to its high calcium and magnesium concentrations, oxalate absorbability could be low. This should be confirmed by bioavailability studies. PMID:17511467

  3. Grain preservation in SSSR

    International Nuclear Information System (INIS)

    First the importance of cereals collected in the S.S.S.R., the reason why the government had to put in practice a storage chain, composed of large capacity store houses (200 000 metric tonnes, or more) is reminded. When climatic conditions result in wet harvested grains, cereals are dried either in state enterprise dryers (32 to 50 tonnes/hour) or in kolkhozes' dryers (2 to 16 tonnes/hour). A new type of drying with recycling, has been developped, economizing 10 to 15 p. 100. Then the possibilities offered by the technique of partial drying of very wet grains are studied and the preservation processes using fresh ventilation, or hot ventilation with drying effect are described. The question of silage of wet grains destined to animal consumption is then examined as well as preservation by sodium pyrosulfide; the use of propionic acid, little developped in SSSR, is studied now, just as storage with inert gas. The struggle technics against insects, either with chemical agents, or with irradiation are described. Finally the modalities of technicians formation, specialized in preservation, are discussed

  4. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers.

    OpenAIRE

    Lewis, D M; Romeo, P A; Olenchock, S A

    1986-01-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different popula...

  5. The Perennial Ryegrass GenomeZipper – Targeted Use of Genome Resources for Comparative Grass Genomics

    DEFF Research Database (Denmark)

    Pfeiffer, Matthias; Martis, Mihaela; Asp, Torben;

    2013-01-01

    (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to...... assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The...

  6. Economics of Grain Irradiation

    International Nuclear Information System (INIS)

    After three years, in which preliminary designs were prepared, a grain irradiation plant has been designed and is being built into an existing silo installation. From this experience actual costs of plant construction are available for a plant using cobalt-60 and this experience is incorporated in estimates for machine installations for high grain throughput. Costs are compared for plants of comparable complexity and they indicate those areas in which each type of plant is pre-eminently suitable and those areas where either type may be best, dependent upon local site conditions, the standard of local technology and methods of operation. The two plants compared are described in sufficient detail to enable the precise extent of the equipment supply covered by the costs to be appreciated. The accounting methods employed have been discussed with industrial accountants to ensure that they are acceptable to the potential users. The methods employed are explained so that they can be applied to problems of a similar nature. (author)

  7. COOPERATIVE MARKETING IN SPECIALTY GRAINS AND IDENTITY PRESERVED GRAIN MARKETS

    OpenAIRE

    Janzen, Edward L.; Wilson, William W.

    2002-01-01

    Marketing of specialty and identity preserved grains has become an important strategy in the grain marketing industry and is being driven, in part, by consumer and processor demand and an interest in non-GM products. This study provides background and practices of numerous organizations involved in marketing of specialty/identity preserved grains. Supporting marketing activities are reviewed. Key factors in the success (or failure) of their efforts are identified. Major challenges facing the ...

  8. Grain centre mapping - 3DXRD measurements of average grain characteristics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Lyckegaard, Allan;

    2014-01-01

    Three-Dimensional X-ray Diraction (3DXRD) Microscopy is a generic term covering a variety of dierent techniques for characterising the mi- crostructure within the bulk of polycrystalline materials. One strategy | namely grain centre mapping | enables fast measurements of the av- erage...... characteristics of each grain (such as their centre-of-mass positions, volumes, phases, orientations and/or elastic strain tensor components), while the exact locations of the grain boundaries are unknown. In the present chapter a detailed description of the setup and software for both grain centre mapping and...

  9. Protein (Viridiplantae): 357130727 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ectional sugar transporter SWEET6a-like Brachypodium distachyon MTEQRFPQNGNTSVPAGNS...24:4295 3398:4295 4447:4380 4734:4380 38820:4380 4479:4380 359160:3487 147368:3422 147385:3422 15367:3422 15368:3422 PREDICTED: bidir

  10. Protein (Viridiplantae): 357135133 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ectional sugar transporter SWEET2a-like Brachypodium distachyon MASLGLPGVSSYHDLCCYG...24:4295 3398:4295 4447:4380 4734:4380 38820:4380 4479:4380 359160:3487 147368:3422 147385:3422 15367:3422 15368:3422 PREDICTED: bidir

  11. Protein (Viridiplantae): 357130643 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 121 3398:3121 4447:340 4734:340 38820:340 4479:340 359160:3145 147368:3033 147385:3033 15367:3033 15368:3033 PREDICTED: Werner Syndro...me-like exonuclease-like Brachypodium distachyon MATDTYVTDVTFEENVIITTVTSSGVAVEGWLRE

  12. Protein (Viridiplantae): 357130641 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 121 3398:3121 4447:340 4734:340 38820:340 4479:340 359160:3145 147368:3033 147385:3033 15367:3033 15368:3033 PREDICTED: Werner Syndro...me-like exonuclease-like Brachypodium distachyon MAATRVTHVASPLEEGSVIICTVTSSGNAAAAWV

  13. Protein (Viridiplantae): 357130639 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 121 3398:3121 4447:340 4734:340 38820:340 4479:340 359160:3145 147368:3033 147385:3033 15367:3033 15368:3033 PREDICTED: Werner Syndro...me-like exonuclease-like Brachypodium distachyon MAITYHAPRQVASGRRSRADKIHTDVIMDDGTSI

  14. Protein (Viridiplantae): 357130647 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 121 3398:3121 4447:340 4734:340 38820:340 4479:340 359160:3145 147368:3033 147385:3033 15367:3033 15368:3033 PREDICTED: Werner Syndro...me-like exonuclease-like Brachypodium distachyon MATETYVTPVAFEGYVITATVTSSGKAVEDWIQE

  15. Protein (Viridiplantae): 357111697 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 9 15368:1969 PREDICTED: melanoma-associated antigen E1-like Brachypodium distachyon MATSEELAQIGVSLEEKDDLVGKV... 58024:6159 3398:6159 4447:4820 4734:4820 38820:4820 4479:4820 359160:2207 147368:1969 147385:1969 15367:196

  16. Protein (Viridiplantae): 357128460 [

    Lifescience Database Archive (English)

    Full Text Available XP_003565891.1 33090:350 35493:542 131221:542 3193:542 58023:1050 78536:720 58024:720 3398:720 4 ... 147385:351 15367:351 15368:351 PREDICTED: cucumber peeling ... cupredoxin-like Brachypodium distachyon MASNKDRLSL ...

  17. Protein (Viridiplantae): 357128458 [

    Lifescience Database Archive (English)

    Full Text Available XP_003565890.1 33090:350 35493:542 131221:542 3193:542 58023:1050 78536:720 58024:720 3398:720 4 ... 147385:351 15367:351 15368:351 PREDICTED: cucumber peeling ... cupredoxin-like Brachypodium distachyon MATKGHLSFL ...

  18. Protein (Viridiplantae): 357126612 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 24:2780 3398:2780 4447:228 4734:228 38820:228 4479:228 359160:2357 147368:2136 147385:2136 15367:2136 15368:...2136 PREDICTED: random slug protein 5-like Brachypodium distachyon MGSSGGGDAGEGEWLKVAELRAMAEAQDPHVKEVDNMSLRR

  19. Protein (Viridiplantae): 357149498 [

    Lifescience Database Archive (English)

    Full Text Available XP_003575132.1 33090:1208 35493:406 131221:406 3193:406 58023:6686 78536:929 58024:929 3398:929 ... TED: RNA polymerase II transcriptional coactivator KIWI -like Brachypodium distachyon MWRKGSKRSKRFGGGGAGGEP ...

  20. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat

    Czech Academy of Sciences Publication Activity Database

    Sehgal, S. K.; Li, W.; Rabinowicz, P. D.; Chan, A.; Šimková, Hana; Doležel, Jaroslav; Gill, B. S.

    2012-01-01

    Roč. 12, č. 64 (2012). ISSN 1471-2229 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511 Keywords : BREAD WHEAT * BRACHYPODIUM-DISTACHYON * REPETITIVE ELEMENTS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.354, year: 2012

  1. Protein (Viridiplantae): 357112985 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 58024:7047 3398:7047 4447:4465 4734:4465 38820:4465 4479:4465 359160:2518 147368:2334 147385:2334 15367:2334... 15368:2334 PREDICTED: josephin-like protein-like Brachypodium distachyon MEPGAKSEANQNEEGSGAVGSSGGSSKVYHERQR

  2. A synteny-based draft genome sequence of the forage grass Lolium perenne

    DEFF Research Database (Denmark)

    Byrne, Stephen; Nagy, Istvan; Pfeifer, Matthias;

    2015-01-01

    Here we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family...... accelerate the development of new varieties for more productive grasslands....

  3. Protein (Viridiplantae): 357132330 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3 58024:14473 3398:14473 4447:6298 4734:6298 38820:6298 4479:6298 359160:4829 147368:4902 147385:4902 15367:4902 15368:4902 PREDIC...PKLLVHKIKQRLTKMTQYRIRMRKLQLKVREKIMTVPRKKTQRDLRRLEKAETAAQLEKNIESELKERLRKGVYGDIYNYPFKEFDNILDIENIDLAPEEEEEEEGEIEYVEGDEIEMGDMEDMEDMED...TED: protein MAK16 homolog A-like isoform 1 Brachypodium distachyon MSDDVIWHCIRHNHCSFMAKIETGIFCRNPYNATGIC...NRSSCPLANSRYATIRDHDGIFYLYMKTAERAHLPNKLWERVKLPRNYEKAMEVINKHLEFW...FEGLGEDGDEDGDGLDEPVTKKPKGSSSNSRSKIGRKSTKVITEVEQDEDRNSRQRTRM ...

  4. Protein (Viridiplantae): 357132332 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3 58024:14473 3398:14473 4447:6298 4734:6298 38820:6298 4479:6298 359160:4829 147368:4902 147385:4902 15367:4902 15368:4902 PREDIC...KLLVHKIKQRLTKMTQYRIRMRKLQLKVREKIMTVPRKKTQRDLRRLEKAETAAQLEKNIESELKERLRKGVYGDIYNYPFKEFDNILDIENIDLAPEEEEEEEGEIEYVEGDEIEMGDMEDMEDMED...TED: protein MAK16 homolog A-like isoform 2 Brachypodium distachyon MALYPPQPLQLHVGAVLRRIETGIFCRNPYNATGIC...NRSSCPLANSRYATIRDHDGIFYLYMKTAERAHLPNKLWERVKLPRNYEKAMEVINKHLEFWP...FEGLGEDGDEDGDGLDEPVTKKPKGSSSNSRSKIGRKSTKVITEVEQDEDRNSRQRTRM ...

  5. Protein (Viridiplantae): 357168326 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :7145 PREDICTED: craniofacial development protein 2-like Brachypodium distachyon MKPKRISLGRNPLSDAPYRNPGVVSNG...2 3398:112 4447:10886 4734:10886 38820:10886 4479:10886 359160:6892 147368:7145 147385:7145 15367:7145 15368

  6. Protein (Viridiplantae): 357120544 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 121 3398:3121 4447:340 4734:340 38820:340 4479:340 359160:3145 147368:3033 147385:3033 15367:3033 15368:3033 PREDICTED: Werner Syndro...me-like exonuclease-like Brachypodium distachyon MTTARYTVRFSSALIDTTVTSDAAAADEWARSVR

  7. Protein (Viridiplantae): 357116578 [

    Lifescience Database Archive (English)

    Full Text Available XP_003560057.1 33090:13671 35493:12750 131221:12750 3193:12750 58023:9989 78536:6448 58024:6448 ... 15367:3000 15368:3000 PREDICTED: protein TIME FOR COFFEE -like Brachypodium distachyon MIGVPVPRKARSASTKRSSHE ...

  8. Grain Handling and Storage Safety

    OpenAIRE

    Webster, Jill

    2005-01-01

    Agricultural Health and Safety Fact Sheet AHS-02 Grain Handling and Storage Safety Jill Webster Ph.D., S. Christian Mariger, Graduate Assistant Agricultural Systems Technology and Education There are several hazards that should be considered when working with grain. Storage structures, handling equipment, and the grain itself have all caused serious injuries and deaths. Storage structures (bins, silos, and granaries), like all confined spaces, have significant hazards associated with them. Be...

  9. Grain charging in protoplanetary discs

    OpenAIRE

    Ilgner, Martin

    2011-01-01

    Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as MHD (magnetohydrodynamic) turbulence and grain growth which are coupled in a two-way process. We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains a...

  10. Grain Flow at High Stresses

    Science.gov (United States)

    McSaveney, M. J.

    2015-12-01

    The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?

  11. Radiative Torques on Interstellar Grains; 2, Grain Alignment

    CERN Document Server

    Draine, B T; Weingartner, Joseph C.

    1996-01-01

    Radiative torques on irregular dust grains, in addition to producing superthermal rotation, play a direct dynamical role in the alignment of interstellar dust with the local magnetic field. The equations governing the orientation of spinning, precessing grains are derived; H_2 formation torques and paramagnetic dissipation are included in the dynamics. Stationary solutions (constant alignment angle and spin rate) are found; these solutions may be stable ("attractors") or unstable ("repellors"). The equations of motion are numerically integrated for three exemplary irregular grain geometries, exposed to anisotropic radiation with the spectrum of interstellar starlight. The resulting "trajectory maps" are classified as "noncyclic", "semicyclic", or "cyclic", with examples of each given. We find that radiative torques result in rapid grain alignment, even in the absence of paramagnetic dissipation. It appears that radiative torques due to starlight can account for the observed alignment of interstellar grains wi...

  12. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  13. The Antinutritional Components of Grains

    DEFF Research Database (Denmark)

    Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2016-01-01

    Grains provide humans and farmed animals with a very large proportion of the energy and macro- and micronutrients they need. Unfortunately, grains also contain compounds that interfere with the utilization of the nutrients by animals. These so-called antinutritionals may result in poor resource...

  14. Urbanization and Grain Production Efficiency

    Institute of Scientific and Technical Information of China (English)

    Xiaoyang; LI; Dongge; LIU

    2015-01-01

    Based on DEA-Malmquist method,this paper calculated the integrated technology efficiency of grain production and total factor productivity and analyzed factors influencing the grain production technology efficiency using working documents of panel structure. Research results indicate that grain production integrated technology efficiency of China is relatively low,technology utilization level is low,and it remains at the stage of decreasing returns to scale,and the pure technology efficiency still has space to increase. Total factor productivity is declining and the total factor productivity of many provinces is relatively low. Since the total factor productivity of eastern areas is higher than central and western areas,it is required to strengthen technological support for grain production. The implementation of urbanization is helpful for promoting increase of grain production technology efficiency in central and eastern areas,but it will exert negative influence on western areas.

  15. Methods of assessing grain-size distribution during grain growth

    DEFF Research Database (Denmark)

    Tweed, Cherry J.; Hansen, Niels; Ralph, Brian

    1985-01-01

    This paper considers methods of obtaining grain-size distributions and ways of describing them. In order to collect statistically useful amounts of data, an automatic image analyzer is used, and the resulting data are subjected to a series of tests that evaluate the differences between two related...... distributions (before and after grain growth). The distributions are measured from two-dimensional sections, and both the data and the corresponding true three-dimensional grain-size distributions (obtained by stereological analysis) are collected. The techniques described here are illustrated by reference to...

  16. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    International Nuclear Information System (INIS)

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies

  17. Quantitative characterisation of sedimentary grains

    Science.gov (United States)

    Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.

    2016-04-01

    Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.

  18. Why Is It Important to Eat Grains, Especially Whole Grains?

    Science.gov (United States)

    ... Drink Matters Variety Amount Nutrition Other Ingredients Choosing Foods and Beverages Saturated, Unsaturated, and Trans Fats Sodium Added Sugars ... may reduce the risk of heart disease. Consuming foods containing fiber, ... weight management. Eating grain products fortified with folate before and ...

  19. MYCOTOXIN CONTROL DURING GRAIN PROCESSING.

    Science.gov (United States)

    Controlling mycotoxin formation by fungi growing in and on cereal grains involves a multifactorial approach for defining multiple variables. The scope includes varietial (maturity, date, GMO) selection, tillage (time, depth), planting (density, spacing), fertilizion (type, amount, timing), irrigati...

  20. PARASITE MYCOPOPULATION OF SOYBEAN GRAIN

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2008-06-01

    Full Text Available Disease appearance on soybean can influence quality and quantity of yield. Different spieces of saprophyte and parasite fungi can be isolated from stems, pods and grain of soybean. The aim of the research was to evaluate the incidence of important disease on natural soybean grain over the period of 4 years (2004-2007 of experiment held on the location Sopot-Vinkovci and included 9 cultivars of soybean. The following plant pathogenic fungi were identified: Peronospora, Sclerotinia, Cercospora, Fusarium and Diaporthe/Phomopsis. The most frequent fungi on soybean grains were: Cladosporium, Alternaria, Penicillium, Aspergillus and Epicoccum. The health condition of the natural soybean grains over the four years period on all cultivars was good.

  1. GRAIN BOUNDARIES IN POLYPHASE CERAMICS

    OpenAIRE

    Clarke, D

    1985-01-01

    The majority of polyphase ceramics contain a residual glass phase at their grain boundaries. The stability of these phases, particularly at the two-grain boundaries, is of significance since they affect the properties of the material as a whole. Drawing analogies with soap films, the stability of a continuous intergranular phase is considered in terms of the balance between the capillarity and disjoining pressures. The individual components to the disjoining pressures are discussed. It is arg...

  2. Applied Thermodynamics: Grain Boundary Segregation

    OpenAIRE

    Pavel Lejček; Lei Zheng; Siegfried Hofmann; Mojmír Šob

    2014-01-01

    Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary se...

  3. Quantum Fine-Grained Entropy

    OpenAIRE

    WANG, DONG-SHENG

    2012-01-01

    Regarding the strange properties of quantum entropy and entanglement, e.g., the negative quantum conditional entropy, we revisited the foundations of quantum entropy, namely, von Neumann entropy, and raised the new method of quantum fine-grained entropy. With the applications in entanglement theory, quantum information processing, and quantum thermodynamics, we demonstrated the capability of quantum fine-grained entropy to resolve some notable confusions and problems, including the measure of...

  4. PARASITE MYCOPOPULATION OF SOYBEAN GRAIN

    OpenAIRE

    Jasenka Ćosić; Karolina Vrandečić; Draženka Jurković; Ivan Ereš; Jelena Poštić

    2008-01-01

    Disease appearance on soybean can influence quality and quantity of yield. Different spieces of saprophyte and parasite fungi can be isolated from stems, pods and grain of soybean. The aim of the research was to evaluate the incidence of important disease on natural soybean grain over the period of 4 years (2004-2007) of experiment held on the location Sopot-Vinkovci and included 9 cultivars of soybean. The following plant pathogenic fungi were identified: Peronospora, Sclerotinia, Cercospora...

  5. Superconductivity of small metal grains

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Renrong; CHEN; Zhiqian; ZHU; Shunquan

    2005-01-01

    The formulas of the energy gap and superconducting critical temperature appropriate for systems with both odd and even number of electrons are derived; the bases of the derivations are BCS theory and energy level statistics. Numerical results qualitatively agree with the experimental phenomena. i.e., the superconductivity of small metallic grains will first enhance then decrease to zero when the grain are getting smaller and smaller. The calculations indicate that the above phenomena happen in the metallic grains belonging to Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary ensemble (GUE) with zero spin; The superconductivity of small metallic grains in Gaussian Symplectic Ensemble (GSE) will monotonically decrease to zero with the decreasing of the grain size. The analyses suggest that the superconductivity enhancements come from pairing and the balance of the strengths between spin-orbital coupling and external magnetic field. In order to take the latter into account, it is necessary to include the level statistics given by Random Matrix Theory (RMT) in describing small metallic grains.

  6. Complex Chemistry on Interstellar Grains

    Science.gov (United States)

    Widicus Weaver, Susanna L.; Kelley, Matthew J.; Blake, Geoffrey A.

    Early interstellar chemical models considered complex molecule formation on grains [Allen & Robinson (1977)], but current models assume that simple molecules form on grains and subsequent gas phase ion-molecule reactions produce the more complex species [Ruffle & Herbst (2001), Charnley (2001)]. It has been shown, however, that gas phase ion-molecule reactions are insufficient for the production of such complex organic species as ethanol (CH3CH2OH) and methyl formate (CH3OCHO) [Horn et al. (2004)]. Organics such as acetaldehyde (CH3CHO), ethanol, methyl formate, acetic acid (CH3COOH), and glycolaldehyde (CH2OHCHO) have also been detected in high abundance in regions of grain mantle disruption or evaporation, indicating that these species are formed on grain surfaces [see Chengalur & Kanekar (2003), Bottinelli et al. (2004), Hollis et al. (2001)]. The mechanisms for complex molecule production on grains are clearly much more important, and much more complex, than has been recognized. Recent observational studies of these types of species have offered insight into the mechanisms for their possible grain surface synthesis. The relative hot core abundances of the 2C structural isomers methyl formate, acetic acid, and glycolaldehyde (52:2:1, respectively [Hollis et al. (2001)]) indicate that if they form on grains it is not from kinetically-controlled single-atom addition reactions. Likewise, the 3C aldose sugar, glyceraldehyde (CH2OHCHOHCHO), was not detected in Sgr B2(N-LMH) [Hollis et al. (2004)] while the 3C ketose sugar, dihydroxyacetone (CO(CH2OH)2) was detected in this source [Widicus Weaver & Blake (2005)]. Chemical pathways favoring the more stable carbonates over acids and aldehydes are required to explain these results. Interestingly, all of these species can be formed from reactions involving the abundant grain mantle constituents CO, HCOOH, and CH3OH and their radical precursors. A model has been developed to investigate this type of chemical network, and

  7. The History of Presolar Grains

    Science.gov (United States)

    Bernatowicz, Thomas J.

    2004-01-01

    Below we summarize the results of our investigations into the history of presolar grains that were conducted in the last year. During this time we have expended much of our effort in the development of experimental techniques and sample preparation methods that are needed to laboratory in December, 2000. Specific information on this instrument is contained in the Full Proposal of PI Ernst Zinner and will not be repeated here. Our general strategy in the past year has been in large measure to explore novel sample handling methods for the very small (sub-micron), but more representative, presolar grains that can now be characterized isotopically in the NanoSIMS. We have developed experimental techniques that will permit NanoSIMS analyses of the very same ultramicrotome sections studied in the TEM, and we have developed grain dispersion, handling and mounting techniques that permit NanoSIMS isotopic analysis as well as field emission SEM, high energy TEM, and atomic force microscopy of pristine presolar grains. Although much of this has been slow and very difficult work that has no immediate payoff in terms of publishable results, we considered it absolutely necessary groundwork for future discoveries, especially in the realm of individual presolar grains that have been inaccessible to past studies due to size constraints. As discussed below, we have been largely successful in these endeavors, and expect to reap the benefits of this work in the next year. We also report on our continued morphologic studies of pristine presolar grains, on our investigations of presolar graphite grains from supernovae as well as on rarer types of presotar SIC, on the search for presolar silicates, and on our efforts to obtain direct size-distribution information on presolar SiC through X-ray mapping techniques.

  8. Numerical simulation of grain-size effects on creep crack growth by means of grain elements

    International Nuclear Information System (INIS)

    The effect of grain size on creep crack growth is investigated by means of a numerical technique in which the actual crack growth process is simulated in a discrete manner by grain elements and grain boundary elements. The grain elements account for the creep deformation of individual grains, while grain boundary cavitation and sliding are accounted for by grain boundary elements between the grains. This grain-element technique allows for an independent study of multiple grain size effects: a (direct) size effect related to the specimen size/grain size ratio or an (indirect) effect related to the effect of grain size on nucleation rate and creep resistance. Preliminary numerical results are presented concerning the direct effect of grain size, which predict that the crack growth rate and brittleness increase with grain size. (orig.)

  9. Grain growth in interstellar clouds

    International Nuclear Information System (INIS)

    The phenomenon of grain growth in interstellar clouds, evidenced by increases in the wavelength of maximum polarization and ratio of total to selective extinction, is investigated by two distinct methods. A comparison of the empirical correlation between lambdasub(max) and the colour excess ratio Esub(V-K)/Esub(B-V) with theoretical models indicates that growth occurs by the accretion of dielectric mantles on to dielectric grain cores of the same refractive index. A search for the 3.1 μm absorption band of water ice towards four dust-embedded stars in the rho Ophiuchi molecular cloud was carried out using the 3.9-m AAT and IR photometer-spectrometer. Results indicate that the grain mantles in this cloud do not contain appreciable water ice. The lack of a spectral feature at 3.3 to 3.4 μm in the spectra similarly places chemical constraints on organic grain mantles. It is concluded that a grain model involving refractory compounds of oxygen (silicates and metal oxides) is capable of explaining the available data. The 3.1 μm absorption band is detected for the first time in the R Corona Australis dark cloud, towards an intense infrared source associated with the Herbig-Haro object H-H 100. (author)

  10. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  11. Solid propellant grain design and internal ballistics

    Science.gov (United States)

    1972-01-01

    The ballistic aspects of grain design were studied to outline the steps necessary to achieve a successful grain design. The relationships of the grain design to steady-state mass balance and erosive burning are considered. Grain design criteria is reviewed, and recommended design criteria are included.

  12. Grain growth in Si3N4

    International Nuclear Information System (INIS)

    Grain growth in gas pressure sintered silicon nitride has been examined using an etching technique which allows the true grain size and shape to be determined. Examination of etched surfaces showed that multiple grain size and shape distributions develop during sintering. Interrupted sintering cycles show that growth of exaggerated grains does not result directly from the α- to β-Si3N4 phase transformation, at least for the dopant system examined. Analysis shows that the grain growth rate is controlled by an interfacial transport step and that impingement of growing grains on other grains of similar size strongly constrains further growth. (orig.)

  13. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    International Nuclear Information System (INIS)

    Abnormal grain growth as the abrupt growth of a group of the largest grains in a multi-grain system is treated within the context of unequal retardation of grain growth due to the segregation of solute atoms from the bulk of the grains into the grain boundaries. During grain boundary migration, the segregated solute atoms are dragged under a small driving force or left behind the migrating grain boundary under a large driving force. Thus, the solute atoms in the grain boundaries of large grains, exhibiting a large driving force, can be released from the grain boundary. The mobility of these grain boundaries becomes significantly higher and abnormal grain growth is spontaneously provoked. The mean-field model presented here assumes that each grain is described by its grain radius and by its individual segregation parameter. The thermodynamic extremal principle is engaged to obtain explicit evolution equations for the radius and segregation parameter of each grain. Simulations of grain growth kinetics for various conditions of segregation with the same initial setting (100 000 grains with a given radius distribution) are presented. Depending on the diffusion coefficients of the solute in the grain boundaries, abnormal grain growth may be strongly or marginally pronounced. Solute segregation and drag can also significantly contribute to the stabilization of the grain structure. Qualitative agreement with several experimental results is reported. (paper)

  14. Fractal dust grains in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F. [College of Science, China Agricultural University, Beijing 100083 (China); Peng, R. D. [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Liu, Y. H. [Institute of Complexity Science, Qingdao University, Qingdao 266071 (China); Chen, Z. Y. [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); Ye, M. F.; Wang, L. [Institute of Physics, Chinese Academy of Science, Beijing 100190 (China)

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  15. Coarse-graining complex dynamics

    DEFF Research Database (Denmark)

    Sibani, Paolo

    2013-01-01

    Continuous Time Random Walks (CTRW) are widely used to coarse-grain the evolution of systems jumping from a metastable sub-set of their configuration space, or trap, to another via rare intermittent events. The multi-scaled behavior typical of complex dynamics is provided by a fat-tailed distribu......Continuous Time Random Walks (CTRW) are widely used to coarse-grain the evolution of systems jumping from a metastable sub-set of their configuration space, or trap, to another via rare intermittent events. The multi-scaled behavior typical of complex dynamics is provided by a fat...

  16. Bioactive compounds in whole grain wheat

    OpenAIRE

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much in their content. The external fractions of the grain, the bran and specially the aleurone, are the richest. We observed that processing the bran in whole-grain breads increased three times the leve...

  17. Deformation strain inhomogeneity in columnar grain nickel

    DEFF Research Database (Denmark)

    Wu, G.L.; Godfrey, A.; Juul Jensen, D.;

    2005-01-01

    A method is presented for determination of the local deformation strain of individual grains in the bulk of a columnar grain sample. The method, based on measurement of the change in grain area of each grain, is applied to 12% cold rolled nickel. Large variations are observed in the local strain...... associated with each grain. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  18. Choosing Whole-Grain Foods: 10 Tips for Purchasing and Storing Whole-Grain Foods

    Science.gov (United States)

    ... Some whole-grain ingredients include whole oats, whole-wheat flour, whole-grain corn, whole-grain brown rice, and whole rye. ... in whole grains? People who can’t eat wheat gluten can eat whole grains if they choose carefully. There are many whole- ...

  19. AGB stars and presolar grains

    CERN Document Server

    Busso, M; Maiorca, E; Palmerini, S

    2013-01-01

    Among presolar materials recovered in meteorites, abundant SiC and Al$_{2}$O$_{3}$ grains of AGB origins were found. They showed records of C, N, O, $^{26}$Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars \\cite{zin,gal}. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called {\\it mainstream} ones), we mention a large range of $^{14}$N/$^{15}$N ratios, extending below the solar value \\cite{mar}, and $^{12}$C/$^{13}$C ratios $\\gtrsim$ 30. Other classes of grains, instead, display low carbon isotopic ratios ($\\gtrsim 10$) and a huge dispersion for N isotopes, with cases of large $^{15}$N excess. In the same grains, isotopes currently...

  20. Grain Refinement of Deoxidized Copper

    Science.gov (United States)

    Balart, María José; Patel, Jayesh B.; Gao, Feng; Fan, Zhongyun

    2016-08-01

    This study reports the current status of grain refinement of copper accompanied in particular by a critical appraisal of grain refinement of phosphorus-deoxidized, high residual P (DHP) copper microalloyed with 150 ppm Ag. Some deviations exist in terms of the growth restriction factor (Q) framework, on the basis of empirical evidence reported in the literature for grain size measurements of copper with individual additions of 0.05, 0.1, and 0.5 wt pct of Mo, In, Sn, Bi, Sb, Pb, and Se, cast under a protective atmosphere of pure Ar and water quenching. The columnar-to-equiaxed transition (CET) has been observed in copper, with an individual addition of 0.4B and with combined additions of 0.4Zr-0.04P and 0.4Zr-0.04P-0.015Ag and, in a previous study, with combined additions of 0.1Ag-0.069P (in wt pct). CETs in these B- and Zr-treated casts have been ascribed to changes in the morphology and chemistry of particles, concurrently in association with free solute type and availability. No further grain-refining action was observed due to microalloying additions of B, Mg, Ca, Zr, Ti, Mn, In, Fe, and Zn (~0.1 wt pct) with respect to DHP-Cu microalloyed with Ag, and therefore are no longer relevant for the casting conditions studied. The critical microalloying element for grain size control in deoxidized copper and in particular DHP-Cu is Ag.

  1. AGB stars and presolar grains

    Energy Technology Data Exchange (ETDEWEB)

    Busso, M.; Trippella, O. [INFN and University of Perugia, Perugia (Italy); Maiorca, E. [INAF - Arcetri Astrophysical Observatory, Firenze, Italy and INFN - Section of Perugia, Perugia (Italy); Palmerini, S. [Departamento de Fìsica Teòrica y del Cosmsos, Universidad de Granada, Granada (Spain)

    2014-05-09

    Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.

  2. Cool Down!——The State Administration of Grain Lower Expectation of Grain Price

    Institute of Scientific and Technical Information of China (English)

    He Jun

    2010-01-01

    @@ The rising grain price in the first half of the year,coupled with the news that China's summer grain output fell for the first time in seven years,has enhanced market expectation for the grain price to rise.

  3. Three Dimension Monte Carlo Simulation of Austenite Grain Growth in CGHAZ of an Ultrafine Grain Steel

    Institute of Scientific and Technical Information of China (English)

    Dong CHEN; Yongping LEI; Xiaoyan LI; Yaowu SHI; Zhiling TIAN

    2003-01-01

    In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish the relation between tMCS and real time temperature kinetics in our simulation. The simulations give out the evolution of grain structure and grain size distribution in HAZ of the ultrafine grain steel. A Microsoft Window based on computer program for the simulation of grain growth in the HAZ of weldment in three dimensions has been developed using Monte Carlo technique. For the system, inputting the temperature field data and material properties, the evolution of grain structure, both image of simulated grain structure and numerical datum reflecting grain size distribution can be produced by the program. The system was applied to the ultrafine grain steel welding, and the simulated results show that the ultrafine grain steel has large tendency of grain growth.

  4. China's Grain Demand and Supply: Trade Implications

    OpenAIRE

    Wu, Harry X.; Christopher Findlay

    1997-01-01

    This study reviews research on China's grain demand and supply. The purpose is to comment on the outlook for China's trade in grain and grain-based food, but also to identify the sensitivities of the projections of China's grain demand to key parameters. The paper will therefore 1) review a set of projections of grain demand and trade, 2) examine studies of major factors considered to affect grain demand in China, 3) comment on some trade and production policy issues based on a new projection...

  5. Spinodal decomposition in fine grained materials

    Indian Academy of Sciences (India)

    H Ramanarayan; T A Abinandanan

    2003-01-01

    We have used a phase field model to study spinodal decomposition in polycrystalline materials in which the grain size is of the same order of magnitude as the characteristic decomposition wavelength ($\\lambda_{SD}$). In the spirit of phase field models, each grain () in our model has an order parameter ($\\eta_i$) associated with it; $\\eta_i$ has a value of unity inside the th grain, decreases smoothly through the grain boundary region to zero outside the grain. For a symmetric alloy of composition, = 0.5, our results show that microstructural evolution depends largely on the difference in the grain boundary energies, $\\gamma_{gb}$, of A-rich () and B-rich () phases. If $\\gamma^{\\alpha}_{gb}$ is lower, we find that the decomposition process is initiated with an layer being formed at the grain boundary. If the grain size is sufficiently small (about the same as $\\lambda_{SD}$), the interior of the grain is filled with the phase. If the grain size is large (say, about 10 $\\lambda_{SD}$ or greater), the early stage microstructure exhibits an A-rich grain boundary layer followed by a B-rich layer; the grain interior exhibits a spinodally decomposed microstructure, evolving slowly. Further, grain growth is suppressed completely during the decomposition process.

  6. Grain size and grain shape analysis of fault rocks

    Science.gov (United States)

    Heilbronner, Renée; Keulen, Nynke

    2006-12-01

    New methods for microstructural analysis of fault rocks (new shape descriptors for convexity/concavity and angularity) and visualization (D-mapping) were developed and tested on experimentally deformed granites. The samples were deformed at 300 °C, 500 MPa confining pressure, and 10 - 4 s - 1 strain rate. SEM micrographs of the resulting fault rocks were used for digital image analysis. Cracked fragments and mature gouges can be differentiated on the basis of the slope D on a log-log plot of the grain size distribution. Both types of fault rocks exhibit two slopes: for grain sizes 2 μm, cracked material shows D ≈ 1.6 while gouge has D ≥ 2.0. In the case of the gouge, the fractal nature of the grain size distribution is questioned. The D-mapping technique was introduced to visualize the spatial distribution and connectivity of gouge and cracked material in fault rocks. Grain shape analyses show clear differences between cracked minerals and fault gouges and between quartz and K-feldspar grains. The aspect ratio is measured as L/ S (longest/shortest diameter): L/ S of cracked quartz (range: 1.0-8.0, average 2.9) is higher than that of K-feldspar (range: 1.0-4.0, average 2.1). L/ S of gouge is always low (range: 1.0-3.0, average 1.5). From the difference between a shape and its convex envelope, two shape descriptors are derived: the paris factor and the area difference deltA. Both show decreasing values from cracked to gouge material, and the values of cracked K-feldspar (range: 0-100%, average: 15%) are higher than those for quartz (range: 0-100%, average: 5%). Gouge always shows low paris factors (range: 0-20%, average: 2.5%). From the histogram of vertex angles, the Ω-value (fraction of angles digitization enhances the distinction between cracked and gouge material.

  7. Applied thermodynamics: Grain boundary segregation

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Zheng, L.; Hofmann, S.; Šob, Mojmír

    2014-01-01

    Roč. 16, č. 3 (2014), s. 1462-1484. ISSN 1099-4300 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GAP108/12/0144; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : interfacial segregation * Gibbs energy of segregation * enthalpy * entropy * volume * grain boundaries * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.502, year: 2014

  8. Magnetic Dipole Microwave Emission from Dust Grains

    CERN Document Server

    Draine, B T

    1999-01-01

    Thermal fluctuations in the magnetization of interstellar grains will produce magnetic dipole emission at frequencies below ~100 GHz. We show how to calculate absorption and emission from small particles composed of magnetic materials. The Kramers-Kronig relations for a dusty medium are generalized to include the possibility of magnetic grains. The frequency-dependent magnetic permeability is discussed for candidate grain materials, including iron and magnetite. We calculate emission spectra for various interstellar grain candidates. While paramagnetic grains or magnetite grains cannot account for the observed "anomalous" emission from dust in the 14-90 GHz range, stronger magnetic dipole emission will result if a fraction of the grain material is ferromagnetic, as could be the case given the high Fe content of interstellar dust. The observed emission from dust near 90 GHz implies that not more than 5% of interstellar Fe is in the form of metallic iron grains or inclusions (e.g., in "GEMS"). However, we show ...

  9. Measurement of grain surface roughness

    Directory of Open Access Journals (Sweden)

    Ślipek Z.

    2000-06-01

    Full Text Available In the research on the friction of vegetative grain-structure, an essential problem lies in the appropriate determination of the condition of the surface layer of elements in mutual contact. The analysis must define both tensile strength parameters and the surface topography. Most frequently, surface geometry is defined by roughness. Compared to the traditional methods applied for the construction materials, the measurement of roughness in this case is more difficult due to the cellular structure and multifarious shapes of individual skeletons, while low surface hardness (especially at significant humidity excludes the possibility of applying mechanical methods. For these reasons, an attempt was made to develop a rapid and simple method for the measurement of grain surface roughness relying on the optical procedure. The measurement bench consists of a stereo-microscope with a trinoculare and a camera linked to the computer through an analogue-digital processor. The entire measurement set is equipped with a MultiScan software, where a special picture processing was applied as described below in the paper. A computer analysis of the picture allows to carry out an automatic and precise measurement of the profile roughness in any selected point on the grain surface.

  10. Pauli-Limited Superconductivity in Small Grains

    OpenAIRE

    Bonsager, M. C.; MacDonald, A. H.

    1998-01-01

    We report on an exploration of the mean-field phase diagram for Pauli-limited superconductivity in small metallic grains. Emphasis is placed on the crossover from the ultra-small grain limit where superconductivity disappears to the bulk thin-film limit as the single-particle level spacing in the grain decreases. We find that the maximum Zeeman coupling strength compatible with superconductivity increases with decreasing grain size, in spite of a monotonically decreasing condensation energy p...

  11. Grain Boundary Engineering of Electrodeposited Thin Films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    Grain boundary engineering aims for a deliberate manipulation of the grain boundary characteristics to improve the properties of polycrystalline materials. Despite the emergence of some successful industrial applications, the mechanism(s) by which the boundary specific properties can be improved is...... analysis of the grain boundaries have happened. These improvements, for example by high-resolution imaging techniques and orientation imaging microscopy for additional crystallographic information, provide the possibilities for thorough characterization of the grain boundaries and based on that, it is...

  12. On the elastic stiffness of grain boundaries

    International Nuclear Information System (INIS)

    The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)

  13. Grain nucleation and growth during phase transformations

    DEFF Research Database (Denmark)

    Offerman, S.E.; Dijk, N.H. van; Sietsma, J.;

    2002-01-01

    of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three...... fundamentally different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....

  14. Conception, definition, measuring procedure of grain size

    International Nuclear Information System (INIS)

    The conception, definition, measuring procedure of ''Grain Size'' were surveyed. A concept ''grain diameter'' was introduced after deriving a calculation formula for the grain diameter for using the Comparison (simple) and Intercept(detailed) procedure. As an example and putting into practice, the grain diameter determination was carried out by means of the Comparison procedure for a UO2 pellet used in a densification experiment. (auth.)

  15. Transient Solute Drag in Migrating Grain Boundaries

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Liendl, M.

    2011-01-01

    Roč. 59, č. 17 (2011), s. 6556-6562. ISSN 1359-6454 R&D Projects: GA MŠk(CZ) OC10029 Institutional research plan: CEZ:AV0Z20410507 Keywords : Grain boundary diffusion * Grain boundary migration * Grain boundary segregation Subject RIV: BJ - Thermodynamics Impact factor: 3.755, year: 2011

  16. 75 FR 76254 - Official Performance and Procedural Requirements for Grain Weighing Equipment and Related Grain...

    Science.gov (United States)

    2010-12-08

    ... Performance and Procedural Requirements for Grain Weighing Equipment and Related Grain Handling Systems AGENCY... reviewed under Executive Order 12988, Civil Justice Reform. This action is not intended to have retroactive... PROCEDURAL REQUIREMENTS FOR GRAIN WEIGHING EQUIPMENT AND RELATED GRAIN HANDLING SYSTEMS 0 1. The...

  17. Grain-size sorting and slope failure in experimental subaqueous grain flows

    NARCIS (Netherlands)

    Kleinhans, M.G.; Asch, Th.W.J. van

    2005-01-01

    Grain-size sorting in subaqueous grain flows of a continuous range of grain sizes is studied experimentally with three mixtures. The observed pattern is a combination of stratification and gradual segregation. The stratification is caused by kinematic sieving in the grain flow. The segregation is ca

  18. Authenticity testing of pottery using middle grains

    International Nuclear Information System (INIS)

    The possibility of using middle size grains (φ10-30 μm) in thermoluminescence (TL) dating of pottery is discussed. Data from fifteen specimens show that there is a good agreement in the estimated equivalent doses from the middle grain fraction and the fine grain (φ2-8 μm) fraction of the same specimen. The natural TL intensity of the middle grain fraction was found to be higher than that of the fine grain fraction for the same sample

  19. 3D modeling of metallic grain growth

    Energy Technology Data Exchange (ETDEWEB)

    George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.

    1999-06-01

    This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.

  20. Establishment of Grain Farmers’ Supply Response Model and Empirical Analysis under Minimum Grain Purchase Price Policy

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Based on farmers’ supply behavior theory and price expectations theory,this paper establishes grain farmers’ supply response model of two major grain varieties (early indica rice and mixed wheat) in the major producing areas,to test whether the minimum grain purchase price policy can have price-oriented effect on grain production and supply in the major producing areas. Empirical analysis shows that the minimum purchase price published annually by the government has significant positive impact on farmers’ grain supply in the major grain producing areas. In recent years,China steadily raises the level of minimum grain purchase price,which has played an important role in effectively protecting grain farmers’ interests,mobilizing the enthusiasm of farmers’ grain production,and ensuring the market supply of key grain varieties.

  1. Method of preventing contamination by grain molder

    International Nuclear Information System (INIS)

    Object: To prevent contamination by scattering of radioactive substance from a uranium dioxide grain molder used within a hot cell while readily removing the contamination by a simple means. Structure: Scattering of grain from a grain molder for press molding grain having intense radioactivity and comprising a hammer, mortar, hammer plunger, agitating motor and feeder is prevented by a cover. Also, grain within the cover and grain within the feeder are removed by jetting air from nozzle pipes provided on the top and sides of the molder. After removal, air is switched over to rinsing liquid issued to wash off grain having been attached to the molder, followed by jetting of hot air for drying. (Kamimura, M.)

  2. More than Rising Grain Prices

    Institute of Scientific and Technical Information of China (English)

    Hu Junhua

    2010-01-01

    @@ According to the bulletin of the National Bureau of Statistics,the summer harvest nationwide this year was 246.2billion jin,a decline of 0.3% compared to last year.The cold spell in late spring and high temperatures afterwards are considered as the main causes for this round of rising grain prices.However,"natural disasters"are dwarfed by another worrisome picture: young and strong farming hands flooding out of the rural areas and the elderly,the weak,females and children are made the mainstay of the tilling army.

  3. COFFEE GRAIN ROTARY DRYING OPTIMIZATION

    OpenAIRE

    W.N. Hernández-Díaz; F.J. Hernández-Campos; Z. Vargas-Galarza; G.C. Rodríguez-Jimenes; M.A. García-Alvarado

    2013-01-01

    The objective of the present work was to determine the co ee bean Guardiola dryer operating conditions that minimized the energy consumption ( Q ) and maximized the process thermal e ciency. A mechanistic co ee bean drying model was solved for a complete mixed assumption to simulate the drying. The simulated results reproduced the experimental results obtained with a 7.60 m 3 Guardiola dryer loaded with 2675 kg of wet green co ee grains. The thermal second law e ciency of the drying was calcu...

  4. Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition

    OpenAIRE

    Jauregui, Luis A.; Cao, Helin; Wu, Wei; Yu, Qingkai; Chen, Yong P.

    2011-01-01

    We synthesize hexagonal shaped single-crystal graphene, with edges parallel to the zig-zag orientations, by ambient pressure CVD on polycrystalline Cu foils. We measure the electronic properties of such grains as well as of individual graphene grain boundaries, formed when two grains merged during the growth. The grain boundaries are visualized using Raman mapping of the D band intensity, and we show that individual boundaries between coalesced grains impede electrical transport in graphene a...

  5. Study on Fluctuation of Grain Yield in China’s Major Grain Producing Areas

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    By using the statistical data of grain yield in China’s major grain producing areas from 1949 to 2008,and fluctuation theory,the historical process and main cause of fluctuation of grain yield in China’s major grain producing areas are analyzed.The results of research show that the grain yield in China’s major grain producing areas grows in unstable fluctuation,with high-frequency fluctuation cycle and regular length;the amplitude of fluctuation,on the whole,is moderate,with not strong stability;the fluctuation of grain yield has correspondence,reflecting the N-shape developmental trend of grain production at present;the fluctuation of grain yield has gradient characteristics;in the process of comparison of grain yield,the average growth rate annually of grain yield in China’s major grain producing areas is higher than that of the national average,but the relative fluctuation coefficient is also higher than that of the national average.From five aspects,namely natural disaster,agricultural policy,production input,grain price and grain circulation,the cause of fluctuation of grain yield in China’s major grain producing areas is analyzed,and measures of preventing and arresting super-long fluctuation of grain yield are put forward.Firstly,stick to strict farmland protection system,and strive to promote farmland quality;secondly,strengthen infrastructure construction of grain production and beef up the ability of preventing natural disaster;thirdly,quicken the pace of agricultural technology and establish robust technology supporting system;fourthly,lay stress on innovation of agricultural organization system and provide implementation path and vehicle for application of agricultural technology measures;fifthly,perfect disaster precaution system and grain market system,and strengthen the ability of preventing risk of grain production.

  6. Whole grains and health: from theory to practice--highlights of The Grains for Health Foundation's Whole Grains Summit 2012.

    Science.gov (United States)

    McKeown, Nicola M; Jacques, Paul F; Seal, Chris J; de Vries, Jan; Jonnalagadda, Satya S; Clemens, Roger; Webb, Densie; Murphy, Lee Anne; van Klinken, Jan-Willem; Topping, David; Murray, Robyn; Degeneffe, Dennis; Marquart, Leonard F

    2013-05-01

    The Grains for Health Foundation's Whole Grains Summit, held May 19-22, 2012 in Minneapolis, was the first meeting of its kind to convene >300 scientists, educators, food technologists, grain breeders, food manufacturers, marketers, health professionals, and regulators from around the world. Its goals were to identify potential avenues for collaborative efforts and formulate new approaches to whole-grains research and health communications that support global public health and business. This paper summarizes some of the challenges and opportunities that researchers and nutrition educators face in expanding the knowledge base on whole grains and health and in translating and disseminating that knowledge to consumers. The consensus of the summit was that effective, long-term, public-private partnerships are needed to reach across the globe and galvanize the whole-grains community to collaborate effectively in translating whole-grains science into strategies that increase the availability and affordability of more healthful, grain-based food products. A prerequisite of that is the need to build trust among diverse multidisciplinary professionals involved in the growing, producing, marketing, and regulating of whole-grain products and between the grain and public health communities. PMID:23514771

  7. Study on grain growth of fine grained WC-Co hardmetal by numerical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, N. [Kobe Steel, Ltd., Kobe (Japan); Hayashi, K. [The University of Tokyo, Tokyo (Japan). Institute of industrial Science

    2000-12-15

    This paper reviews our simulation study by numerical calculation based on two-, three- and multi-grain-size models on WC grain growth in fine grained WC-Co hardmetal doped with VC. The study aimed to presume or predict the following: (1) the cause and conditions for the abnormal grain growth which occurs in some cases in the fine grained hardmetal prepared from fine WC powders with mean grain size below about 0.2{mu}m, and (2) how the mean grain size of the hardmetal varies with decreasing mean grain size of the WC starting powder to 0.1 pm or nano-meter size. The calculation results by these three kinds of models suggested the following, respectively: (1) the occurrence of the abnormal grain growth is generally substantial for WC starting powder with bimodal size-distribution and mean gram size below 0.1 - 0.2{mu}m, and not due to the non-uniform distribution of the grain growth inhibitor, (2) the introduction of middle grains caused the disappearance of small (fine) grains during sintering, leading to abruptly increase of the mean grain size of alloy, and (3) the mean grain size of alloy becomes so large as about 0.3 - 0.4{mu}m, even when the WC starting powders with nano-size as well as 0.1 {mu}m are used. (author)

  8. Grain Alignment and CMB Polarization Studies

    CERN Document Server

    Lazarian, A

    2008-01-01

    Polarized microwave emission from dust is an important foreground that may contaminate polarized CMB studies unless carefully accounted for. Modeling of polarization from dust requires a quantitative understanding of grain alignment. I review the current status of grain alignment theory outlining recent advances in quantitative description of the alignment. In particular, I show that the grain-alignment theory is a predictive one, and its results nicely match observations. Those indicate that the most important process of alignment is related to radiative torques acting on irregular grains. The recently developed analytical model of radiative torque alignment has proven to be a very efficient tool for predicting the degree of grain alignment. We expect the alignment theory to further mature before CMBPol flight, which would ensure a better accounting for the dust-related polarization. At the same time, CMBPol should provide the additional testing of grain alignment, clarifying the reliability of polarimetry f...

  9. Detecting grain rotation at the nanoscale

    Science.gov (United States)

    Chen, Bin; Lutker, Katie; Lei, Jialin; Yan, Jinyuan; Yang, Shizhong; Mao, Ho-kwang

    2014-01-01

    It is well-believed that below a certain particle size, grain boundary-mediated plastic deformation (e.g., grain rotation, grain boundary sliding and diffusion) substitutes for conventional dislocation nucleation and motion as the dominant deformation mechanism. However, in situ probing of grain boundary processes of ultrafine nanocrystals during plastic deformation has not been feasible, precluding the direct exploration of the nanomechanics. Here we present the in situ texturing observation of bulk-sized platinum in a nickel pressure medium of various particle sizes from 500 nm down to 3 nm. Surprisingly, the texture strength of the same-sized platinum drops rapidly with decreasing grain size of the nickel medium, indicating that more active grain rotation occurs in the smaller nickel nanocrystals. Insight into these processes provides a better understanding of the plastic deformation of nanomaterials in a few-nanometer length scale. PMID:24550455

  10. Individual grain orientations and texture development of nanocrystalline electrodeposits showing abnormal grain growth

    Energy Technology Data Exchange (ETDEWEB)

    Klement, Uta [Department of Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)]. E-mail: uta.klement@chalmers.se; Silva, Melina da [Department of Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2007-05-31

    The electron backscatter diffraction (EBSD) technique has been used to determine grain orientations of abnormally grown grains in nanocrystalline Ni electrodeposits upon annealing. The results show that the first grown grains have a <3 1 1>//ND orientation. Upon annealing further grain growth occurs and the preferred alignment of the abnormally growing grains changes from <3 1 1>//ND to <1 1 1>//ND. The subgrain coalescence model adopted from recrystallization is used to describe the occurrence of abnormal grain growth, and energy considerations are put forward for explaining the dominance of the <1 1 1>//ND texture component after longer annealing treatments.

  11. Grain refinement of AZ31 magnesium alloy by electromagnetic stirring under effect of grain-refiner

    Indian Academy of Sciences (India)

    S Y Gao; Q C Le; Z Q Zhang; J Z Cui

    2012-08-01

    The effects of electromagnetic stirring and Al4C3 grain refiner on the grain refinement of semicontinuously cast AZ31 magnesium alloy were discussed in this investigation. The results indicate that electromagnetic stirring has an effective refining effect on the grain size of AZ31 magnesium alloy under the effect of Al4C3 grain refiner. Electromagnetic stirring can `activate’ the Al4C3 particles, resulting in more heterogeneous nucleation sites for the primary -Mg grains. But, longer holding time can `deactivate’ the Al4C3 particles and poison the grain refining effect.

  12. Perennial Grain and Oilseed Crops.

    Science.gov (United States)

    Kantar, Michael B; Tyl, Catrin E; Dorn, Kevin M; Zhang, Xiaofei; Jungers, Jacob M; Kaser, Joe M; Schendel, Rachel R; Eckberg, James O; Runck, Bryan C; Bunzel, Mirko; Jordan, Nick R; Stupar, Robert M; Marks, M David; Anderson, James A; Johnson, Gregg A; Sheaffer, Craig C; Schoenfuss, Tonya C; Ismail, Baraem; Heimpel, George E; Wyse, Donald L

    2016-04-29

    Historically, agroecosystems have been designed to produce food. Modern societies now demand more from food systems-not only food, fuel, and fiber, but also a variety of ecosystem services. And although today's farming practices are producing unprecedented yields, they are also contributing to ecosystem problems such as soil erosion, greenhouse gas emissions, and water pollution. This review highlights the potential benefits of perennial grains and oilseeds and discusses recent progress in their development. Because of perennials' extended growing season and deep root systems, they may require less fertilizer, help prevent runoff, and be more drought tolerant than annuals. Their production is expected to reduce tillage, which could positively affect biodiversity. End-use possibilities involve food, feed, fuel, and nonfood bioproducts. Fostering multidisciplinary collaborations will be essential for the successful integration of perennials into commercial cropping and food-processing systems. PMID:26789233

  13. Grain-dependent anodic dissolution of iron

    International Nuclear Information System (INIS)

    The influence of different dissolution techniques (electropolishing or chemical polishing and electrochemical machining (ECM)) on the topography of grains and grain boundaries of polycrystalline iron was analyzed by a combination of electron backscatter diffraction (EBSD) and contact-mode AFM. For electrochemical dissolution at large current densities, small electrode areas were addressed by a capillary microcell to specify the influence of grain orientation on the anodic behaviour, especially the dissolution in sodium nitrate solutions

  14. Nonresonant Grain Acceleration in MHD Turbulence

    OpenAIRE

    Yan, Huirong

    2009-01-01

    We discuss a new type of dust acceleration mechanism that acts in a turbulent magnetized medium. The magnetohydrodynamic (MHD) turbulence can accelerate grains through resonant as well as nonresonant interactions. We show that the magnetic compression provides higher velocities for super-Alfvenic turbulence and can accelerate an extended range of grains in warm media compared to gyroresonance. While fast modes dominate the acceleration for the large grains, slow modes can be important for sub...

  15. Runaway growth of fractal dust grains

    CERN Document Server

    Mattsson, Lars

    2015-01-01

    Fractal grains have large surface area, which leads to more efficient condensation. The special limit case where the volume-area ratio is constant (corresponding to, e.g., a very rough grain surface or non-compacts aggregates) is particularly interesting, as well as convenient, from a mathematical point of view. If dust grains from AGB stars have `rough surfaces', it may have important implications for our understanding of dust and wind formation in AGB stars.

  16. Grain-boundary resistance in polycrystalline metals

    Science.gov (United States)

    Reiss, G.; Vancea, J.; Hoffmann, H.

    1986-05-01

    Grain boundaries are known to reduce significantly the electrical dc conductivity of polycrystalline metallic materials. In this paper, we give a quantum mechanical calculation of the grain-boundary resistance based on the transfer matrix approach. The results show an exponential decrease of the conductivity with respect to the number of grain boundaries per mean free path in accord with an empirical model proposed recently.

  17. Grain boundary resistance in polycrystalline metals

    OpenAIRE

    Reiss, Günter; Vancea, Johann; Hoffmann, Horst

    1986-01-01

    Grain boundaries are known to reduce significantly the electrical dc conductivity of polycrystalline metallic materials. In this paper, we give a quantum mechanical calculation of the grain-boundary resistance based on the transfer-matrix approach. The results show an exponential decrease of the conductivity with respect to the number of grain boundaries per mean free path in accord with an empirical model proposed recently.

  18. A Comprehensive Rail Rate Index for Grain

    OpenAIRE

    Sparger, Adam; Prater, Marvin E.

    2012-01-01

    Several annual rail rate indices depict changes in the prices paid for rail service. Although accurate for general analyses, each of these indices falls short in capturing the three major components of total railroad grain rates: tariff rates, fuel surcharges, and secondary railcar market costs. Bids in the secondary grain railcar market can affect whether the actual rate paid by shippers is above or below the published tariff rate. The seasonality of rates inherent in grain transportation is...

  19. Superfluidity of grain boundaries and supersolid behavior.

    Science.gov (United States)

    Sasaki, S; Ishiguro, R; Caupin, F; Maris, H J; Balibar, S

    2006-08-25

    When two communicating vessels are filled to a different height with liquid, the two levels equilibrate because the liquid can flow. We have looked for such equilibration with solid (4)He. For crystals with no grain boundaries, we see no flow of mass, whereas for crystals containing several grain boundaries, we detect a mass flow. Our results suggest that the transport of mass is due to the superfluidity of grain boundaries. PMID:16873608

  20. Grain growth in heat resisting austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, I.K.; Zakharov, V.N.; Karpova, N.M.; Farber, V.M.

    1985-01-01

    A study was made on kinetics of grain growth in steels of 37Kh12N8G8 type alloyed by V, Nb, Ti, Mo, W. It was concluded that the nature of carbide phase and kinetics of its dissolution in heat resisting austenitic steels dictate steel tendency to grain growth. At the same time decrease of diffusion mobility of atoms in steel matrix during its alloying by titanium aid tungsten results in sufficient decrease of the tendency to grain growth and variation in grain size.

  1. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    Science.gov (United States)

    Noell, Philip J.; Taleff, Eric M.

    2016-07-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  2. The effects of irradiation on grain coat color and grain texture in winter wheat

    International Nuclear Information System (INIS)

    Dry seeds of the variety ''Yangmai 5'' with red grain coat, semihard grain texture, and the variety ''Ningmai 3'' with red grain coat, soft grain texture were irradiated with Y-rays at various doses.The effect on M1 grain coat color was different between two varieties, the higher doses made grain coat color of ''Yangmai 5'' redder, but had hardly effect on ''Ningmai 3''.The effect on M1 grain texture showed that the grain texture became softer with doses increased.It was found that there were 0.6% of positive ( red to white ) grain coat color mutants and 2.0% of negative(hard to soft) grain texture mutants in M2 of ''Yangmai 5'', and there were 0.7% of negative ( white to red ) grain coat color mutants and 3.6% of positive ( soft to hard ) grain texture mutants in M2 of ''Ningmai 3''. It seemed that the positive mutants selected in M3 were stable in M4. The results showed that γ-rays can be used to improve the grain coat color andgrain texture of wheat varieties

  3. Grain-filling duration and grain yield relationships in wheat mutants

    International Nuclear Information System (INIS)

    Nine stable mutants of bread wheat along with their mother cultivars were investigated for grain-filling characteristics in relation to grain yield. Significant differences among mutants for grain-filling duration and grain-filling index were observed. Inspite of the consistent differences in grain-filling duration there was no significant association between grain-filling duration and grain yield in C-591 and Nayab mutants. Failure to detect an yield advantage due to differences in grain-filling duration in these genotypes suggests that any advantage derived from alteration of grain-filling period may have been outweighed by the coincident changes in length of the vegetative period. Other factors such as synchrony of anthesis may have limited out ability to find an association between grainfilling duration and grain yield. On the contrary, significant association between grain-filling duration and grain yield displayed by indus-66 indus-66 mutants derived from gamma rays, shows the ability of gamma rays to induce functional alternations in the pattern of gene arrangements controlling these traits. Thus, the vaability observed in these physiological traits suggests that selection for these traits could be useful in improving grain yield. (author)

  4. Supercube grains leading to a strong cube texture and a broad grain size distribution after recrystallization

    Science.gov (United States)

    Lin, F. X.; Zhang, Y. B.; Pantleon, W.; Jensen, D. Juul

    2015-08-01

    This work revisits the classical subject of recrystallization of cold-rolled copper. Two characterization techniques are combined: three-dimensional X-ray diffraction using synchrotron X-rays, which is used to measure the growth kinetics of individual grains in situ, and electron backscatter diffraction, which is used for statistical analysis of the microstructural evolution. As the most striking result, the strong cube texture after recrystallization is found to be related to a few super large cube grains, which were named supercube grains. These few supercube grains become large due to higher growth rates. However, most other cube grains do not grow preferentially. Because of the few supercube grains, the grain size distribution after recrystallization is broad. Reasons for the higher growth rates of supercube grains are discussed, and are related to the local deformed microstructure.

  5. Supercube grains leading to a strong cube texture and a broad grain size distribution after recrystallization

    DEFF Research Database (Denmark)

    Lin, F.X.; Zhang, Y. B.; Pantleon, W.;

    2015-01-01

    diffraction, which is used for statistical analysis of the microstructural evolution. As the most striking result, the strong cube texture after recrystallization is found to be related to a few super large cube grains, which were named supercube grains. These few supercube grains become large due to higher......This work revisits the classical subject of recrystallization of cold-rolled copper. Two characterization techniques are combined: three-dimensional X-ray diffraction using synchrotron X-rays, which is used to measure the growth kinetics of individual grains in situ, and electron backscatter...... growth rates. However, most other cube grains do not grow preferentially. Because of the few supercube grains, the grain size distribution after recrystallization is broad. Reasons for the higher growth rates of supercube grains are discussed, and are related to the local deformed microstructure....

  6. Evolution of orientations and deformation structures within individual grains in cold rolled columnar grained nickel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.L., E-mail: wugl@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Godfrey, A. [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Winther, G.; Juul Jensen, D. [Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Danish-Chinese Center for Nanometals, Materials Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Liu, Q. [School of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China)

    2011-08-15

    Columnar grained Ni is used as a model material allowing simultaneous non-surface investigations of the evolution of crystallographic orientations and deformation microstructures within individual grains as a function of rolling strain up to {epsilon} = 0.7. Electron channelling contrast and electron backscattered diffraction are used to visualise microstructures and crystallographic orientations. It is found that both the microstructural and the textural development depend strongly on the initial grain orientation. A grain size effect is observed on the deformation-induced orientation scatter within the grains. Large grains have microstructure and orientation scatters similar to those observed in single crystals of similar orientation. The observations are interpreted based on a slip system analysis, considering the relative effects of the initial grain orientation and the interaction between neighbouring grains as well.

  7. Evolution of orientations and deformation structures within individual grains in cold rolled columnar grained nickel

    International Nuclear Information System (INIS)

    Columnar grained Ni is used as a model material allowing simultaneous non-surface investigations of the evolution of crystallographic orientations and deformation microstructures within individual grains as a function of rolling strain up to ε = 0.7. Electron channelling contrast and electron backscattered diffraction are used to visualise microstructures and crystallographic orientations. It is found that both the microstructural and the textural development depend strongly on the initial grain orientation. A grain size effect is observed on the deformation-induced orientation scatter within the grains. Large grains have microstructure and orientation scatters similar to those observed in single crystals of similar orientation. The observations are interpreted based on a slip system analysis, considering the relative effects of the initial grain orientation and the interaction between neighbouring grains as well.

  8. Grain Unloading of Arsenic Species in Rice

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Charnock, John M.; Feldmann, Joerg; Price, Adam H.; Meharg, Andrew A. (EPA); (U. South Australia); (Manchester); (Aberdeen); (UC)

    2010-01-11

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a {+-} stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.

  9. BdCESA7, BdCESA8, and BdPMT Utility Promoter Constructs for Targeted Expression to Secondary Cell-Wall-Forming Cells of Grasses

    OpenAIRE

    Petrik, Deborah L.; Cass, Cynthia L.; Padmakshan, Dharshana; Foster, Cliff E.; Vogel, John P; Steven D. Karlen; Ralph, John; Sedbrook, John C

    2016-01-01

    Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned...

  10. Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation

    Czech Academy of Sciences Publication Activity Database

    Berkman, P.J.; Skarshewski, A.; Manoli, S.; Lorenc, M. T.; Stiller, J.; Smits, L.; Lai, K.; Cambell, E.; Kubaláková, Marie; Šimková, Hana; Batley, J.; Doležel, Jaroslav; Hernandez, P.; Edwards, D.

    2012-01-01

    Roč. 124, č. 3 (2012), s. 423-432. ISSN 0040-5752 R&D Projects: GA MŠk(CZ) LC06004 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511 Keywords : POLYPLOID WHEAT * BIN MAP * BRACHYPODIUM-DISTACHYON Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.658, year: 2012

  11. Establishment of Grain Farmers' Supply Response Model and Empirical Analysis under Minimum Grain Purchase Price Policy

    OpenAIRE

    Shuang ZHANG

    2012-01-01

    Based on farmers' supply behavior theory and price expectations theory, this paper establishes grain farmers' supply response model of two major grain varieties (early indica rice and mixed wheat) in the major producing areas, to test whether the minimum grain purchase price policy can have price-oriented effect on grain production and supply in the major producing areas. Empirical analysis shows that the minimum purchase price published annually by the government has significant positive imp...

  12. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    Science.gov (United States)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  13. Superior grains determined by grain weight are not fully correlated with the lfowering order in rice

    Institute of Scientific and Technical Information of China (English)

    PENG Ting; ZHAO Quan-zhi; L Qiang; ZHAO Ya-fan; SUN Hong-zheng; HAN Ying-chun; DU Yan-xiu; ZHANG Jing; LI Jun-zhou; WANG Lin-lin

    2015-01-01

    Rice panicles are composed of many branches with two types of extreme grains, the superior and the inferior. Traditional y, it has been wel accepted that earlier lfowers result in superior grains and late lfowers generate inferior grains. However, these correlations have never been strictly examined in practice. In order to determine the accurate relationship between superior and inferior grains and the lfowering order, we localized al the seeds in a panicle in four distinct rice species and systematical y documented the rice lfowering order, lfower locations and the ifnal grain weight for their relationships. Our results demonstrated that the grain weight is more heavily determined by the position of the seeds than by the lfowering order. Despite earlier lfowering has a positive correlation with the grain weight in general, grains from lfowers blooming on the second day after anthesis general y gained the highest weight. This suggests earlier lfowers may not result in superior grains. Therefore, we concluded that superior and inferior grains, commonly determined by grain weight, are not ful y cor-related with the lfowering order in rice. Fol owing the order of the grain weight, the superior grains are general y localized at the middle parts of the primary branches, whereas inferior grains were mainly on the last two secondary branches of the lower half part of the panicle. In addition, the weight of inferior grains were affected by spikelet thinning and spraying with exogenous plant growth regulators, indicating that physiological incompetence might be the major reason for the occurrence of the inferior grains.

  14. Grain size effect on deformation twinning propensity in ultrafine-grained hexagonal close-packed titanium

    International Nuclear Information System (INIS)

    The deformation behaviour of ultrafine-grained hexagonal close-packed Ti processed by dynamic plastic deformation was investigated using electron microscopy techniques. Results show that the deformation twinning propensity in ultrafine-grained Ti decreases monotonously while the number of dislocations having the 〈c〉 component increases with decreasing grain size, indicating that the transformation of the deformation mechanism from twinning to slip occurs and that the twinning mechanism does not change within the observed grain size range

  15. Association of Duration and Rate of Grain Filling with Grain Yield in Temperate Japonica Rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Grain filling is a crucial factor that determines grain yield in crops since it is the final process directly associated with crops' yield performance. Grain filling process can be characterized by the interaction of rate and duration of grain filling. This study was conducted, using 16 temperate japonica rice genotypes, with aims to (1) seek variations in grain filling duration and rate on area basis, (2) compare the contribution of grain filling duration and rate to grain yield, and (3) examine the influence of temperature and solar radiation for effective grain filling on grain yield in relation to grain filling duration and rate

  16. Stabilisation of the grain market by the flexible use of grain for bioethanol

    NARCIS (Netherlands)

    Helming, J.F.M.; Pronk, A.; Woltjer, I.

    2010-01-01

    This report reviews whether the grain market and grain price can be stabilised by the variation of the use of grain in the EU-27's production of bioethanol. The time horizon of this study is 2020, whereby account is taken of the minimum 10% obligation for biofuel use in the EU-27. An economic comput

  17. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.

    Science.gov (United States)

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Ditto, Jeff J; Drazin, John W; Castro, Ricardo H R

    2016-06-22

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ. PMID:27282392

  18. Grain-grain contact geometry and the propagation of elastic waves in granular media

    Science.gov (United States)

    Jones, B. W.

    1974-01-01

    It is shown that the compliance of an orthogonal grain-grain contact is so insensitive to the grain geometry in the contact region that this geometry is not at present an important parameter in theories of the speed of propagation of elastic waves in granular media, such as occur in the earth and in the moon.

  19. Segmentation and grain size of ceramics:

    OpenAIRE

    Arnould, Xavier; Chartier, Thierry; Chermant, Jean-Louis; Chermant, Liliane; Coster, Michel; Elmoataz, Abder

    2001-01-01

    This paper presents some methods to automatically extract the grain boundariesof materials in order to develop an automatic method to determine the grain size and morphological parameters of ceramic materials. Results are presented in the case of sintered cerine (Ce02) materials.

  20. Insect Population Dynamics in Commercial Grain Elevators

    Science.gov (United States)

    Data were collected in 1998-2002 from wheat stored in commercial grain elevators in south-central Kansas. Storage bins at these elevators had concrete walls and were typically 6-9 m in diameter and 30-35 m tall. A vacuum-probe sampler was used to collect ten 3-kg grain samples in the top 12 m of the...

  1. An Atmospheric Structure Equation for Grain Growth

    CERN Document Server

    Ormel, Chris W

    2014-01-01

    We present a method to include the evolution of the grain size and grain opacity $\\kappa_\\mathrm{gr}$ in the equations describing the structure of protoplanetary atmospheres. The key assumption of this method is that a single grain size dominates the grain size distribution at any height $r$. In addition to following grain growth, the method accounts for mass deposition by planetesimals and grain porosity. We illustrate this method by computation of a simplified atmosphere structure model. In agreement with previous works, grain coagulation is seen to be very efficient. The opacity drops to values much below the often-used `ISM-opacities' ($\\sim$$1\\ \\mathrm{cm^2\\ g}^{-1}$) and the atmosphere structure profiles for temperature and density resemble that of the grain-free case. Deposition of planetesimals in the radiative part of the atmosphere hardly influences this outcome as the added surface is quickly coagulated away. We observe a modest dependence on the internal structure (porosity), but show that filling...

  2. Developing Insurance Protection for Stored Grain

    OpenAIRE

    Dowell, Jesse

    2006-01-01

    At least 30 states have some type of grain insurance fund to protect the owners of stored grain against bankruptcies. This article provides some historical perspective on how the legislation originated and how it still provides protection for those who contract storage in licensed facilities in those states with insurance funds.

  3. Grain transport mechanics in shallow overland flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  4. Grain transport mechanics in shallow flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  5. Superconductivity Enhancements in Small Metallic Grains

    Science.gov (United States)

    Zheng, Renrong; Chen, Zhi Qian; Zhu, Shun Quan

    The reasons for superconductivity enhancement in small metallic grains including hundreds of thousand electrons are investigated by solving the generalized gap equation based on BCS mean field theory. The analysis suggests that the superconductivity enhancement in small metallic grains are the results caused by the pairing correlation and the level statistics in the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble (GUE).

  6. Advances in ultrafine-grained materials

    Directory of Open Access Journals (Sweden)

    Yi Huang

    2013-03-01

    Full Text Available This review addresses new developments in the processing and properties of ultrafine-grained (UFG materials. These materials are produced through the application of severe plastic deformation to conventional coarse-grained metals and typically they have grain sizes within the submicrometer or even the nanometer range. Although several techniques are now available for achieving excellent homogeneity and high fractions of high-angle grain boundaries, this review concentrates on the major procedures of equal-channel angular pressing and high-pressure torsion. It is shown that UFG materials exhibit both excellent strength at ambient temperature and, if the grains are reasonably stable, outstanding superplastic properties at elevated temperatures. These materials also have a high innovation potential for use in commercial applications.

  7. Submicron-grained transparent yttria composites

    Science.gov (United States)

    Kear, Bernard H.; Sadangi, Rajendra; Shukla, Vijay; Stefanik, Todd; Gentilman, Richard

    2005-05-01

    New materials with improved mechanical properties and high optical transmission in the full 3-5 micron MWIR region wavelength are required. Commercially available polycrystalline transparent Yttria, with >100 micron average grain size, does not perform satisfactorily in demanding applications because of its modest strength. One way to improve strength is to develop an ultra-fine grained material with acceptable optical transmission properties. To realize fine grains it is necessary to use other phases to inhibit grain growth during fabrication. A promising processing method comprises: (a) synthesis of an extended metastable solid solution by plasma melting and quenching, and (b) consolidation of the metastable ceramic powder to form dense submicron-grained (<1 micron) composites. Two ceramic composites containing 20 and 50 vol% of second phase are evaluated in this study. Optical transmission, hardness, and indentation fracture toughness are measured and correlated with structure.

  8. Grain interaction effects in polycrystalline Cu

    DEFF Research Database (Denmark)

    Thorning, C.; Somers, Marcel A.J.; Wert, John A.

    2005-01-01

    Crystal orientation maps for a grain in a deformed Cu polycrystal have been analysed with the goal of understanding the effect of grain interactions on orientation subdivision. The polycrystal was incrementally strained in tension to 5, 8, 15 and 25% extension; a crystal orientation map was...... measured after each strain increment. The measurements are represented as rotations from the initial crystal orientation. A coarse domain structure forms in the initial 5% strain increment and persists at higher strains. Crystal rotations for all coarse domains in the grain are consistent with the full...... range of Tailor solutions for axisymmetric strain; grain interactions are not required to account for the coarse domain structure. Special orientation domains extend 20-100 µm into the grain at various locations around its periphery. The special orientation domain morphologies include layers along...

  9. Grain boundary strengthening in austenitic nitrogen steels

    International Nuclear Information System (INIS)

    The effect of nitrogen and carbon on the strengthening of the austenitic steel Cr18Ni16Mn10 by grain boundaries is studied. It is established in accordance with previous results that contrary to carbon nitrogen increases the coefficient k in the Hall-Petch equation markedly. Because of a pronounced planar slip induced by nitrogen and the absence of any noticeable segregation of nitrogen atoms at the grain boundaries, nitrogen austenite presents an excellent object for testing different existing models of grain boundary strengthening (pile-up, grain boundary dislocation sources, work hardening theories). Based on the analysis of available data and measurements of interaction between nitrogen (carbon) atoms and dislocations it is shown that the nitrogen effect can be attributed to a strong blocking of dislocation sources in grains adjacent to those where the slip started. (orig.)

  10. Grain filling parameters and yield components in wheat

    Directory of Open Access Journals (Sweden)

    Brdar Milka

    2006-01-01

    Full Text Available Grain yield of wheat (Triticum aestivum L. is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the final grain dry weight, rate and duration of grain filling were important parameters in differentiating among cultivars grain filling curves. The yield was positively correlated with number of grains/m2, grain weight and grain filling rate, and negatively correlated with grain filling duration. Correlation between grain weight and rate of grain filling was positive. Grain filling duration was negatively correlated with grain filling rate and number of grains/m2. The highest yield on three year average had medium late Mironovska 808, by the highest grain weight and grain filling rate and optimal number of grains/2 and grain filling duration.

  11. Entropy production in coarse grained Vlasov equations

    International Nuclear Information System (INIS)

    The Vlasov equation is analyzed for coarse grained distributions. This coarse graining resembles a finite width of test-particles as used in numerical implementations. It is shown that this coarse grained distribution obeys a kinetic equation similar to the Vlasov equation, but with additional terms. These terms give rise to entropy production indicating dissipative features. The reason is a nonlinear mode coupling due to the finite width of the test-particles. The interchange of coarse graining and dynamical evolution is discussed with the help of an exactly solvable model and practical consequences are worked out. By calculating analytically the stationary solution we can show that a sum of modified Boltzmann-like distributions is approached dependent on the initial distribution. This behavior is independent of degeneracy and only controlled by the width of test-particles. The condition for approaching a stationary solution is derived in that the coarse graining energy given by momentum coarse graining should be smaller than a quarter of the kinetic energy. Observable consequences of this coarse graining are: (i) In the thermodynamics the coarse graining leads to spatial correlations in observables. (ii) Too large radii of nucleus in self-consistent treatments are observed and an explicit correction term appears in the Thomas Fermi equation. (iii) The momentum coarse graining translates into a structure term in the response function and resembles to a certain extent vertex correction correlations or internal structure effects. (iv) The coarse graining which is numerically unavoidable leads to a modified centroid energy and higher damping width of collective modes. The numerical codes should be revised in that a refolding is proposed. (author)

  12. Interaction of shear-coupled grain boundary motion with crack: Crack healing, grain boundary decohesion, and sub-grain formation

    Science.gov (United States)

    Aramfard, Mohammad; Deng, Chuang

    2016-02-01

    Stress-driven grain boundary motion is one of the main mechanisms responsible for microstructural evolution in polycrystalline metals during deformation. In this research, the interaction of shear-coupled grain boundary motion (SCGBM) in face-centered cubic metals with crack, which is a common type of structural defects in engineering materials, has been studied by using molecular dynamics simulations in simple bicrystal models. The influences of different parameters such as metal type, temperature, grain boundary structure, and crack geometry have been examined systematically. Three types of microstructural evolution have been identified under different circumstances, namely, crack healing, grain boundary decohesion, and sub-grain formation. The underlying atomistic mechanisms for each type of SCGBM-crack interaction, particularly grain boundary decohesion and crack healing, have also been examined. It is found that crack healing is generally favoured during the SCGBM-crack interaction at relatively high temperature in metals with relatively low stacking fault energy and grain boundary structure with relatively low misorientation angles. The results of this work may open up new opportunities for healing severely damaged materials.

  13. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    Science.gov (United States)

    Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343

  14. Evolution of orientations and deformation structures within individual grains in cold rolled columnar grained nickel

    DEFF Research Database (Denmark)

    Wu, G.L.; Godfrey, A.; Winther, Grethe; Juul Jensen, Dorte; Liu, Q.

    2011-01-01

    Columnar grained Ni is used as a model material allowing simultaneous non-surface investigations of the evolution of crystallographic orientations and deformation microstructures within individual grains as a function of rolling strain up to ε=0.7. Electron channelling contrast and electron...... grains. Large grains have microstructure and orientation scatters similar to those observed in single crystals of similar orientation. The observations are interpreted based on a slip system analysis, considering the relative effects of the initial grain orientation and the interaction between...

  15. Influence of China’s Grain Industrial Market Structure over Grain Pricing Power

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    From the point of view of industrial market structure,we analyze the influence of market structure on grain production,circulation,and processing,and on the grain pricing power of entities along China’s grain industrial chain.Through analysis,it is indicated that different features of market structure play a significant role in pricing power of such microeconomic entities as farmers and grain enterprises in grain production and transaction.And the market structure determines welfare distribution model of consumers’ surplus and producers’ surplus at the market.

  16. Abnormal grain growth in Ni-5at.%W

    Science.gov (United States)

    Witte, M.; Belde, M.; Barrales Mora, L.; de Boer, N.; Gilges, S.; Klöwer, J.; Gottstein, G.

    2012-12-01

    The growth of abnormally large grains in textured Ni-5at.%W substrates for high-temperature superconductors deteriorates the sharp texture of these materials and thus has to be avoided. Therefore the growth of abnormal grains is investigated and how it is influenced by the grain orientation and the annealing atmosphere. Texture measurements and grain growth simulations show that the grain orientation only matters so far that a high-angle grain boundary exists between an abnormally growing grain and the Cube-orientated matrix grains. The annealing atmosphere has a large influence on abnormal grain growth which is attributed to the differences in oxygen partial pressure.

  17. Phloem Transport of Arsenic Species from Flag Leaf to Grain During Grain Filling

    Energy Technology Data Exchange (ETDEWEB)

    A Carey; G Norton; C Deacon; K Scheckel; E Lombi; T Punshon; M Guerinot; A Lanzirotti; M Newville; et al.

    2011-12-31

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  18. Phloem transport of arsenic species from flag leaf to grain during grain filling

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Anne-Marie; Norton, Gareth J.; Deacon, Claire; Scheckel, Kirk G.; Lombi, Enzo; Punshon, Tracy; Guerinot, Mary Lou; Lanzirotti, Antonio; Newville, Matt; Choi, Yongseong; Price, Adam H.; Meharg, Andrew A. (EPA); (U. South Australia); (Aberdeen); (UC); (Dartmouth)

    2011-09-20

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  19. Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Steve; Allende Motz, Alyssa; Reese, Matthew O.; Burst, James M.; Metzger, Wyatt K.

    2015-06-14

    In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high spatial resolution and a field of view down to 190 um x 190 um. PL images of large-grain (5 to 50 um) CdTe samples show grain boundary and grain interior features that vary with processing conditions. PL images of samples in the as-deposited state show distinct dark grain boundaries that suggest high excess carrier recombination. A CdCl2 treatment leads to PL images with very little distinction at the grain boundaries, which illustrates the grain boundary passivation properties. Other process conditions are also shown, along with comparisons of PL images to high spatial resolution time-resolved PL carrier lifetime maps.

  20. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan

    2011-12-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary diffusion, grain boundary sliding and dislocation activities are considered. Effects of pressure on the grain boundary diffusion and sliding mechanisms are taken into account. Furthermore, the influence of grain size distribution on macroscopic response is studied. The model is shown to capture the fundamental mechanical characteristics of nanocrystalline metals. These include grain size dependence of the strength, i.e., both the traditional and the inverse Hall-Petch effects, the tension-compression asymmetry and the enhanced rate sensitivity. © 2011 Elsevier B.V. All rights reserved.

  1. Diffusion mechanisms in grain boundaries in solids

    International Nuclear Information System (INIS)

    A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures

  2. Densification and grain coarsening of melting snow

    Institute of Scientific and Technical Information of China (English)

    周石硚; 中尾正义; 桥本重将; 坂井亚规子; 成田英器; 石川信敬

    2003-01-01

    A field work was conducted at Moshiri in Japan.The work included intensive snow pit work, taking snow grain photos, recording snow and air temperatures, as well as measuring snow water content.By treating the snow as a viscous fluid, it is found that the snow compactive viscosity decreases as the density increases, which is opposite to the relation for dry snow.Based on the measurements of snow grain size, it is shown that, similar to the water-saturated snow, the frequency distributions of grain size at different times almost have the same shape.This reveals that the water-unsaturated melting snow holds the same grain-coarsening behavior as the water-saturated snow does.It is also shown that the water-unsaturated melting snow coarsens much more slowly than the water-saturated snow.The C value, which is the viscosity when the snow density is zero, is related to the mean grain size and found to decrease with increasing grain size.The decreasing rate of C value increases with decreasing grain-coarsening rate.

  3. Plasticity enhancement through disordering at grain boundaries

    International Nuclear Information System (INIS)

    In seeking to explain the boron effect in Ni3Al, Frost first suggested that disordering at the grain boundary might lead to enhanced plasticity by relieving some of the geometric constraints upon dislocation interactions with these normally brittle interfaces. This idea was further investigated by King and Yoo, who performed an extensive survey on the possible reactions between lattice dislocations or superdislocations and coincidence-related grain boundaries in the L12 structure. It was found that, indeed, the number of available reactions in any case was multiplied by as much as a factor of four if the requirement for maintaining chemical order in the grain boundary was removed. This suggests that it may be considerably easier to relax plastic strain at grain boundaries in the case where order is not imposed than where it is, and thus that the plastic energy contributing to the fracture process may be partly relieved. This would contribute to ductilizing the grain boundaries. There ar, in fact, several mechanisms by which grain boundary disordering may contribute to improved interfacial ductility. These mechanisms primarily relate to the fat that smaller Burgers vectors are available for the grain boundary dislocations in the case where order is not preserved, in much the same way that superdislocations are not required in the matrix if the material is disordered. This paper discusses the contributions to ductility

  4. Transfer of radioiodine into rice grains

    International Nuclear Information System (INIS)

    It is known that 129I levels near the spent fuel reprocessing plants are obviously higher than those in the other areas. At present commercial spent fuel reprocessing plant is under planning in the north of Japan mainland. For the safety assessment before the new-construction of the plant, it is required to obtain transfer factors of the nuclide to rice grains through deposition-translocation and rootuptake routes. Results obtained showed that contribution from dry deposition (I2 gas deposition)-translocation should be more significant than that from wet-deposition-translocation, but sometimes comparable or preferably less significant than that from root uptake route. In this paper, however, discussion is focused on I2 gas deposition translocation to rice grains, gaseous iodine deposition to hull surfaces and subsequent infiltration to brown rice should be more critical than leaf absorption-translocation. Excretion of the nuclide from hull surfaces was hardly recognized. Thus the transfer factor of gaseous 129I to rice grains was successfully obtained by using grain number deposition velocity (Vs) and distribution ratio of I between rough rice and rice grain. Ther Vs is given as following: Vs = the amount of iodine deposited on unit number of rough rice per unit time divided by iodine concentration in unit volume of air. Experimentally obtained Vs is about 5x10-3cm3.(grain.sec)-1. And the transfer factor of gaseous iodine (I2) to polished rice is calculated as about 4x102cm3.(grain)-1

  5. Tracing magnetic fields with aligned grains

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A. [Astronomy Department, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 (United States)]. E-mail: lazarian@astro.wisc.edu

    2007-07-15

    Magnetic fields play a crucial role in various astrophysical processes, including star formation, accretion of matter, transport processes (e.g., transport of heat), and cosmic rays. One of the easiest ways to determine the magnetic field direction is via polarization of radiation resulting from extinction or/and emission by aligned dust grains. Reliability of interpretation of the polarization maps in terms of magnetic fields depends on how well we understand the grain-alignment theory. Explaining what makes grains aligned has been one of the big issues of the modern astronomy. Numerous exciting physical effects have been discovered in the course of research undertaken in this field. As both the theory and observations matured, it became clear that the grain-alignment phenomenon is inherent not only in diffuse interstellar medium or molecular clouds but also is a generic property of the dust in circumstellar regions, interplanetary space and cometary comae. Currently the grain-alignment theory is a predictive one, and its results nicely match observations. Among its predictions is a subtle phenomenon of radiative torques. This phenomenon, after having stayed in oblivion for many years after its discovery, is currently viewed as the most powerful means of alignment. In this article, I shall review the basic physical processes involved in grain alignment, and the currently known mechanisms of alignment. I shall also discuss possible niches for different alignment mechanisms. I shall dwell on the importance of the concept of grain helicity for understanding of many properties of grain alignment, and shall demonstrate that rather arbitrarily shaped grains exhibit helicity when they interact with gaseous and radiative flows.

  6. The Search for Interstellar Sulfide Grains

    Science.gov (United States)

    Keller, Lindsay P.; Messenger, Scott

    2010-01-01

    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  7. Static Recrystallized Grain Size of Coarse-Grained Austenite in an API-X70 Pipeline Steel

    Science.gov (United States)

    Sha, Qingyun; Li, Guiyan; Li, Dahang

    2013-12-01

    The effects of initial grain size and strain on the static recrystallized grain size of coarse-grained austenite in an API-X70 steel microalloyed with Nb, V, and Ti were investigated using a Gleeble-3800 thermomechanical simulator. The results indicate that the static recrystallized grain size of coarse-grained austenite decreases with decreasing initial grain size and increasing applied strain. The addition of microalloying elements can lead to a smaller initial grain size for hot deformation due to the grain growth inhibition during reheating, resulting in decreasing of static recrystallized grain size. Based on the experimental data, an equation for the static recrystallized grain size was derived using the least square method. The grain sizes calculated using this equation fit well with the measured ones compared with the equations for fine-grained austenite and for coarse-grained austenite of Nb-V microalloyed steel.

  8. Molecular dynamics study on microstructure of near grain boundary distortion region in small grain size nano- NiAl alloy

    International Nuclear Information System (INIS)

    Using the molecular dynamics simulation method, the microstructure of distortion region near curved amorphous-like grain boundary in nano-NiAl alloy is studied. The results showed that due to the internal elastic force of high energy grain boundary, distortion layer exists between grain and grain boundary. The lattice expansion and structure factor decreasing are observed in this region. Stacking fault in sample with grain size 3.8nm is clearly observed across the distortion region at the site very close to grain. The influences of different grain sizes on average distortion degree and volume fractions of distortion region, grain and grain boundary are also discussed. (author)

  9. RF installation for the grain disinfestation

    CERN Document Server

    Zajtzev, B V; Kobetz, A F; Rudiak, B I

    2001-01-01

    The ecologically pure method of grain product disinfestations through the grain treatment with the RF electric field is described. The experimental data obtained showed that with strengths of the electrical RF field of E=5 kV/cm and frequency of 80 MHz the relative death rate is 100%.The time of the grain treatment it this case is 1 sec. The pulses with a duration of 600 mu s and repetition rate of 2 Hz were used, the duration of the front was 10 mu s. The schematic layout of installation with a productivity of 50 tones/h and power of 10 kW is given.

  10. Optical sizing of irregular snow grains

    Directory of Open Access Journals (Sweden)

    A. A. Kokhanovsky

    2011-09-01

    Full Text Available We discuss a possibility of snow grain size determination using spectral reflectance measurements in the near-infrared part of the electromagnetic spectrum. Errors related to often made assumption of the sphericity of grains are studied. Also we introduce a new method for the snow albedo and snow pollution monitoring using measurements in the visible part of the electromagnetic theory. Both exact and approximate methods of the radiative transfer are used for the solution of corresponding inverse problem. It is assumed that snow grains can be presented as randomly distributed irregular fractal particles. The developed techniques are applied to both ground and satellite data.

  11. Drying watery wheat grains by far infrared

    International Nuclear Information System (INIS)

    Summary A far infrared dryer was experimented to dry wheat grains for high performance and cost reduction. It is more efficient than a circulating dryer reducing drying time by 20% and fuel consumption by 20 - 30%. Whereas it takes more time and more fuel, when the drying rate is set at 1%/h. Moreover, on condition that the average drying rate is lower, it could decrease the rate of green wheat grains up to 3%. But green wheat grains did not disappear at all on the condition

  12. Analysis of airborne pollen grains in Denizli

    OpenAIRE

    GÜVENSEN, Aykut; ÇELİK, Ali; TOPUZ, Bülent; ÖZTÜRK, Münir

    2013-01-01

    Airborne pollen distribution in Denizli Province was measured volumetrically during 2 consecutive years, 2005 and 2006, on a weekly basis. A total of 11,981 pollen grains/m3 belonging to 42 taxa were determined. In 2005 the total was 5368 pollen grains/m3 and in 2006 it was 6613 pollen grains/m3. Among the taxa recorded, 26 belonged to arboreal and 16 to nonarboreal taxa. At the end of the 2 years total pollen counts comprised 79.68% arboreal, 19.48% nonarboreal, and 0.84% unidentified taxa. ...

  13. Global Goss grain growth and grain boundary characteristics in magnetostrictive Galfenol sheets

    International Nuclear Information System (INIS)

    Single Goss grains were globally grown in magnetostrictive Galfenol thin sheets via an abnormal grain growth (AGG) process. The sample behaves like single crystal Galfenol, exhibiting large magnetostriction along the 〈100〉 axes. Small variations in surface energy conditions, which were governed by different flow rates of 0.5% H2S gas in argon during annealing, had a significant impact of the development of AGG. AGG with a fully developed Goss (011) grain over 95% of the sample surface is very reproducible and feasible for a broad range of annealing conditions. In addition, the 〈100〉 orientation of the single-crystal-like Galfenol sheet aligns exactly with the rolling direction, and produces magnetostriction values of ∼300 ppm. AGG often produces isolated grains inside Goss grains due to anisotropic properties of grain boundaries. To better understand island formation mechanisms, grain orientation and grain boundary characteristics of island grains in Goss-oriented Galfenol thin sheets were also investigated. We examined samples annealed either under an argon atmosphere or under a sulfur atmosphere, and characterized the observed island grain boundaries in terms of grain misorientation angles. Trends in measured and simulated data on misorientation angles indicate that the presence of (001) island grain boundaries with angles higher than 45° can be explained by the high energy grain boundary (HEGB) model, whereas (111) boundaries with intermediate angles (20°–45°) cannot. The role of low energy coincident site lattice (CSL) boundaries on AGG in both annealing cases was found to be negligible. (paper)

  14. Barium Isotopes in Single Presolar Grains

    Science.gov (United States)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  15. The NGDC Seafloor Sediment Grain Size Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGDC (now NCEI) Seafloor Sediment Grain Size Database contains particle size data for over 17,000 seafloor samples worldwide. The file was begun by NGDC in 1976...

  16. Transient solute drag in migrating grain boundaries

    International Nuclear Information System (INIS)

    Understanding the solute drag in migrating grain boundaries or interfaces has been a topic in materials research since Cahn's seminal paper in 1962. However, mostly steady-state solutions for solute segregation and drag in a migrating interface have been investigated. Here a new concept, based on the thermodynamic extremal principle, is introduced, which allows a detailed study of the transient processes in the migrating interface starting from a given initial configuration. The system is then described by two parameters, the first representing the amount of segregated solute in the grain boundary and the second the grain boundary position. Stability studies are performed using the perturbation concept. The model is demonstrated by simulations for a Fe-0.1 at.% Ni alloy taking different values for the grain boundary mobility and the driving force.

  17. Grain operator miffed at port administration

    Index Scriptorium Estoniae

    2006-01-01

    Ventspils Grain Terminal saatis president Vaira Vike-Freibergale ja mitmetele ministritele kirja sõnumiga, et Ventspilsi Vabasadama (Ventspils Free Port) administratsiooni tegevus takistab terminali äritegevust

  18. Technologies for obtaining large grain sintered pellets

    International Nuclear Information System (INIS)

    A way to increase fuel burn-up is to use a large grains fuel pellets structure. The paper presents a literature review related to the technologies and the methods for large grains sintered pellets manufacturing. A flowsheet for large grains sintered pellets obtaining by Nb2O5 dopant addition in UO2 sinterable powder, pressing and sintering in H2 atmosphere is showed. In the diagrams are presented the dependency of the main sintered pellets characteristics (pore radius distribution, pores volume, density, grains size) as function of the Nb2O5 dopants concentration, UO2 sinterable powder nature and sintering temperature. Other sintered pellets characteristics (electrical conductivity, Seebeck coefficient, high temperature molar heat capacity and thermomechanical properties) are commented. The beneficial effects resulted from theoretical and practical projects are presented. (author)

  19. Evolution equations for grain growth and coarsening

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří

    New York : Nova Science Publishers, Inc, 2012 - (Claes, A.), s. 6-59 ISBN 978-1-61209-652-0 Institutional support: RVO:68081723 Keywords : grain growth * thermodynamics * extremal principle * simulation * modelling Subject RIV: BJ - Thermodynamics

  20. Analysis on Stability Factors of Grain Price in China

    Institute of Scientific and Technical Information of China (English)

    Li Cui-xia; Zhang Yu-ling

    2012-01-01

    To make grain price stable is an important goal for the Chinese government. The paper compared the grain supply elasticity and demand elasticity to determine the grain price stability in China; used "k value" method to analyze the grain price fluctuation from 1985 to 2010; divided the grain price volatility into three stages; and analyzed the factors in each phase. On the base, it put forward some countermeasures to guarantee the stability of the grain price.

  1. Thermomagnetic Stability in Pseudo Single Domain Grains

    Science.gov (United States)

    Nagy, Lesleis; Williams, Wyn; Muxworthy, Adrian; Fabian, Karl; Conbhuí, Pádraig Ó.

    2016-04-01

    The reliability of paleomagnetic remanences are well understood for fine grains of magnetite that are single-domain (SD, uniformly magnetized). In particular Néel's theory [1] outlined the thermal energies required to block and unblock magnetic remanences. This lead to determination of thermal stability for magnetization in fine grains as outlined in Pullaiah et. al. [2] and a comprehensive understanding of SD paleomagnetic recordings. It has been known for some time that single domain magnetite is possible only in the grain size range 30 - 80nm, which may only account for a small fraction of the grain size distribution in any rock sample. Indeed rocks are often dominated by grains in the pseudo single domain (PSD) size range, at approximately 80 - 1000nm. Toward the top end of this range multi-domain features begin to dominate. In order to determine thermomagnetic stability in PSD grains we need to identify the energy barriers between all possible pairs of local energy minima (LEM) domain states as a function of both temperature and grain size. We have attempted to do this using the nudged elastic band (NEB) method [3] which searches for minimum energy paths between any given pair of LEM states. Using this technique we have determined, for the first time, complete thermomagnetic stability curves for PSD magnetite. The work presented is at a preliminary stage. However it can be shown that PSD grains of magnetite with simple geometries (e.g. cubes or cuboctahedra) have very few low energy transition paths and the stability is likely to be similar to that observed for SD grains (as expected form experimental observations). The results will provide a basis for a much more rigorous understanding of the fidelity of paleomagnetic signals in assemblages of PSD grains and their ability to retain ancient recordings of the geomagnetic field. References: [1] Néel, Louis. "Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres

  2. Combining ability of white grain popcorn populations

    OpenAIRE

    Carlos Alberto Scapim; Ronald José Barth Pinto; Antônio Teixeira do Amaral Júnior; Freddy Mora; Thatiana Silva Dandolini

    2006-01-01

    The objectives of this study were to indicate the best improvement strategy and select parents to begin animprovement program of white grain popcorn based on the combining ability and heterosis of eight populations selected inexperiments in the northwestern region of Paraná. The traits plant and ear height, grain yield and popping expansion wereevaluated. The base populations, the F1 and five controls were evaluated in Maringá, state of Paraná, over the course of twoyears. Heterosis for poppi...

  3. GRAIN BOUNDARY SEGREGATIONS AND HYDROGEN EMBRITTLEMENT

    OpenAIRE

    Aucouturier, M.

    1982-01-01

    The relation between grain boundary segregation and hydrogen embrittlement of metals may be discussed from two stand points : 1°) Hydrogen has a strong tendency to segregate in structure defects, among them, in grain boundaries. Hydrogen segregation controls the properties of hydrogenated materials in many cases (hydrogen diffusion, hydrogen induced cracking, electrical properties in semiconductors, etc) and more precisely their mechanical behaviour (embrittlement itself). 2°) The occurence o...

  4. Grain Contrast Imaging in UHV SLEEM

    Czech Academy of Sciences Publication Activity Database

    Mikmeková, Šárka; Hovorka, Miloš; Müllerová, Ilona; Man, O.; Pantělejev, L.; Frank, Luděk

    2010-01-01

    Roč. 51, č. 2 (2010), s. 292-296. ISSN 1345-9678 R&D Projects: GA MŠk OE08012 Institutional research plan: CEZ:AV0Z20650511 Keywords : scanning low energy electron microscopy * electron backscatter diffraction (EBSD) * grain contrast * ultra-fine grained materials Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.779, year: 2010 http://www.jim.or.jp/journal/e/51/02/292.html

  5. Cereal grains for nutrition and health benefits

    DEFF Research Database (Denmark)

    Björck, Inger; Östman, Elin; Kristensen, Mette;

    2012-01-01

    Epidemiological studies have linked whole grain intake to the prevention of the metabolic syndrome, obesity and associated chronic diseases such as CVD and T2D. The Nutrition module within the HEALTHGRAIN project, included 10 partners and undertook in vitro, animal and human in vivo studies with...... the overall aims of elucidating the components and mechanisms underlying the health benefits of cereal grains. This review summarises the major outcomes of these studies, including yet unpublished findings. © 2011 Elsevier Ltd....

  6. Optical sizing of irregular snow grains

    OpenAIRE

    Kokhanovsky, A. A.

    2011-01-01

    We discuss a possibility of snow grain size determination using spectral reflectance measurements in the near-infrared part of the electromagnetic spectrum. Errors related to often made assumption of the sphericity of grains are studied. Also we introduce a new method for the snow albedo and snow pollution monitoring using measurements in the visible part of the electromagnetic theory. Both exact and approximate methods of the radiative transfer are used for the solution of corresponding inve...

  7. The maximum temperatures of interstellar grains

    International Nuclear Information System (INIS)

    The maximum temperature a typical interstellar grain will attain upon absorption of a photon or chemical band formation of molecules on its surface is calculated by considering the exact Debye theory of dielectrics. Other contributions to the specific heats of solids are discussed. It is shown that the use of the approximate Debye theory where Csub(v) is proportional to T will lead to serious errors in the calculation of velocities of desorption of molecules from grain surfaces. (Auth.)

  8. Whole Grain Intake Reduces Pancreatic Cancer Risk

    OpenAIRE

    Lei, Qiucheng; Zheng, Huazhen; Bi, Jingcheng; Wang, Xinying; Jiang, Tingting; Gao, Xuejin; Tian, Feng; Xu, Min; Wu, Chao; Zhang, Li; Ning LI; Li, Jieshou

    2016-01-01

    Abstract Mounting evidence from epidemiology studies suggests that whole grain intake may reduce pancreatic cancer risk, but convincing evidence is scarce. We conducted a meta-analysis to assess the association between whole grain intake and pancreatic cancer risk. Relevant observational studies were identified by searching PubMed, Embase, Scopus, and Cochrane library databases for the period from January 1980 to July 2015, with no restrictions. We calculated the summary odds ratios (ORs) for...

  9. Antioxidant Properties of Whole Grain Cereals

    OpenAIRE

    Čukelj, Nikolina; Novotny, Dubravka; Ćurić, Duška

    2010-01-01

    Cereals have a long history of use by humans. Cereals and cereal products are staple foods, and are important source of energy, carbohydrate, protein, fibre, vitamins (E, B) and minerals (Zn, Mg, Fe) in both developed and developing countries. The health aspects of whole grain cereals have long been known, but the antioxidant profile of whole grains has only recently been introduced to the antioxidant research community where mostly fruits and vegetables are in focus. In vitro experiments con...

  10. THE ECONOMICS OF GRAIN PRODUCER CARTELS

    OpenAIRE

    Gleckler, James; Tweeten, Luther G.

    1994-01-01

    The objective of this study is to measure economic payoffs from a grain cartel. Two basic approaches to extract economic rents are considered: (i) Mandatory supply controls to restrict production and raise grain price, and (2) export price discrimination using export taxes or subsidies. The economic impacts of different producer cartel scenarios were estimated using a long-term, nine-region world trade simulation model incorporating the assumptions of neoclassical trade theory. The SWOPSIM pr...

  11. Cavitation and grain growth during superplastic forming

    Directory of Open Access Journals (Sweden)

    M.J. Tan

    2007-09-01

    Full Text Available Purpose: The purpose of the paper is to study the cavitation and grain growth during superplastic forming.Design/methodology/approach: Superplastic alloys exhibit the extremely large elongation to failure by their high strain rate sensitivity. Cavities have widely been observed during superplastic deformation of metals and alloys and lead to the degradation of material properties such as tensile, creep, fatigue and stress-corrosion behavior. In this work, a finite element method is developed, which considers the grain growth and the effect of material damage.Findings: The effects of material parameters and deformation damage on the superplastic deformation process are numerically analyzed, and the means to control cavitation growth is discussed. The microstructural mechanism of grain growth during superplastic deformation is also studied. A new model considering the grain growth is proposed and applied to conventional superplastic materials The relationships between the strain, the strain rate, the test temperature, the initial grain size and the grain growth respectively in superplastic materials are discussed.Practical implications: The effect of variation of strain rate sensitivity (m value on the strain limit of the superplastic deformation is investigated, and the theoretically calculated values are compared with the experimental results.Originality/value: A new microstructure model based on the microstructural mechanism of superplastic deformation has been proposed. This model has been successfully applied to analyze conventional superplastic materials.

  12. Interstellar chemical differentiation across grain sizes

    CERN Document Server

    Ge, Jixing; Li, Aigen

    2016-01-01

    In this work we investigate the effects of ion accretion and size-dependent dust temperatures on the abundances of both gas-phase and grain-surface species. While past work has assumed a constant areal density for icy species, we show that this assumption is invalid and the chemical differentiation over grain sizes are significant. We use a gas-grain chemical code to numerically demonstrate this in two typical interstellar conditions: dark cloud (DC) and cold neutral medium (CNM). It is shown that, although the grain size distribution variation (but with the total grain surface area unchanged) has little effect on the gas-phase abundances, it can alter the abundances of some surface species by factors up to $\\sim2-4$ orders of magnitude. The areal densities of ice species are larger on smaller grains in the DC model as the consequence of ion accretion. However, the surface areal density evolution tracks are more complex in the CNM model due to the combined effects of ion accretion and dust temperature variati...

  13. Grain weight improvement in wheat through irradiation

    International Nuclear Information System (INIS)

    T. aestivum wheat variety NIAW 34 was developed by Agricultural Research Station, Niphad, and was released by Central Varietal Release Committee, for cultivation under irrigated late sown conditions of Peninsular Zone. The grains of NIAW 34 are medium sized with 40g 1000 grain weight. However, in market the bold sized grains (above 40g 1000 grain weight) are preferred by the traders and consumers. To overcome this lacuna, grains of wheat variety NIAW 34 were irradiated to exploit the possibilities of improvement in test weight. The material was irradiated with 15 and 20 kr dose of gamma rays. In M2 generation, mutants for various morphological characters were observed. The plants showing vigorous growth habit and desirable morphological characters were selected. These selected plants were studied for grain characters after harvest. On the basis of improved test weight as compared to parental line, selections were effected. The material was advanced to M6 generation and found stable for character of interest. The material selected comprised of total 10 lines showing improved test weight having range of 42-46 g i.e. increase of 4-6 g over the parental line NIAW 34. The lines selected are being evaluated in yield evaluation trials during Rabi 2006-07. Amongst the doses used, frequency of desired mutants was higher in treatment, of 15 kr

  14. GRAIN-BOUNDARY PRECIPITATION UNDER IRRADIATION IN DILUTE BINARY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    S.H. Song; Z.X. Yuan; J. Liu; R.G.Faulkner

    2003-01-01

    Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions ofγ'-Ni3Si precipitation at grain boundaries ave made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundaryγ'-Ni3 Si precipitation over a certain temperature range.

  15. Effect of grain size distribution on attenuation and backscattered grain noise

    International Nuclear Information System (INIS)

    The attenuation and backscattered grain noises in pure irons were measured. From the backscattered grain noise FOM (Figure-of-merit) which is a material dependent parameter were obtained by using independent scattering model. Attenuation coefficients and FOM's were compared with the results calculated by LPM theory and the general scattering model, respectively. Although the absolute values were not exactly same between measured and calculated results, the dependencies of them on the average grain size could be confirmed. The effect of grain size distribution on attenuation and backscattered grain noise was analyzed. The different scattering mechanisms according to the ratio of wavelength to grain size were applied to the analysis of the attenuation and backscattering even in a specimen.

  16. BHQ revisited (1) - Looking at grain size

    Science.gov (United States)

    Heilbronner, Renée; Kilian, Rüdiger; Tullis, Jan

    2016-04-01

    Black Hills Quartzite (BHQ) has been used extensively in experimental rock deformation for numerous studies. Coaxial and general shear experiments have been carried out, for example, to define the dislocation creep regimes of quartz (Hirth & Tullis, 1992), to determine the effect of annealing (Heilbronner & Tullis, 2002) or to study the development of texture and microstructure with strain (Heilbronner & Tullis, 2006). BHQ was also used to determine the widely used quartz piezometer by Stipp & Tullis (2003). Among the microstructure analyses that were performed in those original papers, grain size was usually determined using CIP misorientation images. However, the CIP method (= computer-integrated polarization microscopy, details in Heilbronner and Barrett, 2014) is only capable of detecting the c-axis orientation of optically uniaxial materials and hence is only capable of detecting grain boundaries between grains that differ in c-axis orientation. One of the puzzling results we found (Heilbronner & Tullis, 2006) was that the recrystallized grain size seemed to depend on the crystallographic preferred orientation of the domain. In other words the grain size did not only depend on the flow stress but also on the orientation of the c-axis w/r to the shear direction. At the time, no EBSD analysis (electron back scatter diffraction) was carried out and hence the full crystallographic orientation was not known. In principle it is therefore possible that we missed some grain boundaries (between grains with parallel c-axes) and miscalculated our grain sizes. In the context of recent shear experiments on quartz gouge at the brittle-viscous transition (see Richter et al., this conference), where EBSD is used to measure the recrystallized grain size, we wanted to re-measure the CIP grain sizes of our 2006 samples (deformed in regime 1, 2 and 3 of dislocation) in exactly the same way. In two companion posters we use EBSD orientation imaging to repeat, refine and expand the

  17. Microtexture investigation of orientation gradients and grain subdivision in rolled coarse-grained niobium

    OpenAIRE

    Sandim, H.; Raabe, D.

    2004-01-01

    Orientation effects concerning grain subdivision and further annealing behavior of three neighboring grains were observed in 80% cold-rolled coarse-grained niobium. The present study which was conducted as a cooperation on the basis of DAAD and CAPES funding attempts to clarify the microstructural evolution of deformed niobium and the differences in terms of stored energy (boundary distribution) using high-resolution electron backscattering diffraction (FE-EBSD).

  18. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  19. SIMULATIVE INVESTIGATION OF GRAIN BOUNDARIES IN NiAl ALLOY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Using embedded atom potentials and molecular static relaxation method or Monte Carlo relaxation method, the grain boundary atomic structures of a series of [100], [110] and [111] symmetric tilt grain boundaries in NiAl with different geometrical indexes and compositions were studied. The grain boundary energies, grain boundary cohesive energies and point defects formation energies at the grain boundary were calculated. The results show that the grain boundaries of NiAl alloy have a periodic unit structure. Grain boundary energies of Al rich grain boundary is very high, but the cohesive energies are lower than those of others. The interaction of point defects and grain boundaries shows that grain boundaries incline to absorb point defects to decrease their orders and to relax the distortions caused by point defects. The boundary atomic structures relaxed by Monte Carlo method show that the disorder of them, grain boundary energies and cohesive energies increase with increasing temperature.

  20. The HEALTHGRAIN definition of 'whole grain'.

    Science.gov (United States)

    van der Kamp, Jan Willem; Poutanen, Kaisa; Seal, Chris J; Richardson, David P

    2014-01-01

    Most cereal products, like white bread, pasta, and biscuits, are based on flour after removal of bran and germ, the two parts of grain kernels containing most of the dietary fibre and other bioactive components. In the past decade, consumers have been rediscovering whole grain-based products and the number of wholegrain products has increased rapidly. In most countries in Europe and worldwide, however, no legally endorsed definition of wholegrain flour and products exists. Current definitions are often incomplete, lacking descriptions of the included grains and the permitted flour manufacturing processes. The consortium of the HEALTHGRAIN EU project (FP6-514008, 2005-2010) identified the need for developing a definition of whole grain with the following scope: 1) more comprehensive than current definitions in most EU countries; 2) one definition for Europe - when possible equal to definitions outside Europe; 3) reflecting current industrial practices for production of flours and consumer products; 4) useful in the context of nutritional guidelines and for labelling purposes. The definition was developed in a range of discussion meetings and consultations and was launched in 2010 at the end of the HEALTHGRAIN project. The grains included are specified: a wide range of cereal grains from the Poaceae family, and the pseudo-cereals amaranth, buckwheat, quinoa, and wild rice. The definition also describes manufacturing processes allowed for producing wholegrain flours. This paper compares the HEALTHGRAIN definition with previous definitions, provides more comprehensive explanations than in the definition itself regarding the inclusion of specific grains, and sets out the permitted flour manufacturing processes. PMID:24505218

  1. Effect of coarse-grain contents on strength and fracture toughness of fine-grained graphite

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Tsuneo; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Arai, Taketoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Konishi, Takashi [Toyo Tanso Co. Ltd., Osaka (Japan)

    2001-03-01

    To investigate the effect of the coarse-grain content on strength and fracture toughness of fine-grained graphite, bending and fracture toughness tests were conducted for specimens with different contents of coarse-grains. In the study the standard specimen was made of fine-grained isotropic graphite (IG-11) with a mean grain size of 20 {mu}m, and two kinds of different grain size specimens were prepared by 20 and 40% mixing of coarse-grains with a mean grain size of 125 {mu}m. The bending test revealed a strength increase for the 40% specimen with a small deviation compared with that for the standard specimen. As for the fracture toughness, two kinds of fracture toughnesses were investigated on the basis of the crack initiation load and the maximum applied load. The initiation load based fracture toughness for the 20% and 40% specimens was higher than that for the standard one; however, the difference for the 20% and 40% specimens was not observed clearly. These results suggest that the fracture toughness tends to saturate at a relatively low coarse-grain content, which is below 20% in the present study. On the other hand, the maximum load based fracture toughness increased with increasing coarse-grain content; thus the difference with different coarse-grain contents was observed. Moreover, the present authors applied a probabilistic strength model to the bending test results, using the pore size distributions obtained by image analysis of microstructures observed by optical microscopy. The model had been proposed by Burchell under uniaxial stress conditions, in consideration of pore size distributions. The prediction by the present model indicated a good correlation with the experimental results. (author)

  2. Effect of coarse-grain contents on strength and fracture toughness of fine-grained graphite

    International Nuclear Information System (INIS)

    To investigate the effect of the coarse-grain content on strength and fracture toughness of fine-grained graphite, bending and fracture toughness tests were conducted for specimens with different contents of coarse-grains. In the study the standard specimen was made of fine-grained isotropic graphite (IG-11) with a mean grain size of 20 μm, and two kinds of different grain size specimens were prepared by 20 and 40% mixing of coarse-grains with a mean grain size of 125 μm. The bending test revealed a strength increase for the 40% specimen with a small deviation compared with that for the standard specimen. As for the fracture toughness, two kinds of fracture toughnesses were investigated on the basis of the crack initiation load and the maximum applied load. The initiation load based fracture toughness for the 20% and 40% specimens was higher than that for the standard one; however, the difference for the 20% and 40% specimens was not observed clearly. These results suggest that the fracture toughness tends to saturate at a relatively low coarse-grain content, which is below 20% in the present study. On the other hand, the maximum load based fracture toughness increased with increasing coarse-grain content; thus the difference with different coarse-grain contents was observed. Moreover, the present authors applied a probabilistic strength model to the bending test results, using the pore size distributions obtained by image analysis of microstructures observed by optical microscopy. The model had been proposed by Burchell under uniaxial stress conditions, in consideration of pore size distributions. The prediction by the present model indicated a good correlation with the experimental results. (author)

  3. Performance of organic grain legumes in Tuscany

    Directory of Open Access Journals (Sweden)

    Valentina Moschini

    2014-03-01

    Full Text Available In 2005-2007 growing season, few varieties of field bean, high protein pea and white lupin were compared in an organic farm of Central Italy (Mugello area, Tuscany, to evaluate their agronomic performance in terms of grain yield, nutritional quality and competitive ability against weeds. The experiment was performed under rain-fed conditions. Furthermore, grain legumes features were compared between two different sowing seasons (autumnal vs late-winter for two years, in order to get information on the best time of sowing of these species, and the stability of yields of different genotypes in those climatic and soil conditions. These legumes could be an alternative protein source to external soybean, a high-risk alimentary source of genetically modified organisms, in the organic livestock sector. The main findings indicate that higher yields in grain and crude protein were obtained with the pea species and in particular with cultivars Hardy (4.0 t/ha grain yield; 626 kg/ha crude protein yield and Classic (3.1 t/ha grain yield; 557 kg/ha crude protein yield; followed by field bean cv. Chiaro di Torre Lama (2.9 t/ha grain yield; 624 kg/ha crude protein yield and cv. Vesuvio (2.5 t/ha grain yield; 549 kg/ha crude protein yield. Furthermore the field bean is interesting for the stability of yield in both years despite climatic conditions rather different. The white lupin has showed the lower yield but the best values of grain quality, with higher values in lupin Multitalia for dry matter, crude protein and ether extract and in lupin Luxe also for crude fibre, respect to the other legumes analysed. Among lupin varieties, lupin Multitalia showed the best yield results for the pedo-climatic conditions of Mugello area (0.9 t/ha lupin Multitalia; 0.2 t/ha lupin Luxe. The total yield of organic grain legumes, in the experimental site, is resulted higher with an autumnal seeding respect to the late-winter seeding (2.8 t/ha vs 1.9 t/ha.

  4. Multiscale simulation of grain interactions in polycrystals

    International Nuclear Information System (INIS)

    A quantitative assessment of the effect of elastic and plastic inhomogeneities of grain deformation is critical for the determination of the aggregate response in polycrystals, an effect that is specially important at large deformations. To this end, a computational method is presented for the simulation of grain interactions in polycrystals including the accurate resolution of inhomogeneous anisotropic elastic and plastic fields at grain boundaries. The computational approach is based on a Lagrangian large-deformation finite-element formulation. The multiscale, atomistically-informed crystal plasticity model presented in, the shock capturing method presented in and the equation of state and pressure-dependent elastic constants for Ta obtained in from ab initio quantum mechanical calculations define the material model used in calculations. The considerable computing effort is distributed among processors via a parallel implementation based on mesh partitioning and message passing, following. Each mesh partition represents a grain with a different orientation and is assigned to a different processor. The versatility of this approach is demonstrated in large scale three-dimensional simulations of a strong shock propagating in a Ta cylinder. The simulations are performed on the ASCI super-computers on up to 1856 processors. The role of inhomogeneities of plastic deformation ensued as a result of grain boundary constraint in determining the macroscopic polycrystal response is assessed by comparison with averaging techniques. The scalability properties of the proposed approach on up to thousands of processors are briefly discussed. Refs. 4 (author)

  5. Grain Boundaries From Theory to Engineering

    CERN Document Server

    Priester, Louisette

    2013-01-01

    Grain boundaries are a main feature of crystalline materials. They play a key role in determining the properties of materials, especially when grain size decreases and even more so with the current improvements of  processing tools and methods that allow us to control various elements in a polycrystal. This book presents the theoretical basis of the study of  grain boundaries and aims to open up new lines of research in this area. The treatment is light on mathematical approaches while emphasizing practical examples; the issues they raise are discussed with reference to theories. The general approach of the book has two main goals: to lead the reader from the concept of ‘ideal’ to ‘real’ grain boundaries; to depart from established knowledge and address the opportunities emerging through "grain boundary engineering",  the control of morphological and crystallographic features that affect material properties. The book is divided in three parts:  I ‘From interganular order to disorder’ deals wit...

  6. Photoemission from glass dust grains: First measurements

    Science.gov (United States)

    Nouzak, Libor; Pechal, Radim; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2014-05-01

    Dust grains are present in the interstellar space and also on surfaces of space objects like the Moon. The grains are charged by photoemission caused by solar UV radiation and by charged particles from the ambient plasma (solar wind, planetary magnetospheres). A balance of different charging processes on both sunlit and night sides of the Moon causes interesting phenomena as dust horizon glow, dust fountains, and dust levitation. To contribute to a better understanding of these processes, we present laboratory investigations that use a single SiO2 grain of micron size (an archetype of the lunar dust) caught in the electrodynamic trap. We irradiate it by HeI (21.2 eV) photons and electrons and discuss a contribution of these two processes to the grain charge. The grain specific charge is evaluated by an analysis of its motion and position in the trap. We compare equilibrium charge-to-mass ratios given by the electron emissions induced by electrons and by the UV photons from the HeI lamp. First measurements indicate that the resulting charge is about twice larger for photoemission than that caused by an electron impact.

  7. Interstellar grain chemistry and organic molecules

    Science.gov (United States)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  8. Radiation disinfestation of grains and cocoa beans

    International Nuclear Information System (INIS)

    A series of experiments has been performed by Ghanaian scientists from 1977 to 1987 to evaluate the seriousness of infestation and to establish effective doses for radiation disinfestation against insects and fungi which cause deterioration in grains and cocoa beans. Supporting investigations have been done on the effect of radiation disinfestation on some quality parameters and wholesomeness of grains (with maize as the test grain) and cocoa beans. A minimum dose of 0.8 kGy was established for effective control of insects present in stored grains and cocoa beans. For the decontamination against fungi and yeasts, a combination of moist heat (85% RH) applied to 60 deg. C for 30 min followed by a dose of 4 kGy was effective for maize and moist heat (85% RH) applied 80 deg. C and a dose of 4 kGy was recommended for cocoa beans. No significant difference was found between the organoleptic qualities of the products from maize and cocoa that had been treated with moist heat and radiation and the untreated samples. The cooling (solidifying) curves of cocoa butter prepared from untreated and treated cocoa beans were very similar. Irradiated cocoa beans were found to be wholesome. The prospects of radiation disinfestation of grains and cocoa beans have also been discussed. (author). 27 refs, 4 tabs

  9. H2 recombination on interstellar grains

    International Nuclear Information System (INIS)

    From a consideration of relevant theoretical and experimental data it is concluded that H atoms (but not H2 molecules) will be chemisorbed on interstellar graphite grains, with H2 formation proceeding efficiently for graphite grain temperatures less than 70 K. It is argued that graphite grains will act as the principle sites for H2 formation, with a formation rate of Rapprox. =4 x 10/sup -17/ cm3 s/sup -1/. Heating by H2 molecules formed by surface recombination is analyzed in the context of the available experimental data, and a heating rate is derived and compared with other suggested cloud heating mechanisms. We conclude that H2 recombination will provide the largest heat source in diffuse clouds if the albedo of interstellar dust in the 912--1200 A region is high (approx.0.9), whereas if the albedo in this wavelength region is lower (approx.0.5), photoelectron ejection from grains will tend to predominate, and can explain observed cloud temperatures with a carbon depletion factor of approximately 2, a factor attributable to a normal interstellar abundance of graphite grains

  10. Empirical insights into multi-grain averaging effects from ‘pseudo’ single-grain OSL measurements

    International Nuclear Information System (INIS)

    In this study we assess the signatures of multi-grain averaging effects for a series of sedimentary samples taken from the archaeological site of Hotel California, Atapuerca, Spain. We focus on the special case of equivalent dose (De) measurements made on single-grain discs that contain more than one quartz grain in each of the individual grain-hole positions with the aims of (i) providing insight into the nature and extent of averaging effects in very small multi-grain aliquots of sedimentary quartz, and (ii) assessing the suitability of ‘pseudo’ single-grain De measurements for this particular dating application. Pseudo single-grain OSL measurements made on standard discs loaded with 90–100 μm grains (equivalent to ∼30 grains per hole) yield significantly different De distribution characteristics and finite mixture model (FMM) burial dose estimates compared with single-grain OSL measurements. Grains with aberrant luminescence behaviours, which are routinely rejected during single-grain analysis, exert strong averaging effects on the pseudo single-grain and multi-grain aliquot De distributions. Grain-hole averaging effects arising from pseudo single-grain measurements also give rise to ‘phantom’ dose components and are apt to provide bias assessments of quartz signal characteristics and grain type classifications. Though this is a site-specific study, it serves as a cautionary note for interpretations of other pseudo single-grain OSL and De datasets – particularly those obtained from measurements of discs containing several tens of grains per hole and those derived from complex depositional environments. The use of custom single-grain discs drilled with smaller sized grain holes is recommended as a means of limiting grain-hole averaging effects when dealing with very fine (<180 μm) sediments.

  11. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.

    2014-01-01

    Roč. 22, č. 1 (2014), Art. No. 015013. ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : grain boundary segregation * abnormal grain growth * theory * modelling * solute drag Subject RIV: BJ - Thermodynamic s Impact factor: 2.167, year: 2014

  12. Grain Boundary Design and Grain Boundary Character Distribution (GBCD) in Texture Polycrystalline Materials

    OpenAIRE

    Watanabe, Tadao

    1991-01-01

    The importance of grain boundary character distribution (GBCD) to materials development by grain boundary design is briefly discussed. Particular attention has been paid to the relationship between GBOD and the nature of texture in polycrystalline materials produced by different processing methods. Several important findings on the relationship are discussed.

  13. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition

    Science.gov (United States)

    Yu, Qingkai; Jauregui, Luis A.; Wu, Wei; Colby, Robert; Tian, Jifa; Su, Zhihua; Cao, Helin; Liu, Zhihong; Pandey, Deepak; Wei, Dongguang; Chung, Ting Fung; Peng, Peng; Guisinger, Nathan P.; Stach, Eric A.; Bao, Jiming; Pei, Shin-Shem; Chen, Yong P.

    2011-06-01

    The strong interest in graphene has motivated the scalable production of high-quality graphene and graphene devices. As the large-scale graphene films synthesized so far are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient chemical vapour deposition on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene’s electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman ‘D’ peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.

  14. A unified model of grain alignment: Radiative Alignment of Interstellar Grains with magnetic inclusions

    CERN Document Server

    Hoang, Thiem

    2016-01-01

    The radiative torque (RAT) alignment of interstellar grains with ordinary paramagnetic susceptibilities has been supported by a number of earlier studies. The alignment of such grains depends on the so-called RAT parameter $q^{\\max}$ that is determined by the grain shape. For interstellar grains with a broad range of $q^{\\max}$, a significant fraction of grains is expected to get aligned with low angular momentum at the so-called low-J attractor points, which entail degrees of alignment between 20 or 30 percent, irrespectively of the strength of RATs. The latter value may not be sufficient for explaining the observed interstellar alignment in the diffuse medium. In this paper, we elaborate our model of radiative alignment for grains with enhanced magnetic susceptibility due to magnetic inclusions, such that both Magnetic torque and RAdiative Torque (MRAT) play a role in grain alignment. Such grains can get aligned with high angular momentum at the so-called high-J attractor points, which achieve a high degree...

  15. Incorporation of 15N-labelled fertilizer nitrogen into wheat grain proteins during grain development

    International Nuclear Information System (INIS)

    The aim of our experiments was to study the incorporation of 15N-labelled fertilizer nitrogen into winter wheat (Triticum aestivum L.) grain and its protein fractions during grain development. The microplot N fertilization experiments were carried out on a eutric Cambisol of medium N status in Keszthely (Hungary). (author)

  16. Overview of Studies on Grain Security in China

    OpenAIRE

    Cao, Shuhua; Ma, Weipeng; Nie, Lei

    2014-01-01

    Through overview of relevant literature and on the basis of basically grasping frontier study and development trend, this paper discussed the grain security from industrial structure, farmland protection, grain import, urbanization and industrialization, grain reserve, ecological protection, and grain security pre-warning, in the hope of providing some convenience and reference for future related researches.

  17. China’s Price System Jeopardizes its Grain Reserves

    Institute of Scientific and Technical Information of China (English)

    李宾

    2008-01-01

    2008 is a year of bumper harvest in summer grain across China. The failure of numerous state-owned grain depots to purchase grain in times of bumper harvest, however, directly threatens grain reserve security and state control over grain prices in the upcoming year. An important factor underpinning the difficulty of state grain depots to purchase grain is the unwillingness of farmers to sell grain due to the excess of the current market price over the government "protected price" aimed at preventing cheap grain from harming farmers. When grassroots grain depots find themselves in trouble, foreign capital stealthily moves in by taking advantage of this situation. To fulfill grain storage tasks and receive various state subsidies, some state-owned grain depots have no alternative but to surreptitiously raise the purchase price. By contrast, some not so courageous state-owned grain depots can only borrow money to finance the purchase of commodity grain at market prices and subsequently figure out a way to pay back such loans. Behind such distorted grain purchase behavior lies a rough and rugged history of grain price reform in China.

  18. Evaluation of an in situ Grain Moisture Sensor

    Science.gov (United States)

    Grain storage managers could improve the quality of stored grain if they could directly monitor grain moisture content in storage bins, which is a key indicator of stored grain quality and an early indicator of deterioration. However, the necessary sensors are not commercially available. A new capa...

  19. Complex Molecule Formation in Grain Mantles

    CERN Document Server

    Hall, P

    2010-01-01

    Context: Complex molecules such as ethanol and dimethyl ether have been observed in a number of hot molecular cores and hot corinos. Attempts to model the molecular formation process using gas phase only models have so far been unsuccessful. Aims : To demonstrate that grain surface processing is a viable mechanism for complex molecule formation in these environments. Methods: A variable environment parameter computer model has been constructed which includes both gas and surface chemistry. This is used to investigate a variety of cloud collapse scenarios. Results: Comparison between model results and observation shows that by combining grain surface processing with gas phase chemistry complex molecules can be produced in observed abundances in a number of core and corino scenarios. Differences in abundances are due to the initial atomic and molecular composition of the core/corino and varying collapse timescales. Conclusions: Grain surface processing, combined with variation of physical conditions, can be reg...

  20. On the electric charge of interplanetary grains

    Science.gov (United States)

    Lafon, J. P. J.

    The importance of surface effects on grain charging in the interplanetary plasma is considered. It is shown by numerical calculations that the photoemission and the thermoemission of electrons can govern the charge and reverse it at radial distances of a few solar radii. Properties relative to the calculations, such as solar wind in high speed streams, are illustrated, and the electric potential reached by the grains versus radial distance is plotted. It is found that electrical potential reaches saturation-like values at large distances from the sun, that electric photoemission weakens the negative potential at small radial distances and renders the potential positive at large distances, and that thermoemission prevents grain disruption. Further laboratory measurements and theoretical models of surface effects are necessary to continue studies.

  1. Fatigue in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben;

    1999-01-01

    Traditinally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... mechanism and a mechanism connected to damage introduce in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens and on...... made on dowel type connections that have tension perpendicular to the grain as limiting strength parameter. Is is concluded that no significant influence of duration of load is observed when the fatigue resistance of small specimens at 0.01 Hz and 0.1 Hz are compared. A weak but inconclusive time...

  2. Fatigue In Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Uhre; Hoffmeyer, Preben;

    2004-01-01

    Traditionally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... mechanism and a mechanism connected to damage introduced in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens and on...... made on dowel type connections that have tension perpendicular to the grain as limiting strength parameter. It is concluded that no significant influence of duration of load is observed w hen the fatigue resistance of small specimens at 0.01 Hz and 0.1 Hz are compared. A weak but inconclusive time...

  3. Radiative torques on interstellar grains; 1, superthermal spinup

    CERN Document Server

    Draine, B T; Weingartner, Joseph C

    1996-01-01

    Irregular dust grains are subject to radiative torques when irradiated by interstellar starlight. It is shown how these radiative torques may be calculated using the discrete dipole approximation. Calculations are carried out for one irregular grain geometry, and three different grain sizes. It is shown that radiative torques can play an important dynamical role in spinup of interstellar dust grains, resulting in rotation rates which may exceed even those expected from H_2 formation on the grain surface. Because the radiative torque on an interstellar grain is determined by the overall grain geometry rather than merely the state of the grain surface, the resulting superthermal rotation is expected to be long-lived. By itself, long-lived superthermal rotation would permit grain alignment by normal paramagnetic dissipation on the "Davis-Greenstein" timescale. However, radiative torques arising from anisotropy of the starlight background can act directly to alter the grain alignment on much shorter timescales, a...

  4. Fluctuation preserving coarse graining for biochemical systems

    CERN Document Server

    Altaner, Bernhard

    2011-01-01

    Finite stochastic Markov models play a major role for modelling biochemical pathways. Such models are a coarse-grained description of the underlying microscopic dynamics and can be considered mesoscopic. The level of coarse-graining is to a certain extend arbitrary since it depends on the resolution of accomodating measurements. Here, we present a way to simplify such stochastic descriptions, which preserves both the meso-micro and the meso-macro connection. The former is achieved by demanding locality, the latter by considering cycles on the network of states. Using single- and multicycle examples we demonstrate how our new method preserves fluctuations of observables much better than na\\"ive approaches.

  5. A Granular Model of Rolling Grain Ripples

    CERN Document Server

    Andersen, K H

    1999-01-01

    A simple model is presented for the formation of rolling grain ripples on a flat sand bed by the oscillatory flow from a surface wave. The model is related to physical parameters of the problem, and is solved for the equilibrium spacing and height of the ripples. Good agreement between the model and measurements of rolling grain ripples is demonstrated. It is found that the length of the ripples scale with the square-root of the non-dimensional shear stress on a flat bed.

  6. Mining the Change of the Quality of Stored Grain

    Institute of Scientific and Technical Information of China (English)

    SHANG Zhi-gen; LOU Wei; ZHOU Wei-min

    2006-01-01

    The quality of grain changes continually during its storage,including the change of its physical characteristics and physiological characteristics. This paper presents an approach to predict the change of the quality of stored grain with data mining technology. Logistic Regression, Decision Tree and Multilayer Perceptron are applied to predict the change of the grains' quality control index and to obtain the grains' quality change probability. The grain sampling with higher probability can be processed earlier.

  7. Grain filling parameters and yield components in wheat

    OpenAIRE

    Brdar Milka; Kobiljski Borislav; Balalić-Kraljević Marija

    2006-01-01

    Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the ...

  8. The effect of grain size, microcracking and grain boundary grooving on osteoblast attachment in hydroxyapatite

    Science.gov (United States)

    Smith, Ian Orland

    This research examined the effect of particle size, microcracking and grain-boundary grooving in hydroxyapatite (HA) ceramics on osteoblast (OB) attachment, with the overall goal of understanding the role of physical characteristics in optimized scaffolds for bone tissue engineering. Bimodally porous HA scaffolds were fabricated by foaming and sintering either micron-scale or nano-scale HA powder, yielding two sets with average grain diameters of 8.6 +/- 1.9 mum and 588 +/- 55 nm, respectively. OBs were seeded onto these scaffolds and counted at 0.5, 1, 2 and 4 hours for attachment and 1, 3 and 5 days for proliferation using a hemacytometer. Results showed that OB attachment and proliferation was not significantly affected by the change in grain size and may depend more on the bimodal porosity of the implant. However, as our attempt to reduce the error in the hemacytometer counts was not fully successful, a more accurate method of counting the OBs, such as a quantifiable dye, must be used to verify this trend. While microcracks occur as a result of thermal processing of HA, these TEA-induced cracks are not easily controlled. For our studies we used Vickers-induced microcracks to quantify the effect of microcracking on OB attachment in HA. OB attachment was not significantly affected at one hour, but increased at four hours to 61% higher than on non-microcracked control specimens. This increase indicates that microcracking does have an effect on OB attachment and should be studied further, to assess its effect on OB proliferation and differentiation. It is not surprising that microcracks have a positive effect on OB attachment, as this mimics the natural process of bone remodeling. However, they are not likely to occur in nano-grained HA as a result of processing, as its small grain size falls below the known values of critical grain size for microcracking (GCR) in HA. Grain boundary grooving in dense HA is also investigated in this dissertation. OBs were seeded

  9. The Strength-Grain Size Relationship in Ultrafine-Grained Metals

    Science.gov (United States)

    Balasubramanian, N.; Langdon, Terence G.

    2016-04-01

    Metals processed by severe plastic deformation (SPD) techniques, such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), generally have submicrometer grain sizes. Consequently, they exhibit high strength as expected on the basis of the Hall-Petch (H-P) relationship. Examples of this behavior are discussed using experimental data for Ti, Al, and Ni. These materials typically have grain sizes greater than ~50 nm where softening is not expected. An increase in strength is usually accompanied by a decrease in ductility. However, both high strength and high ductility may be achieved simultaneously by imposing high strain to obtain ultrafine-grain sizes and high fractions of high-angle grain boundaries. This facilitates grain boundary sliding, and an example is presented for a cast Al-7 pct Si alloy processed by HPT. In some materials, SPD may result in a weakening even with a very fine grain size, and this is due to microstructural changes during processing. Examples are presented for an Al-7034 alloy processed by ECAP and a Zn-22 pct Al alloy processed by HPT. In some SPD-processed materials, it is possible that grain boundary segregation and other features are present leading to higher strengths than predicted by the H-P relationship.

  10. US Feed Grains Mycotoxin Conference Report

    Science.gov (United States)

    Mycotoxins are toxic compounds produce by fungi (molds). Mycotoxins are a major problem throughout the world. Grains and foods can become infected with these fungi which produce mycotoxins and when these commodities are fed to animals or consumed by humans pose a significant threat to both animal ...

  11. Interactions between Dislocations and Grain Boundaries

    NARCIS (Netherlands)

    Soer, Wouter Anthon

    2006-01-01

    Dislocations (line defects) and grain boundaries (planar defects) are two types of lattice defects that are crucial to the deformation behavior of metals. Permanent deformation of a crystalline material is microscopically associated with the nucleation and propagation of dislocations, and extensive

  12. Magnetically modified spent grain for dye removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Horská, Kateřina; Šafaříková, Miroslava

    2011-01-01

    Roč. 53, č. 1 (2011), s. 78-80. ISSN 0733-5210 R&D Projects: GA MŠk OC09052; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520 Keywords : Spent grain * Magnetic fluid * Adsorption * Dyes Subject RIV: GM - Food Processing Impact factor: 2.073, year: 2011

  13. Against the Grain: Teaching Historical Complexity

    Science.gov (United States)

    Neumann, Dave

    2013-01-01

    Many teachers and scholars have written about the importance of inquiry in effective history instruction. At its core, inquiry involves student investigation of a significant historical problem. Experienced teachers, however, often reveal their skill in purposely teaching against the grain. Skilled teachers help students appreciate historical…

  14. Malta and the Nineteenth Century Grain Trade

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    It is often assumed that Britain's colonies followed the British doctrine of free trade in the second half of the nineteenth century. Malta, which became a British colony in 1814, did indeed become an early free trader. However, she failed to liberalize the grain trade, even when the mother country...

  15. Assessment of MARMOT Grain Growth Model

    Energy Technology Data Exchange (ETDEWEB)

    Fromm, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Schwen, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Brown, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pokharel, R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-01

    This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grain growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MAR- MOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.

  16. Induced mutants for cereal grain protein improvement

    International Nuclear Information System (INIS)

    Out of 17 papers and one summary presented, six dealing with the genetic improvement of seed protein using ionizing radiations fall within the INIS subject scope. Other topics discussed were non-radiation induced mutants used for cereal grain protein improvement

  17. Grain boundary engineering with gold nanoparticles

    International Nuclear Information System (INIS)

    We investigated high-TC grain boundary Josephson junctions with and without incorporated gold nanoparticles. Pulsed laser deposition was used for the deposition of YBa2Cu3O7−δ thin films on SrTiO3 bicrystal substrates with different grain boundary angles. During the deposition process, single-crystalline nanoparticles self-assembled from a thin gold layer which was sputtered on the substrate before the YBCO deposition. The interaction between nanoparticles and thin film growth significantly influences the quality of the YBCO films [1]. The critical current density and the critical temperature of the superconducting films can be increased in a defined manner. Furthermore, the nanoparticles influence the growth conditions in the region of the grain boundary and thus the properties of the later patterned Josephson junctions. The comparison between Josephson junctions with and without nanoparticles on the same substrate shows a reduction of the critical current IC and an increase of the normal state resistance RN for all investigated types of grain boundaries in the areas with gold nanoparticles. In some cases we even found an increase of the resulting ICRN product. We present the influence of light irradiation on the properties of the Josephson junctions.

  18. Malta and the Nineteenth Century Grain Trade

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    2009-01-01

    duties on grain in Malta were therefore not protectionist, but rather for revenue purposes, in contrast to the UK Corn Laws. Taxing an inelastic demand for foreign wheat by Maltese, who were unable to grow enough food to support themselves, was certainly an effective way of raising revenue, but probably...

  19. Developing grain boundary diagrams for multicomponent alloys

    International Nuclear Information System (INIS)

    Impurity-based, premelting-like, intergranular films (IGFs, a common type of grain boundary complexion) can form in various materials and influence sintering, creep, and microstructure development. A thermodynamic framework is presented to forecast the formation and stability of these premelting-like grain boundary complexions (a.k.a. interfacial “phases” that are thermodynamically two dimensional) in multicomponent alloys to consider the interactions of multiple alloying elements. Key thermodynamic parameters that control the interfacial segregation and disordering behaviors have been identified and systematically examined. Subsequently, ternary and quaternary grain boundary diagrams have been computed and used to forecast the sintering behaviors of W–Ni–M (M = Fe, Co, Cr, Zr, Nb and Ti) and Mo–Si–B–M (M = Ni, Co and Fe) systems. This work supports a long-range scientific goal of extending bulk computational thermodynamics and CALPHAD methods to interfaces and developing grain boundary complexion (interfacial “phase”) diagrams as extensions to bulk phase diagrams, which can be a generally useful materials science tool

  20. Large grain cavities from pure niobium ingot

    Science.gov (United States)

    Myneni, Ganapati Rao; Kneisel, Peter; Cameiro, Tadeu

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  1. Diffuse Galactic Emission from Spinning Dust Grains

    OpenAIRE

    Draine, B. T.; Lazarian, A.

    1997-01-01

    Spinning interstellar dust grains produce detectable rotational emission in the 10-100 GHz frequency range. We calculate the emission spectrum, and show that this emission can account for the ``anomalous'' Galactic background component which correlates with 100um thermal emission from dust. Implications for cosmic background studies are discussed.

  2. Ignition Delay Studies on Hypergolic Fuel Grains

    Directory of Open Access Journals (Sweden)

    S. R. Jain

    1988-07-01

    Full Text Available The ignition delays of several solid hypergolic fuel compositions, casted using various polymeric binders, or as melts, have been determined with fuming nitric acid as oxidizer. The ignition delays of various hypergolic fuel compositions increase drasticaliy on casting with binders like. carboxyl or hydroxyl termninated polybutadiene. Fuel grains cast using some newly syhthesised epoxy  resins with other ingrcdients, such as curing agent, magnesium powder and fuel, have short ignition delays of the order of 200 ms, and also good mechanical strength. Increasing the amount of binder in the composition retards the hypergolicity of the rain. Similar studies have been made on melt-cast systems using low melting hypergolic fuels for casting fuel powders. The ignition delays of the melt-cast grains, are longer than those determined taking the composition in the powder form. The effect of highly hypergolic additives, and metal powders, on the ignition delay of the cast compositions has been determined. Grains having good mechanical strength and short ignition delays have been obtained by optimising the fuel grain composition.

  3. The Long American Grain Invasion of Britain

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    and Britain. Both trade statistics and contemporary comment reveal the importance of this trade from the middle to late eighteenth century, long before the so-called grain invasion of the late nineteenth century. Using data on imports from America and a large volume of substantiating primary evidence...

  4. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initi...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  5. Women in Grains Research Project--Extract.

    Science.gov (United States)

    Berrisford, Nickie

    Research aimed at recognizing, encouraging, enhancing, and harnessing the skills and contributions of women in the Australian grains industry involved a number of women in Victoria in focus groups, telephone interviews, and questionnaire surveys. Results indicate that women perceived themselves as providing guidance, operational assistance,…

  6. Grain boundary effects in nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Nesládek, Miloš

    2008-01-01

    Roč. 205, č. 9 (2008), 2163-2168. ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond film * grain boundary * superconductivity * noise * ballistic transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.205, year: 2008

  7. [Amino acid composition of rice grain proteins].

    Science.gov (United States)

    Peruanskiĭ, Iu V; Savich, I M

    1976-01-01

    The composition of the major reserve proteins of rice grain--globulins, prolamines and glutelins--was examined in four rice varieties (Dubovsky 129, Kuban 3, Alakul, Ushtobinsky). Globulins proved to be most heterogeneous whereas glutelins appeared to be least heterogeneous. In regards to the ratio of components globulins showed high variability and glutelins displayed high stability. PMID:1005365

  8. Dynamic Abnormal Grain Growth in Refractory Metals

    Science.gov (United States)

    Noell, Philip J.; Taleff, Eric M.

    2015-11-01

    High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

  9. Molecular Hydrogen formation on grain surfaces

    International Nuclear Information System (INIS)

    We reconsider H2 formation on grain surfaces. We develop a rate equation model which takes into account the presence of both physisorbed and chemisorbed sites on the surface, including quantum mechanical tunnelling and thermal diffusion. In this study, we take into consideration the uncertainties on the characteristics of graphitic surfaces. We calculate the H2 formation efficiency with the Langmuir Hinshelwood and Eley Rideal mechanisms, and discuss the importance of these mechanisms for a wide range of grain and gas temperatures. We also develop a Monte Carlo simulation to calculate the H2 formation efficiency and compare the results to our rate equation models. Our results are the following: (1) Depending on the barrier againt chemisorption, we predict the efficiency of H2 formation for a wide range of grain and gas temperatures. (2) The Eley-Rideal mechanism has an impact on the H2 formation efficiency at high grain and gas temperatures. (3) The fact that we consider chemisorption in our model makes the rate equation and Monte Carlo approaches equivalent

  10. Molecular hydrogen formation on grain surfaces

    CERN Document Server

    Cazaux, S; Tielens, A G G M; Le Bourlot, J; Walmsley, M C

    2005-01-01

    We reconsider H2 formation on grain surfaces. We develop a rate equation model which takes into account the presence of both physisorbed and chemisorbed sites on the surface, including quantum mechanical tunnelling and thermal diffusion. In this study, we took into consideration the uncertainties on the characteristics of graphitic surfaces. We calculate the H2 formation efficiency with the Langmuir Hinshelwood and Eley Rideal mechanisms, and discuss the importance of these mechanisms for a wide range of grain and gas temperatures. We also develop a Monte Carlo simulation to calculate the H2 formation efficiency and compare the results to our rate equation models. Our results are the following: (1) Depending on the barrier against chemisorption, we predict the efficiency of H2 formation for a wide range of grain and gas temperatures. (2) The Eley-Rideal mechanism has an impact on the H2 formation efficiency at high grain and gas temperatures. (3) The fact that we consider chemisorption in our model makes the ...

  11. IMPACT OF OZONE ON GRAIN SORGHUM YIELD

    Science.gov (United States)

    Grain sorghum(sorghum vulgare Pers.) is an important animal feed crop, and it is sometimes planted as a substitute for field corn. Although sorghum is grown in areas of the central and southern U.S. where potentially damaging concentrations of 03 exist, no data are available rega...

  12. Whole Grain Intake Reduces Pancreatic Cancer Risk

    Science.gov (United States)

    Lei, Qiucheng; Zheng, Huazhen; Bi, Jingcheng; Wang, Xinying; Jiang, Tingting; Gao, Xuejin; Tian, Feng; Xu, Min; Wu, Chao; Zhang, Li; Li, Ning; Li, Jieshou

    2016-01-01

    Abstract Mounting evidence from epidemiology studies suggests that whole grain intake may reduce pancreatic cancer risk, but convincing evidence is scarce. We conducted a meta-analysis to assess the association between whole grain intake and pancreatic cancer risk. Relevant observational studies were identified by searching PubMed, Embase, Scopus, and Cochrane library databases for the period from January 1980 to July 2015, with no restrictions. We calculated the summary odds ratios (ORs) for pancreatic cancer using random-effects model meta-analysis. Between-study heterogeneity was analyzed using the I2 statistic. A total of 8 studies regarding whole grain intake were included in the meta-analysis. The pooled OR of pancreatic cancer for those with high versus low whole grain intake was 0.76 (95% confidence interval [CI], 0.64–0.91; P = 0.002). There was no significant heterogeneity across these studies (I2 = 11.7%; Pheterogeneity = 0.339). In the subgroup analysis by geographic area, the summary ORs of developing pancreatic cancer were 0.64 (95% CI, 0.53–0.79; P < 0.001; I2 = 0%; Pheterogeneity = 0.482) in the United States (n = 4) and 0.95 (95% CI, 0.63–1.43; P = 0.803; I2 = 45.6%; Pheterogeneity = 0.175) in Europe (n = 2). In the subgroup analysis by type of whole grain, the summary ORs were 0.72 (95% CI, 0.60–0.87; P = .001; I2 = 0; Pheterogeneity = 0.876) for grains (n = 4) and 0.74 (95% CI, 0.27–2.02; P = 0.554; I2 = 86.3%; Pheterogeneity = 0.007) for wheat (n = 2). A high intake of whole grains was associated with a reduced risk of pancreatic cancer. Because of the absent of more cohort studies, further prospective studies need to be conducted to ensure conclusions that are more robust. PMID:26945361

  13. Grain growth by Ordered Coalescence of crystallites in Ceramics : Grain Growth Mechanisms, Microstructure Evolution and Sintering

    OpenAIRE

    Hu, Jianfeng

    2013-01-01

    Grain growth and densification process play the two most crucial roles on the microstructure evolution and the achieved performances during sintering of ceramics. In this thesis, the grain growth of SrTiO3, BaTiO3-SrTiO3 solid solutions and Si3N4 ceramics during spark plasma sintering (SPS) were investigated by electron microscopy. SrTiO3 ceramics starting from nanopowders were fabricated by SPS. A novel grain growth mechanism was discovered and named as ordered coalescence (OC) of nanocrysta...

  14. Deformation bands in ⟨120⟩ grains in coarse-grained aluminium

    DEFF Research Database (Denmark)

    Bilde-Sørensen, Jørgen

    1986-01-01

    Coarse-grained aluminium, deformed in tension to a strain of 0.05, was examined in a scanning electron microscope by channelling contrast. Pronounced bands with a width typically of the order of 200 μm were found in some grains with an orientation close to [120]. When observed on surfaces close to...... [001], the boundaries between the bands were parallel to [010] and the neighbouring bands were rotated around [100] with respect to one another. Two slip systems in a critical relationship are equally stressed with a Schmid factor of 0.49 in grains with a [120] orientation, namely (a/2)[011](111) and...

  15. Impact of Industrialization on Grain Consumption and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This paper analyzes the impact of industrialization on grain consumption from growth of residents’ income and change of diet structure,expansion of size of population,and development of new biomass energy industry.The economic growth in the course of industrialization promotes growth of residents’ income,changes residents’ diet structure;industrialization leads to rural urbanization and rise of urban residents;industrial development brings about grain demand of biomass energy.All of these greatly increase demand of grain consumption.On the basis of these situations,it presents following countermeasures to guarantee grain consumption demand in the course of industrialization:heighten awareness to fully realize the significance of rapid development of industrialization to grain security;control population growth and improve grain conversion ratio;strengthen grain-saving construction and advocate moderate consumption;develop non-grain biomass energy in many channels to guarantee grain security.

  16. Analytical model for intergrain expansion and cleavage: random grain boundaries

    International Nuclear Information System (INIS)

    A description of rigid-body grain boundary relaxation and cleavage in tungsten is performed using a pair-wise Morse interatomic potential in real and reciprocal spaces. Cleavage energies and grain boundary dilatation of random grain boundaries were formulated and computed using atomic layer interaction energies. These values were determined using a model for a relaxed random grain boundary that consists of rigid grains on either side of the boundary plane that are allowed to float to reach the equilibrium position. Expressions are given that describe in real space the energy of interatomic interaction on random grain boundaries with twist orientation. It was shown that grain-boundary expansion and cleavage energies of the most widespread random grain boundaries are mainly determined by grain boundary atomic density

  17. Deformation inhomogeneity in large-grained AA5754 sheets

    International Nuclear Information System (INIS)

    Research highlights: → Microstructure and strain relationship at individual grain level was studied. → 'Hot spots' nucleate early and most keep growing throughout deformation stages. → 'Hot spots' are correlated with 'soft' grains and soft-evolution grains. → Grains with high Schmid factors tend to be 'soft' grains. → Grains with the direction close to tensile axis tend to become softer. - Abstract: Models for deformation and strain localization in polycrystals that incorporate microstructural features including particles are computationally intensive due to the large variation in scale in going from particles to grains to a specimen. As a result such models are generally 2-D in nature. This is an issue for experimental validation. We have therefore studied deformation heterogeneities and strain localization behavior of coarse-grained alloys with only two grains across the sample thickness, therefore mimicking 2-D behavior. Aluminum alloy sheets (AA5754) have been investigated by a number of surface techniques, including digital image correlation, slip trace analysis and electron backscattered diffraction, at the individual grain level. Local strain concentration zones appear from the very beginning of deformation, which then maintain sustained growth and lead, in one of these regions, to localization and final fracture. These 'hot spots' occur in areas with locally soft grains (i.e. grains with or close to the tensile direction) and soft-evolution orientations (i.e. grains with close to the tensile direction). These grains can be correlated with Taylor and/or Schmid factors.

  18. Phase-field modeling for 3D grain growth based on a grain boundary energy database

    International Nuclear Information System (INIS)

    A 3D phase-field model for grain growth combined with a grain boundary (GB) energy database is proposed. The phase-field model is applied to a grain growth simulation of polycrystalline bcc Fe to investigate the effect of anisotropic GB energy on the microstructural evolution and its kinetics. It is found that the anisotropy in the GB energy results in different microstructures and slower kinetics, especially when the portion of low-angle, low-energy GBs is large. We discuss the applicability of the proposed phase-field simulation technique, based on the GB or interfacial energy database to simulations for microstructural evolution, including abnormal grain growth, phase transformations, etc., in a wider range of polycrystalline materials. (paper)

  19. Analysis of Theoretical Basis of Direct Subsidies for Grain Production

    Institute of Scientific and Technical Information of China (English)

    Shengping; SHI; Xiaorong; LUO; Hongjing; LI

    2014-01-01

    Financial distribution to compensate grain production reflects governmental macro-control on grain production and supply. With the reference of agricultural basic theory,agricultural multi-function theory,economic externality theory,public finance and other theories,this article points out that direct subsidies for grain production is reasonable and necessary with six main theoretical basis,namely fundamentality,multi-function,positive externality of grain production,particularity of grain supply and demand,grain safety being closely linked with national security and basic function of service-oriented government.

  20. Effect of grain boundary sliding on the toughness of ultrafine grain structure steel: A molecular dynamics simulation study

    Institute of Scientific and Technical Information of China (English)

    Xie Hong-Xian; Liu Bo; Yin Fu-Xing; Yu Tao

    2013-01-01

    Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel.The simulation results suggest that the sliding of the {001}/{ 11 0} type and { 110}/{ 111 } type grain boundary can improve the impact toughness.Then,the mechanism of grain boundary sliding is studied and it is found that the motion of dislocations along the grain boundary is the underlying cause of the grain boundary sliding.Finally,the sliding of the grain boundary is analyzed from the standpoint of the energy.We conclude that the measures which can increase the quantity of the {001}/{110} type and {110}/{111} type grain boundary and elongate the free gliding distance of dislocations along these grain boundaries will improve the low-temperature impact toughness of the ultrafine grain structure steel.

  1. ESTIMATING THE INTENSITY OF GERM-GRAIN MODELS WITH OVERLAPPING GRAINS

    Directory of Open Access Journals (Sweden)

    Hamid Ghorbani

    2011-05-01

    Full Text Available Formulas are derived for the spherical contact distribution of a planar germ-grain model Z with circular grains where the germs formeither a 'segment cluster' process or a 'line-based' Poisson point process. They are used in order to estimate the intensityl of the germprocess by means of the spherical contact distribution function. As an application the number of dislocations on a silicon wafer is estimated.

  2. The effect of grain source and grain processing on performance of feedlot cattle: a review.

    Science.gov (United States)

    Owens, F N; Secrist, D S; Hill, W J; Gill, D R

    1997-03-01

    Effects of grain species and grain processing method on DMI, rate and efficiency of gain, and feeding value for cattle fed high concentrate diets were appraised by statistically compiling results from 605 comparisons from feeding trials published in North American journals and experiment station bulletins since 1974. Metabolizable energy (ME) values for each grain and processing method were calculated by quadratic procedures from DMI and animal performance. Averaged across processing methods, ME values for corn, milo, and wheat grain (3.40, 3.22, and 3.46 Mcal/kg DM) fell within 9% of ME estimates from NRC (1996) for beef cattle. In contrast, ME values for barley and oats grain (3.55 and 3.46 Mcal/kg DM) were 24% and 17% greater than NRC (1996) estimates. Compared with the dry rolled forms, high moisture corn and milo resulted in lower ADG and DMI. Compared with dry rolling, either steam rolling or flaking of corn, milo, and wheat decreased DMI without decreasing ADG and improved feed efficiency by 10, 15, and 10%, respectively. Compared with dry rolled grain, steam flaking increased (P barley and oats. Higher moisture content of high-moisture corn decreased dry matter intake without depressing ADG and improved efficiency and increased ME of the grain. Compared with steam flakes of moderate thinness, processing milo or barley to a very thin flake tended to reduce ADG and failed to improve feed efficiency. The ideal roughage source and roughage moisture content for maximum ME and ADG varied with grain processing method. Feeding corn silage rather than alfalfa and wet rather than dry roughage depressed (P flaked corn or wheat. PMID:9078507

  3. The effects of grain size and grain boundary characteristics on the thermal conductivity of nanocrystalline diamond

    Science.gov (United States)

    Spiteri, David; Anaya, Julian; Kuball, Martin

    2016-02-01

    Molecular dynamics simulation was used to study the effects of each grain dimension and of grain boundary characteristics on the inter-grain thermal boundary resistance (TBR) and intragrain thermal conductivity of nanocrystalline diamond. The effect of the grain boundaries perpendicular to the heat flow was studied using a multiple slab configuration, which greatly reduced the artifacts associated with the heat source/sink. The TBR between the slabs was found to be more sensitive to the atomic arrangement at the boundary than to the tilt angle between the slabs. When the atomic arrangement at the interface was altered from the minimum energy configuration, the TBR increased by a factor of three, suggesting that a sub-optimal interface quality between the grains could play a large role in reducing the thermal conductivity of nanocrystalline diamond. The thermal conductivity between the boundaries was found to be similar to the bulk value, even when the boundaries were only 25 nm apart. The effect of grain boundaries parallel to the heat flow was found to have a large dependence on the microstructural details. Parallel boundaries which were 2 nm apart reduced the thermal conductivity of defect-free diamond by between one third and a factor of ten.

  4. Flag leaf senescence in high grain protein wheat genotypes

    International Nuclear Information System (INIS)

    Bread wheat genotypes with higher grain protein (15 to 17%) were compared with the normal grain protein (13 to 14%), high yielding cultivar Kalyan Sona for grain yield, rate of flag leaf senescence and nitrogen loss from the flag leaf during the grain filling period. High grain protein genotypes showed higher rates of flag leaf senescence and nitrogen loss. Although the potential grain number per square metre was not significantly different, a lower grain yield of high grain protein genotypes was due to poor realization of the potential grain number. The rate of flag leaf senescence and the rate of nitrogen loss from the flag leaf were positively correlated with each other and with grain protein percentage. They showed a significant negative correlation with grain yield. It is hypothesized that the increased nitrogen demand of developing seeds with genetic potential for higher grain protein induces early mobilization and breakdown of foliage proteins, thereby reducing the photosynthetic capacity. Reduced assimilate supply, in turn, causes lower realization of the potential grain number, which ultimately contributes to a lower yield. (author)

  5. Economic efficiency of the maize grain

    Directory of Open Access Journals (Sweden)

    Ana Mariana Dincu

    2014-11-01

    Full Text Available In this work, was calculated and the level of profitability for several levels of production for grain maize cultivation. We chose corn because it is one of the most important forage crops, we could say even the largest, occupying third place among cultivated plants worldwide. Along with wheat and barley, the food is the biggest part of the population in the world, directly or converted to animal products. Maize can be used in animal feed in various forms. The most used is corn grain, which is characterized by a very high nutritional value, this product is properly regarded as a feed concentrate. Culture of maize have been designed two levels of production: 4000 kg / ha and 6000 kg / ha.

  6. Coarse-grained Modeling of DNA Curvature

    CERN Document Server

    Freeman, Gordon S; Lequieu, Joshua P; Whitmer, Jonathan K; de Pablo, Juan J

    2014-01-01

    Modeling of DNA-protein interactions is a complex process involving many important time and length scales. This can be facilitated through the use of coarse-grained models which reduce the number of degrees of freedom and allow efficient exploration of binding configurations. It is known that the local structure of DNA can significantly affect its protein-binding properties (i.e. intrinsic curvature in DNA-histone complexes). In a step towards comprehensive DNA-protein modeling, we expand the 3SPN.2 coarse-grained model to include intrinsic shape, and validate the refined model against experimental data including melting temperature, local flexibility, persistence length, and minor groove width profile.

  7. Breakdown of Superconductivity in Small Metallic Grains

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Qian; ZHENG Ren-Rong

    2000-01-01

    Superconductivity in small metallic grains is carefully checked as their size is decreased to a few nm when the average level spacing d could be compared with the bulk gap Δ. Using random matrix theory to the mean field, we find that the average theoretical values of the critical level spacing for both odd and even numbers of electrons and the transition temperature Tc in three Gauss ensembles are quite different for those from the model of uniformly spaced levels. For Sz = 1/2, as grain size is reduced, the transition temperature or the granular gap decreases monotonously, and the relation 2△(0)/kB Tc ≤ 3.53 always exists.

  8. Combining ability of white grain popcorn populations

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Scapim

    2006-01-01

    Full Text Available The objectives of this study were to indicate the best improvement strategy and select parents to begin animprovement program of white grain popcorn based on the combining ability and heterosis of eight populations selected inexperiments in the northwestern region of Paraná. The traits plant and ear height, grain yield and popping expansion wereevaluated. The base populations, the F1 and five controls were evaluated in Maringá, state of Paraná, over the course of twoyears. Heterosis for popping expansion was very low and the best improvement strategy is to raise the values of poppingexpansion up to commercial levels through intrapopulation improvement of the populations BRS Angela and SC 002. Intenseselection must be applied to reduce plant and ear height; interpopulation selection must not be initiated at this moment.

  9. STUDY ON GRAIN MARKET IN THE WORLD

    Directory of Open Access Journals (Sweden)

    Elena COFAS

    2013-01-01

    Full Text Available In the global economy, the market occupies a representative place because the grain is grown on a large area and it is important both to ensure food security and safety, but also for animal feed. In order to accomplish this study we have used certain indicators, of which the most representative are: acreage, production obtained, yield per hectare, food consumption, imports, exports and last but not least the price. World market of cereals has increased in the past decade due to increased consumption of cereals, especially in less developed countries economically. World grain market evolution in the analyzed period was disrupted on one side by the global economic crisis and on the other side by bad weather changes that occur on a global scale and have had a negative impact on acreage, production achieved, prices etc. According to forecasts the global market for cereals is expected to increase trade with cerereale, while diminishing stocks.

  10. Microwave Emission from Galactic Dust Grains

    CERN Document Server

    Draine, B T

    1999-01-01

    Observations of the cosmic microwave background have revealed a component of 10-60 GHz emission from the Galaxy which correlates with 100-140um emission from interstellar dust but has an intensity much greater than expected for the low-frequency tail of the "electric dipole vibrational" emission peaking at dust-correlated free-free emission. The anomalous emission could be due in part to magnetic dipole emission from thermal fluctuations of the magnetization within interstellar dust grains, but only if a substantial fraction of the Fe in interstellar dust resides in magnetic materials such as metallic iron or magnetite. The observed anomalous emission is probably due primarily to electric dipole radiation from spinning ultrasmall interstellar dust grains. This rotational emission is expected to be partially polarized. From the standpoint of minimizing confusion with non-CBR foregrounds, 60-120 GHz appears to be the optimal frequency window.

  11. Silver grain boundary diffusion in Pd

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Z., E-mail: bz0015@delfin.unideb.hu [Department of Solid State Physics, University of Debrecen, P.O. Box 2, H-4010 Debrecen (Hungary); Erdelyi, Z.; Beke, D.L. [Department of Solid State Physics, University of Debrecen, P.O. Box 2, H-4010 Debrecen (Hungary); Portavoce, A.; Girardeaux, C.; Bernardini, J.; Rolland, A. [Aix-Marseille Universite, IM2NP, Faculte des Sciences et Techniques, Campus de Saint-Jerome, Avenue Escadrille Normandie Niemen - Case 142, F-13397 Marseille Cedex (France); CNRS, IM2NP (UMR 6242), Faculte des Sciences et Techniques, Campus de Saint-Jerome, Avenue Escadrille Normandie Niemen - Case 142, F-13397 Marseille Cedex (France)

    2009-02-15

    Two to ten nanometer thick polycrystalline Pd films were prepared on the (1 1 1) surface of Ag single crystal and investigations of the Ag diffusion along Pd grain boundaries were carried out using the Hwang-Balluffi method. The samples were monitored by Auger electron spectroscopy (AES) during isothermal heat treatments in the 438-563 K temperature range. Using plausible simplifying assumptions, the activation energy of the product of the grain boundary (GB) diffusion coefficient and k' (k' = c{sub s}/c{sub gb}; c{sub s} and c{sub gb} are the surface and GB concentration, respectively) was calculated (0.99 {+-} 0.08 eV) from the evaluated saturation coefficients of the surface accumulation. This energy, for weak temperature dependence of k', is approximately equal to the activation energy of the GB diffusion.

  12. Feed grain improvement through biopreservation and bioprocessing

    OpenAIRE

    Olstorpe, Matilda

    2008-01-01

    Fermentation is an environmentally friendly method to improve feed quality. Fermented liquid feed and airtight stored moist crimped cereal grain systems that are of increasing importance in agricultural practice were studied. Both rely on spontaneous microbial developments with poorly understood population dynamics, resulting in unpredictable final quality. Temperature, fermentation time and ingredients affected final properties of the feed. Molecular-based species identification showed that ...

  13. Genetic engineering for high methionine grain legumes.

    Science.gov (United States)

    Müntz, K; Christov, V; Saalbach, G; Saalbach, I; Waddell, D; Pickardt, T; Schieder, O; Wüstenhagen, T

    1998-08-01

    Methionine (Met) is the primary limiting essential amino acid in grain legumes. The imbalance in amino acid composition restricts their biological value (BV) to 55 to 75% of that of animal protein. So far improvement of the BV could not be achieved by conventional breeding. Therefore, genetic engineering was employed by several laboratories to resolve the problem. Three strategies have been followed. A) Engineering for increased free Met levels; B) engineering of endogenous storage proteins with increased numbers of Met residues; C) transfer of foreign genes encoding Met-rich proteins, e.g. the Brazil nut 2S albumin (BNA) and its homologue from sunflower, into grain legumes. The latter strategy turned out to be most promising. In all cases the gene was put under the control of a developmentally regulated seed specific promoter and transferred into grain legumes using the bacterial Agrobacterium tumefaciens-system. Integration into and copy numbers in the plant genome as well as Mendelian inheritance and gene dosage effects were verified. After correct precursor processing the mature 2S albumin was intracellularly deposited in protein bodies which are part of the vacuolar compartment. The foreign protein amounted to 5 to 10% of the total seed protein in the best transgenic lines of narbon bean (Vicia narbonensis L., used in the authors' laboratories), lupins (Lupinus angustifolius L., used in CSIRO, Australia), and soybean (Glycine max (L.) Merr., used by Pioneer Hi-Bred, Inc., USA). In the narbon bean the increase of Met was directly related to the amount of 2S albumin in the transgenic seeds, but in soybean it remained below the theoretically expected value. Nevertheless, trangenic soybean reached 100%, whereas narbon bean and lupins reached approximately 80% of the FAO-standard for nutritionally balanced food proteins. These results document that the Met problem of grain legumes can be resolved by genetic engineering. PMID:9739551

  14. Nutritive quality of Finnish grown grain legumes

    OpenAIRE

    Lizarazo, Clara; Santanen, Arja; Stoddard, Fred

    2010-01-01

    Grain legumes have excellent nutritional quality that makes them a staple ingredient for feeding ruminants, pigs and poultry. Legumes are known for their high protein content, and although they are low in the sulphur-containing amino acids and tryptophan, they have a high content of lysine; thus they are an ideal supplement to cereal-based diets and food products (Duranti & Cius 1997). Legumes have many beneficial effects in human diet. There is potential and sufficient far...

  15. Ochratoxin A in several grains in Iran.

    Science.gov (United States)

    Beheshti, Hamed Reza; Asadi, Mohammad

    2013-01-01

    Ochratoxin A content in 100 grain and derived products were determined by high-performance liquid chromatography with immunoaffinity column clean-up and fluorometric detection. Ochratoxin A was detected in 32% of green gram, 13.3% of chickpea, 10% of lentil and 17.5% of wheat flour. Ochratoxin contamination was below the regulatory limits of the European Union and of Iran. Recovery was 97% and the limit of detection was 0.12 ng g⁻¹. PMID:24779905

  16. Measuring Crack Length in Coarse Grain Ceramics

    Science.gov (United States)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  17. Insect pests of stored grain products

    International Nuclear Information System (INIS)

    The presence of insects in stored products is a worldwide recognized problem. In this report chemical and physical methods to control insect infestations in stored products are discussed. Special attention is given to the use of ionizing radiation to control insect pests in stored grains. The radiosensitivity of the most common insect pests at their different developmental stages is presented and discussed. The conclusions of this review are compiled in an executive summary. 62 refs

  18. Coarse-graining polymers as soft colloids

    OpenAIRE

    Louis, A. A.; Bolhuis, P. G.; Finken, R.; Krakoviack, V.; Meijer, E. J.; Hansen, J. P.

    2001-01-01

    We show how to coarse grain polymers in a good solvent as single particles, interacting with density-independent or density-dependent interactions. These interactions can be between the centres of mass, the mid-points or end-points of the polymers. We also show how to extend these methods to polymers in poor solvents and mixtures of polymers. Treating polymers as soft colloids can greatly speed up the simulation of complex many-polymer systems, including polymer-colloid mixtures.

  19. Prebiotic molecules and interstellar grain clumps

    International Nuclear Information System (INIS)

    It is stated that interstellar molecules detected by radioastronomical techniques in galactic clouds cover a wide range of types and complexities. Amongst the heaviest recently discovered is cyanodiacetylene. There have also been earlier detections of precursors to the simplest amino-acid, glycine and probably detections of polyoxymethylene polymers and co-polymers. A possible identification of organic molecules of even greater complexity is here discussed, together with implications for the commencement of biological activity. The large departures from thermodynamic equilibrium in the interstellar medium and the co-existence of solid grains, molecules, radicals, ions, and uv photons provide conditions that are ideal for production of 'exotic' molecular species. The effect of clumping of dust grains is discussed. The possible spectral identification of highly complex organic species in the interstellar medium is also discussed and reference is made to a property common to a wide class of such molecules, that is, an absorption band centered at 2,200 A. It is tempting to identify this feature with the well-known 2,200 A band of the interstellar extinction curve. It is thought that it may be tentatively concluded that the data so far obtained could be interpreted as independent new chemical evidence of the existence of composite grain clumps in the interstellar medium and in carbonaceous chondrites, and that these grain clumps probably include a significant mass fraction of highly complex organic pre-biotic molecules that could have led to the start and dispersal of biological activity on the Earth and elsewhere in the Galaxy. Processes of natural selection probably also played an important part, particularly in the production of self-replicable peptide chains. The problem of protection of pre-biotic material against external disruptive agencies, such as u/v light, is also discussed. (U.K.)

  20. Soaring Grain Prices Raise Global Concerns

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ rain prices often dominate all other product prices, and an increase in their price is usually considered as a prelude to inflation. The three fairly serious inflations, in 1985, 1988-1989, and 1993-1995respectively, were all preceded by grain price hikes. Furthermore, the money supply surged in the preceding year or during the same year in which these inflations occurred. This year has witnessed the same symptoms.

  1. Coarse grained description of the protein folding

    OpenAIRE

    Cieplak, Marek; Hoang, Trinh Xuan

    1998-01-01

    We consider two- and three-dimensional lattice models of proteins which were characterized previously. We coarse grain their folding dynamics by reducing it to transitions between effective states. We consider two methods of selection of the effective states. The first method is based on the steepest descent mapping of states to underlying local energy minima and the other involves an additional projection to maximally compact conformations. Both methods generate connectivity patterns that al...

  2. Grain size estimation in anisotropic materials

    Czech Academy of Sciences Publication Activity Database

    Ponížil, P.; Procházka, J.; Čermák, R.; Saxl, Ivan

    Neum : TMT , 2004, s. 223-226. [International Research/Expert Conference "Trends in the Development of Machinery and Associated Technology"/8./. Neum (BA), 15.09.2004-19.09.2004] R&D Projects: GA ČR GA201/01/1195 Institutional research plan: CEZ:AV0Z1019905 Keywords : grain size * anisotropy * planar and line sections Subject RIV: BB - Applied Statistics, Operational Research

  3. Molecular hydrogen formation on grain surfaces

    OpenAIRE

    Cazaux, S.; Caselli, P.; Tielens, A.G.G.M.; Bourlot, J. Le; Walmsley, M. C.

    2005-01-01

    We reconsider H2 formation on grain surfaces. We develop a rate equation model which takes into account the presence of both physisorbed and chemisorbed sites on the surface, including quantum mechanical tunnelling and thermal diffusion. In this study, we took into consideration the uncertainties on the characteristics of graphitic surfaces. We calculate the H2 formation efficiency with the Langmuir Hinshelwood and Eley Rideal mechanisms, and discuss the importance of these mechanisms for a w...

  4. Quantification of phytic acid in grains

    OpenAIRE

    Reason, D.A.; M. J. Watts; Devez, A.

    2015-01-01

    This report describes the validation of a cost effective method for quantifying phytic acid in grains, namely, rice and wheat, using UV/Vis spectroscopy. Background information describing phytic acid and its impact on human biological systems and hence the importance of its analysis is included in this report. The validation method involved a range of tests to determine accuracy, precision and reproducibility of the method. Multiple sample matrices were used including standards...

  5. Three-dimensional computer simulation of grain coarsening during sintering

    OpenAIRE

    Nikolic Zoran S.

    2012-01-01

    This paper presents a computational study of the three-dimensional computer simulation of grain coarsening using a sintering model based on sintering law (a rate law of inter-grain distance reduction) describing the evolution of neck geometry.

  6. Longitudinal Decline in Lung Function Measurements among Saskatchewan Grain Workers

    Directory of Open Access Journals (Sweden)

    Punam Pahwa

    2003-01-01

    Full Text Available OBJECTIVE: To evaluate the relationship between the long term effects of grain dust and decline in lung function among grain elevator workers in Saskatchewan, studied over a 15-year period.

  7. Grain size constraints on HL Tau with polarization signature

    CERN Document Server

    Kataoka, Akimasa; Momose, Munetake; Tsukagoshi, Takashi; Dullemond, Cornelis P

    2015-01-01

    We report a new interpretation of the millimeter-wave polarization of the protoplanetary disk around HL Tau with self-polarization. We successfully reproduce the observed polarization signature with self-scattered light of dust grains. The detected polarization can be explained only if dust grains have a maximum size of around 150 ${\\rm \\mu m}$. This is a strong constraint on grain size in the early stage of a circumstellar disk. The obtained grain size contradicts to previously expected grain size, which is millimeter. The inferred grain size is too small to be trapped at gas pressure bumps, and therefore it requires planet formation theory to explain the mechanism to stop the grain growth or it might suggest the dust grains are no longer spherical but highly porous.

  8. Impact Property of Ultra Fine Grain Copper

    Directory of Open Access Journals (Sweden)

    Fahad Al-Mufadi

    2014-06-01

    Full Text Available Ultrafine Grained (UFG and Nano-Structured (NS materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present study has been undertaken to develop ultrafine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20 mm, respectively had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136 from 52 HV after the final pass. Also, about 285 and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reductions in the impact energy have been attained for the samples as contrasted to annealed specimens. Furthermore, the grain size of the final pass is 800 nm for Cu sample. Finally, fracture surfaces of billets after impact test have been investigated using Scanning Electron Microscope (SEM.

  9. Multiple age components in individual molybdenite grains

    Science.gov (United States)

    Aleinikoff, John N.; Creaser, Robert A.; Lowers, Heather; Magee, Charles W.; Grauch, Richard I.

    2012-01-01

    Re–Os geochronology of fractions composed of unsized, coarse, and fine molybdenite from a pod of unusual monazite–xenotime gneiss within a granulite facies paragneiss, Hudson Highlands, NY, yielded dates of 950.5 ± 2.5, 953.8 ± 2.6, and 941.2 ± 2.6 Ma, respectively. These dates are not recorded by co-existing zircon, monazite, or xenotime. SEM–BSE imagery of thin sections and separated grains reveals that most molybdenite grains are composed of core and rim plates that are approximately perpendicular. Rim material invaded cores, forming irregular contacts, probably reflecting dissolution/reprecipitation. EPMA and LA-ICP-MS analyses show that cores and rims have different trace element concentrations (for example, cores are relatively enriched in W). On the basis of inclusions of zircon with metamorphic overgrowths, we conclude that molybdenite cores and rims formed after high-grade regional metamorphism. The discovery of cores and rims in individual molybdenite grains is analogous to multi-component U-Pb geochronometers such as zircon, monazite, and titanite; thus, molybdenite should be carefully examined before dating to ensure that the requirement of age homogeneity is fulfilled.

  10. Communication Optimizations for Fine-Grained UPCApplications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Yu; Iancu, Costin; Yelick, Katherine

    2005-07-08

    Global address space languages like UPC exhibit high performance and portability on a broad class of shared and distributed memory parallel architectures. The most scalable applications use bulk memory copies rather than individual reads and writes to the shared space, but finer-grained sharing can be useful for scenarios such as dynamic load balancing, event signaling, and distributed hash tables. In this paper we present three optimization techniques for global address space programs with fine-grained communication: redundancy elimination, use of split-phase communication, and communication coalescing. Parallel UPC programs are analyzed using static single assignment form and a data flow graph, which are extended to handle the various shared and private pointer types that are available in UPC. The optimizations also take advantage of UPC's relaxed memory consistency model, which reduces the need for cross thread analysis. We demonstrate the effectiveness of the analysis and optimizations using several benchmarks, which were chosen to reflect the kinds of fine-grained, communication-intensive phases that exist in some larger applications. The optimizations show speedups of up to 70 percent on three parallel systems, which represent three different types of cluster network technologies.

  11. Radiation Disinfestation of Grain and Seeds

    International Nuclear Information System (INIS)

    Current interest in radiation treatment of grain and seeds mainly revolves about its efficacy for control of insect infestations in these products. The recent literature on this subject is reviewed and gaps still existing in the fundamental and practical knowledge of radiation disinfestation.are pointed out. Research programmes in the United States Department of Agriculture that are under way, or planned for the immediate future, are discussed in detail. Current studies are being directed toward establishing minimum effective doses for sexual sterilization and mortality, influence of environmental factors on dose requirements, and potential for the development of biological resistance. In May 1966 the scope of the work expanded as a new grain products irradiator became operative and applied studies were initiated. An integral part of this, research is a study of the effect of irradiation on the quality of food and feed grains and on cereal products, at the doses for both insect control and fungal disinfection. This paper examines critically the results of research in this area and estimates future research, needs. (author)

  12. Therapeutic Effect of Cereal Grains: A Review.

    Science.gov (United States)

    Singhal, Poonam; Kaushik, Geetanjali

    2016-04-01

    Over the last few decades, life style changes have resulted in drastic increase in the incidence of diabetes all over the world, especially in the developing countries. Oral hypoglycemic agents and insulin form the main stay in controlling diabetes but they have prominent side effects and fail to significantly alter the course of diabetic complications. Appropriate diet and exercise programs that form a part of lifestyle modifications have proven to be greatly effective in the management of this disease. Dietary therapy is showing a bright future in the prevention and treatment of diabetes. Cereal grains which form the staple diet for humans in most of the countries are increasingly being used to treat diabetes and other associated disorders in view of their anti-diabetic and anti-lipidemic potential. Given this background, this paper reviews the possible mechanisms of lowering blood sugar and cholesterol levels possessed by various commonly consumed cereal grains. It is concluded that cereal grains are not only the potential sources of energy but also possess the therapeutic role in preventing metabolic disorders and decreasing the risk factors for cardiovascular and renal diseases. PMID:25746052

  13. ELECTROSTATICALLY SUPPORTED MIXING OF FINE GRAINED PARTICLES

    Institute of Scientific and Technical Information of China (English)

    K.-E.; Wirth; M.; Linsenbühler

    2005-01-01

    The processing of fine-grained particles with diameters between 1 and 10 microns is difficult due to strong van-der-Waals attraction forces. In order to improve the handling properties, the fine-grained particles, i.e. host-particles,are coated with various nanoparticles, i.e. guest-particles. The mixing of fine-grained powders is influenced by particle-particle interactions. If these forces are distinctively used, both interactive and ordered mixtures can be produced.These particle mixtures consist of composite-particles that have new physical properties. These modified properties d epend strongly on the coating process, the diameter- and mass-relationship of the guest- and the host-particles. The properties of the composite-particles can systematically be adjusted to the requirements of industrial applications. For example, a laboratory bubbling fluidized bed can be used to describe the conveying behavior of the functionalized host-particles. Applications for the functionalized particles are in the pharmaceutical and the powder coating industries,e.g. enhanced dry powder inhalers and thin lacquer films. The present research compares three different mixing/coating processes. The composite-particles are characterized by TEM, SEM and with their fluidization characteristics. The coating process itself is monitored by the electrostatic charge of the particles.

  14. Dust grains from the heart of supernovae

    CERN Document Server

    Bocchio, M; Schneider, R; Bianchi, S; Limongi, M; Chieffi, A

    2016-01-01

    Dust grains are classically thought to form in the winds of AGB stars. However, nowadays there is increasing evidence for dust formation in SNe. In order to establish the relative importance of these two classes of stellar sources of dust it is important to know what is the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows to follow the dynamics of dust grains in the shocked SN ejecta and to compute the time evolution of the mass, composition and size distribution of the grains. We consider four well studied SNe in the Milky Way and LMC: SN 1987a, Cas A, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Conversely, in the other three SNe, the reverse shock has already destroyed between 10 and 40% of the...

  15. Responses of ethylene and ACC in rice grains to soil moisture and their relations to grain filling

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The objectives of this study were to-investigate ethylene and 1-aminocylopropane-1-carboxylic acid (ACC) in rice grains and root bleeding sap during the grain filling period and their relationship to the grain filling rate.Two high lodging-resistant rice (Oryza sativa L.) cultivars were grown in pots or tanks.Three treatments,including well watered (WW),moderate soil-drying (MD) and severe soil-drying (SD),were conducted from 9 days of post-anthesis until maturity.The effects of chemical regulators on the concentrations of ethylene and ACC in the grains were also studied.The results show that MD significantly increased the grainfilling rate and grain weight,whereas SD significantly reduced the grain-filling rate and grain weight.Concentrations of ethylene and ACC in the grains were very high at the early grain filling stage and then sharply decreased during the linear period of grain growth.MD reduced the ACC concentrations and ethylene evolution rate,whereas SD remarkably increased the ACC concentrations and ethylene evolution rate.Both the ethylene evolution rate in rice grains and the ACC concentrations in the root-bleeding sap were significantly and positively correlated with the ACC concentrations in rice grains.The ethylene evolution rate was significantly and negatively correlated with the grain-filling rate.The application of amino-ethoxyvinylglycine (AVG),an inhibitor of ethylene synthesis,at 9-13 days of postanthesis significantly reduced the ACC concentrations and ethylene evolution rate of grains,but significantly enhanced the activities of sucrose synthase,ADP glucose pyrophosphorylase and soluble starch synthase.The results were reversed when ethephon,an ethylenereleasing agent,was applied.The results suggest that moderate soil drying during the grain-filling period in rice could inhibit the production of ethylene and ACC and therefore accelerate grain filling and increase grain weight.

  16. Grain Size Dependence of Exchange-Coupling Interaction between Magnetically Soft-Hard Grains and Effective Anisotropy

    Institute of Scientific and Technical Information of China (English)

    韩广兵; 高汝伟; 傅爽; 刘汉强; 冯维存; 陈伟

    2004-01-01

    Taking α-Fe and Nd2Fe14B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, Ds∶ Dh, were investigated. When grain size D>Lex, the grain's anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, Keff, can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of Ds∶ Dh. In order to get high effective anisotropy constant, Keff, in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.

  17. High Temperature Microplasticity of Fine-Grained Ceramics

    OpenAIRE

    Lakki, A.; Schaller, R

    1996-01-01

    Several fine-grained ceramics exhibit enhanced ductility or even structural superplasticity at high temperature. Grain boundaries play a dominant role in the deformation process of these materials which usually involves diffusion-accommodated grain boundary sliding. Sliding is either lubricated by an amorphous intergranular phase or takes place by glide and climb of grain boundary dislocations. At high temperature, anelastic deformation precedes plastic deformation and stems from the short ra...

  18. Unprecedented grain size effect on stacking fault width

    Directory of Open Access Journals (Sweden)

    A. Hunter

    2013-09-01

    Full Text Available Using an atomistic-phase field dislocation dynamics model, we isolate and investigate grain size and stress effects on the stacking fault width created by partial dislocation emission from a boundary. We show that the nucleation stress for a Shockley partial is governed by size of the boundary defect and insensitive to grain size. We reveal a grain size regime in which the maximum value the stacking fault width attains increases with grain size.

  19. PRESENT STATE AND PROBLEMS OF FORMING AN EFFECTIVE GRAIN MARKET

    OpenAIRE

    Tsvyrko, A.

    2012-01-01

    The article deals with current issues of forming a highly grain market. Statistical data reflecting the current state of the problem. Based on studies of the current state of the grain market highlighted the main target indicators defined the conditions for achieving the projected performance of the grain market and its products and recommendations for further development and growth of grain production capacity in Russia.

  20. Economic Potential for Nutritional Improvement in Feed Grains

    OpenAIRE

    Brennan, John P.; Singh, Rajinder Pal; Bialowas, Adam

    2000-01-01

    Feed grains researchers have abundant technical opportunities to select various options for improvement of nutritional characteristics of feed grains. Choosing between those opportunities is a difficult issue for research funding organisations. In this paper, efforts to address the relative economic benefits from the different options for feed grains nutritional improvement are reported. The economic benefits arising from nutritional improvements in various feed grains are examined and compar...

  1. Longitudinal Decline in Lung Function Measurements among Saskatchewan Grain Workers

    OpenAIRE

    Punam Pahwa; Ambikaipakan Senthilselvan; McDuffie, Helen H; Dosman, James A

    2003-01-01

    OBJECTIVE: To evaluate the relationship between the long term effects of grain dust and decline in lung function among grain elevator workers in Saskatchewan, studied over a 15-year period.METHODS: The Grain Dust Medical Surveillance Program was started by Labour Canada in 1978 and longitudinally studied the respiratory health of Canadian grain elevator workers over a 15-year period (1978 to 1993). Data on respiratory symptoms and pulmonary function tests (forced expiratory volume in 1 s [FEV...

  2. Model Predictive Control of the Grain Drying Process

    OpenAIRE

    Feng Han; Chuncheng Zuo; Wenfu Wu; Junxing Li; Zhe Liu

    2012-01-01

    Drying plays an important role in the postharvesting process of grain. To ensure the quality of the dried grain and improve the intelligent level in drying process, a digital simulation of corn drying machine system based on a virtual instrument was established for 5HSZ dryer, automatically control the air temperature, and predict the discharging speed of grain and so forth. Finally, an online measurement and automated control software of grain parameters were developed to provide the changes...

  3. Demand for cereal grains in Asia: the effect of urbanization

    OpenAIRE

    Huang, Jikun; David, Cristina C

    1993-01-01

    This paper analyzes the effects of urbanization on demand for cereal grains - rice, wheat, and coarse grains - in nine Asian countries. A complete demand system (Almost Ideal Demand System in linear form) is estimated in two stages based on aggregate time series data from 1960 to 1988. In the high-income countries, i.e. Japan and South Korea, urbanization was observed to significantly reduce demand for cereal grains. In the lower-income countries, demand for cereal grains either increased or ...

  4. Molecular functions of genes related to grain shape in rice

    OpenAIRE

    Zheng, Jia; Zhang, Yadong; Wang, Cailin

    2015-01-01

    Because grain shape is an important component of rice grain yield, the discovery of genes related to rice grain shape has attracted much attention of rice breeding programs. In recent years, some of these genes have been cloned and studied. They have been found not only regulate grain shape by changing the shape of the spikelet hull, but also regulate endosperm development through control of cell division using different molecular mechanisms. In this paper, we review the recent research on ge...

  5. 3D studies of coarserning kinetics of individual grains

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar

    individual grains, and compared to the observed growth of a small number of grains. A phase-field model has been developed and implemented efficiently for parallel execution on computer clusters for simulation of a third annealing phenomenon: Coupled grain growth and coarsening in polycrystalline, dual...

  6. Ammonia disinfection of corn grains intended for ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Magdalena Broda

    2009-12-01

    Full Text Available Background. Bacterial contamination is an ongoing problem for commercial bioethanol plants. It concerns factories using grain and also other raw materials for ethanol fermentation. Bacteria compete with precious yeasts for sugar substrates and micronutrients, secrete lactic and acetic acids, which are toxic for yeast and this competition leads to significant decrease of bioethanol productivity. For this study, bacterial contamination of corn grain was examined. Then the grain was treated by ammonia solution to reduce microbial pollution and after that the microbiological purity of grain was tested one more time. Disinfected and non-disinfected corn grains were ground and fermentation process was performed. Microbiological purity of this process and ethanol yield was checked out. Material and methods. The grain was disinfected by ammonia solution for two weeks. Then the grain was milled and used as a raw material for the ethanol fermentation. The fermentation process was carried out in 500-ml Erlenmeyer flasks. Samples were withdrawn for analysis at 0, 24, 48, 72 hrs. The number of total viable bacteria, lactic acid bacteria, acetic acid bacteria, anaerobic bacteria and the quantity of yeasts and moulds were signified by plate method. Results. Ammonia solution effectively reduces bacterial contamination of corn grain. Mash from grain disinfected by ammonia contains less undesirable microorganisms than mash from crude grain. Moreover, ethanol yield from disinfected grain is at the highest level. Conclusions. The ammonia solution proved to be a good disinfection agent for grain used as a raw material for bioethanol fermentation process.

  7. Challenges of interfacial classification for grain boundary engineering

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Paidar, Václav

    2005-01-01

    Roč. 21, č. 4 (2005), s. 393-398. ISSN 0267-0836 R&D Projects: GA ČR(CZ) GA106/02/0253 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain boundary classification * grain boundary engineering * grain boundary segregation * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.639, year: 2005

  8. Does whole grain consumption alter gut microbiota and satiety?

    Science.gov (United States)

    This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Both individual whole grain cereals and interventions with combined whole grain cereals were considered. Possible links between the fermentation of non-digestible c...

  9. Association of Phytate Formation with Grain Filling in Rice

    Institute of Scientific and Technical Information of China (English)

    WANG Ruo-zhong; XIAO Lang-tao; DING Jun-hui; YAN Qin-quan

    2003-01-01

    The grain-filling characteristics of six rice varieties (combinations) and the relationships between their relative biochemistry composition during phytate synthesizing and grain plumpness were studied. Regarding results for ISHR1,ISHR2, R198 and JW21, with good grain plumpness, the two-step-filling in superior spikelets and inferior spikelets was not clear, while for ISHR3 and 559, with poor grain plumpness, it was very clear. From booting stage to flowering stage, the contents of phytate and inositol in varieties with good grain plumpness was obviously higher than those in varieties with poor grain plumpness. While at grain filling stage, the content of inorganic phosphorus in varieties with poor grain plumpness was obviously higher than that in varieties with good grain plumpness. The contents of phytate and inositol from booting stage to flowering stage was highly significantly correlated with the initial filling power (RO), the mean filling rate (RM) and grain filling percentage (PGF), and the content of inorganic phosphorus at grain filling stage was negatively significantly correlated with R0, FM and PGF. Furthermore, effective approach to improving grain filling was put forward.

  10. 75 FR 53736 - Notice of National Grain Car Council Meeting

    Science.gov (United States)

    2010-09-01

    ... Surface Transportation Board Notice of National Grain Car Council Meeting AGENCY: Surface Transportation Board, DOT. ACTION: Notice of National Grain Car Council meeting. SUMMARY: Notice is hereby given of a meeting of the National Grain Car Council (NGCC), pursuant to section 10(a)(2) of the Federal...

  11. 78 FR 52606 - Notice of National Grain Car Council Meeting

    Science.gov (United States)

    2013-08-23

    ... Surface Transportation Board Notice of National Grain Car Council Meeting AGENCY: Surface Transportation Board, DOT. ACTION: Notice of National Grain Car Council meeting. SUMMARY: Notice is hereby given of a meeting of the National Grain Car Council (NGCC), pursuant to the Federal Advisory Committee Act, 5...

  12. 7 CFR 800.98 - Weighing grain in combined lots.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Weighing grain in combined lots. 800.98 Section 800.98... Provisions and Procedures § 800.98 Weighing grain in combined lots. (a) General. The weighing of bulk or sacked grain loaded aboard, or being loaded aboard, or unloaded from two or more carriers as a...

  13. Ancient Whole Grain Gluten-free Egg-free Pasta

    Science.gov (United States)

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole gains and 11 g of dietary fiber per serving. This is the only report demonstrating innovative ancient whole grain, gluten-free, egg-fre...

  14. Whole grain foods and health – a Scandinavian perspective

    Science.gov (United States)

    Frølich, Wenche; Åman, Per; Tetens, Inge

    2013-01-01

    The food-based dietary guidelines in the Scandinavian countries that recommend an intake of minimum 75 g whole grain per 10 MJ (2,388 kcal) per day are mainly derived from prospective cohort studies where quantitative but little qualitative details are available on whole grain products. The objective of the current paper is to clarify possible differences in nutritional and health effects of the types of whole grain grown and consumed in the Scandinavian countries. A further objective is to substantiate how processing may influence the nutritional value and potential health effects of different whole grains and whole grain foods. The most commonly consumed whole grain cereals in the Scandinavian countries are wheat, rye, and oats with a considerable inter-country variation in the consumption patterns and with barley constituting only a minor role. The chemical composition of these different whole grains and thus the whole grain products consumed vary considerably with regard to the content of macro- and micronutrients and bioactive components. A considerable amount of scientific substantiation shows that processing methods of the whole grains are important for the physiological and health effects of the final whole grain products. Future research should consider the specific properties of each cereal and its processing methods to further identify the uniqueness and health potentials of whole grain products. This would enable the authorities to provide more specific food-based dietary guidelines in relation to whole grain to the benefit of both the food industry and the consumer. PMID:23411562

  15. The effect of the Tom Thumb dwarfing gene on grain size and grain number of wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    The Tom Thumb dwarfing gene, Rht3, like the related genes Rht1 and Rht2 from Norin 10, has pleiotropic effects on individual ear yields, and grain protein concentrations. An experiment was conducted in which tiller number per plant and grain number per spike were restricted to ascertain whether reduced grain size and protein content are primary or secondary competitive effects in near-isogenic lines. The potential for grain growth was shown to be identical in Rht3 and rht genotypes when grain set was restricted, indicating that the primary effect of the gene is to increase spikelet fertility. Nitrogen accumulation within the grain was also affected by inter-grain competition but decreased nitrogen yields per plant indicated that reduced protein levels are, in part, a primary effect of the gene. Analysis of individual grain yields within Rht3 and rht spikes showed that the gene affected developmental 'dominance' relationships within the spike. (author)

  16. Grain by grain study of the mechanisms of crack propagation during iodine SCC of Zry-4

    International Nuclear Information System (INIS)

    This paper describes the tests conducted to determine the conditions leading to cracking of a specified grain of metal, focussing on the crystallographic orientation of crack paths, the critical stress conditions and the significance of the fractographic features encountered. In order to get orientable cracking, a technique was developed to produce iodine SCC, by means of pressurizing tubes of a specially heat treated Zry-4 having very large grains, shaped as discs of a few millimeters in diameter and grown up to the wall thickness. Careful orientation of fractured grains, performed by means of a back-reflection Laue technique with a precision better than one degree, has proved that transgranular cracking occurs only along basal planes. The effect of anisotropy, plasticity, triaxiality and residual stresses originated in thermal contraction, has to be considered to account for the influence of the stress state . A grain by grain calculation led to the conclusion that transgranular cracking always occurs on those bearing the maximum resolved tensile stress on basal planes. There are clear indications of the need of a triaxial stress state for the process to occur. Fracture modes other than pseudo-cleavage have been encountered, including intergranular separation, ductile tearing produced by prismatic slip and propagation along twin boundaries. In each case the fractographic features have been identified, and associations have been made with fractographs obtained in normal fuel cladding. (Author)

  17. H2 recombination on interstellar grains. [due to hydrogen atom chemisorption on graphite grains

    Science.gov (United States)

    Barlow, M. J.; Silk, J.

    1976-01-01

    From a consideration of relevant theoretical and experimental data it is concluded that H atoms (but not H2 molecules) will be chemisorbed on interstellar graphite grains, with H2 formation proceeding efficiently for graphite grain temperatures less than 70 K. It is argued that graphite grains will act as the principal sites for H2 formation, with a formation rate of about 4 to the minus 17th cu cm per sec. Heating by H2 molecules formed by surface recombination is analyzed in the context of the available experimental data, and a heating rate is derived and compared with other suggested cloud heating mechanisms. It is concluded that H2 recombination will provide the largest heat source in diffuse clouds if the albedo of interstellar dust in the 912-1200 A region is high (about 0.9), whereas if the albedo in this wavelength region is lower (about 0.5), photoelectron ejection from grains will tend to predominate, and can explain observed cloud temperatures with a carbon depletion factor of approximately 2, a factor attributable to a normal interstellar abundance of graphite grains.

  18. Supplying materials needed for grain growth characterizations of nano-grained UO2

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Yun, Di [Argonne National Lab. (ANL), Argonne, IL (United States); Jamison, Laura M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lian, Jie [Rensselaer Polytechnic Inst., Troy, NY (United States); Yao, Tiankei [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  19. Grain-to-Grain Compositional Variations and Phase Segregation in Copper-Zinc-Tin-Sulfide Films.

    Science.gov (United States)

    Alvarez Barragan, Alejandro; Malekpour, Hoda; Exarhos, Stephen; Balandin, Alexander A; Mangolini, Lorenzo

    2016-09-01

    We have performed a rigorous investigation of the structure and composition of individual grains in copper-zinc-tin-sulfide (CZTS) films realized by sulfurization of a sputtered metal stack. Although on average close to the ideal CZTS stoichiometry, elemental analysis shows significant grain-to-grain variations in composition. High-resolution Raman spectroscopy indicates that this is accompanied by grain-to-grain structural variations as well. The intensity from the 337 cm(-1) Raman peak, generally assigned to the kesterite phase of CZTS, remains constant over a large area of the sample. On the other hand, signals from secondary phases at 376 cm(-1) (copper-tin-sulfide) and 351 cm(-1) (zinc-sulfide) show significant variation over the same area. These results confirm the great complexity inherent to this material system. Moreover, structural and compositional variations are recognized in the literature as a factor limiting the efficiency of CZTS photovoltaic devices. This study demonstrates how a seemingly homogeneous CZTS thin film can actually have considerable structural and compositional variations at the microscale, and highlights the need for routine microscale characterization in this material system. PMID:27538122

  20. Ultrafast analysis of individual grain behavior during grain growth by parallel computing

    Science.gov (United States)

    Kühbach, M.; Barrales-Mora, L. A.; Mießen, C.; Gottstein, G.

    2015-08-01

    The possibility to characterize in an automatized way the spatial-temporal evolution of individual grains and their properties is essential to the understanding of annealing phenomena. The development of advanced experimental techniques, computational models and tools helps the acquisition of real time and real space-resolved datasets. Whereas the reconstruction of 3D grain representatives from serial-sectioning or tomography datasets becomes more common and microstructure simulations on parallel computers become ever larger and longer lasting, few efforts have materialized in the development of tools that allow the continuous tracking of properties at the grain scale. In fact, such analyses are often left neglected in practice due to the large size of the datasets that exceed the available physical memory of a computer or the shared-memory cluster. We identified the key tasks that have to be solved in order to define suitable and lean data structures and computational methods to evaluate spatio-temporal grain property datasets by working with parallel computer architectures. This is exemplified with data from grain growth simulations.

  1. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  2. A new model of grain growth kinetics in UO{sub 2} fuel pellets. Part 1: Grain growth kinetics controlled by grain face bubble migration

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S. [Russian Academy of Sciences, Nuclear Safety Institute (IBRAE), 52, B. Tulskaya, Moscow 115191 (Russian Federation)]. E-mail: vms@ibrae.ac.ru

    2005-11-15

    A new mechanism of the lenticular grain face bubble migration which controls the bubble mobility and determines the drag force exerted on the grain boundary, is developed. It is shown that besides a more complicated (so called 'lenticular') shape of grain face bubbles, the migration mechanism of these bubbles might be essentially different from the intragranular bubbles, owing to their specific location on and interaction with a grain boundary. The model is validated against tests on grain growth kinetics during steady irradiation exposure and during post-irradiation annealing of UO{sub 2} fuel samples, and allows explanation of a strong retarding effect of irradiation on the grain growth observed in these tests.

  3. Micromechanical testing of stress corrosion cracking of individual grain boundaries

    International Nuclear Information System (INIS)

    Grain boundaries of different misorientation and chemistry have differing susceptibilities to stress corrosion cracking but carrying out mechanical tests on individual grain boundaries of known character has until now been very difficult. We present a method for manufacturing specimens containing a single grain boundary (in 304 stainless steel) using focused ion beam machining. A nanoindenter/atomic force microscope was used to drive controlled grain boundary crack growth under load in an active solution. Scanning electron microscopy examination confirmed the growth of the crack along the grain boundary.

  4. High-frequency technology of grain protection from storehouse pests

    International Nuclear Information System (INIS)

    The results of experimental investigation of physical methods are presented for suppressing of biological activity of grain and grain product pests: harmful insects at each developmental stage except eggs (Insecta), mites (Arachrida, Acariformes) and microscopic fungi and bacteria. The technologies under development for disinfestation and disinfection of grain are based on irradiation of grain by high-frequency (HF) electromagnetic fields. Is shown, that at implementation of high-frequency technology in the chamber of irradiation there are premises for destruction harmful pests. It results in increase of efficiency of destruction grain pests, with complete environmental safety

  5. Twin boundary interactions with grain boundaries investigated in pure rhenium

    International Nuclear Information System (INIS)

    The mechanical behavior of pure rhenium was investigated using uniaxial compression tests, transmission electron microscopy and electron backscatter diffraction characterization. The plasticity was characterized by a large amount of twin formation and propagation, including twin transmission across grain boundaries. In-depth analysis of the interactions of {112¯1}〈1¯1¯26〉 twins with grain boundaries found that grain boundaries with misorientation angles below ∼25° allowed twin transmission, while grain boundaries with higher angles did not. Similar to dislocation interactions with grain boundaries, twin transmission was largely dictated by the minimization of the angle between the shear vectors of the incoming and outgoing twins

  6. Grain Boundary Traction Signatures: Quantitative Predictors of Dislocation Emission

    Science.gov (United States)

    Li, Ruizhi; Chew, Huck Beng

    2016-08-01

    We introduce the notion of continuum-equivalent traction fields as local quantitative descriptors of the grain boundary interface. These traction-based descriptors are capable of predicting the critical stresses to trigger dislocation emissions from ductile ⟨110 ⟩ symmetrical-tilt nickel grain boundaries. We show that Shockley partials are emitted when the grain boundary tractions, in combination with external tensile loading, generate a resolved shear stress to cause dislocation slip. The relationship between the local grain boundary tractions and the grain boundary energy is established.

  7. Strategic Analysis on Objectives of National Grain Security

    Institute of Scientific and Technical Information of China (English)

    Hong; YANG

    2015-01-01

    Price of global agricultural products rises with great fluctuation. China’s food price also increases constantly. This leads to high concern of both at home and abroad for food and grain security. On the basis of making an overall analysis on current situation of grain security and making judgment on future grain security in China,this paper analyzed objectives,strategies and policies of national grain security in the new period. Finally,it came up with strategies and policy recommendations for improving agricultural production and guaranteeing national grain security.

  8. Foreign Grain Security Mechanisms and Implications for China

    Institute of Scientific and Technical Information of China (English)

    Shuhua; CAO; Lei; NIE; Weipeng; MA

    2014-01-01

    With constant growth of China’s population and increasingly serious situation of farmland protection,the grain security has become a hot issue of China.This study firstly elaborated grain security measures in grain exporters,such as the United States,Australia,and EU,and grain importers such as Japan,South Korea and India.In line with these security measures,it analyzed implementation background of these policies.Finally,combining social and economic development situations and natural resource endowment of China,it revealed the implications of these measures for China and came up with policy recommendations for China’s grain security.

  9. NUMERICAL SIMULATION FOR DEFORMATION OF NANO-GRAINED METALS

    Institute of Scientific and Technical Information of China (English)

    杨卫; 洪伟

    2002-01-01

    Electro-deposition technique is capable of producing nano-grainedbulk copper specimens that exhibit superplastic extensibility at room temperature.Metals of such small grain sizes deform by grains sliding, with little distortion occur-ring in the grain cores. Accommodation mechanisms such as grain boundary diffusion,sliding and grain rotation control the kinetics of the process. Actual deformation min-imizes the plastic dissipation and stored strain energy for representative steps of grainneighbor switching. Numerical simulations based on these principles are discussed inthis paper.

  10. Grain size refinement of inconel 718 thermomechanical processing

    International Nuclear Information System (INIS)

    Inconel 718 is a Ni-Fe precipitation treated superalloy. It presents good thermal fatigue properties when the material has small grain size. The aim of this work is to study the grain size refinement by thermomechanical processing, through observations of the microstructural evolution and the influence of some of the process variables in the final grain size. The results have shown that this refinement occured by static recrystallization. The presence of precipitates have influenced the final grain size if the deformations are below 60%. For greater deformations the grain size is independent of the precipitate distribution in the matrix and tends to a limit size of 5 μm. (author)

  11. Multimodal grain size distribution and high hardness in fine grained tungsten fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Graphical abstract: Cross-sectional micrograph of spark plasma sintered tungsten with multimodal grain size distribution: (a) using focused ion beam (b) Bright field TEM image. Highlights: → High applied external pressure during SPS led to high density of the samples. → The consolidated samples by SPS had a multimodal size distribution. → Ultrafine grains were present within the samples sintered at low temperatures. → High Vickers hardness was obtained compared to commercial tungsten. → The consolidated samples were proved to be pure by chemical analysis. - Abstract: Preparation of fine grained, hard and ductile pure tungsten for future fusion reactor applications was tested using the bottom-up approach via powder consolidation by spark plasma sintering (SPS) at different temperature (1300-1800 deg. C) and pressure (90-266 MPa) conditions. Pure tungsten powders with an average particle size of about 1 μm were sintered to high density (about 94%) with almost no grain growth at a temperature below 1400 deg. C and an applied pressure up to 266 MPa. These samples had a multi-modal grain size distribution (resembling the size distribution of the initial powder) and a very high Vickers hardness (up to 530 kg/mm2). Above 1500 deg. C fast grain growth occurred and resulted in a drop in hardness. XRD on the surface of bulk samples showed a small amount of tungsten oxides; however, XPS and EDS indicated that these oxides were only surface contaminants and suggested a high purity for the bulk samples. The results demonstrate that SPS can lead to ultrafine and nanocrystalline tungsten if used to consolidate pure nano tungsten powders.

  12. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis.

    Science.gov (United States)

    Durruty, Ignacio; Aguirrezábal, Luis A N; Echarte, María M

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ') while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  13. Grain Growth Behavior in Sintered Nd-Fe-B Magnets

    Institute of Scientific and Technical Information of China (English)

    Liu Xianglian; Zhou Shouzeng

    2007-01-01

    The Nd2Fe14B grain growth behavior in sintered Nd-Fe-B magnets was quantitatively described. The effects of sintering temperature and time, and alloy powder size and its distribution on grain growth process were analyzed. Hence, possible grain growth mechanisms in these magnets were qualitatively discussed. The Nd2Fe14B grain growth proceeded at quite a high rate in the initial 0~1 h of sintering and from then onwards the grain growth rate decreased. A large average particle size or a wide particle size distribution of initial alloy powders was found to remarkably accelerate the grain growth process and even result in the occurrence of abnormal grain growth. On the basis of experimental results, two grain growth mechanisms were considered to operate during sintering of Nd-Fe-B magnets, that is, dissolution and re-precipitation of Nd2Fe14B particles, and Nd2Fe14B particle growth by coalescence. It was believed that Nd2Fe14B particle growth by coalescence not only produced a large average grain size and a wide grain size distribution, but also was the fundamental reason for the formation of abnormally large grains in the microstructure of sintered Nd-Fe-B magnets.

  14. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    Science.gov (United States)

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  15. Towards the limit of ferroelectric nanosized grains

    Science.gov (United States)

    Roelofs, A.; Schneller, T.; Szot, K.; Waser, R.

    2003-02-01

    Ferroelectric random access memories are non-volatile, low voltage, high read/write speed devices which have been introduced into the market in recent years and which show the clear potential of future gigabit scale universal non-volatile memories. The ultimate limit of this concept will depend on the ferroelectric limit (synonymous superparaelectric limit), i.e. the size limit below which the ferroelectricity is quenched. While there are clear indications that 2D ferroelectric oxide films may sustain their ferroelectric polarization below 4 nm in thickness (Tybell T, Ahn C H and Triscone J M 1999 Appl. Phys. Lett. 75 856), the limit will be quite different for isolated 3D nanostructures (nanograins, nanoclusters). To investigate scaling effects of ferroelectric nanograins on Si wafers, we studied PbTiO3 (PTO) and Pb(ZrxTi1-x)O3 grown by a self-assembly chemical solution deposition method. Preparing highly diluted precursor solutions we achieved single separated ferroelectric grains with grain sizes ranging from 200 nm down to less than 20 nm. For grains smaller than 20 nm, no piezoresponse was observed and we suppose this could be due to the transition from the ferroelectric to the paraelectric phase which has no spontaneous polarization. Recent calculations (Zhong W L, Wang Y G, Zhang P L and Qu B D 1994 Phys. Rev. B 50 698) and experiments (Jiang B, Peng J L, Zhong W L and Bursill L A 2000 J. Appl. Phys. 87 3462) showed that the ferroelectricity of fine ferroelectric particles decrease with decreasing particle size. From these experiments the extrapolated critical size of PTO particles was found to be around 4.2-20 nm.

  16. The adiabatic motion of charged dust grains in rotating magnetospheres

    Science.gov (United States)

    Northrop, T. G.; Hill, J. R.

    1983-01-01

    Adiabatic equations of motion are derived for the micrometer-sized dust grains detected in the Jovian and Saturn magnetospheres by the Pioneer 10 and 11 spacecraft. The adiabatic theory of charged particle motion is extended to the case of variable grain charge. Attention is focused on the innermost and outermost limits to the grain orbit evolution, with all orbits tending to become circular with time. The parameters such as the center equation of motion, the drift velocity, and the parallel equation of motion are obtained for grains in a rotating magnetosphere. Consideration is given to the effects of periodic grain charge-discharge, which are affected by the ambient plasma properties and the grain plasma velocity. The charge-discharge process at the gyrofrequency is determined to eliminate the invariance of the magnetic moment and cause the grain to exhibit radial movement. The magnetic moment increases or decreases as a function of the gyrophase of the charge variation.

  17. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Directory of Open Access Journals (Sweden)

    Rodolfo Rodríguez Baracaldo

    2011-03-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  18. Whole grain foods and health - A Scandinavian perspective

    DEFF Research Database (Denmark)

    Frølich, Wenche; Aman, Per; Tetens, Inge

    2013-01-01

    The food-based dietary guidelines in the Scandinavian countries that recommend an intake of minimum 75 g whole grain per 10 MJ (2,388 kcal) per day are mainly derived from prospective cohort studies where quantitative but little qualitative details are available on whole grain products. The...... different whole grains and whole grain foods. The most commonly consumed whole grain cereals in the Scandinavian countries are wheat, rye, and oats with a considerable inter-country variation in the consumption patterns and with barley constituting only a minor role. The chemical composition of these...... health effects of the final whole grain products. Future research should consider the specific properties of each cereal and its processing methods to further identify the uniqueness and health potentials of whole grain products. This would enable the authorities to provide more specific food...

  19. Cycloid motions of grains in unmagnetized dust plasma

    CERN Document Server

    He, Ya-feng; Zhang, Yong-liang; Liu, Fu-cheng

    2014-01-01

    Hypocycloid and epicycloid motions of irregular grain (pine pollen) are observed for the first time in unmagnetized dust plasma in 2D horizontal plane. Hypocycloid motions occur both inside and outside the glass ring which confines the grain. Epicycloid motion only appears outside the glass ring. Cuspate cycloid motions, circle motion, and stationary grain are also observed. All these motions are related with both the initial conditions of dropped grain and the discharge parameters. The Magnus force originated from the spin of the irregular grain is confirmed by comparison experiments with regular microspheres, and it plays important role on these (cuspate) cycloid motions. The observed complex motions are explained in term of force analysis and numerical simulations. Periodical change of the cyclotron radius as the grain travelling results in the (cuspate) cycloid motions. Our results show that the (cuspate) cycloid motions are distinctive features of irregular grain immersed in plasma.

  20. Slim 198gold-grain implanter loaded with standard royal marsden 14-grain magazines

    International Nuclear Information System (INIS)

    We designed a slim gold-grain implanter with adaptable lengths to implant areas accessible only through long, narrow, examining instruments, such as a suspension laryngoscope. The implanter is loaded with the same 14-grain magazine designed for and supplied with the Royal Marsden gun. The simplicity of the loading mechanism with a minimum of moving parts makes the instrument practically trouble free. Although it is designed to be used along narrow examining instruments, it can also be used in any situation in which a permanent implant is required, for instance, prostatic cancer and pelvic recurrences in cancer of the uterine cervix previously treated by external and intracavitary irradiation

  1. Coarse-grained modelling of supercoiled RNA

    Science.gov (United States)

    Matek, Christian; Šulc, Petr; Randisi, Ferdinando; Doye, Jonathan P. K.; Louis, Ard A.

    2015-12-01

    We study the behaviour of double-stranded RNA under twist and tension using oxRNA, a recently developed coarse-grained model of RNA. Introducing explicit salt-dependence into the model allows us to directly compare our results to data from recent single-molecule experiments. The model reproduces extension curves as a function of twist and stretching force, including the buckling transition and the behaviour of plectoneme structures. For negative supercoiling, we predict denaturation bubble formation in plectoneme end-loops, suggesting preferential plectoneme localisation in weak base sequences. OxRNA exhibits a positive twist-stretch coupling constant, in agreement with recent experimental observations.

  2. Fine-grained control of user attributes

    DEFF Research Database (Denmark)

    Olesen, Henning; Khajuria, Samant

    2014-01-01

    Private users, enterprises and other stakeholders have a strong need to protect their resources when interacting with each other. For the users it is a matter of protecting vital personal information and assets (privacy protection), and for enterprises the main concern is to protect their...... intellectual property and confidential data, documents, etc. In this paper we focus on the employee-enterprise interaction and discuss how recent technological progress, in particular the framework of User Managed Access (UMA), can enable fine-grained control of resources and new roles of interaction. The work...

  3. Cereal grains and coronary heart disease.

    Science.gov (United States)

    Truswell, A S

    2002-01-01

    Cereal grains and their products provide around 30% of total energy intake in British adults, (much more than any of the other major food groups). Coronary heart disease (CHD) is the largest single cause of death in Britain and many other Western countries. This review examines the question whether there is a relation between cereal consumption and CHD. Several of the nutrients in cereals have known potential for reducing risk factors for CHD: the linoleic acid, fibre, vitamin E, selenium and folate. Cereals also contain phytoestrogens of the lignan family and several phenolic acids with antioxidant properties. Processing generally reduces the content of these nutrients and bioprotective substances. Although cereals at the farm gate are very low in salt, processed cereal foods, eg bread and some breakfast cereals, are high-salt foods and thus could contribute to raising blood pressure. Human experiments have clearly shown that oat fibre tends to lower plasma total and LDL cholesterol but wheat fibre does not. Rice bran and barley may also lower cholesterol but most people do not eat enough barley to have an effect. Cereal foods with low glycaemic index such as pasta and oats are beneficial for people with diabetes and might lower plasma lipids. Between 1996 and 2001 an accumulation of five very large cohort studies in the USA, Finland and Norway have all reported that subjects consuming relatively large amounts of whole grain cereals have significantly lower rates of CHD. This confirms an earlier report from a small British cohort. The protective effect does not seem to be due to cholesterol-lowering. While cohort studies have shown this consistent protective effect of whole grain cereals, there has been (only one) randomised controlled secondary prevention trial of advice to eat more cereal fibre. In this there was no reduction of the rate of reinfarction. The trial had some weaknesses, eg there were eight different diets, compliance was not checked objectively

  4. Liquefying of concentrated fine-grained slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk

    Jaroslavl: Jaroslavskij Gosudarstvennyj technicheskij Institut, 2007 - (Balakirev, V.), s. 114-121 ISBN 5-230-20704-3. [Mezhdunarodnaja nauchnaja konferencija Matematicheskije Metody v Nauke i Technologijach /20./. Yaroslavl (RU), 29.05.2007-01.06.2007] R&D Projects: GA AV ČR IAA200600503; GA MPO FF-P/051 Institutional research plan: CEZ:AV0Z20600510 Keywords : fine-grained slurries * drag reduction * kaolin slurry * fluidic ash slurry * laminar/turbulent transition Subject RIV: JM - Building Engineering

  5. Equi-axed and columnar grain growth in UO2

    International Nuclear Information System (INIS)

    The grain size of UO2 is an important parameter in the actual performance and the modelling of the performance of reactor fuel elements. Many processes depend critically on the grain size, for example, the degree of initial densification, the evolution rate of stable fission gases, the release rates of radiologically hazardous fission products, the fission gas bubble swelling rates and the fuel creep. Many of these processes are thermally activated and further impact on the fuel thermal behavior thus creating complex feedback processes. In order to model the fuel performance accurately it is necessary to model the evolution of the fuel grain radius. When UO2 is irradiated, the fission gases xenon and krypton are created from the fissioning uranium nucleus. At high temperatures these gases diffuse rapidly to the grain boundaries where they nucleate immobile lenticular shaped fission gas bubbles. In this paper the Hillert grain growth model is adapted to account for the inhibiting ''Zener'' effects of grain boundary fission gas porosity on grain boundary mobility and hence grain growth. It is shown that normal grain growth ceases at relatively low levels of irradiation. At high burnups, high temperatures and in regions of high temperature gradients, columnar grain growth is often observed, in some cases extending over more than fifty percent of the fuel radius. The model is further extended to account for the de-pinning of grains in the radial direction by the thermal gradient induced force on a fission gas grain boundary bubble. The observed columnar/equi-axed boundary is in fair agreement with the predictions of an evaporation/condensation model. The grain growth model described in this paper requires information concerning the scale of grain boundary porosity, the local fuel temperature and the local temperature gradient. The model is currently used in the Nuclear Electric version of the ENIGMA fuel modelling code. (author). 14 refs, 3 figs, 1 tab

  6. Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth—a 2D level set study

    International Nuclear Information System (INIS)

    The present study elaborates on a 2D level set model of polycrystal microstructures that was recently established by adding the influence of anisotropic grain boundary energy and mobility on microstructure evolution. The new model is used to trace the evolution of grain boundary character distribution during grain growth. The employed level set formulation conveniently allows the grain boundary characteristics to be quantified in terms of coincidence site lattice (CSL) type per unit of grain boundary length, providing a measure of the distribution of such boundaries. In the model, both the mobility and energy of the grain boundaries are allowed to vary with misorientation. In addition, the influence of initial polycrystal texture is studied by comparing results obtained from a polycrystal with random initial texture against results from a polycrystal that initially has a cube texture. It is shown that the proposed level set formulation can readily incorporate anisotropic grain boundary properties and the simulation results further show that anisotropic grain boundary properties only have a minor influence on the evolution of CSL boundary distribution during grain growth. As anisotropic boundary properties are considered, the most prominent changes in the CSL distributions are an increase of general low-angle Σ1 boundaries as well as a more stable presence of Σ3 boundaries. The observations also hold for the case of an initially cube-textured polycrystal. The presence of this kind of texture has little influence over the evolution of the CSL distribution. Taking into consideration the anisotropy of grain boundary properties, grain growth alone does not seem to be sufficient to promote any significantly increased overall presence of CSL boundaries. (paper)

  7. Comparison of corrosion behavior between coarse grained and nano/ultrafine grained 304 stainless steel by EWF, XPS and EIS

    International Nuclear Information System (INIS)

    Highlights: • Grain refinement of 304 stainless steel facilitated to the form more Cr2O3. • Grain refinement decreased electron work function of nano/ultrafine stainless steel. • Grain refinement facilitated redox reaction and promoted to form thicker passive film. - Abstract: The electron work function in coarse grained stainless steel was higher than that in nano/ultrafine grained one. More M2O3 types oxides and thicker passive film were observed in nano/ultrafine grained 304 stainless steel. The electrochemical impedance spectroscopy results showed that grain refinement improved corrosion resistance of 304 stainless steel. The results obtained indicated that the impedance increase was attributed to decreased electron work function. Lower electron work function facilitated to form thicker passive films. The same characteristics were observed with the increasing of chloride ion concentration

  8. ESR dosimetry using quartz grains in bricks

    International Nuclear Information System (INIS)

    Present studies indicate that ESR dosimetry of A-bomb can be done using the signal at g=2.0008 for quartz grains in bricks collected at distances of about less than 1 - 2 km from the epicenter of Hiroshima and Nagasaki. One can estimate that ESR dating of archaeological samples of a few thousands years before present is also possible using quartz grains of ancient ceramics. As the sensitivity of ESR spectrometer is improved, the minimum number of the detectable spins will be further reduced. The minimum detectable dose of 1.6 ± 0.6 Gy and the detectable age of a few thousand years would be reduced by one or two orders of the magnitude. This indicates that ESR dosimetry can replace TLD because of the advantage of repeated measurements of a sample. If a few dose can be measured, ESR dating based on dosimetry will go into the field from geology to archaeology and probably into history and forensic science. (author)

  9. Mesoscopic superconductivity in ultrasmall metallic grains

    International Nuclear Information System (INIS)

    A nano-scale metallic grain (nanoparticle) with irregular boundaries in which the single-particle dynamics are chaotic is a zero-dimensional system described by the so-called universal Hamiltonian in the limit of a large number of electrons. The interaction part of this Hamiltonian includes a superconducting pairing term and a ferromagnetic exchange term. Spin-orbit scattering breaks spin symmetry and suppresses the exchange interaction term. Of particular interest is the fluctuation-dominated regime, typical of the smallest grains in the experiments, in which the bulk pairing gap is comparable to or smaller than the single-particle mean-level spacing, and the Bardeen-Cooper-Schrieffer (BCS) mean-field theory of superconductivity is no longer valid. Here we study the crossover between the BCS and fluctuation-dominated regimes in two limits. In the absence of spin-orbit scattering, the pairing and exchange interaction terms compete with each other. We describe the signatures of this competition in thermodynamic observables, the heat capacity and spin susceptibility. In the presence of strong spin-orbit scattering, the exchange interaction term can be ignored. We discuss how the magnetic-field response of discrete energy levels in such a nanoparticle is affected by pairing correlations. We identify signatures of pairing correlations in this response, which are detectable even in the fluctuation-dominated regime

  10. Mesoscopic superconductivity in ultrasmall metallic grains

    Energy Technology Data Exchange (ETDEWEB)

    Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520 (United States); Nesterov, K. N. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520 (United States); CEA, INAC-SPSMS, F-38000 Grenoble (France)

    2014-10-15

    A nano-scale metallic grain (nanoparticle) with irregular boundaries in which the single-particle dynamics are chaotic is a zero-dimensional system described by the so-called universal Hamiltonian in the limit of a large number of electrons. The interaction part of this Hamiltonian includes a superconducting pairing term and a ferromagnetic exchange term. Spin-orbit scattering breaks spin symmetry and suppresses the exchange interaction term. Of particular interest is the fluctuation-dominated regime, typical of the smallest grains in the experiments, in which the bulk pairing gap is comparable to or smaller than the single-particle mean-level spacing, and the Bardeen-Cooper-Schrieffer (BCS) mean-field theory of superconductivity is no longer valid. Here we study the crossover between the BCS and fluctuation-dominated regimes in two limits. In the absence of spin-orbit scattering, the pairing and exchange interaction terms compete with each other. We describe the signatures of this competition in thermodynamic observables, the heat capacity and spin susceptibility. In the presence of strong spin-orbit scattering, the exchange interaction term can be ignored. We discuss how the magnetic-field response of discrete energy levels in such a nanoparticle is affected by pairing correlations. We identify signatures of pairing correlations in this response, which are detectable even in the fluctuation-dominated regime.

  11. Coarse graining flow of spin foam intertwiners

    CERN Document Server

    Dittrich, Bianca; Seth, Cameron J; Steinhaus, Sebastian

    2016-01-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behaviour on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group $\\text{SU}(2)_k \\times \\text{SU}(2)_k$, which implement the simplicity constraints analogous to 4D Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a 2D topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different ...

  12. Grain product of 34 soya mutant lines

    International Nuclear Information System (INIS)

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R4M18) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co60 gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L25 and L32 produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  13. Coarse-Grain Modeling of Energetic Materials

    Science.gov (United States)

    Brennan, John

    2015-06-01

    Mechanical and thermal loading of energetic materials can incite responses over a wide range of spatial and temporal scales due to inherent nano- and microscale features. Many energy transfer processes within these materials are atomistically governed, yet the material response is manifested at the micro- and mesoscale. The existing state-of-the-art computational methods include continuum level approaches that rely on idealized field-based formulations that are empirically based. Our goal is to bridge the spatial and temporal modeling regimes while ensuring multiscale consistency. However, significant technical challenges exist, including that the multiscale methods linking the atomistic and microscales for molecular crystals are immature or nonexistent. To begin addressing these challenges, we have implemented a bottom-up approach for deriving microscale coarse-grain models directly from quantum mechanics-derived atomistic models. In this talk, a suite of computational tools is described for particle-based microscale simulations of the nonequilibrium response of energetic solids. Our approach builds upon recent advances both in generating coarse-grain models under high strains and in developing a variant of dissipative particle dynamics that includes chemical reactions.

  14. Deuterium enrichment of the interstellar grain mantle

    Science.gov (United States)

    Das, Ankan; Sahu, Dipen; Majumdar, Liton; Chakrabarti, Sandip K.

    2016-01-01

    We carry out Monte Carlo simulation to study deuterium enrichments of interstellar grain mantles under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH3, CH2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 104 cm-3), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜106 cm-3), water and methanol productions are suppressed but surface coverages of CO, CO2, O2 and O3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water. Effects of various types of energy barriers are also studied. Moreover, we allow grain mantles to interact with various charged particles (such as H+, Fe+, S+ and C+) to study the stopping power and projected range of these charged particles on various target ices.

  15. Cometary Refractory Grains: Interstellar and Nebular Sources

    Science.gov (United States)

    Wooden, D. H.

    2008-07-01

    Comets are heterogeneous mixtures of interstellar and nebular materials. The degree of mixing of interstellar sources and nebular sources at different nuclear size scales holds the promise of revealing how cometary particles, cometesimals, and cometary nuclei accreted. We can ascribe cometary materials to interstellar and nebular sources and see how comets probe planet-forming process in our protoplanetary disk. Comets and cometary IDPs contain carbonaceous matter that appears to be either similar to poorly-graphitized (amorphous) carbon, a likely ISM source, or highly labile complex organics, with possible ISM or outer disk heritage. The oxygen fugacity of the solar nebula depends on the dynamical interplay between the inward migration of carbon-rich grains and of icy (water-rich) grains. Inside the water dissociation line, OH- reacts with carbon to form CO or CO2, consuming available oxygen and contributing to the canonical low oxygen fugacity. Alternatively, the influx of water vapor and/or oxygen rich dust grains from outer (cooler) disk regions can raise the oxygen fugacity. Low oxygen fugacity of the canonical solar nebula favors the condensation of Mg-rich crystalline silicates and Fe-metal, or the annealing of Fe-Mg amorphous silicates into Mg-rich crystals and Fe-metal via Fe-reduction. High oxygen fugacity nebular conditions favors the condensation of Fe-bearing to Fe-rich crystalline silicates. In the ISM, Fe-Mg amorphous silicates are prevalent, in stark contrast to Mg-rich crystalline silicates that are rare. Hence, cometary Mg-rich crystalline silicates formed in the hot, inner regions of the canonical solar nebula and they are the touchstone for models of the outward radial transport of nebular grains to the comet-forming zone. Stardust samples are dominated by Mg-rich crystalline silicates but also contain abundant Fe-bearing and Fe-rich crystalline silicates that are too large (≫0.1 μm) to be annealed Fe-Mg amorphous silicates. By comparison

  16. Transmission Electron Microscopy of Itokawa Regolith Grains

    Science.gov (United States)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  17. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat.

    Science.gov (United States)

    Rebetzke, G J; Bonnett, D G; Reynolds, M P

    2016-04-01

    Genotypic variation in ear morphology is linked to differences in photosynthetic potential to influence grain yield in winter cereals. Awns contribute to photosynthesis, particularly under water-limited conditions when canopy assimilation is restricted. We assessed performance of up to 45 backcross-derived, awned-awnletted NILs representing four diverse genetic backgrounds in 25 irrigated or rainfed, and droughted environments in Australia and Mexico. Mean environment grain yields were wide-ranging (1.38-7.93 t ha(-1)) with vegetative and maturity biomass, plant height, anthesis date, spike number, and harvest index all similar (P >0.05) for awned and awnletted NILs. Overall, grain yields of awned-awnletted sister-NILs were equivalent, irrespective of yield potential and genetic background. Awnletted wheats produced significantly more grains per unit area (+4%) and per spike (+5%) reflecting more fertile spikelets and grains in tertiary florets. Increases in grain number were compensated for by significant reductions in grain size (-5%) and increased frequency (+0.8%) of small, shrivelled grains ('screenings') to reduce seed-lot quality of awnletted NILs. Post-anthesis canopies of awnletted NILs were marginally warmer over all environments (+0.27 °C) but were not different and were sometimes cooler than awned NILs at cooler air temperatures. Awns develop early and represented up to 40% of total spikelet biomass prior to ear emergence. We hypothesize that the allocation of assimilate to large and rapidly developing awns decreases spikelet number and floret fertility to reduce grain number, particularly in distal florets. Individual grain size is increased to reduce screenings and to increase test weight and milling quality, particularly in droughted environments. Despite the average reduction in grain size, awnless lines could be identified that combined higher grain yield with larger grain size, increased grain protein concentration, and reduced screenings. PMID

  18. Nanoscale Deformation Behavior of Phase-Reversion Induced Austenitic Stainless Steels: The Interplay Between Grain Size from Nano-Grain Regime to Coarse-Grain Regime

    Science.gov (United States)

    Misra, R. D. K.; Venkatsurya, P. K. C.; Somani, M. C.; Karjalainen, L. P.

    2012-12-01

    We have used the recently adopted concept of phase reversion to obtain grain size from the nanograined/ultrafine-grained (NG/UFG) to fine grain (FG) regime by varying temperature-time annealing sequence of cold deformed metastable austenite. The phase-reversion induced NG/UFG structure was characterized by high strength-high ductility combination. The concept of phase reversion involves severe cold deformation of metastable austenite to generate strain-induced martensite. Upon annealing, martensite transforms back to austenite through a diffusional reversion mechanism with NG/UFG, sub-micron grains (SMG) or FG structure, depending on the annealing condition. Depth-sensing nanoindentation experiments were combined with electron microscopy to elucidate the dependence of grain size from nanograin/ultrafine-grain (NG/UFG) to coarse grain (CG) regime on the deformation mechanisms. There was distinct transition in the deformation mechanism from intense mechanical twinning and stacking faults in NG/UFG structure to strain-induced martensite formation at the intersection of shear bands in the CG structure. The transition in the deformation mechanism is discussed in terms of increase in austenite stability with decrease in grain size.

  19. Estimation of grain size and size inhomogeneity in ultrafine-grained aluminium processed by ECAP method

    Czech Academy of Sciences Publication Activity Database

    Ilucová, Lucia; Král, P.; Svoboda, M.; Saxl, Ivan; Sklenička, V.

    Roskilde : Riso National Laboratory, 2004, s. 363-368. [Riso International Symposium on Materials Science/25./. Roskilde (DK), 06.09.2004-10.09.2004] R&D Projects: GA ČR GA201/01/1195 Institutional research plan: CEZ:AV0Z1019905 Keywords : grain size * anisotropy * ECAP Subject RIV: BB - Applied Statistics, Operational Research

  20. Shocks in dense clouds. IV. Effects of grain-grain processing on molecular line emission

    CERN Document Server

    Anderl, S; Forêts, G Pineau des; Flower, D R

    2014-01-01

    Grain-grain processing has been shown to be an indispensable ingredient of shock modelling in high density environments. For densities higher than \\sim10^5 cm-3, shattering becomes a self-enhanced process that imposes severe chemical and dynamical consequences on the shock characteristics. Shattering is accompanied by the vaporization of grains, which can directly release SiO to the gas phase. Given that SiO rotational line radiation is used as a major tracer of shocks in dense clouds, it is crucial to understand the influence of vaporization on SiO line emission. We have developed a recipe for implementing the effects of shattering and vaporization into a 2-fluid shock model, resulting in a reduction of computation time by a factor \\sim100 compared to a multi-fluid modelling approach. This implementation was combined with an LVG-based modelling of molecular line radiation transport. Using this model we calculated grids of shock models to explore the consequences of different dust-processing scenarios. Grain-...

  1. Choosing Whole-Grain Foods: 10 Tips for Purchasing and Storing Whole-Grain Foods

    Science.gov (United States)

    ... Eat Fruits Food Gallery Vegetables All About the Vegetable Group Nutrients and Health Benefits Tips to Help You Eat Vegetables Beans ... Updated: Jul 6, 2016 RESOURCES FOR NUTRITION AND HEALTH MYPLATE What Is MyPlate? Fruits Vegetables Grains Protein Foods Dairy Oils ONLINE TOOLS SuperTracker ...

  2. Grain boundary diffusion of Fe in ultrafine-grained nanocluster-strengthened ferritic steel

    International Nuclear Information System (INIS)

    Grain boundary diffusion of Fe in nanocluster-strengthened ferritic steel (Fe-14Cr-3W-0.4Ti-0.25Y2O3 in wt.%) has been investigated. The steel was produced by mechanical alloying followed by hot extrusion. The final grain size was ∼200 nm. The diffusivity of Fe was measured within the temperature range 423-820 K. The grain boundary penetration at lower temperatures revealed a specific time dependence, which indicates a residual interconnected porosity in the ferritic steel. In order to quantify the percolating porosity, conventional radiotracer (59Fe) diffusion measurements were combined with a study of room temperature penetration of liquid 110mAg solution to distinguish between solid-state diffusion along boundaries and penetration along the surface of interconnected cavities. The presence of porosity affected the diffusion process, introducing a hierarchy of internal interfaces. The grain boundary diffusion coefficient and the diffusivity along internal surfaces were determined in the so-called type C-C, C-B and B-B kinetic regimes of interface diffusion in a hierarchical microstructure. Using the residual activity method and a 65Zn tracer, the volume fraction of the percolating porosity was estimated to be 0.6%.

  3. Grain-size distribution of volcaniclastic rocks 2: Characterizing grain size and hydraulic sorting

    Science.gov (United States)

    Jutzeler, Martin; McPhie, Jocelyn; Allen, Sharon R.; Proussevitch, A. A.

    2015-08-01

    Quantification of the grain size distribution of sediments allows interpretation of processes of transport and deposition. Jutzeler et al. (2012) developed a technique to determine grain size distribution of consolidated clastic rocks using functional stereology, allowing direct comparison between unconsolidated sediments and rocks. Here, we develop this technique to characterize hydraulic sorting and infer transport and deposition processes. We compare computed grain size and sorting of volcaniclastic rocks with field-based characteristics of volcaniclastic facies for which transport and depositional mechanisms have been inferred. We studied pumice-rich, subaqueous facies of volcaniclastic rocks from the Oligocene Ohanapecosh Formation (Ancestral Cascades, Washington, USA), Pliocene Dogashima Formation (Izu Peninsula, Honshu, Japan), Miocene Manukau Subgroup (Northland, New Zealand) and the Quaternary Sierra La Primavera caldera (Jalisco State, Mexico). These sequences differ in bed thickness, grading and abundance of matrix. We propose to evaluate grain size and sorting of volcaniclastic deposits by values of their modes, matrix proportion (rolling. These hydraulic sorting ratios can be applied to any type of clastic rocks, and indifferently on consolidated and unconsolidated samples.

  4. COMPETITIVE ADVANTAGES OF TRANSPORT LOGISTICS OF THE REGIONAL GRAIN MARKET

    Directory of Open Access Journals (Sweden)

    Smirnov V. V.

    2015-06-01

    Full Text Available The article deals with the place of transport logistics in the system of specialization of the region, territorial labor division and the grain business export potential. It examines the competitive advantages in relation to territorial and environmental factors, production, business, and grain market, the role of these factors in raising the economic efficiency of grain business, taking into account rapidly changing conditions in domestic and global markets. It gives details of the competitive advantages of the port transit segment of the Krasnodar region on the grain major sea carriers example. Effective use of the strong sides of land and sea components of the grain transit will help to further successful integration of the region grain business into the global economics system, it will increase the regional grain production competitiveness. The grain transit schemes improving process should be built taking into account optimization of the delivery channels, excluding parasitic mediators, motivate all participants on the final result according to the criterion of profit which is received not due to the increase in tariff rates, but by providing diverse services, enhancing productivity, introducing of specialization and specific transport costs reducing. It is also proposed to reduce transport costs during the grain transit to domestic and foreign markets due to the capabilities of specialized logistical centers, to organize transport corridors for the grain delivery on their base

  5. Marketing whole grain breads in Canada via food labels.

    Science.gov (United States)

    Sumanac, Dunja; Mendelson, Rena; Tarasuk, Valerie

    2013-03-01

    A recommendation for increased whole grain consumption was released in Canada in 2007 to promote adequate intakes of fibre and magnesium. Since then, a proliferation of 'whole grain' claims on food packaging has been observed, but whole grain labelling is voluntary and unregulated in Canada. Through a detailed survey of bread sold in three supermarkets, this study examined how the presence of front-of-package reference to whole grain relates to (i) the presence and nature of whole grain ingredients, (ii) nutrient content, and (iii) price of the product. Twenty-one percent of breads bore a reference to whole grain on the front-of-package and the front-of-package reference to whole grain was a better predictor of fibre content than any information that could be gleaned from the ingredient list. On average, breads with a whole grain reference were higher in fibre and magnesium and lower in sodium. Mean price did not differ by presence of a whole grain reference, but breads with whole grain labelling were less likely to be low in price. Voluntary nutrition labelling may be targeting a discrete market of health-conscious consumers who are willing to pay premium prices for more healthful options. PMID:23178749

  6. Grain Accumulation of Selenium Species in Rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Price, Adam H.; Meharg, Andrew A. (EPA); (U. South Australia); (Aberdeen); (UC)

    2012-09-05

    Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a {+-} stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.

  7. China’s grain production: status and prospects

    Institute of Scientific and Technical Information of China (English)

    姜长云; 张晓敏; 张艳平

    2009-01-01

    In this paper, we first look back at China’s grain production since reform and opening up and review the main factors of grain production at different stages. Secondly we find that the improvement of the per unit yield has become a major factor in the increase of grain production, and that corn has become a major grain production support variety; compared with the other varieties, paddy rice is most vulnerable in production; grain production has increasingly become dependant on scientific and technological progress and the role of infrastructure. Thirdly, the transformation of low-yielding fields in the future, the development of reserve land resources and acceleration of scientific and technological progress – these factors together promote China’s great potential for grain production; but through adjusting variety structure to promote grain production is nearly impossible. Finally, the main constraints of China’s future grain production are as follows: reduction of arable land and water shortages is becoming increasingly constrained; agricultural comparative advantage is low; opportunity cost is high and accelerating at the same time; and the uncertainties of (1) whether the agricultural inputs by government at all levels of can significantly increase the intensity; (2) whether support of the reform of grain production and systems can achieve breakthrough; and (3) whether the risk of the development of grain production can be effectively prevented. On this basis, we draw the relevant conclusions and policy recommendations.

  8. Airtight storage of moist wheat grain improves bioethanol yields

    Directory of Open Access Journals (Sweden)

    Piens Kathleen

    2009-08-01

    Full Text Available Abstract Background Drying is currently the most frequently used conservation method for cereal grain, which in temperate climates consumes a major part of process energy. Airtight storage of moist feed grain using the biocontrol yeast Pichia anomala as biopreservation agent can substantially reduce the process energy for grain storage. In this study we tested the potential of moist stored grain for bioethanol production. Results The ethanol yield from moist wheat was enhanced by 14% compared with the control obtained from traditionally (dry stored grain. This enhancement was observed independently of whether or not P. anomala was added to the storage system, indicating that P. anomala does not impair ethanol fermentation. Starch and sugar analyses showed that during pre-treatment the starch of moist grain was better degraded by amylase treatment than that of the dry grain. Additional pre-treatment with cellulose and hemicellulose-degrading enzymes did not further increase the total ethanol yield. Sugar analysis after this pre-treatment showed an increased release of sugars not fermentable by Saccharomyces cerevisiae. Conclusion The ethanol yield from wheat grain is increased by airtight storage of moist grain, which in addition can save substantial amounts of energy used for drying the grain. This provides a new opportunity to increase the sustainability of bioethanol production.

  9. PRAM C:a new programming environment for fine-grain and coarse-grain parallelism.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jonathan Leighton; Wen, Zhaofang.

    2004-11-01

    In the search for ''good'' parallel programming environments for Sandia's current and future parallel architectures, they revisit a long-standing open question. Can the PRAM parallel algorithms designed by theoretical computer scientists over the last two decades be implemented efficiently? This open question has co-existed with ongoing efforts in the HPC community to develop practical parallel programming models that can simultaneously provide ease of use, expressiveness, performance, and scalability. Unfortunately, no single model has met all these competing requirements. Here they propose a parallel programming environment, PRAM C, to bridge the gap between theory and practice. This is an attempt to provide an affirmative answer to the PRAM question, and to satisfy these competing practical requirements. This environment consists of a new thin runtime layer and an ANSI C extension. The C extension has two control constructs and one additional data type concept, ''shared''. This C extension should enable easy translation from PRAM algorithms to real parallel programs, much like the translation from sequential algorithms to C programs. The thin runtime layer bundles fine-grained communication requests into coarse-grained communication to be served by message-passing. Although the PRAM represents SIMD-style fine-grained parallelism, a stand-alone PRAM C environment can support both fine-grained and coarse-grained parallel programming in either a MIMD or SPMD style, interoperate with existing MPI libraries, and use existing hardware. The PRAM C model can also be integrated easily with existing models. Unlike related efforts proposing innovative hardware with the goal to realize the PRAM, ours can be a pure software solution with the purpose to provide a practical programming environment for existing parallel machines; it also has the potential to perform well on future parallel architectures.

  10. Continuous and discontinuous grain coarsening in a fine-grained particle-containing Al-Sc alloy

    International Nuclear Information System (INIS)

    An Al-0.2 wt% Sc alloy was solution treated, deformed by equal channel angular pressing (ECAP) to an effective true strain of 9.2 then aged for 3 h at 350 deg C to produce a fine-grained (0.8 μm diameter) microstructure containing a large fraction (∼0.7) of high angle grain boundaries (HAGBs). This ageing treatment also generated a relatively uniform dispersion of 5 nm diameter Al3Sc particles. Grain stability was investigated at temperatures up to 550 deg C using SEM, EBSD and TEM. It was found that the fine-grain structure was remarkably stable at temperatures up to 500 deg C with grain coarsening occurring gradually with no marked change in the grain size distribution, texture and grain boundary character. This homogeneous coarsening behaviour is usually termed continuous recrystallization. In this regime, both the fine-grained microstructure and Al3Sc particles exhibit third order coarsening kinetics with dR/dt ∝ dr/dt which indicates that grain coarsening is controlled by the rate of particle growth with the latter controlled by bulk diffusion of scandium in the Al matrix. During extended annealing at 500 deg C and for short times at higher temperatures, there is a notable transition from continuous to discontinuous grain coarsening whereby a small number of grains grow rapidly to produce a coarse (>10 μm) grain size. An analytical mean field model of grain coarsening in particle-containing alloys was shown to adequately predict this transition in coarsening behaviour

  11. Optimization of strength and ductility in nanotwinned ultra-fine grained Ag: Twin density and grain orientations

    International Nuclear Information System (INIS)

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is not reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong 〈1 1 1〉 fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: (1) untwinned grains and (2) nanowinned grains that are not oriented with 〈1 1 1〉 along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with 〈1 1 1〉 along the growth direction are softer than nanotwinned grains that are oriented with 〈1 1 1〉 along the growth direction. We have revealed that an ultrafine-grained (150–200 nm) structure consisting of a mixture of nanotwinned (∼8–12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility

  12. Grain growth in Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    The influence of annealing temperature and time on grain growth in polycrystalline Ni-Mn-Ga samples near the stoichiometric composition Ni2MnGa was investigated. Grain growth was only observed for compositions with a Ni-content below 50 at.%. The existence of constitutional vacancies as a possible origin for the different grain growth behavior was excluded by positron annihilation spectroscopy (PAS). In order to activate grain boundary motion and hence grain growth in Ni50Mn29Ga21 the samples were annealed and deformed in situ in compression up to various strain levels. A sharp threshold to initiate grain growth is observed between 8% and 10% of compressive strain.

  13. The bio refinery; producing feed and fuel from grain.

    Science.gov (United States)

    Scholey, D V; Burton, E J; Williams, P E V

    2016-04-15

    It is both possible and practicable to produce feed and fuel from grain. Using the value of grain to produce renewable energy for transport, while using the remaining protein content of the grain as a valuable protein source for livestock and for fish, can be seen as a complimentary and optimal use of all the grain constituents. Consideration must be given to maximise the value of the yeast components, as substantial yeast is generated during the fermentation of the grain starch to produce ethanol. Yeast is a nutritionally rich feed ingredient, with potential for use both as feed protein and as a feed supplement with possible immunity and gut health enhancing properties. Bioprocessing, with the consequent economies of scale, is a process whereby the value of grain can be optimised in a way that is traditional, natural and sustainable for primarily producing protein and oil for feed with a co-product ethanol as a renewable fuel. PMID:26617037

  14. Atomically ordered solute segregation behaviour in an oxide grain boundary

    Science.gov (United States)

    Feng, Bin; Yokoi, Tatsuya; Kumamoto, Akihito; Yoshiya, Masato; Ikuhara, Yuichi; Shibata, Naoya

    2016-01-01

    Grain boundary segregation is a critical issue in materials science because it determines the properties of individual grain boundaries and thus governs the macroscopic properties of materials. Recent progress in electron microscopy has greatly improved our understanding of grain boundary segregation phenomena down to atomistic dimensions, but solute segregation is still extremely challenging to experimentally identify at the atomic scale. Here, we report direct observations of atomic-scale yttrium solute segregation behaviours in an yttria-stabilized-zirconia grain boundary using atomic-resolution energy-dispersive X-ray spectroscopy analysis. We found that yttrium solute atoms preferentially segregate to specific atomic sites at the core of the grain boundary, forming a unique chemically-ordered structure across the grain boundary. PMID:27004614

  15. Exclusion of Tiny Interstellar Dust Grains from the Heliosphere

    CERN Document Server

    Slavin, J D; Heerikhuisen, J; Pogorelov, N V; Mueller, H -R; Reach, W T; Zank, G P; Das-Gupta, B; Avinash, K

    2009-01-01

    The distribution of interstellar dust grains (ISDG) observed in the Solar System depends on the nature of the interstellar medium-solar wind interaction. The charge of the grains couples them to the interstellar magnetic field (ISMF) resulting in some fraction of grains being excluded from the heliosphere while grains on the larger end of the size distribution, with gyroradii comparable to the size of the heliosphere, penetrate the termination shock. This results in a skewing the size distribution detected in the Solar System. We present new calculations of grain trajectories and the resultant grain density distribution for small ISDGs propagating through the heliosphere. We make use of detailed heliosphere model results, using three-dimensional (3-D) magnetohydrodynamic/kinetic models designed to match data on the shape of the termination shock and the relative deflection of interstellar neutral H and He flowing into the heliosphere. We find that the necessary inclination of the ISMF relative to the inflow d...

  16. Kinetic constants of abnormal grain growth in nanocrystalline nickel

    Science.gov (United States)

    Aleshin, A. N.

    2016-02-01

    The grain growth in nanocrystalline nickel with a purity of 99.5 at % during non-isothermal annealing was experimentally investigated using differential scanning calorimetry and transmission electron microscopy. Nanocrystalline nickel was prepared by electrodeposition and had an average grain size of approximately 20 nm. It was shown that, at a temperature corresponding to the calorimetric signal peak, abnormal grain growth occurs with the formation of a bimodal grain microstructure. Calorimeters signals were processed within the Johnson-Mehl-Avrami formalism. This made it possible to determine the exponent of the corresponding equation, the frequency factor, and the activation energy of the grain growth, which was found to be equal to the activation energy of the vacancy migration. The reasons for the abnormal grain growth in nanocrystalline nickel were discussed.

  17. Atomically ordered solute segregation behaviour in an oxide grain boundary

    Science.gov (United States)

    Feng, Bin; Yokoi, Tatsuya; Kumamoto, Akihito; Yoshiya, Masato; Ikuhara, Yuichi; Shibata, Naoya

    2016-03-01

    Grain boundary segregation is a critical issue in materials science because it determines the properties of individual grain boundaries and thus governs the macroscopic properties of materials. Recent progress in electron microscopy has greatly improved our understanding of grain boundary segregation phenomena down to atomistic dimensions, but solute segregation is still extremely challenging to experimentally identify at the atomic scale. Here, we report direct observations of atomic-scale yttrium solute segregation behaviours in an yttria-stabilized-zirconia grain boundary using atomic-resolution energy-dispersive X-ray spectroscopy analysis. We found that yttrium solute atoms preferentially segregate to specific atomic sites at the core of the grain boundary, forming a unique chemically-ordered structure across the grain boundary.

  18. Effects and mechanisms of grain refinement in aluminium alloys

    Indian Academy of Sciences (India)

    K T Kashyap; T Chandrashekar

    2001-08-01

    Grain refinement plays a crucial role in improving characteristics and properties of cast and wrought aluminium alloys. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys to grain refine the solidified product. The mechanism of grain refinement is of considerable controversy in the scientific literature. The nucleant effects i.e. which particle and its characteristics nucleate -Al, has been the subject of intensive research. Lately the solute effect i.e. the effect of dissolved titanium on grain refinement, has come into forefront of grain refinement research. The present paper attempts to review the literature on the nucleant effects and solute effects on grain refinement and addresses the importance of dissolved titanium in promoting nucleation of -Al on nucleant particles.

  19. Segregation ratios of colored grains in F1 hybrid wheat

    Directory of Open Access Journals (Sweden)

    Zifeng Guo

    2012-01-01

    Full Text Available Nutritious and functional foods from wheat have received great attention in recent years. Colored-grain wheat contains a large number of nutrients such as anthocyanins and hence the breeding is interesting. In this work, colored-grained wheat lines of mixed pollination of einkorn wheat (Triticum boeoticum, AA and French rye (French Secale cereale, RR were used as male parents and wheat line Y1642 (derived from common wheat and Agropyron elongatum, AABBDD was used as the female parent. These colored wheat were used for diallel cross to study the segregation ratios of F1 colored grains. Results show that the color inheritance of purple-grained wheat follows a maternal inheritance pattern and that the blue-grained wheat expresses xenia in most cases. In some circumstances, the grains with different color shades appear in the same spike.

  20. Study of some properties of point defects in grain boundaries

    International Nuclear Information System (INIS)

    With the aim of deducing simple informations on the grain boundary core structure, we investigated self diffusion under hydrostatic pressure, impurity diffusion (In and Au), electromigration (Sb) along certain types of grain boundaries in Ag bicrystals, and the Moessbauer effect of 57Co located in the grain boundaries of polycrystalline Be. Our results lead to the following conclusions: the formation of a vacancy like defects is necessary to grain boundary diffusion; solute atoms may release most of their elastic energy of dissolution as they segregate at the boundary; in an electrical field, the drift of Sb ions parallel to the boundary takes place toward the anode as in the bulk. The force on the grain boundary ions is larger than in the bulk; Moessbauer spectroscopy revealed the formation of Co-rich aggregates, which may proves important in the study of early stages of grain boundary precipitation. (author)

  1. Modification of computer simulation of normal grain growth

    Institute of Scientific and Technical Information of China (English)

    李剑; 李世晨; 郑子樵; 刘祖耀; 陈大钦

    2004-01-01

    A set of principles on transition probability was supplied for the physical process of grain growth. In accord with these principles, a modified transition probability considering the influence of temperature was put forward to simulate the normal grain growth relying on temperature and second phase particles. The modified transition probability correctly reflects the dependence of grain growth on the temperature. The effect of different shapes of second phase particles on the grain growth process was taken into account using the modified transition probability.The relationship between the area fraction of second phase particles and the limit of grain size of the matrix was given. The microstructural evolution patterns employed to 2-D were given. The results agree well with the real grain growth process. All these suggest that the modified transition probability is better than the conventional one.

  2. Austenite grain growth calculation of 0.028% Nb steel

    Directory of Open Access Journals (Sweden)

    Priadi D.

    2011-01-01

    Full Text Available Modeling of microstructural evolution has become a powerful tool for materials and process design by providing quantitative relationships for microstructure, composition and processing. Insufficient attention has been paid to predicting the austenite grain growth of microalloyed steel and the effect of undissolved microalloys. In this research, we attempted to calculate a mathematical model for austenite grain growth of 0.028% Nb steel, which can account for abnormal grain growth. The quantitative calculation of austenite grain growth generated from this model fit well with the experimental grain growth data obtained during reheating of niobium steels. The results of this study showed that increasing the temperature increases the austenite grain size, with a sharp gradient observed at higher temperatures.

  3. From Grains to Planetesimals: Les Houches Lecture

    CERN Document Server

    Youdin, Andrew

    2008-01-01

    This pedagogical review covers an unsolved problem in the theory of protoplanetary disks: the growth of dust grains into planetesimals, solids at least a kilometer in size. I summarize timescale constraints imposed on planetesimal formation by circumstellar disk observations, analysis of meteorites, and aerodynamic radial migration. The infall of ~meter-sized solids in a hundred years is the most stringent constraint. I review proposed mechanisms for planetesimal formation. Collisional coagulation models are informed by laboratory studies of microgravity collisions. The gravitational collapse (or Safronov-Goldreich-Ward) hypothesis involves detailed study of the interaction between solid particles and turbulent gas. I cover the basics of aerodynamic drag in protoplanetary disks, including radial drift and vertical sedimentation. I describe various mechanisms for particle concentration in gas disks -- including turbulent pressure maxima, drag instabilities and long-lived anticylonic vortices. I derive a genera...

  4. Dust grains from the heart of supernovae

    Science.gov (United States)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the

  5. Randomized Grain Boundary Liquid Crystal Phase

    Science.gov (United States)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  6. Liquid Nucleation at Superheated Grain Boundaries

    Science.gov (United States)

    Frolov, T.; Mishin, Y.

    2011-04-01

    Grain boundaries with relatively low energies can be superheated above the melting temperature and eventually melt by heterogeneous nucleation of liquid droplets. We propose a thermodynamic model of this process based on the sharp-interface approximation with a disjoining potential. The distinct feature of the model is its ability to predict the shape and size of the critical nucleus by using a variational approach. The model reduces to the classical nucleation theory in the limit of large nuclei but is more general and remains valid for small nuclei. Contrary to the classical nucleation theory, the model predicts the existence of a critical temperature of superheating and offers a simple formula for its calculation. The model is tested against molecular dynamic simulations in which liquid nuclei at a superheated boundary were obtained by an adiabatic trapping procedure. The simulation results demonstrate a reassuring consistency with the model.

  7. Ceres Revealed in a Grain of Salt

    Science.gov (United States)

    Zolensky, M. E.; Bodnar, R. J.; Chan, Q. H.-S.; Hagiya, K.; Komatsu, M.; Steele, A.; Fries, M.; Kebukawa, Y.; Mikouchi, T.; Ohsumi, K.

    2016-01-01

    Introduction: Zag and Monahans (1998) are H chondrite regolith breccias containing 4.5 giga-year-old halite crystals which contain abundant inclusions of aqueous fluids, solids and organics. These all originated on a cryo-volcanically-active C class asteroid, probably 1 Ceres; the halite was transported to the regolith of the H chondrite parent asteroid, potentially 6 Hebe. Detailed analysis of these solids will thus potentially reveal the mineralogy of Ceres. Mineralogy of solids in the Monahans Halite Solid grains are present in the halites, which were entrained within the mother brines during eruption, including material from the interior and surface of the erupting body. The solids include abundant, widely variable organics that could not have been significantly heated (which would have resulted in the loss of fluids from the halite). Our analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction, UPLC-FD/QToF-MS, C-XANES and TEM reveal that these trapped grains include macromolecular carbon (MMC) similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, phyllosilicates, magnetite, sulfides, metal, lepidocrocite, carbonates, diamond, apatite and zeolites. Conclusions: The halite in Monahans and Zag derive from a water and carbon-rich object that was cryo-volcanically active in the early solar system, probably Ceres. The Dawn spacecraft found that Ceres includes C chondrite materials. Our samples include both protolith and aqueously-altered samples of the body, permitting understanding of alteration conditions. Whatever the halite parent body, it was rich in a wide variety of organics and warm, liquid water at the solar system's dawn.

  8. Interlinking backscatter, grain size and benthic community structure

    Science.gov (United States)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p response predicted mean grain size (r2 = 0.692; p response predicted grain size (p < 0.001), and QTC class (p = 0.009). Mean grain size (Clamshell) shows a significant difference between groups for mean backscatter (p = 0.001); other methods were not significant. PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab samples can be explained by mean backscatter or acoustically-predicted grain size. These results show that there is significant predictive capacity for sediment characteristics from multibeam backscatter and that these acoustic classifications can have ecological validity.

  9. Ammonia disinfection of corn grains intended for ethanol fermentation

    OpenAIRE

    Magdalena Broda; Włodzimierz Grajek

    2009-01-01

    Background. Bacterial contamination is an ongoing problem for commercial bioethanol plants. It concerns factories using grain and also other raw materials for ethanol fermentation. Bacteria compete with precious yeasts for sugar substrates and micronutrients, secrete lactic and acetic acids, which are toxic for yeast and this competition leads to significant decrease of bioethanol productivity. For this study, bacterial contamination of corn grain was examined. Then the grain was treated by a...

  10. LOGISTICS AND SUPPLY CHAIN STRATEGIES IN GRAIN EXPORTING

    OpenAIRE

    Wilson, William W.; Carlson, Donald C.E.; Bruce L. DAHL

    2001-01-01

    During the past decade, the grain shipping industry has become highly competitive and technologically advanced. These changes, along with the introduction of innovative shipping mechanisms, have made logistics management an important source of opportunity and risk for grain shippers. In this study, a stochastic simulation model was developed to evaluate the tradeoffs and effects of key variables on logistical performance in managing the grain supply chain. Average demurrage cost for the suppl...

  11. The disinfestation of grains and stored products through ionizing radiations

    International Nuclear Information System (INIS)

    Disinfestation of stored products and grains through ionizing radiation is reviewed. A promising technique, the one of irradiation to achieve sterilization and increasing mortality of stored grain insects, which are commonly destructive to the main crops in Brazil is explained. Methodology to determine the sterilizing dose and lethality; the wholesomeness of irradiated grains and searches realized in Brazil with Sitophilus, Sototroga, Zabrotes and Acanthocelides are also presented

  12. Electronic Structure of a Disordered Grain Boundary in Graphene

    Science.gov (United States)

    Lambin, Ph.; Vancso, P.; Nemes-Incze, P.; Mark, G.; Biró, L. P.

    2013-05-01

    Grain boundaries are constitutional elements of graphene grown on a solid metallic surface by CVD. The electronic properties of computer models of grain boundaries in graphene have been investigated by tight-binding calculations and compared with available ab initio data and with recent experimental scanning tunneling spectroscopic measurements. It is shown that twofold coordinated atoms and non-hexagonal rings, both present in grain boundaries, give rise to specific features in the local density of states.

  13. Strong Electron Tunneling through a Small Metallic Grain

    OpenAIRE

    Golubev, D. S.; Zaikin, A. D.

    1996-01-01

    Electron tunneling through mesoscopic metallic grains can be treated perturbatively only provided the tunnel junction conductances are sufficiently small. If it is not the case, fluctuations of the grain charge become strong. As a result (i) contributions of all -- including high energy -- charge states become important and (ii) excited charge states become broadened and essentially overlap. At the same time the grain charge remains discrete and the system conductance $e$-periodically depends...

  14. Radon emanation rate as a function of monazite grain size

    International Nuclear Information System (INIS)

    In this study, a sample of monazite from local mining area was divided to 7 parts according to size (μm) and each sample was analysed using silicon surface barrier detector and multichannel analyser. From this study it has found that small grain monazite produced more radon that big grain monazite and radium is distributed on or near the surface of the monazite grain

  15. Organic Grain Amaranth Production in Kamuli District, Uganda

    OpenAIRE

    Graham, M W; Delate, K.; Burras, C.L.; Mazur, R.E.; Brenner, D.M.; M. M. Tenywa; Nakimbugwe, D.N.; Kabahuma, M.; Abili, A.

    2011-01-01

    Metadata only record Grain amaranths (Amaranthus spp.) are high protein content and protein quality pseudo-cereal crops whose favorable nutritional profile belies their potential to alleviate nutrition and food insecurity in developing countries. Grain amaranth was introduced as a nutrient dense food into the Kamuli District, eastern Uganda, in 2006. However, initial analysis of protein content of amaranth grain pooled from farms in the Kamuli District indicated that protein levels ranged ...

  16. Grain Transportation Policy and Transformation in Western Canadian Agriculture

    OpenAIRE

    Doan, Darcie; Paddock, Brian; Dyer, Jan

    2003-01-01

    This paper provides an overview of grain transportation policy in Canada over the last 100 years, including the inception of the Crow Rate, the replacement of the Crow Rate with the Western Grain Transportation Act(WGTA), and finally, the repeal of the WGTA. Particular emphasis is placed on the structural change to the western agricultural economy that occurred following repeal of the WGTA in 1995. When grain transportation subsidies were removed, industry responded quickly to market signals ...

  17. ACCUMULATION OF AMYLOLYTIC ENZYMES IN WHEAT GRAIN DURING MALTING PROCESS

    OpenAIRE

    Марина Феликсовна Ростовская; Анастасия Николаевна Извекова; Алексей Григорьевич Клыков

    2014-01-01

    The content of protein, starch, amylolytic enzymes in the grain of the two varieties of spring wheat (Triticum aestivum L.) grown in the Primorye Territory was determined. The accumulation of amylolytic enzymes in the germination process of wheat with different levels of proteins in the grain was investigated. The effect of mode of germination to accumulation amylolytic enzymes in order to optimize the malting process of  grain in obtaining wheat malt also was studied.

  18. ACCUMULATION OF AMYLOLYTIC ENZYMES IN WHEAT GRAIN DURING MALTING PROCESS

    Directory of Open Access Journals (Sweden)

    Марина Феликсовна Ростовская

    2014-10-01

    Full Text Available The content of protein, starch, amylolytic enzymes in the grain of the two varieties of spring wheat (Triticum aestivum L. grown in the Primorye Territory was determined. The accumulation of amylolytic enzymes in the germination process of wheat with different levels of proteins in the grain was investigated. The effect of mode of germination to accumulation amylolytic enzymes in order to optimize the malting process of  grain in obtaining wheat malt also was studied.

  19. New Process for Grain Refinement of Aluminum. Final Report; FINAL

    International Nuclear Information System (INIS)

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today

  20. New Process for Grain Refinement of Aluminum. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.