WorldWideScience

Sample records for br2005 energy requirements

  1. New types of concrete elements corresponding to BR2005 energy requirements; Nye typer betonelementer svarende til BR2005 energikrav

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In this project new solutions have been developed for buildings with concrete facade panels without ribs at window reveals and at horizontal joints, corresponding to panels with an un-broken insulation layer and limited thermal bridge effect. New general solutions for the mounting of windows have been developed together with airtight covering solutions at the window reveal based upon added window board and a separate vapor barrier. At the same time detailed calculations of the heat loss effects at the window-wall joint and foundation have been carried out and new solutions that reduce the heat loss substantially have also been shown. The new developed standard solutions are obvious means to meet the expected future energy demands in the new Building Regulations expected in 2005. The project has revealed that it is possible to obtain significant thermal improvements with only a minor increase in the insula-tion thickness. The new and, in many ways, better solutions will mean added costs regarding mounting of windows, stronger fittings etc. but the effect of a standardization of the window-placement could reduce those additional costs considerably. The total life cycle costs regard-ing these new types of concrete facade panels are economically reasonable. (au)

  2. Energy requirements

    NARCIS (Netherlands)

    Hulzebos, Christian V.; Sauer, Pieter J. J.

    The determination of the appropriate energy and nutritional requirements of a newborn infant requires a clear goal of the energy and other compounds to be administered, valid methods to measure energy balance and body composition, and knowledge of the neonatal metabolic capacities. Providing an

  3. Energy requirements of adults.

    Science.gov (United States)

    Shetty, Prakash

    2005-10-01

    To describe issues related to energy requirements of free living adults and discuss the importance of basal metabolic rate (BMR) and their relationships to total energy expenditure (TEE ) and physical activity level (PAL, derived as TEE/BMR) and to determine the influence of body weight, height, age and sex. Based on a review of the literature, this paper examines the variability in BMR due to methodology, ethnicity, migration and adaptation (both metabolic and behavioural) due to changes in nutritional status. Collates and compiles data on measurements of TEE in free living healthy adults, to arrive at limits and to compare TEE of populations with different life-styles. The constancy of BMR and its validity as a reliable predictor of TEE in adults as well as the validity of PAL as an index of TEE adjusted for BMR and thus its use to categorise the physical activity pattern and lifestyle of an individual was confirmed. The limits of human daily energy expenditure at around 1.2 x BMR and 4.5 x BMR based on measurements made in free living adults have been reported in the literature. A large and robust database now exists of energy expenditure measurements obtained by the doubly labelled water method in the scientific literature and the data shows that, in general, levels of energy expenditure are similar to the recommendations for energy requirements adopted by FAO/WHO/UNU (1985). The review also confirms that metabolic adaptation to energy restriction is not an important factor that needs to be considered when recommending energy requirements for adults in developing countries.

  4. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  5. Superluminal travel requires negative energies

    OpenAIRE

    Olum, Ken D.

    1998-01-01

    I investigate the relationship between faster-than-light travel and weak-energy-condition violation, i.e., negative energy densities. In a general spacetime it is difficult to define faster-than-light travel, and I give an example of a metric which appears to allow superluminal travel, but in fact is just flat space. To avoid such difficulties, I propose a definition of superluminal travel which requires that the path to be traveled reach a destination surface at an earlier time than any neig...

  6. Energy requirements for tillage and planting

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, L.E.; Spencer, A.D.; Floyd, V.G.; Brixius, W.W.

    1981-01-01

    Energy requirements for a number of residue-preparation, tillage, planting, and weed-control processes have been measured. The energy-savings potential of substituting one process for another may be determined from the results. An energy budget points out opportunities for energy savings within the tractor-implement system. 3 refs.

  7. Towards standardising building rural clinics: energy requirements

    CSIR Research Space (South Africa)

    Szewczuk, S

    2015-03-01

    Full Text Available (brick and mortar) and Innovative Building Technologies (IBTs) and alternative off-grid services technologies (energy, water, and sanitation). The paper discusses the energy requirements of a conceptual design for a generic, basic rural clinic....

  8. Short communication: Prediction of energy requirements of ...

    African Journals Online (AJOL)

    Data collected on metabolizable energy (ME) intake and growth performance of preruminant female kids of the Murciano-Granadina breed was used to assess the accuracy of the latest U. S. National Research Council (NRC) recommendations to predict their energy requirements. Female kids were fed a milk replacer ...

  9. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  10. The strictest energy requirements in the world

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jensen, Jens Stissing

    2013-01-01

    50 years of progressively strengthened energy requirements in the Danish building code appear to be a success, as the energy consumption has remained constant despite an increase in the total area in requirement of heating. This article however argues that the building code mechanism is heavily...... influenced by path dependent regime structuration processes, and that the mechanism constitutes a barrier to more radical developments within low energy housing. Few and poorly organized frontrunner activities within low energy housing have accordingly taken place in a Danish context during the past decades....... Finally it is proposed that the current development within the energy system provides opportunities for cultivating an improved transitional awareness and for carrying out experimental activities that may challenge the path dependencies of prevailing regime structuration processes....

  11. Energy Cost Impact of Non-Residential Energy Code Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Hart, Philip R.; Rosenberg, Michael I.

    2016-08-22

    The 2012 International Energy Conservation Code contains 396 separate requirements applicable to non-residential buildings; however, there is no systematic analysis of the energy cost impact of each requirement. Consequently, limited code department budgets for plan review, inspection, and training cannot be focused on the most impactful items. An inventory and ranking of code requirements based on their potential energy cost impact is under development. The initial phase focuses on office buildings with simple HVAC systems in climate zone 4C. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance. A preliminary estimate of the probability of occurrence of each level of non-compliance was combined with the estimated lost savings for each level to rank the requirements according to expected savings impact. The methodology to develop and refine further energy cost impacts, specific to building type, system type, and climate location is demonstrated. As results are developed, an innovative alternative method for compliance verification can focus efforts so only the most impactful requirements from an energy cost perspective are verified for every building and a subset of the less impactful requirements are verified on a random basis across a building population. The results can be further applied in prioritizing training material development and specific areas of building official training.

  12. Controversies in the determination of energy requirements.

    Science.gov (United States)

    Elizabeth Weekes, C

    2007-08-01

    To avoid any negative outcomes associated with under- or overfeeding it is essential to estimate nutrient requirements before commencing nutrition support. The energy requirements of an individual vary with current and past nutritional status, clinical condition, physical activity and the goals and likely duration of treatment. The evidence-base for prediction methods in current use, however, is poor and the equations are thus open to misinterpretation. In addition, most methods require an accurate measurement of current weight, which is problematic in some clinical situations. The estimation of energy requirements is so challenging in some conditions, e.g. critical illness, obesity and liver disease, that it is recommended that expenditure be measured on an individual basis by indirect calorimetry. Not only is this technique relatively expensive, but in the clinical setting there are several obstacles that may complicate, and thus affect the accuracy of, any such measurements. A review of relevant disease-specific literature may assist in the determination of energy requirements for some patient groups, but the energy requirements for a number of clinical conditions have yet to be established. Regardless of the method used, estimated energy requirements should be interpreted with care and only used as a starting point. Practitioners should regularly review the patient and reassess requirements to take account of any major changes in clinical condition, nutritional status, activity level and goals of treatment. There is a need for large randomised controlled trials that compare the effects of different levels of feeding on clinical outcomes in different disease states and care settings.

  13. ENERGY REQUIREMENT FOR FIRING PORCELAIN Carvalho M ...

    African Journals Online (AJOL)

    a

    2002-08-08

    (Received August 8, 2002). ABSTRACT. Results from studies on the ternary system Ribaué kaolin---Carapira feldspar---. Marracuene quartz sands were used to test a procedure that we developed for calculation of the energy requirement for firing porcelain. Results obtained vary between 1300 and 1800 kJ/kg porcelain.

  14. Comparison of energy performance requirements levels

    DEFF Research Database (Denmark)

    Spiekman, Marleen; Thomsen, Kirsten Engelund; Rose, Jørgen

    This summary report provides a synthesis of the work within the EU SAVE project ASIEPI on developing a method to compare the energy performance (EP) requirement levels among the countries of Europe. Comparing EP requirement levels constitutes a major challenge. From the comparison of for instance...... the present Dutch requirement level (EPC) of 0,8 with the present Flemish level of E80, it can easily be seen that direct comparison is not possible. The conclusions and recommendations of the study are presented in part A. These constitute the most important result of the project. Part B gives an overview...

  15. Infrared thermography requirements study for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Headley, R B; Larsen, R J; Goldberg, G G; Boyd, R J

    1977-04-01

    A description is given of a study to identify users (and their needs) of infrared (IR) instrumentation that may be applicable in the measurement of heat gains and/or losses from buildings, and to identify research, development and demonstration opportunities. The study is intended to provide the following information: (1) identify present and potential users and uses of infrared thermographic technology as related to energy conservation in buildings; (2) identify presently available IR thermographic instrumentation, techniques, and services, and determine how well it can serve the users and uses identified above; and (3) identify the technical opportunities for research, development, and demonstration on new IR thermographic technology that will better serve the users and uses identified above. The building sector requirements were analyzed, the user measurement requirements were identified, and cost guidelines for instrumentation are provided. An analysis is given of the constraints, requirements, and limitations of measurable parameters. This analysis provides the basis against which an IR instrument survey was conducted. The building sector requirements study indicates the general satisfaction of the user community with the use of IR thermography for qualitative evaluation of heat loss from buildings.

  16. Chipping machines: disc and drum energy requirements

    Directory of Open Access Journals (Sweden)

    Alessio Facello

    2013-09-01

    Full Text Available Air pollution and fossil fuel reserves exhaustion are increasing the importance of the biomass-derived products, in particular wood, as source of clean and renewable energy for the production of electricity or steam. In order to improve the global efficiency and the entire production chain, we have to evaluate the energetic aspects linked to the process of transformation, handling and transport of these materials. This paper reports results on a comparison between two chippers of similar size using different cutting technology: disc and drum tool respectively. During trials, fuel consumption, PTO torque and speed, processing time and weight of processed material were recorded. Power demand, fuel consumption, specific energy and productivity were computed. The machine was fed with four different feedstock types (chestnut logs, poplar logs, poplar branches, poplar sawmill residues. 15 repetitions for each combination of feedstock-tool were carried out. The results of this study show that the disc tool requires, depending on the processed material, from 12 to 18% less fuel per unit of material processed than the drum tool, and consequently, from 12 to 16% less specific energy. In particular, the highest difference between tools was found in branches processing whereas the smallest was in poplar logs. Furthermore the results of the investigation indicate, that, in testing conditions, the productivity of drum tool is higher (8% than disc tool.

  17. Circadian variation in defibrillation energy requirements.

    Science.gov (United States)

    Venditti, F J; John, R M; Hull, M; Tofler, G H; Shahian, D M; Martin, D T

    1996-10-01

    Reports have demonstrated a circadian variation in the incidence of acute myocardial infarction, ventricular arrhythmias, and sudden cardiac death. We tested the hypothesis that a similar circadian variation exists for defibrillation energy requirements in humans. We reviewed the time of defibrillation threshold (DFT) measurements in 134 patients with implantable cardioverter-defibrillators (ICDs) who underwent 345 DFT measurements. The DFT was determined in 130 patients at implantation, in 121 at a 2 months, and in 94 at 6 months. All patients had nonthoracotomy systems. The morning DFT (8 AM to 12 noon) was 15.1 +/- 1.2 J compared with 13.1 +/- 0.9 J in the midafternoon (12 noon to 4 PM) and 13.0 +/- 0.7 J in the late afternoon (4 to 8 PM), P < .02. In a separate group of 930 patients implanted with an ICD system with date and time stamps for each therapy, we reviewed 1238 episodes of ventricular tachyarrhythmias treated with shock therapy. To corroborate the hypothesis that energy requirements for arrhythmia termination vary during the course of the day, we plotted the failed first shock frequency for all episodes per hour. There was a significant peak in failed first shocks in the morning compared with other time intervals (P = .02). There is a morning peak in DFT and a corresponding morning peak in failed first shock frequency. This morning peak resembles the peaks seen in other cardiac events, specifically sudden cardiac death. These findings have important implications for appropriate ICD function, particularly in patients with marginal DFTs.

  18. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J.

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in

  19. Cost optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    This report summarises the work done within the Concerted Action EPBD from December 2010 to April 2011 in order to feed into the European Commission's proposal for a common European procedure for a Cost-Optimal methodology under the Directive on the Energy Performance of Buildings (recast) 2010/3...

  20. Energy requirements of adult dogs: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Emma N Bermingham

    Full Text Available A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg(0.75 body weight (BW. Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation maintenance energy requirements were 142.8±55.3 kcal·kgBW(-0.75·day(-1. The corresponding allometric equation was 81.5 kcal·kgBW(-0.9·day(-1 (adjusted R2 = 0.64; 70 treatment groups. Type of husbandry had a significant effect on maintenance energy requirements (P<0.001: requirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (P<0.001, but there was no effect of sex. Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09. This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds is needed.

  1. Energy Requirements of Adult Dogs: A Meta-Analysis

    Science.gov (United States)

    Bermingham, Emma N.; Thomas, David G.; Cave, Nicholas J.; Morris, Penelope J.; Butterwick, Richard F.; German, Alexander J.

    2014-01-01

    A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg0.75 body weight (BW). Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation) maintenance energy requirements were 142.8±55.3 kcal.kgBW−0.75.day−1. The corresponding allometric equation was 81.5 kcal.kgBW−0.93.day−1 (adjusted R2 = 0.64; 70 treatment groups). Type of husbandry had a significant effect on maintenance energy requirements (P<0.001): requirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (P<0.001), but there was no effect of sex. Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09). This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds) is needed. PMID:25313818

  2. Stakeholder requirements for commercially successful wave energy converter farms

    Energy Technology Data Exchange (ETDEWEB)

    Babarit, Aurélien; Bull, Diana; Dykes, Katherine; Malins, Robert; Nielsen, Kim; Costello, Ronan; Roberts, Jesse; Bittencourt Ferreira, Claudio; Kennedy, Ben; Weber, Jochem

    2017-12-01

    In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance level metric will accelerate wave energy conversion technology convergence.

  3. Energy requirements and CO2 mitigation potential of PV systems

    NARCIS (Netherlands)

    Alsema, E.A.

    1998-01-01

    In this paper we investigate the energy requirements of PV modules and systems and calculate the Energy Pay-Back Time for two major PV applications. Based on a review of past energy analysis studies we explain the main sources of differences and establish a "best estimate" for key system components.

  4. Energy requirements of adult dogs: a meta-analysis.

    Science.gov (United States)

    Bermingham, Emma N; Thomas, David G; Cave, Nicholas J; Morris, Penelope J; Butterwick, Richard F; German, Alexander J

    2014-01-01

    A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg(0.75) body weight (BW). Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation) maintenance energy requirements were 142.8±55.3 kcal·kgBW(-0.75)·day(-1). The corresponding allometric equation was 81.5 kcal·kgBW(-0.9)·day(-1) (adjusted R2 = 0.64; 70 treatment groups). Type of husbandry had a significant effect on maintenance energy requirements (Prequirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (Prequirement of the dog (P = 0.09). This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds) is needed.

  5. Energy requirements for growth in the Yorkshire terrier.

    Science.gov (United States)

    Alexander, Janet E; Colyer, Alison; Morris, Penelope J

    2017-01-01

    The 2006 National Research Council (NRC) equation calculating puppy energy requirements does not account for reported breed differences in growth pattern. Energy requirements of toy breed puppies are unknown and it is unclear whether feeding guidelines should differ between breeds. Energy requirements of Yorkshire terrier (YT) puppies were observed over their first year of life and compared with those predicted by the NRC and those previously observed in large (Labrador retriever) and medium (miniature Schnauzer; MS) breed puppies. Twenty-two puppies (from eight litters) were offered complete and balanced diets to maintain ideal body condition score (BCS). Energy intake, body weight and BCS were recorded from 10 to 52 weeks of age. Every 12 weeks, health was monitored by veterinary examination, routine haematology and plasma biochemistry. Puppies remained clinically healthy with normal skeletal development throughout. After analysis by linear mixed models it was observed that the NRC equation overestimates YT energy requirements between 10 and 20 weeks of age by up to 324·3 (95 % CI 390·4, 258·2) kJ/kg0·75. Energy intake was lower (P requirements for growth. The NRC equation for puppy energy requirements overestimated the requirements of this YT population, suggesting the need for breed-specific feeding guides for growth to avoid overfeeding.

  6. Negative Energy: Why Interdisciplinary Physics Requires Multiple Ontologies

    CERN Document Server

    Dreyfus, Benjamin W; Gouvea, Julia; Sawtelle, Vashti; Turpen, Chandra; Redish, Edward F

    2013-01-01

    Much recent work in physics education research has focused on ontological metaphors for energy, particularly the substance ontology and its pedagogical affordances. The concept of negative energy problematizes the substance ontology for energy, but in many instructional settings, the specific difficulties around negative energy are outweighed by the general advantages of the substance ontology. However, we claim that our interdisciplinary setting (a physics class that builds deep connections to biology and chemistry) leads to a different set of considerations and conclusions. In a course designed to draw interdisciplinary connections, the centrality of chemical bond energy in biology necessitates foregrounding negative energy from the beginning. We argue that the emphasis on negative energy requires a combination of substance and location ontologies. The location ontology enables energies both "above" and "below" zero. We present preliminary student data that illustrate difficulties in reasoning about negativ...

  7. Current Energy Requirements in the Copper Producing Industries

    Science.gov (United States)

    Pitt, Charles H.; Wadsworth, Milton E.

    1981-06-01

    An analysis of energy usage in the production of refined cathode copper was made from mining ore to cathode copper. In mining copper ore the greatest energy consumers are ore hauling and blasting. Another important factor is the "recovery efficiency" of the metallurgical processes used to extract the copper. The mining and mineral concentrating energies are directly proportional to the "recovery efficiency," with a typical mining operation requiring about 20 million Btu/ton of cathode copper produced. Mineral concentrating was also found to be a large energy consumer, requiring about 43 million Btu/ton of cathode copper. Some possibilities for energy savings in the mineral processing area include use of autogenous grinding and computer control for optimizing grinding operations, improved classifier efficiency, and optimizing the entire concentrator plant performance by interrelating all plant operations. In acid plants, optimization of input SO2 concentration can make the plant a net producer rather than a net user of energy. The conventional smelting process utilizes very little of the energy from the combustion of sulfides in the charge. Several of the newer copper pyrometallurgical processes which utilize more of the combustion energy of the sulfides as heat show a significant improvement over conventional smelting. Generally, increased use of oxygen decreases Level 1 energies but proportionately increases Level 2 energies. Hydrometallurgical processes are, in general, more energy intensive than smelting processes, mainly because of the inability to utilize the heat of reaction of the sulfides. Electrowinning used in most hydrometallurgy processes is also energy intensive, and research in these areas could produce significant energy savings. Combination pyrometallurgical processes are generally less energy intensive than entirely hydrometallurgical processes. Significant improvements may be made in energy use in hydrometallurgical processes by more effective

  8. Introducing cost-optimal levels for energy requirements

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    2012-01-01

    The recast of the Directive on the Energy Performance of Buildings (EPBD) states that Member States (MS) must ensure that minimum energy performance requirements for buildings are set “with a view to achieve cost-optimal levels”, and that the cost-optimal level must be calculated in accordance...

  9. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  10. Cost-optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    2011-01-01

    The CA conducted a study on experiences and challenges for setting cost optimal levels for energy performance requirements. The results were used as input by the EU Commission in their work of establishing the Regulation on a comparative methodology framework for calculating cost optimal levels...... of minimum energy performance requirements. In addition to the summary report released in August 2011, the full detailed report on this study is now also made available, just as the EC is about to publish its proposed Regulation for MS to apply in their process to update national building requirements....

  11. Energy requirement for the production of silicon solar arrays

    Science.gov (United States)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Rosenfield, T.; Wrigley, C. Y.; Morrison, A.; Anderson, J.; Clifford, A.; Lafky, W.

    1977-01-01

    The results of a study to investigate the feasibility of manufacturing photovoltaic solar array modules by the use of energy obtained from similar or identical photovoltaic sources are presented. The primary objective of this investigation was the characterization of the energy requirements of current and developing technologies which comprise the photovoltaic field. For cross-checking the energies of prevailing technologies data were also used and the wide-range assessment of alternative technologies included different refinement methods, various ways of producing light sheets, semicrystalline cells, etc. Energy data are utilized to model the behavior of a future solar breeder plant under various operational conditions.

  12. Energy storage specification requirements for hybrid-electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Burke, A.F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide ``primary energy`` ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W{center_dot}h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  13. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  14. Factorial estimation of energy requirement for egg production

    DEFF Research Database (Denmark)

    Chwalibog, André

    1992-01-01

    Based on balance and respiration measurements with 60 White Leghorns during the laying period from 27 to 48 wk of age, a factorial method for estimating the energy requirement for egg production is proposed. The present experiment showed that the deposition of fat and energy increased during...... the laying period, but protein deposition slightly decreased. It has been shown that the efficiency of ME utilization for fat energy deposition is higher than for protein energy deposition in the egg. Because the proportions of protein and fat differ during the laying period, and because energy utilization...... efficiencies for energy retention in protein (Kop = .50), fat (Kof = .79), and carbohydrates (Koc = .79)] increased from .26 Mcal at 27 wk of age to .29 Mcal at 48 wk, corresponding to 5.93 and 6.07 Mcal/kg egg....

  15. Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

  16. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T.H.

    2007-01-01

    Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H., 2007. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. In: proceedings ‘First World Water Sustainability-Renewable Energy Congress and Exhibition’. 25-28 November 2007, Maastricht, the

  17. The millennium development goals and household energy requirements in Nigeria.

    Science.gov (United States)

    Ibitoye, Francis I

    2013-01-01

    Access to clean and affordable energy is critical for the realization of the United Nations' Millennium Development Goals, or MDGs. In many developing countries, a large proportion of household energy requirements is met by use of non-commercial fuels such as wood, animal dung, crop residues, etc., and the associated health and environmental hazards of these are well documented. In this work, a scenario analysis of energy requirements in Nigeria's households is carried out to compare estimates between 2005 and 2020 under a reference scenario, with estimates under the assumption that Nigeria will meet the millennium goals. Requirements for energy under the MDG scenario are measured by the impacts on energy use, of a reduction by half, in 2015, (a) the number of household without access to electricity for basic services, (b) the number of households without access to modern energy carriers for cooking, and (c) the number of families living in one-room households in Nigeria's overcrowded urban slums. For these to be achieved, household electricity consumption would increase by about 41% over the study period, while the use of modern fuels would more than double. This migration to the use of modern fuels for cooking results in a reduction in the overall fuelwood consumption, from 5 GJ/capita in 2005, to 2.9 GJ/capita in 2015.

  18. Analysis of annual cooling energy requirements for glazed academic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S.A. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering; Hassan, A.H. [Vinyl Chloride Malaysia Sdn Bhd, Terengganu (Malaysia). Dept. of Engineering

    2011-07-01

    Malaysia experienced rapid increase in energy consumption in the last decade due to its high economic growth and increase in the standard living of household. Energy is becoming more costly and the situation is worsened by the global warming as a result of greenhouse gas emission. A more efficient energy usage and significant reduction in the released emission is therefore required. Space cooling with the use of air conditioners is practiced all year round in Malaysia and this accounts for 42% of total electricity energy consumption for commercial buildings and 30% of residential buildings. Reduction in the energy used for cooling in the built environment is a vital step to energy conservation in Malaysia. The objective of the present study was to analyze the annual cooling energy of highly glazed academic buildings which are located in a university in Malaysia. The outcome of the study would enable further remedial actions in reducing the energy consumption of the buildings' air conditioning system. The study is conducted by computer simulation using EnergyPlus software to calculate the cooling energy of a selected building or area. Comparison is made against the rated equipment load (i.e., the air handling unit) installed in the buildings. Since the buildings in the present study are not constructed parallel to each other the effect of building orientations with respect to the sun positions are also studied. The implications of shades such as venetian blind on the cooling energy are investigated in assessing their effectiveness in reducing the cooling energy, apart from providing thermal comfort to the occupants. In the aspect of operation, the present study includes the effects of reducing the set point air temperature and infiltration of outdoor air due to doors that are left open by the occupants. It is found from the present study that there are significant potentials for savings in the cooling energy of the buildings.

  19. Energy requirements for growth of pubertal female Saanen goats.

    Science.gov (United States)

    Figueiredo, F O M; Berchielli, T T; Resende, K T; Gomes, H F B; Almeida, A K; Sakomura, N K; Teixeira, I A M A

    2016-04-01

    Previous research on energy requirements of female Saanen goats, using the factorial approach, has not considered the specific requirements for maintenance and growth during the pubertal phase. Thus, the purpose of this study was to estimate energy requirements for maintenance (Trial 1) and growth (Trial 2) of non-pregnant and non-lactating female Saanen goats at the pubertal phase from 30 to 45 kg. In Trial 1, the net energy requirements for maintenance (NEm ) were estimated using 18 female Saanen goats randomly assigned to three levels of intake: ad libitum, and 70% and 40% of ad libitum intake. These animals were pair-fed in six slaughter groups, each consisting of one animal for each level of intake. In Trial 2, the net energy requirements for growth (NEg ) were estimated using 18 female Saanen goats, which were fed ad libitum and slaughtered at targeted BW of 30, 38 and 45 kg. The NEm was 52 kcal/kg(0.75) of BW. The NEg increased from 3.5 to 4.7 Mcal/kg of BW gain as BW increased from 30 to 45 kg. Our results suggest that the guidelines of the major feeding systems for the entire growth phase may not be adequate for females at pubertal phase. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  20. Energy requirement for firing porcelain | M. de O. Madivate | Bulletin ...

    African Journals Online (AJOL)

    Results from studies on the ternary system Ribaué kaolin–Carapira feldspar– Marracuene quartz sands were used to test a procedure that we developed for calculation of the energy requirement for firing porcelain. Results obtained vary between 1300 and 1800 kJ/kg porcelain. These results differ largely from the ones ...

  1. In Vitro Studies on the Metabolic Energy Requirements of ...

    African Journals Online (AJOL)

    Krebs buffer, pH 7.3 free from zinc and whose metabolic energy requirement of absorption was to be investigated until slightly distended. Sacs were incubated for 30 minutes at 37oC with continuous aeration in media containing the buffer and ...

  2. The Free Energy Requirements of Biological Organisms; Implications for Evolution

    Directory of Open Access Journals (Sweden)

    David H. Wolpert

    2016-04-01

    Full Text Available Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer’s semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis, deriving the minimal free energy required by an organism to run a given (stochastic map π from its sensor inputs to its actuator outputs. I use this result to calculate the input-output map π of an organism that optimally trades off the free energy needed to run π with the phenotypic fitness that results from implementing π. I end with a general discussion of the limits imposed on the rate of the terrestrial biosphere’s information processing by the flux of sunlight on the Earth.

  3. Body composition and net energy requirements of Brazilian Somali lambs

    Directory of Open Access Journals (Sweden)

    Elzânia S. Pereira

    2014-12-01

    Full Text Available The aim of this study was to determine the energy requirements for maintenance (NEm and growth of 48 Brazilian Somali ram lambs with an average initial body weight of 13.47±1.76 kg. Eight animals were slaughtered at the trials beginning as a reference group to estimate the initial empty body weight (EBW and body composition. The remaining animals were assigned to a randomised block design with eight replications per block and five diets with increasing metabolisable energy content (4.93, 8.65, 9.41, 10.12 and 11.24 MJ/kg dry matter. The logarithm of heat production was regressed against metabolisable energy intake (MEI, and the NEm (kJ/kg0.75 EBW/day were estimated by extrapolation, when MEI was set at zero. The NEm was 239.77 kJ/kg0.75 EBW/day. The animal’s energy and EBW fat contents increased from 11.20 MJ/kg and 208.54 g/kg to 13.54 MJ/kg and 274.95 g/kg of EBW, respectively, as the BW increased from 13 to 28.70 kg. The net energy requirements for EBW gain increased from 13.79 to 16.72 MJ/kg EBW gain for body weights of 13 and 28.70 kg. Our study indicated the net energy requirements for maintenance in Brazilian Somali lambs were similar to the values commonly recommended by the United States’ nutritional system, but lower than the values recommended by Agricultural Research Council and Commonwealth Scientific and Industrial Research Organization. Net requirements for weight gain were less compared to the values commonly recommended by nutritional system of the United States.

  4. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy

  5. Energy-efficient houses built according to the energy performance requirements introduced in Denmark in 2006

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Rose, Jørgen; Svendsen, Svend

    2007-01-01

    In order to meet new tighter building energy requirements introduced in Denmark in 2006 and prepare the way for future buildings with even lower energy consumption, single-family houses were built with the purpose to demonstrate that it is possible to build typical single-family houses...... with an energy consumption that meets the demands without problems concerning building technology or economy. The paper gives a brief presentation of the houses and the applied energy-saving measures. The paper also presents results from measurements of the overall energy use, indoor climate and air tightness...

  6. Energy efficient houses built according to the energy performance requirements introduced in 2005 in Denmark

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend; Rose, Jørgen

    2005-01-01

    energy consumptions are compared and differences explained. Furthermore, results from detailed calculations of the utilization of electricity-related heat gains are presented including the potential for reductions in the electricity consumption using low-energy products. Looking at the energy consumption......In order to meet new energy requirements introduced in Denmark in 2005 and prepare the way for future buildings with even lower energy consumption, single-family houses were built with the purpose to demonstrate that it is possible to build typical single-family houses with an energy consumption...... that meets the demands without problems concerning building technology or economy. The paper gives a brief presentation of the houses and the applied energy-saving measures. The paper also presents results from measurements of total energy consumption, indoor climate and air tightness. Measured and expected...

  7. Energy requirements for HE-3 mining operations on the Moon

    Science.gov (United States)

    Kulcinski, Gerald L.

    At the present rate of world energy consumption (10 TW-y/y) and allowing for an equilibrium consumption of 20 to 30 TW-y/y in mid 21st century, we will exhaust economically recoverable fossil fuels in the next 50 to 60 years. We will then have to rely on nuclear (fission and fusion) and renewable energy to feed, warm, and protect the world's population. Fusion energy is expected to play an important role in the 21st century and there a 2 billion dollar per year research program to commercialize that energy resource. A serious problem with this is its reliance on the D-T fuel cycle which releases 80 percent of its energy in the form of neutrons. These neutrons cause significant radiation damage and induce large amounts of radioactivity. There is another fusion fuel cycle involving the isotopes of Deuterium and Helium-3 which, if configured properly, releases 1 percent or less of its energy in neutrons. Obviously, such a fuel would be preferred, but there is no large source of He-3 known to satisfy world energy needs. Fortunately, a very large source of He-3 was found on the Moon, implanted over the past 4 billion years by the solar wind. Recent analysis of Apollo and Luna data reveals that over a million tons of He-3 sit on the Moon's surface. The potential energy in this He-3 fuel is 10 times that contained in all the coal, oil, and natural gas on the Earth. The purpose of this paper is to examine the energy required to extract the He-3 from the lunar regolith.

  8. The Energy Required to Produce Materials: Constraints on Energy Intensity Improvements, Parameters of Demand

    NARCIS (Netherlands)

    Gutowski, T.G.; Sahni, S.; Allwood, J.M.; Ashby, M.F.; Worrell, E.|info:eu-repo/dai/nl/106856715

    2013-01-01

    In this paper, we review the energy requirements to make materials on a global scale by focusing on the five construction materials that dominate energy used in material production: steel, cement, paper, plastics and aluminium. We then estimate the possibility of reducing absolute material

  9. Energy, material and land requirement of a fusion plant

    DEFF Research Database (Denmark)

    Schleisner, Liselotte; Hamacher, T.; Cabal, H.

    2001-01-01

    requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m2/MW and the land requirement for a fission plant is a little less than 200 m2/MW......The energy and material necessary to construct a power plant and the land covered by the plant are indicators for the ‘consumption’ of environment by a certain technology. Based on current knowledge, estimations show that the material necessary to construct a fusion plant will exceed the material...

  10. Short communication Prediction of energy requirements of Murciano ...

    African Journals Online (AJOL)

    p2492989

    Short communication. Prediction of energy requirements of Murciano-Granadina preruminant female kids using the National Research Council. A.L. Martínez Marín#, M. Pérez Hernández, L.M. Pérez Alba, D. Carrión Pardo. & A.G. Gómez Castro. University of Córdoba, Department of Animal Production Madrid-Cádiz road, ...

  11. Net energy evaluation of feeds and determination of net energy requirements for pigs

    Directory of Open Access Journals (Sweden)

    Jean Noblet

    2007-07-01

    Full Text Available Feeds for pigs can be attributed different energy values according to, first, the step considered in energy utilization (DE: digestible energy, ME: metabolizable energy and NE: net energy and, second, the method used for estimation at each step. Reference methods for evaluating DE content are based on in vivo digestibility measurements; indirect estimates of DE values are obtained from in vitro methods or prediction equations based on chemical characteristics. Methods have also been proposed for estimating urinary energy (and gas energy to a smaller extent in order to calculate ME content from DE value. The NE values originate from energy balance studies (slaughter methods or, more commonly, indirect calorimetry measurements in respiration chambers and their compilation allows the calculation of NE prediction equations based on digestible nutrient contents or DE or ME contents. Such equations are applicable to both ingredients and compound feeds. They may differ between origins according to the fractionation method of organic matter or assumptions such as the NE requirement for maintenance (or fasting heat production. These measurements represent the bases for establishment of energy values in feeding tables. Results indicate that energy digestibility of feeds is negatively affected by dietary fibre content but this negative effect is attenuated with body weight increase, which suggests that feeds should be attributed DE values according to pig BW; in practice, at least two different DE values, one for growing-finishing pigs and one for mature pigs (reproductive sows, are recommended. The energy digestibility of pig feeds can also be affected by feed processing (pelletting, extrusion, etc.. Efficiency of ME utilization for NE averages 74-75% for conventional pig diets but it is directly dependent on diet chemical composition with efficiencies higher for ME from fat (90% or starch (82% than from protein or dietary fibre (60%. The hierarchy

  12. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    Science.gov (United States)

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  13. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements

    Directory of Open Access Journals (Sweden)

    Giuseppe Todde

    2018-02-01

    Full Text Available Dairy cattle farms are continuously developing more intensive systems of management which require higher utilization of durable and not-durable inputs. These inputs are responsible of significant direct and indirect fossil energy requirements which are related to remarkable emissions of CO2. This study aims to analyze direct energy requirements and the related carbon footprint of a large population of conventional dairy farms located in the south of Italy. A detailed survey of electricity, diesel and Liquefied Petroleum Gas (LPG consumptions has been carried out among on-farm activities. The results of the analyses showed an annual average fuel consumption of 40 kg per tonne of milk, while electricity accounted for 73 kWh per tonne of milk produced. Expressing the direct energy inputs as primary energy, diesel fuel results the main resource used in on-farm activities, accounting for 72% of the total fossil primary energy requirement, while electricity represents only 27%. Moreover, larger farms were able to use more efficiently the direct energy inputs and reduce the related emissions of carbon dioxide per unit of milk produced, since the milk yield increases with the herd size. The global average farm emissions of carbon dioxide equivalent, due to all direct energy usages, accounted for 156 kg CO2-eq per tonne of Fat and Protein Corrected Milk (FPCM, while farms that raise more than 200 heads emitted 36% less than the average value. In this two-part series, the total energy demand (Part 1 + Part 2 per farm is mainly due to agricultural inputs and fuel consumption, which have the largest quota of the annual requirements for each milk yield class. These results also showed that large size farms held lower CO2-eq emissions when referred to the mass of milk produced.

  14. Radioactive Material Transportation Requirements for the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    John, Mark Earl; Fawcett, Ricky Lee; Bolander, Thane Weston

    2000-07-01

    The Department of Energy (DOE) created the National Transportation Program (NTP) whose goal is to ensure the availability of safe, efficient, and timely transportation of DOE materials. The Integration and Planning Group of the NTP, assisted by Global Technologies Incorporated (GTI), was tasked to identify requirements associated with the transport of DOE Environmental Management (EM) radiological waste/material. A systems engineering approach was used to identify source documents, extract requirements, perform a functional analysis, and set up a transportation requirements management database in RDD-100. Functions and requirements for transporting the following DOE radioactive waste/material are contained in the database: high level radioactive waste (HLW), low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), nuclear materials (NM), spent nuclear fuel (SNF), and transuranic waste (TRU waste). The requirements will be used in the development of standard transportation protocols for DOE shipping. The protocols will then be combined into a DOE Transportation Program Management Guide, which will be used to standardize DOE transportation processes.

  15. Energy requirements of the U. S. pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Cosman, C.M.

    1979-01-01

    According to the American Paper Institute, the paper industry is the fifth largest consumer of purchased energy in the U.S. and the largest consumer of fuel oil. Almost one-half of its total energy consumption comes from the industry's own process wasts: spent pulping liquors, bark, and hogged wood. In 1976 non-fossil fuels provided 44.6% of the total Btu consumption, up from 41.1% in 1972 and 42.6% in 1975. (Self-generated hydro power and other electricity produced from fossil fuel supplied another 1.5% of total needs in 1972 and 2.1% in 1975.) The industry has established a mechanism for self-policing by submitting periodic reports on its energy consumption to the API. The target set by the industry is a 20% saving of purchased energy by 1980. So far a reduction of about 15% has been achieved, making adjustments for add-ons required because of environmental regulations and other changes vs the base year of 1972.

  16. Energy requirements for growth in male and female Saanen goats.

    Science.gov (United States)

    Almeida, A K; Resende, K T; St-Pierre, N; Silva, S P; Soares, D C; Fernandes, M H M R; Souza, A P; Silva, N C D; Lima, A R C; Teixeira, I A M A

    2015-08-01

    The aim of this study was to investigate the energy requirements of female and intact and castrated male Saanen goats. Animals were randomly assigned to 1 of 2 experiments designed to investigate the energy requirements for maintenance and gain. To determine the maintenance requirements, 85 goats were used (26 intact males, 30 castrated males, and 29 females) with an initial BW of 30.3 ± 0.87 kg. Thirty goats (8 intact males, 9 castrated males, and 13 females) were slaughtered to be used as the baseline group. The remaining goats were assigned in a split-plot design using a 3 × 3 factorial arrangement (3 sexes-intact males, castrated males, and females-and 3 DMI levels-ad libitum and restricted fed to 75 or 50% of the ad libitum intake). The NE was obtained using 65 goats (20 intact males, 22 castrated males, and 23 females) fed ad libitum in a completely randomized design. Eight intact males, 9 castrated males, and 13 females were slaughtered at 30.5 ± 1.53 kg BW. Seventeen goats (6 intact males, 6 castrated males, and 5 females) were slaughtered at 38.1 ± 0.49 kg BW. The remaining goats were slaughtered at 44.0 ± 0.50 kg BW. The NE did not differ between the sexes ( = 0.59; 258.5 kJ/kg BW), resulting in a ME for maintenance of 412.4 kJ/kg BW. The estimated energy use efficiency for maintenance was 0.627. During the growth phase, NE differed between the sexes ( goats during the late growth phase.

  17. Generator Requirements For Rural Electrification From Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Dzune Mipoung, Olivare; Pragasen, Pillay

    2010-09-15

    This paper addresses the issue of rural electrification from renewable energy. A brief introduction on biomass and wind electrical systems is given. The aim of this research is to propose optimal electrification system design for rural areas. This requires suitable generators selection as a starting point. Some generator types for rural electrification systems are introduced, followed by a discussion on the selection criteria. Simulation results of a typical electrification system for remote areas are obtained to support the safety aspect related to the individual generator types, in the event of accidental rotor motion. All simulations are done in Matlab-Simulink.

  18. The trouble with chemical energy: why understanding bond energies requires an interdisciplinary systems approach.

    Science.gov (United States)

    Cooper, Melanie M; Klymkowsky, Michael W

    2013-06-01

    Helping students understand "chemical energy" is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk about chemical energy (which is also the way we talk about energy in everyday life); 2) the macroscopic approach to energy concepts that is common in physics and physical sciences; and 3) the failure of chemistry courses to explicitly link molecular with macroscopic energy ideas. From a constructivist perspective, it is unlikely that students can, without a coherent understanding of such a central concept, attain a robust and accurate understanding of new concepts. However, changes are on the horizon, guided by the increasing understanding that difficult concepts require coherent, well-designed learning progressions and the new National Research Council Framework for K-12 Science Education. We provide supporting evidence for our assertions and suggestions for an interdisciplinary learning progression designed to better approach the concept of bond energies, a first step in an understanding chemical energy and behavior of reaction systems that is central to biological systems.

  19. Large Scale Computing and Storage Requirements for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years

  20. Optimal method to achieve consistently low defibrillation energy requirements.

    Science.gov (United States)

    Winter, J; Zimmermann, N; Lidolt, H; Dees, H; Perings, C; Vester, E G; Poll, L; Schipke, J D; Contzen, K; Gams, E

    2000-11-02

    Reduction of the defibrillation energy requirement offers the opportunity to decrease implantable cardioverter defibrillator (ICD) size and to increase device longevity. Therefore, the purpose of this prospective study was to obtain confirmed defibrillation thresholds (DFTs) of generator (TRIAD lead system: RV- --> SVC+ + CAN+). According to our previous clinical and experimental studies, we tried to lower DFTs that were > 15 J by repositioning the distal coil of the endocardial lead system in the right ventricle. A total of 190 consecutive patients requiring ICDs for ventricular fibrillation and/or recurrent ventricular tachycardia were investigated at the time of ICD implantation (42 women, 148 men; mean age 61.9 +/- 12.0 years; mean left ventricular ejection fraction 42.7 +/- 16.6%). Coronary artery disease was present in 139 patients; nonischemic dilated cardiomyopathy in 34 patients; and other etiologies in 17 patients; 47 patients had undergone previous cardiac surgery. Regardless of optimal pacing and sensing parameters, for patients having DFTs > 15, we repositioned the distal coil of the endocardial lead system toward the intraventricular septum to include this part of both ventricles within the electrical defibrillating field. In 177 of 190 patients, induced ventricular fibrillation was successfully terminated with 15 J (group II). In all patients, repositioning was successful within a 15 J energy level (100% success). The mean DFT(plus) was 7.3 +/- 3.5 J (group I) and 11.0 +/- 4.5 J (group II; psimple and effective method to reduce intraoperative high DFTs. As a result of this procedure, ICDs with a 20 J output should be sufficient for the vast majority (87%) of our patients. Furthermore, we were able to avoid additional subcutaneous or epicardial electrodes in all patients.

  1. Energy efficiency in future wireless networks: cognitive radio standardization requirements

    CSIR Research Space (South Africa)

    Masonta, M

    2012-09-01

    Full Text Available Energy consumption of mobile and wireless networks and devices is significant, indirectly increasing greenhouse gas emissions and energy costs for operators. Cognitive radio (CR) solutions can save energy for such networks and devices; moreover...

  2. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  3. Energy labels for refrigeration / AC equipment minimum efficiency requirements

    NARCIS (Netherlands)

    Gerwen, R.J.M. van; Sluis, S.M. van der

    1998-01-01

    Energy labelling for refrigeration and air conditioning equipment is one of the best ways to stimulate energy efficiency and energy saving, without limiting free trade. Particularly in the European Union, interest in energy labelling is increasing and for some product groups mandatory or voluntary

  4. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  5. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generators under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.

  6. Body size and human energy requirements: reduced mass-specific resting energy expenditure in tall adults.

    Science.gov (United States)

    Heymsfield, Steven B; Childers, Douglas; Beetsch, Joel; Allison, David B; Pietrobelli, Angelo

    2007-11-01

    Two observations favor the presence of a lower mass-specific resting energy expenditure (REE/weight) in taller adult humans: an earlier report of height (H)-related differences in relative body composition; and a combined model based on Quetelet and Kleiber's classic equations suggesting that REE/weight proportional, variantH(-0.5). This study tested the hypothesis stating that mass-specific REE scales negatively to height with a secondary aim exploration of related associations between height, weight (W), surface area (SA), and REE. Two independent data sets (n = 344 and 884) were evaluated, both with REE measured by indirect calorimetry and the smaller of the two including fat estimates by dual-energy X-ray absorptiometry. Results support Quetelet's equation (W proportional, variantH(2)), but Kleiber's equation approached the interspecific mammal form (REE proportional, variantW(0.75)) only after adding adiposity measures to weight and age as REE predictors. REE/weight scaled as H( approximately (-0.5)) in support of the hypothesis with P values ranging from 0.17 to <0.001. REE and SA both scaled as H( approximately 1.5), and REE/SA was nonsignificantly correlated with height in all groups. These observations suggest that adiposity needs to be considered when evaluating the intraspecific scaling of REE to weight; that relative to their weight, taller subjects require a lower energy intake for replacing resting heat losses than shorter subjects; that fasting endurance, approximated as fat mass/REE, increases as H(0.5); and that thermal balance is maintained independent of stature by evident stable associations between resting heat production and capacity of external heat release. These observations have implications for the modeling of adult human energy requirements and associate with anthropological concepts founded on body size.

  7. Energy and protein requirements for growth of the local domestic ...

    African Journals Online (AJOL)

    The diet 3 in the grower phase improved growth with the highest EFU, 0.12, and was better utilized by the birds than in the chick starter phase where it was least utilized. High energy, high protein diet enhanced growth while low energy, high protein diet did not support maximum growth especially in the chick starter phase.

  8. Longitudinal change in energy expenditure and effects on energy requirements of the elderly

    Science.gov (United States)

    2013-01-01

    Background Very little is known about the longitudinal changes in energy requirements in late life. The purposes of this study were to: (1) determine the energy requirements in late life and how they changed during a 7 year time-span, (2) determine whether changes in fat free mass (FFM) were related to changes in resting metabolic rate (RMR), and (3) determine the accuracy of predicted total energy expenditure (TEE) to measured TEE. Methods TEE was assessed via doubly labeled water (DLW) technique in older adults in both 1999 (n = 302; age: 74 ± 2.9 yrs) and again in 2006 (n = 87 age: 82 ± 3.1 yrs). RMR was measured with indirect calorimetry, and body composition was assessed with dual-energy x-ray absorptiometry. Results The energy requirements in the 9th decade of life were 2208 ± 376 kcal/d for men and 1814 ± 337 kcal/d for women. This was a significant decrease from the energy requirements in the 8th decade of life in men (2482 ± 476 kcal/d vs. 2208 ± 376 kcal/d) but not in women (1892 ± 271 kcal/d vs. 1814 ± 337 kcal/d). In addition to TEE, RMR, and activity EE (AEE) also decreased in men, but not women, while FFM decreased in both men and women. The changes in FFM were correlated with changes in RMR for men (r = 0.49, p < 0.05) but not for women (r = −0.08, ns). Measured TEE was similar to Dietary Reference Intake (DRI) predicted TEE for men (2208 ± 56 vs. 2305 ± 35 kcal/d) and women (1814 ± 42 vs. 1781 ± 20 kcal/d). However, measured TEE was different than the World Health Organization (WHO) predicted TEE in men (2208 ± 56 vs. 2915 ± 31 kcal/d (p < 0.05)) and women (1814 ± 42 vs. 2315 ± 21 kcal/d (p < 0.05)). Conclusions TEE, RMR and AEE decreased in men, but not women, from the 8th to 9th decade of life. The DRI equation to predict TEE was comparable to measured TEE, while the WHO equation over-predicted TEE in our elderly population

  9. International Requirements for Large Integration of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Molina-Garcia, Angel; Hansen, Anca Daniela; Muljadi, Ed

    2017-01-01

    Union to a 20% reduction in greenhouse gas emissions, to achieve a target of deriving 20% of the European Union's final energy consumption from renewable sources, and to achieve 20% improvement in energy efficiency both by the year 2020 [1]. Member states have different individual goals to meet...... expansion of wind and solar photovoltaic (PV). The International Energy Agency's 2012 edition of the World Energy Outlook stated that the rapid increases in RES integration are underpinned by falling technology costs as well as rising fossilfuel prices and carbon pricing, but RES integration is also......Most European countries have concerns about the integration of large amounts of renewable energy sources (RES) into electric power systems, and this is currently a topic of growing interest. In January 2008, the European Commission published the 2020 package, which proposes committing the European...

  10. Cupolas minimize the energy required to melt ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Draper, A B

    1979-05-01

    Historically the cupola has been the most effective furnace for melting cast irons. Although its supremacy was challenged by electric melting furnaces in the 1960's, persisting energy scarcity and high cost have encouraged a resurgence of interest in cupola technology. Using the optimum design features of modern cupolas and the best melting practices, they can achieve melting efficiencies of 45% or more based on the energy value of the original coal. In contrast, electric melting only uses 21% of the energy in coal. Despite these facts, many foundrymen fear that there will be problems because of poor metallurgical control if they use cupolas. Yet experience has proven otherwise. In terms of energy conservation and economy it is better to use large cupolas as scrap melters in the steel industry. Yet there is still a deep rooted prejudice against the cupola plus basic oxygen furnace route to steel making.

  11. Renewable Energy Requirement Guidance for EPACT 2005 and EO 13423

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-18

    Describes what counts toward the federal goals, the definition of "new" for renewable power/renewable energy certificate (REC) purchases, and what types of on-site projects will get double credit (Section 203 (C)).

  12. Experience with Energy Efficiency Requirements for Electrical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This publication has been produced as part of the work programme in support of the Gleneagles Plan of Action (GPOA), where the IEA was requested to 'undertake a study to review existing global appliance standards and codes'. In accordance with the G8 request, this study investigates the coverage and impact of forms of minimum energy performance standards (MEPS) and comparative energy labelling programmes; which comprise the cornerstone of most IEA countries national energy efficiency strategy. This scope also reflects governments' aspirations to achieve ambitious targets for reducing greenhouse gas emissions. As a result, this study does not address endorsement labelling and associated voluntary programmes, although these are also important policy tools for national energy efficiency strategies.

  13. The direct and indirect energy requirement of households in the European Union

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Vringer, K.; Blok, K.

    2003-01-01

    In this article we evaluate the average energy requirement of households in 11 EU member states. By investigating both the direct (electricity, natural gas, gasoline, etc.) and the indirect energy requirement, i.e. the energy embodied in consumer goods and services, we add to research done on only

  14. Dynamic facades, the smart way of meeting the energy requirements

    DEFF Research Database (Denmark)

    Johnsen, Kjeld; Winther, Frederik Vilbrad

    2015-01-01

    The paper describes an innovative dynamic façade system, developed in cooperation between two industrial companies, the Danish Building Research Institute and Aalborg University, Den¬mark. The system, named Energy Frames, is a newly developed industrially produced façade system based on the exper......The paper describes an innovative dynamic façade system, developed in cooperation between two industrial companies, the Danish Building Research Institute and Aalborg University, Den¬mark. The system, named Energy Frames, is a newly developed industrially produced façade system based...

  15. Energy requirements of lean and overweight women, assessed by indirect calorimetry

    NARCIS (Netherlands)

    Boer, de J.O.

    1985-01-01

    The prevalence of overweight in the developed world and the increased mortality and morbidity risk of overweight people stimulate research into the imbalance between energy intake and energy expenditure. Little information is available about the 24 hour energy expenditure and energy requirement of

  16. The Giant Reed as an energy crop: assessing the energy requirements within its supply chain

    DEFF Research Database (Denmark)

    Rodias, Efthymis; Busato, P.; Bochtis, Dionysis

    2013-01-01

    Biomass energy is one form of renewable energy sources that are in the core of interesting for many researchers. There many different biomass sources that can be exploited for energy production, such as crop residues, waste materials, forestry residues and energy crops. Regarding energy crops......, there are many different types of crops significantly varies in terms of energy potential yields, production and provision methods, etc. To this end, a thoroughly assessment of the energy inputs and outputs of each potential energy crop is necessary. In this paper, the Giant Reed is evaluated energetically...... as a potential energy crop. The assessment regards a 10 year period. The considered energy elements include direct inputs (e.g. fuel consumption) as well as indirect inputs (e.g. embodied energy of materials and machinery). According to the results, the balance between the estimated total energy input...

  17. Energy performance requirements using the cost-optimal methodology

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    2013-01-01

    The Concerted Action EPBD (CA EPBD) has the main objective of assisting the EU Member States (MS) transpose and implement the recast Directive 2010/31/EU on the Energy Performance of Buildings (EPBD), published on 19 May 2010, as well as the continued implementation of the actions initiated with ...

  18. Energy expenditure and food requirement of Cassin's Auklets provisioning nestlings

    NARCIS (Netherlands)

    Hodum, PJ; Sydeman, WJ; Visser, GH; Weathers, WW

    We used the doubly-labeled water technique to measure the field metabolic rate (FMR) of free-ranging adult Cassin's Auklets (Ptychoramphus aleuticus) that were provisioning half-grown nestlings. FMR averaged 3.68 +/- 0.38 mL CO(2) g(-1) hr(-1) (n = 9), which is equivalent to a daily energy

  19. Energy requirement for the production of silicon solar arrays

    Science.gov (United States)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Morrison, A.

    1977-01-01

    An assessment of potential changes and alternative technologies which could impact the photovoltaic manufacturing process is presented. Topics discussed include: a multiple wire saw, ribbon growth techniques, silicon casting, and a computer model for a large-scale solar power plant. Emphasis is placed on reducing the energy demands of the manufacturing process.

  20. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  1. The Effects of Normothermic and Hypothermic Cardiopulmonary Bypass Upon Defibrillation Energy Requirements and Transmyocardial Impedance

    National Research Council Canada - National Science Library

    Martin, David

    1993-01-01

    .... To evaluate these questions we studied the effect of controlled hypothermia upon defibrillation energy requirements and transcardiac impedance in a canine model of cardiopulmonary bypass in which 26...

  2. The gas turbine - a bundle of energy - requires tender care

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, J.; Uronen, J.; Leisio, C. [ed.

    1997-11-01

    The ability of a power plant to generate energy economically depends to a great extent on the functioning of the turbine. These days, an increasingly large number of these power plant `motors` are gas turbines. IVO`s expertise in the operation, maintenance and repair of gas turbines is based on long practical experience and the company`s own research. And IVO is also no stranger to the design and construction of new gas turbine plants

  3. Application analysis of solar total energy systems to the residential sector. Volume II, energy requirements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This project analyzed the application of solar total energy systems to appropriate segments of the residential sector and determined their market penetration potential. This volume covers the work done on energy requirements definition and includes the following: (1) identification of the single-family and multi-family market segments; (2) regionalization of the United States; (3) electrical and thermal load requirements, including time-dependent profiles; (4) effect of conservation measures on energy requirements; and (5) verification of simulated load data with real data.

  4. The direct and indirect energy requirement of households in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Reinders, A.H.M.E. [University of Twente, Enschede (Netherlands). Laboratory of Design; Vringer, K. [National Institute of Public Health and Environment, Bilthoven (Netherlands). Laboratory of Waste, Materials and Emissions; Blok, K. [Utrecht University (Netherlands). Faculty of Chemistry

    2003-01-01

    In this article we evaluate the average energy requirement of households in 11 EU member states. By investigating both the direct (electricity, natural gas, gasoline, etc.) and the indirect energy requirement, i.e. the energy embodied in consumer goods and services, we add to research done on only the direct household energy requirement. Our analysis is mainly based on data of expenditures of households and the associated energy intensifies of consumer goods. We found that differences between countries in the total energy requirement of households are mainly due to differences in total household expenditure. In particular, the indirect energy requirement is linearly related to the total household expenditure. The share of direct energy to the total energy requirement in different countries varies from 34% up to 64%. Differences in climate do not fully account for this variation. Corrected for total household expenditure, indirect energy requirement may vary significantly per country in the consumption classes 'food, beverages and tobacco', 'recreation and culture', 'housing', and 'hotels, cafes and restaurants'. (author)

  5. Attaining the Photometric Precision Required by Future Dark Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, Christopher [Harvard Univ., Cambridge, MA (United States)

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  6. 10 CFR 905.17 - What are the requirements for the energy efficiency and/or renewable energy report (EE/RE report...

    Science.gov (United States)

    2010-01-01

    ... renewable energy report (EE/RE report) alternative? 905.17 Section 905.17 Energy DEPARTMENT OF ENERGY ENERGY... energy efficiency and/or renewable energy report (EE/RE report) alternative? (a) Requests to submit an EE..., including any requirements for documenting customer energy efficiency and renewable energy activities. (b...

  7. The Trouble with Chemical Energy: Why Understanding Bond Energies Requires an Interdisciplinary Systems Approach

    Science.gov (United States)

    Cooper, Melanie M.; Klymkowsky, Michael W.

    2013-01-01

    Helping students understand "chemical energy" is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk…

  8. Energy and lysine requirements and balances of sows during transition and lactation: A factorial approach

    DEFF Research Database (Denmark)

    Feyera, Takele; Theil, Peter Kappel

    2017-01-01

    This study aimed to quantify daily requirements for metabolizable energy (ME) and standard ileal digestible (SID) lysine in late gestating and lactating sows using a factorial approach. Metabolizable energy and SID lysine required for fetal and mammary growth, colostrum and milk production, uteri...

  9. 48 CFR 952.226-72 - Energy Policy Act subcontracting goals and reporting requirements.

    Science.gov (United States)

    2010-10-01

    ... subcontracting goals and reporting requirements. 952.226-72 Section 952.226-72 Federal Acquisition Regulations... Provisions and Clauses 952.226-72 Energy Policy Act subcontracting goals and reporting requirements. As prescribed in 926.7007(c), insert the following clause: Energy Policy Act Subcontracting Goals and Reporting...

  10. Determining required valve performance for discrete control of PTO cylinders for wave energy

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2012-01-01

    investigates the required valve performance to achieve this energy efficient operation, while meeting basic dynamic requirements. The components making up the total energy loss during shifting is identified by analytically expressing the losses from the governing differential equations. From the analysis...

  11. Implications of cost optimum calculations on energy performance requirements in Member States

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Wittchen, Kim Bjarne

    2015-01-01

    This report summarises the work done within the Concerted Action Energy Performance of Buildings Directive (CA EPBD) from January 2011 to May 2014 in order to meet the European Commission's requirement for calculating cost-optimal levels of buildings’ energy performance for new and existing...... buildings. The requirement for performing the calculations is stated in the Directive on the Energy Performance of Buildings (recast) 2010/31/EU1. The calculation procedure is outlined in the comparative methodology framework2 for calculating cost-optimal levels of minimum energy performance requirements...

  12. Energy use pattern and optimization of energy required for broiler production using data envelopment analysis

    Directory of Open Access Journals (Sweden)

    Sama Amid

    2016-06-01

    Full Text Available A literature review shows that energy consumption in agricultural production in Iran is not efficient and a high degree of inefficiency in broiler production exists in Iran. Energy consumption of broiler production in Ardabil province of Iran was studied and the non-parametric method of data envelopment analysis (DEA was used to analyze energy efficiency, separate efficient from inefficient broiler producers, and calculate wasteful use of energy to optimize energy. Data was collected using face-to-face questionnaires from 70 broiler farmers in the study area. Constant returns to scale (CCR and variable returns to scale (BCC models of DEA were applied to assess the technical efficiency of broiler production. The results indicated that total energy use was 154,283 MJ (1000 bird−1 and the share of fuel at 61.4% was the highest of all inputs. The indices of energy efficiency, energy productivity, specific energy, and net energy were found to be 0.18, 0.02 kg MJ−1, 59.56 MJ kg−1, and −126,836 MJ (1000 bird−1, respectively. The DEA results revealed that 40% and 22.86% of total units were efficient based on the CCR and BCC models, respectively. The average technical, pure technical, and scale efficiency of broiler farmers was 0.88, 0.93, and 0.95, respectively. The results showed that 14.53% of total energy use could be saved by converting the present units to optimal conditions. The contribution of fuel input to total energy savings was 72% and was the largest share, followed by feed and electricity energy inputs. The results of this study indicate that there is good potential for increasing energy efficiency of broiler production in Iran by following the recommendations for efficient energy use.

  13. ENERGY-REQUIREMENTS FOR MOLT IN THE KESTREL FALCO-TINNUNCULUS

    NARCIS (Netherlands)

    DIETZ, MW; DAAN, S; MASMAN, D

    1992-01-01

    We estimated energy requirements for plumage replacement in the kestrel (Falco tinnunculus) by comparing O2 consumption Vo2 and metabolizable energy intake during molt and nonmolt. The energy expenditure for feather synthesis (S) as derived from the regression of basal metabolic rate (BMR) on molt

  14. Case study of the Brownell low energy requirement house

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R F; Krajewski, R F; Dennehy, G

    1979-05-01

    An evaluation is made of the design and thermal performance of an innovative house built in 1977 in the Adirondacks area of New York State. The house has a very tight and well-insulated envelope, with the rigid insulation board applied to the outside of the frame. Passive solar gain through south-facing glass, along with internal free sources of heat, are shown to provide a substantial part of the building's heating requirements. Effective integral thermal storage, provided by the exposed interior structure, serves to keep interior temperature excursions within acceptable limits. Additional remote storage is provided in the form of a large thermal storage sand bed, with air ducts, located below the basement floor. Calculations and measured performance data show that the house's space heating needs are only about 40% of those of a similar size house built to HUD minimum property standards, and less than 25% of those of a typical inventory house in the Northeast United States.

  15. Comparison of 2006 IECC and 2009 IECC Commercial Energy Code Requirements for Kansas City, MO

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yunzhi; Gowri, Krishnan

    2011-03-22

    This report summarizes code requirements and energy savings of commercial buildings in climate zone 4 built to the 2009 IECC when compared to the 2006 IECC. In general, the 2009 IECC has higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment (HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted). The energy analysis results show that residential and nonresidential commercial buildings meeting the 2009 IECC requirements save between 6.1% and 9.0% site energy, and between 6.4% and 7.7% energy cost when compared to 2006 IECC. Analysis also shows that semiheated buildings have energy and cost savings of 3.9% and 5.6%.

  16. Analysis of the electrical energy requirements of the GSI facility

    CERN Document Server

    Ripp, Christopher

    2013-01-01

    Die Veränderung auf dem deutschen Energiemarkt durch die Energiewende bringt eine Viel-zahl von Problemen mit sich. Der stetig ansteigende Ausbau von erneuerbaren Energien und die daraus resultierende starke Schwankung der eingespeisten Energiemengen zwingen die Netzbetreiber zum Ausbau der Stromnetze [1]. Die dadurch verursachten Kosten lassen die Netznutzungsgebühren steigen, welche an die Endkunden weitergegeben werden. Ebenfalls stieg die EEG-Umlage (Erneuerbare-Energie-Gesetz) von 3,6ct/kWh im Jahr 2012 über 5,3ct/kWh im Jahr 2013 auf 6,3ct/kWh für das Jahr 2014 [2], [3], [4]. Die extrem schnell steigenden Energiekosten zwingen die Verbraucher zur Erhöhung ihrer Energieeffizienz, um die laufenden Kosten so niedrig wie möglich zu halten [3]. Dies verlangt nach innovativen Ansätzen und Lösungen im unternehmenseigenen Energiemanagement. Besonders For-schungseinrichtungen mit großem Energiebedarf müssen eine höhere Energieeffizienz reali-sieren, um bei knappen Budgets ihrem Forschungsauftrag gerec...

  17. Analysis of requirements for accelerating the development of geothermal energy resources in California

    Science.gov (United States)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  18. Energy-efficient Ship Operation – Training Requirements and Challenges

    Directory of Open Access Journals (Sweden)

    Michael Baldauf

    2013-06-01

    Full Text Available The International Maritime Organization (IMO, through its Maritime Environmental Protection Committee (MEPC, has been carrying out substantive work on the reduction and limitation of greenhouse gas emissions from international shipping since 1997, following the adoption of the Kyoto Protocol and the 1997 MARPOL Conference. While to date no mandatory GHG instrument for international shipping has been adopted, IMO has given significant consideration of the matter and has been working in accordance with an ambitious work plan with a view to adopting a package of technical provisions. Beside the efforts undertaken by IMO, it is assumed that e.g. optimized manoeuvring regimes have potential to contribute to a reduction of GHG emissions. Such procedures and supporting technologies can decrease the negative effects to the environment and also may reduce fuel consumption. However, related training has to be developed and to be integrated into existing course schemes accordingly. IMO intends to develop a Model Course aiming at promoting the energy-efficient operation of ships. This Course will contribute to the IMO’s environmental protection goals as set out in resolutions A.947(23 and A.998(25 by promulgating industry “best practices”, which reduce greenhouse gas emissions and the negative impact of global shipping on climate change. In this paper the outline of the research work will be introduced and the fundamental ideas and concepts are described. A concept for the overall structure and the development of suggested detailed content of the draft Model course will be exemplarily explained. Also, a developed draft module for the model course with samples of the suggested integrated practical exercises will be introduced and discussed. The materials and data in this publication have been obtained partly through capacity building research project of IAMU kindly supported by the International Association of Maritime Universities (IAMU and The Nippon

  19. Do changes in regulatory requirements for energy efficiency in single-family houses result in the expected energy savings

    DEFF Research Database (Denmark)

    Kjærbye, Vibeke; Larsen, Anders; Togeby, Mikael

    2011-01-01

    This paper explores how changes in regulatory requirements for energy efficiency in buildings (in the US also known as building energy codes) affect household energy consumption. The focus in this paper is on natural gas consumption by Danish single-family owner-occupied houses. Unlike most other...... papers investigating household energy consumption this paper uses a unique panel data set constructed by merging several administrative data bases. The data set describes house and household characteristics, outdoor temperature and actual metered natural gas consumption over 6 years (1998-2003). Applying...... advanced econometric methods we examine differences in heating energy consumption due to different building regulation requirements at the time of house construction. As for the effect of the building regulation, we find that changes in Danish building regulations have led to significant reductions...

  20. Improving cost-effectiveness and mitigating risks of renewable energy requirements

    Science.gov (United States)

    Griffin, James P.

    Policy makers at the federal and state levels of government are debating actions to reduce U.S. greenhouse gas emissions and dependence on oil as an energy source. Several concerns drive this debate: sharp rises in energy prices, increasing unease about the risks of climate change, energy security, and interest in expanding the domestic renewable energy industry. Renewable energy requirements are frequently proposed to address these concerns, and are currently in place, in various forms, at the federal and state levels of government. These policies specify that a certain portion of the energy supply come from renewable energy sources. This dissertation focuses on a specific proposal, known as 25 X 25, which requires 25% of electricity and motor vehicle transportation fuels supplied to U.S. consumers to come from renewable energy sources, such as wind power and ethanol, by 2025. This dissertation builds on prior energy policy analysis, and more specifically analyses of renewable energy requirements, by assessing the social welfare implications of a 25 x 25 policy and applying new methods of uncertainty analysis to multiple policy options decision makers can use to implement the policy. These methods identify policy options that can improve the cost-effectiveness and reduce the risks of renewable energy requirements. While the dissertation focuses on a specific policy, the research methods and findings are applicable to other renewable energy requirement policies. In the dissertation, I analyze six strategies for implementing a 25 x 25 policy across several hundred scenarios that represent plausible futures for uncertainties in energy markets, such as renewable energy costs, energy demand, and fossil fuel prices. The strategies vary in the availability of resources that qualify towards the policy requirement and the use of a "safety valve" that allows refiners and utilities to pay a constant fee after renewable energy costs reach a predetermined threshold. I test

  1. Energy requirements for maintenance and growth in 3- to 4-year-olds may be overestimated by existing equations

    NARCIS (Netherlands)

    Sijtsma, Anna; Corpeleijn, Eva; Sauer, Pieter J J

    Objectives: To give appropriate dietary advice to preschool children, an estimation of their energy requirements for both maintenance and activity is needed. We compared energy requirements for maintenance, measured by indirect calorimetry against existing equations predicting these requirements in

  2. Maintenance energy requirements of odor detection, explosive detection and human detection working dogs

    Directory of Open Access Journals (Sweden)

    Rebecca A. Mullis

    2015-02-01

    Full Text Available Despite their important role in security, little is known about the energy requirements of working dogs such as odor, explosive and human detection dogs. Previous researchers have evaluated the energy requirements of individual canine breeds as well as dogs in exercise roles such as sprint racing. This study is the first to evaluate the energy requirements of working dogs trained in odor, explosive and human detection. This retrospective study evaluated twenty adult dogs who maintained consistent body weights over a six month period. During this time, the average energy consumption was $136\\pm 38~\\mathrm{kcal}\\cdot {\\mathrm{BW}}_{\\mathrm{kg}}^{0.75}$136±38kcal⋅BWkg0.75 or two times the calculated resting energy requirement ($\\mathrm{RER}=70~\\mathrm{kcal}\\cdot {\\mathrm{BW}}_{\\mathrm{kg}}^{0.75}$RER=70kcal⋅BWkg0.75. No statistical differences were found between breeds, age or sex, but a statistically significant association (p = 0.0033, R-square = 0.0854 was seen between the number of searches a dog performs and their energy requirement. Based on this study’s population, it appears that working dogs have maintenance energy requirements similar to the 1974 National Research Council’s (NRC maintenance energy requirement of $132~\\mathrm{kcal}\\cdot {\\mathrm{BW}}_{\\mathrm{kg}}^{0.75}$132kcal⋅BWkg0.75 (National Research Council (NRC, 1974 and the $139\\pm 42~\\mathrm{kcal}\\cdot {\\mathrm{BW}}_{\\mathrm{kg}}^{0.75}$139±42kcal⋅BWkg0.75 reported for young laboratory beagles (Rainbird & Kienzle, 1990. Additional research is needed to determine if these data can be applied to all odor, explosive and human detection dogs and to determine if other types of working dogs (tracking, search and rescue etc. have similar energy requirements.

  3. Summary of Energy Assessment Requirements under the Area Source Boiler Rule

    Science.gov (United States)

    This document provides an overview of the energy assessment requirements for the national emission standards for hazardous air pollutants (NESHAP) for area sources: industrial, commercial and Institutional boilers, 40 CFR Part 63, Subpart JJJJJJ.

  4. Requirements for supercomputing in energy research: The transition to massively parallel computing

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This report discusses: The emergence of a practical path to TeraFlop computing and beyond; requirements of energy research programs at DOE; implementation: supercomputer production computing environment on massively parallel computers; and implementation: user transition to massively parallel computing.

  5. An Analysis of BIM Web Service Requirements and Design to Support Energy Efficient Building Lifecycle

    Directory of Open Access Journals (Sweden)

    Yufei Jiang

    2016-04-01

    Full Text Available Energy Efficient Building (EEB design, construction, and operations require the development and sharing of building information among different individuals, organizations, and computer applications. The Representational State Transfer (RESTful Building Information Modeling (BIM web service is a solution to enable an effective exchange of data. This paper presents an investigation into the core RESTful web service requirements needed to effectively support the EEB project lifecycle. The requirements include information exchange requirements, distributed collaboration requirements, internal data storage requirements, and partial model query requirements. We also propose a RESTful web service design model on different abstraction layers to enhance the BIM lifecycle in energy efficient building design. We have implemented a RESTful Application Program Interface (API prototype on a mock BIMserver to demonstrate our idea. We evaluate our design by conducting a user study based on the Technology Acceptance Model (TAM. The results show that our design can enhance the efficiency of data exchange in EEB design scenarios.

  6. Effect of energy and protein levels on nutrient utilization and their requirements in growing Murrah buffaloes.

    Science.gov (United States)

    Prusty, Sonali; Kundu, Shivlal Singh; Mondal, Goutam; Sontakke, Umesh; Sharma, Vijay Kumar

    2016-04-01

    To evaluate different levels of energy and protein for optimum growth of Murrah male buffalo calves, a growth trial (150 days) was conducted on 30 calves (body weight 202.5 ± 6.8 kg). Six diets were formulated to provide 90, 100 and 110% protein level and 90 and 110% energy level requirements for buffalo calves, derived from ICAR 2013 recommendations for buffaloes. The crude protein (CP) intake was increased with higher dietary CP, whereas no effect of energy levels or interaction between protein and energy was observed on CP intake. There were significant effects (P dietary CP, whereas the N retention was similar among all the groups distributed as per different energy or protein levels. The nutrient intake (protein or energy) per kg body weight (BW)(0.75) at various fortnight intervals was regressed linearly from the average daily gain (ADG) per kg BW(0.75). By setting the average daily gain at zero in the developed regression equation, a maintenance requirement was obtained, i.e. 133.1 kcal ME, 6.45 g CP and 3.95 g metabolizable protein (MP) per kg BW(0.75). Requirement for growth was 6.12 kcal ME, 0.46 g CP and 0.32 g MP per kg BW(0.75) per day. Metabolizable amino acid requirement was estimated from partitioning of MP intake and ADG. The ME requirements were lower, whereas the MP requirement of Murrah buffaloes was higher than ICAR (2013) recommendations.

  7. Investigation of Energy Storage Systems, Its Advantage and Requirement in Various Locations in Australia

    Directory of Open Access Journals (Sweden)

    Mohammad Taufiqul Arif

    2013-01-01

    Full Text Available Storage minimizes the intermittent nature of renewable sources. Solar and wind are the two fostered source of renewable energy. However, the availability of useful solar radiation and wind speed varies with geographical locations, and also the duration of this energy sources varies with seasonal variation. With the available vast open land and geographical position, Australia has great potential for both solar and wind energies. However, both these sources require energy buffering to support load demand to ensure required power quality. Electricity demand is increasing gradually, and also Australia has target to achieve 20% electricity from renewable sources by 2020. For effective utilization of solar and wind energy potential location of these sources needs to be identified, and effective size of storage needs to be estimated for best utilization according to the load demand. Therefore this paper investigated wind speed and solar radiation data of 210 locations in Australia, identified the potential locations, and estimated required storage in various potential locations to support residential load demand. Advantages of storage were analyzed in terms of loading on distribution transformer and storage support during energy fluctuation from renewable energy. Further analysis showed that storage greatly reduces greenhouse gas emission and reduces overall cost of energy by maximizing the use of solar and wind energies.

  8. Estimating energy requirement in cashew (Anacardium occidentale L.) nut processing operations

    Energy Technology Data Exchange (ETDEWEB)

    Jekayinfa, S.O. [Department of Agricultural Engineering, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State (Nigeria); Bamgboye, A.I. [Department of Agricultural Engineering, University of Ibadan, Ibadan (Nigeria)

    2006-07-15

    This work deals with a study on estimation of energy consumption in eight readily defined unit operations of cashew nut processing. Data for analysis were collected from nine cashew nut mills stratified into small, medium and large categories to represent different mechanization levels. Series of equations were developed to easily compute requirements of electricity, fuel and labour for each of the unit operations. The computation of energy use was done using spreadsheet program on Microsoft Excel. The results of application test of the equations show that the total energy intensity in the cashew nut mills varied between 0.21 and 1.161MJ/kg. Electrical energy intensity varied between 0.0052 and 0.029MJ/kg, while thermal energy intensity varied from 0.085 to 1.064MJ/kg. The two identified energy intensive operations in cashew nut processing are cashew nut drying and cashew nut roasting, altogether accounting for over 85% of the total energy consumption in all the three mill categories. Thermal energy, obtained from diesel fuel, represented about 90% of the unit energy cost for cashew nut processing. The developed equations have therefore proven to be a useful tool for carrying out budgeting, forecasting energy requirements and planning plant expansion. (author)

  9. Analysis of Marine Corps Renewable Energy Planning to Meet Installation Energy Security Requirements

    Science.gov (United States)

    2013-12-03

    zero energy status is within reach if Miramar implements the recommended measures, replaces all remaining natural gas with biogas , and completely...Reclaimed Oil FSD Fuel Oil, Distillate Oil FSR Fuel Oil, Residual Oil FSX Fuel Oil, Mixed Gas NAG Natural Gas Gas PPG Propane/LPG/Butane Gas SHW...Year HQMC Headquarters, United States Marine Corps I&L Installations and Logistics kW Kilowatt kWh Kilowatt Hour LFG Landfill Gas MCAS Marine

  10. The energy requirements of Eurasian perch (Perca fluviatilis L.) in intensive culture

    DEFF Research Database (Denmark)

    Strand, A.; Overton, Julia Lynne; Alanara, A.

    2011-01-01

    requirements of this species. The aim of this study was to develop an energy requirement model for intensive culture of Eurasian perch reared at rational temperatures. Data on growth (the thermal unit growth coefficient, TGC, 3√g ‧ (℃ ‧ days)-1) and digestible energy need (DEN, kJ DE ‧ g -1) of Eurasian perch......Fish feed constitutes one of the largest costs in aquaculture, therefore inefficient feed management will have a negative impact on fish farm economics. Eurasian perch (Perca fluviatilis L.) is a relatively new candidate for freshwater aquaculture, however little is known about the energy...... of the daily theoretical weight increment (TWi, g ‧ day)1) and (ii) a linear DEN model. The TGC model was validated by comparing theoretical data with data obtained from a commercial growth trial. By combining the TWi and the DEN, a model describing the daily theoretical energy requirement (TER, kJ ‧ day)1...

  11. Energy Requirements in Early Life Are Similar for Male and Female Goat Kids

    Directory of Open Access Journals (Sweden)

    T. F. V. Bompadre

    2014-12-01

    Full Text Available Little is known about the gender differences in energetic requirements of goats in early life. In this study, we determined the energy requirements for maintenance and gain in intact male, castrated male and female Saanen goat kids using the comparative slaughter technique and provide new data on their body composition and energy efficiency. To determine the energy requirements for maintenance, we studied 21 intact males, 15 castrated males and 18 females (5.0±0.1 kg initial body weight (BW and 23±5 d of age using a split-plot design with the following main factors: three genders (intact males, castrated males, and females and three dry matter intake levels (ad libitum, 75% and 50% of ad libitum intake. A slaughter group included three kids, one for each nutritional plane, of each gender, and all three animals within a group were slaughtered when the ad libitum kid reached 15 kg in BW. Net energy requirements for gain were obtained for 17 intact males, eight castrated males and 15 females (5.1±0.4 kg BW and 23±13 d of age. Animals were fed ad libitum and slaughtered when they reached 5, 10, and 15 kg in BW. A digestion trial was performed with nine kids of each gender to determine digestible energy, metabolizable energy and energy metabolizability of the diet. Our results show no effect of gender on the energy requirements for maintenance and gain, and overall net energy for maintenance was 205.6 kJ/kg0.75 empty body weight gain (EBW (170.3 kJ/kg0.75 BW from 5 to 15 kg BW. Metabolizable energy for maintenance was calculated by iteration, assuming heat production equal to metabolizable energy intake at maintenance, and the result was 294.34 kJ/kg0.75 EBW and km of 0.70. As BW increased from 5 to 15 kg for all genders, the net energy required for gain increased from 9.5 to 12.0 kJ/g EBW gain (EWG, and assuming kg = 0.47, metabolizable energy for gain ranged from 20.2 to 25.5 kJ/g EWG. Our results indicate that it is not necessary to formulate

  12. Total embodied energy requirements and its decomposition in China's agricultural sector

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuyan [Department of Public Management, Beijing Institute of Petrochemical Technology, 19 Qingyuan North Road, Daxing District, Beijing 102617 (China); Center for Resources Science, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101 (China); Xie, Gaodi; Zhen, Lin [Center for Resources Science, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101 (China)

    2010-05-15

    Humanity faces the important challenge of understanding and integrating human and natural processes, including agriculture. In China, the scarcity of arable land (0.09 ha per capita), increasing population, and migration of the workforce to cities pose a significant challenge for food security. Agricultural energy productivity has therefore become a key concern. In this study, we used input-output analysis to measure energy productivity at a national agro-ecosystem scale for China using the total embodied energy requirement (TEER) to reveal hidden energy flows. We introduced a structural decomposition technique that reveals how changes in TEER for the agricultural sector were driven by changes in energy-use technology and the inter-relationships among two agricultural sectors (farming and animal husbandry). The results will help both policymakers and farmers to improve the efficiency and environmental compatibility of agricultural production. Declining TEER for both sectors means that China's overall agro-ecosystem has increased its energy productivity since 1978 due to improved relationships between the agricultural sectors and increased use of biological energy. However, the net positive energy income decreased in the farming sector and an increasing proportion of fossil energy use, accompanied by increased energy income in the animal sector, provide incentives to increase yield and decrease labor by using more fossil energy, thus raising more animals in the animal husbandry sector. Overuse of fossil energy since 1990 has resulted in decreasing fossil energy efficiency, requiring immediate measures to improve the use of fossil-fuel-intensive materials such as fertilizers. (author)

  13. Energy Storage Requirements for PV Power Ramp Rate Control in Northern Europe

    Directory of Open Access Journals (Sweden)

    Julius Schnabel

    2016-01-01

    Full Text Available Photovoltaic (PV generators suffer from fluctuating output power due to the highly fluctuating primary energy source. With significant PV penetration, these fluctuations can lead to power system instability and power quality problems. The use of energy storage systems as fluctuation compensators has been proposed as means to mitigate these problems. In this paper, the behavior of PV power fluctuations in Northern European climatic conditions and requirements for sizing the energy storage systems to compensate them have been investigated and compared to similar studies done in Southern European climate. These investigations have been performed through simulations that utilize measurements from the Tampere University of Technology solar PV power station research plant in Finland. An enhanced energy storage charging control strategy has been developed and tested. Energy storage capacity, power, and cycling requirements have been derived for different PV generator sizes and power ramp rate requirements. The developed control strategy leads to lesser performance requirements for the energy storage systems compared to the methods presented earlier. Further, some differences on the operation of PV generators in Northern and Southern European climates have been detected.

  14. Energy and lysine requirements and balances of sows during transition and lactation: A factorial approach

    DEFF Research Database (Denmark)

    Feyera, Takele; Theil, Peter Kappel

    2017-01-01

    This study aimed to quantify daily requirements for metabolizable energy (ME) and standard ileal digestible (SID) lysine in late gestating and lactating sows using a factorial approach. Metabolizable energy and SID lysine required for fetal and mammary growth, colostrum and milk production, uterine......, respectively, in the last 12 days of gestation. Oxidation/transamination, fetal growth, mammary growth, colostrum production, maintenance and uterine components were estimated to account for 29.5%, 22.7%, 16.8%, 16.1%, 10.4% and 4.5% of total SID lysine requirements, respectively, in the last 12 days...... of gestation. After parturition, ME and SID lysine requirements increased daily until peak lactation (day 17). At peak lactation, 95% and 72% of total required SID lysine and ME, respectively, were associated with milk production (including oxidation). Relative to day 104 of gestation, ME and SID lysine...

  15. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  16. Organizational Analysis of Energy Manpower Requirements in the United States Navy

    Science.gov (United States)

    2013-06-01

    traditional petroleum-based fuel. (From Navy, 2011).....................................10  Figure 5.  The Navy 1 geothermal plant near COSO Hot Springs...was to provide the Navy with a consolidated framework for understanding energy program manpower requirements and make Navy force structure...SECNAV goal of “Sailing the Great Green Fleet” by 2016. Figure 5. The Navy 1 geothermal plant near COSO Hot Springs, CA. (From Energy, 2013

  17. Required Assets for a Nuclear Energy Applied R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facility requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs

  18. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  19. Improving mine-mill water network design by reducing water and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gunson, A.J.; Klein, B.; Veiga, M. [British Columbia Univ., Vancouver, BC (Canada). Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining is an energy-intensive industry, and most processing mills use wet processes to separate minerals from ore. This paper discussed water reduction, reuse and recycling options for a mining and mill operation network. A mine water network design was then proposed in order to identify and reduce water and system energy requirements. This included (1) a description of site water balance, (2) a description of potential water sources, (3) a description of water consumers, (4) the construction of energy requirement matrices, and (5) the use of linear programming to reduce energy requirements. The design was used to determine a site water balance as well as to specify major water consumers during mining and mill processes. Potential water supply combinations, water metering technologies, and recycling options were evaluated in order to identify the most efficient energy and water use combinations. The method was used to highlight potential energy savings from the integration of heating and cooling systems with plant water systems. 43 refs., 4 tabs., 3 figs.

  20. Energy scenario of Madhya Pradesh (India) agriculture and its future requirements

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, C.L.; Makan, G.R. [College of Agricultural Engineering, Jabalpur, Madhya Pradesh (India). Energy Requirements in Agricultural Project

    1997-10-01

    The adoption of high yielding varieties, expansion of irrigation facilities, mechanization, and fertilizer-diesel-electricity combination have pushed the demand for commercial energy to a new height. The energy requirements for crop production for the year 1990-1991 were estimated, and the area under different crops was projected for the year 2000-2001 and 2005-2006. The total energy needs in 1990-1991 were estimated at 0.14 EJ (1EJ = 10{sup 18} J) and will be 0.26 EJ in 2000-2001 and 0.55 EJ in 2005-2006, resulting in an increase of 85% in 2000-2001 over the energy needs for the year 1990-1991. For irrigated crops, the main source of energy was fertilizers followed by electricity and diesel. However, for rain fed crops, the maximum energy was consumed in the form of seeds. In physical terms, for the year 1990-1991, there was a need of 2333 million units of electricity (1 unit = 1 kWh), 134 million litres of diesel, 0.460 million tons of nitrogenous fertilizers and 0.003 million tons of pesticide chemical. There would be an increase in the requirement of seeds for paddy, soyabean, maize, wheat, gram and mustard, whereas the requirement of seeds for sorghum, cotton, tuar and sugarcane will decrease with respect to their needs for the year 1990-1991. (Author)

  1. Modelling of capital requirements in the energy sector: capital market access. Final memorandum

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Formal modelling techniques for analyzing the capital requirements of energy industries have been performed at DOE. A survey has been undertaken of a number of models which forecast energy-sector capital requirements or which detail the interactions of the energy sector and the economy. Models are identified which can be useful as prototypes for some portion of DOE's modelling needs. The models are examined to determine any useful data bases which could serve as inputs to an original DOE model. A selected group of models are examined which can comply with the stated capabilities. The data sources being used by these models are covered and a catalog of the relevant data bases is provided. The models covered are: capital markets and capital availability models (Fossil 1, Bankers Trust Co., DRI Macro Model); models of physical capital requirements (Bechtel Supply Planning Model, ICF Oil and Gas Model and Coal Model, Stanford Research Institute National Energy Model); macroeconomic forecasting models with input-output analysis capabilities (Wharton Annual Long-Term Forecasting Model, Brookhaven/University of Illinois Model, Hudson-Jorgenson/Brookhaven Model); utility models (MIT Regional Electricity Model-Baughman Joskow, Teknekron Electric Utility Simulation Model); and others (DRI Energy Model, DRI/Zimmerman Coal Model, and Oak Ridge Residential Energy Use Model).

  2. Colloquy and workshops: regional implications of the engineering manpower requirements of the National Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Segool, H. D. [ed.

    1979-05-01

    The crucial interrelationships of engineering manpower, technological innovation, productivity and capital re-formaton were keynoted. Near-term, a study has indicated a much larger New England energy demand-reduction/economic/market potential, with a probably larger engineering manpower requirement, for energy-conservation measures characterized by technological innovation and cost-effective capital services than for alternative energy-supply measures. Federal, regional, and state energy program responsibilities described a wide-ranging panorama of activities among many possible energy options which conveyed much endeavor without identifiable engineering manpower demand coefficients. Similarly, engineering manpower assessment data was described as uneven and unfocused to the energy program at the national level, disaggregated data as non-existent at the regional/state levels, although some qualitative inferences were drawn. A separate abstract was prepared for each of the 16 individual presentations for the DOE Energy Data Base (EDB); 14 of these were selected for Energy Abstracts for Policy Analysis (EAPA) and 2 for Energy Research Abstracts (ERA).

  3. Capital requirements for the transportation of energy materials: 1979 arc estimates

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-29

    Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

  4. Assessing Energy Requirements in Women With Polycystic Ovary Syndrome: A Comparison Against Doubly Labeled Water.

    Science.gov (United States)

    Broskey, Nicholas T; Klempel, Monica C; Gilmore, L Anne; Sutton, Elizabeth F; Altazan, Abby D; Burton, Jeffrey H; Ravussin, Eric; Redman, Leanne M

    2017-06-01

    Weight loss is prescribed to offset the deleterious consequences of polycystic ovary syndrome (PCOS), but a successful intervention requires an accurate assessment of energy requirements. Describe energy requirements in women with PCOS and evaluate common prediction equations compared with doubly labeled water (DLW). Cross-sectional study. Academic research center. Twenty-eight weight-stable women with PCOS completed a 14-day DLW study along with measures of body composition and resting metabolic rate and assessment of physical activity by accelerometry. Total daily energy expenditure (TDEE) determined by DLW. TDEE was 2661 ± 373 kcal/d. TDEE estimated from four commonly used equations was within 4% to 6% of the TDEE measured by DLW. Hyperinsulinemia (fasting insulin and homeostatic model assessment of insulin resistance) was associated with TDEE estimates from all prediction equations (both r = 0.45; P = 0.02) but was not a significant covariate in a model that predicts TDEE. Similarly, hyperandrogenemia (total testosterone, free androgen index, and dehydroepiandrosterone sulfate) was not associated with TDEE. In weight-stable women with PCOS, the following equation derived from DLW can be used to determine energy requirements: TDEE (kcal/d) = 438 - [1.6 * Fat Mass (kg)] + [35.1 * Fat-Free Mass (kg)] + [16.2 * Age (y)]; R2 = 0.41; P = 0.005. Established equations using weight, height, and age performed well for predicting energy requirements in weight-stable women with PCOS, but more precise estimates require an accurate assessment of physical activity. Our equation derived from DLW data, which incorporates habitual physical activity, can also be used in women with PCOS; however, additional studies are needed for model validation.

  5. Microalgae Oil Production: A Downstream Approach to Energy Requirements for the Minamisoma Pilot Plant

    Directory of Open Access Journals (Sweden)

    Dhani S. Wibawa

    2018-02-01

    Full Text Available This study investigates the potential of microalgae oil production as an alternative renewable energy source, in a pilot project located at Minamisoma City in the Fukushima Prefecture of Japan. The algal communities used in this research were the locally mixed species, which were mainly composed of Desmodesmus collected from the Minamisoma pilot project. The microalgae oil-production processes in Minamisoma consisted of three stages: cultivation, dewatering, and extraction. The estimated theoretical input-energy requirement for extracting oil was 137.25 MJ to process 50 m3 of microalgae, which was divided into cultivation 15.40 MJ, centrifuge 13.39 MJ, drum filter 14.17 MJ, and hydrothermal liquefaction (HTL 94.29 MJ. The energy profit ratio (EPR was 1.41. The total energy requirement was highest in the HTL process (68% followed by cultivation (11% and the drum filter (10%. The EPR value increased along with the yield in the cultivation process. Using HTL, the microalgae biomass could be converted to bio-crude oil to increase the oil yield in the extraction process. Therefore, in the long run, the HTL process could help lower production costs, due to the lack of chemical additions, for extracting oil in the downstream estimation of the energy requirements for microalgae oil production.

  6. MEGASTAR: The Meaning of Energy Growth: An Assessment of Systems, Technologies, and Requirements

    Science.gov (United States)

    1974-01-01

    A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach that includes the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption for the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario. The total requirements and the energy subsystems for each scenario are assessed for their primary impacts in the areas of society, the environment, technology and the economy.

  7. Energy requirements for wet solvent extraction of lipids from microalgal biomass.

    Science.gov (United States)

    Martin, Gregory J O

    2016-04-01

    Biofuel production from microalgae requires energy efficient processes for extracting and converting triacylglyceride lipids to fuel, compatible with coproduction of protein feeds and nutraceuticals. Wet solvent extraction involves mechanical cell rupture, lipid extraction via solvent contacting, physical phase separation, thermal solvent recovery, and transesterification. A detailed analysis of the effect of key process parameters on the parasitic energy demand of this process was performed. On a well-to-pump basis, between 16% and 320% of the resultant biodiesel energy was consumed depending solely on the process parameters. Highly positive energy balances can be achieved, but only if a correctly designed process is used. This requires processing concentrated biomass (ca 25%w/w) with a high triacylglyceride content (ca 30%w/w), and an efficient extraction process employing a non-polar solvent, low solvent-to-paste ratio, and efficient energy recovery. These requirements preclude many laboratory scale processes and polar co-solvents as viable options for large-scale biofuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessment of energy requirements in proven and new copper processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, C.H.; Wadsworth, M.E.

    1980-12-31

    Energy requirements are presented for thirteen pyrometallurgical and eight hydrometallurgical processes for the production of copper. Front end processing, mining, mineral processing, gas cleaning, and acid plant as well as mass balances are included. Conventional reverberatory smelting is used as a basis for comparison. Recommendations for needed process research in copper production are presented.

  9. Utilization of respiratory energy in higher plants : requirements for 'maintenance' and transport processes

    NARCIS (Netherlands)

    Bouma, T.J.

    1995-01-01

    Quantitative knowledge of both photosynthesis and respiration is required to understand plant growth and resulting crop yield. However, especially the nature of the energy demanding processes that are dependent on dark respiration in full-grown tissues is largely unknown. The main objective

  10. Study of impact energy required for effective cracking of dried oil ...

    African Journals Online (AJOL)

    This paper attempts to obtain the impact energy required for effective cracking of dried oil palm nuts to obtain high yield of whole kernels irrespective of sizes and varieties. This is necessary because small scale fanners involved in cracking nuts do obtain nuts in most cases from processing of bulk nuts of mixed varieties.

  11. A 2nd generation static model of greenhouse energy requirements (horticern) : a comparison with dynamic models

    CERN Document Server

    Jolliet, O; Munday, G L

    1989-01-01

    Optimisation of a greenhouse and its components requires a suitable model permitting precise determination of its energy requirements. Existing static models are simple but lack precision; dynamic models though more precise, are unsuitable for use over long periods and difficult to handle in practice. A theoretical study and measurements from the CERN trial greenhouse have allowed the development of new static model named "HORTICERN", precise and easy to use for predicting energy consumption and which takes into account effects of solar energy, wind and radiative loss to the sky. This paper compares the HORTICERN model with the dynamic models of Bot, Takakura, Van Bavel and Gembloux, and demonstrates that its precision is comparable; differences on average being less than 5%, it is independent of type of greenhouse (e.g. single or double glazing, Hortiplus, etc.) and climate. The HORTICERN method has been developed for PC use and is proving to be a powerful tool for greenhouse optimisation by research work...

  12. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    Science.gov (United States)

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-16

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

  13. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    Science.gov (United States)

    Lages Barbosa, Guilherme; Almeida Gadelha, Francisca Daiane; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M.; Halden, Rolf U.

    2015-01-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors’ knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  14. Strategic study on energy-protein requirements for local sheep: 5. Ewes during lactation phase

    Directory of Open Access Journals (Sweden)

    I-W Mathius

    2004-03-01

    Full Text Available Thirty-six Javanese thin-tail ewes in the end of late pregnancy phase were set out to study the energy and crude protein requirements during the first eight-week of lactation phase. The ewes were penned individually in doors and randomly assigned to a 3 x 3 factorial arrangement, consisting of three levels of energy (low, medium and high and three levels of crude protein (low, medium and high diets with four ewes per treatment. The diets were pelleted and offered four times daily in approximately equal amount. Feed intake, nutrient digestibility, body weight and milk production were recorded. Results showed that, total lamb birth weights was not affected, but protein content on the ration treatments significantly altered (P0.05, while crude protein content on the ration highly significantly affected (P<0.01. Based on data recorded, the energy and protein requirements for ewes during lactation phase are highly significantly depended on ewes’ live weight, milk production and the ratio of energy metabolism and crude protein of the ration. It was concluded that in order to fulfil the crude protein and energy needs of the ewes during lactation phase, the ration given should contain crude protein and energy as much as 16% (based on dry matter and 13.4 MJ/kg dry matter respectively.

  15. INDIRECT CALORIMETRY IN THE ASSESSMENT OF THE ENERGY REQUIREMENT IN OVERWEIGHT AND OBESE WOMEN

    Directory of Open Access Journals (Sweden)

    Ewa Lange

    2013-12-01

    Full Text Available Individual total energy expenditure may be calculated as a sum of basal energy requirement and energy expenditure associated with physical activity. Measurement of basal energy requirement is not often conducted in dietetic practice, but may be applied using indirect calorimetry. The aim of the analysis was to present the possibilities of using the Fitmate PRO monitor in the assessment of resting metabolic rate and basal energy expenditure with a method of indirect calorimetry in a group of 91 overweight and obese women in various age. The mean results of the resting metabolic rate measured with method of indirect calorimetry using the Fitmate PRO monitor did not differ in the age groups of overweight and obese women. The results of the resting metabolic rate measured with method of indirect calorimetry using the Fitmate PRO monitor were correlated with body mass, height, fat mass, muscle mass and waist circumference. The Fitmate PRO monitor may be a valuable tool in everyday dietetic practice to assess the basal energy expenditure with method of indirect calorimetry in a group of overweight and obese women.

  16. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    Directory of Open Access Journals (Sweden)

    Guilherme Lages Barbosa

    2015-06-01

    Full Text Available The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2 of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation, respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors’ knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power as particularly attractive regions for hydroponic agriculture.

  17. Construction products performances and basic requirements for fire safety of facades in energy rehabilitation of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Construction product means any product or kit which is produced and placed on the market for incorporation in a permanent manner in construction works, or parts thereof, and the performance of which has an effect on the performance of the construction works with respect to the basic requirements for construction works. Safety in case of fire and Energy economy and heat retention represent two among seven basic requirements which building has to meet according to contemporary technical rules on planning and construction. Performances of external walls building materials (particularly reaction to fire could significantly affect to fire spread on the façade and other building parts. Therefore, façade shaping and materialization in building renewal process, has to meet the fire safety requirement, as well as the energy requirement. Brief survey of fire protection regulations development in Serbia is presented in the paper. Preventive measures for fire risk reduction in building façade energy renewal are proposed according to contemporary fire safety requirements.

  18. Provision of protein and energy in relation to measured requirements in intensive care patients

    DEFF Research Database (Denmark)

    Allingstrup, Matilde Jo; Esmailzadeh, Negar; Knudsen, Anne Wilkens

    2012-01-01

    BACKGROUND & AIMS: Adequacy of nutritional support in intensive care patients is still a matter of investigation. This study aimed to relate mortality to provision, measured requirements and balances for energy and protein in ICU patients. DESIGN: Prospective observational cohort study of 113 ICU...... patients in a tertiary referral hospital. RESULTS: Death occurred earlier in the tertile of patients with the lowest provision of protein and amino acids. The results were confirmed in Cox regression analyses which showed a significantly decreased hazard ratio of death with increased protein provision......, also when adjusted for baseline prognostic variables (APACHE II, SOFA scores and age). Provision of energy, measured resting energy expenditure or energy and nitrogen balance was not related to mortality. The possible cause-effect relationship is discussed after a more detailed analysis of the initial...

  19. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  20. Provision of protein and energy in relation to measured requirements in intensive care patients.

    Science.gov (United States)

    Allingstrup, Matilde Jo; Esmailzadeh, Negar; Wilkens Knudsen, Anne; Espersen, Kurt; Hartvig Jensen, Tom; Wiis, Jørgen; Perner, Anders; Kondrup, Jens

    2012-08-01

    Adequacy of nutritional support in intensive care patients is still a matter of investigation. This study aimed to relate mortality to provision, measured requirements and balances for energy and protein in ICU patients. Prospective observational cohort study of 113 ICU patients in a tertiary referral hospital. Death occurred earlier in the tertile of patients with the lowest provision of protein and amino acids. The results were confirmed in Cox regression analyses which showed a significantly decreased hazard ratio of death with increased protein provision, also when adjusted for baseline prognostic variables (APACHE II, SOFA scores and age). Provision of energy, measured resting energy expenditure or energy and nitrogen balance was not related to mortality. The possible cause-effect relationship is discussed after a more detailed analysis of the initial part of the admission. In these severely ill ICU patients, a higher provision of protein and amino acids was associated with a lower mortality. This was not the case for provision of energy or measured resting energy expenditure or energy or nitrogen balances. The hypothesis that higher provision of protein improves outcome should be tested in a randomised trial. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. Energy education requirements and availability: a higher education and industrial survey report. [Report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Surveys on the requirements of industry and commerce for higher education facilities to offer training in energy subjects indicate that industry does not generally view energy as a separate subject. Instead, it looks for a science or engineering background combined with management skills as the best way to address what industry sees as specific and practical energy problems. Industry does indicate an interest in brief mid-career education in energy matters, but it is concerned about the cost of releasing high-salary staff for additional education. Responses from the schools reveal a commitment to energy teaching as part of the need to meet national economic and energy needs. They also point out that the uncertainites of changing needs underscore the importance of teaching fundamentals to undergraduates and offering post-experience courses as a flexible response to immediate problems. Industry and educational institutions need to work more closely to develop appropriate curricula and to interchange personnel. Seven appendices include the questionnaires, personal interviews, institutional examples, post-experience courses, industrial and commercial comments, tables, and an energy subject survey by school. 15 tables. (DCK)

  2. Texas State Building Energy Code: Analysis of Potential Benefits and Costs of Commercial Lighting Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.; Belzer, David B.; Winiarski, David W.

    2005-09-15

    The State Energy Conservation Office of Texas has asked the U.S. Department of Energy to analyze the potential energy effect and cost-effectiveness of the lighting requirements in the 2003 IECC as they consider adoption of this energy code. The new provisions of interest in the lighting section of IECC 2003 include new lighting power densities (LPD) and requirements for automatic lighting shutoff controls. The potential effect of the new LPD values is analyzed as a comparison with previous values in the nationally available IECC codes and ASHRAE/IESNA 90.1. The basis for the analysis is a set of lighting models developed as part of the ASHRAE/IES code process, which is the basis for IECC 2003 LPD values. The use of the models allows for an effective comparison of values for various building types of interest to Texas state. Potential effects from control requirements are discussed, and available case study analysis results are provided but no comprehensive numerical evaluation is provided in this limited analysis effort.

  3. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  4. 78 FR 27982 - U.S. Flag Compliance With MARPOL Annex VI International Energy Efficiency (IEE) Requirements

    Science.gov (United States)

    2013-05-13

    ... SECURITY Coast Guard U.S. Flag Compliance With MARPOL Annex VI International Energy Efficiency (IEE... issuance of an International Energy Efficiency Certificate and the preparation of a Ship Energy Efficiency... Energy Efficiency Design Index. These requirements apply to all U.S. flag ships 400 gross tonnage and...

  5. Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future

    Science.gov (United States)

    Averyt, K.; Yates, D. N.; Meldrum, J.

    2014-12-01

    Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.

  6. The roles of body mass and gravity in determining the energy requirements of homoiotherms

    Science.gov (United States)

    Smith, A. H.

    1977-01-01

    Studies by Kleiber and by Brody in the 1930's established the 3/4 power of body weight as the unit of metabolic size for homoiotherms. Later Kleiber conceived of the energy requirement as a composite function, with a thermoregulatory component that is proportional to heat loss, and an antigravity component that is directly proportional to body weight. Maintenance feed requirements (F) have been measured with groups of small animals chronically exposed to several acceleration fields (G). Analysis of the results leads to an arithmetic relationship between the maintenance requirement and acceleration field strength: F sub G = F sub 0 + kG. When the equations are compared for groups of different body size, F sub 0 tends to vary between the 0.4 and 0.5 power of body mass - and k tends to be the same, irrespective of body mass. These findings tend to confirm the Kleiber concept of a composite nature of homoiotherm maintenance requirements.

  7. Effects of maternal energy efficiency on broiler chicken growth, feed conversion, residual feed intake, and residual maintenance metabolizable energy requirements.

    Science.gov (United States)

    Romero, L F; Zuidhof, M J; Renema, R A; Naeima, A; Robinson, F E

    2011-12-01

    This study investigated the effect of maternal energy efficiency on broiler chicken growth and energy efficiency from 7 to 40 d of age. Residual feed intake (RFI) and residual maintenance ME requirement (RME) were used to measure energetic efficiency. Residual feed intake was defined as the difference between observed and predicted ME intake, and RME(m) as the difference between observed and predicted maintenance ME requirements. A total of 144 Ross-708 broiler breeder pullets were placed in individual laying cages at 16 wk of age. Hens with the greatest RFI (n = 32) and lowest RFI (n = 32) values from 20 to 56 wk of age were selected (maternal RFI; RFI(mat)). Selected hens were retrospectively assigned to a high- or low-RME(m) category (maternal RME(m); RME(mmat)). At 59 wk, eggs were collected for 8 d and pedigree hatched. A total of 338 broilers grouped by dam and sex were raised in 128 cages where feed intake, BW, and temperature were recorded from 7 to 40 d to calculate broiler feed conversion ratios, RFI, and RME(m). The design was a 2 × 2 × 2 factorial with 2 levels of RFI(mat), 2 levels of RME(mmat), and 2 sexes. Neither the RFI(mat) nor RME(mmat) category affected broiler offpring BW or total conversion ratio. The high-RFI(mat) × low-RME(mmat) broilers had decreased growth to 40 d. Low-RFI(mat) × low-RME(mmat) broilers had a lower RME(m) (-5.93 kcal of ME/kg(0.60) per day) and RFI (-0.86 kcal of ME/d) than high-RFI(mat) × low-RME(mmat) broilers (RME(m) = 1.70 kcal of ME/kg(0.60) per day; RFI = 0.38 kcal of ME/d). Overall, hens with low maintenance requirements (low RME(m)) produced more efficient broilers when other efficiency related traits, represented in a lower RFI, were present. Exclusion of high-RFI × low-RME(m) hens from selection programs may improve energy efficiency at the broiler level. The RME(m) methodology is a viable alternative to evaluate energy efficiency in broilers because it avoids confounding environmental effects and allows

  8. Technical support document for proposed revision of the model energy code thermal envelope requirements

    Energy Technology Data Exchange (ETDEWEB)

    Conner, C.C.; Lucas, R.G.

    1993-02-01

    This report documents the development of the proposed revision of the council of American Building Officials' (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U[sub o]-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for group R'' residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

  9. Technical support document for proposed revision of the model energy code thermal envelope requirements

    Energy Technology Data Exchange (ETDEWEB)

    Conner, C.C.; Lucas, R.G.

    1993-02-01

    This report documents the development of the proposed revision of the council of American Building Officials` (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U{sub o}-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for ``group R`` residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

  10. Reduced tillage systems for irrigated cotton: Energy requirements and crop response

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W.; Thacker, G. [Univ. of Arizona, Tucson, AZ (United States)

    1997-09-01

    Arizona law mandates that plant material left in the field following cotton harvest be buried to reduce overwintering sites for insects. Conventional operations which accomplish this are energy-intensive. Reduced tillage systems offer significant energy savings over conventional systems, however growers have expressed concerns that compaction will increase over time, with resultant yield reduction. To address this concern, two reduced tillage systems were compared to a conventional system over six reasons at one site, while at another site, four reduced tillage systems were compared to the same conventional system over three seasons. The reduced tillage systems required significantly indicates that growers can reduce the inputs required to produce irrigated cotton, without negatively impacting yield, at least over the time intervals examined.

  11. Ultraviolet and solar photocatalytic ozonation of municipal wastewater: Catalyst reuse, energy requirements and toxicity assessment.

    Science.gov (United States)

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2017-11-01

    The present study evaluated the treatment of municipal wastewater containing phenol using solar and ultraviolet (UV) light photocatalytic ozonation processes to explore comparative performance. Important aspects such as catalyst reuse, mineralization of pollutants, energy requirements, and toxicity of treated wastewater which are crucial for practical implementation of the processes were explored. The activity of the photocatalysts did not change significantly even after three consecutive uses despite approximately 2% of the initial quantity of catalyst being lost in each run. Analysis of the change in average oxidation state (AOS) demonstrated the formation of more oxidized degradation products (ΔAOS values of 1.0-1.7) due to mineralization. The energy requirements were determined in terms of electrical energy per order (E EO ) and the collector area per order (A CO ). The E EO (kWh m -3  Order -1 ) values were 26.2 for ozonation, 38-47 for UV photocatalysis and 7-22 for UV photocatalytic ozonation processes. On the other hand, A CO (m 2  m -3  order -1 ) values were 31-69 for solar photocatalysis and 8-13 for solar photocatalytic ozonation. Thus photocatalytic ozonation processes required less energy input compared to the individual processes. The cytotoxicity of the wastewater was analysed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay with Vero cells. The cell viability increased from 28.7% in untreated wastewater to 80% in treated wastewater; thus showing that the treated wastewater was less toxic. The effectiveness of photocatalytic ozonation, recovery and reusability of the photocatalysts, as well as detoxification of the wastewater make this low energy consumption process attractive for wastewater remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards

    Science.gov (United States)

    Forrest, Kate E.; Tarroja, Brian; Zhang, Li; Shaffer, Brendan; Samuelsen, Scott

    2016-12-01

    Increased usage of renewable energy resources is key for energy system evolution to address environmental concerns. Capturing variable renewable power requires the use of energy storage to shift generation and load demand. The integration of plug-in electric vehicles, however, impacts the load demand profile and therefore the capacity of energy storage required to meet renewable utilization targets. This study examines how the intelligence of plug-in electric vehicle (PEV) integration impacts the required capacity of energy storage systems to meet renewable utilization targets for a large-scale energy system, using California as an example for meeting a 50% and 80% renewable portfolio standard (RPS) in 2030 and 2050. For an 80% RPS in 2050, immediate charging of PEVs requires the installation of an aggregate energy storage system with a power capacity of 60% of the installed renewable capacity and an energy capacity of 2.3% of annual renewable generation. With smart charging of PEVs, required power capacity drops to 16% and required energy capacity drops to 0.6%, and with vehicle-to-grid (V2G) charging, non-vehicle energy storage systems are no longer required. Overall, this study highlights the importance of intelligent PEV charging for minimizing the scale of infrastructure required to meet renewable utilization targets.

  13. Water and Energy Dietary Requirements and Endocrinology of Human Space Flight

    Science.gov (United States)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.

  14. Water-related environmental control requirements at municipal solid waste-to-energy conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Young, J C; Johnson, L D

    1980-09-01

    Water use and waste water production, water pollution control technology requirements, and water-related limitations to their design and commercialization are identified at municipal solid waste-to-energy conversion systems. In Part I, a summary of conclusions and recommendations provides concise statements of findings relative to water management and waste water treatment of each of four municipal solid waste-to-energy conversion categories investigated. These include: mass burning, with direct production of steam for use as a supplemental energy source; mechanical processing to produce a refuse-derived fuel (RDF) for co-firing in gas, coal or oil-fired power plants; pyrolysis for production of a burnable oil or gas; and biological conversion of organic wastes to methane. Part II contains a brief description of each waste-to-energy facility visited during the subject survey showing points of water use and wastewater production. One or more facilities of each type were selected for sampling of waste waters and follow-up tests to determine requirements for water-related environmental controls. A comprehensive summary of the results are presented. (MCW)

  15. An Improvement to Calculation of Lighting Energy Requirement in the European Standard EN 15193:2007

    Directory of Open Access Journals (Sweden)

    Meng Tian

    2014-12-01

    Full Text Available Daylighting has a recognized potential for electric energy savings when is used as a complement for artificial lighting. This study reviews the comprehensive calculation method for lighting energy requirement in non-residential buildings introduced by the European Standard EN 15193: 2007 and investigates its feasibility in China. The location of building influences the intensity and duration of daylight. In EN 15193 calculation method, the daylight supply factor, which represents the effect of daylighting on usage of artificial lighting, is the only factor related to location and calculated according to latitude, however the current method (EN15193: 2007 limits the latitude range from 38° to 60° north in Europe, for which the relationship between daylight supply factor and latitude is approximately linear. This study shows that a quadratic relationship needs to be used for a wider range of latitudes. The coefficients of the proposed quadratic relationship are determined for the classified daylight penetration and maintained illuminance level. Various control types are also considered. Prediction of energy requirement for lighting is obtained through building simulation tool EnergyPlus and the effects of some setting factors are discussed.

  16. Neutral beam energy and power requirements for expanding radius and full bore startup of tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, W.A.; Mense, A.T.; Attenberger, S.E.

    1979-09-01

    Natural beam power and energy requirements are compared for full density full bore and expanding radius startup scenarios in an elongated plasma, The Next Step (TNS), as a function of beam pulse time and plasma density. Because of the similarity of parameters, the results should also be applicable to Engineering Test Facility (ETF) and International Tokamak Reactor (INTOR) studies. A transport model consisting of neoclassical ion conduction and anomalous electron conduction and diffusion based on ALCATOR scaling leads to average densities in the range approx. 0.8 to 1.2 x 10/sup 14/ cm/sup -3/ being sufficient for ignition. Neutral deuterium beam energies in the range 120 to 180 keV are adequate for penetration, with the required power injected into the plasma decreasing with increasing beam energy. The neutral beam power decreases strongly with increasing beam pulse length b/sub b/ until t/sub b/ exceeds a few total energy confinement times, yielding b/sub b/ approx. = 4 to 6 s for the TNS plasma.

  17. Pressure and specific energy requirements for densification of compost derived from swine solid fraction

    Directory of Open Access Journals (Sweden)

    N. Pampuro

    2013-07-01

    Full Text Available Compost derived from swine solid fraction is a low density material (bulk density less than 500 kg m-3. This makes it costly to transport from production sites to areas where it could be effectively utilized for value-added applications such as in soil fertilization. Densification is one possible way to enhance the storage and transportation of the compost. This study therefore investigates the effect of pressure (20-110 MPa and pressure application time (5-120 s on the compaction characteristics of compost derived from swine solid fraction. Two different types of material have been used: composted swine solid fraction derived from mechanical separation and compost obtained by mixing the first material with wood chips. Results obtained showed that both the pressure applied and the pressure application time significantly affect the density of the compacted samples; while the specific compression energy is significantly affected only by the pressure. Best predictor equations were developed to predict compact density and the specific compression energy required by the densification process. The specific compression energy values based on the results from this study (6-32 kJ kg-1 were significantly lower than the specific energy required to manufacture pellets from biomass feedstock (typically 19-90 kJ kg-1.

  18. Estimation of the energy expenditure of grazing ruminants by incorporating dynamic body acceleration into a conventional energy requirement system.

    Science.gov (United States)

    Miwa, M; Oishi, K; Anzai, H; Kumagai, H; Ieiri, S; Hirooka, H

    2017-02-01

    The estimation of energy expenditure (EE) of grazing animals is of great importance for efficient animal management on pasture. In the present study, a method is proposed to estimate EE in grazing animals based on measurements of body acceleration of animals in combination with the conventional Agricultural and Food Research Council (AFRC) energy requirement system. Three-dimensional body acceleration and heart rate were recorded for tested animals under both grazing and housing management. An acceleration index, vectorial dynamic body acceleration (VeDBA), was used to calculate activity allowance (AC) during grazing and then incorporate it into the AFRC system to estimate the EE (EE derived from VeDBA [EE]) of the grazing animals. The method was applied to 3 farm ruminant species (7 cattle, 6 goats, and 4 sheep). Energy expenditure based on heart rate (EE) was also estimated as a reference. The result showed that larger VeDBA and heart rate values were obtained under grazing management, resulting in greater EE and EE under grazing management than under housing management. There were large differences between the EE estimated from the 2 methods, where EE values were greater than EE (averages of 163.4 and 142.5% for housing and grazing management, respectively); the EE was lower than the EE, whereas the increase in EE under grazing in comparison with housing conditions was larger than that in EE. These differences may have been due to the use of an equation for estimating EE derived under laboratory conditions and due to the presence of the effects of physiological, psychological, and environmental factors in addition to physical activity being included in measurements for the heart rate method. The present method allowed us to separate activity-specific EE (i.e., AC) from overall EE, and, in fact, AC under grazing management were about twice times as large as those under housing management for farm ruminant animals. There is evidence that the conventional energy

  19. Capital requirements for the transportation of energy materials: 1979 ARC estimates. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-13

    This report contains TERA's estimates of capital requirements to transport natural gas, crude oil, petroleum products, and coal in the United States by 1990. The low, medium, and high world-oil-price scenarios from the EIA's Mid-range Energy Forecasting System (MEFS), as used in the 1979 Annual Report to Congress (ARC), were provided as a basis for the analysis and represent three alternative futures. TERA's approach varies by energy commodity to make best use of the information and analytical tools available. Summaries of transportation investment requirements through 1990 are given. Total investment requirements for three modes (pipelines, rails, waterways and the three energy commodities can accumulate to a $49.9 to $50.9 billion range depending on the scenario. The scenarios are distinguished primarily by the world price of oil which, given deregulation of domestic oil prices, affects US oil prices even more profoundly than in the past. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past.

  20. Validation Study of Energy Requirements in Critically Ill, Obese Cancer Patients.

    Science.gov (United States)

    Tajchman, Sharla K; Tucker, Anne M; Cardenas-Turanzas, Marylou; Nates, Joseph L

    2016-08-01

    Current guidelines from the American Society for Parenteral and Enteral Nutrition and the Society of Critical Care Medicine (ASPEN/SCCM) regarding caloric requirements and the provision of nutrition support in critically ill, obese adults may not be suitable for similar patients with cancer. We sought to determine whether the current guidelines accurately estimate the energy requirements, as measured by indirect calorimetry (IC), of critically ill, obese cancer patients. This was a retrospective validation study of critically ill, obese cancer patients from March 1, 2007, to July 31, 2010. All patients ≥18 years of age with a body mass index (BMI) ≥30 kg/m(2) who underwent IC were included. We compared the measured energy expenditure (MEE) against the upper limit of the recommended guideline (25 kcal/kg of ideal body weight [IBW]) and MEE between medical and surgical patients in the intensive care unit. Thirty-three patients were included in this study. Mean MEE (28.7 ± 5.2 kcal/kg IBW) was significantly higher than 25 kcal/kg IBW (P nutrition requirements greater than the current guideline recommendations. No significant differences in MEE between medical and surgical patients in the ICU were observed. Critically ill, obese cancer patients require more calories than the current guidelines recommend, likely due to malignancy-associated metabolic variations. Our results demonstrate the need for IC studies to determine the energy requirements in these patients and for reassessment of the current recommendations. © 2015 American Society for Parenteral and Enteral Nutrition.

  1. Myo-inositol oxygenase is required for responses to low energy conditions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shannon R Alford

    2012-04-01

    Full Text Available myo-Inositol is a precursor for cell wall components, is used as a backbone of myo-inositol trisphosphate (Ins(1,4,5P3 and phosphatidylinositol phosphate signaling molecules, and is debated about whether it is also a precursor in an alternate ascorbic acid synthesis pathway. Plants control inositol homeostasis by regulation of key enzymes involved in myo-inositol synthesis and catabolism. Recent transcriptional profiling data indicate up-regulation of the myo-inositol oxygenase (MIOX genes under conditions in which energy or nutrients are limited. To test whether the MIOX genes are required for responses to low energy, we first examined MIOX2 and MIOX4 gene expression regulation by energy/nutrient conditions. We found that both MIOX2 and MIOX4 expression are suppressed by exogenous glucose addition in the shoot, but not in the root. Both genes were abundantly expressed during low energy/nutrient conditions. Loss-of-function mutants in MIOX genes contain alterations in myo-inositol levels and growth changes in the root. Miox2 mutants can be complemented with a MIOX2:green fluorescent protein fusion. Further we show here that MIOX2 is a cytoplasmic protein, while MIOX4 is present mostly in the cytoplasm, but also occasionally in the nucleus. Together, these data suggest that MIOX catabolism in the shoot may influence root growth responses during low energy/nutrient conditions.

  2. Revision of the energy conservation requirements in the manufactured home construction and safety standards

    Energy Technology Data Exchange (ETDEWEB)

    Conner, C C; Lee, A D; Lucas, R G; Taylor, Z T

    1992-02-01

    Thermal requirements were developed for manufactured (mobile) homes in response to legislation requiring the US Department of Housing and Urban Development (HUD) to revise its thermal standards for manufactured homes. A life-cycle cost minimization from the home owner's perspecetive was used to establish an optimum in a large number of cities for several prototype homes. The development of the economic, financial, and energy conservation measure parameters input into the life-cycle cost analysis was documented. The optimization results were aggregated to zones which were expressed as a maximum overall home U-value (thermal transmittance) requirement. The revised standard's costs, benefits, and net value to the consumer were quantified. 50 refs.

  3. Determination of energy and protein requirements for crossbred Holstein × Gyr preweaned dairy calves.

    Science.gov (United States)

    Silva, A L; Marcondes, M I; Detmann, E; Campos, M M; Machado, F S; Filho, S C Valadares; Castro, M M D; Dijkstra, J

    2017-02-01

    The objective was to quantify the energy and protein nutritional requirements of Holstein × Gyr crossbred preweaned dairy calves until 64 d of age. Thirty-nine Holstein × Gyr crossbred male calves with an average initial live weight (mean ± SEM; for all next values) of 36 ± 1.0 kg were used. Five calves were slaughtered at 4 d of life to estimate the animals' initial body composition (reference group). The remaining 34 calves were distributed in a completely randomized design in a 3 × 2 factorial arrangement consisting of 3 levels of milk (2, 4, or 8 L/d) and 2 levels of starter feed (presence or absence in diet). At 15 and 45 d of life, 4 animals from each treatment were subjected to digestibility trials with total collection of feces (for 72 h) and urine (for 24 h). At 64 d of age, all animals were slaughtered, their gastro-intestinal tract was washed to determine the empty body weight (EBW; kg), and their body tissues were sampled for subsequent analyses. The net energy requirement for maintenance was estimated using an exponential regression between metabolizable energy intake and heat production (both in Mcal/EBW0.75 per d) and was 74.3 ± 5.7 kcal/EBW0.75 per d, and was not affected by inclusion of starter feed in the diet. The metabolizable energy requirement for maintenance was determined at the point of zero energy retention in the body and was 105.2 ± 5.8 kcal/EBW0.75 per d. The net energy for gain was estimated using the EBW and the empty body gain (EBG; kg/d) as 0.0882 ± 0.0028 × EBW0.75 × EBG0.9050±0.0706. The metabolizable energy efficiency for gain (kg) of the milk was 57.4 ± 3.45%, and the kg of the starter feed was 39.3 ± 2.09%. The metabolizable protein requirement for maintenance was 3.52 ± 0.34 g/BW0.75 per d. The net protein required for each kilogram gained was estimated as 119.1 ± 32.9 × EBW0.0663±0.059. The metabolizable protein efficiency for gain was 77 ± 8.5% and was not affected by inclusion of starter feed in the diet

  4. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  5. Sex effects on net protein and energy requirements for growth of Saanen goats.

    Science.gov (United States)

    Souza, A P; St-Pierre, N R; Fernandes, M H R M; Almeida, A K; Vargas, J A C; Resende, K T; Teixeira, I A M A

    2017-06-01

    Requirements for growth in the different sexes remain poorly quantified in goats. The objective of this study was to develop equations for estimating net protein (NP G ) and net energy (NE G ) for growth in Saanen goats of different sexes from 5 to 45 kg of body weight (BW). A data set from 7 comparative slaughter studies (238 individual records) of Saanen goats was used. Allometric equations were developed to determine body protein and energy contents in the empty BW (EBW) as dependent variables and EBW as the allometric predictor. Parameter estimates were obtained using a linearized (log-transformation) expression of the allometric equations using the MIXED procedure in SAS software (SAS Institute Inc., Cary, NC). The model included the random effect of the study and the fixed effects of sex (intact male, castrated male, and female; n = 94, 73, and 71, respectively), EBW, and their interactions. Net requirements for growth were estimated as the first partial derivative of the allometric equations with respect to EBW. Additionally, net requirements for growth were evaluated based on the degree of maturity. Monte Carlo techniques were used to estimate the uncertainty of the calculated net requirement values. Sex affected allometric relationships for protein and energy in Saanen goats. The allometric equation for protein content in the EBW of intact and castrated males was log 10 protein (g) = 2.221 (±0.0224) + 1.015 (±0.0165) × log 10 EBW (kg). For females, the relationship was log 10 protein (g) = 2.277 (±0.0288) + 0.958 (±0.0218) × log 10 EBW (kg). Therefore, NP G for males was greater than for females. The allometric equation for the energy content in the EBW of intact males was log 10 energy (kcal) = 2.988 (±0.0323) + 1.240 (±0.0238) × log 10 EBW (kg); of castrated males, log 10 energy (kcal) = 2.873 (±0.0377) + 1.359 (±0.0283) × log 10 EBW (kg); and of females, log 10 energy (kcal) = 2.820 (±0.0377) + 1.442 (±0.0281) × log 10 EBW (kg). The NE G

  6. Establishing energy requirements for body weight maintenance: validation of an intake-balance method.

    Science.gov (United States)

    Heymsfield, Steven B; Peterson, Courtney M; Thomas, Diana M; Hirezi, Michael; Zhang, Bo; Smith, Steven; Bray, George; Redman, Leanne

    2017-06-26

    Experimentally establishing a group's body weight maintenance energy requirement is an important component of metabolism research. At present, the reference approach for measuring the metabolizable energy intake (MEI) from foods required for body weight maintenance in non-confined subjects is the doubly-labeled water (DLW)-total energy expenditure (TEE) method. In the current study, we evaluated an energy-intake weight balance method as an alternative to DLW that is more flexible and practical to apply in some settings. The hypothesis was tested that MEI from foods observed in a group of subjects maintaining a constant energy intake while keeping their weight within ±1 kg over 10 days is non-significantly different from DLW-measured TEE (TEEDLW). Six non-obese subjects evaluated as part of an earlier study completed the inpatient protocol that included a 3-day initial adjustment period. The group body weight coefficient of variation (X ± SD) during the 10-day balance period was 0.38 ± 0.10% and the slope of the regression line for body weight versus protocol day was non-significant at 1.8 g/day (R2, 0.002, p = 0.98). MEI from foods observed during the 10-day balance period (2390 ± 543 kcal/day) was non-significantly different (p = 0.96) from TEE measured by DLW (2373 ± 713 kcal/day); the MEI/TEEDLW ratio was 1.03 ± 0.15 (range 0.87-1.27) and the correlation between MEI from foods and TEEDLW was highly significant (R2, 0.88, p = 0.005). A carefully managed 10-day protocol that includes a constant MEI level from foods with weight stability (±1 kg) will provide a group's body weight maintenance energy requirement similar to that obtained with DLW. This approach opens the possibility of conducting affordable weight balance studies, shorter in duration than those previously reported, that are needed to answer a wide range of questions in clinical nutrition. Trial registration The study is registered at http://www.clinicaltrials.gov (NCT

  7. Distinct energy requirements for human memory CD4 T-cell homeostatic functions.

    Science.gov (United States)

    Taub, Dennis D; Hesdorffer, Charles S; Ferrucci, Luigi; Madara, Karen; Schwartz, Janice B; Goetzl, Edward J

    2013-01-01

    Differentiation and activation of CD4 memory T cells (T(mem) cells) require energy from different sources, but little is known about energy sources for maintenance and surveillance activities of unactivated T(mem) cells. Mitochondrial fatty acid oxidation (FAO) in human unactivated CD4 T(mem) cells was significantly enhanced by inhibition of glycolysis, with respective means of 1.7- and 4.5-fold for subjects 65 yr, and by stimulation of AMP-activated protein kinase, with respective means of 1.3- and 5.2-fold. However, CCL19 and sphingosine 1-phosphate (S1P), which control homeostatic lymphoid trafficking of unactivated T(mem) cells, altered FAO and glycolysis only minimally or not at all. Inhibition of CD4 T(mem)-cell basal FAO, but not basal glycolysis, significantly suppressed CCL19- and S1P-mediated adherence to collagen by >50 and 20%, respectively, and chemotaxis by >20 and 50%. Apoptosis of unactivated T(mem) cells induced by IL-2 deprivation or CCL19 was increased significantly by >150 and 70%, respectively, with inhibition of FAO and by >110 and 30% with inhibition of glycolysis. Anti-TCR antibody activation of T(mem) cells increased their chemotaxis to CCL5, which was dependent predominantly on glycolysis rather than FAO. The sources supplying energy for diverse functions of unactivated T(mem) cells differ from that required for function after immune activation.

  8. ECONOMIC ANALYSIS OF REQUIRED HEAT ENERGY FOR A RESIDENCE BY USING CONDENSING AND CONVENTIONAL COMBI BOILER

    Directory of Open Access Journals (Sweden)

    Muhammed Arslan Omar

    2016-06-01

    Full Text Available In this study, a comparison and economic analysis of energy required for heating and hot water by condensing and conventional combi for a family was performed. After determining the energy for the family the cost of consumption energy calculated which was supplied by each two types of combi. It was determined that using of condensing combi will provide the average 15,6% energy savings to family. Furthermore, the average 40% impairment of the exhaust gas temperature of condensing combi than conventional combi causes the reduction of emissions rate and decrease the global warming. Reduction of emissions is extremely important in terms of air pollution. Compared to a conventional combi the initial investment of a condensing combi is high, but due to usage of latent heat of water vapor in the exhaust gas the payback period is short, and therefore the cost difference could be ignored. This study emphasizes that, usage of the condensing combies which are compulsory in European Union countries, will contribute the family budgets and national economy.

  9. Energy and protein requirements for maintenance of dairy goats during pregnancy and their efficiencies of use.

    Science.gov (United States)

    Härter, C J; Lima, L D; Silva, H G O; Castagnino, D S; Rivera, A R; Resende, K T; Teixeira, I A M A

    2017-09-01

    It has been suggested that maintenance requirements are similar among animals of different physiological stages; however, important physiological changes occur in the maternal body during pregnancy. Therefore, the aim of this study was to determine the energy and protein requirements for the maintenance of pregnant dairy goats and to estimate their efficiency of energy and protein utilization for maintenance and pregnancy. We used 66 multiparous pregnant goats having 49.0 ± 1.59 kg initial BW (around the third or fourth parturition) arranged in a randomized block design with a 3 × 3 factorial scheme including slaughter at different days of pregnancy (DOP; 80, 110, and 140 d) and feed restriction (0, 20, and 40% feed restriction). The comparative slaughter technique was used to estimate energy and protein maintenance requirements. Goats slaughtered at 140 DOP were subjected to digestibility trials at around 80, 110, and 140 DOP to estimate diet metabolizability and N balance (NBAL). Metabolizability decreased with feed restriction and was 63.3 ± 2.16, 55.7 ± 2.35, and 58.2 ± 2.30% at 0, 20, and 40% of feed restriction, respectively ( < 0.01). There was no effect of DOP on NE or the requirements of ME for maintenance (ME), which were 197 and 315 kJ/kg empty body weight (EBW), respectively, and the efficiency of ME utilization for maintenance (k) was 0.63. Similarly, DOP did not affect thedaily net protein requirements for maintenance (NP) estimated using the comparative slaughter technique (1.38 ± 0.512 g/kg EBW; = 0.003) or the NP estimated using NBAL (2.49 ± 0.594 g/kg EBW; < 0.01). The MP requirement for maintenance (MP) estimated using the comparative slaughter technique was not affected by DOP and was 3.22 g MP/kg EBW ( < 0.01). The efficiency of MP utilization for maintenance (k) was 0.43. The efficiency of ME utilization for pregnancy (k) increased with the progress of pregnancy and was 0.058, 0.10, and 0.19 at 80, 110, and 140 DOP, respectively

  10. Energy and pressure requirements for compression of swine solid fraction compost

    Directory of Open Access Journals (Sweden)

    Niccolò Pampuro

    2013-09-01

    Full Text Available The excessive amount of pig slurry spread on soil has contributed to nitrate water pollution both in surface and in ground waters, especially in areas classified as vulnerable zones to nitrate in accordance with European Regulation (91/676/CEE. Several techniques have been developed to manage livestock slurries as cheaply and conveniently as possible and to reduce potential risks of environmental pollution. Among these techniques, solid-liquid separation of slurry is a common practice in Italy. The liquid fraction can be used for irrigation and the solid fraction, after aerobic stabilization, produces an organic compost rich in humic substances. However, compost derived from swine solid fraction is a low density material (bulk density less than 500 kgm–3. This makes it costly to transport composted swine solid fraction from production sites to areas where it could be effectively utilized for value-added applications such as in soil fertilization. Densification is one possible way to enhance the storage and transportation of the compost. This study therefore investigates the effect of pressure (20- 110 MPa and pressure application time (5-120 s on the compaction characteristics of compost derived from swine solid fraction. Two different types of material have been used: composted swine solid fraction derived from mechanical separation and compost obtained by mixing the first material with wood chips. Results obtained showed that both the pressure applied and the pressure application time significantly affect the density of the compacted samples; while the specific compression energy is significantly affected only by the pressure. Best predictor equations were developed to predict compact density and the specific compression energy required by the densification process. The specific compression energy values based on the results from this study (6-32 kJkg–1 were significantly lower than the specific energy required to manufacture pellets from

  11. Prediction of Draft Force and Energy Requirement for Subsoiling Operation with a Fuzzy Logic Approach

    Directory of Open Access Journals (Sweden)

    Y Abbaspour Gilandeh

    2013-09-01

    Full Text Available In this study, a knowledge-based fuzzy logic system was developed on experimental data and used to predict the draft force and energy requirement of tillage operation. In comparison with traditional methods, the fuzzy logic model acts more effectively in creating a relationship between multiple inputs to achieve an output signal in a nonlinear range. Field experiments were carried out in a sandy loam soil on coastal plain at the Edisto Research and Education Center of Clemson University near Blackville, South Carolina (Latitude 33˚ 21"N, Longitude 81˚ 18"W. In this paper, a fuzzy model based on Mamdani inference system has been used. This model was developed for predicting the changes of draft force and energy requirement for subsoiling operation. This fuzzy model contains 25 rules. In this investigation, the Mamdani Max-Min inference was used for deducing the mechanism (composition of fuzzy rules with input. The center of gravity defuzzification method was also used for conversion of the final output of the system into a classic number. The validity of the presented model was achieved by numerical error criterion, based on empirical data. The prediction results showed a close relationship between measured and predicted values such that the mean relative error of measured and predicted values were 3.1% and 2.94% for draft resistant force and energy required for subsoiling operation, respectively. The comparison between the fuzzy logic model and the regression models showed that the mean relative errors from the regression model are greater than that from the fuzzy logic model.

  12. Energy Efficient Operation of University Hostel Buildings Under Indoor Environmental Quality Requirements

    OpenAIRE

    Ahmed A. Medhat A. Fahim; Essam E. Khalil

    2012-01-01

    This paper investigates the influence of Indoor Environmental Quality [IEQ] requirements associated with occupation regimes on the criterion of energy demands for Heating, Ventilating and Air-Conditioning (HVAC) central systems installed in Cairo, Egypt. This paper focuses on the effects of occupation rate profiles with IEQ thermal parameters such as air dry-bulb temperatures and local air velocities. It is applied as a case study “10-Stories Hostel of 6000 m2 built-up area†that is utiliz...

  13. Distributed Control and Management of Renewable Electric Energy Resources for Future Grid Requirements

    DEFF Research Database (Denmark)

    Mokhtari, Ghassem; Anvari-Moghaddam, Amjad; Nourbakhsh, Ghavameddin

    2016-01-01

    It is anticipated that both medium- and low-voltage distribution networks will include high level of distributed renewable energy resources, in the future. The high penetration of these resources inevitably can introduce various power quality issues, including; overvoltage and overloading...... strategy is a promising approach to manage and utilise the resources in future distribution networks to effectively deal with grid electric quality issues and requirements. Jointly, utility and customers the owners of the resources in the network are considered as part of a practical coordination strategy...

  14. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    Energy Technology Data Exchange (ETDEWEB)

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  15. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF

  16. Energy and protein requirements of weaned male and female Saanen goats.

    Science.gov (United States)

    Figueiredo, F O M; Leite, R F; St-Pierre, N R; Resende, K T; Almeida, A K; Souza, A P; Teixeira, I A M A

    2017-10-01

    The objective of this research was to estimate the energy and protein requirements for maintenance and growth in male (castrated and intact) and female Saanen goat kids between 15 and 30 kg BW. To determine the net energy requirements for maintenance (NEm ) and the net protein requirements for maintenance (NPm ), 75 goats (25 castrated and 26 intact males and 24 females) were used. Twenty-one goats (seven castrated and eight intact males and six females) were randomly assigned for slaughter to estimate the initial empty body composition. The 54 remaining animals (18 castrated and 18 intact males and 18 females) were randomly assigned in a split-plot design using a 3 × 3 factorial arrangement with three sexes and three levels of intake (ad libitum and restricted feed to 75% or 50% of the ad libitum intake). Within each sex, six blocks (three goats per block) were formed and one goat was randomly assigned to each level of intake. The 75% and the 50% of ad libitum rationing were determined daily, based on the DMI of the animal fed ad libitum on the previous day. All animals within block were slaughtered when the animal fed ad libitum reached 30 kg BW. The net energy requirements for gain (NEg ) and the net protein requirements for gain (NPg ) were obtained using 58 animals (20 castrated and 20 intact males and 18 females). The animals were fed ad libitum and slaughtered at targeted BW (15, 23 or 30 kg). Sex did not affect NEg and NPm (277.8 kJ/kg0.75  BW day and 2.98 g CP/kg0.75  BW day respectively), as well as NPg (180.9 ± 6.48 g/kg EBW gain) in Saanen goat kids. However, castrated males and females had similar NEg (varied from 12.6 ± 0.424 to 17.9 ± 1.38 MJ/kg EBW gain), greater than intact males (varied from 9.74 ± 0.420 to 10.7 ± 0.984 MJ/kg EBW gain), as the BW increased from 15 to 30 kg. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  17. Opportunities and requirements for experimentation at high energy e/sup +/e/sup /minus// collider

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, C.; Baltay, C.; Barklow, T.L.; Burchat, P.R.; Burke, D.L.; Cooper, A.R.; Dib, C.; Feldman, G.J.; Gunion, J.F.; Haber, H.E.

    1988-05-01

    Over the past fifteen years of high-energy physics, electron-positron annihilation has been the most productive of all reactions probing the fundamental interactions. The e/sup +/e/sup /minus// annihilation process is unique in offering at the same time copious production of novel particles, low backgrounds from more conventional physics, and the most efficient use of the energy which an accelerator provides. These features have allowed the detailed characterization of the charm and bottom quark-antiquark systems and the unambiguous discovery of gluon jets---the crucial ingredients in the establishment of Quantum Chromodynamics as the correct theory of the strong interactions---as well as the discovery of the tau lepton and confirmation of the weak and electromagnetic properties of all the quarks and leptons at high energy. Over the past few years, experiments will begin at SLC and LEP, and we anticipate new discoveries from the detailed study of the Z/sup 0/ resonance. It is time, then to begin to think out how one might continue this mode experimentation to still higher energies. This document is the report of a committee convened by the Director of SLAC, Burton Richter, to set out the major physics goals of an e/sup +/e/sup /minus// collider in the energy range 600 GeV-1 TeV, corresponding to the next feasible step in accelerator technology. The committee was charged with the task of outlining the main experiments that such a collider might carry out and the requirements which those experiments place on the accelerator design. 106 refs., 105 figs., 13 tabs.

  18. An Investigation into Energy Requirements and Conservation Techniques for Sustainable Buildings

    Science.gov (United States)

    Robitaille, Jad

    Traditionally, societies use to design their built environment in a way that was in line with the climate and the geographical location that they evolved in, thereby supporting sustainable lifestyles (i.e. thick walls with small windows in cold climates). With the industrial revolution and the heavy use and reliance on cheap fossil fuels, it can be argued that the built environment has become more focused on aesthetics and cost savings rather than on true sustainability. This, in turn, has led to energy intensive practices associated with the construction of homes, buildings, cities and megalopolises. Environmental concerns with regards to the future have pushed people, entities and industries to search for ways to decrease human's energy dependency and/or to supply the demand in ways that are deemed sustainable. Efforts to address this concern with respect to the built environment were translated into 'green buildings', sustainable building technologies and high performance buildings that can be rated and/or licensed by selected certifying bodies with varying metrics of building construction and performance. The growing number of such systems has brought real concerns: Do certified sustainable buildings really achieve the level of sustainability (i.e. performance) they were intended to? For the purpose of this study, buildings' energy consumption will be analysed, as it is one of the main drivers when taking into consideration greenhouse gas emissions. Heating and cooling in the residential and commercial/institutional sector, combined account for approximately a fifth of the secondary energy use in Canada. For this reason, this research aims at evaluating the main rating systems in Canada based on the efficacy of their rating systems' certification methodology and the weighting and comparison of energy requirements under each scheme. It has been proven through numerous studies that major energy savings can be achieved by focusing primarily on building designs

  19. LongTerm Energy Efficiency Analysis Requires Solid Energy Statistics: The case of the German Basic Chemical Industry

    NARCIS (Netherlands)

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We

  20. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Troendle, Tobias Wolfgang

    2014-12-12

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  1. Quantum dynamics study of energy requirement on reactivity for the HBr + OH reaction with a negative-energy barrier

    Science.gov (United States)

    Wang, Yuping; Li, Yida; Wang, Dunyou

    2017-01-01

    A time-dependent, quantum reaction dynamics approach in full dimensional, six degrees of freedom was carried out to study the energy requirement on reactivity for the HBr + OH reaction with an early, negative energy barrier. The calculation shows both the HBr and OH vibrational excitations enhance the reactivity. However, even this reaction has a negative energy barrier, the calculation shows not all forms of energy are equally effective in promoting the reactivity. On the basis of equal amount of total energy, the vibrational energies of both the HBr and OH are more effective in enhancing the reactivity than the translational energy, whereas the rotational excitations of both the HBr and OH hinder the reactivity. The rate constants were also calculated for the temperature range between 5 to 500 K. The quantal rate constants have a better slope agreement with the experimental data than quasi-classical trajectory results.

  2. Cost optimal building performance requirements. Calculation methodology for reporting on national energy performance requirements on the basis of cost optimality within the framework of the EPBD

    Energy Technology Data Exchange (ETDEWEB)

    Boermans, T.; Bettgenhaeuser, K.; Hermelink, A.; Schimschar, S. [Ecofys, Utrecht (Netherlands)

    2011-05-15

    On the European level, the principles for the requirements for the energy performance of buildings are set by the Energy Performance of Buildings Directive (EPBD). Dating from December 2002, the EPBD has set a common framework from which the individual Member States in the EU developed or adapted their individual national regulations. The EPBD in 2008 and 2009 underwent a recast procedure, with final political agreement having been reached in November 2009. The new Directive was then formally adopted on May 19, 2010. Among other clarifications and new provisions, the EPBD recast introduces a benchmarking mechanism for national energy performance requirements for the purpose of determining cost-optimal levels to be used by Member States for comparing and setting these requirements. The previous EPBD set out a general framework to assess the energy performance of buildings and required Member States to define maximum values for energy delivered to meet the energy demand associated with the standardised use of the building. However it did not contain requirements or guidance related to the ambition level of such requirements. As a consequence, building regulations in the various Member States have been developed by the use of different approaches (influenced by different building traditions, political processes and individual market conditions) and resulted in different ambition levels where in many cases cost optimality principles could justify higher ambitions. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set 'with a view to achieving cost-optimal levels'. The cost optimum level shall be calculated in accordance with a comparative methodology. The objective of this report is to contribute to the ongoing discussion in Europe around the details of such a methodology by describing possible details on how to calculate cost optimal levels and pointing towards important factors and

  3. A new model for evaluating maintenance energy requirements in dogs: allometric equation from 319 pet dogs.

    Science.gov (United States)

    Divol, Guilhem; Priymenko, Nathalie

    2017-01-01

    Reports concerning maintenance energy requirements (MER) in dogs are common but most of the data cover laboratory or utility dogs. This study establishes those of healthy adult pet dogs and the factors which cause these energy requirements to vary. Within the framework of a nutrition teaching exercise, each student followed a pet from his entourage and gathered accurate records of its feeding habits. Data have been restricted to healthy adult dogs with an ideal body weight (BW) which did not vary more than 5 % during the study period. A total of 319 eligible records were analysed using multiple linear regression. Variation factors such as ownership, breed, sex and neutered status, bedding location, temperament and feeding habits were then analysed individually using a non-parametric model. Two models result from this study, one excluding age ( r 2 0·813) and a more accurate one which takes into consideration the age in years ( r 2 0·816). The second model was assessed with the main variation factors and shows that: MER (kcal) = k 1 × k 2 × k 3 × k 4 × k 5 × 128 × BW 0·740 × age -0·050 /d ( r 2 0·836), with k 1 the effect of the breed, k 2 the effect of sex and neutered status, k 3 the effect of bedding location, k 4 the effect of temperament and k 5 the effect of the type of feed. The resulting model is very similar to the recommendations made by the National Research Council (2006) but a greater accuracy was obtained using age raised to a negative power, as demonstrated in human nutrition.

  4. Energy and water requirements of lactation in the North American porcupine, Erethizon dorsatum.

    Science.gov (United States)

    Farrell, B C; Christian, D P

    1987-01-01

    1. Energy and water requirements of lactating porcupines were compared with results of previous studies on energetics of reproduction in small-bodied rodents. 2. Mass-specific food and water intake of control and lactating porcupines was examined throughout the 68-78 days of lactation. Water intake of lactating females was 16% higher than that of non-lactating animals. 3. Digestive efficiency of porcupines fed commercial rabbit chow was 54-60%; there was no significant difference in efficiency between lactating and non-lactating animals. 4. Total mean energetic intake throughout lactation was only 17% greater than that of non-lactating animals. 5. Reproductive rate and costs of lactation in porcupines are considerably less than in other rodents and other comparably-sized mammals, but the amount of energy allocated to each offspring is quite high. 6. The reproductive pattern of porcupines is associated with low juvenile mortality and long adult lifespan (both of which reflect the porcupine's protective morphology), and may be related to the quality of winter diets.

  5. Prediction Equations Overestimate the Energy Requirements More for Obesity-Susceptible Individuals.

    Science.gov (United States)

    McLay-Cooke, Rebecca T; Gray, Andrew R; Jones, Lynnette M; Taylor, Rachael W; Skidmore, Paula M L; Brown, Rachel C

    2017-09-13

    Predictive equations to estimate resting metabolic rate (RMR) are often used in dietary counseling and by online apps to set energy intake goals for weight loss. It is critical to know whether such equations are appropriate for those susceptible to obesity. We measured RMR by indirect calorimetry after an overnight fast in 26 obesity susceptible (OSI) and 30 obesity resistant (ORI) individuals, identified using a simple 6-item screening tool. Predicted RMR was calculated using the FAO/WHO/UNU (Food and Agricultural Organisation/World Health Organisation/United Nations University), Oxford and Miflin-St Jeor equations. Absolute measured RMR did not differ significantly between OSI versus ORI (6339 vs. 5893 kJ·d -1 , p = 0.313). All three prediction equations over-estimated RMR for both OSI and ORI when measured RMR was ≤5000 kJ·d -1 . For measured RMR ≤7000 kJ·d -1 there was statistically significant evidence that the equations overestimate RMR to a greater extent for those classified as obesity susceptible with biases ranging between around 10% to nearly 30% depending on the equation. The use of prediction equations may overestimate RMR and energy requirements particularly in those who self-identify as being susceptible to obesity, which has implications for effective weight management.

  6. Exigências nutricionais de zebuínos: energia Nutritional requirements of zebu cattle: energy

    Directory of Open Access Journals (Sweden)

    Pedro Veiga Rodrigues Paulino

    2004-06-01

    Full Text Available Com o objetivo de determinar as exigências de energia e as eficiências de utilização da energia metabolizável para ganho de peso e mantença de zebuínos, foi desenvolvido um experimento envolvendo 19 novilhos anelorados, com peso vivo médio inicial de 270 kg. Quatro animais foram abatidos ao início do experimento, para servirem de referência para estudos posteriores, três foram alimentados ao nível de mantença e os 12 restantes foram alocados em delineamento inteiramente casualizado, com três tratamentos: 5, 35 e 65% de concentrado na base da matéria seca total. O volumoso foi constituído de pré-secado de capim-braquiária (Brachiaria brizantha e de capim-tifton 85 (Cynodon sp.. As dietas foram isonitrogenadas e os animais foram alimentados ad libitum. A exigência líquida de energia para mantença (ELm foi estimada como o anti-log do intercepto da equação obtida pela regressão linear entre o logaritmo da produção de calor (PC e o consumo de energia metabolizável (CEM, bem como pelo coeficiente "a" da equação de regressão exponencial entre a PC e o CEM dos animais do tratamento com 35% de concentrado e os do grupo mantença. As quantidades de energia e gordura no ganho elevaram-se com o aumento do peso vivo (PV dos animais. O teste de identidade dos modelos de regressão demonstrou não haver diferenças entre os tratamentos. O requisito energético diário para mantença foi de 68,60 kcal/PV0,75. A k m estimada foi de 0,66 e as k g calculadas foram de 0,26; 0,41 e 0,46, respectivamente, para concentrações de EM de 2,31; 2,47 e 2,62 Mcal/kg de MS, correspondentes aos teores de 5, 35 e 65% de concentrado na dieta. Os requisitos diários de EM e NDT para mantença de um animal de 400 kg de PV foram de 9,30 Mcal e 2,57 kg, respectivamente.A trial involving nineteen zebu steers with initial live weight of 270 kg were conducted with the objective of determining their energy requirements and the efficiency of utilization of

  7. Estimation of maintenance energy requirements in German shepherd and Labrador retriever dogs in Bangalore, India.

    Science.gov (United States)

    Madhusudhan, H S; Chandrapal Singh, K; Krishnamoorthy, U; Umesh, K G; Butterwick, R; Wrigglesworth, D

    2017-04-26

    Maintenance energy requirements (MERs) were calculated for 17 German shepherd and 20 Labrador retriever adult dogs using an in-home prospective dietary trial. The dogs were fed the same dry pet food and body weight, food intake, body condition score and physical activity were monitored for 10 weeks. Labrador retrievers were significantly heavier and had higher body condition scores than German shepherd dogs, but there was no difference between males and females within each group. Body weights remained stable over the study period, with an average daily gain of 9.1 g. Mean (SD) MER was 103.4 (16.3) kcal/kg BW0.75 , which was some 20% lower than that currently suggested for moderately active young adult dogs. Individual MER ranged from 66.8 to 141 kcal/kg BW0.75 . There were no significant differences in MER between the two breeds, or between males and females within and between the two breeds. There was a significant inverse relationship between MER and body condition score, reflecting the lower energy expenditure of adipose tissue. The lower MER of dogs in this study, relative to previous observations, may reflect climatic and environmental differences and highlight the necessity for accurate estimates of MER in relation to the production and feeding of pet foods. © 2017 Blackwell Verlag GmbH.

  8. Energy requirements and metabolism of the Phillip's dikdik (Madoqua saltiana phillipsi).

    Science.gov (United States)

    Dittmann, Marie T; Hebel, Christiana; Hammer, Sven; Hummel, Jürgen; Ortmann, Sylvia; Arif, Abdi; Bouts, Tim; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Basal metabolic rates in mammals are mainly determined by body mass, but also by ecological factors. Some mammalian species inhabiting hot, dry environments were found to have lower metabolic rates compared to temperate species. We studied energy metabolism in Phillip's dikdik (Madoqua saltiana phillipsi), a small antelope inhabiting xeric shrubland habitats in the Eastern 'horn' of Africa, and compared results to literature data. We measured body mass (BM) changes and digestibility in 12 adults kept on different food intake levels to determine, by extrapolation to zero BM change, maintenance energy requirements (MEm) for metabolizable energy (ME). The MEm averaged at 404±20kJMEkgBM(-0.75)d(-1). In addition we conducted 24h-chamber respirometry with seven fed (non-fasted) individuals. Their mean metabolic rate as calculated from oxygen consumption was 403±51kJkgBM(-0.75)d(-1), corroborating the results of the feeding experiments. Selecting the 20 lowest values of the respiration measurement period to estimate resting metabolic rate (RMR) resulted in a mean RMR of 244±39kJkgBM(-0.75)d(-1), which was not significantly lower than the expected basal metabolic rate of 293kJkgBM(-0.75)d(-1). Therefore, resting metabolism was similar to the expected average basal metabolism of a mammal of this size, which suggests a comparatively low metabolic rate in dikdiks. Compared to literature data Phillip's dikdiks have a MEm similar to measurements reported for small domestic ruminants, but considerably lower than those reported for other wild ruminant species inhabiting temperate and cold climates. © 2013.

  9. Energy requirements and physical activity of older free-living African-Americans: a doubly labeled water study.

    Science.gov (United States)

    Starling, R D; Toth, M J; Matthews, D E; Poehlman, E T

    1998-05-01

    We examined daily energy requirements and determinants of physical activity in older, free-living African-American women (n = 37; age, 64 +/- 8 yr) and men (n = 28; age, 64 +/- 7 yr). Total daily energy expenditure and its components [i.e. resting metabolic rate (RMR) and physical activity energy expenditure] were determined using doubly labeled water and indirect calorimetry. Body composition from dual energy x-ray absorptiometry, maximal oxygen consumption from a graded treadmill test, and leisure time physical activity from a structured interview were determined. Total daily energy expenditure adjusted for body composition was lower (P energy expenditure (548 +/- 559 vs. 794 +/- 603 kcal/d; P = 0.19), respectively. The physical activity level ratio (i.e. total daily energy expenditure/RMR) was not different from Food and Agriculture Organization/World Health Organization/United Nations University recommendations (i.e. 1.51) for women (1.51 +/- 0.25), but was higher for men (1.71 +/- 0.32). The strongest correlates with physical activity energy expenditure were age for women (r = -0.44; P consumption for men (r = 0.39; P energy requirements are significantly lower in African-American women compared to men, primarily due to lower levels of physical activity energy expenditure. Furthermore, lower levels of cardiovascular fitness in men and advancing age in women are associated with lower physical activity energy expenditure.

  10. 75 FR 35338 - Implementation of Regulations Required Under Title XI of the Food, Conservation and Energy Act of...

    Science.gov (United States)

    2010-06-22

    ...-AB07 Implementation of Regulations Required Under Title XI of the Food, Conservation and Energy Act of... participants regarding compliance. In enacting Title XI of the Food, Conservation and Energy Act of 2008 (Farm... to livestock, meats, meat food products, or livestock products in unmanufactured form, or for any...

  11. 76 FR 76874 - Implementation of Regulations Required Under Title XI of the Food, Conservation and Energy Act of...

    Science.gov (United States)

    2011-12-09

    ... Regulations Required Under Title XI of the Food, Conservation and Energy Act of 2008; Suspension of Delivery... Food, Conservation, and Energy Act of 2008 (the 2008 Farm Bill). In response to comments and other..., including those that could improve food safety. Although there were many comments received in favor of this...

  12. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  13. Model of an aquaponic system for minimised water, energy and nitrogen requirements.

    Science.gov (United States)

    Reyes Lastiri, D; Slinkert, T; Cappon, H J; Baganz, D; Staaks, G; Keesman, K J

    2016-01-01

    Water and nutrient savings can be established by coupling water streams between interacting processes. Wastewater from production processes contains nutrients like nitrogen (N), which can and should be recycled in order to meet future regulatory discharge demands. Optimisation of interacting water systems is a complex task. An effective way of understanding, analysing and optimising such systems is by applying mathematical models. The present modelling work aims at supporting the design of a nearly emission-free aquaculture and hydroponic system (aquaponics), thus contributing to sustainable production and to food security for the 21st century. Based on the model, a system that couples 40 m(3) fish tanks and a hydroponic system of 1,000 m(2) can produce 5 tons of tilapia and 75 tons of tomato yearly. The system requires energy to condense and recover evaporated water, for lighting and heating, adding up to 1.3 GJ/m(2) every year. In the suggested configuration, the fish can provide about 26% of the N required in a plant cycle. A coupling strategy that sends water from the fish to the plants in amounts proportional to the fish feed input, reduces the standard deviation of the NO3(-) level in the fish cycle by 35%.

  14. Mitochondrial energy metabolism is required for lifespan extension by the spastic paraplegia-associated protein spartin

    Directory of Open Access Journals (Sweden)

    Julia Ring

    2017-11-01

    Full Text Available Hereditary spastic paraplegias, a group of neurodegenerative disorders, can be caused by loss-of-function mutations in the protein spartin. However, the physiological role of spartin remains largely elusive. Here we show that heterologous expression of human or Drosophila spartin extends chronological lifespan of yeast, reducing age-associated ROS production, apoptosis, and necrosis. We demonstrate that spartin localizes to the proximity of mitochondria and physically interacts with proteins related to mitochondrial and respiratory metabolism. Interestingly, Nde1, the mitochondrial external NADH dehydrogenase, and Pda1, the core enzyme of the pyruvate dehydrogenase complex, are required for spartin-mediated cytoprotection. Furthermore, spartin interacts with the glycolysis enhancer phospo-fructo-kinase-2,6 (Pfk26 and is sufficient to complement for PFK26-deficiency at least in early aging. We conclude that mitochondria-related energy metabolism is crucial for spartin’s vital function during aging and uncover a network of specific interactors required for this function.

  15. Why EU renewable energy figures are misleading: Europe requires 150% renewable energy to become fossil-free

    NARCIS (Netherlands)

    Martien Visser

    2016-01-01

    The EU is confident it will reach its target of 20% renewable energy by 2020. But according to Martien Visser, professor at the Hanze University of Applied Sciences in Groningen (The Netherlands), this 20% is in reality more like 14%. This is because a large part of our energy consumption is simply

  16. The cost of energy from utility-owned solar electric systems. A required revenue methodology for ERDA/EPRI evaluations

    Science.gov (United States)

    1976-01-01

    This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation amd maintenance, and the financial structure and tax environment of the utility.

  17. Offshore Resource Assessment and Design Conditions: A Data Requirements and Gaps Analysis for Offshore Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Dennis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frame, Caitlin [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Gill, Carrie [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Hanson, Howard [Florida Atlantic Univ., Boca Raton, FL (United States); Moriarty, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Powell, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Shaw, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilczak, Jim [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Wynne, Jason [Energetics, Columbia, MD (United States)

    2012-03-01

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborative national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.

  18. ZP123 reduces energy required for defibrillation by preventing connexin43 remodeling during prolonged ventricular fibrillation in swine.

    Science.gov (United States)

    Yi, Shao-lei; Zhong, Jing-quan; Zhang, Jing; Su, Guo-ying; Li, Jing-sha; Liu, Hong-zhen; Zhang, Yun

    2012-01-01

    In ventricular fibrillation, the uncoupling of gap junctions slows conduction velocity and increases action-potential dispersion, which slows and diminishes defibrillation. We studied how the peptide ZP123, a gap-junction enhancer, might lower defibrillation-energy requirements during ventricular fibrillation in live pigs. We randomly assigned 33 pigs into 3 groups: ZP123 (receiving a 1-µg/kg bolus and 10 µg/kg/hr of ZP123), control (receiving saline solution), and sham (undergoing a sham operation). After a 30-min administration of agents, ventricular fibrillation was induced and left untreated for 8 min. Biphasic defibrillation of 50 J was increased by 50-J increments as necessary. Defibrillation-energy requirements were defined as the lowest energy required to achieve defibrillation. Electrocardiographic values were obtained before and after the administration of agents. Western blot and immunofluorescence analyses were performed on ventricular myocardial samples. All but one pig survived. The ZP123 treatment did not alter electrocardiographic variables. In the ZP123 group, the average required defibrillation energy was lower than that in the control group (327.28±269.6 vs 610±192.64 J; P=0.015), and the cumulative percentage of successful defibrillation at upper energy levels was higher (Pdefibrillation-energy requirements by preventing connexin43 remodeling during prolonged ventricular fibrillation.

  19. Energy from agricultural residues and consequences for land requirements for food production

    NARCIS (Netherlands)

    Nonhebel, Sanderine

    Using biomass as an energy source is often mentioned as an option to mitigate the enhancing greenhouse effect. Biomass for energy purposes can be obtained from dedicated energy crops and/or from agricultural residues. The available amount of residues is large and suggests a significant energy

  20. Energy nutritional requirements for females of Nellore, Nellore × Angus and Nellore × Simmental fed on two forage: concentrate ratios

    Directory of Open Access Journals (Sweden)

    Evaristo Jorge Oliveira de Souza

    2012-03-01

    Full Text Available The objective of this study was to determine the energy nutritional requirements for females of Nellore, Nellore × Angus and Nellore × Simmental fed on two levels of concentrate. Sixty heifers from three genetic groups were used: 20 Nellore, 20 Nellore × Angus and 20 Nellore × Simmental. Twelve belonged to the reference group (four of each genetic group and were slaughtered at the beginning of the experiment. Another 12 heifers (four of each genetic group were fed on the maintenance level and 36 heifers (12 animals of each genetic group were kept in feeding system ad libitum with 30 (six in each group or 50% (six of each group dry matter concentrate. Animals were randomly assigned to six treatments in a 3 × 2 factorial arrangement (three genetic groups and two diets with six replicates per treatment. Nine more heifers were used in a parallel experiment to estimate the apparent digestibility coefficients (three from each genetic group. Net energy requirements were estimated by the equation of retained energy as a function of metabolic empty body weight (EBW0.75 and empty body weight gain (EBWg. Requirements of metabolizable and net energy were estimated for maintenance by the equation of heat production as a function of metabolizable energy intake. Using the combined equation RE (retained energy; Mcal/day = 0.0703 × EBW.75 × EBWg1.128 to predict net energy requirements for weight gain is recommended. The requirement of metabolizable and net energy for maintenance of all groups is 70.55 and 106.53 kcal/kgEBW0.75/day, respectively. Use efficiencies of metabolizable energy for gain and maintenance are 36.41 and 66.23%, for the three genetic groups respectively.

  1. Energy Contents of Frequently Ordered Restaurant Meals and Comparison with Human Energy Requirements and US Department of Agriculture Database Information: A Multisite Randomized Study

    Science.gov (United States)

    Urban, Lorien E.; Weber, Judith L.; Heyman, Melvin B.; Schichtl, Rachel L.; Verstraete, Sofia; Lowery, Nina S.; Das, Sai Krupa; Schleicher, Molly M.; Rogers, Gail; Economos, Christina; Masters, William A.; Roberts, Susan B.

    2017-01-01

    Background Excess energy intake from meals consumed away from home is implicated as a major contributor to obesity, and ~50% of US restaurants are individual or small-chain (non–chain) establishments that do not provide nutrition information. Objective To measure the energy content of frequently ordered meals in non–chain restaurants in three US locations, and compare with the energy content of meals from large-chain restaurants, energy requirements, and food database information. Design A multisite random-sampling protocol was used to measure the energy contents of the most frequently ordered meals from the most popular cuisines in non–chain restaurants, together with equivalent meals from large-chain restaurants. Setting Meals were obtained from restaurants in San Francisco, CA; Boston, MA; and Little Rock, AR, between 2011 and 2014. Main outcome measures Meal energy content determined by bomb calorimetry. Statistical analysis performed Regional and cuisine differences were assessed using a mixed model with restaurant nested within region×cuisine as the random factor. Paired t tests were used to evaluate differences between non–chain and chain meals, human energy requirements, and food database values. Results Meals from non–chain restaurants contained 1,205±465 kcal/meal, amounts that were not significantly different from equivalent meals from large-chain restaurants (+5.1%; P=0.41). There was a significant effect of cuisine on non–chain meal energy, and three of the four most popular cuisines (American, Italian, and Chinese) had the highest mean energy (1,495 kcal/meal). Ninety-two percent of meals exceeded typical energy requirements for a single eating occasion. Conclusions Non–chain restaurants lacking nutrition information serve amounts of energy that are typically far in excess of human energy requirements for single eating occasions, and are equivalent to amounts served by the large-chain restaurants that have previously been criticized

  2. Energy Contents of Frequently Ordered Restaurant Meals and Comparison with Human Energy Requirements and U.S. Department of Agriculture Database Information: A Multisite Randomized Study.

    Science.gov (United States)

    Urban, Lorien E; Weber, Judith L; Heyman, Melvin B; Schichtl, Rachel L; Verstraete, Sofia; Lowery, Nina S; Das, Sai Krupa; Schleicher, Molly M; Rogers, Gail; Economos, Christina; Masters, William A; Roberts, Susan B

    2016-04-01

    Excess energy intake from meals consumed away from home is implicated as a major contributor to obesity, and ∼50% of US restaurants are individual or small-chain (non-chain) establishments that do not provide nutrition information. To measure the energy content of frequently ordered meals in non-chain restaurants in three US locations, and compare with the energy content of meals from large-chain restaurants, energy requirements, and food database information. A multisite random-sampling protocol was used to measure the energy contents of the most frequently ordered meals from the most popular cuisines in non-chain restaurants, together with equivalent meals from large-chain restaurants. Meals were obtained from restaurants in San Francisco, CA; Boston, MA; and Little Rock, AR, between 2011 and 2014. Meal energy content determined by bomb calorimetry. Regional and cuisine differences were assessed using a mixed model with restaurant nested within region×cuisine as the random factor. Paired t tests were used to evaluate differences between non-chain and chain meals, human energy requirements, and food database values. Meals from non-chain restaurants contained 1,205±465 kcal/meal, amounts that were not significantly different from equivalent meals from large-chain restaurants (+5.1%; P=0.41). There was a significant effect of cuisine on non-chain meal energy, and three of the four most popular cuisines (American, Italian, and Chinese) had the highest mean energy (1,495 kcal/meal). Ninety-two percent of meals exceeded typical energy requirements for a single eating occasion. Non-chain restaurants lacking nutrition information serve amounts of energy that are typically far in excess of human energy requirements for single eating occasions, and are equivalent to amounts served by the large-chain restaurants that have previously been criticized for providing excess energy. Restaurants in general, rather than specific categories of restaurant, expose patrons to

  3. Predicted versus measured resting energy expenditure in patients requiring home parenteral nutrition.

    Science.gov (United States)

    Ławiński, Michał; Singer, Pierre; Gradowski, Łukasz; Gradowska, Aleksandra; Bzikowska, Agnieszka; Majewska, Krystyna

    2015-01-01

    Guidelines from the European Society for Clinical Nutrition and Metabolism (ESPEN) recommend between 20 and 35 kcal/kg daily for patients requiring home parenteral nutrition (PN). Other guidelines use predictive equations. However, these equations have not been validated. Indirect calorimetry is recommended as the gold standard for determining resting energy expenditure (REE). The aim of this study was to compare the frequently used equations with measured REE. Seventy-six hospitalized patients suffering from intestinal failure (ages 21-85 y) were enrolled between January 2012 and May 2014. They were eligible for implementation of home parenteral nutrition (HPN) due to short bowel syndrome (54%), intestinal fistulae (24%), cancer obstruction (16%), and radiation-induced intestinal injury (6%). REE measurements were compared with predictive equations by Harris and Benedict (HB), Owen, Ireton-Jones, and Mifflin, as well as recommendations from ESPEN. In all, 152 calorimetry measurements (two per patient) were performed in 76 patients, after total PN administrations. An average result of REE measurement by indirect calorimetry was 1181 ± 322 kcal/d. Variability in momentary energy expenditure (MEE) from one measurement to the other was 8% ± 7%. Bland-Altman analysis showed a mean bias of -192 ± 300 kcal/d between MEE and estimated energy expenditure using the HB equation, which means that the equation increased the score on average by 192 ± 300 kcal/d. Limits of agreement (LoA) between the two methods was -780 to +396 kcal/d. Estimation energy expenditure using the Ireton-Jones equation gave a mean bias of -359 ± 335 kcal/d. LoA between the two methods was -1015 to +297 kcal/d. For Owen equation, Bland-Altman analysis showed a mean bias of -208 ± 313 kcal/d and the LoA between the two methods was -822 to +406 kcal/d. Using the Mifflin equation, estimation energy expenditure gave a mean bias of -172 ± 312 kcal/d and the LoA between the

  4. Cardiovascular and Energy Requirements of Parents Watching Their Child Compete: A Pilot Mixed-Methods Investigation

    Directory of Open Access Journals (Sweden)

    Marc Lochbaum

    2017-11-01

    Full Text Available Purpose: Researchers have extensively documented the cardiovascular and metabolic demands for sports participation. To date, researchers have ignored the same requirements of competitor’s parents. Hence, our purpose was to document parent cardiovascular and metabolic responses to watching their child compete while also paying particular attention to their thoughts before and after the competition. Achievement Goal Theory (AGT drove interpretation of parent thoughts. Materials: Parents wore a device, made by Firstbeat Technologies, which continuously monitored heart rate. The parents wore the device the night before the competition to be acclimated to the technology and during the event until later in the day. Parents also completed two open-ended questions, one before the tournament and one after the contest. Results: Before the contest, the dad expected that his son won the event (Croatian National Championships for juniors. Conversely, the mother’s expectations centered more on her son’s enjoyment and competing to the best of his abilities. Parents had differing cardiovascular and energy requirement responses to watching their son compete. In addition, post-competition reflections differed as the father expressed disappointment whereas the mother expressed sadness. Conclusions: The data presented are unique and a first in the sports literature. The parents varied in the intensity of their cardiovascular responses and calories burned while watching their son compete. The father’s cardiovascular response over the course of watching was that of an aerobic workout. Whether this pattern is unique or universal are a critical research question. Last, AGT appears relevant when assessing the parent’s expectations.

  5. Energy data visualisation requires additional approaches to continue to be relevant in a world with greater low-carbon generation.

    Directory of Open Access Journals (Sweden)

    I.A. Grant Wilson

    2016-08-01

    Full Text Available The hypothesis described in this article proposes that energy visualisation diagrams commonly used need additional changes to continue to be relevant in a world with greater low-carbon generation. The diagrams that display national energy data are influenced by the properties of the type of energy being displayed, which in most cases has historically meant fossil fuels, nuclear fuels or hydro. As many energy systems throughout the world increase their use of electricity from wind or solar based renewables, a more granular display of energy data in the time domain is required. This article also introduces the shared axes energy diagram that provides a simple and powerful way in which to compare the scale and seasonality of the demands and supplies of an energy system. This aims to complement rather than replace existing diagrams, and has an additional benefit of promoting a whole systems approach to energy systems, as differing energy vectors such as natural gas, transport fuels, and electricity can all be displayed together. This in particular, is useful to both policy makers and to industry, to build a visual foundation for a whole systems narrative, which provides a basis for discussion of the synergies and opportunities across and between different energy vectors and demands. The diagram’s ability to wrap a sense of scale around a whole energy system in a simple way is thought to explain its growing popularity.

  6. Effects of Energy Storage Systems Grid Code Requirements on Interface Protection Performances in Low Voltage Networks

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-03-01

    Full Text Available The ever-growing penetration of local generation in distribution networks and the large diffusion of energy storage systems (ESSs foreseen in the near future are bound to affect the effectiveness of interface protection systems (IPSs, with negative impact on the safety of medium voltage (MV and low voltage (LV systems. With the scope of preserving the main network stability, international and national grid connection codes have been updated recently. Consequently, distributed generators (DGs and storage units are increasingly called to provide stabilizing functions according to local voltage and frequency. This can be achieved by suitably controlling the electronic power converters interfacing small-scale generators and storage units to the network. The paper focuses on the regulating functions required to storage units by grid codes currently in force in the European area. Indeed, even if such regulating actions would enable local units in participating to network stability under normal steady-state operating conditions, it is shown through dynamic simulations that they may increase the risk of unintentional islanding occurrence. This means that dangerous operating conditions may arise in LV networks in case dispersed generators and storage systems are present, even if all the end-users are compliant with currently applied connection standards.

  7. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    Science.gov (United States)

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Renewable energy technologies for irrigation water pumping in India: projected levels of dissemination, energy delivery and investment requirements using available diffusion models

    Energy Technology Data Exchange (ETDEWEB)

    Pallav Purohit; Kandpal, T.C. [Indian Institute of Technology, New Delhi (India). Centre for Energy Studies

    2005-12-01

    Using the past diffusion trends of four renewable energy technologies for irrigation water pumping in India (SPV pumps, windmill pumps and biogas/producer gas driven dual fuel engine pumps), results of an attempt to project their future dissemination levels, have been presented in this study. The likely contribution of the renewable energy options considered in the study to the projected energy demand for irrigation water pumping in India has been estimated. Estimates of the associated investment requirements taking into account the learning effect have also been presented. (author)

  9. Energy requirements of puppies of two different breeds for ideal growth from weaning to 28 weeks of age.

    Science.gov (United States)

    Dobenecker, B; Endres, V; Kienzle, E

    2013-02-01

    To ensure an optimal growth is crucial in raising healthy dogs, especially in large and giant breeds. Dogs with a moderate growth velocity tend to have lesser problems with developmental orthopaedic diseases than those with forced or maximum weight gain. In this study, the energy needs of growing dogs from two different breeds (Beagles as a medium-size breed and Foxhound crossbreds as a large-size breed) to ensure a growth development as recommended by the National Research Council (NRC) were determined at the age of 6-28 weeks. After weaning at the age of 6 weeks, the food rations sufficient to meet the energy requirements of each individual puppy were adjusted every other day according to growth level, guaranteeing a development consistent with the recommended weight curve for the respective breed size. The food and therefore energy intake of the puppies was registered daily; it ranged from 0.72 to 2.34 times the maintenance requirements with little effect of age. During the whole period, however, there was a consistent breed difference: Foxhound-Boxer-Ingelheim Labrador crossbreds (FBIs) had higher energy intakes expressed as multiples of maintenance than Beagles, suggesting that during the major period of growth, the energy requirement is not a function of age. Adult Beagles and FBIs showed similar differences in energy requirements as already during growth as shown in this study. This indicates that breed differences in energy requirements have already to be taken into account during growth. On the other hand, the results showed clearly lower energy needs for growth in these two different breeds than recommended in the NRC. © 2011 Blackwell Verlag GmbH.

  10. The challenge of developing a new predictive formula to estimate energy requirements in ventilated critically ill children.

    Science.gov (United States)

    Meyer, Rosan; Kulinskaya, Elena; Briassoulis, George; Taylor, Rachel M; Cooper, Mehrengise; Pathan, Nazima; Habibi, Parviz

    2012-10-01

    Traditionally, energy requirements have been calculated using predictive equations. These methods have failed to calculate energy expenditure accurately. Routine indirect calorimetry has been suggested, but this method is technically demanding and costly. This study aimed to develop a new predictive equation to estimate energy requirements for critically ill children. This prospective, observational study on ventilated children included patients with an endotracheal tube leak of energy expenditure measurement was performed and polynomial regression analysis was used to develop new predictive equations. The new formulas were then compared with existing prediction equations. Data from 369 measurements were included in the formula design. Only weight and diagnosis influenced energy expenditure significantly. Three formulas (A, B, C) with an R² > 0.8 were developed. When we compared the new formulas with commonly used equations (Schofield, Food and Agriculture Organization/World Health Organization/United Nations University, and White equation), all formulas performed very similar, but the Schofield equation seemed to have the lowest SD. All 3 new pediatric intensive care unit equations have R² values of > 0.8; however, the Schofield equation still performed better than other predictive methods in predicting energy expenditure in these patients. Still, none of the predictive equations, including the new equations, predicted energy expenditure within a clinically accepted range, and further research is required, particularly for patients outside the technical scope of indirect calorimetry.

  11. First Order Estimates of Energy Requirements for Pollution Control. Interagency Energy-Environment Research and Development Program Report.

    Science.gov (United States)

    Barker, James L.; And Others

    This U.S. Environmental Protection Agency report presents estimates of the energy demand attributable to environmental control of pollution from stationary point sources. This class of pollution source includes powerplants, factories, refineries, municipal waste water treatment plants, etc., but excludes mobile sources such as trucks, and…

  12. On the “cost-optimal levels” of energy performance requirements and its economic evaluation in Italy

    Directory of Open Access Journals (Sweden)

    Lamberto Tronchin

    2014-10-01

    Full Text Available The European energy policies about climate and energy package, known as the “20-20-20” targets define ambitious, but achievable, national energy objectives. As regards the Directives closely related to the 2020 targets, the EU Energy Performance of Buildings Directive (EPBD Recast- DIR 2010/31/EU is the main European legislative instrument for improving the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements and cost-effectiveness. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set “with a view to achieving cost-optimal levels”. The cost optimum level shall be calculated in accordance with a comparative methodology framework, leaving the Member States to determine which of these calculations is to become the national benchmark against which national minimum energy performance requirements will be assessed. The European standards (ENs- Umbrella Document V7 (prCEN/TR 15615 are intended to support the EPBD by providing the calculation methods and associated material to obtain the overall energy performance of a building. For Italy the Energy Performance of Building Simulations EPBS must be calculated with standard UNITS 11300. The energy building behaviour is referred to standard and not to real use, nor climate or dynamic energy evaluation. Since retrofitting of existing buildings offers significant opportunities for reducing energy consumption and greenhouse gas emissions, a case study of retrofitting is described and the CostOptimal Level EU procedure in an Italian context is analysed. Following this procedure, it is shown not only that the energy cost depends on several conditions and most of them are not indexed at national level but also that the cost of improvement depends on local variables and contract tender. The case study highlights the difficulties to apply EU rules, and

  13. Trend in world energy requirements until the year 2020. Die Entwicklung des Weltenergiebedarfs bis zum Jahre 2020

    Energy Technology Data Exchange (ETDEWEB)

    Amelung, T. (Ruhrkohle AG, Essen (Germany). Hauptabteilung Volks- und Energiewirtschaft-Kommunikation)

    1993-05-13

    The WEC study has clearly shown that despite all conceivable efforts in the field of environmental protection an increase in world energy consumption must also be anticipated in the future. The main cause of this increase is the growing energy requirement in the developing countries, which not only anticipate a high growth in population, but also rising per capita income in view of increasing prosperity in the next 30 years. Both will be reflected in an increasing energy requirement in these countries. According to the WEC study oil will still be the most important energy source ahead of coal in the year 2020, although the latter has substantially larger reserves. The background to this situation is the sharp fall in coal production and consumption in the CIS and in Central and Eastern Europe in the course of the transition from planned to market economies. 11 refs., 3 tabs.

  14. The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery.

    Science.gov (United States)

    Yu, Jian; Chen, Lilian X L

    2008-09-15

    Polyhydroxyalkanoates (PHA) are promising eco-friendly bioplastics that can be produced from cellulosic ethanol biorefineries as value-added coproducts. A cradle-to-factory-gate life cycle assessment is performed with two important categories: the greenhouse gas (GHG)emissions and fossil energy requirement per kg of bioplastics produced. The analysis indicates that PHA bioplastics contribute clearly to the goal of mitigating GHG emissions with only 0.49 kg CO(2-e) being emitted from production of 1 kg of resin. Compared with 2-3 kg CO(2-e) of petrochemical counterparts, it is about 80% reduction of the global warming potential. The fossil energy requirement per kg of bioplastics is 44 MJ, lowerthan those of petrochemical counterparts (78-88 MJ/kg resin). About 62% of fossil energy is used for processing utilities and wastewater treatment, and the rest is required for raw materials in different life cycle stages.

  15. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    Science.gov (United States)

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  16. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    Directory of Open Access Journals (Sweden)

    Graeme D. Coles

    2016-07-01

    Full Text Available Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  17. Development of an estimation model for the evaluation of the energy requirement of dilute acid pretreatments of biomass.

    Science.gov (United States)

    Mafe, Oluwakemi A T; Davies, Scott M; Hancock, John; Du, Chenyu

    2015-01-01

    This study aims to develop a mathematical model to evaluate the energy required by pretreatment processes used in the production of second generation ethanol. A dilute acid pretreatment process reported by National Renewable Energy Laboratory (NREL) was selected as an example for the model's development. The energy demand of the pretreatment process was evaluated by considering the change of internal energy of the substances, the reaction energy, the heat lost and the work done to/by the system based on a number of simplifying assumptions. Sensitivity analyses were performed on the solid loading rate, temperature, acid concentration and water evaporation rate. The results from the sensitivity analyses established that the solids loading rate had the most significant impact on the energy demand. The model was then verified with data from the NREL benchmark process. Application of this model on other dilute acid pretreatment processes reported in the literature illustrated that although similar sugar yields were reported by several studies, the energy required by the different pretreatments varied significantly.

  18. Optimal Management of DoD Lands for Military Training, Ecosystem Services, and Renewable Energy Generation: Framework and Data Requirements

    Science.gov (United States)

    2013-01-01

    Drive Urbana , IL 61801-3605 James D. Westervelt Construction Engineering Research Laboratory US Army Engineer Research and Development Center 2902...endangered species as found on lands managed by US Forest Service (USFS), and sig- nificantly more than the number of species on the lands managed by...may require forest land while others may require open space, desert-like condi- tions, or a combination of land and water space. Biomass Energy

  19. Construction of microbial platform for an energy-requiring bioprocess: practical 2'-deoxyribonucleoside production involving a C-C coupling reaction with high energy substrates.

    Science.gov (United States)

    Horinouchi, Nobuyuki; Sakai, Takafumi; Kawano, Takako; Matsumoto, Seiichiro; Sasaki, Mie; Hibi, Makoto; Shima, Jun; Shimizu, Sakayu; Ogawa, Jun

    2012-06-15

    Reproduction and sustainability are important for future society, and bioprocesses are one technology that can be used to realize these concepts. However, there is still limited variation in bioprocesses and there are several challenges, especially in the operation of energy-requiring bioprocesses. As an example of a microbial platform for an energy-requiring bioprocess, we established a process that efficiently and enzymatically synthesizes 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase. This method consists of the coupling reactions of the reversible nucleoside degradation pathway and energy generation through the yeast glycolytic pathway. Using E. coli that co-express deoxyriboaldolase and phosphopentomutase, a high amount of 2'-deoxyribonucleoside was produced with efficient energy transfer under phosphate-limiting reaction conditions. Keeping the nucleobase concentration low and the mixture at a low reaction temperature increased the yield of 2'-deoxyribonucleoside relative to the amount of added nucleobase, indicating that energy was efficiently generated from glucose via the yeast glycolytic pathway under these reaction conditions. Using a one-pot reaction in which small amounts of adenine, adenosine, and acetone-dried yeast were fed into the reaction, 75 mM of 2'-deoxyinosine, the deaminated product of 2'-deoxyadenosine, was produced from glucose (600 mM), acetaldehyde (250 mM), adenine (70 mM), and adenosine (20 mM) with a high yield relative to the total base moiety input (83%). Moreover, a variety of natural dNSs were further synthesized by introducing a base-exchange reaction into the process. A critical common issue in energy-requiring bioprocess is fine control of phosphate concentration. We tried to resolve this problem, and provide the convenient recipe for establishment of energy-requiring bioprocesses. It is anticipated that the commercial demand for dNSs, which are primary metabolites that accumulate at very low levels in the

  20. 75 FR 652 - Energy Conservation Program: Certification, Compliance, and Enforcement Requirements for Certain...

    Science.gov (United States)

    2010-01-05

    ... test as the basis for rating the model and determining whether it complies with the applicable energy...-time filing in which the manufacturer or private labeler states that all basic models currently... efficiency, or energy or water use, as applicable, for each covered basic model that a manufacturer or...

  1. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Schiller Consulting, Inc.; Schiller, Steven R.; Goldman, Charles A.; Galawish, Elsia

    2011-02-04

    This report is a scoping study that identifies issues associated with developing a national evaluation, measurement and verification (EM&V) standard for end-use, non-transportation, energy efficiency activities. The objectives of this study are to identify the scope of such a standard and define EM&V requirements and issues that will need to be addressed in a standard. To explore these issues, we provide and discuss: (1) a set of definitions applicable to an EM&V standard; (2) a literature review of existing guidelines, standards, and 'initiatives' relating to EM&V standards as well as a review of 'bottom-up' versus 'top-down' evaluation approaches; (3) a summary of EM&V related provisions of two recent federal legislative proposals (Congressman Waxman's and Markey's American Clean Energy and Security Act of 2009 and Senator Bingaman's American Clean Energy Leadership Act of 2009) that include national efficiency resource requirements; (4) an annotated list of issues that that are likely to be central to, and need to be considered when, developing a national EM&V standard; and (5) a discussion of the implications of such issues. There are three primary reasons for developing a national efficiency EM&V standard. First, some policy makers, regulators and practitioners believe that a national standard would streamline EM&V implementation, reduce costs and complexity, and improve comparability of results across jurisdictions; although there are benefits associated with each jurisdiction setting its own EM&V requirements based on their specific portfolio and evaluation budgets and objectives. Secondly, if energy efficiency is determined by the US Environmental Protection Agency to be a Best Available Control Technology (BACT) for avoiding criteria pollutant and/or greenhouse gas emissions, then a standard can be required for documenting the emission reductions resulting from efficiency actions. The third reason for a national

  2. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  3. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    DEFF Research Database (Denmark)

    Coles, Graeme D; Wratten, Stephen D; Porter, John Roy

    2016-01-01

    and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.......Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively...... with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude...

  4. Energy requirements for maintenance and growth in 3- to 4-year-olds may be overestimated by existing equations.

    Science.gov (United States)

    Sijtsma, Anna; Corpeleijn, Eva; Sauer, Pieter J J

    2014-05-01

    To give appropriate dietary advice to preschool children, an estimation of their energy requirements for both maintenance and activity is needed. We compared energy requirements for maintenance, measured by indirect calorimetry against existing equations predicting these requirements in 3- to 4-year-old children. In 30 children (age 3.4 ± 0.3) from the GECKO Drenthe cohort, height, weight, evening sleeping metabolic rate (SMR) (by indirect calorimetry), fat mass (FM), and fat-free mass (FFM) (by isotope dilution) were measured. For 25 children, a valid evening SMR was available as a measure for energy used for maintenance and growth. This SMR was compared with existing equations (Schofield, FAO/WHO/UNU, Oxford and Harris-Benedict). Correlations among SMR and weight, height, FM, and FFM were also calculated. From the existing equations, significant higher values, ranging from 58 to 144 kcal/day, were calculated for the BMR compared with the measured SMR results, indicating 8% to 19% overestimation. This overestimation is higher at lower ranges of energy requirement. SMR was positively related to weight (r = 0.488, P = 0.013), height (r = 0.499, P = 0.011), and FFM (r = 0.482, P = 0.027), but not to FM (r = 0.211, P = 0.358). Existing equations show higher values for the energy used for maintenance in young children compared to the results of our measurements of the SMR. Energy used for maintenance is correlated with FFM and not with FM.

  5. Comparison of maintenance energy requirement and energetic efficiency between lactating Holstein-Friesian and other groups of dairy cows.

    Science.gov (United States)

    Dong, L F; Yan, T; Ferris, C P; McDowell, D A

    2015-02-01

    The objectives of the present study were to investigate the effects of cow group on energy expenditure and utilization efficiency. Data used were collated from 32 calorimetric chamber experiments undertaken from 1992 to 2010, with 823 observations from lactating Holstein-Friesian (HF) cows and 112 observations from other groups of lactating cows including Norwegian (n=50), Jersey × HF (n=46), and Norwegian × HF (n=16) cows. The metabolizable energy (ME) requirement for maintenance (MEm) for individual cows was calculated from heat production (HP) minus energy losses from inefficiencies of ME use for lactation, energy retention, and pregnancy. The efficiency of ME use for lactation (kl) was obtained from milk energy output adjusted to zero energy balance (El(0)) divided by ME available for production. The effects of cow groups were first evaluated using Norwegian cows against HF crossbred cows (F1 hybrid, Jersey × HF and Norwegian × HF). The results indicated no significant difference between the 2 groups in terms of energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ per kg of metabolic body weight, MJ/kg(0.75)), or kl. Consequently, their data were combined (categorized as non-HF cows) and used to compare with those of HF cows. Again, we detected no significant difference in energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ/kg(0.75)), or kl between non-HF and HF cows. The effects were further evaluated using linear regression to examine whether any significant differences existed between HF and non-HF cows in terms of relationships between ME intake and energetic parameters. With a common constant, no significant difference was observed between the 2 groups of cows in coefficients in each set of relationships between ME intake (MJ/kg(0.75)) and MEm (MJ/kg(0.75)), El(0) (MJ/kg(0.75)), HP (MJ/kg(0.75)), MEm:ME intake, El(0):ME intake, or HP:ME intake. However, MEm values (MJ/kg(0.75)) were positively related to ME

  6. Market analysis, energy savings potential, and future development requirements for Radiance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Department of Energy (DOE) Office of Conservation and Renewable Energy (CE), Building Equipment Division has funded the development of a sophisticated computer rendering program called Radiance at Lawrence Berkeley Laboratories (LBL). The project review study included: (1) Surveys of the lighting profession to determine how designers would use an improved, user-friendly Radiance, (2) Elucidation of features, including how Radiance could be used to save energy, which could be incorporated into Radiance to facilitate its more widespread use, (3) Outline of a development plan and determination of what costs the DOE might incur if it were to proceed with the development of an improved version, and (4) Weighing the anticipated development costs against anticipated energy-saving benefits.

  7. Assessment of trends in the development of residential buildings from the standpoint of the fuel and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Chyrczakowski, S.

    1991-01-01

    An assessment of the developmental trends in domestic housing construction from the viewpoint of energy and fuel consumption requirements was presented. The introduction provides an analysis of the developmental trends in domestic housing construction based on data reported in the literature on this topic. Primary attention is focused on technological issues and trends in construction that have a direct effect on fuel and energy use. The problem of calculating energy use in construction of residential housing units is presented. It is demonstrated that there exists significant differences between different technologies for housing construction. Monolithic technology utilizes the greatest energy (buildings for housing a large number of families), while the least energy is used by brick structures employing prefabricated elements (single family homes). Aspects of energy use for domestic housing heating applications as a function of their architectural design, height, shape, etc. are discussed. It is demonstrated that the decisive factor in energy use is not principally the building construction techniques (in the sense of the classification based on the support structure) but rather is the so-called exterior sealing methods that may or may not be related to the construction technique for the building overall. The height and shape of the building also play an important role. Supplementary aspects relating to the development of construction that the author believes are timely developments in the development of domestic housing construction in Poland were presented on the basis of the model calculations.

  8. Assessment of trends in the development of residential buildings from the standpoint of the fuel and energy requirements

    Science.gov (United States)

    Chyrczakowski, Stanislaw

    An assessment of the developmental trends in domestic housing construction from the viewpoint of energy and fuel consumption requirements was presented. The introduction provides an analysis of the developmental trends in domestic housing construction based on data reported in the literature on this topic. Primary attention is focused on technological issues and trends in construction that have a direct effect on fuel and energy use. The problem of calculating energy use in construction of residential housing units is presented. It is demonstrated that there exists significant differences between different technologies for housing construction. Monolithic technology utilizes the greatest energy (buildings for housing a large number of families), while the least energy is used by brick structures employing prefabricated elements (single family homes). Aspects of energy use for domestic housing heating applications as a function of their architectural design, height, shape, etc. are discussed. It is demonstrated that the decisive factor in energy use is not principally the building construction techniques (in the sense of the classification based on the support structure) but rather is the so-called exterior sealing methods that may or may not be related to the construction technique for the building overall. The height and shape of the building also play an important role. Supplementary aspects relating to the development of construction that the author believes are timely developments in the development of domestic housing construction in Poland were presented on the basis of the model calculations.

  9. Legal requirements for human-health based appeals of wind energy projects in ontario.

    Science.gov (United States)

    Engel, Albert M

    2014-01-01

    In 2009, the government of the province of Ontario, Canada passed new legislation to promote the development of renewable energy facilities, including wind energy facilities in the province. Throughout the legislative process, concerns were raised with respect to the effect of wind energy facilities on human health. Ultimately, the government established setbacks and sound level limits for wind energy facilities and provided Ontario residents with the right to appeal the approval of a wind energy facility on the ground that engaging in the facility in accordance with its approval will cause serious harm to human health. The first approval of a wind facility under the new legislation was issued in 2010 and since then, Ontario's Environmental Review Tribunal as well as Ontario's courts has been considering evidence proffered by appellants seeking revocation of approvals on the basis of serious harm to human health. To date, the evidence has been insufficient to support the revocation of a wind facility approval. This article reviews the legal basis for the dismissal of human-health based appeals.

  10. Legal Requirements for Human-Health based appeals of Wind Energy Projects in Ontario

    Directory of Open Access Journals (Sweden)

    Albert Michael Engel

    2014-12-01

    Full Text Available In 2009 the government of the province of Ontario, Canada passed new legislation to promote the development of renewable energy facilities, including wind energy facilities in the province. Throughout the legislative process, concerns were raised with respect to the effect of wind energy facilities on human health. Ultimately, the government established setbacks and sound level limits for wind energy facilities and provided Ontario residents with the right to appeal the approval of a wind energy facility on the ground that engaging in the facility in accordance with its approval will cause serious harm to human health. The first approval of a wind facility under the new legislation was issued in 2010 and since then, Ontario’s Environmental Review Tribunal as well as Ontario’s courts have been considering evidence proffered by appellants seeking revocation of approvals on the basis of serious harm to human health. To date, the evidence has been insufficient to support the revocation of a wind facility approval. This article reviews the legal basis for the dismissal of human-health based appeals.

  11. African American women exhibit similar adherence to intervention but lose less weight due to lower energy requirements.

    Science.gov (United States)

    DeLany, J P; Jakicic, J M; Lowery, J B; Hames, K C; Kelley, D E; Goodpaster, B H

    2014-09-01

    African American (AA) women have been shown to lose less weight than Caucasian women in response to behavioral interventions. Our objective was to examine adherence to intervention and metabolic factors that may explain this difference. We examined longitudinal changes in body weight and energy expenditure (EE), and objective assessment of physical activity (PA) and energy intake (EI) during 6 months of a weight-loss intervention program, including prescribed calorie restriction and increased PA in 66 Caucasian and 39 AA severely obese women. Comparisons were also made in 25 Caucasian and 25 AA women matched for initial body weight. The AA women lost 3.6 kg less weight than Caucasian women. Total daily EE (TDEE) and resting metabolic rate (RMR) adjusted for fat free mass (FFM) were significantly lower in the AA women, whereas the decrease in RMR in response to weight loss was greater in Caucasian women. Adherence to the prescribed PA and change in PA in response to intervention were similar in AA and Caucasian women. Prescribed EI (1794±153 and 1806±153 kcal per day) and measured EI during intervention (2591±371 vs 2630±442 kcal per day) were nearly identical in matched AA and Caucasian women. However, the AA women lost significantly less body weight due to lower energy requirements (2924±279 vs 3116±340 kcal per day; Pwomen. However, neglecting to account for the lower energy requirements in AA women when calculating the energy prescription resulted in a lower level of calorie restriction and, hence, less body weight loss. Therefore, to achieve similar weight loss in AA women, the prescribed caloric restriction cannot be based on weight alone, but must be lower than in Caucasians, to account for lower energy requirements.

  12. An investigation of wind power potential required in installation of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Akpinar, E. [Firat University, Elazig (Turkey). Mechanical Engineering Department; Akpinar, S. [Firat University, Elazig (Turkey). Physics Department

    2006-07-01

    In the present study, the wind power potential of all the regions (Maden, Agin, Elazig, and Keban) is analysed on the basis of measured hourly time-series wind speed data for the year 2003. The probability density distributions are derived from time-series data and distributional parameters are identified. Two probability density functions are fitted to the measured probability distributions. The wind energy characteristic of all the regions is studied on the basis of the Weibull and the Rayleigh distributions. Using the Weibull probability density function, we estimated the wind energy output and the capacity factor for six different wind turbine between 300 and 2300 kW. It was found that Maden is the best region, among the regions analyzed, for wind energy and wind turbine characteristics. (author)

  13. Principles for Nearly Zero-energy Buildings. Paving the way for effective implementation of policy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Boermans, T.; Hermelink, A.; Schimschar, S.; Groezinger, J.; Offermann, M. [Ecofys Germany, Berlin (Germany); Engelund Thomsen, K.; Rose, J.; Aggerholm, S.O. [Danish Building Research Institute SBi, Aalborg University, Hoersholm (Denmark)

    2011-11-15

    The overarching objective of this study is to contribute to a common and cross-national understanding on: an ambitious, clear definition and fast uptake of nearly Zero-Energy Buildings (nZEB) in all EU Member States; principles of sustainable, realistic nearly Zero-Energy Buildings, both new and existing; possible technical solutions and their implications for national building markets, buildings and market players. The study builds on existing concepts and building standards, analyses the main methodological challenges and their implications for the nZEB definition, and compiles a possible set of principles and assesses their impact on reference buildings. Subsequently the technological, financial and policy implications of these results are evaluated. Finally, the study concludes by providing an outlook on necessary further steps towards a successful implementation of nearly Zero-Energy Buildings.

  14. Chapter 2: International Requirements for Large Integration of Renewable Energy Sources

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Garcia, A.; Hansen, A. D.; Muljadi, Eduard; Gevorgian, Vahan; Fortmann, J.; Gomez-Lazaro, E.

    2017-03-01

    Most European countries have concerns about the integration of large amounts of renewable energy sources (RES) into electric power systems, and this is currently a topic of growing interest. In January 2008, the European Commission published the 2020 package, which proposes committing the European Union to a 20% reduction in greenhouse gas emissions, to achieve a target of deriving 20% of the European Union's final energy consumption from renewable sources, and to achieve 20% improvement in energy efficiency both by the year 2020 [1]. Member states have different individual goals to meet these overall objectives, and they each need to provide a detailed roadmap describing how they will meet these legally binding targets [2]. At this time, RES are an indispensable part of the global energy mix, which has been partially motivated by the continuous increases in hydropower as well as the rapid expansion of wind and solar photovoltaic (PV). The International Energy Agency's 2012 edition of the World Energy Outlook stated that the rapid increases in RES integration are underpinned by falling technology costs as well as rising fossilfuel prices and carbon pricing, but RES integration is also encouraged by continued subsidies: from $88 billion globally in 2011 (compared to $523 billion in fossil-fuel subsidies in 2012 [3], with a share of $131 billion for electricity generation) to an estimated $240 billion in 2035 [4]. According to [3], in 2015 RES accounted for 22% of electricity generation, which was approximately the same level as gas and about one-half the level of coal.

  15. Analysis of the thermal energy requirements for the extraction of leaf protein concentrate from some green plants

    Energy Technology Data Exchange (ETDEWEB)

    Tangka, Julius K. [Dschang Univ., Dept. of Agricultural Engineering, Dschang (Cameroon)

    2003-12-01

    Extraction of protein from the leaves of green plants is very important because of the high cost of conventional forms of protein such as meat, milk and fish. In order to design machinery for this extraction, and also to embark on leaf protein concentrate extraction, it is necessary to measure and analyse the energy requirements to carry out each process involved in the extraction, using different plant species. Experiments were carried out to determine the amount of crude protein, and the thermal energy required to extract leaf protein concentrate, from juices obtained from the leaves of some plant species. Leaves from the following plants were selected: cassava (Manihot esculanta), Siam weed (Chromolaena odorata), bitter leaf (Vernonia amygdalina), gliricidia (Gliricidia maculata) and thorny tree (Hura crepetans). The leaves from the plant species were macerated in a laboratory pulper. Juice was obtained from the samples using perforated cylinders and a hydraulic press. The specific heat capacity of the juices was determined using the cooling curve method. The values of the heat capacities were used to calculate the amount of thermal energy required to raise the temperature of each juice from its normal temperature of about 25 deg C to a total protein coagulation temperature of about 80 deg C. The crude protein content of the extract was determined using the Kjeldal method. Results indicate that the green coagulum extracted from all the juices all have a protein content of at least 37%. The thermal energy required to coagulate protein from the juices ranges from 1.59 kJ kg{sup -1} for Hura crepetans to 2.7 kJ kg{sup -1} for Vernonia amygdalina. The energy requirement to obtain crude protein (CP) ranges from 8 kJ kg{sup -1} [CP] with Bura crepetans to 182 kJ kg{sup -1} [CP] with Vernonia amygdalina. Both results are statistically significant at the 0.01 confidence interval. It is concluded that the choice of plant species can significantly lower the thermal energy

  16. Seasonal and age effects on energy requirements in domestic short-hair cats (Felis catus) in a temperate environment.

    Science.gov (United States)

    Bermingham, E N; Weidgraaf, K; Hekman, M; Roy, N C; Tavendale, M H; Thomas, D G

    2013-06-01

    There is little information known about the energy requirements of cats in temperature climates. Energy requirement of domestic short-haired cats was determined using three groups of mixed gender - old kept outside (approximately 9.9 years of age; 4.8 kg; n = 9), young kept outside (approximately 3.1 years of age; 3.9 kg; n = 8) or young kept inside (approximately 3.1 years of age; 3.9 kg; n = 8). Cats were housed individually for 5 weeks during summer (18.5 ± 0.5 °C) and winter (8.5 ± 0.4 °C) and were fed a commercially available maintenance diet ad libitum. In both periods, energy expenditure was determined from the rates of (2) H and (18) O elimination for blood H2 O over a 12 day period, from a doubly labelled water bolus (2) H2 O (0.7 g/kg BW) and H2 (18) O (0.13 g/kg BW) administered intravenously. During the summer period, macronutrient digestibility was determined. Older cats had a reduction (p energy (approximately 8%) and protein (6%). There was a significant effect of age and season on energy intake and energy expenditure. While lean mass was affected by age and season, there was no effect of age or season on energy expenditure when expressed as a proportion of lean mass. Possible seasonal differences in nutrient digestibility may explain these results. © 2012 Blackwell Verlag GmbH.

  17. On Early Conflict Identification by Requirements Modeling of Energy System Control Structures

    DEFF Research Database (Denmark)

    Heussen, Kai; Gehrke, Oliver; Niemann, Hans Henrik

    2015-01-01

    Control systems are purposeful systems involving goal-oriented information processing (cyber) and technical (physical) structures. Requirements modeling formalizes fundamental concepts and relations of a system architecture at a high-level design stage and can be used to identify potential design...... issues early. For requirements formulation of control structures, cyber and physical aspects need to be jointly represented to express interdependencies, check for consistency and discover potentially conflicting requirements. Early identification of potential conflicts may prevent larger problems...... at later design stages. However, languages employed for requirements modeling today do not offer the expressiveness necessary to represent control purposes in relation to domain level interactions and therefore miss several types of interdependencies. This paper introduces the idea of control structure...

  18. Energy recuperation in fully electric vehicles subject to stability and drivability requirements

    NARCIS (Netherlands)

    Ólafsdóttir, J.M.; Lidberg, M.; Falcone, P.; Iersel, S. van; Jansen, S.T.H.

    2012-01-01

    This paper presents a combined control and estimation framework for energy recuperation in fully electric vehicles. We consider a fully electric powertrain, with a driven front axle operating on low friction road surfaces. Our objective is to find the blending of regenerative and friction braking

  19. 75 FR 4474 - Energy Conservation Program: Certification, Compliance, and Enforcement Requirements for Certain...

    Science.gov (United States)

    2010-01-28

    ... a type which: (1) In operation consumes, or is designed to consume energy; (2) To any significant... as commercial refrigerators, freezers, and refrigerator-freezers, the methods are described in... commercial refrigerators, freezers, and refrigerator-freezers, the applicable provisions in appendix D to...

  20. Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction

    Science.gov (United States)

    Brain estrogen receptor-a (ERa) is essential for estrogenic regulation of energy homeostasis and reproduction. We previously showed that ERa expressed by pro-opiomelanocortin (POMC) neurons mediates estrogen's effects on food intake, body weight, negative regulation of hypothalamic–pituitary–gonadal...

  1. Calcium requirements from dairy foods in France can be met at low energy and monetary cost.

    Science.gov (United States)

    Drewnowski, Adam; Tang, Wesley; Brazeilles, Rémi

    2015-12-14

    Inadequate Ca intakes are a concern for global public health. In France, most dietary Ca is provided by dairy products: milks, fermented milks (mostly yogurts), dairy desserts and cheeses. The present dairy database (n 837) included milks (n 101), fermented milks, yogurts and other fresh dairy products (n 326), desserts (n 162) and a wide variety of cheeses (n 248). Energy and nutrient values were obtained from industry sources and the French national nutrient composition database. Retail prices were from Paris supermarkets. Products in each group were aggregated into twenty-one categories using clustering analyses. The costs in energy (kJ (kcal)), euros (€), and in SFA, added sugar and Na (defined here as nutrients to LIMit) associated with providing 120 mg of Ca (equivalent to 15 % daily value (15 % DV)) were calculated for each product group and category. The milk group supplied Ca at the lowest energy, monetary and LIM cost. Fresh plain and 'light' yogurts and fermented milks were next, followed by sweetened yogurts and flavoured milks. Light dairy desserts provided Ca with relatively few energy but were more expensive. Cheeses were a heterogeneous group. Hard cheeses (Comté) provided the most Ca per serving. Semi-hard cheeses (Camembert) and cream and blue cheeses (Roquefort) provided Ca at a cost comparable with sweetened yogurts and flavoured milks. Double cream, soft and goat cheeses were not optimal Ca sources. New value metrics can help identify affordable dairy foods that provide Ca without excessive energy or nutrients to limit. These conditions were satisfied by a wide variety of dairy products in France.

  2. Estimates of average energy requirements in Bangladesh: Adult Male Equivalent values for use in analyzing household consumption and expenditure surveys

    Directory of Open Access Journals (Sweden)

    Jillian L. Waid

    2017-10-01

    Full Text Available This dataset contains Adult Male Equivalent (AME values for use in Bangladesh. These were constructed using prescriptive nutritional constructs adapted to the actual growth and weight pattern seen in Bangladesh. This dataset provides a common base to facilitate for future work with household consumption and expenditure data in Bangladesh while updating the average energy requirements for infants and young children for the WHO 2006 growth standards and 2007 growth reference curves.

  3. Energy nutritional requirements for females of Nellore, Nellore × Angus and Nellore × Simmental fed on two forage: concentrate ratios

    OpenAIRE

    Souza,Evaristo Jorge Oliveira de; Valadares Filho,Sebastião de Campos; Guim,Adriana; Valadares,Rilene Ferreira Diniz; Marcondes,Marcos Inácio; Véras,Antonia Sherlânea Chaves; Amaral,Paloma de Melo; Santos,Tathyane Ramalho

    2012-01-01

    The objective of this study was to determine the energy nutritional requirements for females of Nellore, Nellore × Angus and Nellore × Simmental fed on two levels of concentrate. Sixty heifers from three genetic groups were used: 20 Nellore, 20 Nellore × Angus and 20 Nellore × Simmental. Twelve belonged to the reference group (four of each genetic group) and were slaughtered at the beginning of the experiment. Another 12 heifers (four of each genetic group) were fed on the maintenance level a...

  4. Resource and energy management of synfuels production with hydrogen and oxygen requirements from electrolysis

    Science.gov (United States)

    Shannon, R. H.; Richardson, R. D.

    The Resource and Energy Management System (REM), which uses electrolytic H2 and O2 to produce synthetic crude and light oils from heavy hydrocarbons is described. The heavy hydrocarbon feedstocks include heavy oils, tar sand bitumens, heavy residual oils, oil shale kerogens, liquefied coal, and pyrolytically-extracted coal liquids. The system includes mini-upgraders, which can be implemented in modular form, to pump electrolytically-derived H2 into heavy oils to upgrade their energy content. Projected costs for the production of synthetic light oils using U.S. coal reserves with the REM process after liquefaction are $30-35/bbl, with the H2 costs being a controlling factor. The modular systems could be built in a much shorter time frame than much larger projects, and would be instrumental in establishing the electrolytic H2 production infrastructure needed for eventual full conversion to an H2-based economy.

  5. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    Science.gov (United States)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-01-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774

  6. Quantification of the energy required for the destruction of Balanus Amphitrite larva by ultrasonic treatment

    Digital Repository Service at National Institute of Oceanography (India)

    Seth, N.; Chakravarty, P.; Khandeparker, L.; Anil, A.C.; Pandit, A.B.

    -high energy combustion conditions. Within the cavitation bubble and the immediate surround area, temperatures range from 2000 to 5000 °C, and pressure reaches 1800 atmospheres (Buchholz et al., 1998). Higher frequencies, warmer temperatures and lower... combined with mechanical disruption on the extent of disruption and release of intracellular protein from E. coli. Biochemical Engineering Journal 35(2), 166-173. Anil A.C., Venkat K., Sawant S.S., Dileepkumar M., Dhargalkar V.K., Ramaiah N., Harkantra...

  7. Power and Energy Storage Requirements for Ship Integration of Solid-State Lasers on Naval Platforms

    Science.gov (United States)

    2016-06-01

    XE 70 Genesis battery (lead acid) .............................................................24 Figure 12. Saft VL 30 PFe lithium ion battery...light at a certain frequency . Once the population inversion has occurred, laser light is emitted due to the constructive interference of photons...generated as electrons drop from an excited state to a less excited state. The frequency of the laser light is dependent on this change in energy and so

  8. STAT3 signalling is required for leptin regulation of energy balance but not reproduction.

    Science.gov (United States)

    Bates, Sarah H; Stearns, Walter H; Dundon, Trevor A; Schubert, Markus; Tso, Annette W K; Wang, Yongping; Banks, Alexander S; Lavery, Hugh J; Haq, Asma K; Maratos-Flier, Eleftheria; Neel, Benjamin G; Schwartz, Michael W; Myers, Martin G

    2003-02-20

    Secretion of leptin from adipocytes communicates body energy status to the brain by activating the leptin receptor long form (LRb). LRb regulates energy homeostasis and neuroendocrine function; the absence of LRb in db/db mice results in obesity, impaired growth, infertility and diabetes. Tyr 1138 of LRb mediates activation of the transcription factor STAT3 during leptin action. To investigate the contribution of STAT3 signalling to leptin action in vivo, we replaced the gene encoding the leptin receptor (lepr) in mice with an allele coding for a replacement of Tyr 1138 in LRb with a serine residue (lepr(S1138)) that specifically disrupts the LRb-STAT3 signal. Here we show that, like db/db mice, lepr(S1138) homozygotes (s/s) are hyperphagic and obese. However, whereas db/db mice are infertile, short and diabetic, s/s mice are fertile, long and less hyperglycaemic. Furthermore, hypothalamic expression of neuropeptide Y (NPY) is elevated in db/db mice but not s/s mice, whereas the hypothalamic melanocortin system is suppressed in both db/db and s/s mice. LRb-STAT3 signalling thus mediates the effects of leptin on melanocortin production and body energy homeostasis, whereas distinct LRb signals regulate NPY and the control of fertility, growth and glucose homeostasis.

  9. Energy requirements for the in-store drying of cereal grains ...

    African Journals Online (AJOL)

    The time required by the fan to carry out this drying process is 43.919 hours. The simulated data was compared with an experimental result and there was a reasonable agreement between the two thereby validating the simulation program. Journal of Applied Science, Engineering and Technology Vol. 3(1) 2003: 19-24 ...

  10. A Study of Airbase Facility/Utility Energy R and D Requirements

    Science.gov (United States)

    1992-04-01

    San Juaquin 1990 57 48 45,000 Kern Front 1989 49 48 110,000 High Sierra 1989 49 48 110,000 Double "C" 1989 49 48 110,000 Corona Energy 1988 43 46... drought in the western part of the United States during the past 4 years has left the major water reservoirs throughout the West very low and unable to...Langely, VA TAC Langely AFB 6-8 Aug 90 St. Louis, MO MAC Scott AFB AFCC 2-3 Oct 90 San Antonio, TX ATC Randolph AFB ESC Kelly AFB 5-7 Nov 90 Dayton, OH

  11. Quality, energy requirement and costs of drying tarragon (Artemisia dracunculus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.A.A.

    2005-11-07

    Tarragon (Artemisia dracunculus L.) is a favorite herbal and medicinal plant. Drying is necessary to achieve longer shelf life with high quality, preserving the original flavor. Essential oil content and color are the most important parameters that define the quality of herbal and medicinal plants. Hot air batch drying is the most common drying method for these plants but affects the essential oil content and color. The drying conditions affect essential oil content and color as well as the energy consumption and costs. Process engineers and farmers need to know how they have to dry to obtain the best quality. The objective of this work is to investigate the conditions for optimal drying in terms of quality, energy consumption and costs. Adsorption and desorption experiments were done to find the equilibrium moisture content and water exchange between the material and surrounding air during drying and storage at temperatures of 25C to 70C and relative humidities of 5% to 90%. Drying of tarragon leaves and chopped plants was investigated separately and the best model was selected from the drying equations in literature. The effect of drying temperature and relative humidity on the essential oil content and color change was studied. Experiments were done at temperatures of 40C to 90C and the optimal conditions were. Long-term effects of the drying conditions were also investigated during the storage time. Material dried at 45, 60 and 90C was stored and the essential oil content and color of the material was measured after 15, 30, 60 and 120 days of storage. Drying at 45C was found as the best condition based on the changes of essential oil and color during drying and storage. Optimization of drying of tarragon was studied based on the results of the sorption isotherms, drying equations and the changes of essential oil content and color during drying and storage. Models were made for the drying process, energy consumption and cost calculation. The current conditions

  12. Energy

    CERN Document Server

    Graybill, George

    2007-01-01

    Unlock the mysteries of energy! Energy is more than ""the ability to do work""; we present these concepts in a way that makes them more accessible to students and easier to understand. The best way to understand energy is to first look at all the different kinds of energy including: What Is Energy, Mechanical Energy, Thermal, Sound Energy and Waves, as well as Light Energy.

  13. Energy requirements for the penetration of heads of domestic stock and the development of a multiple projectile.

    Science.gov (United States)

    Blackmore, D K

    1985-01-12

    The forces and kinetic energy required to penetrate the isolated heads of calves, adult beef cattle, sheep and red deer with a metal probe the same diameter as the bore of an experimental pistol were determined. Approximately 16 and 127 Joules were required to penetrate the heads of adult sheep and cattle, respectively. Using these data a 10 g projectile, consisting of 49 lead pellets and a lead disc in a polyethylene sleeve, was constructed. This projectile, when fired by a charge sufficient to produce a muzzle velocity of 165 m/second, had sufficient kinetic energy to penetrate the heads and brains of cattle, sheep, horses and deer. The projectile was fired from a new design of humane killer with a spring loaded barrel and fitted with a silencer. After penetration of the frontal bones the projectile fragmented and the kinetic energy of its individual particles were insufficient for them to penetrate the opposite side of the head of any of the animals, including one-week-old calves. Fragmentation also caused more brain damage and inhibition of spinal reflexes than a solid free bullet or captive bolt. It is suggested that the use of such a projectile for the emergency slaughter of animals is less hazardous than a solid free bullet and is easier to use and more effective than either a solid free bullet or captive bolt. The projectile was not suitable for killing adult pigs because of problems associated with the frontal sinus.

  14. Requirements and impacts of the Federal Facility Compliance Act on the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.; Tripp, S.C. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management

    1993-03-01

    The Federal Facilities Compliance Act (FFCA, the Act) was signed into law on October 6, 1992, primarily as a means of waiving sovereign immunity for federal facilities with respect to requirements under the Resource Conservation and Recovery Act. DOE`s implementation of the FFCA will have significant effects on current and future DOE waste management operations. DOE will need to rethink its strategy in the area of future compliance agreements to ensure commitments and deliverables are made consistent throughout the different DOE facilities. Several types of agreements that address mixed waste land disposal restriction (LDR) compliance have already been signed by both DOE and the regulators. These agreements are in place at the Hanford Reservation, the Savannah River Site, the Oak Ridge Reservation (Oak Ridge National Laboratory, K-25, Y-12), and the Paducah Gaseous Diffusion Plant. The Rocky Flats Agreement is now being renegotiated. Los Alamos National Laboratory, Sandia/Albuquerque National Laboratory, Lawrence Livermore National Laboratory, and Idaho National Engineering Laboratory agreements are in progress. Major components of the FFCA include provisions on: sovereign immunity waiver; cost reimbursements; mixed waste requirements, including inventory reports on mixed waste and treatment capacity and technologies; and plans for the development of treatment capacities and technologies. Each of these components is discussed within this paper.

  15. 40-Hz square-wave stimulation requires less energy to produce muscle contraction: compared with the TASER® X26 conducted energy weapon.

    Science.gov (United States)

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2013-07-01

    Conducted energy weapons (CEWs) (including the Advanced TASER(®) X26 model produced by TASER International, Inc.) incapacitate individuals by causing muscle contractions. In this study using anesthetized swine, the potential incapacitating effect of primarily monophasic, 19-Hz voltage imposed by the commercial CEW was compared with the effect of voltages imposed by a laboratory device that created 40-Hz square waves. Forces of muscle contraction were measured with the use of strain gauges. Stimulation with 40-Hz square waves required less pulse energy than stimulation with the commercial CEW to produce similar muscle contraction. The square-pulse stimulation, at the higher repetition rate, caused a more complete tetanus at a lower energy. Use of such a simple shape of waveform may be used to make future nonlethal weapon devices more efficient. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  16. The effect of using low-polluting building materials on ventilation requirements and energy use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Frontczak, M. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The main objective of the ongoing research project described in this paper was to study the potential for reducing energy used for ventilating buildings by using low-polluting building materials, without compromising the indoor air quality. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and perceived indoor air quality, were established for rooms furnished with different categories of polluting materials and the simulations of energy used for ventilation were carried out. The exposure-response relationships were based on a summary of data reported in the literature on exposure-response relationships for materials tested in laboratory settings in small-scale glass chambers, and in full-scale in climate chambers, test rooms or normal offices. New experiments were also considered in which the effect of using low-polluting materials on perceived air quality was examined in test rooms ventilated with different outdoor air supply rates, low-polluting materials being selected in small glass chambers. The results suggest that the exposure-response relationships vary between different building materials and that the perceived air quality can be improved considerably when polluting building materials are substituted with materials that pollute less. The preliminary energy simulations indicate that selecting low-polluting materials will result in considerable energy savings as a result of reducing the ventilation rates required to achieve acceptable indoor air quality. (au)

  17. Addressing System Integration Issues Required for the Developmente of Distributed Wind-Hydrogen Energy Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D; Salehfar, H.; Harrison, K.W.; Dale, N.; Biaku, C.; Peters, A.J.; Hernandez-Pacheco: E.

    2008-04-01

    Wind generated electricity is a variable resource. Hydrogen can be generated as an energy storage media, but is costly. Advancements in power electronics and system integration are needed to make a viable system. Therefore, the long-term goal of the efforts at the University of North Dakota is to merge wind energy, hydrogen production, and fuel cells to bring emission-free and reliable power to commercial viability. The primary goals include 1) expand system models as a tool to investigate integration and control issues, 2) examine long-term effects of wind-electrolysis performance from a systematic perspective, and 3) collaborate with NREL and industrial partners to design, integrate, and quantify system improvements by implementing a single power electronics package to interface wild AC to PEM stack DC requirements. This report summarizes the accomplishments made during this project.

  18. Electro-osmosis effectiveness in reducing tillage draft force and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.L. [Univ. of Arizona, Tucson, AZ (United States); Clyma, H.E. [Univ. of Nebraska, Lincoln, NE (United States)

    1995-09-01

    Tillage tests were conducted in a laboratory soil bin to quantify the draft force and tillage energy reductions obtained with electro-osmosis. Electrical parameters examined were voltage level and use of one or two anodes; the tillage tool served as the cathode. Tests were conducted in loam and clay loam soils at two moisture contents each at tillage speeds of 3.3 to 7.7 km/h. The application of an electrical potential reduced tillage draft forces up to 39% in a loam soil and up to 11% in a clay loam soil in soil bin tests. The greatest draft force reduction in the loam soil was obtained with a 40-V electrical input, one coulter as anode, soil moisture content of 17%, and tillage speed of 6.5km/h. The largest draft force reduction in the clay loam soil was obtained with a 45-V input at 3. 3 km/h. The largest draft force reduction was obtained in the wetter of the two test conditions in the loam soil, but in the drier clay loam soil test condition. Draft force decreased linearly with increasing voltage in all soil conditions; one anode yielded greater force reduction than two in nearly all tests. Draft force reduction was similar at all tillage speeds in the loam soil, but draft force reduction decreased with increasing tillage speed in clay loam tests. This research indicates application to a full-size tillage implement and in-field verification are merited to assess commercial potential of electro-osmotic tillage. 8 refs., 4 figs., 2 tabs.

  19. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation

  20. Ocean thermal energy conversion (OTEC) platform configuration and integration. Final report. Volume I. Systems requirements and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    Studies leading to the development of two 400 MW Offshore Thermal Energy Conversion Commercial Plants are presented. This volume includes a summary of three tasks: task IIA--systems evaluation and requirements; task IIB--evaluation plan; task III--technology review; and task IV--systems integration evaluation. Task IIA includes the definition of top level requirements and an assessment of factors critical to the selection of hull configuration and size, quantification of payload requirements and characteristics, and sensitivity of system characteristics to site selection. Task IIB includes development of a methodology for systematically evaluating the candidate hullforms, based on interrelationships and priorities developed during task IIA. Task III includes the assessment of current technology and identification of deficiencies in relation to OTEC requirements and the development of plans to correct such deficiencies. Task IV involves the formal evaluation of the six candidate hullforms in relation to sit and plant capacity to quantify cost/size/capability relationships, leading to selection of an optimum commercial plant. (WHK)

  1. Effect of Age on Energy Requirement for Maintenance and Growth of Dorper and Hu Crossbred F1 Ewes Weighing 20 to 50 kg

    Directory of Open Access Journals (Sweden)

    H. T. Nie

    2015-08-01

    Full Text Available This research aimed to define the energy requirement of Dorper and Hu Hybrid F1 ewes 20 to 50 kg of body weight, furthermore to study energy requirement changes with age and evaluate the effect of age on energy requirement parameters. In comparative slaughter trial, thirty animals were divided into three dry matter intake treatments (ad libitum, n = 18; low restricted, n = 6; high restricted, n = 6, and were all slaughtered as baseline, intermediate, and final slaughter groups, to calculate body chemical components and energy retained. In digestibility trial, twelve ewes were housed in individual metabolic cages and randomly assigned to three feeding treatments in accordance with the design of a comparative slaughter trial, to evaluate dietary energetic values at different feed intake levels. The combined data indicated that, with increasing age, the net energy requirement for maintenance (NEm decreased from 260.62±13.21 to 250.61±11.79 kJ/kg0.75 of shrunk body weight (SBW/d, and metabolizable energy requirement for maintenance (MEm decreased from 401.99±20.31 to 371.23±17.47 kJ/kg0.75 of SBW/d. Partial efficiency of ME utilization for maintenance (km, 0.65 vs 0.68 and growth (kg, 0.42 vs 0.41 did not differ (p>0.05 due to age; At the similar condition of average daily gain, net energy requirements for growth (NEg and metabolizable energy requirements for growth (MEg for ewes during late fattening period were 23% and 25% greater than corresponding values of ewes during early fattening period. In conclusion, the effect of age upon energy requirement parameters in the present study were similar in tendency with previous recommendations, values of energy requirement for growth (NEg and MEg for Dorper and Hu crossbred female lambs ranged between the NRC (2007 recommendation for early and later maturating growing sheep.

  2. Local content requirements and the impact on the South African renewable energy sector: A survey-based analysis

    Directory of Open Access Journals (Sweden)

    Christopher Ettmayr

    2017-08-01

    Full Text Available Background: Economies aim to grow over time, which usually implies the need for increased energy availability. Governments can use their procurement of energy to increase benefits in their economies via certain policy tools. One such tool is local content requirements (LCRs, where the purchase of goods prescribes that a certain value has to be sourced locally. The argument for this tool is that spending is localised and manufacturing, as well as job creation, can be stimulated because industry will need to establish in the host economy. However, this practice is distortionary in effect and does not create a fair playing ground for global trade. Furthermore, if the local content definition is weak, or open to manipulation, the goals of such a policy may not be achieved at all. Aim: The objective of this study was to determine how LCRs would ultimately impact on the overall procurement programme. Setting: This study took place as South Africa commenced with large scale development of the renewable energy sector. This was largely achieved via the State run Renewable Energy Independent Power Producer Procurement Programme (REIPPPP. Method: This study utilised opinion-based surveys to look into the LCRs of South Africa’s REIPPPP and measure the impact of this policy on the renewable energy sector in general. The mixed method approach was utilised to analyse qualitative and quantitative data and this was then triangulated with an international peer group to arrive at certain conclusions. The Delphi Technique was then employed to achieve population consensus on the findings. Results and conclusion: It was found that, in order to implement a policy such as local content without any negative welfare effects, the host economy had to show certain pre-existing conditions. Because South Africa does not hold all supportive pre-conditions, the impact and effect of LCRs have not been optimal, and it has not been found to be a sustainable mechanism to

  3. Effects of diet forage proportion on maintenance energy requirement and the efficiency of metabolizable energy use for lactation by lactating dairy cows.

    Science.gov (United States)

    Dong, L F; Ferris, C P; McDowell, D A; Yan, T

    2015-12-01

    The objective of the present study was to examine the effect of dietary forage proportion (FP) on metabolizable energy (ME) requirement for maintenance (MEm) and the efficiency of ME use for lactation (kl) in lactating dairy cows. Data used were derived from 32 calorimetric chamber experiments undertaken at our institute between 1992 and 2010, including data from 818 Holstein-Friesian cows (HF), 50 Norwegian Red cows, and 62 crossbred cows (Jersey × HF or Norwegian Red × HF). Animals were offered forage-only rations (n=66) or forage and concentrate rations (n=864) with FP ranging from 18 to 100% (dry matter basis). The effect of FP was evaluated by dividing the whole data set into 4 groups according to the FP ranges, categorized as FP forage input systems. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  5. Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates.

    Science.gov (United States)

    Rebnegger, Corinna; Vos, Tim; Graf, Alexandra B; Valli, Minoska; Pronk, Jack T; Daran-Lapujade, Pascale; Mattanovich, Diethard

    2016-08-01

    The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX /S (max)) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (μ) of 0.025 h(-1) to near-zero specific growth rates (μ growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low μ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while μ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production processes, a better understanding of cell physiology at an

  6. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  7. Estimation of Lighting Energy Consumption Required for Red Leaf Lettuce Production under Different Blue/Red Ratios and Light Intensity Conditions in a Plant Factory with Artificial Lighting

    National Research Council Canada - National Science Library

    Shinichi FURUYAMA; Yasuhiro ISHIGAMI; Shoko HIKOSAKA; Eiji GOTO

    2017-01-01

    .... The lighting energy consumption per plant required for the test period was calculated from summing the daily value multiplied by the amount of light received to the whole plant by the lighting...

  8. Strawberry puree processed by thermal, high pressure, or power ultrasound: Process energy requirements and quality modeling during storage.

    Science.gov (United States)

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-06-01

    Strawberry puree was processed for 15 min using thermal (65 ℃), high-pressure processing (600 MPa, 48 ℃), and ultrasound (24 kHz, 1.3 W/g, 33 ℃). These conditions were selected based on similar polyphenoloxidase inactivation (11%-18%). The specific energies required for the above-mentioned thermal, high-pressure processing, and power ultrasound processes were 240, 291, and 1233 kJ/kg, respectively. Then, the processed strawberry was stored at 3 ℃ and room temperature for 30 days. The constant pH (3.38±0.03) and soluble solids content (9.03 ± 0.25°Brix) during storage indicated a microbiological stability. Polyphenoloxidase did not reactivate during storage. The high-pressure processing and ultrasound treatments retained the antioxidant activity (70%-74%) better than the thermal process (60%), and high-pressure processing was the best treatment after 30 days of ambient storage to preserve antioxidant activity. Puree treated with ultrasound presented more color retention after processing and after ambient storage than the other preservation methods. For the three treatments, the changes of antioxidant activity and total color difference during storage were described by the fractional conversion model with rate constants k ranging between 0.03-0.09 and 0.06-0.22 day - 1, respectively. In resume, high-pressure processing and thermal processes required much less energy than ultrasound for the same polyphenoloxidase inactivation in strawberry. While high-pressure processing retained better the antioxidant activity of the strawberry puree during storage, the ultrasound treatment was better in terms of color retention.

  9. Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion

    Science.gov (United States)

    Villegas-Amtmann, Stella; McDonald, Birgitte I.; Páez-Rosas, Diego; Aurioles-Gamboa, David; Costa, Daniel P.

    2017-06-01

    The rate of energy expenditure and acquisition are fundamental components of an animals' life history. Within mammals, the otariids (sea lions and fur seals) exhibit energetically expensive life styles, which can be challenging in equatorial regions where resources are particularly limited and unpredictable. To better understand how this energetically expensive life history pattern functions in an energetically challenging equatorial system, we concurrently measured the field metabolic rate (FMR) and foraging behavior of lactating Galapagos sea lions (GSL) rearing pups and yearlings. Females with pups tended to forage to the north, diving deeper, epi and mesopelagically compared to females with yearlings, which foraged to the west and performed dives to the sea bed that were shallower. FMR did not differ between females with pups or yearlings but, increased significantly with % time spent at-sea. Females with yearlings had higher water influx, suggesting greater food intake, but had lower body condition. The FMR (4.08±0.6 W/kg) of GSL is the lowest measured for any otariid, but is consistent with Galapagos fur seals which also exhibit low FMR. The observation that these two otariids have reduced energy requirements is consistent with an adaptation to the reduced prey availability of the Galapagos marine environment compared to other more productive marine systems.

  10. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  11. Climate Regulation of Rearing-Related Buildings - Evaluating the Factors Related to the Energy Requirement of Heating/Cooling, and Analysis of Alternative Solutions

    Directory of Open Access Journals (Sweden)

    Toth Laszló

    2017-10-01

    Full Text Available The most notable role in the energy usage of rearing-related buildings belongs to barn climate. For animals, one of the most important climate parameter is the temperature of the barn atmosphere. This can be kept in the proper interval by either heating or cooling. Apart from the operation of technological solutions, the need for airing barns must be taken into consideration. This means there are special technical requirements for airing. Also, they can cause significant energy losses. The temperature limit of heating is mainly influenced by the technological temperature related to keeping the animal in question, its acceptable differences, the heat loss of the barn, and the airing requirement. Energy sources applicable to heating can be traditional sources (coal, oil, gas, renewable sources (solar, biomass, wind, water, or geothermal energy, or transformed energy (electricity. As these have specific operation systems, they also mean further challenges in implementing efficient energy usage. The usage of heating energy can either be optimised by the rational usage of the heating system, or machinery explicitly made for reserving energy. Sparing heating energy via recuperative heating exchange may cut costs significantly, which we also proved in this research with actual calculations. However, we have to state that the efficient usage of heat exchangers requires that the internal and external temperatures differ greatly, which has a huge impact on heat recovery performance.

  12. Energy and precious fuels requirements of fuel alcohol production. Volume 2, appendices A and B: Ethanol from grain

    Science.gov (United States)

    Weinblatt, H.; Reddy, T. S.; Turhollow, A., Jr.

    1982-01-01

    Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed.

  13. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.

    Science.gov (United States)

    Vos, Tim; Hakkaart, Xavier D V; de Hulster, Erik A F; van Maris, Antonius J A; Pronk, Jack T; Daran-Lapujade, Pascale

    2016-06-17

    Saccharomyces cerevisiae is an established microbial platform for production of native and non-native compounds. When product pathways compete with growth for precursors and energy, uncoupling of growth and product formation could increase product yields and decrease formation of biomass as a by-product. Studying non-growing, metabolically active yeast cultures is a first step towards developing S. cerevisiae as a robust, non-growing cell factory. Microbial physiology at near-zero growth rates can be studied in retentostats, which are continuous-cultivation systems with full biomass retention. Hitherto, retentostat studies on S. cerevisiae have focused on anaerobic conditions, which bear limited relevance for aerobic industrial processes. The present study uses aerobic, glucose-limited retentostats to explore the physiology of non-dividing, respiring S. cerevisiae cultures, with a focus on industrially relevant features. Retentostat feeding regimes for smooth transition from exponential growth in glucose-limited chemostat cultures to near-zero growth rates were obtained by model-aided experimental design. During 20 days of retentostats cultivation, the specific growth rate gradually decreased from 0.025 h(-1) to below 0.001 h(-1), while culture viability remained above 80 %. The maintenance requirement for ATP (mATP) was estimated at 0.63 ± 0.04 mmol ATP (g biomass)(-1) h(-1), which is ca. 35 % lower than previously estimated for anaerobic retentostats. Concomitant with decreasing growth rate in aerobic retentostats, transcriptional down-regulation of genes involved in biosynthesis and up-regulation of stress-responsive genes resembled transcriptional regulation patterns observed for anaerobic retentostats. The heat-shock tolerance in aerobic retentostats far exceeded previously reported levels in stationary-phase batch cultures. While in situ metabolic fluxes in retentostats were intentionally low due to extreme caloric restriction, off-line measurements

  14. National Energy Policy Plan; A Report to Congress Required by Title VIII of the Department of Energy Organization Act (Public Law 95-91)

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This plan report is divided into the following chapters: the course ahead, currently predominant fuels (oil, gas), America's energy triad, sources of diversity and long-term supply, sources of uncertainty, summary of current projections, and public comments on the nation's policy toward energy. (DLC)

  15. MEGASTAR: The meaning of growth. An assessment of systems, technologies, and requirements. [methodology for display and analysis of energy production and consumption

    Science.gov (United States)

    1974-01-01

    A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach methodology including the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption from the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario.

  16. Detection of Coliforms in Drinking Water Using Skin Patches: A Rapid, Reliable Method that Does Not Require an External Energy Source

    OpenAIRE

    Nam, Sehee; Kim, Min-Jeong; Park, Minsun; Kim, Nuri; Lee, Yu-Jin; Lee, Gyu-Cheol

    2014-01-01

    The detection of coliforms requires incubation in a laboratory, generally powered using electricity. In many parts of the developing world, however, external energy sources such as electricity are not readily available. To develop a fast, reliable method for detecting coliforms in water without an external energy source, we assessed the efficacy of six test kits for the identification of coliforms in water samples. To assess the possibility of using body temperature as the sole source of heat...

  17. Metabolizable energy requirement for starting barrow pigs (15 to 30 kg fed on the ideal protein concept based diets

    Directory of Open Access Journals (Sweden)

    Gisele Cristina de Oliveira

    2005-09-01

    Full Text Available The objective of this study was to determine the metabolizable energy (ME requirement for starting barrow pigs. Forty-three animals, selected for their high lean gain, were allotted in a completely randomized block design, divided in four treatments with five blocks and two animals in each experimental unit. The diet in Treatment 1 consisted of 3,264 kcal of ME/kg containing 0.96% of digestible lysine, 0.55% of digestible methionine+cystine, 0.60% of digestible threonine, and 0.188% of digestible tryptophan reaching the ideal protein pattern. The diets in Treatments 2, 3, and 4 were similar to the diet in Treatment 1; nevertheless, the levels of ME in Treatments 2, 3, and 4 were 2, 4, and 6% higher than those in Treatment 1. The lysine:ME ratio, was mantained the same (2.82 g in all treatments. The daily feed intake (DFI and the feed:gain ratio (F:G were not affected by the levels of ME. There was a linear increase of daily weight gain (DWG and of daily energy intake (DEI. Later, a linear reduction in carcass protein percentage (CPP and a linear increase of fat content and daily fat accretion (DFA occurred. Results suggested that the required ME was of 3,264 kcal/kg or less for improved barrows (15 to 30 kg, of the dam line, fed with diets containing 0.96% of digestible lysine, formulated according to the ideal protein concept.A exigência de energia metabolizável (EM para suínos machos castrados foi determinada no presente experimento. Foram utilizados 43 suínos geneticamente melhorados, distribuídos em delineamento experimental de blocos inteiramente casualizados, com quatro tratamentos, cinco blocos e dois animais por unidade experimental. Tratamento 1 constituiu-se de uma dieta contendo 3.264 kcal de EM/kg contendo 0,96% de lisina digestível, 0,55% de metionina + cistina digestíveis, 0,60% de treonina digestível e 0,188% de triptofano digestível, atendendo ao conceito de proteína ideal. Tratamentos 2, 3 e 4 foram semelhantes à do

  18. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice.

    Science.gov (United States)

    Qian, Su; Chen, Howard; Weingarth, Drew; Trumbauer, Myrna E; Novi, Dawn E; Guan, Xiaoming; Yu, Hong; Shen, Zhu; Feng, Yue; Frazier, Easter; Chen, Airu; Camacho, Ramon E; Shearman, Lauren P; Gopal-Truter, Shobhna; MacNeil, Douglas J; Van der Ploeg, Lex H T; Marsh, Donald J

    2002-07-01

    Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by alpha-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp(-/-)) mice to examine the physiological role of AgRP. Agrp(-/-) mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp(-/-) mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp(-/-) mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp(-/-);Npy(-/-)) mice to determine whether NPY or AgRP plays a compensatory role in Agrp(-/-) or NPY-deficient (Npy(-/-)) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp(-/-);Npy(-/-) mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.

  19. Y1 and Y5 Receptors Are Both Required for the Regulation of Food Intake and Energy Homeostasis in Mice

    Science.gov (United States)

    Mitchell, Natalie F.; Lin, Shu; Macia, Laurence; Yulyaningsih, Ernie; Baldock, Paul A.; Enriquez, Ronaldo F.; Zhang, Lei; Shi, Yan-Chuan; Zolotukhin, Serge

    2012-01-01

    Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity – and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5−/− mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5−/− animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN – such as the dorsomedial nucleus and the ventromedial hypothalamus – cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake. PMID:22768253

  20. Clinical validity of the estimated energy requirement and the average protein requirement for nutritional status change and wound healing in older patients with pressure ulcers: A multicenter prospective cohort study.

    Science.gov (United States)

    Iizaka, Shinji; Kaitani, Toshiko; Nakagami, Gojiro; Sugama, Junko; Sanada, Hiromi

    2015-11-01

    Adequate nutritional intake is essential for pressure ulcer healing. Recently, the estimated energy requirement (30 kcal/kg) and the average protein requirement (0.95 g/kg) necessary to maintain metabolic balance have been reported. The purpose was to evaluate the clinical validity of these requirements in older hospitalized patients with pressure ulcers by assessing nutritional status and wound healing. This multicenter prospective study carried out as a secondary analysis of a clinical trial included 194 patients with pressure ulcers aged ≥65 years from 29 institutions. Nutritional status including anthropometry and biochemical tests, and wound status by a structured severity tool, were evaluated over 3 weeks. Energy and protein intake were determined from medical records on a typical day and dichotomized by meeting the estimated average requirement. Longitudinal data were analyzed with a multivariate mixed-effects model. Meeting the energy requirement was associated with changes in weight (P nutritional decline and of impaired healing of deep pressure ulcers. © 2014 Japan Geriatrics Society.

  1. Requirement, balance and energy efficiency under two models of cropping systems in the center-south of Buenos Aires, Argentina.

    Science.gov (United States)

    Zamora, Martin; Barbera, Agustin; Hansson, Alejandro; Carrasco, Natalia; Domenech, Marisa

    2017-04-01

    In a natural ecosystem, the solar energy is the main source. However, in the agro ecosystem we should use others in order to sustain specific processes or to avoid some interactions. This energy is introduced in the agro-system not only as fossil fuel but also as inputs like fertilizers and pesticides or for agricultural machines. Since February 2011, two adjacent fields were set at Barrow Experimental Station (Lat:-38.322844, Lon:-60.25572): one of them adopting agro-ecology principles (AGROE), as biodiversity increase, polyculture with legumes, less use of agrochemicals; while the other one is based on industrial model of agriculture (ACTUAL). This model is defined by its capital intensity and dependence on massive inputs like seeds, fertilizer, and pesticides. In both fields, beef cattle and agriculture production have been implemented with different intensity. The aim of this study was to compare the demand, production, balance and energy efficiency between these two agro-systems. To do this, we use tables of energy associated with different processes and inputs. For both systems, we estimate the energetic demand used in seeds, pesticides, fertilizers and labor during the crop sequence from February 2011 to December 2015; the energy production according to grains and meat yield achieved; the energetic balance calculated as the difference between inputs and outputs of energy in the system and finally, the energy efficiency which is the ratio between the energy produced and consumed. Inputs-outputs ratios of energy were transformed into equivalent units = GJ (Gigajoules). After a sequence of seven crops, ACTUAL consumed 60 GJ, which represents 158% more energy than AGROE. Particularly, ACTUAL consumed a 72% more energy in cultivation labor, 372% more in herbicides and 10 times more energy used in fertilizers than AGROE. Even though ACTUAL produced 37% more energy than AGROE (187 GJ vs 127 GJ) in grain and meat, the energetic balance was only 12% higher. However

  2. Contactor Energy Requirements for Capturing CO2 From ambient air using NaOH determined in a pilot-scale prototype system

    Science.gov (United States)

    Stolaroff, J. K.; Keith, D.; Lowry, G.

    2005-12-01

    Systems for capturing CO2 from ambient air for sequestration have recently been proposed (e.g. Dubey et al., 2002; Zeman and Lackner, 2004; Keith et al., 2004). Capture from ambient air has a number of structural advantages over capture from point sources; in particular it makes possible future emissions scenarios with negative net CO2 emissions. The systems suggested use either a Ca(OH)2 or NaOH solution to capture CO2 and then regenerate the solution in a chemical loop. The energy requirements of such a system, however, have been hotly disputed (Herzog, 2003). The energy requirements and effectiveness of the chemical regeneration are well established as they are practiced on a large scale in the industrial kraft process used in pulp and paper production, but the energy and land use requirements of a contactor for this system are uncertain as this component of the system is not implemented industrially. In this research, we address the most controversial component of the system, the contactor, which extracts CO2 from air into solution. A prototype contactor with a spray tower design is constructed (1m by 6m), and CO2 absorption by a NaOH solution spray (5 l/min) is measured. The CO2 absorption efficiency and energy requirements per unit CO2 absorbed are calculated. The energy requirements of the contactor are found to be on the order of 10-40 kJ/mol-CO2, which is small compared to the energy of combustion of fossil fuels, and compared with the energy required for the regeneration steps. Thus, a NaOH-based spray tower design can serve as an energy-efficient contactor for capturing CO2 from ambient air. Dubey, M. K., Ziock, H., Rueff, G., Elliott, S., and Smith, W. S. (2002). ``Extraction of carbon dioxide from the atmosphere through engineered chemical sinkage''. ACS -- Division of Fuel Chemistry Reprints, 47(1):81--84. Herzog, H. (2003). Assessing the feasibility of capturing co2 from the air. Technical report, MIT Laboratory for Energy and the Environment. Keith

  3. Assessment of the energy requirements and selected options facing major consumers within the Egyptian industrial and agricultural sectors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-31

    The objectives of the energy assessment study of Egypt are to develop an understanding of the current status of the principal energy users in Egypt's industrial and agricultural sectors; to estimate the energy demand and efficiency for each selected subsector within these major sectors; to identify opportunities for fuel type changes, technology switches, or production pattern changes which might increase the efficiency with which Egypt's energy is used both now and in the future: and based on options identified, to forecast energy efficiencies for selected Egyptian subsectors for the years 1985 and 2000. Study results are presented for the iron and steel, aluminium, fertilizer, chemical, petrochemical, cement, and textile industries and automotive manufacturers. Study results for drainage, irrigation, and mechanization procedures in the agricultural sector and food processing sector are also presented. (MCW)

  4. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2014-03-01

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  5. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  6. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Riley, Katherine [Argonne National Lab., IL (United States). Argonne Leadership Computing Facility (ALCF); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2018-01-22

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain

  7. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  8. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  9. Sex-specific energy requirements in nestlings of an extremely sexually size dimorphic bird, the European sparrowhawk (Accipiter nisus)

    NARCIS (Netherlands)

    Vedder, O; Dekker, AL; Visser, GH; Dijkstra, C

    Allocation of parental investment is predicted to be equal at the population level between both sexes of offspring, and should lead to sex ratio biases in species that exhibit a sex-difference in parental care. Sex-differences in parental care are rarely quantified. We measured daily energy

  10. Analysis and modelling of the energy requirements of batch processes; Analyse und Modellierung des Energiebedarfes in Batch-Prozessen

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2002-07-01

    This intermediate report for the Swiss Federal Office of Energy (SFOE) presents the results of a project aiming to model the energy consumption of multi-product, multi-purpose batch production plants. The utilities investigated were electricity, brine and steam. Both top-down and bottom-up approaches are described, whereby top-down was used for the buildings where the batch process apparatus was installed. Modelling showed that for batch-plants at the building level, the product mix can be too variable and the diversity of products and processes too great for simple modelling. Further results obtained by comparing six different production plants that could be modelled are discussed. The several models developed are described and their wider applicability is discussed. Also, the results of comparisons made between modelled and actual values are presented. Recommendations for further work are made.

  11. Quality of energy consultancy services - Requirements, criteria for evaluation, and a case report; Energieberatungsqualitaet - Anforderungen, Messung und ein Fallbeispiel

    Energy Technology Data Exchange (ETDEWEB)

    Hausser, K.

    1999-07-01

    The article initially pictures an optimized model of energy consultancy and continues with explaining an instrument available for quality assessment of services in general, (SERVQUAL), presenting approaches for modifying this tool so as to make it applicable to evaluating the quality of energy consultancy activities. Finally, the capabilities of the modified tool are discussed referring to a case study in an electric utility, the Neckarwerke Stuttgart. (orig./CB) [German] Energieberatung durch Energieversorgungsunternehmen wird in Deutschland fast flaechendeckend angeboten. Im Beitrag wird zuerst aufgezeigt, welche Anforderungen eine optimale Energieberatung erfuellen muss. Danach wird ein Instrument vorgestellt, das die Qualitaet von Dienstleistungen im allgemeinen misst und im Rahmen der o.g. Arbeit so weiterentwickelt wurde, dass es von nun an auch als Instrument zur Messung der Qualitaet von Energieberatung im Besonderen dienen kann: SERVQUAL (von SERVice QUALity). Zuletzt werden die Ergebnisse praesentiert, die in der o.g. Untersuchung unter Anwendung von SERVQUAL bei den Neckarwerken Stuttgart erzielt wurden. (orig./RHM)

  12. Medium-term forecast up to 2016 as required by the Renewable Energies Law; Die EEG-Mittelfristprognose bis 2016

    Energy Technology Data Exchange (ETDEWEB)

    Reichmuth, Matthias [Leipziger Institut fuer Energie GmbH, Leipzig (Germany)

    2012-01-15

    Article 3 of the Ordinance on the Implementation of the Ordinance on the Further Development of the Federal Compensation Mechanism obliges transmission system operators to publish not only the following year's reallocation charge pursuant to the Federal Electricity Feed-in Law but also, by the 15 November of each calendar year, a forecast on the probable range of the reallocation charge in the year after next, and further of expected electricity feed-in rates and electricity sales for the following five calendar years. For this purpose they must also determine and publish the progress over time of the average compensation due to plant operators and the amounts of network charges avoided and must do so separately for each of the energy carriers promoted under Renewable Energies Law. The present article shows the results of the current feed-in forecast in compact form.

  13. Effect of Ramping Requirement and Price Cap on Energy Price in a System with High Wind Penetration

    OpenAIRE

    Martin, Sebastián; Smeers, Yves; Aguado, José de

    2015-01-01

    The European power market is currently retiring or mothballing large capacities of conventional plants, and at the same time incorporating a significant amount of non-dispatchable renewable generation, in particular wind. We analyse the mothballing process (and the resulting system) and study how they are affected by a price cap implemented in the energy only market, and by a possible implementation of ramping products in the system. Sebastian Martin, Yves Smeers, and Jose Aguado. Effect o...

  14. Issues concerning high current lower energy electron beams required for ion cooling between EBIS LINAC and booster

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch,A.

    2009-03-01

    Some issues, regarding a low energy high current electron beam that will be needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, are examined. Options for propagating such an electron beam, as well as the effect of neutralizing background plasma on electron and ion beam parameters are calculated. Computations and some experimental data indicate that none of these issues is a show stopper.

  15. Digestible energy requirement for females of Rhamdia quelen on reproductive activity fed with ration based on vegetal ingredients

    Directory of Open Access Journals (Sweden)

    Robie A Bombardelli

    2015-07-01

    Full Text Available The present experiment was carried out to evaluate the growth and reproductive parameters of Rhamdia quelen females fed with pelleted ration containing different levels of digestible energy, and to evaluate the vigor of their offspring. The breeders were placed in tanks under conditions of photoperiod and natural temperature. The fishes were fed for 255 days with isoproteic rations pelleted containing 35% of crude protein (CP and five levels of the digestible energy (DE (2700, 2950, 3200, 3450, 3700 kcal kg-1. The fishes were distributed in a randomized experimental design compounded by five treatments and three repetitions. A 16-m² tank containing six females and three males was considered as one experimental unit. The weight and weight gain was evaluated. During the reproductive season the females were induced to breeding by hormonal manipulation and were evaluated the percentage of spawning females, the total fecundity, relative fecundity (number of oocytes per gram of spawning females, the fertilization ratio, the time to hatching and the vigor of larvae. The growth and reproductive parameters were not influenced (P > 0.05 by the increasing levels of digestible energy of the rations. The feeding of R. quelen females in breeding fit can be carried out with 2700 kcal kg-1 pelletized ration based on vegetal ingredients, without damage to reproductive performance.

  16. The EU electricity production structure requires a differentiated energy policy; Die Stromerzeugungsstruktur der EU erfordert eine differenzierte Energiepolitik

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2016-04-15

    For the electricity production of the EU there are differentiated structures which are based on different natural conditions, political decisions and investments of past decades. It has long been struggled committed to the ''one and correct'' energy policy. But precisely because of the differences in the individual countries, a unified energy and climate policy for the EU is not the right way. Diversity is a strength, which quite the EU Commission considered. Increased understanding of the specifics in other countries should just apply the German politics and the public that all too often judges from their own perspective. [German] Bei der Stromerzeugung in der EU bestehen differenzierte Strukturen, die auf unterschiedlichen natuerlichen Gegebenheiten, politischen Entscheidungen und Investitionen vergangener Jahrzehnte beruhen. Seit langem wird engagiert um die ''eine und richtige'' Energiepolitik gerungen. Doch gerade wegen der Unterschiede in den einzelnen Laendern kann eine vereinheitlichte Energie- und Klimapolitik fuer die EU nicht der richtige Weg sein. Vielfalt ist eine Staerke, was die EU-Kommission durchaus beruecksichtigt. Mehr Verstaendnis fuer die Spezifika in anderen Laendern sollte daher gerade die deutsche Politik und Oeffentlichkeit aufbringen, die allzu oft aus eigener Perspektive heraus urteilt.

  17. Wind energy in the United States and materials required for the land-based wind turbine industry from 2010 through 2030

    Science.gov (United States)

    Wilburn, David R.

    2011-01-01

    The generation of electricity in the United States from wind-powered turbines is increasing. An understanding of the sources and abundance of raw materials required by the wind turbine industry and the many uses for these materials is necessary to assess the effect of this industry's growth on future demand for selected raw materials relative to the historical demand for these materials. The U.S. Geological Survey developed estimates of future requirements for raw (and some recycled) materials based on the assumption that wind energy will supply 20 percent of the electricity consumed in the United States by 2030. Economic, environmental, political, and technological considerations and trends reported for 2009 were used as a baseline. Estimates for the quantity of materials in typical "current generation" and "next generation" wind turbines were developed. In addition, estimates for the annual and total material requirements were developed based on the growth necessary for wind energy when converted in a wind powerplant to generate 20 percent of the U.S. supply of electricity by 2030. The results of the study suggest that achieving the market goal of 20 percent by 2030 would require an average annual consumption of about 6.8 million metric tons of concrete, 1.5 million metric tons of steel, 310,000 metric tons of cast iron, 40,000 metric tons of copper, and 380 metric tons of the rare-earth element neodymium. With the exception of neodymium, these material requirements represent less than 3 percent of the U.S. apparent consumption for 2008. Recycled material could supply about 3 percent of the total steel required for wind turbine production from 2010 through 2030, 4 percent of the aluminum required, and 3 percent of the copper required. The data suggest that, with the possible exception of rare-earth elements, there should not be a shortage of the principal materials required for electricity generation from wind energy. There may, however, be selective

  18. Estimates of Minimum Energy Requirements for Range-Controlled Return of a Nonlifting Satellite from a Circular Orbit

    Science.gov (United States)

    Jackson, Charlie M., Jr.

    1961-01-01

    Existing expressions are used to obtain the minimum propellant fraction required for return from a circular orbit as a function of vacuum trajectory range. trajectory are matched to those of the atmospheric trajectory to obtain a complete return from orbit to earth. The results are restricted by the assumptions of (1) impulsive velocity change, (2) nearly circular transfer trajectory, ( 3) spherical earth, atmosphere, and gravitational field, (4) exponential atmospheric density variation with attitude, and (5) a nonrotating atmosphere. The solutions for the parameters of the vacuum Calculations are made t o determine the effects of longitudinal and lateral range on required propeUant fraction and reentry loading for a nonrotating earth and for several orbital altitudes. the single- and two-impulse method of return is made and the results indicate a "trade off" between propellant fraction required and landing- position accuracy. A comparison of An example of a return mission from a polar orbit is discussed where the initial deorbit point is the intersection of the North Pole horizon with the satellite orbit. Some effects of a rotating earth are also considered. It is found that, for each target-orbital-plane longitudinal difference, there exists a target latitude for which the required propellant fraction is a minimum.

  19. Preliminary designs for ocean thermal energy conversion (OTEC) stationkeeping subsystems (SKSS). Task I. Design requirements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The results of Task I, Design Requirements, are presented. Environmental conditions for the Punta Tuna, Puerto Rico site are reviewed and synthesized to provide definition of current, wind and wave severity, direction, and occurrence for service, operational, and extreme sea states. SKSS performance requirements, including design life and watch circle, are followed by interface considerations particularly for the electrical transmission riser cable, and design criteria including safety and load factors. The SKSS concepts will be analyzed to evaluate performance, reliability, and cost. Performance analysis conducted included catenary anchor leg static calculations to size components, as well as drag due to environmental loads in the operational and extreme sea states for both ship and spar platforms. Dynamic analyses and trade studies to be conducted in Task II are presented. A reliability and risk assessment analysis of the three basic SKSS types - single-, multiple-, and tension-anchor-leg moors - was completed, indicating that the multiple-anchor-leg/multiple-point rotary or turret moor has the lowest risk-criticality for the ship, while that for the spar is the multiple-anchor-leg/multiple-point moor. The catenary single-anchor-leg/single-point moor has insufficient reliability for both platforms. The life cycle cost analysis methodology, including work breakdown structure, cost estimating, and cost minimization define the approach to costing to be followed throughout the study. The results of these design trades and analyses will first be applied to concept ranking required for recommendation of a SKSS concept for each platform.

  20. Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells.

    Science.gov (United States)

    Hayashi, Yohei; Otsuka, Kei; Ebina, Masayuki; Igarashi, Kaori; Takehara, Asuka; Matsumoto, Mitsuyo; Kanai, Akio; Igarashi, Kazuhiko; Soga, Tomoyoshi; Matsui, Yasuhisa

    2017-08-01

    Primordial germ cells (PGCs), undifferentiated embryonic germ cells, are the only cells that have the ability to become gametes and to reacquire totipotency upon fertilization. It is generally understood that the development of PGCs proceeds through the expression of germ cell-specific transcription factors and characteristic epigenomic changes. However, little is known about the properties of PGCs at the metabolite and protein levels, which are directly responsible for the control of cell function. Here, we report the distinct energy metabolism of PGCs compared with that of embryonic stem cells. Specifically, we observed remarkably enhanced oxidative phosphorylation (OXPHOS) and decreased glycolysis in embryonic day 13.5 (E13.5) PGCs, a pattern that was gradually established during PGC differentiation. We also demonstrate that glycolysis and OXPHOS are important for the control of PGC reprogramming and specification of pluripotent stem cells (PSCs) into PGCs in culture. Our findings about the unique metabolic property of PGCs provide insights into our understanding of the importance of distinct facets of energy metabolism for switching PGC and PSC status.

  1. Response to the ration levels on growth, body composition, energy, and protein maintenance requirement of the Indian catfish (Heteropneustes fossilis-Bloch 1974).

    Science.gov (United States)

    Ahmed, Imtiaz

    2010-12-01

    An 8-week growth study was conducted to determine the effect of ration level, energy, and protein maintenance requirement of catfish, Heteropneustes fossilis-Bloch, fingerling (7.90±0.55 cm; 3.10±0.28 g) by feeding casein-gelatin-based purified diet (40% CP; 3.61 kcal g-1 GE) at six ration levels 1-6% of BW/day, at 0800 and 1700 h, in triplicate, with 20 fish per trough fitted with water flow-through system of volume 55 L. Maximum live weight gain, best feed conversion ratio (FCR), best specific growth rate (SGR), and highest protein efficiency ratio (PER) were evident for ration levels of 4-5% body weight. However, second-degree polynomial regression analysis for weight gain, FCR, PER, protein, and energy retention data indicated that the break-points occurred at 5.08, 4.18, 4.05, 4.16, and 4.17% BW/day, respectively. Significantly (P0.05) low at higher rations. Protein and energy retention values also produced significant (Pfeeding in the range of 4 to 4.5% BW/day, corresponding to 1.60-1.80 g protein and 14.46-16.27 kcal energy g100 g(-1) of the diet/day is optimum for the growth and efficient feed utilization of H. fossilis, while 2-3% ration levels (0.80-1.20 g protein and 7.23-10.84 kcal energy) suggest that these amounts approximate to the maintenance requirement of this fish.

  2. Fusion Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Fusion Energy Sciences, January 27-29, 2016, Gaithersburg, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choong-Seock [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Riley, Katherine [Argonne Leadership Computing Facility, Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Esnet, Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Esnet, Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Esnet, Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Andre, R. [TRANSP Group, Princeton, NJ (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bhattacharjee, Amitava [Princeton Univ., NJ (United States); Bonoli, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Boyd, Iain [Univ. of Michigan, Ann Arbor, MI (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cary, John R. [Tech-X Corporation, Boulder, CO (United States); Chen, Yang [Univ. of Colorado, Boulder, CO (United States); Curreli, Davide [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ernst, Darin R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Green, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hager, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hakim, Ammar [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hassanein, A. [Purdue Univ., West Lafayette, IN (United States); Hatch, David [Univ. of Texas, Austin, TX (United States); Held, E. D. [Utah State Univ., Logan, UT (United States); Howard, Nathan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Izzo, Valerie A. [Univ. of California, San Diego, CA (United States); Jardin, Steve [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Jenkins, T. G. [Tech-X Corp., Boulder, CO (United States); Jenko, Frank [Univ. of California, Los Angeles, CA (United States); Kemp, Andreas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Jacob [Tech-X Corp., Boulder, CO (United States); Kritz, Arnold [Lehigh Univ., Bethlehem, PA (United States); Krstic, Predrag [Stony Brook Univ., NY (United States); Kruger, Scott E. [Tech-X Corp., Boulder, CO (United States); Kurtz, Rick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lin, Zhihong [Univ. of California, Irvine, CA (United States); Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nandipati, Giridhar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pankin, A. Y. [Tech-X Corp., Boulder, CO (United States); Parker, Scott [Univ. of Colorado, Boulder, CO (United States); Perez, Danny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pigarov, Alex Y. [Univ. of California, San Diego, CA (United States); Poli, Francesca [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Pueschel, M. J. [Univ. of Wisconsin, Madison, WI (United States); Rafiq, Tariq [Lehigh Univ., Bethlehem, PA (United States); Rübel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Setyawan, Wahyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sizyuk, Valeryi A. [Purdue Univ., West Lafayette, IN (United States); Smithe, D. N. [Tech-X Corp., Boulder, CO (United States); Sovinec, C. R. [Univ. of Wisconsin, Madison, WI (United States); Turner, Miles [Dublin City University, Leinster (Ireland); Umansky, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vay, Jean-Luc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Verboncoeur, John [Michigan State Univ., East Lansing, MI (United States); Vincenti, Henri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Voter, Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Weixing [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Wright, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Yuan, X. [TRANSP Group, Princeton, NJ (United States)

    2017-02-01

    The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range of fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.

  3. Introducing a new generation indirect calorimeter for estimating energy requirements in adult intensive care unit patients: feasibility, practical considerations, and comparison with a mathematical equation.

    Science.gov (United States)

    De Waele, Elisabeth; Spapen, Herbert; Honoré, Patrick M; Mattens, Sabrina; Van Gorp, Viola; Diltoer, Marc; Huyghens, Luc

    2013-10-01

    Indirect calorimetry (IC) is increasingly advocated for individualizing nutritional therapy in critically ill adult patients, but questions remain regarding its practical implementation. During 12 weeks, we prospectively assessed utility and practical aspects of IC use. Adult medico-surgical intensive care unit (ICU) patients were daily screened for malnutrition. Indirect calorimetry was planned in subjects considered unable to meet energy requirements on day 3 after admission. Measured energy expenditure (MEE) was compared with calculated (resting/total) energy expenditure. A total of 940 evaluations were performed in 266 patients (age, 63±16 years; 59% males; Acute Physiology and Chronic Health Evaluation II score, 14±8). A total of 230 patients (86.5%) were at risk for malnutrition, and in 118 of them, IC was indicated. Practical considerations precluded measurements in 72 cases (61%). Forty-six calorimetric evaluations revealed an MEE of 1649±544 kcal per 24 hours that poorly correlated with calculated resting energy expenditure (r2=0.19) and calculated total energy expenditure (r2=0.20). Indirect calorimetry measurements were not time-consuming. Indirect calorimetry was indicated in half but effectively performed in only 20% of a representative intensive care unit population at risk for malnutrition. Correlation between MEE and CEE was poor. Indirect calorimetry is increasingly advocated for individualizing nutritional therapy in critically ill adult patients. Practical feasibility is tested in this study. Large differences between measured and calculated energy expenditure are observed. Together with patients' characteristics, feasibility results can guide clinicians or institutes in using IC in their daily clinical practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Detection of coliforms in drinking water using skin patches: a rapid, reliable method that does not require an external energy source.

    Science.gov (United States)

    Nam, Sehee; Kim, Min-jeong; Park, MinSun; Kim, Nuri; Lee, Yu-jin; Lee, Gyu-Cheol

    2014-02-01

    The detection of coliforms requires incubation in a laboratory, generally powered using electricity. In many parts of the developing world, however, external energy sources such as electricity are not readily available. To develop a fast, reliable method for detecting coliforms in water without an external energy source, we assessed the efficacy of six test kits for the identification of coliforms in water samples. To assess the possibility of using body temperature as the sole source of heat for incubation, bacterial samples were then mixed with the enzymatic test kit reagent and attached to the human body surface using a patch system. The patches were attached to the bodies of volunteers for 24 hours and the practicality and accuracy of the patches were assessed. Coliforms were detected within 24 hours in all patches. This innovation will facilitate the testing of water quality by researchers and by economically disadvantaged people without electricity.

  5. Requirements for existing buildings

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Wittchen, Kim Bjarne

    This report collects energy performance requirements for existing buildings in European member states by June 2012.......This report collects energy performance requirements for existing buildings in European member states by June 2012....

  6. Design and operation of ventilation in low energy residences – A survey on code requirements and building reality from six European countries and China

    DEFF Research Database (Denmark)

    del Carmen Bocanegra-Yanez, Maria; Rojas, Gabriel; Zukowska-Tejsen, Daria

    One of the key objectives of the IEA Annex 68 research programme entitled “Indoor Air Quality Design and Control in Low Energy Residential Buildings” is to provide a generic guideline for the design and operation of ventilation in residential buildings. Modern and refurnished domestic buildings...... involved in the Annex. There were two main objectives, firstly, to describe and analyse a transition between actual requirements (national building codes and standards) and current practice. Secondly, to investigate current barriers and challenges regarding installation of mechanical ventilation...... resulting from poor construction, lack of commissioning and/or maintenance....

  7. [The relationship between Injury Severity Scores and transfusion requirements of 108 consecutive cases injured with high kinetic energy weapons: a tertiary center end-mode mortality analysis].

    Science.gov (United States)

    Eryılmaz, Mehmet; Tezel, Onur; Taş, Hüseyin; Arzıman, Ibrahim; Oğünç, Gökhan Ibrahim; Kaldırım, Umit; Durusu, Murat; Kozak, Orhan

    2014-01-01

    We aimed in this study to investigate the relationship between Injury Severity Score (ISS) and transfusion strategies required during medical intervention in patients wounded by high kinetic energy (HKE) gunshot, and to analyze end-mode mortality. The medical data of patients were included in the study. We evaluated whether there was any significant correlation in terms of demographic characteristics, HKE weapon type, ISSs, and transfusion strategy options and transfusion requirements. Causes of mortality in cases resulting in mortality during hospitalization were evaluated. One hundred and eight consecutive patients were included in the study. All patients except one were male, with an average age of 25 years. 64.8% of them were injured by long-barreled firearms, whereas 35.2% were injured by explosives. Average ISS was 13.9. ISS values for the patients with and without transfusion were 16 (5-48) and 9 (3-36), respectively. Causes of mortality were evaluated in terms of systemic inflammatory response syndrome (SIRS), sepsis, and multiorgan dysfunction syndrome (MODS). It was determined that there was a significant correlation between increase in ISS values in cases with HKE weapon wounds and their transfusion requirements, whereas this requirement was independent of the ISS value in cases with explosive wounds.

  8. Sistemas Integrados de energías con fuentes renovables, requisitos y opciones. Integrated systems of energy with renewable sources, requirements and options

    Directory of Open Access Journals (Sweden)

    Antonio Sarmiento Sera

    2015-04-01

    Full Text Available En el presente reporte se consideró una instalación conectada a la red eléctrica en la isla de Cuba. Se tenía el interés de introducir un determinado % de energía a partir de fuentes renovables, y se poseía un determinado potencial de energía eólica y fotovoltaica. Se analizaron los requisitos y opciones energéticas, se realizaron simulaciones de alternativas con el programa HOMER y se concluyó con la determinación de las condiciones o potenciales de las fuentes renovables para la recomendación de cada opción energética, y se presentaron los resultados de forma gráfica y fácil comprensión. Se ofreció un análisis de las posibilidades reales que en el ámbito de una localidad, pueden aprovecharse en función de diversificar de manera sostenible, el esquema energético comunitario  con la utilización de las fuentes renovables de energía, utilizando la variante que desde el punto económico y ambiental resulte de más conveniencia.  In this report was considered an electric net connected installation in the island of Cuba. It had the interest of introducing a certain % of energy starting from renewable sources, and a certain potential of wind and photovoltaic energy was possessed. The requirements and energy options were analyzed, and it were carried out simulations of alternative with the HOMER program and it was concluded with the determination of the conditions or potentials of the renewable sources for the recommendation of each energy option, and the results were presented in graphic way and easy understanding. It was offered an analysis of the real possibilities in the environment of a town. It can take advantage in function of diversifying from a sustainable way, with the community energy outline using the renewable sources of energy, and taking the variant of more convenience from the economic and environmental point of view.

  9. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Windus, Theresa [Ames Lab., Ames, IA (United States); Banda, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Devereaux, Thomas [SLAC National Accelerator Lab., Menlo Park, CA (United States); White, Julia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Energy Sciences Network (ESNet), Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Energy Sciences Network (ESNet), Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Energy Sciences Network (ESNet), Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baruah, Tunna [Univ. of Texas, El Paso, TX (United States); Benali, Anouar [Argonne National Lab. (ANL), Argonne, IL (United States); Borland, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Brabec, Jiri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carter, Emily [Princeton Univ., NJ (United States); Ceperley, David [Univ. of Illinois, Urbana-Champaign, IL (United States); Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States); Chelikowsky, James [Univ. of Texas, Austin, TX (United States); Chen, Jackie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cheng, Hai-Ping [Univ. of Florida, Gainesville, FL (United States); Clark, Aurora [Washington State Univ., Pullman, WA (United States); Darancet, Pierre [Argonne National Lab. (ANL), Argonne, IL (United States); DeJong, Wibe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dixon, David [Univ. of Alabama, Tuscaloosa, AL (United States); Donatelli, Jeffrey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunning, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fernandez-Serra, Marivi [Stony Brook Univ., NY (United States); Freericks, James [Georgetown Univ., Washington, DC (United States); Gagliardi, Laura [Univ. of Minnesota, Minneapolis, MN (United States); Galli, Giulia [Univ. of Chicago, IL (United States); Garrett, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glezakou, Vassiliki-Alexandra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gordon, Mark [Iowa State Univ., Ames, IA (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gray, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Gull, Emanuel [Univ. of Michigan, Ann Arbor, MI (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Hexemer, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Isborn, Christine [Univ. of California, Merced, CA (United States); Jarrell, Mark [Louisiana State Univ., Baton Rouge, LA (United States); Kalia, Rajiv K. [Univ. of Southern California, Los Angeles, CA (United States); Kent, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klippenstein, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krishnamurthy, Hulikal [Indian Inst. of Science, Bangalore (India); Kumar, Dinesh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lena, Charles [Univ. of Texas, Austin, TX (United States); Li, Xiaosong [Univ. of Washington, Seattle, WA (United States); Maier, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markland, Thomas [Stanford Univ., CA (United States); McNulty, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Millis, Andrew [Columbia Univ., New York, NY (United States); Mundy, Chris [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nakano, Aiichiro [Univ. of Southern California, Los Angeles, CA (United States); Niklasson, A.M.N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Panagiotopoulos, Thanos [Princeton Univ., NJ (United States); Pandolfi, Ron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parkinson, Dula [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perazzo, Amedeo [SLAC National Accelerator Lab., Menlo Park, CA (United States); Rehr, John [Univ. of Washington, Seattle, WA (United States); Rousseau, Roger [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sankaranarayanan, Subramanian [Argonne National Lab. (ANL), Argonne, IL (United States); Schenter, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Selloni, Annabella [Princeton Univ., NJ (United States); Sethian, Jamie [Univ. of California, Berkeley, CA (United States); Siepmann, Ilja [Univ. of Minnesota, Minneapolis, MN (United States); Slipchenko, Lyudmila [Purdue Univ., West Lafayette, IN (United States); Sternberg, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Stevens, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Summers, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sumpter, Bobby [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sushko, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thayer, Jana [SLAC National Accelerator Lab., Menlo Park, CA (United States); Toby, Brian [Argonne National Lab. (ANL), Argonne, IL (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valeev, Edward [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Vashishta, Priya [Univ. of Southern California, Los Angeles, CA (United States); Venkatakrishnan, V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zwart, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-03

    Sciences (BES) mission need. Simulation, visualization, and data analysis are crucial for advances in energy science and technology. Revolutionary mathematical, software, and algorithm developments are required in all areas of BES science to take advantage of exascale computing architectures and to meet data analysis, management, and workflow needs. In partnership with ASCR, BES has an emerging and pressing need to develop new and disruptive capabilities in data science. More capable and larger high-performance computing (HPC) and data ecosystems are required to support priority research in BES. Continued success in BES research requires developing the next-generation workforce through education and training and by providing sustained career opportunities.

  10. Energies; Energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  11. Influence of the process control on the thermal energy requirement of convection dryers in the brick industry; Einfluss der Prozessfuehrung auf den thermischen Energiebedarf von Konvektionstrocknern in der Ziegelindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Tretau, Anne

    2008-06-10

    Brick manufacturing demands high amount of energy. The energy flow analysis inside the brick factory shows that the convective drying of green bricks consumes more than half of the total thermal energy required for brick manufacturing. Therefore this paper deals with the theoretical analysis and investigation for the energy requirement of green bricks. For this, a physical-based model has been developed, which describes the dependence of drying-kinetics as well as the energy-requirement interims of the process parameter like mass of the supply air. It turns out that the specific energy requirement substantially depends on temperature and humidity of the ambience air and also supply air mass flow and its temperature. Due to the continuous temperature rise of the green bricks during the second drying section the specific energy requirement increases significantly with the progressive motion of the drying in a chamber dryer. This is due to the fact that the green brick as well as the air conditioning distance more and more from the cooling limit. Just a low part of the dryer exhaust air is saturated. The exhaust air is continuously sucked out and the green bricks are pulled inside the dryer. So the exhaust air has a relatively higher water saturation. On general, continuous dryers have a lower energy requirement than chamber dryer. For the both types of dryers, the mathematical model shows that the increasing of the supply air temperature combined with a commensurate subsidence of supply air mass flow, results in a reduction of drying energy requirement. The change of other essential parameters of drying like green brick thickness, and density as well as the moisture diffusion coefficient, and the vapour diffusity which are only important in the second drying section are of comparatively negligible effect. The developed mathematical model is successfully implemented for the energy investigation in the industrial dryers. The increase in supply air temperature results

  12. Competition of chemically related antigens for presentation by accessory cells to T cells requires expenditure of metabolic energy by the accessory cells

    DEFF Research Database (Denmark)

    Werdelin, O; Buus, S

    1983-01-01

    antigens for presentation by accessory cells. Furthermore, the two antigens do not compete for presentation when the accessory cells are exposed to them at 1 degree C, suggesting that endocytosis and/or other energy-requiring cellular events are necessary for the competition....... incapable of presenting DNP-PLL to responsive T cells in assays for proliferation, by in vitro exposure of the cells to GL before and during their exposure to DNP-PLL. We demonstrate here that the presence of anti-Ia antibody in the cultures does not interfere with the apparent competition of the two......The immune responsiveness of guinea pigs both to dinitrophenyl-poly-L-lysine (DNP-PLL) and to the lysine-rich random copolymer of L-glutamic acid and L-lysine (GL) is controlled by the 'poly-L-lysine gene'. We have previously demonstrated that accessory cells of responder strains can be made...

  13. Improved national calculation procedures to assess energy requirements, nitrogen and VS excretions of dairy cows in the German emission model GAS-EM

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Haenel, Hans-Dieter; Rösemann, Claus

    2009-01-01

    The calculation module for the assessment of feed intake and excretion rates of dairy cows in the German agricultural emission model GAS-EM is described in detail. The module includes the description of methane emissions from enteric fermentation as well as the assessment of volatile solids...... and (renal and faecal) nitrogen excretions responsible for carbon and nitrogen species emissions from manure management. Input parameters are milk yield and composition, weight and weight gain as well as feed properties. The model is based on the derivation of energy requirements and the limitation on dry...... matter intake. The results agree well with those obtained from regression models and respective experiments. The model is able to refl ect national and regional peculiarities in dairy cow husbandry. It is an adequate tool for the establishment of emission inventories and for the construction of scenarios...

  14. Prediction of the energy required for extracorporeal shock wave lithotripsy of certain stones composition using simple radiology and computerized axial tomography.

    Science.gov (United States)

    Argüelles-Salido, E; Campoy-Martínez, P; Aguilar-García, J; Podio-Lora, V; Medina-López, R

    2014-03-01

    To demonstrate that urinary lithiasis have a specific susceptibility to fracture through extracorporeal shock wave lithotripsy (ESWL), which is common for all calculi with the same composition and which can be estimated before treatment using CT or plain x-ray. We present an in vitro, prospective, randomized, blind and multi-centre study involving 308 urinary calculi. 193 of these met the inclusion criteria: whole calculi composed purely of calcium oxalate monohydrate (COM), uric acid (UA) or carbonate apatite (CA), or a mix of oxalate (COMix) and of a size greater than 0.5 cm. The samples were broken using lithotripsy until reaching a pre-established level of comminution. The variables employed were energy dose (Edose) per cm(3) of lithiasis and Edose adjusted to lithiasic surface (EdAJ) per cm(3). COM was the hardest, requiring an Edose of 119,624 mJ/cm(3) and an EdAJ of 36,983 mJ/cm(3), followed by COMix (75,501/36,983), CA (22,734/21,186) and UA (22,580/6,837) (P < .05). Gmax y Gmda were correlated with Edose (r = 0.434/r = 0.420) and EdAJ (r = 0.599/r = 0.545) (P < .01). UH were correlated, in bone window and soft tissue window, with Edose/cm(3) (r = 0.478/r = 0.539) y EdAJ/cm(3) (r = 0.745/r = 0.758) (P < .01). In our in vitro research lithiasis require, due to the specific nature of their composition, a given amount of energy in order to be broken by ESWL, which is inherent to all those sharing the same composition, and can be predicted using CT or plain x-ray. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  15. Determination of macronutrients, by chemical analysis, of home-prepared milk feeding bottles and their contribution to the energy and protein requirements of infants from high and low socioeconomic classes.

    Science.gov (United States)

    Morais, Tania Beninga; Sigulem, Dirce Maria

    2002-06-01

    To determine the macronutrients composition of home-prepared milk feeding bottles, by chemical analysis, and assess their contribution to the energy and protein requirements of children under two years of age from high (HSE) and low (LSE) socioeconomic classes. 72 samples were analyzed for energy density and protein, fat and carbohydrate content: 41 from the LSE group and 31 from the HSE group. The assessment of the percentages of the energy and protein requirements met by the consumption of the milk bottles was calculated as follows: the energy and protein per 100 mL obtained through chemical analysis were multiplied by the volume consumed at each feeding, then by the number of feedings per day, the results divided by the energy and protein requirements and multiplied by 100. Energy and protein requirements were those recommended by the FAO/WHO/UNU Committee and the Food and Nutrition Board. The children's weight-for-age index was assessed. Unmodified cow's milk was largely consumed by both groups. The addition of sugar and other ingredients to the milk was significantly higher in the LSE group. Moisture, protein and fat content were lower in the LSE group, whereas carbohydrate and energy content were higher. The percentages of energy and protein requirements provided by feeding bottles were higher in the LSE group. Children in the LSE group had lower z-scores for weight-for-age. Differences in the preparation practices led to differences in the chemical results. The feeding bottles in the LSE group were high in energy, due to the addition of sugar and cereals to the milk in the bottle. The milk feeding bottles were an important weaning food providing more than 50% and 100% of the children's energy and protein requirements, respectively. The children's weight-for-age index was within the normal limits.

  16. Catecholamine-Stimulated Growth of Aeromonas hydrophila Requires the TonB2 Energy Transduction System but Is Independent of the Amonabactin Siderophore.

    Science.gov (United States)

    Dong, Yuhao; Liu, Jin; Pang, Maoda; Du, Hechao; Wang, Nannan; Awan, Furqan; Lu, Chengping; Liu, Yongjie

    2016-01-01

    The growth-stimulating effects of catecholamine stress hormones have been demonstrated in many pathogens. However, catecholamine-induced growth and its underlying mechanisms remain poorly understood in Aeromonas hydrophila. The present study sought to demonstrate that norepinephrine (NE), epinephrine (Epi), dopamine (Dopa), and L-dopa stimulate the growth of A. hydrophila in iron-restricted media containing serum. NE exhibited the strongest growth stimulation, which could be blocked by adrenergic antagonists. Furthermore, it was demonstrated that NE could sequester iron from transferrin, thereby providing a more accessible iron source for utilization by A. hydrophila. The deletion of the amoA gene associated with amonabactin synthesis revealed that the amonabactin siderophore is not required for NE-stimulated growth. However, the deletion of the TonB2 energy transduction system resulted in the loss of growth promotion by NE, indicating that a specific TonB-dependent outer membrane receptor might be involved in the transport of iron from transferrin. Collectively, our data show that catecholamine sensing promotes the growth of A. hydrophila in a manner that is dependent on the TonB2 energy transduction system.

  17. A Framework for Better Understanding and Enhancing Direct Contact Membrane Distillation (DCMD) in Terms of Module Design, Cost Analysis and Energy Required

    KAUST Repository

    AbuHannoud, Ali

    2011-07-01

    Water is becoming scarcer and several authors have highlighted the upcoming problem of higher water salinity and the difficulty of treating and discharging water. Moreover, current discoveries of problems with chemicals that have been used for pretreating or post-treating water alerted scientists to research better solutions to treat water. Membrane distillation (MD) is a promising technology that might replace current processes as it has lower pretreatment requirements combined with a tremendous ability to treat a wide range of feed sources while producing very high product quality. If it enters the market, it will have a big influence on all products, from food industry to spaceflight. However, there are several problems which make MD a hot topic for research. One of them is the question about the real cost of MD in terms of heating feed and cooling distillate over time with respect to product quantity and quality. In this work, extensive heating and cooling analyses are covered to answer this question in order to enhance the MD process. Results show energy cost to produce water and the main source of energy loss for direct contact membrane distillation (DCMD), and several suggestions are made in order to better understand and hence enhance the process.

  18. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  19. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Salman [Argonne National Lab. (ANL), Argonne, IL (United States); Roser, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [Esnet, Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Esnet, Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Esnet, Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Tim [Argonne National Lab. (ANL), Argonne, IL (United States); Almgren, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Amundson, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bailey, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bloom, Ken [Univ. of Nebraska, Lincoln, NE (United States); Bockelman, Brian [Univ. of Nebraska, Lincoln, NE (United States); Borgland, Anders [SLAC National Accelerator Lab., Menlo Park, CA (United States); Borrill, Julian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Boughezal, Radja [Argonne National Lab. (ANL), Argonne, IL (United States); Brower, Richard [Boston Univ., MA (United States); Cowan, Benjamin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Finkel, Hal [Argonne National Lab. (ANL), Argonne, IL (United States); Frontiere, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States); Fuess, Stuart [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ge, Lixin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gnedin, Nick [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gottlieb, Steven [Indiana Univ., Bloomington, IN (United States); Gutsche, Oliver [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Han, T. [Indiana Univ., Bloomington, IN (United States); Heitmann, Katrin [Argonne National Lab. (ANL), Argonne, IL (United States); Hoeche, Stefan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ko, Kwok [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kononenko, Oleksiy [SLAC National Accelerator Lab., Menlo Park, CA (United States); LeCompte, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Li, Zheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lukic, Zarija [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mori, Warren [Univ. of California, Los Angeles, CA (United States); Ng, Cho-Kuen [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nugent, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oleynik, Gene [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); O’Shea, Brian [Michigan State Univ., East Lansing, MI (United States); Padmanabhan, Nikhil [Yale Univ., New Haven, CT (United States); Petravick, Donald [Univ. of Illinois, Urbana, IL (United States). National Center for Supercomputing Applications; Petriello, Frank J. [Argonne National Lab. (ANL), Argonne, IL (United States); Pope, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States); Power, John [Argonne National Lab. (ANL), Argonne, IL (United States); Qiang, Ji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Rizzo, Thomas Gerard [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ryne, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schram, Malachi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spentzouris, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Toussaint, Doug [Univ. of Arizona, Tucson, AZ (United States); Vay, Jean Luc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viren, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wuerthwein, Frank [Univ. of California, San Diego, CA (United States); Xiao, Liling [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-29

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greater — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR

  20. Mobilization of biomass for energy from boreal forests in Finland & Russia under present sustainable forest management certification and new sustainability requirements for solid biofuels

    NARCIS (Netherlands)

    Sikkema, R.; Faaij, A.P.C.; Ranta, T.; Heinimö, J.; Gerasimov, Y.Y.; Karjalainen, T.; Nabuurs, G.J.

    2014-01-01

    Forest biomass is one of the main contributors to the EU's renewable energy target of 20% gross final energy consumption in 2020 (Renewable Energy Directive). Following the RED, new sustainability principles are launched by the European energy sector, such as the Initiative Wood Pellet Buyers (IWPB

  1. Determination of the energy requirements in mechanically ventilated critically ill elderly patients in different BMI groups using the Harris-Benedict equation.

    Science.gov (United States)

    Hsu, Pi-Hui; Lee, Chao-Hsien; Kuo, Li-Kuo; Kung, Yu-Chung; Chen, Wei-Ji; Tzeng, Min-Su

    2018-01-11

    Due to studies on calorie requirement in mechanically ventilated critically ill elderly patients are few, and indirect calorimetry (IC) is not available in every intensive care unit (ICU). The aim of this study was to compare IC and Harris-Benedict (HB) predictive equation in different BMI groups. A total of 177 mechanically ventilated critically ill elderly patients (≧65 years old) underwent IC for measured resting energy expenditure (MREE). Estimated calorie requirement was calculated by the HB equation, using actual body weight (ABW) and ideal body weight (IBW) separately. Patients were divided into four BMI groups. One-way ANOVA and Pearson's correlation coefficient were used for statistical analyses. The mean MREE was 1443.6 ± 318.2 kcal/day, HB(ABW) was 1110.9 ± 177.0 kcal/day and HB(IBW) was 1101.5 ± 113.1 kcal/day. The stress factor (SFA = MREE ÷ HB(ABW)) was 1.43 ± 0.26 for the underweight, 1.30 ± 0.27 for the normal weight, 1.20 ± 0.19 for the overweight, and 1.20 ± 0.31 for the obese. The SFI (SFI = MREE ÷ HB(IBW)) was 1.24 ± 0.24 for the underweight, 1.31 ± 0.26 for the normal weight, 1.36 ± 0.21 for the overweight, and 1.52 ± 0.39 for the obese. MREE had significant correlation both with REE(ABW) = HB(ABW) × SFA (r = 0.46; P requirement of mechanically ventilated critically ill elderly patients. When IC is not available, using the predictive HB equation is an alternative choice. Calorie requirement can be predicted by HB(ABW) × 1.20-1.43 for critically ill elderly patients according to different BMI groups, or using HB(IBW) × 1.24-1.52 for patients with edema, ascites or no available body weight data. Copyright © 2018. Published by Elsevier B.V.

  2. Double-muscled and conventional cattle have the same net energy requirements if these are related to mature and current body protein mass, and to gain composition.

    Science.gov (United States)

    Schiavon, S; Bittante, G

    2012-11-01

    The hypothesis tested in this paper is that double-muscled (DBM) and conventional cattle, considerably differing in body composition, have similar NE requirements when: a) NE(m) is scaled as a function of current (P(i)) and adult (P(m)) protein mass; and b) ME for gain (ME(g)) is estimated from protein (Pr) and lipid (Lr) retention and their partial ME use efficiencies, the k(p) and k(l) values, respectively. First, 2 databases were examined: 1 was developed combining well known literature information from comparative slaughter trials conducted on British beef steers; the other was based on a trial conducted using extremely lean DBM Piemontese bulls. From the first database, NE(m) was calculated to be 1.625 × P(i) ÷ P(m) × P(m)(0.73) (MJ/kg(0.73)). From the second database, the daily ME(g) was determined as 22.8 MJ × Pr ÷ k(p) + 38.74 MJ × Lr ÷ k(l), assuming (from prior reports) that k(p) = 0.20 and k(l) = 0.75. Thereafter, ME(m) was defined as ME intake minus ME(g), and, hence, NE(m) was predicted as 1.625 × P(i) ÷ P(m) × P(m)(0.73) (where 1.625 was the value obtained from the first dataset). The resulting k(m) (NE(m)/ME(m)) averaged 0.67. This k(m) value did not differ from that (0.65; P = 0.12) predicted by Garrett's equation, which uses dietary ME content as the only predictive variable. Second, the procedure was tested for the ability to detect effects on k(m) caused by increasing BW and dietary factors not estimable from the dietary ME content only. Data were gathered from a trial involving 48 DBM Piemontese bulls divided into 4 groups fed 1 of 4 diets differing in CP content (145 or 108 g/kg DM), with or without addition of 80 g/d of rumen-protected CLA (rpCLA). Bulls were examined at 3 consecutive periods of growth, corresponding to 365, 512 and 631 kg of average BW. All energy balance items were influenced by increasing BW, except k(m) (P = 0.61), in agreement with the expectation that NE(m) requirement depends on the degree of maturity (P

  3. A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia.

    Science.gov (United States)

    2016-04-01

    The above article from European Journal of Neuroscience, published online on 5 March 2013 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1111/ejn.12162/full), has been retracted by agreement between the Editors-in-Chief, Paul Bolam and John Foxe, the authors and John Wiley & Sons Ltd. The retraction has been agreed as Dr Phillip Barber has informed the publisher that he had seen neither the original data nor any version of the manuscript, and had not been involved in the work reported. A subsequent Institutional investigation found evidence of misconduct on the part of the submitting author. Reference Wang, L.-M., Wang, Y.-J., Cui, M., Luo, W.-J., Wang, X.-J., Barber, P.A. & Chen, Z.-Y. (2013) A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Greg Weirs; Hyung Lee

    2011-09-01

    V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and

  5. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  6. Dietary protein and energy requirements of juvenile freshwater angelfish Exigências nutricionais de proteína e energia em juvenis de acará-bandeira

    Directory of Open Access Journals (Sweden)

    Jener Alexandre Sampaio Zuanon

    2009-06-01

    Full Text Available Dietary protein and energy requirements of juvenile freshwater angelfish (Pterophyllum scalare were evaluated. A 3 × 2 factorial design was used, with three dietary crude protein levels being tested (26, 30, and 34% of CP combined with two digestible energy levels (3,100 and 3,300 kcal DE/kg of diet in three replicates. Juveniles averaging 2.33 ± 0.26 g were reared in a 25L-aquarium with controlled temperature (26 ± 1ºC, biological filter and stocking density of six fish/aquarium. Fish were fed ad libitum at 09:00 a.m., 2:00 p.m. and 4:30 p.m. The following performance parameters were evaluated: final weight, final length, weight gain, feed intake, feed conversion ratio, specific growth rate, protein efficiency ratio and condition factor. Fish fed diets with 26% CP showed greater protein efficiency values when compared to those fed diets with 34% CP. Diets with 26% of CP and 3100 kcal DE/kg could meet the nutritional requirements of juvenile freshwater angelfish.Avaliaram-se as exigências nutricionais de proteína e energia em juvenis de acará-bandeira (Pterophyllum scalare. Utilizou-se delineamento inteiramente casualizado, em esquema fatorial 3 × 2, com três níveis de proteína bruta (26, 30 e 34%, dois de energia digestível (3.100 e 3.300 kcal/kg de ração e três repetições. Juvenis com peso médio de 2,33 ± 0,26 g foram distribuídos em aquários contendo 25 litros de água, temperatura controlada (26 ± 1ºC e filtro biológico, na densidade de estocagem de seis animais por aquário. Os peixes foram alimentados à vontade às 9, 14 e 16h30. Na análise do desempenho produtivo, foram avaliados o peso final, o comprimento final, o ganho de peso, o consumo de ração, a conversão alimentar, a taxa de crescimento específico, a taxa de eficiência protéica e o fator de condição. As dietas contendo 26% PB proporcionaram maiores valores para taxa de eficiência protéica apenas em relação às dietas contendo 34% PB. As exig

  7. Stone Attenuation Values Measured by Average Hounsfield Units and Stone Volume as Predictors of Total Laser Energy Required During Ureteroscopic Lithotripsy Using Holmium:Yttrium-Aluminum-Garnet Lasers.

    Science.gov (United States)

    Ofude, Mitsuo; Shima, Takashi; Yotsuyanagi, Satoshi; Ikeda, Daisuke

    2017-04-01

    To evaluate the predictors of the total laser energy (TLE) required during ureteroscopic lithotripsy (URS) using the holmium:yttrium-aluminum-garnet (Ho:YAG) laser for a single ureteral stone. We retrospectively analyzed the data of 93 URS procedures performed for a single ureteral stone in our institution from November 2011 to September 2015. We evaluated the association between TLE and preoperative clinical data, such as age, sex, body mass index, and noncontrast computed tomographic findings, including stone laterality, location, maximum diameter, volume, stone attenuation values measured using average Hounsfield units (HUs), and presence of secondary signs (severe hydronephrosis, tissue rim sign, and perinephric stranding). The mean maximum stone diameter, volume, and average HUs were 9.2 ± 3.8 mm, 283.2 ± 341.4 mm3, and 863 ± 297, respectively. The mean TLE and operative time were 2.93 ± 3.27 kJ and 59.1 ± 28.1 minutes, respectively. Maximum stone diameter, volume, average HUs, severe hydronephrosis, and tissue rim sign were significantly correlated with TLE (Spearman's rho analysis). Stepwise multiple linear regression analysis defining stone volume, average HUs, severe hydronephrosis, and tissue rim sign as explanatory variables showed that stone volume and average HUs were significant predictors of TLE (standardized coefficients of 0.565 and 0.320, respectively; adjusted R2 = 0.55, F = 54.7, P attenuation values measured by average HUs and stone volume were strong predictors of TLE during URS using Ho:YAG laser procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Advantage Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Increased focus has been placed on the issues of energy access and energy poverty over the last number of years, most notably indicated by the United Nations (UN) declaring 2012 as the 'International Year of Sustainable Energy for All'. Although attention in these topics has increased, incorrect assumptions and misunderstandings still arise in both the literature and dialogues. Access to energy does not only include electricity, does not only include cook stoves, but must include access to all types of energy that form the overall energy system. This paper chooses to examine this energy system using a typology that breaks it into 3 primary energy subsystems: heat energy, electricity and transportation. Describing the global energy system using these three subsystems provides a way to articulate the differences and similarities for each system's required investments needs by the private and public sectors.

  9. Consequences of the quota requirement for energy efficiency. Can a Swedish quota obligation systems give less energy usage?; Konsekvenser av kvotplikt foer energieffektivisering. Kan ett svenskt kvotpliktssystem ge mindre energianvaendning?

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkroth, Sara; Bladh, Mats; Holmberg, Rurik; Lock, Anna; Naderi, Ronak; Widerstroem, Glenn

    2012-11-01

    The Agency has on behalf of the government investigated what the consequences would be of the introduction of a compulsory quota system in Sweden. Under the proposed new EU directive on energy efficiency, all Member States should introduce a compulsory quota system, where energy companies actively initiate measures for energy efficiency among end users. In Sweden, a quota obligation system of this kind would mean energy efficiency of about 3 TWh per year, which can be difficult to achieve. The Swedish Energy Agency suggests that if a compulsory quota system is introduced, the quota obligation should be placed on the network companies. If not, there is a risk of complications in the Swedish and Nordic electricity market. The Energy Markets Inspectorate consider that the quota obligation can not be on the network companies because of their function as regulated monopoly. The Swedish Energy Agency suggests that efficiency measures can be implemented in all sectors, including transport.

  10. Installation technique on the road to 2020. Rigorous choices required for an optimal energy supply; Installatietechniek op weg naar 2020. Rigoureuze keuzen nodig voor optimale energievoorziening

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, H. [Autarkis, Almere (Netherlands)

    2012-12-15

    Hypes determine, more than thoughtful visions, the energy supply of the built environment. Smart grids, power quality, hydrogen, electricity from the North Sea and Sahara, geothermal energy from a former coal mine in Heerlen, Netherlands, coal gasification, shale gases and nuclear energy are power sources. The future energy supply lies in the hands of builders and installers in the Netherlands [Dutch] Hypes bepalen, meer dan doordachte visies, de energievoorziening van de gebouwde omgeving. Smart grids, power quality, waterstof, Noordzee- en Sahara-elektriciteit], aardwarmte uit een voormalige kolenmijn te Heerlen, kolenvergassing, schaliegassen en kernenergie worden genoemd als krachtbronnen. De toekomstige energievoorziening ligt in handen van bouwend en installerend Nederland.

  11. Cumulative input/output balance of a mechanical-biological waste treatment plant. Comparison of construction material requirements, operating energy expenditure, and the requirement of auxiliary materials in comparison with waste combustion; Kumulative Bilanzierung der mechanisch-biologischen Restabfallbehandlung - Baumaterialien und betrieblicher Energie- und Hilfsstoffaufwand im Vergleich zur Muellverbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Wallmann, R.; Fricke, K. [Ingenieurgemeinschaft Witzenhausen (Germany); Vogtmann, H. [Hessisches Landesamt fuer Regionalentwicklung und Landwirtschaft, Kassel (Germany)

    1998-12-31

    The study strikes a cumulative input/output balance of an existing waste conditioning plant considering not only operating energy demand but also the required construction materials for erecting the plant. In operation since 1996, the waste conditioning plant is entirely state of the art; hence the data obtained are up to date. The results are compared with relevant results for a waste processing plant and evaluated. (orig.) [Deutsch] Im Rahmen der vorliegenden Untersuchung erfolgt eine kumulative Bilanzierung einer bestehenden MBA-Anlage, wobei neben den betrieblichen Energieaufwendungen auch die Baumaterialien zur Herstellung der Anlage beruecksichtigt werden. Die seit 1996 in Betrieb befindliche Abfallbehandlungsanlage entspricht weitestgehend dem Stand der Technik der MBA, wodurch die Aktualitaet der Daten gegeben ist. Die Ergebnisse der Bilanzierung werden im Vergleich zu einer MVA dargestellt und bewertet. (orig.)

  12. Methodology and assumptions for evaluating heating and cooling energy requirements in new single-family residential buildings: Technical support document for the PEAR (Program for Energy Analysis of Residences) microcomputer program

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J.; Ritschard, R.; Bull, J.; Byrne, S.; Turiel, I.; Wilson, D.; Hsui, C.; Foley, D.

    1987-01-01

    This report provides technical documentation for a software package called PEAR (Program for Energy Analysis of Residences) developed by LBL. PEAR offers an easy-to-use and accurate method of estimating the energy savings associated with various energy conservation measures used in site-built, single-family homes. This program was designed for use by non-technical groups such as home builders, home buyers or others in the buildings industry, and developed as an integral part of a set of voluntary guidelines entitled Affordable Housing Through Energy Conservation: A Guide to Designing and Constructing Energy Efficient Homes. These guidelines provide a method for selecting and evaluating cost-effective energy conservation measures based on the energy savings estimated by PEAR. This work is part of a Department of Energy program aimed at conducting research that will improve the energy efficiency of the nation's stock of conventionally-built and manufactured homes, and presenting the results to the public in a simplified format.

  13. Utilization of biomass in the U.S. for the production of ethanol fuel as a gasoline replacement. I - Terrestrial resource potential. II - Energy requirements, with emphasis on lignocellulosic conversion

    Science.gov (United States)

    Ferchak, J. D.; Pye, E. K.

    The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.

  14. Reports on 1981 result of Sunshine Project. Research on conditioning required for industrialization of new energy technology; 1981 nendo shin energy gijutsu kigyoka ni hitsuyona joken seibi ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This research was intended to establish foundation for the coming new energy era, by clarifying all interfering elements and taking counter measures, in further spreading and promoting the new phase of new energy technology development under the Sunshine Project. With the public section as the main body, studies were made in the technological aspect as well as the legal/institutional aspects, and also an investigation was conducted of the cases of introducing new energy from overseas. In the subject research, with 1990 set as the target year, the following examinations were carried out for the purpose of concretely estimating the situation of introducing new energy into the society in Japan at such point in time. The examinations were to study the feasibility of substitution with new energy in fiscal 1990 on the present level of oil consumption; to extract problems on the basis of the results and examining a policy of introducing and promoting new energy; and, to investigate on the spot, as a case study in building a coal liquefaction plant in a coal production area overseas, a relation with the energy policy of the producing country in implementing the overseas operation and importation of liquefied oil so produced, etc. (NEDO)

  15. Design principles and requirements for the ICT of future smart energy systems; Designprinzipien und Anforderungen an die IKT fuer intelligente Energiesysteme der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Eger, Kolja [Siemens AG, Muenchen (Germany). Corporate Technology; Mohr, Werner [Nokia Siemens Networks Management International GmbH, Muenchen (Germany)

    2012-07-01

    The information and communication technology (ICT) is a key enabling technology for Smart Grids. With respect to very short innovation cycles for ICT compared to longer innovation cycles for the transition of the energy system there is a huge challenge to develop and exploit the potential of future ICT and their application in a future intelligent energy system. Different ICT technologies, such as Internet of Things or Cloud Computing are intensively being discussed. They can be summarized under the term ''Future Internet''. The EU project FINSENY is investigating the potential of Future Internet concepts and technologies in particular for Smart Energy systems. A series of design principles and the necessary ICT are developed, which are described in this paper. These design principles such as open interfaces, security-by-design, simplicity, maintenance, auto-configuration and modularity are of general nature. They will remain despite technology developments. Furthermore, several design principles are not only applicable to ICT but they are also related to design principles of intelligent energy systems like decentralized energy generation systems. (orig.)

  16. 80 years of IEC: Future requirements on teaching and research in the field of energy. Papers; 80 Jahre IEC: Zukuenftige Anforderungen an Lehre und Forschung auf dem Gebiet der Energie. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Born, M. [comp.

    2000-07-01

    The conference was part of the festivities of the 80{sup th} Anniversary of the Brown Coal Research Institute, that were celebrated at the Institute of Energy Processing and Chemical Engineering (IEC), Freiberg University of Mining and Technology. The Institute of Energy Processing and Chemical Engineering preserves and continues the traditional cooperation with the Brown Coal Industry in the field of the energy conversion processes. The conference proceedings give the reader an impression of the presently meaning of fossil energy sources and explain the competence of the IEC in educating and researching on fuel techniques in future. (orig.) [German] Die Tagung wurde anlaesslich des 80. Jahrestages der Gruendung des Braunkohlenforschungsinstitutes an der TU Bergakademie Freiberg durchgefuehrt. Das Institut fuer Energieverfahrenstechnik und Chemieingenieurwesen fuehrt die traditionsreiche Kooperation mit der Braunkohleindustrie auf dem Gebiet der Energiewandlungsprozesse fort. Die Beitraege charakterisieren die derzeitige Bedeutung der fossilen Energietraeger und erlaeutern die Kompetenz des IEC fuer eine zukunftsorientierte Lehre und Forschung in der Brennstofftechnik. (orig.)

  17. Water footprint components required to address the water-energy-food nexus, with the recent Urban Water Atlas for Europe as an example

    Science.gov (United States)

    Vanham, Davy

    2017-04-01

    The first part of this presentation analyses which water footprint (WF) components are necessary in WF accounting to provide relevant information to address the Sustainable Development Goals (SDG's) water security (SDG 6), food security (SDG 2) and energy security (SDG 7) in a nexus setting. It is strongly based on the publication Vanham (2016) http://dx.doi.org/10.1016/j.ecoser.2015.08.003. First, the nexus links between (1) the planetary boundary freshwater resources (green and blue water resources) and (2) food, energy and blue water security are discussed. Second, it is shown which water uses are mostly represented in WF accounting. General water management and WF studies only account for the water uses agriculture, industry and domestic water. Important water uses are however mostly not identified as separate entities or even included, i.e. green and blue water resources for aquaculture, wild foods, biofuels, hydroelectric cooling, hydropower, recreation/tourism, forestry (for energy and other biomass uses) and navigation. Third, therefore a list of essential separate components to be included within WF accounting is presented. The latter would be more coherent with the water-food-energy-ecosystem nexus. The second part of the presentation gives a brief overview of the recently published Urban Water Atlas for Europe. It shows for a selected city which WF components are represented and which not. As such, it also identifies research gaps.

  18. Pre-fledging energy requirements of the nocturnally fed semi-precocial chicks of the Spotted Thick-knee (Burhinus capensis)

    NARCIS (Netherlands)

    Tjorve, K. M. C.; Underhill, L. G.; Visser, G. H.

    2007-01-01

    Studies of pre-fledging growth and energetics in precocial ( self-feeding) shorebird species have shown that chicks expend large amounts of energy on thermoregulation and activity. We investigated the pre-fledging growth and energetics of Spotted Thick- knee ( Burhinus capensis) chicks, which are

  19. ENERGY STAR Certified Computers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.1 ENERGY STAR Program Requirements for Computers that are effective as of June 2, 2014....

  20. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  1. ENERGY STAR Certified Dehumidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Dehumidifiers that are effective as of October...

  2. ENERGY STAR Certified Displays

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  3. Exigências nutricionais de proteína, energia e macrominerais de bovinos Nelore de três classes sexuais Nutrient requirements of protein, energy and macrominerals of Nellore cattle of three genders

    Directory of Open Access Journals (Sweden)

    Marcos Inácio Marcondes

    2009-08-01

    Full Text Available Objetivou-se determinar as exigências de energia metabolizável para mantença, as exigências líquidas de proteína, energia e macrominerais para ganho de peso e a eficiência de transformação de exigências líquidas de proteína para ganho em exigências de proteína metabolizável em bovinos Nelore. Foram utilizados 27 animais (nove machos castrados, nove machos não-castrados e nove fêmeas. Três animais de cada classe foram abatidos ao início do experimento como grupo referência. Os 18 animais remanescentes receberam concentrado (1 ou 1,25% do peso vivo durante 112 dias e foram abatidos ao final, para determinação de sua composição corporal. As exigências líquidas para ganho de peso foram obtidas derivando-se a equação de predição do conteúdo corporal de cada nutriente em função do logaritmo do peso de corpo vazio. As exigências de energia metabolizável para mantença foram estimadas a partir da regressão linear da energia retida em relação ao consumo de energia metabolizável, enquanto a eficiência de uso da proteína metabolizável para ganho de peso foi estimada pela equação da proteína bruta retida em relação ao consumo de proteína metabolizável. As exigências líquidas de minerais estão de acordo com os valores encontrados na literatura. As exigências líquidas de energia para ganho aumentam de acordo com o peso vivo e as exigências líquidas de proteína para ganho diminuem com o aumento do peso. A eficiência de conversão das exigências líquidas de proteína em exigências de proteína metabolizável é de aproximadamente 50%.The objective of this study was to determine the metabolizable energy requirement for maintenance and net requirements of crude protein, energy and macrominerals for weight gain, and also the conversion efficiency of net protein requirements to metabolizable protein requirements in Nellore cattle. Twenty seven Nellore animals (nine bulls, nine steers and nine heifers were

  4. Energy for Mankind

    Science.gov (United States)

    Pincherle, L.; Rice-Evans, P.

    1977-01-01

    Discusses statistics concerning world energy requirements and supplies of different types of fuels. Also discusses the storage and transmission of energy and pollution problems related to energy utilization. (MLH)

  5. 10 CFR 431.423 - Filing requirements.

    Science.gov (United States)

    2010-01-01

    ... Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 Petitions, Building Technologies, EE... 10 Energy 3 2010-01-01 2010-01-01 false Filing requirements. 431.423 Section 431.423 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  6. Meat batter production in an extended vane pump-grinder injecting curing salt solutions to reduce energy requirements: variation of curing salt amount injected with the solution.

    Science.gov (United States)

    Irmscher, Stefan B; Terjung, Eva-Maria; Gibis, Monika; Herrmann, Kurt; Kohlus, Reinhard; Weiss, Jochen

    2017-01-01

    The integration of a nozzle in an extended vane pump-grinder system may enable the continuous injection of curing salt solutions during meat batter production. The purpose of this work was to examine the influence of the curing salt amount injected with the solution (0-100%) on protein solubilisation, water-binding, structure, colour and texture of emulsion-type sausages. The amount of myofibrillar protein solubilised during homogenisation varied slightly from 33 to 36 g kg(-1) . Reddening was not noticeably impacted by the later addition of nitrite. L(*) ranged from 66.9 ± 0.3 to 67.8 ± 0.3, a(*) from 10.9 ± 0.1 to 11.2 ± 0.1 and b(*) from 7.7 ± 0.1 to 8.0 ± 0.1. Although softer sausages were produced when only water was injected, firmness increased with increasing curing salt amount injected and was similar to the control when the full amount of salt was used. The substitution of two-thirds of ice with a liquid brine may enable energy savings due to reduced power consumptions of the extended vane pump-grinder system by up to 23%. The injection of curing salt solutions is feasible without affecting structure and colour negatively. This constitutes a first step towards of an 'ice-free' meat batter production allowing for substantial energy savings due to lower comminution work. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Storage requirement and its impact on the energy industry in implementation of political objectives of energy transition; Speicherbedarf und dessen Auswirkungen auf die Energiewirtschaft bei Umsetzung der politischen Ziele zur Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Teufel, Felix Thomas

    2015-07-01

    The increasing integration of renewable energy generating systems pose fundamental challenges for the energy industry. This concerns not only the utility companies but also established simulation models for analyzing the markets. In the present work, a system dynamic bottom-up model is described, which imagines the German electricity market in a 15 minute resolution and a high integration of renewable energies. The above described developments are affecting increasingly the operation mode of storage power plants. A result of model is that the operation of storage power plants is increasingly no longer worthwhile in the near future. After 2020, however, in the daytime prices will be significantly lower than during the night, resulting in new economic application scenarios for storage power plants. Also an outlook is provided on the duration of future storage usage times in the presented model, after which there will be a considerable demand for increasingly shorter cycles under 4 hours and longer cycles with more than 32 hours. [German] Die zunehmende Integration regenerativer Energieerzeugungssysteme stellt die Energiewirtschaft vor grundlegende Herausforderungen. Dies betrifft nicht nur die Energieversorgungsunternehmen sondern auch etablierte Simulationsmodelle zur Analyse der Maerkte. In der vorliegenden Arbeit wird ein systemdynamisches bottom-up Modell beschrieben, welches den deutschen Elektrizitaetmarkt in einer 15-minuetigen Aufloesung und einer hohen Integration der erneuerbaren Energien abbildet. Die oben beschriebenen Entwicklungen wirken sich zunehmend auf die Fahrweise von Speicherkraftwerken aus. Ein Resultat des vorgestellten Modells ist, dass sich der Betrieb von Speicherkraftwerken in naher Zukunft zunehmend nicht mehr lohnen wird. Nach 2020 werden jedoch tagsueber die Preise deutlich niedriger sein als die Nachtpreise, wodurch sich neue wirtschaftliche Einsatzszenarien fuer Speicherkraftwerke ergeben. Auch wird im vorgestellten Modell ein Ausblick

  8. U.S. electric power sector transitions required to achieve 80% reductions in economy-wide greenhouse gas emissions: Results based on a state-level model of the U.S. energy system

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; Kyle, Gordon P.; Ledna, Catherine M.; McJeon, Haewon C.; Wise, M. A.

    2017-05-01

    The United States has articulated a deep decarbonization strategy for achieving a reduction in economy-wide greenhouse gas (GHG) emissions of 80% below 2005 levels by 2050. Achieving such deep emissions reductions will entail a major transformation of the energy system and of the electric power sector in particular. , This study uses a detailed state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA) to demonstrate pathways for the evolution of the U.S. electric power sector that achieve 80% economy-wide reductions in GHG emissions by 2050. The pathways presented in this report are based on feedback received during a workshop of experts organized by the U.S. Department of Energy’s Office of Energy Policy and Systems Analysis. Our analysis demonstrates that achieving deep decarbonization by 2050 will require substantial decarbonization of the electric power sector resulting in an increase in the deployment of zero-carbon and low-carbon technologies such as renewables and carbon capture utilization and storage. The present results also show that the degree to which the electric power sector will need to decarbonize and low-carbon technologies will need to deploy depends on the nature of technological advances in the energy sector, the ability of end-use sectors to electrify and level of electricity demand.

  9. Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements

    Directory of Open Access Journals (Sweden)

    Matthias Rogge

    2015-05-01

    Full Text Available The electrification of public transport bus networks can be carried out utilizing different technological solutions, like trolley, battery or fuel cell buses. The purpose of this paper is to analyze how and to what extent existing bus networks can be electrified with fast charging battery buses. The so called opportunity chargers use mainly the regular dwell time at the stops to charge their batteries. This results in a strong linkage between the vehicle scheduling and the infrastructure planning. The analysis is based on real-world data of the bus network in Muenster, a mid-sized city in Germany. The outcomes underline the necessity to focus on entire vehicle schedules instead on individual trips. The tradeoff between required battery capacity and charging power is explained in detail. Furthermore, the impact on the electricity grid is discussed based on the load profiles of a selected charging station and a combined load profile of the entire network.

  10. The effect of intravenous injection of Ghrelin on the mean plasma concentrations of insulin in immature camels fed different levels of their energy requirements

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Ghrelin is a peptide hormone secreted into the circulation from the stomach, but this peptide is also synthetized in a number of different body tissues including the brain and pancreas, suggesting both endocrine and paracrine effects. These include: stimulation of GH and ACTH secretion, an increase in appetite and diabetogenic effect on carbohydrate metabolism. Furthermore, ghrelin is the natural ligand of the growth hormone secretagogue receptor (GHS-R. Ghrelin and its mRNAas well as GH secretagogue receptor mRNAs are expressed in the pancreas and islet cells and regulates insulin release and glucose metabolism, but because the effect of ghrelin on insulin secretion before puberty in semiruminant animals has never been examined,   therefore the purpose of the present research was to determine the effect of ghrelin on insulin secretion before puberty in camels. In this investigation 12 camels were randomly divided into two groups. Animals in each group were fed either 50% and 100% energy content in diet for 2 weeks. After 2 weeks camels received 8 μg ghrelin/kg body weight via their jugular vein for 4 days. Blood samples were collected from the jugular vein of all animals before, during (30 minutes after injection of ghrelin and after the intervention for 4 continuous days and plasma insulin concentrations determined by RIA. Data obtained were analyzed by repeated measures –ANOVA and paired t-Test. p

  11. Natural gas ballast requirement to allow participation of thermal plants in the new energy auctions: analysis and proposals; Requisito de lastro de gas natural para viabilizar a participacao de termeletricas nos leiloes de energia nova: analise e propostas

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Pedro Luis de; Bezerra, Bernardo Vieira; Barroso, Luiz Augusto Nobrega; Pereira, Mario Veiga; Rosenblatt, Jose [PSR, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Since the first New Energy Auction (LEN), held in December 2005, there has been a continuous process of improving the auction rules and mechanism. For the specific case of gas-fired plants, a significant change was observed between the LEN A-3/2011 and LEN A-5/2011, and refers to the need of natural gas ballast for candidate projects in the auction. This rule was introduced by ANP Resolution No. 52, which establishes that the gas supply agreements must be backed up by proven reserves (analogous to the requirement in the power sector contracts of physical guarantee backup), and Ordinance MME No. 21/2008, which deals with power plants qualification for the new energy auctions. The latter was amended by MME Ordinance No. 514, which requires proven natural gas reserves to support the GSA of all candidate projects in a LEN. In other words, the gas supplier now has to prove that there are sufficient gas reserves to meet requirements of all candidate project in an auction, regardless of the plausibility of their engagement in the auction. In this context, the present study discusses these issues and has as main contributions: (I) a review of current regulations on contract ballast in the Brazilian natural gas sector, (II) a proposal to conciliate the need of fuel supply contract ballast to the dynamics of the natural gas sector, and (III) a proposal to conciliate the need for fuel contract ballast to the contracting process of the thermoelectric power in the new energy auctions. These contributions aim at a better integration between the sectors of natural gas and electricity in Brazil, leading to a more efficient use of resources and infrastructure development. (author)

  12. Energie-Cites opinion on the directive project of CHP. To meet urban energy requirements with optimal energy efficiency and production closer to residents; Avis d'Energie-Cites sur le project de directive cogeneration. Satisfaire les besoins energetiques urbains avec la meilleure efficacite energetique et une production plus proche des habitants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    The Directive on ''the promotion of cogeneration based on a useful heat demand in the internal energy market'' should be adopted very soon. The initial aim of the Directive is to strengthen existing measures to promote CHP in line with the Community target of doubling the share of CHP in EU electricity generation from 9% in 1994 to 18% by 2010. But no target has been mentioned. Energie-Cites states, in this document, its opinion of this draft proposal. Cogeneration is a well-tried and proven technology which has achieved tangible results and is one of the more efficient ways for the EU to fulfill the commitments it made under the Kyoto Protocol. (A.L.B.)

  13. A nutrition mathematical model to account for dietary supply and requirements of energy and nutrients for domesticated small ruminants: the development and evaluation of the Small Ruminant Nutrition System

    Directory of Open Access Journals (Sweden)

    Luis Orlindo Tedeschi

    2008-07-01

    Full Text Available A mechanistic model that predicts nutrient requirements and biological values of feeds for sheep (Cornell Net Carbohydrate and Protein System; CNCPS-S was expanded to include goats and the name was changed to the Small Ruminant Nutrition System (SRNS. The SRNS uses animal and environmental factors to predict metabolizable energy (ME and protein, and Ca and P requirements. Requirements for goats in the SRNS are predicted based on the equations developed for CNCPS-S, modified to account for specific requirements of goats, including maintenance, lactation, and pregnancy requirements, and body reserves. Feed biological values are predicted based on carbohydrate and protein fractions and their ruminal fermentation rates, forage, concentrate and liquid passage rates, and microbial growth. The evaluation of the SRNS for sheep using published papers (19 treatment means indicated no mean bias (MB; 1.1 g/100 g and low root mean square prediction error (RMSPE; 3.6 g/100g when predicting dietary organic matter digestibility for diets not deficient in ruminal nitrogen. The SRNS accurately predicted gains and losses of shrunk body weight (SBW of adult sheep (15 treatment means; MB = 5.8 g/d and RMSPE = 30 g/d when diets were not deficient in ruminal nitrogen. The SRNS for sheep had MB varying from -34 to 1 g/d and RSME varying from 37 to 56 g/d when predicting average daily gain (ADG of growing lambs (42 treatment means. The evaluation of the SRNS for goats based on literature data showed accurate predictions for ADG of kids (31 treatment means; RMSEP = 32.5 g/d; r2= 0.85; concordance correlation coefficient, CCC, = 0.91, daily ME intake (21 treatment means; RMSEP = 0.24 Mcal/d g/d; r2 = 0.99; CCC = 0.99, and energy balance (21 treatment means; RMSEP = 0.20 Mcal/d g/d; r2 = 0.87; CCC = 0.90 of goats. In conclusion, the SRNS for sheep can accurately predict dietary organic matter digestibility, ADG of growing lambs and changes in SBW of mature sheep. The SRNS

  14. Energy Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose.

    Science.gov (United States)

    Villar, Pablo S; Delgado, Ricardo; Vergara, Cecilia; Reyes, Juan G; Bacigalupo, Juan

    2017-06-07

    The mechanisms that power the physiological events occurring in cilia, flagella, and microvilli are of fundamental importance for the functions of these important and ubicuous organelles. The olfactory epithelium is mostly populated by ciliated olfactory sensory neurons (OSNs) and surrounding sustentacular cells (SCs) with apical microvilli. The only OSN dendrite extends to the surface forming a knob projecting several chemosensory cilia of ∼50 × 0.2 μm, devoid of inner membranes embedded in a mucus layer. Upon odorant binding, odor receptors couple to G-protein activating adenylyl cyclase, producing cAMP. cAMP opens cyclic nucleotide-gated channels allowing a Ca 2+ influx that opens Ca 2+ -activated Cl - channels, generating the receptor potential. Many enzymes are activated in chemotransduction to hydrolyze ATP. The knob contains approximately two mitochondria; assuming that the cilia ATP is 1 mm and diffuses along it at ∼10 μm in 500 ms, ATP from the knob mitochondria may not fulfill the demands of transduction over the full length of the cilium, which suggests an additional ATP source. We measured millimolar glucose in rat mucus; we detected glucose transporter GLUT3 in rat and toad ( Caudiverbera caudiverbera ) OSN cilia, SC microvilli, and glycolytic enzymes in rat cilia. We also found that the cilia and knob can incorporate and accumulate 2-deoxyglucose (glucose analog), but not when blocking GLUT. Glucose removal and the inhibition of glycolysis or oxidative phospholylation impaired the odor response. This evidence strongly suggests that glycolysis in the cilia and knob oxidative phosphorylation together fuel chemotransduction. SIGNIFICANCE STATEMENT How processes occurring in cilia and flagella are powered is a matter of general interest. Substantial progress has been made in unraveling the sensory transduction mechanisms, commonly occurring in such structures; however, the energy sources powering them have been scarcely explored. Accessibility to

  15. Exigências de energia de animais Nelore puros e mestiços com as raças Angus e Simental Energy requirements of Nellore purebred and crossbreed with Angus and Simmental

    Directory of Open Access Journals (Sweden)

    M.I. Marcondes

    2011-04-01

    Full Text Available Objetivou-se com este trabalho estimar as exigências nutricionais de energia líquida e metabolizável de animais Nelore, Nelore-Angus e Nelore-Simental, as eficiências de uso da energia metabolizável para ganho e mantença e a eficiência de deposição de energia na forma de proteína e gordura. Foram utilizados 69 animais (23 Nelore, 23 Nelore-Angus e 23 Nelore-Simental: quatro animais de cada grupo genético (12 no total foram abatidos antes do início do experimento como grupo-referência e nove foram separados para um ensaio de digestibilidade. Os animais restantes foram divididos em três dietas (ofertas de concentrado na proporção de 1 ou 2% do peso corporal obtido com consumo à vontade ou correspondente a 1% da exigência de mantença. Ao final todos animais foram abatidos e a composição corporal e o peso de corpo vazio (PCVZ determinados. As exigências líquidas de energia foram estimadas pela equação da energia retida em função do PCVZ0,75 e ganho de peso de corpo vazio (GPCVZ. Foram estimadas as exigências de energia líquida e metabolizável para mantença pela equação da produção de calor em função do consumo de energia metabolizável. Houve efeito do teor de concentrado da dieta sobre a relação peso corporal:PCVZ, assim como para a relação ganho de peso corporal:GPCVZ. A exigência diária de energia líquida para mantença de animais Nelore, Nelore-Angus ou Nelore-Simental é de 75,8 kcal/PCVZ0,75 e a de energia metabolizável, de 112,82 kcal/PCVZ0,75. As eficiências de uso da energia metabolizável para ganho e mantença são de 41,22 e 67,19%, respectivamente, e as eficiências de deposição da energia na forma de proteína e gordura, 26,71 e 75,43%, respectivamente.The objective of this work was to estimate the nutritional requirements of net and metabolizable energy of Nellore, Nellore-Angus and Nellore Simmental cattle, as well as the efficiency of utilization of metabolizable energy for gain and

  16. Guam Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.

    2013-07-01

    Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.

  17. Energy Storage

    CSIR Research Space (South Africa)

    Bladergroen, B

    2015-10-01

    Full Text Available With the emergence of variable renewable energy (VRE) sources, such as solar photovoltaics (PV) and wind power, flexibility requirements in the power system are generally increasing. However, what is not so clear yet is what “increasing flexibility...

  18. Architecture and energy; Arkitektur og energi

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R.; Grupe Larsen, V.; Lauring, M.; Christensen, Morten

    2006-07-01

    The aim of this book is to illustrate the interaction between architecture and energy in an overall perspective starting from the new energy requirements. Architects make a lot of form related outlines early in the design process, and these have significant consequences for the energy consumption. Furthermore, the new energy requirements start from an overall evaluation, during which the architectural form is of decisive importance to minimization of the energy consumption. The book focuses on four themes: a) day lighting, which plays a decisive part in relation to our health and wellness inside buildings, b) solar heating; passive solar heating has traditionally been playing an important part in low-energy architecture, c) rough house; choice of materials can both increase and decrease buildings' energy consumption, and d) technology; modern buildings use a number of energy demanding installations, therefore the interaction between technology and energy is examined. (BA)

  19. Safety Requirement for Nuclear Logging in Logging While Drilling as an Application of Nuclear Energy in Industrial Facilities; an Overview for the Improvement of Nuclear Energy Regulating Process in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Setianingsih, Lilis Susanti [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Kwang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    Data transmission processes in LWD are basically performed in two ways: data transmission within the downhole assembly and data transmission to surface. Tools readings can either be stored in downhole memory or transmitted to surface using mud pulse telemetry. Whenever required the two methods can be combined by storing some data in memory and transmitting some in real time. Yet in the case of data supply exceeding data transmission capacity, only key data is transmitted uphole whilst the rest of some sensors output shall be stored downhole. Another way of transmitting data for real time reading is by taking a limited data sample, for example one in every four readings to be sent uphole. The remaining of data readings will be stored to be downloaded to computer once the memory-pack within the tool is brought to surface. In general, analog data from LWD are converted to binary form downhole. Data are transmitted by using a flow-restricting mechanism in the drilling-fluid flow stream and produce positive or negative pressure pulses which are then transmitted through the mud column inside the drill pipe, read at the surface by pressure sensors and later on recorded and processed. Data transmission can also be performed by using rotary valve pressure-pulse generators, which alternately restrict and and open the drilling-fluid flow, causing varying pressure waves generated in the drilling-fluid at carrier frequency which is proportional to the rate of interruption. Downhole sensor-response data are transmitted to the surface by modulating this acoustic carrier frequency

  20. Solar Thermal Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Pitsenbarger, J. [eds.

    1996-02-01

    Solar Thermal Energy Technology (PST) announces on a bimonthly basis the current worldwide research and development information that would expand the technology base required for the advancement of solar thermal systems as a significant energy resource.

  1. Exigências líquidas de energia e proteína de tourinhos Santa Gertrudes confinados, recebendo alto concentrado Energy and protein requirements of Santa Gertrudis young bulls in feedlot, fed high concentrate diets

    Directory of Open Access Journals (Sweden)

    G.M. Ribeiro

    2013-04-01

    Full Text Available Com o objetivo de determinar as exigências de energia e proteína para ganho de tourinhos Santa Gertrudes, 33 tourinhos, com idade de 12 meses e peso inicial médio de 314,6±33,2kg, foram confinados durante 115 dias, após 56 dias de adaptação. Seis animais foram abatidos após adaptação, para determinação da composição química corporal inicial. Os animais receberam dietas contendo 80% de concentrado, avaliando-se a inclusão de 0; 4,5; e 9,0% do subproduto concentrado da produção de lisina na matéria seca. As exigências de energia líquida de ganho (ELg foram estimadas em função do peso de corpo vazio (PCVZ e do ganho de PCVZ (GPCVZ, e as exigências líquidas de proteína para ganho (PLg foram estimadas em função do GPCVZ e da energia retida (ER. As equações obtidas para ELg e PLg foram: ELg (Mcal/dia = 0,0061×PCVZ0,75×GPCVZ0,578; e PLg (g/dia = 208,1×GPCVZ - 1,0868×ER. A exigência de energia líquida encontrada para ganho de 1kg de PV foi de 3,93; 4,88 e 5,76Mcal, e a exigência de proteína metabolizável foi de 367,81; 393,59 e 391,63g, respectivamente, para animais com 300, 400 e 500kg de peso corporal. O valor de exigência líquida para mantença foi obtido por meio da regressão do logaritmo da produção de calor (PC, em função da ingestão de energia metabolizável, chegando-se ao valor de 75,6kcal/PVz0,75/dia. Concluiu-se que, devido ao aumento do teor de gordura na composição do ganho, animais de maior peso de corpo vazio apresentam maiores exigências líquidas de energia.The objective of this study was to determine the energy and protein requirements for gain of Santa Gertrudis young bulls. Thirty-three 12-month-year-old animals, with initial body weight of 314.6±33.2kg, were kept in individual pens during 115 days, after 56 days of adaptation. Six animals were slaughtered after adaptation and determined the chemical composition of initial body. The concentrate proportion in the diet was 80%, on dry

  2. 10 CFR 600.331 - Requirements.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Requirements. 600.331 Section 600.331 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL ASSISTANCE RULES Administrative Requirements for Grants and Cooperative Agreements With For-Profit Organizations Post-Award Requirements § 600.331...

  3. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  4. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  5. Software requirements

    CERN Document Server

    Wiegers, Karl E

    2003-01-01

    Without formal, verifiable software requirements-and an effective system for managing them-the programs that developers think they've agreed to build often will not be the same products their customers are expecting. In SOFTWARE REQUIREMENTS, Second Edition, requirements engineering authority Karl Wiegers amplifies the best practices presented in his original award-winning text?now a mainstay for anyone participating in the software development process. In this book, you'll discover effective techniques for managing the requirements engineering process all the way through the development cy

  6. Energy Flexibility in Retail Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Kjærgaard, Mikkel Baun

    2017-01-01

    Retail buildings has an important role for demand side energy flexibility because of their high energy consumption, variety of energy flexibility resources, and centralized control via building control systems. Energy flexibility requires agreements and collaborations among different actors......, barriers, and benefits), energy management activities and technology adoptions, and the stakeholders’ interaction for the energy flexibility in retail buildings....

  7. Energy requirements for the space frontier

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    The cost of delivering payloads to Mars orbital locations from LEO is determined and future launch cost reductions are projected. The performance necessary for future solar and nuclear space power options is predicted, categorizing the needs as survival, self-sufficiency, and industralization. The cost of present space power systems is determined and projections are made for future systems.

  8. Analysis of the requirements for implementation of the EU directive on the promotion of the use of energy from renewable sources in German law; Fachliche Bewertung des Umsetzungsbedarfs der Erneuerbare-Energien-Richtlinie der EU

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Doerte; Jelitte, Andrea [Kuhbier Rechtsanwaelte, Bruessel (Belgium); Prall, Ursula; Hoffmann, Ilka [Kuhbier Rechtsanwaelte, Hamburg (Germany); Luhmann, Jochen; Zeiss, Christoph [Wuppertal Institut fuer Klima, Umwelt, Energie GmbH, Wuppertal (Germany); Maass, Werner [WM Consultant, Berlin (Germany)

    2010-07-01

    The report contains the results of an investigation of the requirements for implementation of the Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources (EE-RL) in German law in the 1:1 adaptation intended by the Germangovernment. The directive was reviewed systematically. First, the legal content and the resulting obligations of the EU member states were specified using the common legal interpretation techniques. In view of the scientific and technical content of the matter, this analysis was accompanied by scientific and technical experts. The report was compiled between July 2009 and February 2010 and could be updated only in parts since then. It provides a basis for preparation of a new Act for implementation of the directive by the BMU (Federal Minister of the Environment), which has been published in the meantime in a draft version.

  9. Decentralised energy solutions: The CSIR energy autonomous campus

    CSIR Research Space (South Africa)

    Carter-Brown, Clinton

    2017-07-01

    Full Text Available Future energy systems will largely be based on Distributed Energy Resources (DER) –a combination of VRE, storage and demand response technologies. Technology and systems innovations are required to design, build and operate such energy systems...

  10. Requirements of the integration of renewable energy into network charge regulation. Proposals for the further development of the network charge system. Final report; Anforderungen der Integration der erneuerbaren Energien an die Netzentgeltregulierung. Vorschlaege zur Weiterentwicklung des Netzentgeltsystems. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichsen, Nele; Klobasa, Marian; Marwitz, Simon [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany); Hilpert, Johannes; Sailer, Frank [Stiftung Umweltenergierecht, Wuerzburg (Germany)

    2016-11-15

    In this project we analyzed options to advance the network tariff system to support the German energy transition. A power system with high shares of renewables, requires more flexibility of supply and demand than the traditional system based on centralized, fossil power plants. Further, the power networks need to be adjusted and expanded. The transformation should aim at system efficiency i.e. look at both generation and network development. Network tariffs allocate the network cost towards network users. They also should provide incentives, e.g. to reduce peak load in periods of network congestion. Inappropriate network tariffs can hinder the provision of flexibility and thereby become a barrier towards system integration of renewable. Against this background, this report presents a systematic review of the German network tariff system and a discussion of several options to adapt the network tarif system in order to support the energy transition. The following aspects are analyzed: An adjustment of the privileges for industrial users to increase potential network benefits and reduce barriers towards a more market oriented behaviour. The payments for avoided network charges to distributed generation, that do not reflect cost reality in distribution networks anymore. Uniform transmission network tariffs as an option for a more appropriate allocation of cost associated with the energy transition. Increased standing fees in low voltage networks as an option to increase the cost-contribution of users with self-generation to network financing. Generator tariffs, to allocate a share of network cost to generators and provide incentives for network oriented location choice and/or feed-in.

  11. ENERGY STAR Certified Commercial Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Boilers that are effective as of...

  12. ENERGY STAR Certified Commercial Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Dishwashers that are effective as of...

  13. ENERGY STAR Certified Commercial Ovens

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Ovens that are effective as of...

  14. ENERGY STAR Certified Water Coolers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Water Coolers that are effective as of February...

  15. ENERGY STAR Certified Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 and Version 3.1 ENERGY STAR Program Requirements for Water Heaters that are effective...

  16. ENERGY STAR Certified Imaging Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Imaging Equipment that are effective as of...

  17. ENERGY STAR Certified Commercial Griddles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Commercial Griddles that are effective as of May...

  18. ENERGY STAR Certified Residential Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.0 ENERGY STAR Program Requirements for Residential Dishwashers that are effective as of...

  19. ENERGY STAR Certified Roof Products

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.3 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1,...

  20. ENERGY STAR Certified Audio Video

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Audio Video Equipment that are effective as of...

  1. ENERGY STAR Certified Vending Machines

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are...

  2. ENERGY STAR Certified Enterprise Servers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.1 ENERGY STAR Program Requirements for Enterprise Servers that are effective as of...

  3. ENERGY STAR Certified Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.2 ENERGY STAR Program Requirements for Water Heaters that are effective April 16, 2015....

  4. ENERGY STAR Certified Ceiling Fans

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1,...

  5. ENERGY STAR Certified Pool Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Pool Pumps that are effective as of February 15,...

  6. NP Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Rotman, Lauren [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tierney, Brian [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  7. Energy Deskbook

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, S

    1982-06-01

    The purpose of the Energy Deskbook is to serve as a convenient reference to definitions of energy-related terms and descriptions of current and potential energy sources and their utilization. The material is presented at a low technical level with emphasis on general principles, which are not difficult to understand, rather than technology. The entries vary in length from a few lines to several pages, according to circumstances. As a general rule, each topic is defined and outlined in the first paragraph; this may be followed by a more detailed treatment, as required. An important feature of the Deskbook is the use of boldface (heavy) type for cross references. Words in the text set in boldface are the titles of articles where the particular subjects are described.

  8. Environmental Requirements Management

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, Laura J.; Bramson, Jeffrey E.; Archuleta, Jose A.; Frey, Jeffrey A.

    2015-01-08

    CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy (DOE) prime contractor responsible for the environmental cleanup of the Hanford Site Central Plateau. As part of this responsibility, the CH2M HILL is faced with the task of complying with thousands of environmental requirements which originate from over 200 federal, state, and local laws and regulations, DOE Orders, waste management and effluent discharge permits, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response and Resource Conservation and Recovery Act (RCRA) corrective action documents, and official regulatory agency correspondence. The challenge is to manage this vast number of requirements to ensure they are appropriately and effectively integrated into CH2M HILL operations. Ensuring compliance with a large number of environmental requirements relies on an organization’s ability to identify, evaluate, communicate, and verify those requirements. To ensure that compliance is maintained, all changes need to be tracked. The CH2M HILL identified that the existing system used to manage environmental requirements was difficult to maintain and that improvements should be made to increase functionality. CH2M HILL established an environmental requirements management procedure and tools to assure that all environmental requirements are effectively and efficiently managed. Having a complete and accurate set of environmental requirements applicable to CH2M HILL operations will promote a more efficient approach to: • Communicating requirements • Planning work • Maintaining work controls • Maintaining compliance

  9. Hamilton district energy project

    Energy Technology Data Exchange (ETDEWEB)

    Marsales, D. [Hamilton Community Energy, ON (Canada)

    2002-07-01

    This presentation began with a description of the Hamilton District Energy Project. A piping distribution system delivers the energy. For those buildings located in the close vicinity of the central energy centre, heating and cooling are provided. The Hamilton City Hall, the Copps Coliseum, and a host of other buildings located downtown are included in this project. Both the proximity to the energy centre and the pipe infrastructure are important components for the delivery of the energy. A natural gas burning engine is part of the energy centre. Direct waste is minimized since waste exhaust is used to heat water. Individual energy transfer systems, much smaller than the equipment being replaced, are used for each building connected to the district energy network. All emission requirements are met by district heating, which is a reliable source of energy and more efficient. There are instances where only more efficient energy solutions are available to a municipality when renewable energy sources are not feasible. figs.

  10. ENERGY STAR Certified Telephones

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Telephony (cordless telephones and VoIP telephones) that are effective as of October 1, 2014. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=phones.pr_crit_phones

  11. Data Crosscutting Requirements Review

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, Arie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Plata, Charity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-01

    In April 2013, a diverse group of researchers from the U.S. Department of Energy (DOE) scientific community assembled to assess data requirements associated with DOE-sponsored scientific facilities and large-scale experiments. Participants in the review included facilities staff, program managers, and scientific experts from the offices of Basic Energy Sciences, Biological and Environmental Research, High Energy Physics, and Advanced Scientific Computing Research. As part of the meeting, review participants discussed key issues associated with three distinct aspects of the data challenge: 1) processing, 2) management, and 3) analysis. These discussions identified commonalities and differences among the needs of varied scientific communities. They also helped to articulate gaps between current approaches and future needs, as well as the research advances that will be required to close these gaps. Moreover, the review provided a rare opportunity for experts from across the Office of Science to learn about their collective expertise, challenges, and opportunities. The "Data Crosscutting Requirements Review" generated specific findings and recommendations for addressing large-scale data crosscutting requirements.

  12. BES Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  13. Energy development

    Science.gov (United States)

    Lovich, Jeffrey E.; Jones, L.L.C.; Lovich, R. L.; Halama, K.J.

    2016-01-01

    Large areas of the desert southwest are currently developed or being evaluated for construction of utility-scale renewable energy projects. These projects include numerous solar and wind energy facilities some of which will be massive. Unfortunately, peer-reviewed scientific publications are not yet available to evaluate the potential effects of solar-based utility-scale renewable energy development (USRED) on any species of wildlife, including amphibians and reptiles (herpetofauna). Scientific publications on the effects of wind-based USRED and operation (USREDO) are focused almost exclusively on flying wildlife including birds and bats. To the best of our knowledge the only publications on the effects of wind-based USREDO on herpetofauna are three publications on desert tortoise ecology at a wind energy facility near Palm Springs, California. Those studies suggested that not all effects of USREDO were detrimental in the short-term. However, additional research is required to determine if wind energy operation is compatible with conservation of this long-lived species over longer periods of time.

  14. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  15. Energy Efficient Televisions

    DEFF Research Database (Denmark)

    Andersen, Rikke Dorothea; Remmen, Arne

    The EuP Directive sets the frame for implementing ecodesign requirements for energy-using and energy-related products. The aim of the Directive is to achieve a high level of protection for the environment by reducing the potential environmental impact of energy-related products. The focus...

  16. Energy efficient building design

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  17. Exigências de lisina digestível e de energia metabolizável para codornas de corte em crescimento Digestible lysine and metabolizable energy requirements of growing meat quails

    Directory of Open Access Journals (Sweden)

    Ana Paula Silva Ton

    2011-03-01

    Full Text Available O objetivo neste trabalho foi estimar as exigências de lisina digestível e de energia metabolizável (EM para codornas de corte (Coturnix coturnix sp em crescimento. Foram utilizadas 1.680 codornas de 4 a 35 dias de idade, não-sexadas, em delineamento experimental inteiramente casualizado em esquema fatorial 4 × 4 (LD = 0,92; 1,12; 1,32 e 1,52% × EM = 2.800; 2.900; 3.000 e 3.100 kcal/kg de ração, totalizando 16 dietas, avaliadas com 3 repetições de 35 codornas por unidade experimental. O aumento dos níveis de lisina digestível na ração provocou aumento linear do peso corporal, do ganho de peso, do consumo de lisina e do rendimento de peito e redução do teor de água nos cortes. Quando houve aumento dos níveis de energia metabolizável na ração, observou-se redução linear no consumo de lisina e aumento do peso corporal e do rendimento de gordura abdominal. O aumento simultâneo dos níveis de lisina e energia metabolizável na ração, no entanto, provocou redução linear no consumo de ração e melhora linear da conversão alimentar no período de 4 a 35 dias, mas aumentou o teor de gordura nos cortes. A exigência nutricional de lisina digestível para máximo crescimento de codornas de corte é maior ou igual a 1,52%. O nível de 2.800 kcal/kg de EM na ração é suficiente para bom desempenho das aves, contudo, para melhor conversão alimentar, são necessário níveis mais elevados.The objective of this experiment was to estimate the digestible lysine and metabolizable energy (ME requirements for growing meat quails (Coturnix coturnix sp. A total of 1,680 quails from 4 to 35 days of age of both sexes were used in a complete random experimental design in a 4 × 4 factorial scheme (DL = 0.92; 1.12; 1.32 and 1.52% × ME = 2,800; 2,900; 3,000 and 3,100 kcal/kg of the ration totaling 16 diets evaluated with 3 replications of 35 quails per experimental diet. Increase of the levels of digestible lysine in the diet linearly

  18. Diversification of energy sources

    Science.gov (United States)

    1975-01-01

    The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.

  19. 10 CFR 451.8 - Application content requirements.

    Science.gov (United States)

    2010-01-01

    ... of a qualified renewable energy facility which generates electric energy using a fossil fuel, nuclear... 10 Energy 3 2010-01-01 2010-01-01 false Application content requirements. 451.8 Section 451.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.8...

  20. 10 CFR 436.106 - Reporting requirements.

    Science.gov (United States)

    2010-01-01

    ... impact on meeting goals; and (vii) Summary of any other benefits realized. (3) The energy efficiencies as... renewable energy sources; (iv) Increased use of coal and coal derivatives, and (v) Use of all other... 10 Energy 3 2010-01-01 2010-01-01 false Reporting requirements. 436.106 Section 436.106 Energy...

  1. 10 CFR 490.803 - Waiver requirements.

    Science.gov (United States)

    2010-01-01

    ... following vehicles were operated 100 percent of the time on alternative fuel during the model year for which... 10 Energy 3 2010-01-01 2010-01-01 false Waiver requirements. 490.803 Section 490.803 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490...

  2. 10 CFR 452.4 - Eligibility requirements.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Eligibility requirements. 452.4 Section 452.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.4 Eligibility... construction of the eligible cellulosic biofuels production facility such that operations at the plant or plant...

  3. Energy performance of windows based on the net energy gain

    DEFF Research Database (Denmark)

    Svendsen, Svend; Kragh, Jesper; Laustsen, Jacob Birck

    2005-01-01

    The paper presents a new method to set up energy performance requirements and energy classes for windows of all dimensions and configurations. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating season. The net energy gain can be calculated for one...... orientation or averaged over different orientations. The averaged value may be used for energy labeling of windows of standard size. Requirements in building codes may also be based on the net energy gain instead of the thermal transmittance of the window. The size and the configuration of the window, i.......e. number of glazing units, have a very large effect on the net energy gain. Therefore the energy labeling or the requirements based on the standard size may not give valid information on the energy performance of windows of non-standard size. The paper presents a method to set up requirements and classes...

  4. Energy Balance and Obesity

    Science.gov (United States)

    Hill, James O.; Wyatt, Holly R.; Peters, John C.

    2012-01-01

    This paper describes the interplay among energy intake, energy expenditure and body energy stores and illustrates how an understanding of energy balance can help develop strategies to reduce obesity. First, reducing obesity will require modifying both energy intake and energy expenditure and not simply focusing on either alone. Food restriction alone will not be effective in reducing obesity if human physiology is biased toward achieving energy balance at a high energy flux (i.e. at a high level of energy intake and expenditure). In previous environments a high energy flux was achieved with a high level of physical activity but in today's sedentary environment it is increasingly achieved through weight gain. Matching energy intake to a high level of energy expenditure will likely be more a more feasible strategy for most people to maintain a healthy weight than restricting food intake to meet a low level of energy expenditure. Second, from an energy balance point of view we are likely to be more successful in preventing excessive weight gain than in treating obesity. This is because the energy balance system shows much stronger opposition to weight loss than to weight gain. While large behavior changes are needed to produce and maintain reductions in body weight, small behavior changes may be sufficient to prevent excessive weight gain. In conclusion, the concept of energy balance combined with an understanding of how the body achieves balance may be a useful framework in helping develop strategies to reduce obesity rates. PMID:22753534

  5. Triggering requirements for SSC physics

    Energy Technology Data Exchange (ETDEWEB)

    Gilchriese, M.G.D. [Lawrence Berkeley Lab., CA (United States)

    1989-04-01

    Some aspects of triggering requirements for high P{sub T} physics processes at the Superconducting Super Collider (SSC) are described. A very wide range of trigger types will be required to enable detection of the large number of potential physics signatures possible at the SSC. Although in many cases trigger rates are not now well understood, it is possible to conclude that the ability to trigger on transverse energy, number and energy of jets, number and energy of leptons (electrons and muons), missing energy and combinations of these will be required. An SSC trigger system must be both highly flexible and redundant to ensure reliable detection of many new physics processes at the SSC.

  6. Annual Energy Review 2007

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2008-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....”

  7. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  8. Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.

    2011-01-01

    , (4) the type of energy balance, (5) the accepted renewable energy supply options, (6) the connection to the energy infrastructure and (7) the requirements for the energy efficiency, the indoor climate and in case of gird connected ZEB for the building–grid interaction. This paper focuses......The concept of Zero Energy Building (ZEB) has gained wide international attention during last few years and is now seen as the future target for the design of buildings. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires...... clear and consistent definition and a commonly agreed energy calculation methodology. The most important issues that should be given special attention before developing a new ZEB definition are: (1) the metric of the balance, (2) the balancing period, (3) the type of energy use included in the balance...

  9. Energy Use in Food System

    NARCIS (Netherlands)

    Dutilh, C.; Blonk, H.; Linnemann, A.R.

    2014-01-01

    Nature generates the raw materials for food, fuelled by energy from the sun. However, before food can be consumed, (mineral) energy is required for cultivation, transportation, preparation and conservation purposes. This paper presents and discusses the energy requirements for various categories of

  10. National Energy Plan II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This volume contains the Administration's second National Energy Plan, as required by section 801 of the Department of Energy Organization Act (Public Law 95-91). A second volume will contain an assessment of the environmental trends associated with the energy futures reported here. Detailed appendices to the Plan will be published separately. The eight chapters and their subtitles are: Crisis and Uncertainty in the World Energy Future (The Immediate Crisis and the Continuing Problem, The Emergence of the Energy Problem, The Uncertainties of the World Energy Future, World Oil Prices, Consequences for the U.S.); The U.S. Energy Future: The Implications for Policy (The Near-, Mid-, and Long-Term, The Strategy in Perspective); Conservation (Historical Changes in Energy Use, Post-Embargo Changes - In Detail, Conservation Policies and Programs, The Role of Conservation); Oil and Gas (Oil, Natural Gas); Coal and Nuclear (Coal, Nuclear, Policy for Coal and Nuclear Power); Solar and Other Inexhaustible Energy Sources (Solar Energy, Geothermal, Fusion, A Strategy for Inexhaustible Resources); Making Decisions Promptly and Fairly (Managing Future Energy Crises: Emergency Planning, Managing the Current Shortfall: The Iranian Response Plan, Managing the Long-Term Energy Problem: The Institutional Framework, Fairness in Energy Policy, Public Participation in the Development of Energy Policy); and NEP-II and the Future (The Second National Energy Plan and the Nation's Energy Future, The Second National Energy Plan and the Economy, Employment and Energy Policy, The Second National Energy Plan and Individuals, The Second National Energy Plan and Capital Markets, and The Second National Energy Plan and the Environment). (ERA citation 04:041097)

  11. Development direction of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hua, A. [China University of Mining and Technology, Xuzhou (China). College of Architecture and Civil Engineering

    2002-01-01

    According to the prediction of the developmental trend of the economy and population of the world, the mineral energy resource is faced with exhaustion. Exploitation and combustion of minerals are seriously polluting the environment. In addition, the production areas of mineral resources are not the energy consumption areas. Therefore, the energy resource of the world is at the stage of structural reorganisation. The exploitation and utilisation of green energy resources such as solar energy, wind energy, oceanic energy, geothermic energy, biologic energy and hydrogen in China are introduced briefly. The green energy resources have abundant reserves. Their utilisation is propitious to environment protection, and the relevant technique has come to a generalised stage. It is believed that green energy should be the developmental direction of energy resource and that the speciality of green energy ought to be set up in energy resources colleges to train the required personnel. 10 refs., 5 tabs.

  12. BER Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  13. LEGACY MANAGEMENT REQUIRES INFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    CONNELL, C.W.; HILDEBRAND, R.D.

    2006-12-14

    ''Legacy Management Requires Information'' describes the goal(s) of the US Department of Energy's Office of Legacy Management (LM) relative to maintaining critical records and the way those goals are being addressed at Hanford. The paper discusses the current practices for document control, as well as the use of modern databases for both storing and accessing the data to support cleanup decisions. In addition to the information goals of LM, the Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA) is one of the main drivers in documentation and data management. The TPA, which specifies discrete milestones for cleaning up the Hanford Site, is a legally binding agreement among the US Department of Energy (DOE), the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The TPA requires that DOE provide the lead regulatory agency with the results of analytical laboratory and non-laboratory tests/readings to help guide them in making decisions. The Agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in its or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The tools used at Hanford to meet TPA requirements are also the tools that can satisfy the needs of LM.

  14. Principles of light energy management

    Science.gov (United States)

    Davis, N.

    1994-01-01

    Six methods used to minimize excess energy effects associated with lighting systems for plant growth chambers are reviewed in this report. The energy associated with wall transmission and chamber operating equipment and the experimental requirements, such as fresh air and internal equipment, are not considered here. Only the energy associated with providing and removing the energy for lighting is considered.

  15. Exigência Protéica e Relação Energia/Proteína para Alevinos de Piracanjuba (Brycon orbignyanus Dietary Protein Requirement and Energy to Protein Ratio for Piracanjuba (Brycon orbignyanus Fingerlings

    Directory of Open Access Journals (Sweden)

    Marcelo Vinícius do Carmo e Sá

    2002-02-01

    Full Text Available O objetivo do presente estudo foi determinar a exigência protéica e correspondente relação energia/proteína em dietas para alevinos de piracanjuba, Brycon orbignyanus. Seis dietas semi-purificadas isocalóricas foram formuladas para conter 3.000 kcal de energia metabolizável (EM/kg e concentrações de proteína bruta (PB de 24, 26, 29, 32, 36 e 42%. Para essas concentrações, as relações E/P das dietas foram de 12,3; 11,6; 10,4; 9,2; 8,5 e 7,1 kcal EM/g PB, respectivamente. As fontes de proteína, lipídios e carboidratos digestíveis foram, respectivamente, caseína/gelatina, óleo de fígado de bacalhau/óleo de soja e dextrina. Após condicionamento de cinco dias, as dietas foram fornecidas, até a saciedade, em duas alimentações diárias, a 162 alevinos (27 peixes/dieta, que apresentaram 8,38 ± 0,09 g de peso médio inicial, distribuídos em 18 tanques de fibra-de-vidro de 100 L, conectados a um sistema de recirculação de água. A temperatura média da água foi de 26,3°C, com extremos de 23,7 e 30,2°C. Após 90 dias, a concentração de proteína na dieta que proporcionou ganho em peso máximo aos peixes foi 29% PB, com relação E/P igual a 10,4 kcal EM/g PB. As dietas com concentrações de PB iguais a 32, 36 e 42% não se mostraram superiores para conversão alimentar, taxa de eficiência protéica, valor produtivo da proteína e retenção de energia bruta. A deposição corporal de proteína e gordura não sofreu influência da concentração de PB da dietaThe aim of this study was to determine the dietary protein requirement and associated energy to protein (E/P ratio for "Piracanjuba", Brycon orbignyanus, fingerlings. Casein-gelatin semipurified diets were formulated to contain six crude protein (CP concentrations: 24, 26, 29, 32, 36 e 42% at one energy level, 3,000 kcal metabolizable energy (ME/kg. These diets resulted in E/P ratios of 12.3, 11.6, 10.4, 9.2, 8.5 and 7.1 kcal ME/g CP, respectively. The protein, lipid

  16. Annual Energy Review 2001

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2002-11-01

    The Annual Energy Review (AER) is a statistical history of energy activities in the United States. It documents trends and milestones in U.S. energy production, trade, storage, pricing, and consumption. Each new year of data that is added to the time series—which now reach into 7 decades—extends the story of how Americans have acquired and used energy. It is a story of continual change as the Nation's economy grew, energy requirements expanded, resource availability shifted, and interdependencies developed among nations.

  17. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  18. Holographic Dark Information Energy

    Directory of Open Access Journals (Sweden)

    Michael Paul Gough

    2011-04-01

    Full Text Available Landauer’s principle and the Holographic principle are used to derive the holographic information energy contribution to the Universe. Information energy density has increased with star formation until sufficient to start accelerating the expansion of the universe. The resulting reduction in the rate of star formation due to the accelerated expansion may provide a feedback that limits the information energy density to a constant level. The characteristics of the universe’s holographic information energy then closely match those required to explain dark energy and also answer the cosmic coincidence problem. Furthermore the era of acceleration will be clearly limited in time.

  19. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  20. Geothermal Energy; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Raridon, M.H.; Hicks, S.C. (eds.)

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  1. Exigências de lisina e energia metabolizável para marrãs de reprodução Lysine and metabolyzable energy requirements for breeding gilts

    Directory of Open Access Journals (Sweden)

    José Maurício Gonçalves dos Santos

    2005-12-01

    total and live embryos increased linearly with the highest level of ME. The lowest concentration of plasma urea nitrogen was obtained with 0.55% of Lys and 3,400 kcal ME/kg. The weight and back fat thickness at AI, plasma glucose, progesterone, and insulin were not influenced by the treatments. The requirement for total lysine for breeding gilts is not higher than 0.55%. The minimum energy recommendation is of 3,400 kcal ME/kg.

  2. International Congress on Energy Efficiency and Energy Related Materials

    CERN Document Server

    Bahsi, Zehra; Ozer, Mehmet; ENEFM2013

    2014-01-01

    The International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) was held on 9-12 October, 2013. This three-day congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental & economic perspectives of energy. These proceedings include 63 peer reviewed technical papers, submitted from leading academic and research institutions from over 23 countries, representing some of the most cutting edge research available. The papers included were presented at the congress in the following sessions: General Issues Wind Energy Solar Energy Nuclear Energy Biofuels and Bioenergy Energy Storage Energy Conservation and Efficiency Energy in Buildings   Economical and Environmental Issues Environment Energy Requirements Economic Development   Materials for Sustainable Energy Hydrogen Production and Storage Photovoltaic Cells Thermionic Converters Batteries and Superconductors Phase Change Materials Fuel Cells Supercon...

  3. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  4. Federal Energy Management Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-05

    Brochure offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  5. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  6. 10 CFR 430.52 - Requirements for applications.

    Science.gov (United States)

    2010-01-01

    ... Efficiency Standards, Assistant Secretary for Conservation and Renewable Energy, Forrestal Building, 1000... 10 Energy 3 2010-01-01 2010-01-01 false Requirements for applications. 430.52 Section 430.52 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Small...

  7. Ecodesign requirements for televisions

    DEFF Research Database (Denmark)

    Huulgaard, Rikke Dorothea; Dalgaard, Randi; Merciai, Stefano

    2013-01-01

    to analyse if other environmental hotspots and life cycle phases should be included in the requirements in the IM of the Ecodesign Directive besides energy consumption in the use phase analysis. Methods The consequential approach is used. The data for the LCA have been gathered from two manufacturers of TVs....... In one case, the data were delivered in Excel spreadsheets; in the other case, the authors of this paper together with the manufacturer disassembled a TV and collected the data manually. Results and discussion When applying the consequential approach, the production phase has the highest environmental...

  8. State Energy Program Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Office of Building Technology, State and Community Programs

    1999-03-17

    The State Energy Program Operations Manual is a reference tool for the states and the program officials at the U.S. Department of Energy's Office of Building Technology, State and Community Programs and Regional Support Offices as well as State Energy Offices. The Manual contains information needed to apply for and administer the State Energy Program, including program history, application rules and requirements, and program administration and monitoring requirements.

  9. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...

  10. Energy for future generations

    Energy Technology Data Exchange (ETDEWEB)

    Darton, Richard; Booth, Roger [Oxford Univ., Engineering Science Dept., Oxford (United Kingdom)

    1999-09-23

    The authors base their article on sustainable development on two scenarios: abundant supplies of primary energy increasingly available from more competitive renewable sources, and meeting human needs through technologies and systems that require a much lower energy input. Issues to be considered include exponential growth in use of natural resources, population increase (6 billion to 10 billion), land degradation and environmental concerns.

  11. Growing and energy conservation

    Science.gov (United States)

    Eric van Steenis

    2009-01-01

    As energy costs increase, resistance is strong to these costs becoming a larger proportion of production cost. Many options can be considered in this battle. This presentation deals only with altering thermostat settings during initial crop growth stages early in the season. Reducing energy requirements in greenhouse crop production while maintaining quality and on-...

  12. Energy literacy and capitalization

    NARCIS (Netherlands)

    Brounen, Dirk; Kok, N.; Quigley, J.

    2014-01-01

    The residential sector accounts for one-fifth of global energy consumption, resulting from the requirements to heat, cool, and light residential dwellings. It is therefore not surprising that energy efficiency in the residential market has gained importance in recent years. In this paper, we examine

  13. DTU International Energy Report 2016: The Energy-Water-Food Nexus - from local to global aspects

    DEFF Research Database (Denmark)

    Energy, water, and food systems are closely interlinked in the Energy-Water-Food Nexus. Water is of paramount importance for the energy sector. Fossil fuels require water for extraction, trans-port and processing. Thermal power plants require water for cooling, whether they use nuclear, fossil......-users. The waste water is often returned to the environment after energy requiring waste water management....

  14. Study deep geothermal energy; Studie dypgeotermisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Havellen, Vidar; Eri, Lars Sigurd; Andersen, Andreas; Tuttle, Kevin J.; Ruden, Dorottya Bartucz; Ruden, Fridtjof; Rigler, Balazs; Pascal, Christophe; Larsen, Bjoern Tore

    2012-07-01

    The study aims to analyze the potential energy with current technology, challenges, issues and opportunities for deep geothermal energy using quantitative analysis. It should especially be made to identify and investigate critical connections between geothermal potential, the size of the heating requirements and technical solutions. Examples of critical relationships may be acceptable cost of technology in relation to heating, local geothermal gradient / drilling depth / temperature levels and profitability. (eb)

  15. Energy intermittency

    CERN Document Server

    Sorensen, Bent

    2014-01-01

    The first book to consider intermittency as a key point of an energy system, Energy Intermittency describes different levels of variability for traditional and renewable energy sources, presenting detailed solutions for handling energy intermittency through trade, collaboration, demand management, and active energy storage. Addressing energy supply intermittency systematically, this practical text:Analyzes typical time-distributions and intervals between episodes of demand-supply mismatch and explores their dependence on system layouts and energy source characteristicsSimulates scenarios regar

  16. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  17. ENERGY STAR Certified Commercial Steam Cookers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.2 ENERGY STAR Program Requirements for Commercial Steam Cookers that are effective as...

  18. EU ENERGY STAR Certified Enterprise Servers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.1 ENERGY STAR Program Requirements for Enterprise Servers that are effective as of...

  19. ENERGY STAR Certified Residential Clothes Washers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 8.0 ENERGY STAR Program Requirements for Clothes Washers that are effective as of...

  20. ENERGY STAR Certified Electric Vehicle Supply Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Electric Vehicle Supply Equipment that are...

  1. ENERGY STAR Certified Commercial Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Water Heaters that are effective as...

  2. ENERGY STAR Certified Residential Clothes Dryers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Clothes Dryers that are effective as of January...

  3. ENERGY STAR Certified Commercial Clothes Washers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Clothes Washers that are effective as of March...

  4. ENERGY STAR Certified Small Network Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Small Networking Equipment that are effective as...

  5. ENERGY STAR Certified Commercial Ice Machines

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Automatic Commercial Ice Makers that are...

  6. ENERGY STAR Certified Commercial Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Commercial Refrigerators and Freezers that are...

  7. ENERGY STAR Laboratory Grade Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1 ENERGY STAR Program Requirements for Laboratory Grade Refrigerators and Freezers that...

  8. ENERGY STAR Certified Data Center Storage

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Data Center Storage that are effective as of...

  9. ENERGY STAR Certified Set Top Boxes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.1 ENERGY STAR Program Requirements for Set-top Boxes that are effective as of January...

  10. ENERGY STAR Certified Light Commercial HVAC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Light Commercial HVAC that are effective as of...

  11. ENERGY STAR Certified Uninterruptible Power Supplies

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Uninterruptible Power Supplies that are...

  12. Energy and Water Management

    Science.gov (United States)

    Valek, Susan E.

    2008-01-01

    Energy efficiency isn't just a good idea; it's a necessity, both for cost reasons and to meet federal regulatory requirements. First, rising energy unit costs continue to erode NASA's mission budget. NASA spent roughly $156M on facility energy in FY 2007. Although that represents less than one per cent of NASA's overall annual budget, the upward trend in energy costs concerns the agency. While NASA reduced consumption 13%, energy unit costs have risen 63%. Energy cost increases counteract the effects of energy conservation, which results in NASA buying less yet spending more. The second factor is federal energy legislation. The National Energy Conservation Policy Act, as amended by the Energy Policy Act of 2005, Executive Order (EO) 13423 (January, 2007), and the Energy Independence and Security Act (December, 2007), mandates energy/water conservation goals for all federal agencies, including NASA. There are also reporting requirements associated with this legislation. The Energy/Water Management Task was created to support NASA Headquarters Environmental Management Division (HO EMD) in meeting these requirements. With assistance from TEERM, HQ EMD compiled and submitted the NASA Annual Report to the Department of Energy FY 2007. The report contains information on how NASA is meeting federally mandated energy and water management goals. TEERM monitored input for timeliness, errors, and conformity to the new energy/water reporting guidelines and helped compile the information into the final report. TEERM also assists NASA Energy/Water Management with proposal and award calls, updates to the energy/water management database, and facilitating communication within the energy/water management community. TEERM is also supporting NASA and the Interagency Working Group (IWG) on Hydrogen and Fuel Cells. Established shortly after the President announced the Hydrogen Fuel Initiative in 2003, this IWG serves as the mechanism for collaboration among the Federal agencies

  13. Energy sustainability through green energy

    CERN Document Server

    Sharma, Atul

    2015-01-01

    This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development

  14. Deep Energy Retrofit

    DEFF Research Database (Denmark)

    Zhivov, Alexander; Lohse, Rüdiger; Rose, Jørgen

    Deep Energy Retrofit – A Guide to Achieving Significant Energy User Reduction with Major Renovation Projects contains recommendations for characteristics of some of core technologies and measures that are based on studies conducted by national teams associated with the International Energy Agency...... Energy Conservation in Buildings and Communities Program (IEA-EBC) Annex 61 (Lohse et al. 2016, Case, et al. 2016, Rose et al. 2016, Yao, et al. 2016, Dake 2014, Stankevica et al. 2016, Kiatreungwattana 2014). Results of these studies provided a base for setting minimum requirements to the building...... envelope-related technologies to make Deep Energy Retrofit feasible and, in many situations, cost effective. Use of energy efficiency measures (EEMs) in addition to core technologies bundle and high-efficiency appliances will foster further energy use reduction. This Guide also provides best practice...

  15. Renewable energy.

    Science.gov (United States)

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  16. Energy policy and energy market performance: The Argentinean case

    Energy Technology Data Exchange (ETDEWEB)

    Recalde, Marina, E-mail: mrecalde@uns.edu.ar [Departamento de Economia, Universidad Nacional del Sur (UNS) - Consejo Nacional de Ciencia y Tecnologia (CONICET), 12 de Octubre 1198 piso 7, B8000CTX Bahia Blanca (Argentina)

    2011-06-15

    In the early 1990s Argentina liberalized and privatized the energy system, trending to a total market oriented system and abandoning the use of energy policy. Since 2004, as a result of a boom in energy demand and constrains in energy supply, Argentina has gone through an energy problem mainly related to natural gas and electricity, which derived in energy shutdowns. In this frame, this study explores the role of energy policy and institutions in Argentina, with the aim of discussing whether it has been properly used to contrast the observed lack of coordination between fossil energy reserves management and the demand of fuels in power generation. The results of the analysis enhance the relevance of regulatory and control authorities, as well as the active use of long run energy policy for the energy system performance in order to avoid coordination failures between subsectors of the system. The relevance of energy consumption for the development process, and the particular characteristics of energy systems require a wide planning perspective. - Highlights: > This paper examines some aspects of the performance of the Argentinean energy system and energy policy. > There is a lack of coordination between fossil energy reserves management and electricity demand. > It is required an improvement of the regulatory framework, and an active role of the regulatory authorities. > A better planning for electricity supply and strengthening aspects related to the linking with other energy chains. > Promoting a systematic exploitation of NG and oil reserves' and increasing the share of RETs in the energy mix.

  17. Energy resources

    CERN Document Server

    Simon, Andrew L

    1975-01-01

    Energy Resources mainly focuses on energy, including its definition, historical perspective, sources, utilization, and conservation. This text first explains what energy is and what its uses are. This book then explains coal, oil, and natural gas, which are some of the common energy sources used by various industries. Other energy sources such as wind, solar, geothermal, water, and nuclear energy sources are also tackled. This text also looks into fusion energy and techniques of energy conversion. This book concludes by explaining the energy allocation and utilization crisis. This publ

  18. Monitoring Energy Consumption of Smartphones

    OpenAIRE

    Ding, Fangwei; Xia, Feng; Zhang, Wei; Zhao, Xuhai; Ma, Chengchuan

    2011-01-01

    With the rapid development of new and innovative applications for mobile devices like smartphones, advances in battery technology have not kept pace with rapidly growing energy demands. Thus energy consumption has become a more and more important issue of mobile devices. To meet the requirements of saving energy, it is critical to monitor and analyze the energy consumption of applications on smartphones. For this purpose, we develop a smart energy monitoring system called SEMO for smartphones...

  19. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  20. Understanding Energy

    Science.gov (United States)

    Menon, Deepika; Shelby, Blake; Mattingly, Christine

    2016-01-01

    "Energy" is a term often used in everyday language. Even young children associate energy with the food they eat, feeling tired after playing soccer, or when asked to turn the lights off to save light energy. However, they may not have the scientific conceptual understanding of energy at this age. Teaching energy and matter could be…

  1. Zero Energy Windows

    Energy Technology Data Exchange (ETDEWEB)

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-05-17

    Windows in the U.S. consume 30 percent of building heating and cooling energy, representing an annual impact of 4.1 quadrillion BTU (quads) of primary energy. Windows have an even larger impact on peak energy demand and on occupant comfort. An additional 1 quad of lighting energy could be saved if buildings employed effective daylighting strategies. The ENERGY STAR{reg_sign} program has made standard windows significantly more efficient. However, even if all windows in the stock were replaced with today's efficient products, window energy consumption would still be approximately 2 quads. However, windows can be ''net energy gainers'' or ''zero-energy'' products. Highly insulating products in heating applications can admit more useful solar gain than the conductive energy lost through them. Dynamic glazings can modulate solar gains to minimize cooling energy needs and, in commercial buildings, allow daylighting to offset lighting requirements. The needed solutions vary with building type and climate. Developing this next generation of zero-energy windows will provide products for both existing buildings undergoing window replacements and products which are expected to be contributors to zero-energy buildings. This paper defines the requirements for zero-energy windows. The technical potentials in terms of national energy savings and the research and development (R&D) status of the following technologies are presented: (1) Highly insulating systems with U-factors of 0.1 Btu/hr-ft{sup 2}-F; (2) Dynamic windows: glazings that modulate transmittance (i.e., change from clear to tinted and/or reflective) in response to climate conditions; and (3) Integrated facades for commercial buildings to control/ redirect daylight. Market transformation policies to promote these technologies as they emerge into the marketplace are then described.

  2. Annual Energy Review 2002

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2003-10-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2002. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration (EIA) under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications. Related Publication: Readers of the AER may also be interested in EIA’s Monthly Energy Review, which presents monthly updates of many of the data in the AER. Contact our National Energy Information Center for more information.

  3. 24 CFR 200.78 - Energy conservation.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective energy...

  4. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  5. Energy Drinks

    Science.gov (United States)

    ... R S T U V W X Y Z Energy Drinks Share: © Thinkstock Energy drinks are widely promoted as products that increase ... people has been quite effective. Next to multivitamins, energy drinks are the most popular dietary supplement consumed ...

  6. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...... to meet the required reduction in final energy consumption (goal for 2013) and in primary energy consumption (with goals in 2011 and 2020) as planned by parliament? Recommendations were made on how to improve and develop the portfolio using cost effectiveness as well as organisational clarity as criteria...

  7. Key World Energy Statistics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997. This new edition responds to the enormously positive reaction to the book since then. Key World Energy Statistics produced by the IEA contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts. It exists in different formats to suit our readers' requirements.

  8. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  9. Energy balance in JET

    Directory of Open Access Journals (Sweden)

    G.F. Matthews

    2017-08-01

    Full Text Available In this paper we discuss results from the study of the energy balance in JET based on calculated heating energies, radiated energy from bolometry and tile calorimetry. Recent data enables us to be more confident in the numbers used and to exclude certain possibilities but the overall energy imbalance which typically amounts to 25% of total input remains unexplained. This shows that caution is required in interpreting fractional radiated powers which are commonly used to measure the effectiveness of impurity seeded scenarios at reducing divertor heat load.

  10. Energy, tourism

    OpenAIRE

    Frantál, B.

    2015-01-01

    The chapter provides a general definition of energy and resume the role and environmental impacts of tourism as one of the largest global industries and energy consumers.Then the energy tourism nexus is conceptualized from three perspectives: The first is energy as a driver of tourism. The second is energy as a constraint of tourism. The third is energy as an attraction and object of tourists´interests.

  11. Energy, ecology, and the environment

    CERN Document Server

    Wilson, Richard F

    1974-01-01

    Energy, Ecology, and the Environment discusses how our need for energy and the different means required to obtain it affect the environment and the harnessing of different natural resources. The book also aims to show more efficient ways to use and generate energy. The book, after a brief introduction to the concept of energy, covers topics such as the different energy resources and the demands, costs, and policies regarding energy. The book also discusses the problems brought about by the production of energy such as the hazards to nature and man; environmental problems and pollution; and

  12. Water transport and energy.

    Science.gov (United States)

    Fricke, Wieland

    2017-06-01

    Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains. © 2016 John Wiley & Sons Ltd.

  13. ENERGI EXPENDITURE PADA LANSIA

    Directory of Open Access Journals (Sweden)

    Yuniar Rosmalina

    2012-11-01

    Full Text Available ENERGY EXPENDITURE OF ELDERLY PEOPLE.Background: Physical activity is a factor to estimate the energy requirement. The elderly tend to reduce their activities which influence their energy requirement. Now aday the energy need for elderly is extrapolated from the adult. Energy expenditure based on their daily activities Is a method to estimate the energy requirement.Objectives: The purpose of the study was to assess energy expenditure of elderly people based on the daily physical activities.Methods: The study was conducted in 2 sub-sub districts of Bogar Country. A total of 92 elderly (42 men and 50 women were included in this study. The inclusion criteria were BMI 18.5- 25.0, physically and hematologically healthy and agree to participate in this study. Physical activities data were collected 3 days respectively using method record and recall and energy intakes using 3 day food record by weighing.Results: The average age was 67.5 ± 5,1 years for male elderly and 65.4 ± 3.9 years of female elderly. Recreational activities (reading, watching TV, sitting were the most activities done by male elderly (34.9% of the day while female elderly 34.8% of the day were spent for sleeping activity. The highest energy expenditure of male elderly was contributed from reactional activities (570.3 ± 187.8 Kcal/day while female elderly the highest energy expenditure was contributed from household work activities. The average energy expenditure for male elderly was 1870.2 ± 261.2 Kcal/day or 34.4 Kcal/Body weight/day and female elderly was 1840.2 ± 255.7 Kcal/day or 38.2 Kcal/Body weight/day. The energy Intake of male elderly was 1858 ± 471.7 Kcal/day or 34.1 Kcal/Body weight/day and female elderly was 1472 ± 255.7 Kcal/day or 30.8 Kcal/Body weight/day.Conclusions: Conclusion of this research was the energy expenditure of male elderly balance with their energy consumption, while the energy expenditure of female elderly higher than their energy consumption

  14. Effects of Energy intake and, dietary protein concentration on energy ...

    African Journals Online (AJOL)

    Increased protein intake resulted into incresed rate of heat production and protein energy retention and low rate of fat energy retention. The energy requirement for maintenance was slightly lower in animals fed on the high compared with those on low-protein diets. The partial efficiency of ME utilisation for growth, was poor ...

  15. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  16. Evaluate deaerator steam requirements quickly

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (US))

    1991-02-01

    Steam plant engineers frequently have to perform energy balance calculations around the deaerator to estimate the steam required to preheat and deaerate the make-up water and condensate returns. This calculation involves solving two sets of equations, one for mass and the other for energy balance. Reference to steam tables is also necessary. However, with the help of this program written in BASIC, one can arrive at the make-up water and steam requirements quickly, without referring to steam tables. This paper shows the mass and energy balance equations for the deaerator. This paper gives the program listing. An number of condensate returns can be handled. An example illustrates the use of the program.

  17. Annual Energy Review 2009

    Energy Technology Data Exchange (ETDEWEB)

    Fichman, Barbara T. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2010-08-01

    The Annual Energy Review (AER) is the U.S. Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding the content of the AER and other EIA publications.

  18. Annual Energy Review 1999

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2000-07-01

    A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth of energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn

  19. ENERGY STAR Certified Ceiling Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=ceiling_fans.pr_crit_ceiling_fans

  20. ENERGY STAR Certified Residential Freezers

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are effective as of September 15, 2014. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=refrig.pr_crit_refrigerators

  1. ENERGY STAR Certified Vending Machines

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are effective as of March 1, 2013. A detailed listing of key efficiency criteria are available at

  2. 48 CFR 970.2670-1 - Requirements.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Requirements. 970.2670-1... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Other Socioeconomic Programs 970.2670-1 Requirements. The goal requirements of section 3021 of the Energy Policy Act of 1992, and the attendant reporting...

  3. Buildings Energy Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Buildings Energy Technology (BET) announces on a monthly basis the current worldwide information available on the technology required for economic energy conservation in buildings and communities. Each issue of BET also will include an article presenting a program overview or highlighting a current energy conservation technology project of DOE's Office of Building Technologies (OBT) plus a listing of scheduled meetings of interest. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  4. Energy & Climate: Getting Quantitative

    Science.gov (United States)

    Wolfson, Richard

    2011-11-01

    A noted environmentalist claims that buying an SUV instead of a regular car is energetically equivalent to leaving your refrigerator door open for seven years. A fossil-fuel apologist argues that solar energy is a pie-in-the-sky dream promulgated by na"ive environmentalists, because there's nowhere near enough solar energy to meet humankind's energy demand. A group advocating shutdown of the Vermont Yankee nuclear plant claims that 70% of its electrical energy is lost in transmission lines. Around the world, thousands agitate for climate action, under the numerical banner ``350.'' Neither the environmentalist, the fossil-fuel apologist, the antinuclear activists, nor most of those marching under the ``350'' banner can back up their assertions with quantitative arguments. Yet questions about energy and its environmental impacts almost always require quantitative answers. Physics can help! This poster gives some cogent examples, based on the newly published 2^nd edition of the author's textbook Energy, Environment, and Climate.

  5. The NLC Software Requirements Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Shoaee, Hamid

    2002-08-20

    We describe the software requirements and development methodology developed for the NLC control system. Given the longevity of that project, and the likely geographical distribution of the collaborating engineers, the planned requirements management process is somewhat more formal than the norm in high energy physics projects. The short term goals of the requirements process are to accurately estimate costs, to decompose the problem, and to determine likely technologies. The long term goal is to enable a smooth transition from high level functional requirements to specific subsystem and component requirements for individual programmers, and to support distributed development. The methodology covers both ends of that life cycle. It covers both the analytical and documentary tools for software engineering, and project management support. This paper introduces the methodology, which is fully described in [1].

  6. Energy Theater

    Science.gov (United States)

    Daane, Abigail R.; Wells, Lindsay; Scherr, Rachel E.

    2014-01-01

    Energy Theater is a dynamic, full-body activity that engages all students in representing the flow of energy in various phenomena, such as a light bulb burning steadily or a refrigerator cooling food. In Energy Theater, each participant acts as a unit of energy that has one form at a time. Regions on the floor correspond to objects in a physical…

  7. Geothermal Energy.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  8. Geothermal Energy.

    Science.gov (United States)

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  9. Estimation of requirements of eolic energy equivalent to the electric generation of the Laguna Verde nuclear power plant; Estimacion de requerimientos de energia eolica equivalente a la generacion electrica de la Central Nucleoelectrica de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A.; Hernandez M, I.A. [Facultad de Ingenieria, Division de Ingenieria Electrica, UNAM, 04510 Mexico D.F. (Mexico)]. E-mail: maiki27@yahoo.com; Martin del Campo M, C. [Facultad de Ingenieria, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2004-07-01

    The advantages are presented that have the nuclear and eolic energy as for their low environmental impact and to the human health. An exercise is presented in the one that is supposed that the electric power generated by the Laguna Verde Nuclear Power plant (CNLV), with capacity of 1365 M W, it should be produced by eolic energy when in the years 2020 and 2025 the units 1 and 2 of the CNLV reach its useful life and be moved away. It is calculated the number of aero generators that would produce the electric power average yearly of the CNLV, that which is equal to install eolic parks with capacity of 2758 M W, without considering that it will also be invested in systems of back generation to produce electricity when the aero generators stops for lack of wind. (Author)

  10. Pulp and Paper Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-08-01

    The study provides energy estimates for the following four cases: current average mill energy consumption, state-of-the-art art mill energy consumption, mill energy consumption if advanced technologies requiring further R&D were employed, and theoretical minimum mill energy consumption.

  11. Energy Management. A Guide for School Districts.

    Science.gov (United States)

    Wisconsin Association of School Boards, Winneconne.

    A successful energy management program in a single school or a school district requires an energy audit or survey. The audit identifies how much energy is being consumed, as well as where it is going. Furthermore, it shows opportunities for energy conservation. The walk-through energy conservation survey is the method that has the best prospect…

  12. NANA Strategic Energy Plan & Energy Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson; Brian Yanity

    2008-12-31

    NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine.

  13. Renewable energy: key factor of China’s energy revolution

    Science.gov (United States)

    Shen, Wan

    2017-12-01

    To realize the sustainable development of China’s energy industry, it is necessary to speed up the transformation of energy development mode and deepen the reform of the energy system in an all-round way so as to establish a clean, low-carbon, safe and efficient modern energy system. This paper analysed the opportunities and challenges in energy sectors to promote the energy mix update in China. Fossil energy, especially coal, has brought great progress to the world as well as a great deal of negative effects. In recent years, China’s greenhouse gas emissions continued to grow rapidly, and has become the world’s largest greenhouse gas emitter. To deal with the challenge, the Chinese government has promised that renewable energy will account for 15% of total energy consumption in 2020 and 20% in 2030. This goal requires China to add 800 to 1000 GW of wind, solar and other clean energy.

  14. Annual Energy Review 2005

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2006-07-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  15. Annual Energy Review 2004

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2005-08-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  16. Annual Energy Review 2000

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2001-08-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2000. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  17. Annual Energy Review 2006

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2007-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  18. Annual Energy Review 2011

    Energy Technology Data Exchange (ETDEWEB)

    Fichman, Barbara T. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2012-09-01

    The Annual Energy Review (AER) is the U.S. Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, and renewable energy; financial and environment indicators; and data unit conversions. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding the content of the AER and other EIA publications.

  19. Future energy perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Christensen, J.M. [Risoe National Lab., Systems Analysis Dept., Roskilde (Denmark)

    2002-10-01

    Future energy perspectives: 1) The global energy consumption will continue to grow primarily in developing countries, their share of global energy consumption will grow from approx. 35% in 1990 to 60% in 2050. 2) Policy focus will be primarily on environmental concerns in the industrial countries and on energy for development and access to energy for the poor in developing countries. 3) With global climate concerns and the implementation of the Kyoto protocol, global environment issues will have increased prominence in energy sector priorities. 4) Fossil fuel resources are on a global level still abundant and prices are expected to be relatively low in the short to medium term. 5) Energy supply security has for geopolitical reasons become an increasing concern especially in the US and the EU. 6) Significant investments are required to ensure development of new clean energy technologies for introduction in the medium to long term. 7) Market reforms are being implemented in almost all regions of the world changing both the investment and policy regimes. 8) International studies (IPCC and WEC) have analysed several alternative energy scenarios Alternative policies and priorities can lead to a wide range of different energy futures. 9) WEC middle scenario B, from 1990 to 2050; predicts growth in GDP 3.5 times and primary energy consumption 2.2 times and CO{sub 2} 1.5 times. This scenario is expecting supply to be dominated by fossil fuel (80% in 1990 and still 65% in 2050), with high share of natural gas and nuclear with slow growth in renewable energy. 10) A more radical scenario (C1) is expecting renewable energy such as biomass, solar and wind to contribute 27% in 2050; declining oil and coal; increased use of natural gas and a minor contribution from nuclear. A development path like this require significant near-term investments in technology research and development. 11) The large increase in global energy demand in the next century will require large investments

  20. Effective energy planning for improving the enterprise’s energy performance

    National Research Council Canada - National Science Library

    Carmen Păunescu; Laura Blid

    2016-01-01

    ... and a more systematic approach to improve the overall enterprise’s energy performance. Energy management is becoming a priority as enterprises strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image...