WorldWideScience

Sample records for bpde-like dna adduct

  1. DNA adducts-chemical addons

    Directory of Open Access Journals (Sweden)

    T R Rajalakshmi

    2015-01-01

    Full Text Available DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde. This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers.

  2. DNA adducts-chemical addons

    Science.gov (United States)

    Rajalakshmi, T. R.; AravindhaBabu, N.; Shanmugam, K. T.; Masthan, K. M. K.

    2015-01-01

    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers. PMID:26015708

  3. Detection of DNA adducts by bioluminescence

    Science.gov (United States)

    Xu, Shunqing; Tan, Xianglin; Yao, Qunfeng; He, Min; Zhou, Yikai; Chen, Jian

    2001-09-01

    Luminescent assay for detection ATP is very sensitive with limitation of 10-17 moles. ATP using styrene oxide as a model carcinogen we currently apply a luminescence technique to detect the very low levels of carcinogen-DNA adducts in vitro and in vivo. The bioluminescent assay of DNA adducts entails three consecutive steps: digestion of modified DNA to adducted dinucleoside monophosphate and normal nucleotide are hydrolyzed to nucleosides (N) by nuclease P1 and prostatic acid phosphomonesterase (PAP); incorporation of (gamma) -P of ATP into normal nucleoside(N); detection of consumption of ATP by luminescence. This assay does not require separate manipulation because of the selective property of nuclease P1. One fmol of carcinogen- DNA adducts was detected by luminescent assay. A good correlation between results of luminescent assay and 32P-postlabeling procedures has been observed. We detect 1 adduct in 108 nucleotides for 10(mu) g DNA sample. The procedures of luminescent method is very simple and low- cost. IT appears applicable to the ultra sensitive detection of low levels of DNA adducts without radioactive isotope.

  4. New DNA adducts of crotonaldehyde and acetaldehyde.

    Science.gov (United States)

    Hecht, S S; McIntee, E J; Wang, M

    2001-09-14

    This paper summarizes our recent studies on adducts produced in the reactions of the carcinogens crotonaldehyde (2-butenal) and acetaldehyde with deoxyguanosine (dG) and DNA. Human exposure to these carcinogens can be considerable, from both exogenous and endogenous sources. Crotonaldehyde reacts with DNA to form Michael addition products, a pathway that has been well described. We describe a second major pathway, in which 3-hydroxybutanal, formed by addition of H(2)O to crotonaldehyde, reacts with DNA to produce the Schiff base N(2)-(3-hydroxybut-1-ylidene)dG as well as several diastereomers of N(2)-paraldol-dG. Acetaldehyde reacts with DNA and dG giving a major Schiff base adduct, N(2)-ethylidene-dG. A cross-linked adduct of acetaldehyde has been characterized for the first time, and other adducts resulting from the reaction of two and three molecules of acetaldehyde with dG have been observed. The results of these studies demonstrate that some structurally unique adducts are formed from these carcinogenic aldehydes and suggest some new directions for research on the potential role of aldehydes in human cancer.

  5. STUDY ON GMA-DNA ADDUCTS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective. DNA modification fixed as mutations in the cells may be an essential factor in the initiation step of chemical carcinogenesis. In order to explore the mechanism of gene mutation and cell transformation induced by glycidyl methacrylate (GMA), the current test studied the characteristics of GMA-DNA adducts formation in vitro.Methods. In vitro test, dAMP, dCMP, dGMP, dTMP and calf thymus DNA were allowed to react with GMA (Glycidyl Methacrylate). After the reaction, the mixtures were detected by UV and subjected to reversed-phase HPLC on ultrasphere ODS reversed-phase column, the reaction products were eluted with a linear gradients of methanol (solvent A) and 10mmol/L ammonium formate, pH5.0 (solvent B). The synthesized adducts were then characterized by UV spectroscopy in acid (pH1.0), neutral (pH7.2), alkaline (pH11.0) and by mass spectroscopy.Results. The results showed that GMA could bind with dAMP, dCMP, dGMP and calf thymus DNA by covalent bond, and the binding sites were specific (N6 of adenine, N3 of cytosine). Meanwhile, a main GMA-DNA adduct in the reaction of GMA with calf thymus DNA was confirmed as N3-methacrylate-2-hydroxypropy1-dCMP.Conclusions. GMA can react with DNA and /or deoxynucleotide monophosphate and generate some adducts such as N6-methacrylate-2-hydroxypropyl-dAMP and N3-methacrylate-2-hydroxypropyl-dCMP, ets. Formation of GMA-DNA adducts is an important molecular event in gene mutation and cell transformation induced by GMA.

  6. Diet-related DNA adduct formation in relation to carcinogenesis.

    Science.gov (United States)

    Hemeryck, Lieselot Y; Vanhaecke, Lynn

    2016-08-01

    The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways.

  7. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  8. Detection of adriamycin-DNA adducts by accelerator mass spectrometry.

    Science.gov (United States)

    Coldwell, Kate; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2010-01-01

    There have been many attempts in the past to determine whether significant levels of Adriamycin-DNA adducts form in cells and contribute to the anticancer activity of this agent. Supraclincal drug levels have been required to study drug-DNA adducts because of the lack of sensitivity associated with many of the techniques employed, including liquid scintillation counting of radiolabeled drug. The use of accelerator mass spectrometry (AMS) has provided the first direct evidence of Adriamycin-DNA adduct formation in cells at clinically relevant Adriamycin concentrations. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection (compared to liquid scintillation counting) and has revealed adduct formation within an hour of drug treatment. The rigorous protocol required for this approach, together with many notes on the precautions and procedures required in order to ensure that absolute levels of Adriamycin-DNA adducts can be determined with good reproducibility, is outlined in this chapter.

  9. A mitomycin-N6-deoxyadenosine adduct isolated from DNA.

    Science.gov (United States)

    Palom, Y; Lipman, R; Musser, S M; Tomasz, M

    1998-03-01

    A minor N6-deoxyadenosine adduct of mitomycin C (MC) was isolated from synthetic oligonucleotides and calf thymus DNA, representing the first adduct of MC and a DNA base other than guanine. The structure of the adduct (8) was elucidated using submilligram quantities of total available material. UV difference spectroscopy, circular dichroism, and electrospray mass spectroscopy as well as chemical transformations were utilized in deriving the structure of 8. A series of synthetic oligonucleotides was designed to probe the specificities of the alkylation of adenine by MC. The nature and frequency of the oligonucleotide-MC adducts formed under conditions of reductive activation of MC were determined by their enzymatic digestion to the nucleoside level followed by quantitative analysis of the products by HPLC. The analyses indicated the following: (i) (A)n sequence is favored over (AT)n for adduct formation; (ii) the alkylation favors the duplex structure; (iii) at adenine sites only monofunctional alkylation occurs; (iv) the adenine-to-alkylation frequency in the model oligonucleotides was 0.3-0.6 relative to guanine alkylation at the 5'-ApG sequence but only 0.02-0.1 relative to guanine alkylation at 5'-CpG. The 5'-phosphodiester linkage of the MC-adenine adduct is resistant to snake venom diesterase. The overall ratio of adenine to guanine alkylation in calf thymus DNA was 0.03, indicating that 8 is a minor MC-DNA adduct relative to MC-DNA adducts at guanine residues in the present experimental residues in the present experimental system. However, the HPLC elution time of 8 coincides with that of a major, unknown MC adduct detected previously in mouse mammary tumor cells treated with radiolabeled MC [Bizanek, R., Chowdary, D., Arai, H., Kasai, M., Hughes, C. S., Sartorelli, A. C., Rockwell, S., and Tomasz, M. (1993) Cancer Res. 53, 5127-5134]. Thus, 8 may be identical or closely related to this major adduct formed in vivo. This possibility can now be tested by

  10. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    Science.gov (United States)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  11. Tissue distribution of DNA adducts and their persistence in blood of mice exposed to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Guilan Li; Wang Chunguang; Songnian Yin [Institute of Occupational Medicine Chinese Academy of Preventive Medicine, Beijing (China); Weidong Xin [Medical College of Qingdao, Shandong Province (China)

    1996-12-01

    Chemicals combine with DNA, resulting in DNA damage, which could initiate carcinogenesis. To study whether benzene or benzene metabolites bind to DNA, DNA adducts in various tissues and their persistence in leukocytes were examined using the {sup 32}P-postlabeling assay. LACA mice were dosed in with benzene at 500 mg/kg bw twice daily for 5 days. Two additional spots of DNA adducts are formed in bone marrow cells, liver cells, and peripheral blood compared with control mice. The relative adduct labeling values are 10.39, 11.32, and 13.77 adducts; x 10{sup -8} nucleotides in these tissues, respectively. DNA adducts in blood leukocytes were observed at 1, 4, 7, 14, and 21 days after exposure to benzene, but adduct levels decreased as a function of time. Relative adduct labeling of {open_quotes}adduct B{close_quotes} declined linearly but mildly, while {open_quotes}adduct C{close_quotes} displayed a stepwise decrease. The relative adduct labeling values of both these adducts at day 14 were 50% of those at day 1 after the last treatment. Both adducts were still detectable at day 21 after benzene exposure. These studies demonstrate that benzene could induce DNA adducts; in bone marrow, liver, and white blood cells of mice dosed with benzene and that measurement of adducts in white blood cells may be useful as a biomarker to predict carcinogenic risk of benzene to workers exposed to benzene. 9 refs., 3 figs.

  12. Specific incorporation of an artificial nucleotide opposite a mutagenic DNA adduct by a DNA polymerase.

    Science.gov (United States)

    Wyss, Laura A; Nilforoushan, Arman; Eichenseher, Fritz; Suter, Ursina; Blatter, Nina; Marx, Andreas; Sturla, Shana J

    2015-01-14

    The ability to detect DNA modification sites at single base resolution could significantly advance studies regarding DNA adduct levels, which are extremely difficult to determine. Artificial nucleotides that are specifically incorporated opposite a modified DNA site offer a potential strategy for detection of such sites by DNA polymerase-based systems. Here we investigate the action of newly synthesized base-modified benzimidazole-derived 2'-deoxynucleoside-5'-O-triphosphates on DNA polymerases when performing translesion DNA synthesis past the pro-mutagenic DNA adduct O(6)-benzylguanine (O(6)-BnG). We found that a mutated form of KlenTaq DNA polymerase, i.e., KTqM747K, catalyzed O(6)-BnG adduct-specific processing of the artificial BenziTP in favor of the natural dNTPs. Steady-state kinetic parameters revealed that KTqM747K catalysis of BenziTP is 25-fold more efficient for template O(6)-BnG than G, and 5-fold more efficient than natural dTMP misincorporation in adduct bypass. Furthermore, the nucleotide analogue BenziTP is required for full-length product formation in O(6)-BnG bypass, as without BenziTP the polymerase stalls at the adduct site. By combining the KTqM747K polymerase and BenziTP, a first round of DNA synthesis enabled subsequent amplification of Benzi-containing DNA. These results advance the development of technologies for detecting DNA adducts.

  13. Chemistry and Biology of Aflatoxin-DNA Adducts

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.; Egli, Martin (Vanderbilt)

    2012-03-27

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate above the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.

  14. Tissue distribution of DNA adducts and their persistence in blood of mice exposed to benzene.

    OpenAIRE

    Li, G.; Wang, C.; Xin, W. (Weidong); Yin, S

    1996-01-01

    Chemicals combine with DNA, resulting in DNA damage, which could initiate carcinogenesis. To study whether benzene or benzene metabolites bind to DNA, DNA adducts in various tissues and their persistence in leukocytes were examined using the 32P-postlabeling assay. LACA mice were dosed ip with benzene at 500 mg/kg bw twice for 5 days. Two additional spots of DNA adducts are formed in bone marrow cells, liver cells, and peripheral blood compared with control mice. The relative adduct labeling ...

  15. Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations.

    Science.gov (United States)

    Coldwell, Kate E; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2008-09-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.

  16. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke

    OpenAIRE

    Phillips, David H.; Venitt, Stan

    2012-01-01

    Tobacco smoke contains a variety of genotoxic carcinogens that form adducts with DNA and protein in the tissues of smokers. Not only are these biochemical events relevant to the carcinogenic process, but the detection of adducts provides a means of monitoring exposure to tobacco smoke. Characterization of smoking-related adducts has shed light on the mechanisms of smoking-related diseases and many different types of smoking-derived DNA and protein adducts have been identified. Such approaches...

  17. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    Science.gov (United States)

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.

  18. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Myungkoo [Iowa State Univ., Ames, IA (United States)

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  19. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7{beta}, 8{alpha}-dihydoxy-9{alpha}, l0{alpha}-epoxy-7,8,9, 10-tetrahydrobenzo[{alpha}]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, ({minus})-trans-, (+)-cis- and ({minus})-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( {approximately} 25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant {pi}-{pi} stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G{sub 2} or G{sub 3} (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N{sup 2}-dG in DNA isolated from the skin of mice treated topically with benzo[{alpha}]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N{sup 2}-dG.

  20. Environmental, Dietary, Maternal, and Fetal Predictors of Bulky DNA Adducts in Cord Blood

    DEFF Research Database (Denmark)

    Pedersen, Marie; Mendez, Michelle A; Schoket, Bernadette

    2015-01-01

    BACKGROUND: Bulky DNA adducts reflect genotoxic exposures, have been associated with lower birth weight, and may predict cancer risk. OBJECTIVE: We selected factors known or hypothesized to affect in utero adduct formation and repair and examined their associations with adduct levels in neonates....

  1. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    Energy Technology Data Exchange (ETDEWEB)

    Batal, Mohamed [Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier – Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); Bérard, Izabel [Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier – Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Cléry-Barraud, Cécile [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  2. Exposure-route-dependent DNA adduct formation by polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Godschalk, R.W.L.; Moonen, E.J.C.; Schilderman, A.E.L.; Broekmans, W.M.R.; Kleinjans, J.C.S.; Schooten, F.J. van

    2000-01-01

    Understanding the kinetics of aromatic-DNA adducts in target tissues and white blood cells (WBC) would enhance the applicability of DNA adducts in WBC as surrogate source of DNA in biomonitoring studies. In the present study, rats were acutely exposed to benzo[a]pyrene (B[a]P; 10 mg/kg body wt) via

  3. Exposure of bus and taxi drivers to urban air pollutants as measured by DNA and protein adducts

    DEFF Research Database (Denmark)

    Hemminki, K.; Zhang, L.F.; Krüger, J.;

    1994-01-01

    Urinary 1-hydroxypyrene, lymphocyte DNA adducts, serum protein-bound PAH and hemoglobin-bound alkene adducts were analysed from 4 groups of non-smoking men: urban and suburban bus drivers, taxi drivers and suburban controls. The only differences between the groups were in DNA adducts between...... suburban bus drivers and controls, and in DNA adduct and plasma protein PAH-adducts between taxi drivers and controls....

  4. Detection of Riddelliine-Derived DNA Adducts in Blood of Rats Fed Riddelliine

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2002-09-01

    Full Text Available Abstract: We have previously shown that riddelliine, a naturally occurring genotoxic pyrrolizidine alkaloid, induces liver tumors in rats and mice through a genotoxic mechanism mediated by the formation of a set of eight 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5Hpyrrolizine ( DHP-derived DNA adducts. In this study we report the formation of these DHP-derived DNA adducts in blood DNA of rats fed riddelliine. In an adduct formation and removal experiment, male and female F344 rats (8 weeks of age were administered riddelliine by gavage at a single dose of 10.0 mg/kg body weight in 0.1 M phosphate buffer. At 8, 24, 48, and 168 hrs after dosing, the levels of DHP-derived DNA adduct in blood and liver were determined by 32P-postlabeling/HPLC. Maximum DNA adduct formation occurred at 48 hr after treatment. From 48 to 168 hours, the adduct levels in female rat blood were 4-fold greater than those in male rats. In a dose response experiment, female rats were gavaged 0.1 and 1.0 mg/kg doses of riddelliine for three consecutive days and the DHPderived DNA adducts in blood DNA were assayed. The levels of the DHP-derived DNA adducts in blood of rats receiving 0.1 and 1.0 mg/kg doses were 12.9 and 51.8 adducts/107 nucleotides. These results suggest that: (i leucocyte DNA can bind with DHP to form a set of DHP-derived DNA adducts generated in liver; (ii DHP-derived DNA adducts in blood can serve as a potential non-invasive biomarkers for assessing the exposure to riddelliine.

  5. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    OpenAIRE

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactio...

  6. Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients.

    Science.gov (United States)

    Zayas, Beatriz; Stillwell, Sara W; Wishnok, John S; Trudel, Laura J; Skipper, Paul; Yu, Mimi C; Tannenbaum, Steven R; Wogan, Gerald N

    2007-02-01

    We analyzed bladder DNA from 27 cancer patients for dG-C8-4-aminobiphenyl (dG-C8-ABP) adducts using the liquid chromatography tandem mass spectrometry method with a 700 attomol (1 adduct in 10(9) bases) detection limit. Hemoglobin (Hb) 4-aminobiphenyl (4-ABP) adduct levels were measured by gas chromatography-mass spectrometry. After isolation of dG-C8-ABP by immunoaffinity chromatography and further purification, deuterated (d9) dG-C8-ABP (MW=443 Da) was added to each sample. Structural evidence and adduct quantification were determined by selected reaction monitoring, based on the expected adduct ion [M+H+]+1, at m/z 435 with fragmentation to the product ion at m/z 319, and monitoring of the transition for the internal standard, m/z 444-->328. The method was validated by analysis of DNA (100 microg each) from calf thymus; livers from ABP-treated and untreated rats; human placentas; and TK6 lymphoblastoid cells. Adduct was detected at femtomol levels in DNA from livers of ABP-treated rats and calf thymus, but not in other controls. The method was applied to 41 DNA samples (200 microg each) from 27 human bladders; 28 from tumor and 14 from surrounding non-tumor tissue. Of 27 tissues analyzed, 44% (12) contained 5-80 dG-C8-ABP adducts per 10(9) bases; only 1 out of 27 (4%) contained adduct in both tumor and surrounding tissues. The Hb adduct was detected in samples from all patients, at levels of 12-1960 pg per gram Hb. There was no correlation between levels of DNA and Hb adducts. The presence of DNA adducts in 44% of the subjects and high levels of Hb adducts in these non-smokers indicate environmental sources of exposure to 4-ABP.

  7. Liquid chromatography-thermospray mass spectrometry of DNA adducts formed with mitomycin C, porfiromycin and thiotepa.

    Science.gov (United States)

    Musser, S M; Pan, S S; Callery, P S

    1989-07-14

    High-performance liquid chromatography (HPLC) and thermospray mass spectrometry were combined for the analysis of DNA adducts formed from the interaction of the anticancer drugs mitomycin C, porfiromycin and thiotepa with calf thymus DNA. The adducts formed from reaction of mitomycin C and porfiromycin with DNA were separated from unmodified nucleosides by HPLC on a C18 column and identified by thermospray mass spectrometry. Thiotepa DNA adducts readily depurinated from DNA and were chromatographed and identified by thermospray liquid chromatography-mass spectrometry as the modified bases without the ribose moiety attached. The utility of thermospray mass spectrometry for the identification of microgram quantities of nucleoside adducts and depurinated base adducts of these anticancer drugs was demonstrated.

  8. Immunochemical detection of sulfur mustard-adducts with DNA and proteins: Exploratory research on adducts with proteins

    NARCIS (Netherlands)

    Schans, G.P. van der; Noort, D.; Mars-Groenendijk, R.H.; Dijk-Knijnenburg, H.C.M. van; Fidder, A.; Jong, L.P.A. de; Benschop, H.P.

    2000-01-01

    We have developed two modes of a standard operating procedure (SOP) for immunochemical detection of sulfur mustard adducts to DNA in human blood and skin. In the shortened mode data could be generated within 9 h after in vitro exposure of human blood to > 1 μM sulfur mustard. The sensitive mode allo

  9. Aromatic DNA adducts in human white blood cells and skin after dermal application of coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Godschalk, R.W.L.; Ostertag, J.U.; Moonen, E.J.C.; Neumann, H.A.M.; Kleinjans, J.C.S.; Schooten, F.J. van [University of Maastricht, Maastricht (Netherlands). Dept. of Health Risk Analysis and Toxicology

    1998-09-01

    A group of eczema patients topically treated with coal tar (CT) ointments was used as a model population to examine the applicability of DNA adducts in white blood cell (WBC) subpopulations as a measure of dermal exposure to polycyclic aromatic hydrocarbons (PAHs). Aromatic DNA adducts were examined by {sup 32}P-postlabeling in exposed skin and WBC subsets, and urinary excretion of PAH metabolites was determined to assess the whole-body burden. The median urinary excretion of 1-hydroxypyrene and 3-hydroxybenzo(a)pyrene was 0.39 and 0.01 {mu}mol/mol creatinine respectively, before the dermal application of CT ointments. After treatment for 1 week, these levels increased to 139.7 and 1.18 {mu}mol/mol creatinine respectively, indicating that considerable amounts of PAHs were absorbed. Median aromatic DNA adduct levels were significantly increased in skin from 2.9 adduct/10{sup 8} nucleotides before treatment to 63.3 adducts/10{sup 8} nt after treatment with CT, in monocytes from 0.28 to 0.86 adducts/10{sup 8} nt, in lymphocytes from 0.33 to 0.89 adducts/10{sup 8} nt and in granulocytes from 0.28 to 0.54 adducts/10{sup 8} nt. A week after stopping the CT treatment, the DNA adduct levels in monocytes and granulocytes were reduced to 0.38 and 0.38 adducts/10{sup 8} nt respectively, whereas the adduct levels in lymphocytes remained enhanced. Total DNA adduct levels in skin correlated with the adduct levels in monocytes and lymphocytes. Excretion of urinary metabolites during the first week of treatment was correlated with the percentage of the skin surface treated with CT ointment and decreased within a week after the cessation of treatment. 3-Hydroxybenzo(a)pyrene excretion, correlated with the levels of DNA adducts in skin that comigrated with benzo(a)pyrene-diol-epoxide-DNA. This study indicates that the DNA adduct levels in mononuclear WBCs can possibly be used as a surrogate for skin DNA after dermal exposure to PAHs. 34 refs., 4 figs., 1 tab.

  10. Specific plant DNA adducts as molecular biomarkers of genotoxic atmospheric environments.

    Science.gov (United States)

    Weber-Lotfi, F; Obrecht-Pflumio, S; Guillemaut, P; Kleinpeter, J; Dietrich, A

    2005-03-01

    The general purpose of this study was to determine whether the formation of DNA addition products ('adducts') in plants could be a valuable biomarker of genotoxic air pollution. Plants from several species were exposed to ambient atmosphere at urban and suburban sites representative of different environmental conditions. The levels of NO2 and of the quantitatively major genotoxic air pollutants benzene, toluene, and xylene were monitored in parallel with plant exposure. DNA adducts were measured in bean (Phaseolus vulgaris), rye-grass (Lolium perenne), and tobacco (Nicotiana tabacum) seedlings by means of the [32P]-postlabeling method. Whereas, no correlation was found between the levels of the major genotoxic air pollutants and the total amounts of DNA adducts, individual analyses revealed site-specific and plant species-specific adduct responses, both at the qualitative and quantitative level. Among these, the amount of a specific rye-grass DNA adduct (rgs1) correlated with benzene/toluene/xylene levels above a threshold. For further characterization, rye-grass seedlings were treated in controlled conditions with benzene, toluene, xylene or their derivatives. On the other hand, in vitro DNA adduct formation assays were developed involving benzene, toluene, xylene, or their derivatives, and plant microsomes or purified peroxidase. Although in some cases, these approaches produced specific adduct responses, they failed to generate the rgs1 DNA adduct, which appeared to be characteristic for on-site test-plant exposure. Our studies have thus identified an interesting candidate for further analysis of environmental biomarkers of genotoxicity.

  11. Polycyclic Aromatic Hydrocarbon (PAH Exposure and DNA Adduct Semi-Quantitation in Archived Human Tissues

    Directory of Open Access Journals (Sweden)

    M. Margaret Pratt

    2011-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are combustion products of organic materials, mixtures of which contain multiple known and probable human carcinogens. PAHs occur in indoor and outdoor air, as well as in char-broiled meats and fish. Human exposure to PAHs occurs by inhalation, ingestion and topical absorption, and subsequently formed metabolites are either rendered hydrophilic and excreted, or bioactivated and bound to cellular macromolecules. The formation of PAH-DNA adducts (DNA binding products, considered a necessary step in PAH-initiated carcinogenesis, has been widely studied in experimental models and has been documented in human tissues. This review describes immunohistochemistry (IHC studies, which reveal localization of PAH-DNA adducts in human tissues, and semi-quantify PAH-DNA adduct levels using the Automated Cellular Imaging System (ACIS. These studies have shown that PAH-DNA adducts concentrate in: basal and supra-basal epithelium of the esophagus, cervix and vulva; glandular epithelium of the prostate; and cytotrophoblast cells and syncitiotrophoblast knots of the placenta. The IHC photomicrographs reveal the ubiquitous nature of PAH-DNA adduct formation in human tissues as well as PAH-DNA adduct accumulation in specific, vulnerable, cell types. This semi-quantative method for PAH-DNA adduct measurement could potentially see widespread use in molecular epidemiology studies.

  12. Therapy-induced carboplatin-DNA adduct levels in human ovarian tumours in relation to assessment of adduct measurement in mouse tissues.

    Science.gov (United States)

    Jarvis, Ian W H; Meczes, Emma L; Thomas, Huw D; Edmondson, Richard J; Veal, Gareth J; Boddy, Alan V; Ottley, Christopher J; Pearson, D Graham; Tilby, Michael J

    2012-01-01

    Despite an increasing understanding of the molecular mechanisms by which platinum drug DNA adducts interact with cellular processes, the relationship between adduct formation in tumours and clinical response remains unclear. We have determined carboplatin-DNA adduct levels in biopsies removed from ovarian cancer patients following treatment. Reliability of DNA adduct measurements in tissues samples were assessed using experimental animals. Platinum-DNA adduct levels were measured using inductively coupled plasma mass spectrometry (ICP-MS) and plasma drug concentrations determined by atomic absorption spectrometry (AAS). Adduct levels in tissues and plasma pharmacokinetics were determined in Balb/c mice exposed to platinum drugs. Comparisons of adduct levels in tumour and normal tissue were made in nu/nu mice carrying human neuroblastoma xenografts. At 30 min post-cisplatin administration, adduct levels in DNA from kidney and liver were approximately 10- and 6-fold higher than spleen or tumour. By 60 min, levels in liver and kidney, but not spleen or tumour, had fallen considerably. Carboplatin showed high adduct levels only in kidney. Adduct levels in tumour xenografts were comparable to those induced in vitro with similar drug exposures. In clinical samples removed 6h after drug administration, adduct levels ranged from 1.9 to 4.3 and 0.2 to 3.6 nmol Pt/g DNA for tumour biopsies and peripheral blood mononuclear cells, respectively. No correlation was apparent between these two data sets. The present results demonstrate that reliable measurements of adducts in clinical tumours are feasible. Future results should provide insight into drug resistance.

  13. Organocatalytic Removal of Formaldehyde Adducts from RNA and DNA Bases

    OpenAIRE

    2015-01-01

    Formaldehyde is universally employed to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffer...

  14. Bulky DNA adducts in white blood cells: a pooled analysis of 3,600 subjects

    DEFF Research Database (Denmark)

    Ricceri, Fulvio; Godschalk, Roger W; Peluso, Marco;

    2010-01-01

    Bulky DNA adducts are markers of exposure to genotoxic aromatic compounds, which reflect the ability of an individual to metabolically activate carcinogens and to repair DNA damage. Polycyclic aromatic hydrocarbons (PAHs) represent a major class of carcinogens that are capable of forming such add......Bulky DNA adducts are markers of exposure to genotoxic aromatic compounds, which reflect the ability of an individual to metabolically activate carcinogens and to repair DNA damage. Polycyclic aromatic hydrocarbons (PAHs) represent a major class of carcinogens that are capable of forming...... such adducts. Factors that have been reported to be related to DNA adduct levels include smoking, diet, body mass index (BMI), genetic polymorphisms, the season of collection of biologic material, and air pollutants....

  15. Complex conformational heterogeneity of the highly flexible O6-benzyl-guanine DNA adduct.

    Science.gov (United States)

    Wilson, Katie A; Wetmore, Stacey D

    2014-07-21

    The conformational preference of the O6-benzyl-guanine (BzG) adduct was computationally examined using nucleoside, nucleotide, and DNA models, which provided critical information about the potential mutagenic consequences and toxicity of the BzG adduct in our cells. Substantial conformational flexibility of the BzG moiety, including rotation of the bulky group with respect to the base and the internal conformation of the bulk moiety, is seen in the nucleoside and nucleotide models. This large conformational flexibility suggests the conformation adopted by BzG is dependent on the local environment of the BzG adduct. Upon incorporation of the adduct into the DNA helix, the BzG conformational flexibility is maintained. The range of BzG conformations adopted in DNA likely arises due to a combination of the long and flexible (-CH2-) linker, the small adduct size, and the lack of discrete interactions between the bulky moiety and G. Because of the conformational flexibility of the adduct, many DNA conformations are observed for BzG adducted DNA, including those not previously reported in the literature, and thus, a modified nomenclature for adducted DNA conformations is presented. Furthermore, the preferred conformation of BzG adducted DNA is greatly dependent on a number of factors, including the pairing nucleotide, the discrete interactions in the helix, and the solvation of the benzyl moiety. These factors in turn lead to a complicated mutagenic and toxic profile that may invoke pairing with natural C, mispairs, or deletion mutations, which is supported by previously reported experimental biochemical studies. Despite this complex mutagenic profile, pairing with C leads to the most stable helical structure, which is the first combined structural and energetic explanation for experimental studies reporting a higher rate of C incorporation than any other nucleobase upon BzG replication.

  16. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  17. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M.J.; Light, B.A.; Weston, A.; Tollurud, D.; Clark, J.L.; Mann, D.L.; Blackmon, J.P.; Harris, C.C.

    1988-07-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz(a)anthracene and benzo(a)pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo(a)pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz(a)anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure.

  18. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.

    Science.gov (United States)

    Paini, Alicia; Scholz, Gabriele; Marin-Kuan, Maricel; Schilter, Benoît; O'Brien, John; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2011-09-01

    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.

  19. Tamoxifen-DNA adduct formation in monkey and human reproductive organs.

    Science.gov (United States)

    Hernandez-Ramon, Elena E; Sandoval, Nicole A; John, Kaarthik; Cline, J Mark; Wood, Charles E; Woodward, Ruth A; Poirier, Miriam C

    2014-05-01

    The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque), and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n = 3), and endometrium from the macaques (n = 4), TAM-DNA adducts were measurable by TAM-DNA chemiluminescence immunoassay. Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n = 5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n = 3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n = 8) and not receiving (n = 8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, whereas unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen agonist effects, may contribute to TAM-induced human endometrial cancer.

  20. Sperm DNA adducts impair fertilization during ICSI but not during IVF.

    Directory of Open Access Journals (Sweden)

    Piotr Widłak

    2008-04-01

    Full Text Available Many studies emphasize the influence of the status of spermatozoal nucleus on fertilization, mainly with regard to DNA fragmentation. This study was undertaken to analyze the influence of DNA adducts content in spermatozoa on fertilization during assisted reproduction. Ovarian hyperstimulation, oocyte retrieval and laboratory work-up in 61 IVF (in vitro fertilization and 118 ICSI (intracytoplasmic sperm injection first cycles were performed according to the same protocol. Semen analysis was made according to WHO Manual (1999. DNA adducts assay in spermatozoa was performed by 32Ppostlabeling method. In total 331 fertilizable oocytes were obtained during IVF and 659 during ICSI. Both groups differed significantly by sperm count, motility and morphology but not by the concentration of DNA adducts in spermatozoa (0.0306 +/- 0.0217 in IVF versus 0.0373 +/- 0.0321 in ICSI. The fertilization rate during IVF was significantly influenced by sperm count (p=0.0002 and motility (p=0.0037 but not by DNA adducts concentration (p=0.30528, whereas during ICSI was positively influenced by sperm motility (p=0.04669 and negatively by DNA adducts concentration (p=0.00796. DNA adducts concentration in spermatozoa significantly negatively influences fertilization rate during ICSI, but not during IVF.

  1. Recent progress in quantitative analysis of DNA adducts of nephrotoxin aristolochic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Aristolochic acid (AA), a mixture of structure-related nitrophenanthrene carboxylic acid derivatives derived from Aristolochia spp, is associated with nephrotoxin and carcinogen. AA-DNA adducts induced by reductive metabolic activation of AA were detected in tissues of animals and in patients exposed to AA. The DNA adducts were generally used as biomarkers in toxicological study of AA. In this short review, quantitative analysis of AA-DNA adducts in various in vitro and in vivo systems by using 32P-postlabelling assay, HPLC-UV, HPLC-radiation monitor, HPLC-FLD, HPLC-ESI/MS and UPLC-MS/MS methods is discussed. The distribution of AA-DNA adducts in various tissues is also summarized.

  2. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    Science.gov (United States)

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (Padduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response.

  3. DNA adducts and cancer risk in prospective studies: a pooled analysis and a meta-analysis

    DEFF Research Database (Denmark)

    Veglia, Fabrizio; Loft, Steffen; Matullo, Giuseppe;

    2008-01-01

    Bulky DNA adducts are biomarkers of exposure to aromatic compounds and of the ability of the individual to metabolically activate carcinogens and to repair DNA damage. Their ability to predict cancer onset is uncertain. We have performed a pooled analysis of three prospective studies on cancer risk...... in which bulky DNA adducts have been measured in blood samples collected from healthy subjects (N = 1947; average follow-up 51-137 months). In addition, we have performed a meta-analysis by identifying all articles on the same subject published up to the end of 2006, including case-control studies....... In the pooled analysis, a weakly statistically significant increase in the risk of lung cancer was apparent (14% per unit standard deviation change in adduct levels, 95% confidence interval 1-28%; using the weighted mean difference method, 0.15 SD, units higher adducts in cases than in controls...

  4. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry.

    Science.gov (United States)

    Dingley, Karen H; Ubick, Esther A; Vogel, John S; Ognibene, Ted J; Malfatti, Michael A; Kulp, Kristen; Haack, Kurt W

    2014-01-01

    Accelerator mass spectrometry (AMS) is a highly sensitive technique used for the quantification of adducts following exposure to carbon-14- or tritium-labeled chemicals, with detection limits in the range of one adduct per 10(11)-10(12) nucleotides. The protocol described in this chapter provides an optimal method for isolating and preparing DNA samples to measure isotope-labeled DNA adducts by AMS. When preparing samples, special precautions must be taken to avoid cross-contamination of isotope among samples and produce a sample that is compatible with AMS. The DNA isolation method described is based upon digestion of tissue with proteinase K, followed by extraction of DNA using Qiagen isolation columns. The extracted DNA is precipitated with isopropanol, washed repeatedly with 70 % ethanol to remove salt, and then dissolved in water. DNA samples are then converted to graphite or titanium hydride and the isotope content measured by AMS to quantify adduct levels. This method has been used to reliably generate good yields of uncontaminated, pure DNA from animal and human tissues for analysis of adduct levels.

  5. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases

    Science.gov (United States)

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  6. Environmental air pollution and DNA adducts in Copenhagen bus drivers - effect of GSTM1 and NAT2 genotypes on adduct level

    DEFF Research Database (Denmark)

    Nielsen, Per Sabro; de Pater, Nettie; Okkels, Henrik

    1996-01-01

    The lymphocyte bulky PAH-DNA adduct levels have been studied in persons occupationally exposed to ambient air pollution. The exposure group consisted of 90 healthy, nonsmoking bus drivers from the Copenhagen area, divided into three exposure groups according to driving area, and 60 rural controls...... to levels of exposure to urban air pollution and indicated that these adducts might be helpful as a means of classifying better different exposure groups for epidemiological studies. Furthermore, it demonstrated the ability of 32P-postlabelling to discern small differences in low exposure to ambient air...... pollution and suggested a possible effect of GSTM1*0/0 on DNA adduct levels....

  7. DNA adducts in human tissues:biomarkers of exposure to carcinogens in tobacco smoke

    OpenAIRE

    Phillips, D.H.

    1996-01-01

    Tobacco smoking causes millions of cancer deaths annually. Tobacco smoke is a complex mixture of thousands of chemicals including many known animal carcinogens. Because many carcinogens from DNA adducts in target animal or human tissues, the detection of the formation of adducts using such methods as postlabeling, immunoassay, fluorescence spectroscopy, and mass spectrometry is a means of monitoring human exposure to tobacco carcinogens. Smokers are at increased risk of cancer in many organs,...

  8. The N(2)-Furfuryl-deoxyguanosine Adduct Does Not Alter the Structure of B-DNA.

    Science.gov (United States)

    Ghodke, Pratibha P; Gore, Kiran R; Harikrishna, S; Samanta, Biswajit; Kottur, Jithesh; Nair, Deepak T; Pradeepkumar, P I

    2016-01-15

    N(2)-Furfuryl-deoxyguanosine (fdG) is carcinogenic DNA adduct that originates from furfuryl alcohol. It is also a stable structural mimic of the damage induced by the nitrofurazone family of antibiotics. For the structural and functional studies of this model N(2)-dG adduct, reliable and rapid access to fdG-modified DNAs are warranted. Toward this end, here we report the synthesis of fdG-modified DNAs using phosphoramidite chemistry involving only three steps. The functional integrity of the modified DNA has been verified by primer extension studies with DNA polymerases I and IV from E. coli. Introduction of fdG into a DNA duplex decreases the Tm by ∼1.6 °C/modification. Molecular dynamics simulations of a DNA duplex bearing the fdG adduct revealed that though the overall B-DNA structure is maintained, this lesion can disrupt W-C H-bonding, stacking interactions, and minor groove hydrations to some extent at the modified site, and these effects lead to slight variations in the local base pair parameters. Overall, our studies show that fdG is tolerated at the minor groove of the DNA to a better extent compared with other bulky DNA damages, and this property will make it difficult for the DNA repair pathways to detect this adduct.

  9. Oral Cell DNA Adducts as Potential Biomarkers for Lung Cancer Susceptibility in Cigarette Smokers

    Science.gov (United States)

    Hecht, Stephen S.

    2017-01-01

    This perspective considers the use of oral cell DNA adducts, together with exposure and genetic information, to potentially identify those cigarette smokers at highest risk for lung cancer, so that appropriate preventive measures could be initiated at a relatively young age before too much damage has been done. There are now well established and validated analytical methods for the quantitation of urinary and serum metabolites of tobacco smoke toxicants and carcinogens. These metabolites provide a profile of exposure and in some cases lung cancer risk. But they do not yield information on the critical DNA damage parameter that leads to mutations in cancer growth control genes such as KRAS and TP53. Studies demonstrate a correlation between changes in the oral cavity and lung in cigarette smokers, due to the field effect of tobacco smoke. Oral cell DNA is readily obtained in contrast to DNA samples from the lung. Studies in which oral cell DNA and salivary DNA have been analyzed for specific DNA adducts are reviewed; some of the adducts identified have also been previously reported in lung DNA from smokers. The multiple challenges of developing a panel of oral cell DNA adducts that could be routinely quantified by mass spectrometry are discussed. PMID:28092948

  10. Detection and characterization of DNA adducts formed from metabolites of the fungicide ortho-phenylphenol.

    Science.gov (United States)

    Zhao, Shouxun; Narang, Amarjit; Gierthy, John; Eadon, George

    2002-05-22

    The significance of DNA adduction in ortho-phenylphenol-induced carcinogenesis remains unclear. Establishing adduct structures may contribute to resolving this issue. The chemical structures of the DNA adduction products resulting from the in vitro reaction of phenylbenzoquinone, the putative ultimate carcinogenic metabolite of the fungicide/disinfectant ortho-phenylphenol, are reported here. Three isomeric adducts that resulted from reaction of deoxyguanosine were characterized by UV, LC-ESI-MS, and MS/MS, and 1D and 2D COSY-NMR spectroscopy. The proposed mechanism of product formation is nucleophilic attack by the deoxyguanosine exocyclic amine nitrogen on an electrophilic quinone carbon, followed by stabilization through enolization. Another nucleophilic attack forms a five-membered ring, which aromatizes by dehydration to form the final product. Adducts were also characterized from deoxyadenosine and deoxycytidine, although conversions were at least 10 times lower. Structures are also proposed for these products. Cell culture studies confirmed that HepG2 cells incubated with phenylbenzoquinone at concentrations associated with cytotoxicity form the same DNA adducts.

  11. GSTM1 and XRCC3 Polymorphisms: Effects on Levels of Aflatoxin B1-DNA Adducts

    Institute of Scientific and Technical Information of China (English)

    Xi-dai Long; Yun Ma; Zhou-lin Deng

    2009-01-01

    Objective: Aflatoxin B1 (AFB1), which can cause the formation of AFB1-DNA adducts, is a known human carcinogen. AFB1-exposure individuals with inherited susceptible carcinogen-metabolizing or repairing genotypes may experience an increased risk of genotoxicity. This study was designed to investigate whether the polymorphisms of two genes, the metabolic gene Glutathione S-transferase M1 (GSTM1) and DNA repair gene x-ray repair cross-complementing group 3 (XRCC3), can affect the levels of AFB1-DNA adducts in Guangxi Population (n= 966) from an AFB1-exposure area.Methods: AFB1-DNA adducts were measured by ELISA, and GSTM1 and XRCC3 codon 241 genotypes were identified by PCR-RFLP.Results: The GSTM1-null genotype [adjusted odds ratio (OR) = 2.09; 95% confidence interval (CI) = 1.61(2.71] and XRCC3 genotypes with 241 Met alleles [i.e., XRCC3-TM and -MM, adjusted ORs (95% CI) were 1.43 (1.08(1.89) and 2.42 (1.13(5.22), respectively] were significantly associated with higher levels of AFB1-DNA adducts. Compared with those individuals who did not express any putative risk genotypes as reference (OR = 1), individuals featuring all of the putative risk genotypes did experience a significantly higher DNA-adduct levels (adjusted ORs were 2.87 for GSTM1-null and XRCC3-TM; 5.83 for GSTM1-null and XRCC3-MM). Additionally, there was a positive joint effect between XRCC3 genotypes and long-term AFB1 exposure in the formation of AFB1-DNA adducts.Conclusion: These results suggest that individuals with susceptible genotypes GSTM1-null, XRCC3-TM, or XRCC3-MM may experience an increased risk of DNA damage elicited by AFB1 exposure.

  12. Cisplatin-DNA adduct formation in rat spermatozoa and its effect on fetal development

    NARCIS (Netherlands)

    Hooser, S.T.; Dijk-Knijnenburg, C.M. van; Waalkens-Berendsen, I.D.H.; Smits-van Prooije, A.E.; Snoeij, N.J.; Baan, R.A.; Fichtinger-Schepman, M.J.

    2000-01-01

    Exposure of males to some genotoxic chemicals causes DNA damage in spermatozoa resulting in embryotoxicity and developmental defects in their offspring. This study demonstrates that cisplatin-DNA adducts could be measured in spermatozoa following treatment with the antineoplastic drug, cisplatin. Th

  13. Formation of DNA adduct 8-hydroxy-2'-deoxyguanosine induced by man-made mineral fibres.

    Science.gov (United States)

    Leanderson, P; Söderkvist, P; Tagesson, C; Axelson, O

    1988-01-01

    Two man-made mineral fibres, rockwool and glasswool, were found to mediate hydroxylation of deoxyguanosine and calf thymus DNA to form the DNA adduct 8-hydroxy-2'-deoxyguanosine. The modification of the nucleoside is probably mediated by hydroxyl radicals and may play a role in fibre-induced carcinogenesis.

  14. Screening for DNA Alkylation Mono and Cross-Linked Adducts with a Comprehensive LC-MS(3) Adductomic Approach.

    Science.gov (United States)

    Stornetta, Alessia; Villalta, Peter W; Hecht, Stephen S; Sturla, Shana J; Balbo, Silvia

    2015-12-01

    A high-resolution/accurate-mass DNA adductomic approach was developed to investigate anticipated and unknown DNA adducts induced by DNA alkylating agents in biological samples. Two new features were added to a previously developed approach to significantly broaden its scope, versatility, and selectivity. First, the neutral loss of a base (guanine, adenine, thymine, or cytosine) was added to the original methodology's neutral loss of the 2'-deoxyribose moiety to allow for the detection of all DNA base adducts. Second, targeted detection of anticipated DNA adducts based on the reactivity of the DNA alkylating agent was demonstrated by inclusion of an ion mass list for data dependent triggering of MS(2) fragmentation events and subsequent MS(3) fragmentation. Additionally, untargeted screening of the samples, based on triggering of an MS(2) fragmentation event for the most intense ions of the full scan, was included for detecting unknown DNA adducts. The approach was tested by screening for DNA mono and cross-linked adducts in purified DNA and in DNA extracted from cells treated with PR104A, an experimental DNA alkylating nitrogen mustard prodrug currently under investigation for the treatment of leukemia. The results revealed the ability of this new DNA adductomic approach to detect anticipated and unknown PR104A-induced mono and cross-linked DNA adducts in biological samples. This methodology is expected to be a powerful tool for screening for DNA adducts induced by endogenous or exogenous exposures.

  15. Formation of DNA Adducts by Ellipticine and Its Micellar Form in Rats — A Comparative Study

    Directory of Open Access Journals (Sweden)

    Marie Stiborova

    2014-12-01

    Full Text Available The requirements for early diagnostics as well as effective treatment of cancer diseases have increased the pressure on development of efficient methods for targeted drug delivery as well as imaging of the treatment success. One of the most recent approaches covering the drug delivery aspects is benefitting from the unique properties of nanomaterials. Ellipticine and its derivatives are efficient anticancer compounds that function through multiple mechanisms. Formation of covalent DNA adducts after ellipticine enzymatic activation is one of the most important mechanisms of its pharmacological action. In this study, we investigated whether ellipticine might be released from its micellar (encapsulated form to generate covalent adducts analogous to those formed by free ellipticine. The 32P-postlabeling technique was used as a useful imaging method to detect and quantify covalent ellipticine-derived DNA adducts. We compared the efficiencies of free ellipticine and its micellar form (the poly(ethylene oxide-block-poly(allyl glycidyl ether (PAGE-PEO block copolymer, P 119 nanoparticles to form ellipticine-DNA adducts in rats in vivo. Here, we demonstrate for the first time that treatment of rats with ellipticine in micelles resulted in formation of ellipticine-derived DNA adducts in vivo and suggest that a gradual release of ellipticine from its micellar form might produce the enhanced permeation and retention effect of this ellipticine-micellar delivery system.

  16. Purine DNA adducts of 4,5-dioxovaleric acid and 2,4-decadienal.

    Science.gov (United States)

    Cadet, J; Carvalho, V M; Onuki, J; Douki, T; Medeiros, M H; Di Mascio, P D

    1999-01-01

    The present overview describes recent findings on the formation of cyclic adducts of purine DNA bases after reaction with two aldehyde compounds, 4,5-dioxovaleric acid (DOVA) and 2,4-decadlenal (DDE), which are involved in 5-aminolaevulinic acid (ALA) accumulation and lipid peroxidation, respectively. ALA accumulates under pathological conditions and is associated with an increased incidence of liver cancer. The final oxidation product of ALA, DOVA, is an efficient alkylating agent of the guanine moieties in both nucleoside and isolated DNA. Adducts were produced through the formation of a Schiff base involving the N2-amino group of 2'-deoxyguanosine and the ketone function of DOVA, respectively. DDE is an important breakdown product of lipid peroxidation. It is cytotoxic to mammalian cells and is known to be implicated in DNA damage. It can bind to 2'-deoxyadenosine, yielding highly fluorescent products, including 1,N6-etheno-2'-deoxyadenosine and two other, related adducts. The reaction mechanism for the formation of DDE-2'-deoxyadenosine adducts involves epoxidation of DDE and subsequent addition of the resulting reactive intermediates to the N6 amino group of 2'-deoxyadenosine, followed by cyclization at the N1 site. Formation of endogenous DNA adducts may contribute to the genotoxic potential of ALA and DDE.

  17. Quantitation of cis-diamminedichloroplatinum II (cisplatin)-DNA-intrastrand adducts in testicular and ovarian cancer patients receiving cisplatin chemotherapy.

    Science.gov (United States)

    Reed, E; Yuspa, S H; Zwelling, L A; Ozols, R F; Poirier, M C

    1986-02-01

    The antitumor activity of cis-diamminedichloroplatinum II (cisplatin) is believed to be related to its covalent interaction with DNA where a major DNA binding product is an intrastrand N7-bidentate adduct on adjacent deoxyguanosines. A novel immunoassay was used to quantitate this adduct in buffy coat DNA from testicular and ovarian cancer patients undergoing cisplatin therapy. 44 out of 120 samples taken from 45 cisplatin patients had detectable cisplatin-DNA adducts. No adducts were detected in 18 samples of DNA taken from normal controls, patients on other chemotherapy, or patients before treatment. The quantity of measurable adducts increased as a function of cumulative dose of cisplatin. This was observed both during repeated daily infusion of the drug and over long-term, repeated 21-28 d cycles of administration. These results suggested that adduct removal is slow even though the tissue has a relatively rapid turnover. Patients receiving cisplatin for the first time on 56-d cycles, and those given high doses of cisplatin as a "salvage" regimen, did not accumulate adducts as rapidly as patients on first time chemotherapy on 21- or 28-d cycles. Disease response data, evaluated for 33 cisplatin-treated patients, showed a positive correlation between the formation of DNA adducts and response to drug therapy. However, more data will be required to confirm this relationship. These data show that specific immunological probes can readily be applied to quantitate DNA adducts in patients undergoing cancer chemotherapy.

  18. Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site.

    Science.gov (United States)

    Vaidyanathan, Vaidyanathan G; Liang, Fengting; Beard, William A; Shock, David D; Wilson, Samuel H; Cho, Bongsup P

    2013-08-09

    The active site conformation of the mutagenic fluoroaminofluorene-deoxyguanine adduct (dG-FAF, N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene) has been investigated in the presence of Klenow fragment of Escherichia coli DNA polymerase I (Kfexo(-)) and DNA polymerase β (pol β) using (19)F NMR, insertion assay, and surface plasmon resonance. In a single nucleotide gap, the dG-FAF adduct adopts both a major-groove- oriented and base-displaced stacked conformation, and this heterogeneity is retained upon binding pol β. The addition of a non-hydrolysable 2'-deoxycytosine-5'-[(α,β)-methyleno]triphosphate (dCMPcPP) nucleotide analog to the binary complex results in an increase of the major groove conformation of the adduct at the expense of the stacked conformation. Similar results were obtained with the addition of an incorrect dAMPcPP analog but with formation of the minor groove binding conformer. In contrast, dG-FAF adduct at the replication fork for the Kfexo(-) complex adopts a mix of the major and minor groove conformers with minimal effect upon the addition of non-hydrolysable nucleotides. For pol β, the insertion of dCTP was preferred opposite the dG-FAF adduct in a single nucleotide gap assay consistent with (19)F NMR data. Surface plasmon resonance binding kinetics revealed that pol β binds tightly with DNA in the presence of correct dCTP, but the adduct weakens binding with no nucleotide specificity. These results provide molecular insights into the DNA binding characteristics of FAF in the active site of DNA polymerases and the role of DNA structure and sequence on its coding potential.

  19. Safrole-DNA adduct in hepatocellular carcinoma associated with betel quid chewing.

    Science.gov (United States)

    Chung, Yu-Ting; Chen, Chiu-Lan; Wu, Cheng-Chung; Chan, Shan-An; Chi, Chin-Wen; Liu, Tsung-Yun

    2008-12-15

    Betel quid chewing, which contributes high concentration of safrole in saliva, is a popular oral habit in Taiwan. Safrole is a documented rodent hepatocarcinogen, yet its hepatocarcinogenic potential in human is not known. Here, we used LC/ESI-ITMS(n) and LC/QTOF-MS confirmed safrole-dGMP as reference standard to detect the safrole-DNA adduct in hepatic tissues from HBsAg-/HCV-seronegative hepatocellular carcinoma patients by (32)P-postlabeling. We first synthesized and confirmed safrole-dGMP by LC/MS. Two isomeric safrole-dGMPs were characterized as N(2)-(trans-isosafrol-3'-yl) deoxyguanosine and N(2)-(safrol-1'-yl) deoxyguanosine. This technique was able to detect hepatic safrole-DNA adduct in mice that were treated with safrole but not sensitive enough to detect safrole-DNA adduct in human samples. Using the nuclease P1 version of the (32)P-postlabeling technique, we detected the presence of safrole-DNA adduct in two out of 28 hepatic tissues from hepatocellular carcinoma patients, and only these two patients had a history of betel quid chewing lasting more than 10 years. From co-chromatography with the mass confirmed safrole-dGMPs, this safrole-DNA adduct was identified as N(2)-(trans-isosafrol-3'-yl) deoxyguanosine. These results suggest that betel quid-containing safrole might be involved in the pathogenesis of hepatocellular carcinoma in human beings and LC/MS has the potential to identify DNA adducts in clinical samples.

  20. Base-Displaced Intercalated Structure of the N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct.

    Science.gov (United States)

    Politica, Dustin A; Malik, Chanchal K; Basu, Ashis K; Stone, Michael P

    2015-12-21

    3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N(2)-dG-ABA adduct reported by de los Santos and co-workers, in which it is oriented in the minor groove toward the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-d

  1. 7-glutathione pyrrole adduct: a potential DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    Xia, Qingsu; Ma, Liang; He, Xiaobo; Cai, Lining; Fu, Peter P

    2015-04-20

    Pyrrolizidine alkaloid (PA)-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form pyrrolic metabolites to exert cytotoxicity and tumorigenicity. We previously determined that metabolism of tumorigenic PAs produced four DNA adducts, designated as DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, that are responsible for liver tumor initiation. 7-Glutathione-(±)-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP), formed in vivo and in vitro, and 7,9-di-GS-DHP, formed in vitro, are both considered detoxified metabolites. However, in this study we determined that incubation of 7-GS-DHP with 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) yields DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts as well as the reactive metabolite DHP. Furthermore, reaction of 7-GS-DHP with calf thymus DNA in aqueous solution at 37 °C for 4, 8, 16, 24, 48, or 72 h, followed by enzymatic hydrolysis yielded DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts. Under our current experimental conditions, DHP-dA-3 and DHP-dA-4 adducts were formed in a trace amount from the reaction of 7,9-di-GS-DHP with dA. No DHP-dG-3 or DHP-dG-4 adducts were detected from the reaction of 7,9-di-GS-DHP with dG. This study represents the first report that the 7-GS-DHP adduct can be a potential reactive metabolite of PAs leading to DNA adduct formation.

  2. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    Institute of Scientific and Technical Information of China (English)

    CHENG Yan; WANG Hai-Fang; SUN Hong-Fang; LI Hong-Li

    2004-01-01

    Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b5 (CYb5) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb5, whereas curcumin and resveratrol induced GST. We may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine.

  3. DNA adduct formation by o-phenylphenol metabolite in vivo and in vitro.

    Science.gov (United States)

    Ushiyama, K; Nagai, F; Nakagawa, A; Kano, I

    1992-08-01

    [U-14C]o-Phenylphenol (OPP) was found to bind covalently to calf thymus DNA during a 60 min incubation in the presence of microsomes, but not in their absence, indicating that metabolic conversion of the parent compound, OPP, to an activated form is essential. Postlabeling analysis with bladder DNA of rats fed a diet containing 2% OPP for 13 weeks revealed one major adduct on TLC. In an in vitro postlabeling experiment with calf thymus DNA, both of the major metabolites of OPP, phenylhydroquinone (PHQ) and phenylbenzoquinone (PBQ), formed adducts, but no adducts were observed with OPP. The chemical structure responsible for adduct formation is thought to be the PHQ semiquinone radical intermediate formed during interconversion between PHQ and PBQ. When the oligonucleotides, pd(A)12-18, pd(C)12-18, pd(G)12-18 and pd(T)12-18, were used in vitro, only pd(G)12-18 gave TLC-detectable adducts on treatment with PHQ and PBQ. The covalent binding appears to be rather specific to guanine residues. These results suggest that covalent binding of the OPP metabolite is one of the underlying events in OPP-induced carcinogenesis in rats.

  4. Cigarette Smoking, BPDE-DNA Adducts, and Aberrant Promoter Methylations of Tumor Suppressor Genes (TSGs) in NSCLC from Chinese Population.

    Science.gov (United States)

    Jin, Yongtang; Xu, Peiwei; Liu, Xinneng; Zhang, Chunye; Tan, Cong; Chen, Chunmei; Sun, Xiaoyu; Xu, Yingchun

    2016-01-01

    Non-small cell lung cancer (NSCLC) is related to the genetic and epigenetic factors. The goal of this study was to determine association of cigarette smoking and BPDE-DNA adducts with promoter methylations of several genes in NSCLC. Methylation of the promoters of p16, RARβ, DAPK, MGMT, and TIMP-3 genes of tumor tissues from 199 lung cancer patients was analyzed with methylation-specific PCR (MSP), and BPDE-DNA adduct level in lung cancer tissue was obtained by ELISA. Level of BPDE-DNA adduct increased significantly in males, aged people (over 60 years), and smokers; however, no significant difference was found while comparing the BPDE-DNA adduct levels among different tumor types, locations, and stages. Cigarette smoking was also associated with increased BPDE-DNA adducts level (OR = 2.43, p > .05) and increased methylation level in at least 1 gene (OR = 5.22, p smoking also significantly increase the risk of p16 or DAPK methylation (OR = 3.02, p smoking for more than 40 pack-years (OR = 4.21, p smoking is significantly associated with the increase of BPDE-DNA adduct level, promoter hypermethylation of p16 and DAPK genes, while BPDE-DNA adduct was not significantly related to abnormal promoter hypermethylation in TSGs, suggesting that BPDE-DNA adducts and TSGs methylations play independent roles in NSCLC.

  5. Lifestyle, Environmental, and Genetic Predictors of Bulky DNA Adducts in a Study Population Nested within a Prospective Danish Cohort

    DEFF Research Database (Denmark)

    Eriksen, K. T.; Sørensen, M.; Autrup, H.

    2010-01-01

    Bulky DNA adducts are considered a potential biomarker of cancer risk. In this study, the association between various lifestyle, environmental, and genetic factors and the levels of bulky DNA adducts in peripheral leukocytes was examined in a study group nested within a population-based prospecti...

  6. Comprehensive DNA Adduct Analysis Reveals Pulmonary Inflammatory Response Contributes to Genotoxic Action of Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kousuke Ishino

    2015-02-01

    Full Text Available Nanosized-magnetite (MGT is widely utilized in medicinal and industrial fields; however, its toxicological properties are not well documented. In our previous report, MGT showed genotoxicity in both in vitro and in vivo assay systems, and it was suggested that inflammatory responses exist behind the genotoxicity. To further clarify mechanisms underlying the genotoxicity, a comprehensive DNA adduct (DNA adductome analysis was conducted using DNA samples derived from the lungs of mice exposed to MGT. In total, 30 and 42 types of DNA adducts were detected in the vehicle control and MGT-treated groups, respectively. Principal component analysis (PCA against a subset of DNA adducts was applied and several adducts, which are deduced to be formed by inflammation or oxidative stress, as the case of etheno-deoxycytidine (εdC, revealed higher contributions to MGT exposure. By quantitative-LC-MS/MS analysis, εdC levels were significantly higher in MGT-treated mice than those of the vehicle control. Taken together with our previous data, it is suggested that inflammatory responses might be involved in the genotoxicity induced by MGT in the lungs of mice.

  7. Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.; Caleffi, M.; Eschiletti, J.; Graudenz, M.; Sohn, Michael D.

    2010-04-01

    This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels result in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.

  8. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles

    Science.gov (United States)

    AbstractContext: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. Objectives: We compared the formation of covalent DNA adducts by the in vitro metabol...

  9. Creating Context for the Use of DNA Adduct Data in Risk Assessment

    Science.gov (United States)

    Assessments of human cancer risk require the integration of diverse types of data. Advancing technologies for quantitative measurements at the sub-cellular domain raise the critical issue of interpretation and use of DNA adduct data in context with current understanding of cancer...

  10. On the complexity and dynamics of in vivo Cisplatin-DNA adduct formation using HPLC/ICP-MS.

    Science.gov (United States)

    Ziehe, Matthias; Esteban-Fernández, Diego; Hochkirch, Ulrike; Thomale, Jürgen; Linscheid, Michael W

    2012-10-01

    In this work we present a methodology to measure the complex adduct spectrum caused by the interaction of Cisplatin with DNA. By using an optimized DNA digestion procedure we were able to show that the adduct spectrum in in vivo duplex DNA is much more complex than described so far. For the first time a high abundance of interstrand adducts has been detected by using HPLC/ESI-MS. These adducts could play a key role in the DNA repair mechanisms and the development of cellular resistance to Cisplatin. By species-unspecific isotope dilution analysis HPLC/ICP-MS measurements, we were able to study the kinetics of adduct formation. With these experiments we proved that after the initial formation of adducts a rearrangement occurs on the DNA-strands leading to significant changes in adduct patterns over time. Furthermore, the parameters of the species-unspecific isotope dilution analysis were optimized to allow measurements of specific adducts in the DNA of Cisplatin exposed cells.

  11. 1,N(2)-propanodeoxyguanosine adduct formation in aortic DNA following inhalation of acrolein.

    Science.gov (United States)

    Penn, A; Nath, R; Pan, J; Chen, L; Widmer, K; Henk, W; Chung, F L

    2001-03-01

    Recent reports indicate that many of the cytotoxic and health-threatening components of environmental tobacco smoke (ETS) reside in the vapor phase of the smoke. We have reported previously that inhalation of 1,3-butadiene, a prominent vapor phase component of ETS, accelerates arteriosclerotic plaque development in cockerels. In this study we asked whether inhaled acrolein, a reactive aldehyde that is also a prominent vapor-phase component of ETS, damages artery-wall DNA and accelerates plaque development. Cockerels inhaled 0, 1, or 10 ppm acrolein mixed with HEPA-filtered air for 6 hr. Half were killed immediately (day 1 group) for detection of the stable, premutagenic 1,N(2)-propanodeoxyguanosine acrolein adduct (AdG3) in aortic DNA via a (32)P-postlabeling/HPLC method, and half were killed after 10 days (day 10 group) for indirect assessment of adduct repair. In the day 1 group, acrolein-DNA adducts were 5 times higher in the 1 and 10 ppm groups than in HEPA-filtered air controls. However, in the day 10 group, adduct levels in the 1 and 10 ppm acrolein groups were reduced to the control adduct level. For the plaque studies, cockerels inhaled 1 ppm acrolein (6 hr/day, 8 weeks), mixed with the same HEPA-filtered air inhaled by controls. Plaque development was measured blind by computerized morphometry. Unlike butadiene inhalation, acrolein inhalation did not accelerate plaque development. Thus, even though repeated exposure to acrolein alone has no effect on plaque size under the exposure conditions described here, a single, brief inhalation exposure to acrolein elicits repairable DNA damage to the artery wall. These results suggest that frequent exposure to ETS may lead to persistent artery-wall DNA damage and thus provide sites on which other ETS plaque accelerants can act.

  12. Gene-diet interactions in exposure to heterocyclic aromatic amines and bulky DNA adduct levels in blood leukocytes.

    Science.gov (United States)

    Ho, Vikki; Peacock, Sarah; Massey, Thomas E; Godschalk, Roger W L; van Schooten, Frederik J; Chen, Jian; King, Will D

    2015-08-01

    Heterocyclic aromatic amines (HAAs), carcinogens produced in meat when cooked at high temperatures, are an emerging biologic explanation for the meat-colorectal cancer relationship. HAAs form DNA adducts; left unrepaired, adducts can induce mutations, which may initiate/promote carcinogenesis. The purpose of this research was to investigate the relationship between dietary HAAs, genetic susceptibility and bulky DNA adduct levels. Least squares regression was used to examine the relationship between dietary HAA exposure and bulky DNA adduct levels in blood measured using (32)P-postlabeling among 99 healthy volunteers. Gene-diet interactions between dietary HAAs and genetic factors relevant to the biotransformation of HAAs and DNA repair were also examined. No main effects of dietary HAAs on bulky DNA adduct levels was found. However, those with the putative NAT1 rapid acetylator phenotype had lower adduct levels than those with the slow acetylator phenotype (P = 0.02). Furthermore, having five or more 'at-risk' genotypes was associated with higher bulky DNA adduct levels (P = 0.03). Gene-diet interactions were observed between NAT1 polymorphisms and dietary HAAs (P adduct levels compared to lower intakes. This study provides evidence of a biologic relationship between dietary HAAs, genetic susceptibility and bulky DNA adduct formation. However, the lack of a strong main effect of HAAs suggests that dietary HAAs are not a large contributor to bulky DNA adducts in this population; future studies should consider relevant gene-diet interactions to clarify the role of HAAs in carcinogenesis.

  13. 32P-postlabelling analysis of dibenz[a,j]acridine-DNA adducts in mice: identification of proximate metabolites.

    Science.gov (United States)

    Talaska, G; Roh, J; Schamer, M; Reilman, R; Xue, W; Warshawsky, D

    1995-03-30

    N-Heterocyclic polynuclear aromatics are widely-occurring environmental pollutants formed during the pyrolysis of nitrogen-containing organic chemicals. Dibenz[a,j]acridine (DBA), a member of this class, has been shown to be a skin carcinogen in mice. We undertook studies to determine the organ distribution of DBA-DNA adducts and to identify the DBA metabolites which lead to the formation of carcinogen-DNA adducts in vivo. DBA and its metabolites, trans-DBA-1,2-dihydrodiol (DBA-1,2-DHD) trans-DBA-3,4-dihydrodiol (DBA-3,4-DHD) and trans-DBA-5,6-dihydrodiol (DBA-5,6-DHD), were topically applied on mice. DNA was isolated using enzyme-solvent extraction methods, and analyzed for carcinogen-DNA adducts using 32P-postlabelling. In skin, DBA produced two distinct adducts (Adducts 1 and 2). The same two adducts were seen when DBA-3,4-DHD was applied. In addition, the total adduct level elicited by DBA-3,4-DHD was twice that of the parent compound. Two adducts (Adducts 3 and 4) were also seen in mouse skin when DBA-5,6-DHD was applied, but these differed chromatographically from adducts seen with DBA. However, when DBA-3,4-DHD was applied and analyzed using sensitive nuclease P1 32P-postlabelling, all four adducts could be detected. These results suggest that the major route of DBA activation to DNA-binding species in skin is through formation of DBA-3,4-DHD and subsequent metabolism of this compound to a bay-region diol-epoxide. However, we postulate that another activation pathway may proceed through a bis-dihydrodiol-epoxide.

  14. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidende in rodent bioassays

    NARCIS (Netherlands)

    Paini, A.; Scholz, G.; Marin-Kuan, M.; Schilter, B.; O'Brien, J.; Bladeren, van P.J.; Rietjens, I.

    2011-01-01

    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate w

  15. Maternal diet and dioxin-like activity, bulky DNA adducts and micronuclei in mother newborns

    DEFF Research Database (Denmark)

    Pedersen, Marie; Halldorsson, Thorhallur I; Autrup, Herman

    2012-01-01

    was estimated on the basis of maternal food frequency questionnaire (FFQ) completed by the end of pregnancy. Biomarkers were detected in paired blood samples through the dioxin-responsive chemical-activated luciferase expression (CALUX)(®) bioassay, (32)P-postlabelling technique and cytokinesis-block MN assay......Maternal diet can contribute to carcinogenic exposures and also modify effects of environmental exposures on maternal and fetal genetic stability. In this study, associations between maternal diet and the levels of dioxin-like plasma activity, bulky DNA adducts in white blood cells and micronuclei...... dietary variables and the biomarkers measured in maternal and fetal samples were identified. The present study suggests that maternal intake of meats with dark surface contributes to the bulky DNA adduct levels in maternal and umbilical cord blood. Relationship between food preparation and bulky DNA...

  16. AlkB recognition of a bulky DNA base adduct stabilized by chemical cross-linking

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    E.coli AlkB is a direct DNA/RNA repair protein that oxidatively reverses N1 alkylated purines and N3 alkylated pyrimidines to regular bases.Previous crystal structures have revealed N1-methyl adenine(1-meA) recognition by AlkB and a unique base flipping mechanism,but how the AlkB active site can accommodate bulky base adducts is largely unknown.Employing a previously developed chemical cross-linking technique,we crystallized AlkB with a duplex DNA containing a caged thymine base(cagedT).The structure revealed a flexible hairpin lid and a reorganized substrate recognition loop used by AlkB to accommodate cagedT.These observations demonstrate,at the molecular level,how bulky DNA adducts may be recognized and processed by AlkB.

  17. Comparison of immunoaffinity chromatography enrichment and nuclease P1 procedures for 32P-postlabelling analysis of PAH- DNA adducts

    NARCIS (Netherlands)

    Randerath, K.; Sriram, P.; Moorthy, B.; Aston, J.P.; Baan, R.A.; Berg, P.T.M. van den; Booth, E.D.; Watson, W.P.

    1998-01-01

    32P-postlabelling analysis for detecting DNA adducts formed by polycyclic aromatic compounds is one of the most widely used techniques for assessing genotoxicity associated with these compounds. In cases where the formation of adducts is extremely low, a crucial step in the analysis is an enrichment

  18. Analysis of the polycyclic aromatic hydrocarbon content of petrol and diesel engine lubricating oils and determination of DNA adducts in topically treated mice by 32P-postlabelling.

    Science.gov (United States)

    Carmichael, P L; Jacob, J; Grimmer, G; Phillips, D H

    1990-11-01

    Engine lubricating oils are known to accumulate carcinogenic polycyclic aromatic hydrocarbons (PAHs) during engine running. Oils from nine petrol-powered and 11 diesel-powered vehicles, in addition to samples of unused oil, were analysed for PAH content and ability to form DNA adducts when applied topically to mouse skin. The levels of 19 PAHs, determined by GC, were in total, approximately 22 times higher in used oils from petrol engines than in oils from diesel engines. Male Parkes mice were treated with 50 microliters of oil daily for 4 days before they were killed and DNA isolated from skin and lung tissue. DNA samples were analysed by nuclease P1-enhanced 32P-postlabelling. Used oils from both diesel and petrol engines showed several adduct spots on PEI-cellulose plates at total adduct levels of up to 0.57 fmol/microgram DNA [approximately 60 times greater than in experiments with samples of unused oil in which adduct levels (0.01-0.02 fmol adducts/microgram DNA) were close to the limit of detection]. Higher adduct levels were generally formed by petrol engine oils than by diesel engine oils. Lung DNA contained similar total adduct levels to those in skin although the adduct maps were less complex. Total adduct levels correlated with extent of oil use in the engine, the total PAH concentration in oils and with the concentrations of certain individual PAHs present in the oils. An adduct spot that co-eluted with that of the major benzo[a]pyrene-DNA adduct accounted for 9-26% of the total adducts in skin DNA, and approximately 8% of the adducts in lung DNA, of mice treated with petrol engine oils. A major, and as yet unidentified, adduct spot comprised up to 30% of the total adducts in skin DNA, and up to 89% of the total adducts in lung DNA, of these animals.

  19. PAH-DNA adducts in cord blood and fetal and child development in a Chinese cohort

    Energy Technology Data Exchange (ETDEWEB)

    Tang, D.L.; Li, T.Y.; Liu, J.J.; Chen, Y.H.; Qu, L.R.; Perera, F. [Columbia University, New York, NY (United States). Dept. for Environmental Health Science

    2006-08-15

    Polycyclic aromatic hydrocarbons (PAHs) are an important class of toxic pollutants released by fossil fuel combustion. Other pollutants include metals and particulate matter. PAH-DNA adducts, or benzo(a)pyrene (BaP) adducts as their proxy, provide a chemical-specific measure of individual biologically effective doses that have been associated with increased risk of cancer and adverse birth outcomes. In the present study we examined the relationship between prenatal PAH exposure and fetal and child growth and development in Tongliang, China, where a seasonally operated coal-fired power plant was the major pollution source. In a cohort of 150 nonsmoking women and their newborns enrolled between 4 March 2002 and 19 June 2002, BaP-DNA adducts were measured in maternal and umbilical cord blood obtained at delivery. High PAH-DNA adduct levels (above the median of detectable adduct level) were associated with decreased birth head circumference (p = 0.057) and reduced children's weight at 18 months, 24 months, and 30 months of age (p {lt} 0.05), after controlling for potential confounders. In addition, in separate models, longer duration of prenatal exposure was associated with reduced birth length (p = 0.033) and reduced children's height at 18 (p = 0.001), 24 (p {lt} 0.001), and 30 months of age (p {lt} 0.001). The findings suggest that exposure to elevated levels of PAHS, with the Tongliang power plant being a significant source, is associated with reduced fetal and child growth in this population.

  20. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin; Stone, Michael P. (Vanderbilt)

    2012-07-18

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternary (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves

  1. Characterization of DNA adducts of the carcinogen N-methyl-4-aminoazobenzene in vitro and in vivo.

    Science.gov (United States)

    Beland, F A; Tullis, D L; Kadlubar, F F; Straub, K M; Evans, F E

    1980-07-01

    Since the susceptibility of specific tissues to tumor formation has been correlated with the persistence of DNA-carcinogen adducts, the identity and persistence of DNA adducts formed from the hepatocarcinogen N-methyl-4-aminoazobenzene (MAB) has been determined. The synthetic ultimate carcinogen N-benzoyloxy-N-methyl-4-aminoazobenzene (N-BxO-MAB) was reacted in vitro with either calf thymus or rat liver DNA to yield approx. 1 bound residue per 1000 nucleotides. After enzymatic hydrolysis of the DNA and high pressure liquid chromatographic analysis, at least six MAB adducts were detected. Two of the products cochromatographed with MAB-DNA adducts formed in rat liver in vivo following oral administration of the precarcinogen MAB. These two adducts were identified by mass, UV and nuclear magnetic resonance (NMR) spectroscopy as N-(deoxyguanosin-8-yl)- and 3-(deoxyguanosin-N2-yl)-MAB. The former adduct was initially the predominant product in vivo, but it could not be detected 7 days following treatment. The latter adduct remained at a constant level for 14 days and therefore appears to be a persistent lesion.

  2. Mechanism of repair of 5'-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberg, Matthew J; Appel, C Denise; Adhikari, Sanjay; Robertson, Patrick D; Ramsden, Dale A; Williams, R Scott [NIH; (Georgetown); (UNC)

    2012-10-28

    The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5'-phosphotyrosyl–linked topo II–DNA adducts. Here, X-ray structures of mouse Tdp2–DNA complexes reveal that Tdp2 β–2-helix–β DNA damage–binding 'grasp', helical 'cap' and DNA lesion–binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5'-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analyses support a single–metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.

  3. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    Science.gov (United States)

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.

  4. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2005-04-01

    Full Text Available Pyrrolizidine alkaloids are naturally occurring genotoxic chemicals produced by a large number of plants. The high toxicity of many pyrrolizidine alkaloids has caused considerable loss of free-ranging livestock due to liver and pulmonary lesions. Chronic exposure of toxic pyrrolizidine alkaloids to laboratory animals induces cancer. This investigation studies the metabolic activation of retrorsine, a representative naturally occurring tumorigenic pyrrolizidine alkaloid, and shows that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine. Metabolism of retrorsine by liver microsomes of F344 female rats produced two metabolites, 6, 7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, at a rate of 4.8 ± 0.1 nmol/mg/min, and retrorsine-N-oxide, at a rate of 17.6±0.5 nmol/mg/min. Metabolism was enhanced 1.7-fold by using liver microsomes prepared from dexamethasone-treated rats. DHP formation was inhibited 77% and retrorsine N-oxide formation was inhibited 29% by troleandomycin, a P450 3A enzyme inhibitor. Metabolism of retrorsine with lung, kidney, and spleen microsomes from dexamethasone-treated rats also generated DHP and the N-oxide derivative. When rat liver microsomal metabolism of retrorsine occurred in the presence of calf thymus DNA, a set of DHP-derived DNA adducts was formed; these adducts were detected and quantified by using a previously developed 32P-postlabeling/HPLC method. These same DNA adducts were also found in liver DNA of rats gavaged with retrorsine. Since DHP-derived DNA adducts are suggested to be potential biomarkers of riddelliine-induced tumorigenicity, our results indicate that (i similar to the metabolic activation of riddelliine, the mechanism of retrorsine-induced carcinogenicity in rats is also through a genotoxic mechanism involving DHP; and (ii the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the

  5. Maternal diet and dioxin-like activity, bulky DNA adducts and micronuclei in mother-newborns.

    Science.gov (United States)

    Pedersen, Marie; Halldorsson, Thorhallur I; Autrup, Herman; Brouwer, Abraham; Besselink, Harrie; Loft, Steffen; Knudsen, Lisbeth E

    2012-06-01

    Maternal diet can contribute to carcinogenic exposures and also modify effects of environmental exposures on maternal and fetal genetic stability. In this study, associations between maternal diet and the levels of dioxin-like plasma activity, bulky DNA adducts in white blood cells and micronuclei (MN) in lymphocytes from mother to newborns were examined. From 98 pregnant women living in the greater area of Copenhagen, Denmark in 2006-2007, maternal peripheral blood and umbilical cord blood were collected, together with information on health, environmental exposure and lifestyle. Maternal diet was estimated on the basis of maternal food frequency questionnaire (FFQ) completed by the end of pregnancy. Biomarkers were detected in paired blood samples through the dioxin-responsive chemical-activated luciferase expression (CALUX)(®) bioassay, (32)P-postlabelling technique and cytokinesis-block MN assay. Maternal preference for meats with dark surface were significantly associated with higher bulky DNA adducts in both maternal (β 95%CI; 0.46 (0.08, 0.84)) and cord blood (β 95%CI; 0.46 (0.05, 0.86)) before and after adjustment for potential confounders. No other significant associations between the 18 dietary variables and the biomarkers measured in maternal and fetal samples were identified. The present study suggests that maternal intake of meats with dark surface contributes to the bulky DNA adduct levels in maternal and umbilical cord blood. Relationship between food preparation and bulky DNA adducts appear to be captured by a FFQ while potential associations for other biomarkers might be more complex or need larger sample size.

  6. Maternal diet and dioxin-like activity, bulky DNA adducts and micronuclei in mother-newborns

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Marie, E-mail: mpedersen@creal.cat [Section of Environmental Health, Department of Public Health, University of Copenhagen, CSS, Oester Farimagsgade, Copenhagen K (Denmark); Halldorsson, Thorhallur I., E-mail: lur@ssi.dk [Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland Reykjavik (Iceland); Center for Fetal Programming, Department of Epidemiology, Statens Serum Institute, Copenhagen (Denmark); Autrup, Herman, E-mail: ha@mil.au.dk [School of Public Health, Department of Environmental and Occupational Medicine, Aarhus University, Aarhus (Denmark); Brouwer, Abraham, E-mail: Bram.Brouwer@bds.nl [BioDetection Systems B.V., Amsterdam (Netherlands); Besselink, Harrie, E-mail: Harrie.Besselink@bds.nl [BioDetection Systems B.V., Amsterdam (Netherlands); Loft, Steffen, E-mail: stl@sund.ku.dk [Section of Environmental Health, Department of Public Health, University of Copenhagen, CSS, Oester Farimagsgade, Copenhagen K (Denmark); Knudsen, Lisbeth E., E-mail: liek@sund.ku.dk [Section of Environmental Health, Department of Public Health, University of Copenhagen, CSS, Oester Farimagsgade, Copenhagen K (Denmark)

    2012-06-01

    Maternal diet can contribute to carcinogenic exposures and also modify effects of environmental exposures on maternal and fetal genetic stability. In this study, associations between maternal diet and the levels of dioxin-like plasma activity, bulky DNA adducts in white blood cells and micronuclei (MN) in lymphocytes from mother to newborns were examined. From 98 pregnant women living in the greater area of Copenhagen, Denmark in 2006-2007, maternal peripheral blood and umbilical cord blood were collected, together with information on health, environmental exposure and lifestyle. Maternal diet was estimated on the basis of maternal food frequency questionnaire (FFQ) completed by the end of pregnancy. Biomarkers were detected in paired blood samples through the dioxin-responsive chemical-activated luciferase expression (CALUX){sup Registered-Sign} bioassay, {sup 32}P-postlabelling technique and cytokinesis-block MN assay. Maternal preference for meats with dark surface were significantly associated with higher bulky DNA adducts in both maternal ({beta} 95%CI; 0.46 (0.08, 0.84)) and cord blood ({beta} 95%CI; 0.46 (0.05, 0.86)) before and after adjustment for potential confounders. No other significant associations between the 18 dietary variables and the biomarkers measured in maternal and fetal samples were identified. The present study suggests that maternal intake of meats with dark surface contributes to the bulky DNA adduct levels in maternal and umbilical cord blood. Relationship between food preparation and bulky DNA adducts appear to be captured by a FFQ while potential associations for other biomarkers might be more complex or need larger sample size.

  7. Genotoxic Pyrrolizidine Alkaloids — Mechanisms Leading to DNA Adduct Formation and Tumorigenicity

    OpenAIRE

    2002-01-01

    Abstract: Plants that contain pyrrolizidine alkaloids are widely distributed in the world. Although pyrrolizidine alkaloids have been shown to be genotoxic and tumorigenic in experimental animals, the mechanisms of actions have not been fully understood. The results of our recent mechanistic studies suggest that pyrrolizidine alkaloids induce tumors via a genotoxic mechanism mediated by 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5Hpyrrolizine (DHP)-derived DNA adduct formation. This mechanism may ...

  8. Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies.

    Science.gov (United States)

    Pan, Jishen; Awoyemi, Bisola; Xuan, Zhuoli; Vohra, Priya; Wang, Hsiang-Tsui; Dyba, Marcin; Greenspan, Emily; Fu, Ying; Creswell, Karen; Zhang, Lihua; Berry, Deborah; Tang, Moon-Shong; Chung, Fung-Lung

    2012-12-17

    Acrolein (Acr) is a ubiquitous environmental pollutant found in cigarette smoke and automobile exhaust. It can also be produced endogenously by oxidation of polyunsaturated fatty acids. The Acr-derived 1,N(2)-propanodeoxyguanosine (Acr-dG) adducts in DNA are mutagenic lesions that are potentially involved in human cancers. In this study, monoclonal antibodies were raised against Acr-dG adducts and characterized using ELISA. They showed strong reactivity and specificity toward Acr-dG, weaker reactivity toward crotonaldehyde- and trans-4-hydroxy-2-nonenal-derived 1,N(2)-propanodeoxyguanosines, and weak or no reactivity toward 1,N(6)-ethenodeoxyadenosine and 8-oxo-deoxyguanosine. Using these antibodies, we developed assays to detect Acr-dG in vivo: first, a simple and quick FACS-based assay for detecting these adducts directly in cells; second, a highly sensitive direct ELISA assay for measuring Acr-dG in cells and tissues using only 1 μg of DNA without DNA digestion and sample enrichment; and third, a competitive ELISA for better quantitative measurement of Acr-dG levels in DNA samples. The assays were validated using Acr-treated HT29 cell DNA samples or calf thymus DNA, and the results were confirmed by LC-MS/MS-MRM. An immunohistochemical assay was also developed to detect and visualize Acr-dG in HT29 cells as well as in human oral cells. These antibody-based methods provide useful tools for the studies of Acr-dG as a cancer biomarker and of the molecular mechanisms by which cells respond to Acr-dG as a ubiquitous DNA lesion.

  9. Human DNA polymerases catalyze lesion bypass across benzo[a]pyrene-derived DNA adduct clustered with an abasic site.

    Science.gov (United States)

    Starostenko, Lidia V; Rechkunova, Nadejda I; Lebedeva, Natalia A; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Lavrik, Olga I

    2014-12-01

    The combined action of oxidative stress and genotoxic polycyclic aromatic hydrocarbons derivatives can lead to cluster-type DNA damage that includes both a modified nucleotide and a bulky lesion. As an example, we investigated the possibility of repair of an AP site located opposite a minor groove-positioned (+)-trans-BPDE-dG or a base-displaced intercalated (+)-cis-BPDE-dG adduct (BP lesion) by a BER system. Oligonucleotides with single uracil residue in the certain position were annealed with complementary oligonucleotides bearing either a cis- or trans-BP adduct. Digestion with uracil DNA glycosylase was utilized to generate an AP site which was then hydrolyzed by APE1, and the resulting gap was processed by X-family DNA polymerases β (Polβ) and λ (Polλ), or Y-family polymerase ι (Polι). By varying reaction conditions, namely, Mg2+/Mn2+ replacement/combination and ionic strength decrease, we found that under certain conditions both Polβ and Polι can catalyze lesion bypass across both cis- and trans-BP adducts in the presence of physiological dNTP concentrations. Polβ and Polι catalyze gap filling trans-lesion synthesis in an error prone manner. By contrast, Polλ selectively introduced the correct dCTP opposite the modified dG in the case of cis-BP-dG adduct only, and did not bypass the stereoisomeric trans-adduct under any of the conditions examined. The results suggest that Polλ is a specialized polymerase that can process these kinds of lesions.

  10. Polycyclic aromatic hydrocarbon-DNA adducts in cervix of women infected with carcinogenic human papillomavirus types: An immunohistochemistry study

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, M. Margaret [Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (United States)], E-mail: prattm@mail.nih.gov; Sirajuddin, Paul; Poirier, Miriam C. [Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (United States); Schiffman, Mark [Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD (United States); Glass, Andrew G.; Scott, David R.; Rush, Brenda B. [Northwest Kaiser Permanente, Portland, OR (United States); Olivero, Ofelia A. [Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (United States); Castle, Philip E. [Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD (United States)

    2007-11-01

    Among women infected with carcinogenic human papillomavirus (HPV), there is a two- to five-fold increased risk of cervical precancer and cancer in women who smoke compared to those who do not smoke. Because tobacco smoke contains carcinogenic polycyclic aromatic hydrocarbons (PAHs), it was of interest to examine human cervical tissue for PAH-DNA adduct formation. Here, we measured PAH-DNA adduct formation in cervical biopsies collected in follow-up among women who tested positive for carcinogenic HPV at baseline. A semi-quantitative immunohistochemistry (IHC) method using antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) was used to measure nuclear PAH-DNA adduct formation. Cultured human cervical keratinocytes exposed to 0, 0.153, or 0.331 {mu}M BPDE showed dose-dependent increases in r7,t8,t9-trihydroxy-c-10-(N{sup 2}deoxyguanosyl)-7,8,9, 10-tetrahydro-benzo[a]pyrene (BPdG) adducts. For BPdG adduct analysis, paraffin-embedded keratinocytes were stained by IHC with analysis of nuclear color intensity by Automated Cellular Imaging System (ACIS) and, in parallel cultures, extracted DNA was assayed by quantitative BPDE-DNA chemiluminescence immunoassay (CIA). For paraffin-embedded samples from carcinogenic HPV-infected women, normal-appearing cervical squamous epithelium suitable for scoring was found in samples from 75 of the 114 individuals, including 29 cases of cervical precancer or cancer and 46 controls. With a lower limit of detection of 20 adducts/10{sup 8} nucleotides, detectable PAH-DNA adduct values ranged from 25 to 191/10{sup 8} nucleotides, with a median of 75/10{sup 8} nucleotides. PAH-DNA adduct values above 150/10{sup 8} nucleotides were found in eight samples, and in three samples adducts were non-detectable. There was no correlation between PAH-DNA adduct formation and either smoking or case status. Therefore, PAH-DNA adduct formation as measured by this methodology did not appear

  11. Photochemical Reaction of 7,12-Dimethylbenz[a]anthracene (DMBA and Formation of DNA Covalent Adducts

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2005-04-01

    Full Text Available DMBA, 7,12-dimethylbenz[a]anthracene, is a widely studied polycyclic aromatic hydrocarbon that has long been recognized as a probable human carcinogen. It has been found that DMBA is phototoxic in bacteria as well as in animal or human cells and photomutagenic in Salmonella typhimurium strain TA102. This article tempts to explain the photochemistry and photomutagenicity mechanism. Light irradiation converts DMBA into several photoproducts including benz[a]anthracene-7,12-dione, 7-hydroxy-12-keto-7-methylbenz[a]anthracene, 7,12-epidioxy-7,12-dihydro-DMBA, 7-hydroxymethyl-12-methylbenz[a]anthracene and 12-hydroxymethyl-7-methylbenz[a]anthracene. Structures of these photoproducts have been identified by either comparison with authentic samples or by NMR/MS. At least four other photoproducts need to be assigned. Photo-irradiation of DMBA in the presence of calf thymus DNA was similarly conducted and light-induced DMBA-DNA adducts were analyzed by 32P-postlabeling/TLC, which indicates that multiple DNA adducts were formed. This indicates that formation of DNA adducts might be the source of photomutagenicity of DMBA. Metabolites obtained from the metabolism of DMBA by rat liver microsomes were reacted with calf thymus DNA and the resulting DNA adducts were analyzed by 32P-postlabeling/TLC under identical conditions. Comparison of the DNA adduct profiles indicates that the DNA adducts formed from photo-irradiation are different from the DNA adducts formed due to the reaction of DMBA metabolites with DNA. These results suggest that photo-irradiation of DMBA can lead to genotoxicity through activation pathways different from those by microsomal metabolism of DMBA.

  12. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling.

    Science.gov (United States)

    Paini, Alicia; Punt, Ans; Scholz, Gabriele; Gremaud, Eric; Spenkelink, Bert; Alink, Gerrit; Schilter, Benoît; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2012-11-01

    Estragole is a naturally occurring food-borne genotoxic compound found in a variety of food sources, including spices and herbs. This results in human exposure to estragole via the regular diet. The objective of this study was to quantify the dose-dependent estragole-DNA adduct formation in rat liver and the urinary excretion of 1'-hydroxyestragole glucuronide in order to validate our recently developed physiologically based biodynamic (PBBD) model. Groups of male outbred Sprague Dawley rats (n = 10, per group) were administered estragole once by oral gavage at dose levels of 0 (vehicle control), 5, 30, 75, 150, and 300mg estragole/kg bw and sacrificed after 48h. Liver, kidney and lungs were analysed for DNA adducts by LC-MS/MS. Results obtained revealed a dose-dependent increase in DNA adduct formation in the liver. In lungs and kidneys DNA adducts were detected at lower levels than in the liver confirming the occurrence of DNA adducts preferably in the target organ, the liver. The results obtained showed that the PBBD model predictions for both urinary excretion of 1'-hydroxyestragole glucuronide and the guanosine adduct formation in the liver were comparable within less than an order of magnitude to the values actually observed in vivo. The PBBD model was refined using liver zonation to investigate whether its predictive potential could be further improved. The results obtained provide the first data set available on estragole-DNA adduct formation in rats and confirm their occurrence in metabolically active tissues, i.e. liver, lung and kidney, while the significantly higher levels found in liver are in accordance with the liver as the target organ for carcinogenicity. This opens the way towards future modelling of dose-dependent estragole liver DNA adduct formation in human.

  13. Bulky carcinogen-DNA adducts and exposure to environmental and occupational sources of polycyclic aromatic hydrocarbons. Influence of susceptibility genotypes on adduct level

    Energy Technology Data Exchange (ETDEWEB)

    Sabro Nielsen, P.

    1996-12-31

    PAH exposure, whether it is of occupational or environmental origin, is thought to result in an elevated risk of cancer especially in the lungs. DNA damage is considered an important step in the carcinogenic effect of PAH. Hence, methods that elucidate the steps in the carcinogenic process are important to understand the action of PAH. It may prove useful in the exposure assessment and in combination with classical epidemiological methods give better basis for risk estimation. The objective in this thesis was to evaluate the feasibility of the {sup 32}P-postlabeling method to detect carcinogen-DNA adducts for assessing exposure to DNA damaging compounds in different occupationally and environmentally exposed groups. The studies included groups, that have an elevated cancer risk due to occupational exposure to PAH. Exposure levels were supposed to be relatively low according to reports on occupational and environmental air quality programs. Another aim was to evaluate the influence of polymorphisms in metabolizing enzyme genes on DNA adduct levels. A third objective was to establish some kind of baseline DNA adduct level for individuals with supposed low exposure, and compare it to the more exposed groups. A fourth aim in these studies was to examine if biomarkers of genotoxic exposure could be useful in epidemiological studies to identify groups at risk and thereby contribute with better exposure estimates in the study of PAH related cancer risk. (EG).

  14. DNA adduct kinetics in reproductive tissues of DNA repair proficient and deficient male mice after oral exposure to benzo(a)pyrene.

    Science.gov (United States)

    Verhofstad, Nicole; van Oostrom, Conny Th M; van Benthem, Jan; van Schooten, Frederik J; van Steeg, Harry; Godschalk, Roger W L

    2010-03-01

    Benzo(a)pyrene (B[a]P) can induce somatic mutations, whereas its potential to induce germ cell mutations is unclear. There is circumstantial evidence that paternal exposure to B[a]P can result in germ cell mutations. Since DNA adducts are thought to be a prerequisite for B[a]P induced mutations, we studied DNA adduct kinetics by (32)P-postlabeling in sperm, testes and lung tissues of male mice after a single exposure to B[a]P (13 mg/kg bw, by gavage). To investigate DNA adduct formation at different stages of spermatogenesis, mice were sacrificed at Day 1, 4, 7, 10, 14, 21, 32, and 42 after exposure. In addition, DNA repair deficient (Xpc(-/-)) mice were used to study the contribution of nucleotide excision repair in DNA damage removal. DNA adducts were detectable with highest levels in lung followed by sperm and testis. Maximum adduct levels in the lung and testis were observed at Day 1 after exposure, while adduct levels in sperm reached maximum levels at approximately 1 week after exposure. Lung tissue and testis of Xpc(-/-) mice contained significantly higher DNA adduct levels compared to wild type (Wt) mice over the entire 42 day observation period (P adduct half-life between Xpc(-/-) and Wt mice were only observed in testis. In sperm, DNA adduct levels were significantly higher in Xpc(-/-) mice than in Wt mice only at Day 42 after exposure (P = 0.01). These results indicate that spermatogonia and testes are susceptible for the induction of DNA damage and rely on nucleotide excision repair for maintaining their genetic integrity.

  15. The modulation of topoisomerase I-mediated DNA cleavage and the induction of DNA–topoisomerase I crosslinks by crotonaldehyde-derived DNA adducts

    OpenAIRE

    2008-01-01

    Crotonaldehyde is a representative α,β-unsaturated aldehyde endowed of mutagenic and carcinogenic properties related to its propensity to react with DNA. Cyclic crotonaldehyde-derived deoxyguanosine (CrA-PdG) adducts can undergo ring opening in duplex DNA to yield a highly reactive aldehydic moiety. Here, we demonstrate that site-specifically modified DNA oligonucleotides containing a single CrA-PdG adduct can form crosslinks with topoisomerase I (Top1), both directly and indirectly. Direct c...

  16. Nuclear magnetic resonance studies of an N2-guanine adduct derived from the tumorigen dibenzo[a,l]pyrene in DNA: impact of adduct stereochemistry, size, and local DNA sequence on solution conformations.

    Science.gov (United States)

    Rodríguez, Fabián A; Liu, Zhi; Lin, Chin H; Ding, Shuang; Cai, Yuqin; Kolbanovskiy, Alexander; Kolbanovskiy, Marina; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2014-03-25

    The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide-DNA adducts formed include the stereoisomeric 14S and 14R trans-anti-DB[a,l]P-N(2)-dG and the stereochemically analogous 10S- and 10R-B[a]P-N(2)-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N(2)-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N(2)-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5'-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure-function relationship in NER.

  17. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity.

    Science.gov (United States)

    Xia, Qingsu; Zhao, Yuewei; Von Tungeln, Linda S; Doerge, Daniel R; Lin, Ge; Cai, Lining; Fu, Peter P

    2013-09-16

    Pyrrolizidine alkaloid-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. The U.S. National Toxicology Program (NTP) classified riddelliine, a tumorigenic pyrrolizidine alkaloid, as "reasonably anticipated to be a human carcinogen" in the NTP 12th Report on Carcinogens in 2011. We previously determined that four DNA adducts were formed in rats dosed with riddelliine. The structures of the four DNA adducts were elucidated as (i) a pair of epimers of 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine adducts (termed as DHP-dG-3 and DHP-dG-4) as the predominant adducts; and (ii) a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl)dehydrosupinidine adducts (termed as DHP-dA-3 and DHP-dA-4 adducts). In this study, we selected a nontumorigenic pyrrolizidine alkaloid, platyphylliine, a pyrrolizidine alkaloid N-oxide, riddelliine N-oxide, and nine tumorigenic pyrrolizidine alkaloids (riddelliine, retrorsine, monocrotaline, lycopsamine, retronecine, lasiocarpine, heliotrine, clivorine, and senkirkine) for study in animals. Seven of the nine tumorigenic pyrrolizidine alkaloids, with the exception of lycopsamine and retronecine, are liver carcinogens. At 8-10 weeks of age, female F344 rats were orally gavaged for 3 consecutive days with 4.5 and 24 μmol/kg body weight test article in 0.5 mL of 10% DMSO in water. Twenty-four hours after the last dose, the rats were sacrificed, livers were removed, and liver DNA was isolated for DNA adduct analysis. DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts were formed in the liver of rats treated with the individual seven hepatocarcinogenic pyrrolizidine alkaloids and riddelliine N-oxide. These DNA adducts were not formed in the liver of rats administered retronecine, the nontumorigenic pyrrolizidine alkaloid, platyphylliine, or vehicle control. These results indicate that this set of DNA adducts, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, is a common biological biomarker of

  18. Mitomycin C-DNA adducts generated by DT-diaphorase. Revised mechanism of the enzymatic reductive activation of mitomycin C.

    Science.gov (United States)

    Suresh Kumar, G; Lipman, R; Cummings, J; Tomasz, M

    1997-11-18

    Mitomycin C (MC) was reductively activated by DT-diaphorase [DTD; NAD(P)H:quinone oxidoreductase] from rat liver carcinoma cells in the presence of Micrococcus lysodeicticus DNA at pH 5.8 and 7.4. The resulting alkylated MC-DNA complexes were digested to the nucleoside level and the covalent MC-nucleoside adducts were separated, identified, and quantitatively analyzed by HPLC. In analogous experiments, two other flavoreductases, NADH-cytochrome c reductase and NADPH-cytochrome c reductase, as well as two chemical reductive activating agents Na2S2O4 and H2/PtO2 were employed as activators for the alkylation of DNA by MC. DTD as well as all the other activators generated the four known major guanine-N2-MC adducts at both pHs. In addition, at the lower pH, the guanine-N7-linked adducts of 2,7-diaminomitosene were detectable in the adduct patterns. At a given pH all the enzymatic and chemical reducing agents generated very similar adduct patterns which, however, differed dramatically at the acidic as compared to the neutral pH. Overall yield of MC adducts was 3-4-fold greater at pH 7.4 than at 5. 8 except in the case of DTD when it was 4-fold lower. Without exception, however, cross-link adduct yields were greater at the acidic pH (2-10-fold within the series). The ratio of adducts of bifunctional activation to those of monofunctional activation was 6-20-fold higher at the acidic as compared to the neutral pH. A comprehensive mechanism of the alkylation of DNA by activated MC was derived from the DNA adduct analysis which complements earlier model studies of the activation of MC. The mechanism consists of three competing activation pathways yielding three different DNA-reactive electrophiles 11, 12, and 17 which generate three unique sets of DNA adducts as endproducts. The relative amounts of these adducts are diagnostic of the relative rates of the competing pathways in vitro, and most likely, in vivo. Factors that influence the relative rates of individual pathways

  19. The potential of platinum-DNA adduct determination in ex vivo treated tumor fragments for the prediction of sensitivity to cisplatin chemotherapy

    NARCIS (Netherlands)

    Welters, M.J.P.; Braakhuis, B.J.M.; Jacobs-Bergmans, A.J.; Kegel, A.; Baan, R.A.; Vijgh, W.J.F. van der; Fichtinger-Schepman, A.M.J.

    1999-01-01

    Background: Response to cisplatin-therapy is assumed to be related to the formation of platinum (Pt)-DNA adducts. Measurement of these adducts prior to therapy could be of value to improve cisplatin based cancer therapy. Materials and methods: We determined Pt-GG and Pt-AG adduct levels by use of 32

  20. Contributions of aryl hydrocarbon receptor genetic variants to the risk of glioma and PAH-DNA adducts.

    Science.gov (United States)

    Gu, Aihua; Ji, Guixiang; Jiang, Tao; Lu, Ailin; You, Yongping; Liu, Ning; Luo, Chengzhang; Yan, Wei; Zhao, Peng

    2012-08-01

    The aryl hydrocarbon receptor (AHR) gene is involved in the response to polycyclic aromatic hydrocarbon (PAH) exposure. To investigate the hypothesis that the genetic variants in the AHR gene might be a causal genetic susceptibility to PAH-DNA adduct formation and glioma risk, we conducted a case-control study of 384 glioma cases and 384 cancer-free controls to explore the association between six common single-nucleotide polymorphisms of the AHR gene and glioma risk. Using PAH-DNA adducts as biomarkers, we then evaluated the association between PAH-DNA adduct levels and glioma risk based on a tissue microarray including 11 controls and 77 glioma patients. We further explored the contributions of the glioma risk-associated AHR polymorphisms to the levels of PAH-DNA adducts in glioma tissues based on 77 glioma patients. We found that PAH-DNA adduct staining existed in normal brain tissues and grades I-IV gliomas, and the staining intensity was significantly associated with the glioma grade. Two AHR polymorphisms (rs2066853 and rs2158041) demonstrated significant association with glioma risk. Intriguingly, we also found statistically significant associations between these two variants and PAH-DNA adduct levels in glioma tissue. These data suggest the contributions of AHR rs2066853 and rs2158041 to glioma risk and the PAH-DNA adduct levels, which shed new light on gene-environment interactions in the etiology of glioma. Further studies with a larger sample size and ethnically diverse populations are required to elucidate the potential biological mechanism for, as well as the impact of, the susceptibility to glioma due to genetic variants of AHR.

  1. Modulatory effects of essential oils from spices on the formation of DNA adduct by aflatoxin B1 in vitro.

    Science.gov (United States)

    Hashim, S; Aboobaker, V S; Madhubala, R; Bhattacharya, R K; Rao, A R

    1994-01-01

    Essential oils from common spices such as nutmeg, ginger, cardamom, celery, xanthoxylum, black pepper, cumin, and coriander were tested for their ability to suppress the formation of DNA adducts by aflatoxin B1 in vitro in a microsomal enzyme-mediated reaction. All oils were found to inhibit adduct formation very significantly and in a dose-dependent manner. The adduct formation appeared to be modulated through the action on microsomal enzymes, because an effective inhibition on the formation of activated metabolite was observed with each oil. The enzymatic modulation is perhaps due to the chemical constituents of the oils, and this could form a basis for their potential anticarcinogenic roles.

  2. Development and validation of a direct sandwich chemiluminescence immunoassay for measuring DNA adducts of benzo[a]pyrene and other polycyclic aromatic hydrocarbons

    DEFF Research Database (Denmark)

    Georgiadis, Panagiotis; Kovács, Katalin; Kaila, Stella;

    2012-01-01

    We have developed and validated a sandwich chemiluminescence immunoassay (SCIA) which measures polycyclic aromatic hydrocarbon (PAH)-DNA adducts combining high throughput and adequate sensitivity, appropriate for evaluation of adduct levels in human population studies. Fragmented DNA is incubated...... with rabbit antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and subsequently trapped by goat anti-rabbit IgG bound to a solid surface. Anti-single-stranded (ss) DNA antibodies binds in a quantity proportional to the adduct levels...... and is detected by chemiluminescence. The BPDE-DNA SCIA has a limit of detection of 3 adducts per 10(9) nucleotides with 5 µg DNA per well. We have validated the BPDE-DNA SCIA using DNA modified in vitro, DNA from benzo[a]pyrene (BP)-exposed cultured cells and mice. The levels of adduct measured by SCIA were...

  3. (32)P-postlabelling analysis of 1,3-butadiene-induced DNA adducts in vivo and in vitro.

    Science.gov (United States)

    Zhao, C; Koskinen, M; Hemminki, K

    2000-01-01

    Butadiene monoepoxide (BMO), epoxybutanediol (EBD) and diepoxybutane (DEB) are reactive metabolites of 1,3-butadiene (BD), an important industrial chemical classified as a probable human carcinogen. The covalent interactions of these metabolites with DNA lead to the formation of DNA adducts which may induce mutations or other types of DNA damage, resulting in tumour formation. In the present study, two pairs of diastereomeric N-1-BMO-adenine adducts were identified in the reaction of BMO with 2´-deoxyadenosine-5´-monophosphate (5´-dAMP). The major products formed by reacting EBD with 2´-deoxyguanosine-5´-monophosphate (5´-dGMP) were characterized as diastereomeric N-7-(2´,3´,4´-trihydroxybut-1´-yl)-5´-dGMP by UV and electrospray mass spectrometry. The formation of N-7-BMO-guanine adducts (1´-carbon, 60; 2´carbon, 54/10(4) nucleotides) in BMO-treated DNA was about four times higher than that of N-1-BMO-adenine adducts (1´-carbon, 20; 2´-carbon, 8.7/10(4) nucleotides). However, the recovery of N-1-BMO-adenine adducts in DNA (45 ± 5%) was two times higher than that of N-7-guanine adducts (20 ± 4%) by 32P-postlabelling analysis. Using the 32P-postlabelling/ HPLC assay, N-1-BMO-adenine, N-7-BMO-guanine and N-7-EBDguanine adducts were detected in BMO- or DEB-treated DNA and in liver DNA of rats exposed to BD by inhalation. The amount of N-7-EBD-guanine adducts (11/10(8) nucleotides) in rat liver was about three-fold higher than N-7-BMO-guanine adducts (4.0/10(8) nucleotides). The novel finding of N-1-BMO-adenine adducts formed in vivo may contribute to the understanding of the mechanisms of BD carcinogenic action.

  4. ECETOC workshop on the biological significance of DNA adducts: summary of follow-up from an expert panel meeting.

    Science.gov (United States)

    Pottenger, Lynn H; Carmichael, Neil; Banton, Marcy I; Boogaard, Peter J; Kim, James; Kirkland, David; Phillips, Richard D; van Benthem, Jan; Williams, Gary M; Castrovinci, Alexis

    2009-08-01

    This workshop on the biological significance of DNA adducts included presentations of research results in the following areas: endogenous versus exogenous adduct levels; in vitro dose-response data on adducts and mutagenesis from alkylating agents; methyltransferases and alkyl transferase-like proteins in repair of O(6)-alkylguanine adducts; mathematical modeling of threshold dose-response in mutagenesis and carcinogenesis; and the use of genomics to characterize the relationships between adducts, gene expression, and downstream adverse effects. Presentations by regulatory scientists and other authorities addressed the role of adduct and mutation data in risk characterization. Consensus statements were developed and included the following: DNA adducts should be considered as biomarkers of exposure, which may play a key role in establishing a mode of action (MOA) for cancer. Adducts themselves should not be considered as equivalent to mutations or later stage events in carcinogenesis. Although it was not possible at this time to agree on a general level of adducts below which there is no adverse biological effect, there are examples of genotoxic mutagens/carcinogens for which thresholds have been demonstrated. Evidence regarding thresholds for mutations should be considered on a case-by-case basis, in light of available MOA and mechanistic data, to build a knowledge base. Participants agreed that guidance on a recommended format for data presentation (especially agreement on units and appropriate statistical analyses) would be beneficial. Finally, for initial cases, provision of a mechanistic explanation to support a hypothesis of a threshold for mutations was essential for the eventual use of this information in risk assessment.

  5. Genotoxic Pyrrolizidine Alkaloids — Mechanisms Leading to DNA Adduct Formation and Tumorigenicity

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2002-09-01

    Full Text Available Abstract: Plants that contain pyrrolizidine alkaloids are widely distributed in the world. Although pyrrolizidine alkaloids have been shown to be genotoxic and tumorigenic in experimental animals, the mechanisms of actions have not been fully understood. The results of our recent mechanistic studies suggest that pyrrolizidine alkaloids induce tumors via a genotoxic mechanism mediated by 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5Hpyrrolizine (DHP-derived DNA adduct formation. This mechanism may be general to most carcinogenic pyrrolizidine alkaloids, including the retronecine-, heliotridine-, and otonecinetype pyrrolizidine alkaloids. It is hypothesized that these DHP-derived DNA adducts are potential biomarkers of pyrrolizidine alkaloid tumorigenicity. The mechanisms that involve the formation of DNA cross-linking and endogenous DNA adducts are also discussed.

  6. Linking DNA adduct formation and human cancer risk in chemical carcinogenesis.

    Science.gov (United States)

    Poirier, Miriam C

    2016-08-01

    Over two centuries ago, Sir Percival Pott, a London surgeon, published a pioneering treatise showing that soot exposure was the cause of high incidences of scrotal cancers occurring in young men who worked as chimney sweeps. Practicing at a time when cellular pathology was not yet recognized, Sir Percival nonetheless observed that the high incidence and short latency of the chimney sweep cancers, was fundamentally different from the rare scrotal cancers typically found in elderly men. Furthermore, his diagnosis that the etiology of these cancers was related to chimney soot exposure, was absolutely accurate, conceptually novel, and initiated the field of "occupational cancer epidemiology." After many intervening years of research focused on mechanisms of chemical carcinogenesis, briefly described here, it is clear that DNA damage, or DNA adduct formation, is "necessary but not sufficient" for tumor induction, and that many additional factors contribute to carcinogenesis. This review includes a synopsis of carcinogen-induced DNA adduct formation in experimental models and in the human population, with particular attention paid to molecular dosimetry and molecular cancer epidemiology. Environ. Mol. Mutagen. 57:499-507, 2016. © 2016 Wiley Periodicals, Inc.

  7. DNA adducts, mutant frequencies, and mutation spectra in various organs of λlacZ mice exposed to ethylating agents

    NARCIS (Netherlands)

    Mientjes, E.J.; Luiten-Schuite, A.; Wolf, E. van der; Borsboom, Y.; Bergmans, A.; Berends, F.; Lohman, P.H.M.; Baan, R.A.; Delft, J.H.M. van

    1998-01-01

    To investigate tissue-specific relations between DNA adducts and mutagenesis in vivo, λlacZ transgenic mice were treated i.p. with N-ethyl-N-nitrosourea (ENU), diethylnitrosamine (DEN), and ethyl methanesulphonate (EMS). In liver, bone marrow, and brain DNA from mice sacrificed at several time point

  8. Malabaricone C-containing mace extract inhibits safrole bioactivation and DNA adduct formation both in vitro and in vivo

    NARCIS (Netherlands)

    Martati, E.; Boonpawa, R.; Berg, van den J.H.J.; Paini, A.; Spenkelink, A.; Punt, A.; Vervoort, J.J.M.; Bladeren, van P.J.; Rietjens, I.

    2014-01-01

    Safrole, present in mace and its essential oils, causes liver tumors in rodents at high dose levels due to formation of a DNA reactive 1'-sulfooxysafrole. The present study identifies malabaricone C as a mace constituent able to inhibit safrole DNA adduct formation at the level of sulfotransferase m

  9. Characterization of nitrogen mustard formamidopyrimidine adduct formation of bis(2-chloroethyl)ethylamine with calf thymus DNA and a human mammary cancer cell line.

    Science.gov (United States)

    Gruppi, Francesca; Hejazi, Leila; Christov, Plamen P; Krishnamachari, Sesha; Turesky, Robert J; Rizzo, Carmelo J

    2015-09-21

    A robust, quantitative ultraperformance liquid chromatography ion trap multistage scanning mass spectrometric (UPLC/MS(3)) method was established to characterize and measure five guanine adducts formed by reaction of the chemotherapeutic nitrogen mustard (NM) bis(2-chloroethyl)ethylamine with calf thymus (CT) DNA. In addition to the known N7-guanine (NM-G) adduct and its cross-link (G-NM-G), the ring-opened formamidopyrimidine (FapyG) monoadduct (NM-FapyG) and cross-links in which one (FapyG-NM-G) or both (FapyG-NM-FapyG) guanines underwent ring-opening to FapyG units were identified. Authentic standards of all adducts were synthesized and characterized by NMR and mass spectrometry. These adducts were quantified in CT DNA treated with NM (1 μM) as their deglycosylated bases. A two-stage neutral thermal hydrolysis was developed to mitigate the artifactual formation of ring-opened FapyG adducts involving hydrolysis of the cationic adduct at 37 °C, followed by hydrolysis of the FapyG adducts at 95 °C. The limit of quantification values ranged between 0.3 and 1.6 adducts per 10(7) DNA bases when the equivalent of 5 μg of DNA hydrolysate was assayed on column. The principal adduct formed was the G-NM-G cross-link, followed by the NM-G monoadduct; the FapyG-NM-G cross-link adduct; and the FapyG-NM-FapyG was below the limit of detection. The NM-FapyG adducts were formed in CT DNA at a level ∼20% that of the NM-G adduct. NM-FapyG has not been previously quanitified, and the FapyG-NM-G and FapyG-NM-FapyG adducts have not been previously characterized. Our validated analytical method was then applied to measure DNA adduct formation in the MDA-MB-231 mammary tumor cell line exposed to NM (100 μM) for 24 h. The major adduct formed was NM-G (970 adducts per 10(7) bases), followed by G-NM-G (240 adducts per 10(7) bases), NM-FapyG (180 adducts per 10(7) bases), and, last, the FapyG-NM-G cross-link adduct (6.0 adducts per 10(7) bases). These lesions are expected to

  10. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in rat.

    Science.gov (United States)

    Kiwamoto, Reiko; Rietjens, Ivonne M C M; Punt, Ans

    2012-12-17

    trans-2-Hexenal (2-hexenal) is an α,β-unsaturated aldehyde that occurs naturally in a wide range of fruits, vegetables, and spices. 2-Hexenal as well as other α,β-unsaturated aldehydes that are natural food constituents or flavoring agents may raise a concern for genotoxicity due to the ability of the α,β-unsaturated aldehyde moiety to react with DNA. Controversy remains, however, on whether α,β-unsaturated aldehydes result in significant DNA adduct formation in vivo at realistic dietary exposure. In this study, a rat physiologically based in silico model was developed for 2-hexenal as a model compound to examine the time- and dose-dependent detoxification and DNA adduct formation of this selected α,β-unsaturated aldehyde. The model was developed based on in vitro and literature-derived parameters, and its adequacy was evaluated by comparing predicted DNA adduct formation in the liver of rats exposed to 2-hexenal with reported in vivo data. The model revealed that at an exposure level of 0.04 mg/kg body weight, a value reflecting estimated daily human dietary intake, 2-hexenal is rapidly detoxified predominantly by conjugation with glutathione (GSH) by glutathione S-transferases. At higher dose levels, depletion of GSH results in a shift to 2-hexenal oxidation and reduction as the major pathways for detoxification. The level of DNA adduct formation at current levels of human dietary intake was predicted to be more than 3 orders of magnitude lower than endogenous DNA adduct levels. These results support that rapid detoxification of 2-hexenal reduces the risk arising from 2-hexenal exposure and that at current dietary exposure levels, DNA adduct formation is negligible.

  11. Genetic polymorphisms in catalase and CYP1B1 determine DNA adduct formation by benzo(a)pyrene ex vivo.

    Science.gov (United States)

    Schults, Marten A; Chiu, Roland K; Nagle, Peter W; Wilms, Lonneke C; Kleinjans, Jos C; van Schooten, Frederik J; Godschalk, Roger W

    2013-03-01

    Genetic polymorphisms can partially explain the large inter-individual variation in DNA adduct levels following exposure to polycyclic aromatic hydrocarbons. Effects of genetic polymorphisms on DNA adduct formation are difficult to assess in human studies because exposure misclassification attenuates underlying relationships. Conversely, ex vivo studies offer the advantage of controlled exposure settings, allowing the possibility to better elucidate genotype-phenotype relationships and gene-gene interactions. Therefore, we exposed lymphocytes of 168 non-smoking volunteers ex vivo to the environmental pollutant benzo(a)pyrene (BaP) and BaP-related DNA adducts were quantified. Thirty-four genetic polymorphisms were assessed in genes involved in carcinogen metabolism, oxidative stress and DNA repair. Polymorphisms in catalase (CAT, rs1001179) and cytochrome P450 1B1 (CYP1B1, rs1800440) were significantly associated with DNA adduct levels, especially when combined. Moreover, reverse transcription-polymerase chain reaction (RT-PCR) analysis in a subset of 30 subjects revealed that expression of catalase correlated strongly with expression of CYP1B1 (R = 0.92, P CYP1B1 and how they simultaneously affect BaP-related DNA adduct levels, catalase expression was transiently knocked down in the human lung epithelial cell line A549. Although catalase knockdown did not immediately change CYP1B1 gene expression, recovery of catalase expression 8 h after the knockdown coincided with a 2.2-fold increased expression of CYP1B1 (P polymorphism in the promoter region of CAT may determine the amount and activity of catalase, which may subsequently regulate the expression of CYP1B1. As a result, both genetic polymorphisms modulate DNA adduct levels in lymphocytes by BaP ex vivo.

  12. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes

    NARCIS (Netherlands)

    Wilms, L.C.; Hollman, P.C.H.; Boots, A.W.; Kleinjans, J.C.S.

    2005-01-01

    Flavonoids are claimed to protect against cardiovascular disease, certain forms of cancer and ageing, possibly by preventing initial DNA damage. Therefore, we investigated the protective effects of the flavonoid quercetin against the formation of oxidative DNA damage and bulky DNA adducts in human l

  13. Biomonitoring of diesel exhaust-exposed workers. DNA and hemoglobin adducts and urinary 1-hydroxypyrene as markers of exposure

    DEFF Research Database (Denmark)

    Nielsen, Per Sabro; Andreassen, Åshild; Farmer, Peter B.;

    1996-01-01

    Diesel exhaust-exposed workers have been shown to have an increased risk of lung cancer. A battery of biomarkers were evaluated for their ability to assess differences in exposure to genotoxic compounds in bus garage workers and mechanics and controls. Lymphocyte DNA adducts were analyzed using...... the 32P-postlabelling method with butanol and P1 enrichment procedures. Hydroxyethylvaline (HOEtVal) adducts in hemoglobin were measured by gas chromatography-mass spectrometry (GC-MS) and 1-hydroxypyrene (HPU) in urine determined using HPLC analysis. The exposed workers had significantly higher levels...... of all three biomarkers compared to the controls. Total DNA adduct levels were 0.84 fmol/micrograms DNA vs 0.26 in controls (butanol) and 0.65 fmol/micrograms DNA vs. 0.08 (P1 nuclease). Median HOEtVal adduct level in exposed workers was 33.3 pmol/g hemoglobin vs. 22.1 in controls. HOEtVal adducts...

  14. Aromatic DNA adducts and polymorphisms in metabolic genes in healthy adults: findings from the EPIC-Spain cohort.

    Science.gov (United States)

    Agudo, Antonio; Peluso, Marco; Sala, Núria; Capellá, Gabriel; Munnia, Armelle; Piro, Sara; Marín, Fátima; Ibáñez, Raquel; Amiano, Pilar; Tormo, M José; Ardanaz, Eva; Barricarte, Aurelio; Chirlaque, M Dolores; Dorronsoro, Miren; Larrañaga, Nerea; Martínez, Carmen; Navarro, Carmen; Quirós, J Ramón; Sánchez, M José; González, Carlos A

    2009-06-01

    Aromatic compounds such as polycyclic aromatic hydrocarbons, arylamines and heterocyclic amines require metabolic activation to form metabolites able to bind to DNA, a process mediated by polymorphic enzymes. We measured aromatic DNA adducts in white blood cells by the (32)P-post-labelling assay in a sample of 296 healthy adults (147 men and 149 women) from five regions of Spain. We also analyzed functional polymorphisms in the metabolic genes CYP1A1, CYP1A2, EPHX1, GSTM1, GSTT1, NAT2 and SULT1A1. A significant increased level of DNA aromatic adducts was found related to the fast oxidation-hydrolysis phenotype defined by the polymorphism I462V in CYP1A1, the allele A in IVS1-154C>A of CYP1A2 and the combination Tyrosine-Arginine for Y113H and H139R of EPHX1. Geometric means (adducts per 10(-9) normal nucleotides) were 2.17, 4.04 and 6.30 for slow, normal and fast phenotypes, respectively (P-trend = 0.01). Slow acetylation by NAT2 was associated with a significant decrease in adduct level; subjects with slow alleles *5A and *7A/B had in average 1.56 x 10(-9)adducts, as compared with 5.60 for those with normal NAT2 activity (P-value = 0.01). No association was seen with polymorphisms of other metabolic genes such as GSTM1, GSTT1 or SULT1A1. We concluded that the metabolic pathways of oxidation, hydrolysis and acetylation are relevant to the formation of bulky DNA adducts. This could suggest a potential involvement of aromatic compounds in the formation of such adducts; however, given lack of specificity of the post-labeling assay, a firm conclusion cannot be drawn.

  15. Myeloperoxidase - 463A variant reduces benzo(a)pyrene diol epoxide DNA adducts in skin of coal tar treated patients

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, M.; Godschalk, R.; Alexandrov, K.; Cascorbi, I.; Kriek, E.; Ostertag, J.; Van Schooten, F.J.; Bartsch, H. [German Cancer Research Center, Heidelberg (Germany). Div. of Toxicology & Cancer Risk Factors

    2001-07-01

    The skin of atopic dermatitis patients provides an excellent model to study the role of inflammation in benzo(a)pyrene (BaP) activation, since these individuals are often topically treated with ointments containing high concentrations of BaP. The authors determined, by HPLC with fluorescence detection, the BaP diol epoxide (BPDE)-DNA adduct levels in human skin after topical treatment with coal tar and their modulation by the -453G into A myeloperoxidase (MPO) polymorphism, which reduces MPO mRNA expression. The data show for the first time: (i) the in vivo formation of BPDE-DNA adducts in human skin treated with coal tar; (ii) that the MPO-463AA/AG genotype reduced BPDE-DNA adduct levels in human skin.

  16. Safrole-DNA adducts in tissues from esophageal cancer patients: clues to areca-related esophageal carcinogenesis.

    Science.gov (United States)

    Lee, Jang-Ming; Liu, Tsung-Yung; Wu, Deng-Chyang; Tang, Hseau-Chung; Leh, Julie; Wu, Ming-Tsang; Hsu, Hsao-Hsun; Huang, Pei-Ming; Chen, Jin-Shing; Lee, Chun-Jean; Lee, Yung-Chie

    2005-01-01

    Epidemiological studies have demonstrated that areca quid chewing can be an independent risk factor for developing esophageal cancer. However, no studies are available to elucidate the mechanisms of how areca induces carcinogenesis in the esophagus. Since the areca nut in Taiwan contains a high concentration of safrole, a well-known carcinogenic agent, we analyzed safrole-DNA adducts by the 32P-postlabelling method in tissue specimens from esophageal cancer patients. In total, we evaluated 47 patients with esophageal cancer (16 areca chewers and 31 non-chewers) who underwent esophagectomy at the National Taiwan University Hospital between 1996 and 2002. Of the individuals with a history of habitual areca chewing (14 cigarette smokers and two non-smokers), one of the tumor tissue samples and five of the normal esophageal mucosa samples were positive for safrole-DNA adducts. All patients positive for safrole-DNA adducts were also cigarette smokers. Such adducts could not be found in patients who did not chew areca, irrespective of their habits of alcohol consumption or cigarette smoking (psafrole was also tested in vitro in three esophageal cell lines and four cultures of primary esophageal keratinocytes. In two of the esophageal keratinocyte cultures, adduct formation was increased by treatment with safrole after induction of cytochrome P450 by 3-methyl-cholanthrene. This paper provides the first observation of how areca induces esophageal carcinogenesis, i.e., through the genotoxicity of safrole, a component of the areca juice.

  17. Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Bo; Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B.; Chenna, Ahmed

    2010-06-14

    Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.

  18. Verification, Dosimetry and Biomonitoring of Mustard Gas Exposure via Immunochemical Detection of Mustard Gas Adducts to DNA and Proteins

    Science.gov (United States)

    1991-12-01

    11.11.2. The samples resulting from the various treatments were tested in the competitive ELISA . Treatment Vih alkli Single-stranded calf-thymus DNA...exposure, Biomonitoring, Verification, Immunochemical detection, Competitive ELISA , Interstrand DNA crossslinking, Alkaline elution. Monoclonal antibodies...material at 50 ng per well. A competitive ELISA was developed in which mustard gas adducts to DNA could be detected with a minimum detectable amount of a few

  19. Biomarkers for exposure to ambient air pollution--comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress

    DEFF Research Database (Denmark)

    Autrup, H; Daneshvar, B; Dragsted, L O;

    1999-01-01

    Human exposure to genotoxic compounds present in ambient air has been studied using selected biomarkers in nonsmoking Danish bus drivers and postal workers. A large interindividual variation in biomarker levels was observed. Significantly higher levels of bulky carcinogen-DNA adducts (75.42 adducts...... nmol/ml plasma), and polycyclic aromatic hydrocarbon (PAH)-albumin adduct (3.38 fmol/ microg albumin) were observed in the suburban group. The biomarker levels in postal workers were similar to the levels in suburban bus drivers. In the combined group of bus drivers and postal workers, negative...... correlations were observed between bulky carcinogen-DNA adduct and PAH-albumin levels (p = 0.005), and between DNA adduct and [gamma]-glutamyl semialdehyde (GGS) in hemoglobin (p = 0.11). Highly significant correlations were found between PAH-albumin adducts and AAS in plasma (p = 0.001) and GGS in hemoglobin...

  20. Biomarkers for exposure to ambient air pollution - Comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress

    DEFF Research Database (Denmark)

    Autrup, Herman; Daneshvar, Bahram; Dragsted, Lars Ove;

    1999-01-01

    Human exposure to genotoxic compounds present in ambient air has been studied using selected biomarkers in nonsmoking Danish bus drivers and postal workers. A large interindividual variation in biomarker levels was observed. Significantly higher levels of bulky carcinogen-DNA adducts (75.42 adducts.......96 nmol/ml plasma), and polycyclic aromatic hydrocarbon (PAH)-albumin adduct (3.38 fmol/mu g albumin) were observed in the suburban group. The biomarker levels in postal workers were similar to the levels in suburban bus drivers. In the combined group of bus drivers and postal workers, negative...... correlations were observed between bulky carcinogen-DNA adduct and PAM-albumin levels (p = 0.005), and between DNA adduct and gamma-glutamyl semialdehyde (GGS) in hemoglobin (p = 0.11). Highly significant correlations were found between PAM-albumin adducts and AAS in plasma (r = 0.001) and GGS in hemoglobin (p...

  1. Environmental exposure of the mouse germ line: DNA adducts in spermatozoa and formation of de novo mutations during spermatogenesis.

    Directory of Open Access Journals (Sweden)

    Ann-Karin Olsen

    Full Text Available BACKGROUND: Spermatozoal DNA damage is associated with poor sperm quality, disturbed embryonic development and early embryonic loss, and some genetic diseases originate from paternal de novo mutations. We previously reported poor repair of bulky DNA-lesions in rodent testicular cells. METHODOLOGY/PRINCIPAL FINDINGS: We studied the fate of DNA lesions in the male germ line. B[a]PDE-N(2-dG adducts were determined by liquid chromatography-tandem mass spectrometry, and de novo mutations were measured in the cII-transgene, in Big Blue mice exposed to benzo[a]pyrene (B[a]P; 3 x 50 mg/kg bw, i.p.. Spermatozoa were harvested at various time-points following exposure, to study the consequences of exposure during the different stages of spermatogenesis. B[a]PDE-N(2-dG adducts induced by exposure of spermatocytes or later stages of spermatogenesis persisted at high levels in the resulting spermatozoa. Spermatozoa originating from exposed spermatogonia did not contain DNA adducts; however de novo mutations had been induced (p = 0.029, specifically GC-TA transversions, characteristic of B[a]P mutagenesis. Moreover, a specific spectrum of spontaneous mutations was consistently observed in spermatozoa. CONCLUSIONS/SIGNIFICANCE: A temporal pattern of genotoxic consequences following exposure was identified, with an initial increase in DNA adduct levels in spermatozoa, believed to influence fertility, followed by induction of germ line de novo mutations with possible consequences for the offspring.

  2. Structural and energetic characterization of the major DNA adduct formed from the food mutagen ochratoxin A in the NarI hotspot sequence: influence of adduct ionization on the conformational preferences and implications for the NER propensity.

    Science.gov (United States)

    Sharma, Purshotam; Manderville, Richard A; Wetmore, Stacey D

    2014-10-01

    The nephrotoxic food mutagen ochratoxin A (OTA) produces DNA adducts in rat kidneys, the major lesion being the C8-linked-2'-deoxyguanosine adduct (OTB-dG). Although research on other adducts stresses the importance of understanding the structure of the associated adducted DNA, site-specific incorporation of OTB-dG into DNA has yet to be attempted. The present work uses a robust computational approach to determine the conformational preferences of OTB-dG in three ionization states at three guanine positions in the NarI recognition sequence opposite cytosine. Representative adducted DNA helices were derived from over 2160 ns of simulation and ranked via free energies. For the first time, a close energetic separation between three distinct conformations is highlighted, which indicates OTA-adducted DNA likely adopts a mixture of conformations regardless of the sequence context. Nevertheless, the preferred conformation depends on the flanking bases and ionization state due to deviations in discrete local interactions at the lesion site. The structural characteristics of the lesion thus discerned have profound implications regarding its repair propensity and mutagenic outcomes, and support recent experiments suggesting the induction of double-strand breaks and deletion mutations upon OTA exposure. This combined structural and energetic characterization of the OTB-dG lesion in DNA will encourage future biochemical experiments on this potentially genotoxic lesion.

  3. DNA damage induced by the environmental carcinogen butadiene: identification of a diepoxybutane-adenine adduct and its detection by 32P-postlabelling.

    Science.gov (United States)

    Leuratti, C; Jones, N J; Marafante, E; Kostiainen, R; Peltonen, K; Waters, R

    1994-09-01

    To date only a few studies have been undertaken on DNA adducts formed by epoxybutene (EB) and diepoxybutane (DEB), the two active metabolites of 1,3-butadiene. Our interests have focused on further investigating DNA alkylation by the two epoxides, especially in relation to the development of a method for human biomonitoring. Here, following the reaction of deoxyadenosine monophosphate and poly(dA-dT)(dA-dT) with DEB and subsequent HPLC, we have identified an adenine adduct. MS analyses indicate the structure of an adenine adducted by DEB at the N6 position. A HPLC/32P-postlabelling method was developed for its measurement in DNA samples and the adduct was detected in calf thymus DNA and DNA from Chinese hamster ovary cells exposed to DEB. The 100% labelling efficiency during postlabelling, the amount of the adduct and its elution before the normal nucleotides during HPLC suggest it could be a suitable indicator of BUT exposure.

  4. Susceptibility factors and DNA adducts in peripheral blood mononuclear cells of aluminium smelter workers exposed to polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Tuominen, Rainer; Warholm, Margareta; Rannug, Agneta [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); National Institute for Working Life, Stockholm (Sweden); Baranczewski, Pawel; Moeller, Lennart [Center for Nutrition and Toxicology, Karolinska Institutet, Huddinge (Sweden); Hagmar, Lars [Department of Occupational and Environmental Medicine, Lund University Hospital, (Sweden)

    2002-04-01

    Formation of DNA adducts as a result of exposure to polycyclic aromatic hydrocarbons (PAH) was studied in 98 potroom workers from an aluminium smelting plant and in 55 blue-collar workers without occupational PAH exposure. DNA from peripheral blood mononuclear cells (PBMC) was used for quantitation of individual PAH-DNA adducts by {sup 32}P-postlabelling/high performance liquid chromatography (HPLC) analysis. Four individual DNA adducts (denoted A, B, C and D) were quantified in 141 of a total of 153 subjects. Genetic polymorphisms for cytochrome P-4501A1 (CYP1A1), microsomal epoxide hydrolase, N-acetyltransferase 2, glutathione transferases M1, P1 and T1 (GSTM1, GSTP1 and GSTT1, respectively) and NAD(P)H: quinone oxidoreductase 1 (NQO1) were analysed. For 52 subjects, analysis of mRNA inducibility of CYP1A1 was performed. No statistically significant differences in the levels of total or individual DNA adducts A, C and D were found between potroom workers and control subjects. All potroom workers and the subgroup of potroom workers who reported to never/sometimes use personal respiratory protection (n=72) were found to have a significantly higher likelihood of having high levels of adduct B than control subjects [odds ratio (OR) =3.4 with 95% confidence interval (CI) of 1.3-9.2, and OR=4.2 with 95% CI 1.6-11.5, respectively]. In the subgroup, levels of adducts A and B were found to be significantly higher among workers with employment time of less than 6 months (n=5). Also, the levels of the individual DNA adducts were to some extent modified by genetic polymorphisms in CYP1A1, GSTM1, GSTP1 and NQO1 and by CYP1A1 inducibility. In conclusion, levels of adduct B, identified by {sup 32}P-postlabelling/HPLC methodology as an indicator of PAH exposure in aluminium production, were modified by the use of respiratory protection, length of employment and genetic polymorphisms. (orig.)

  5. Increased micronuclei and bulky DNA adducts in cord blood after maternal exposures to traffic-related air pollution

    DEFF Research Database (Denmark)

    Pedersen, M.; Wichmann, J.; Autrup, H.

    2009-01-01

    Exposure to traffic-related air pollution in urban environment is common and has been associated with adverse human health effects. In utero exposures that result in DNA damage may affect health later in life. Early effects of maternal and in utero exposures to traffic-related air pollution were...... for potential confounders and effect modifiers. For the first time increased bulky DNA adducts and MN in cord blood after maternal exposures to traffic-related air pollution are found, demonstrating that these transplacental environmental exposures induce DNA damage in newborns. Given that increased DNA damage...... umbilical cords, concurrently collected at the time of planned Caesarean section. Modeled residential traffic density, a proxy measure of traffic-related air pollution exposures, was validated by indoor levels of nitrogen dioxide and polycyclic aromatic hydrocarbons in 42 non-smoking homes. DNA adduct...

  6. Neighborhood socioeconomic status modifies the association between individual smoking status and PAH-DNA adduct levels in prostate tissue.

    Science.gov (United States)

    Rundle, Andrew; Richards, Catherine; Neslund-Dudas, Christine; Tang, Deliang; Rybicki, Benjamin A

    2012-06-01

    Interactions between smoking and neighborhood-level socioeconomic status (SES) as risk factors for higher polycyclic aromatic hydrocarbon (PAH) DNA adduct levels in prostate tissue were investigated. PAH-DNA adducts were measured by immunohistochemistry with staining intensity measured in optical density units by semiquantitative absorbance image analysis in tumor adjacent tissue from 400 prostatectomy specimens from the Henry Ford Health System in Detroit. For each subject, their U.S. Census tract of residence was classified as being of higher or lower SES using the median value of the distribution of the proportion of tract residents with a high-school education. Generalized estimating equation models were used to assess interactions between neighborhood-level SES and smoking status, adjusting for race, age, education level, tumor volume, primary Gleason grade and prostate specific antigen (PSA) at diagnosis. There was a statistical interaction (P = 0.004) between tract-level SES and smoking status. In lower SES tracts smoking status was not associated with adduct staining, but in higher SES tracts adduct staining intensity was 13% (P = 0.01) higher in ever-smokers as compared to never-smokers. Among never-smokers, living in a lower SES tract was associated with a 25% higher mean staining intensity (P adduct levels in prostate tissue.

  7. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens.

    Science.gov (United States)

    Gowda, A S Prakasha; Spratt, Thomas E

    2016-03-21

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.

  8. Assessment of Interactions between PAH Exposure and Genetic Polymorphisms on PAH-DNA Adducts in African American, Dominican, and Caucasian Mothers and Newborns

    OpenAIRE

    Wang, Shuang; Chanock, Stephen; Tang, Deliang; Li, Zhigang; Jedrychowski, Wieslaw; Perera, Frederica P

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) are widespread pollutants commonly found in air, food, and drinking water. Benzo[a]pyrene is a well-studied representative PAH found in air from fossil fuel combustion and a transplacental carcinogen experimentally. PAHs bind covalently to DNA to form DNA adducts, an indicator of DNA damage, and an informative biomarker of potential cancer risk. Associations between PAH-DNA adduct levels and both cancer risk and developmental deficits have been seen in p...

  9. Intravenous toxicokinetics of sulfur mustard and its DNA-adducts in the hairless guinea pig and marmoset

    NARCIS (Netherlands)

    Langenberg, J.P.; Spruit, W.E.T.; Kuijpers, W.C.; Mars, R.H.; Helden, H.P.M. van; Schans, G.P. van der; Benschop, H.P.

    2009-01-01

    ln order to provide a quantitative basis for pretreatment and therapy of intoxications with sulfur mustard the toxicokinetics of this agent as well as its major DNA-adducts are being studied in male hairless guinea pigs for the intravenous, respiratory and percutaneous routes. A highly sensitive met

  10. Creating context for the use of DNA adduct data in cancer risk assessment: I. Proposed framework for data organization *

    Science.gov (United States)

    The assessment of human cancer risk from chemical exposure requires the integration of diverse types of data. Such data involve effects at the cell and tissue levels. This report focuses on the specific utility of one type of data, namely DNA adducts. Emphasis is placed on the ap...

  11. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  12. Polycyclic aromatic hydrocarbon-DNA adducts in beluga whales from the Arctic.

    Science.gov (United States)

    Mathieu, A; Payne, J F; Fancey, L L; Santella, R M; Young, T L

    1997-05-01

    The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and rivers (Muir et al., 1992). Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the value of developing biological assessment programs for Arctic wildlife.

  13. The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice.

    Science.gov (United States)

    Zhu, Lin; Xue, Junyi; Xia, Qingsu; Fu, Peter P; Lin, Ge

    2017-02-01

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2β). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2β). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.

  14. Quantitation of the DNA Adduct of Semicarbazide in Organs of Semicarbazide-Treated Rats by Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry: A Comparative Study with the RNA Adduct.

    Science.gov (United States)

    Wang, Yinan; Wong, Tin-Yan; Chan, Wan

    2016-09-19

    Semicarbazide is a widespread food contaminant that is produced by multiple pathways. However, the toxicity of semicarbazide to human health remains unclear. Using a highly accurate and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry method, we identified and quantitated in this study for the first time the DNA and RNA adduct of semicarbazide in DNA/RNA isolated from the internal organs of semicarbazide-exposed rats. The analysis revealed a dose-dependent formation of the adducts in the internal organs of the semicarbazide-dosed rats and with the highest adduct levels identified in the stomach and small intestine. Furthermore, results showed significantly higher levels of the RNA adduct (4.1-7.0 times) than that of the DNA adducts. By analyzing DNA/RNA samples isolated from rat organs in semicarbazide-dosed rats at different time points postdosing, the adduct stability in vivo was also investigated. These findings suggest that semicarbazide could have exerted its toxicity by affecting both the transcription and translation processes of the cell.

  15. Screening for DNA adducts by data-dependent constant neutral loss-triple stage mass spectrometry with a linear quadrupole ion trap mass spectrometer.

    Science.gov (United States)

    Bessette, Erin E; Goodenough, Angela K; Langouët, Sophie; Yasa, Isil; Kozekov, Ivan D; Spivack, Simon D; Turesky, Robert J

    2009-01-15

    A two-dimensional linear quadrupole ion trap mass spectrometer (LIT/MS) was employed to simultaneously screen for DNA adducts of environmental, dietary, and endogenous genotoxicants, by data-dependent constant neutral loss scanning followed by triple-stage mass spectrometry (CNL-MS3). The loss of the deoxyribose (dR) from the protonated DNA adducts ([M + H - 116]+) in the MS/MS scan mode triggered the acquisition of MS3 product ion spectra of the aglycone adducts [BH2]+. Five DNA adducts of the tobacco carcinogen 4-aminobiphenyl (4-ABP) were detected in human hepatocytes treated with 4-ABP, and three DNA adducts of the cooked-meat carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were identified in the livers of rats exposed to MeIQx, by the CNL-MS3 scan mode. Buccal cell DNA from tobacco smokers was screened for DNA adducts of various classes of carcinogens in tobacco smoke including 4-ABP, 2-amino-9H-pyrido[2,3-b]indole (AalphaC), and benzo[a]pyrene (BaP); the cooked-meat carcinogens MeIQx, AalphaC, and 2-amino-1-methyl-6-phenylmidazo[4,5-b]pyridine (PhIP); and the lipid peroxidation products acrolein (AC) and trans-4-hydroxynonenal (HNE). The CNL-MS3 scanning technique can be used to simultaneously screen for multiple DNA adducts derived from different classes of carcinogens, at levels of adduct modification approaching 1 adduct per 108 unmodified DNA bases, when 10 microg of DNA is employed for the assay.

  16. Red wine consumption is inversely associated with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-DNA adduct levels in prostate.

    Science.gov (United States)

    Rybicki, Benjamin A; Neslund-Dudas, Christine; Bock, Cathryn H; Nock, Nora L; Rundle, Andrew; Jankowski, Michelle; Levin, Albert M; Beebe-Dimmer, Jennifer; Savera, Adnan T; Takahashi, Satoru; Shirai, Tomoyuki; Tang, Deliang

    2011-10-01

    In humans, genetic variation and dietary factors may alter the biological effects of exposure to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), one of the major heterocyclic amines generated from cooking meats at high temperatures that has carcinogenic potential through the formation of DNA adducts. Previously, we reported grilled red meat consumption associated with PhIP-DNA adduct levels in human prostate. In this study, we expanded our investigation to estimate the associations between beverage consumption and PhIP-DNA adduct levels in prostate for 391 prostate cancer cases. Of the 15 beverages analyzed, red wine consumption had the strongest association with PhIP-DNA adduct levels showing an inverse correlation in both tumor (P = 0.006) and nontumor (P = 0.002) prostate cells. Red wine consumption was significantly lower in African American compared with white cases, but PhIP-DNA adduct levels in prostate did not vary by race. In African Americans compared with whites, however, associations between red wine consumption and PhIP-DNA adduct levels were not as strong as associations with specific (e.g., SULT1A1 and UGT1A10 genotypes) and nonspecific (e.g., African ancestry) genetic variation. In a multivariable model, the covariate for red wine consumption explained a comparable percentage (13%-16%) of the variation in PhIP-DNA adduct levels in prostate across the two racial groups, but the aforementioned genetic factors explained 33% of the PhIP-DNA adduct variation in African American cases, whereas only 19% of the PhIP-DNA adduct variation in whites. We conclude that red wine consumption may counteract biological effects of PhIP exposure in human prostate, but genetic factors may play an even larger role, particularly in African Americans.

  17. Chlorophyllin intervention reduces aflatoxin-DNA adducts in individuals at high risk for liver cancer.

    Science.gov (United States)

    Egner, P A; Wang, J B; Zhu, Y R; Zhang, B C; Wu, Y; Zhang, Q N; Qian, G S; Kuang, S Y; Gange, S J; Jacobson, L P; Helzlsouer, K J; Bailey, G S; Groopman, J D; Kensler, T W

    2001-12-04

    Residents of Qidong, People's Republic of China, are at high risk for development of hepatocellular carcinoma, in part from consumption of foods contaminated with aflatoxins. Chlorophyllin, a mixture of semisynthetic, water-soluble derivatives of chlorophyll that is used as a food colorant and over-the-counter medicine, has been shown to be an effective inhibitor of aflatoxin hepatocarcinogenesis in animal models by blocking carcinogen bioavailability. In a randomized, double-blind, placebo-controlled chemoprevention trial, we tested whether chlorophyllin could alter the disposition of aflatoxin. One hundred and eighty healthy adults from Qidong were randomly assigned to ingest 100 mg of chlorophyllin or a placebo three times a day for 4 months. The primary endpoint was modulation of levels of aflatoxin-N(7)-guanine adducts in urine samples collected 3 months into the intervention measured by using sequential immunoaffinity chromatography and liquid chromatography-electrospray mass spectrometry. This aflatoxin-DNA adduct excretion product serves as a biomarker of the biologically effective dose of aflatoxin, and elevated levels are associated with increased risk of liver cancer. Adherence to the study protocol was outstanding, and no adverse events were reported. Aflatoxin-N(7)-guanine could be detected in 105 of 169 available samples. Chlorophyllin consumption at each meal led to an overall 55% reduction (P = 0.036) in median urinary levels of this aflatoxin biomarker compared with those taking placebo. Thus, prophylactic interventions with chlorophyllin or supplementation of diets with foods rich in chlorophylls may represent practical means to prevent the development of hepatocellular carcinoma or other environmentally induced cancers.

  18. Structure of cis-[Pt(NH3)(2-picoline)]2+ and DNA adduct and its bonding characteristics

    Institute of Scientific and Technical Information of China (English)

    JIA; Muxin; LIU; Kai; YANG; Zuoyin; CHEN; Guangju

    2004-01-01

    Several methods including molecular mechanics, molecular dynamics, ONIOM that combines quantum chemistry with molecular mechanics and standard quantum chemistry are used to study the configuration and electron structures of an adduct of the DNA segment d(ATACATG*G*TACATA)·d(TATGTACCATGTAT) with cis-[Pt(NH3)(2-Picoline)]2+. The investigation shows that the configuration optimized by ONIOM is similar to that determined by NMR. Strong chemical bonds between Pt of the complex and two N7s of neighboring guanines in the DNA duplex and hydrogen bond between the NH3 of the complex and O6 of a nearby guanine have a large impact on the configuration of the adduct. Chemical bonds, the aforementioned hydrogen bond, and the interaction between a methyl of the complex and a methyl of the base in close proximity are critical for the complex to specifically recognize DNA.

  19. Cisplatin-DNA adduct formation in patients treated with cisplatin-based chemoradiation: lack of correlation between normal tissues and primary tumor.

    NARCIS (Netherlands)

    Hoebers, F.J.; Pluim, D.; Hart, A.A.M.; Verheij, M.; Balm, A.J.M.; Fons, G.; Rasch, C.R.; Schellens, J.H.M.; Stalpers, L.J.A.; Bartelink, H.; Begg, A.C.

    2008-01-01

    PURPOSE: In this study, the formation of cisplatin-DNA adducts after concurrent cisplatin-radiation and the relationship between adduct-formation in primary tumor tissue and normal tissue were investigated. METHODS: Three intravenous cisplatin-regimens, given concurrently with radiation, were studie

  20. Cisplatin-DNA adduct formation in patients treated with cisplatin-based chemoradiation: lack of correlation between normal tissues and primary tumor

    NARCIS (Netherlands)

    Hoebers, F.J.P.; Pluim, D.; Hart, A.A.M.; Verheij, M.; Balm, A.J.M.; Fons, G.; Rasch, C.R.N.; Schellens, J.H.M.; Stalpers, L.J.A.; Bartelink, H.; Begg, A.C.

    2007-01-01

    Purpose: In this study, the formation of cisplatin-DNA adducts after concurrent cisplatin-radiation and the relationship between adduct-formation in primary tumor tissue and normal tissue were investigated. Methods: Three intravenous cisplatin-regimens, given concurrently with radiation, were stu

  1. Levels of PAH-DNA adducts in placental tissue and the risk of fetal neural tube defects in a Chinese population.

    Science.gov (United States)

    Yuan, Yue; Jin, Lei; Wang, Linlin; Li, Zhiwen; Zhang, Le; Zhu, Huiping; Finnell, Richard H; Zhou, Guodong; Ren, Aiguo

    2013-06-01

    We examined the relationship between PAH-DNA adduct levels in the placental tissue, measured by a highly sensitive (32)P-postlabeling assay, and the risk of fetal neural tube defects (NTDs). We further explored the interaction between PAH-DNA adducts and placental PAHs with respect to NTD risk. Placental tissues from 80 NTD-affected pregnancies and 50 uncomplicated normal pregnancies were included in this case-control study. Levels of PAH-DNA adducts were lower in the NTD group (8.12 per 10(8) nucleotides) compared to controls (9.92 per 10(8) nucleotides). PAH-DNA adduct concentrations below the median was associated with a 3-fold increased NTD risk. Women with a low PAH-DNA adduct level in concert with a high placental PAH level resulted in a 10-fold elevated risk of having an NTD-complicated pregnancy. A low level of placental PAH-DNA adducts was associated with an increased risk of NTDs; this risk increased dramatically when a low adduct level was coupled with a high placental PAH concentration.

  2. 32P-postlabelling analysis of DNA adducts in the skin of mice treated with petrol and diesel engine lubricating oils and exhaust condensates.

    Science.gov (United States)

    Schoket, B; Hewer, A; Grover, P L; Phillips, D H

    1989-08-01

    Samples of unused or used petrol and diesel engine lubricating oils were applied to the shaved dorsal skin of 4- to 6-week-old male Parkes mice, either as a single treatment (50 microliters/mouse) or as four consecutive daily treatments (50 microliters/application). DNA isolated from the skin 24 h after the final treatment was digested to 3'-mononucleotides and analysed by 32P-postlabelling for the presence of aromatic adducts. Enhancement of sensitivity using butanol extraction or nuclease P1 digestion of the DNA hydrolysates led to the detection of up to eight adduct spots on polyethyleneimine-cellulose thin-layer chromatograms with samples of DNA from skin treated with used engine oils, at levels of 40-150 amol total adducts/micrograms DNA. Multiple treatments with the used oils gave rise to similar patterns of adducts in lung DNA. A single treatment of mouse skin with petrol engine exhaust condensate (50 microliters), or diesel engine exhaust condensate (50 microliters), containing 20 and 46 micrograms benzo[a]pyrene (BaP)/g respectively, gave rise to approximately 75 amol total adducts/micrograms DNA in skin. A significant proportion, 31 and 48% respectively, of the adducts formed by the petrol and diesel engine exhaust condensates co-chromatographed with the major BaP-DNA adduct, but with the used engine oils, only petrol engine oil, and not diesel engine oil, produced significant amounts of an adduct (22% of total) that corresponded to the BaP-DNA adduct.

  3. Formation of a major DNA adduct of the mitomycin metabolite 2,7-diaminomitosene in EMT6 mouse mammary tumor cells treated with mitomycin C.

    Science.gov (United States)

    Palom, Y; Belcourt, M F; Kumar, G S; Arai, H; Kasai, M; Sartorelli, A C; Rockwell, S; Tomasz, M

    1998-01-01

    Treatment of EMT6 mouse mammary tumor cells with [3H]mitomycin C (MC) results in the formation of six major DNA adducts, as described earlier using an HPLC assay of 3H-labeled products of enzymatic hydrolysis of DNA isolated from MC-treated cells. Four of these adducts were identified as monofunctional and bifunctional guanine-N2 adducts in the minor groove of DNA. In order to establish relationships between individual types of MC-DNA adducts and biological responses it is necessary to identify all of the adducts formed in cells. To this end we have now identified a predominant, previously unknown adduct formed in MC-treated EMT6 cells as a derivative not of MC, but of 2,7-diaminomitosene (2,7-DAM), the major bioreductive metabolite of MC. Rigorous proof demonstrates that it is a DNA major groove, guanine-N7 adduct of 2,7-DAM, linked at C-10 to DNA. The adduct is relatively stable at ambient temperature, but is readily depurinated upon heating. Its isolation from MC-treated cells indicates that MC is reductively metabolized to 2,7-DAM, which then undergoes further reductive activation to alkylate DNA, along with the parent MC. Low MC:DNA ratios were identified as a critical factor promoting 2,7-DAM adduct formation in an in vitro model calf thymus DNA/ MC/reductase model system, as well as in MC-treated EMT6 cells. The 2,7-DAM-guanine-N7 DNA adduct appears to be relatively noncytotoxic, as indicated by the dramatically lower cytotoxicity of 2,7-DAM in comparison with MC in EMT6 cells. Like MC, 2,7-DAM exhibited slightly greater cytotoxicity to cells treated under hypoxic as compared to aerobic conditions. However, 2,7-DAM was markedly less cytotoxic than MC under both aerobic and hypoxic conditions. Thus, metabolic reduction of MC to 2,7-DAM represents a detoxification process. The differential effects of MC-DNA and 2,7-DAM-DNA adducts support the concept that specific structural features of the DNA damage may play a critical role in the cytotoxic response to a DNA

  4. DNA adducts, benzo(a)pyrene monooxygenase activity, and lysosomal membrane stability in Mytilus galloprovincialis from different areas in Taranto coastal waters (Italy).

    Science.gov (United States)

    Pisoni, M; Cogotzi, L; Frigeri, A; Corsi, I; Bonacci, S; Iacocca, A; Lancini, L; Mastrototaro, F; Focardi, S; Svelto, M

    2004-10-01

    The aim of this study was to investigate the impact of environmental pollution at different stations along the Taranto coastline (Ionian Sea, Puglia, Italy) using several biomarkers of exposure and the effect on mussels, Mytilus galloprovincialis, collected in October 2001 and October 2002. Five sampling sites were compared with a "cleaner" reference site in the Aeronautics Area. In this study we also investigated the differences between adduct levels in gills and digestive gland. This Taranto area is the most significant industrial settlement on the Ionian Sea known to be contaminated by polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, heavy metals, etc. Exposure to PAHs was evaluated by measuring DNA adduct levels and benzo(a)pyrene monooxygenase activity (B(a)PMO); DNA adducts were analyzed by 32P-postlabeling with nuclease P1 enhancement in both gills and digestive glands to evaluate differences between DNA adduct levels in the two tissues. B(a)PMO was assayed in the microsomal fraction of the digestive glands as a result of the high expression of P450-metabolizing enzymes in this tissue. Lysosomal membrane stability, a potential biomarker of anthropogenic stress, was also evaluated in the digestive glands of mussels, by measuring the latent activity of beta-N-acetylhexosaminidase. Induction of DNA adducts was evident in both tissues, although the results revealed large tissue differences in DNA adduct formation. In fact, gills showed higher DNA adduct levels than did digestive gland. No significant differences were found in DNA adduct levels over time, with both tissues providing similar results in both years. DNA adduct levels were correlated with B(a)PMO activity in digestive gland in both years (r = 0.60 in 2001; r = 0.73 in 2002). Increases were observed in B(a)PMO activity and DNA adduct levels at different stations; no statistical difference was observed in B(a)PMO activity over the two monitoring campaigns. The membrane labilization

  5. Noncovalent interactions of a benzo[a]pyrene diol epoxide with DNA base pairs: insight into the formation of adducts of (+)-BaP DE-2 with DNA.

    Science.gov (United States)

    Hargis, Jacqueline C; Schaefer, Henry F; Houk, K N; Wheeler, Steven E

    2010-02-01

    Noncovalent complexes of a tumorigenic benzo[a]pyrene diol epoxide with the guanine-cytosine (GC) and adenine-thymine (AT) base pairs have been examined computationally. (+)-BaP DE-2 forms covalent adducts with DNA via nucleophilic attack on the (+)-BaP DE-2 epoxide. Computational results predict five thermodynamically accessible complexes of AT with (+)-BaP DE-2 that are compatible with intact DNA. Among these, two are expected to lead to adenine adducts. In the lowest energy AT...(+)-BaP DE-2 complex, which has a gas-phase interaction energy of -20.9 kcal mol(-1), the exocyclic NH(2) of adenine is positioned for backside epoxide attack and formation of a trans adduct. The most energetically favorable complex leading to formation of a cis ring-opened adduct lies only 0.6 kcal mol(-1) higher in energy. For GC...(+)-BaP DE-2, there are only two thermodynamically accessible complexes. The higher-lying complex, bound in the gas phase by 24.4 kcal mol(-1) relative to separated GC and (+)-BaP DE-2, would lead to a trans ring-opened N(2)-guanine adduct. In the global minimum energy GC...(+)-BaP DE-2 complex, bound by 27.3 kcal mol(-1), the exocyclic NH(2) group of cytosine is positioned for cis epoxide addition. However, adducts of (+)-BaP DE-2 with cytosine are rarely observed experimentally. The paucity of cytosine adducts, despite the predicted thermodynamic stability of this GC...(+)-BaP DE-2 complex, is attributed to the electrostatic destabilization of the benzylic cation intermediate thought to precede cis addition.

  6. Sustained systemic delivery of green tea polyphenols by polymeric implants significantly diminishes benzo[a]pyrene-induced DNA adducts.

    Science.gov (United States)

    Cao, Pengxiao; Vadhanam, Manicka V; Spencer, Wendy A; Cai, Jian; Gupta, Ramesh C

    2011-06-20

    The polyphenolics in green tea are believed to be the bioactive components. However, poor bioavailability following ingestion limits their efficacy in vivo. In this study, polyphenon E (poly E), a standardized green tea extract, was administered by sustained-release polycaprolactone implants (two, 2-cm implants; 20% drug load) grafted subcutaneously or via drinking water (0.8% w/v) to female S/D rats. Animals were treated with continuous low dose of benzo[a]pyrene (BP) via subcutaneous polymeric implants (2 cm; 10% load) and euthanized after 1 and 4 weeks. Analysis of lung DNA by (32)P-postlabeling resulted in a statistically significant reduction (50%; p = 0.023) of BP-induced DNA adducts in the implant group; however, only a modest (34%) but statistically insignificant reduction occurred in the drinking water group at 1 week. The implant delivery system also showed significant reduction (35%; p = 0.044) of the known BP diolepoxide-derived DNA adduct after 4 weeks. Notably, the total dose of poly E administered was >100-fold lower in the implant group than the drinking water group (15.7 versus 1,632 mg, respectively). Analysis of selected phase I, phase II, and nucleotide excision repair enzymes at both mRNA and protein levels showed no significant modulation by poly E, suggesting that the reduction in the BP-induced DNA adducts occurred presumably due to known scavenging of the antidiolepoxide of BP by the poly E catechins. In conclusion, our study demonstrated that sustained systemic delivery of poly E significantly reduced BP-induced DNA adducts in spite of its poor bioavailability following oral administration.

  7. Smoking, DNA Adducts and Number of Risk DNA Repair Alleles in Lung Cancer Cases, in Subjects with Benign Lung Diseases and in Controls

    Directory of Open Access Journals (Sweden)

    Marco Peluso

    2010-01-01

    Full Text Available Smoke constituents can induce DNA adducts that cause mutations and lead to lung cancer. We have analyzed DNA adducts and polymorphisms in two DNA repair genes, for example, XRCC1 Arg194Trp and Arg399Gln genes and XRCC3 Thr241Met gene, in 34 lung cancer cases in respect to 30 subjects with benign lung cancer disease and 40 healthy controls. When the study population was categorized in base to the number of risk alleles, adducts were significantly increased in individuals bearing 3-4 risk alleles (OR=4.1 95% C.I. 1.28–13.09, P=.009. A significant association with smoking was noticed in smokers for more than 40 years carrying 3-4 risk alleles (OR=36.38, 95% C.I. 1.17–1132.84, P=.040. A not statistically significant increment of lung cancer risk was observed in the same group (OR=4.54, 95% C.I. 0.33–62.93, P=.259. Our results suggest that the analysis of the number of risk alleles predicts the interindividual variation in DNA adducts of smokers and lung cancer cases.

  8. Aberrant repair of etheno-DNA adducts in leukocytes and colon tissue of colon cancer patients.

    Science.gov (United States)

    Obtułowicz, Tomasz; Winczura, Alicja; Speina, Elzbieta; Swoboda, Maja; Janik, Justyna; Janowska, Beata; Cieśla, Jarosław M; Kowalczyk, Paweł; Jawien, Arkadiusz; Gackowski, Daniel; Banaszkiewicz, Zbigniew; Krasnodebski, Ireneusz; Chaber, Andrzej; Olinski, Ryszard; Nair, Jagadesaan; Bartsch, Helmut; Douki, Thierry; Cadet, Jean; Tudek, Barbara

    2010-09-15

    To assess the role of lipid peroxidation-induced DNA damage and repair in colon carcinogenesis, the excision rates and levels of 1,N(6)-etheno-2'-deoxyadenosine (epsilondA), 3,N(4)-etheno-2'-deoxycytidine (epsilondC), and 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondG) were analyzed in polymorphic blood leukocytes (PBL) and resected colon tissues of 54 colorectal carcinoma (CRC) patients and PBL of 56 healthy individuals. In PBL the excision rates of 1,N(6)-ethenoadenine (epsilonAde) and 3,N(4)-ethenocytosine (epsilonCyt), measured by the nicking of oligodeoxynucleotide duplexes with single lesions, and unexpectedly also the levels of epsilondA and 1,N(2)-epsilondG, measured by LC/MS/MS, were lower in CRC patients than in controls. In contrast the mRNA levels of repair enzymes, alkylpurine- and thymine-DNA glycosylases and abasic site endonuclease (APE1), were higher in PBL of CRC patients than in those of controls, as measured by QPCR. In the target colon tissues epsilonAde and epsilonCyt excision rates were higher, whereas the epsilondA and epsilondC levels in DNA, measured by (32)P-postlabeling, were lower in tumor than in adjacent colon tissue, although a higher mRNA level was observed only for APE1. This suggests that during the onset of carcinogenesis, etheno adduct repair in the colon seems to be under a complex transcriptional and posttranscriptional control, whereby deregulation may act as a driving force for malignancy.

  9. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.

    Science.gov (United States)

    Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2016-05-24

    DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.

  10. Investigation of the DNA adducts formed in B6C3F1 mice treated with benzene: Implications for molecular dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bodell, W.J.; Pathak, D.N.; Levay, G. [Univ. of California, San Francisco, CA (United States)] [and others

    1996-12-01

    We have investigated the formation of DNA adducts in the bone marrow and white blood cells of male B6C3F1 mice treated with benzene using P1-enhanced {sup 32}P-postlabeling. No adducts were detected in the bone marrow of controls or mice treated with various doses of benzene once a day. After twice-daily treatment for 1 to 7 days with benzene, 440 mg/kg, one major (no. 1) and UP to two minor DNA adducts were detected in both the bone marrow and white blood cells. The relative adduct levels in these cells ranged from 0.06 to 1.46 x 10{sup -7}. A significant correlation (r 0.95) between levels of adducts in bone marrow and white blood cells was observed. After a 7-day treatment with benzene, 440 mg/kg twice a day, the number of cells per femur decreased from 1.6 x 10{sup 7} to 0.85 X 10{sup 7}, indicating myelotoxicity. In contrast, administration of benzene once a day produced only a small decrease in bone marrow cellularity. The observed induction of toxicity in bone marrow was paralleled by formation of DNA adducts. In vitro treatment of bone marrow with hydroquinone (HQ) for 24 hr produced the same DNA adducts as found after treatment of mice with benzene, suggesting that HQ is the principal metabolite of benzene leading to DNA adduct formation in vivo. Using {sup 32}P-postlabeling the principal DNA adduct formed in vivo was compared with N{sup 2}-(4-hydroxyphenyl)-2-deoxyguanosine-3-phosphate. The results of this comparison demonstrates that the DNA adduct formed in vivo co-chromatographs with N{sup 2}-(4-hydroxyphenyl)-2-deoxyguanosine-3{prime}-phosphate. These studies indicate that metabolic activation of benzene leads to the formation of DNA adducts in bone marrow and white blood cells and suggest that measurement of DNA adducts in white blood cells may be an indicator of biological effect following benzene exposure. 34 refs., 4 figs., 2 tabs.

  11. MUTAGENICITY AND DNA ADDUCT FORMATION OF PAH, NITRO-PAH, AND OXY-PAH FRACTIONS OF ATMOSPHERIC PARTICULATE MATTER FROM SAO PAULO, BRAZIL

    Science.gov (United States)

    Summary What is the study? Near roadway and immediate roadway exposures to transportation emissions gave very similar results in the Salmonella mutagenicity assay and in an assay for DNA adducts indicating that near roadway genotoxicity is not altered significantly over...

  12. Replication past the butadiene diepoxide-derived DNA adduct S-[4-(N(6)-deoxyadenosinyl)-2,3-dihydroxybutyl]glutathione by DNA polymerases.

    Science.gov (United States)

    Cho, Sung-Hee; Guengerich, F Peter

    2013-06-17

    1,2,3,4-Diepoxybutane (DEB), a metabolite of the carcinogen butadiene, has been shown to cause glutathione (GSH)-dependent base substitution mutations, especially A:T to G:C mutations in Salmonella typhimurium TA1535 [Cho, S. H., et al. (2010) Chem. Res. Toxicol. 23, 1544] and Escherichia coli TRG8 cells [Cho, S. H., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1522]. We previously identified S-[4-(N(6)-deoxyadenosinyl)-2,3-dihydroxybutyl]GSH [N(6)dA-(OH)2butyl-GSH] as a major adduct in the reaction of S-(2-hydroxy-3,4-epoxybutyl)glutathione (DEB-GSH conjugate) with nucleosides and calf thymus DNA and in vivo in livers of mice and rats treated with DEB [Cho, S. H., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 706]. For investigation of the miscoding potential of the major DEB-GSH conjugate-derived DNA adduct [N(6)dA-(OH)2butyl-GSH] and the effect of GSH conjugation on replication of DEB, extension studies were performed in duplex DNA substrates containing the site-specifically incorporated N(6)dA-(OH)2butyl-GSH adduct, N(6)-(2,3,4-trihydroxybutyl)deoxyadenosine adduct (N(6)dA-butanetriol), or unmodified deoxyadenosine (dA) by human DNA polymerases (Pol) η, ι, and κ, bacteriophage polymerase T7, and Sulfolobus solfataricus polymerase Dpo4. Although dTTP incorporation was the most preferred addition opposite the N(6)dA-(OH)2butyl-GSH adduct, N(6)dA-butanetriol adduct, or unmodified dA for all polymerases, the dCTP misincorporation frequency opposite N(6)dA-(OH)2butyl-GSH was significantly higher than that opposite the N(6)dA-butanetriol adduct or unmodified dA with Pol κ or Pol T7. LC-MS/MS analysis of full-length primer extension products confirmed that Pol κ or Pol T7 incorporated the incorrect base C opposite the N(6)dA-(OH)2butyl-GSH lesion. These results indicate the relevance of GSH-containing adducts for the A:T to G:C mutations produced by DEB.

  13. Induction of somatic mutations but not methylated DNA adducts in λlacZ transgenic mice by dichlorvos

    NARCIS (Netherlands)

    Pletsa, V.; Steenwinkel, M.-J.S.T.; Delft, J.H.M. van; Baan, R.A.; Kyrtopoulos, S.A.

    1999-01-01

    In order to examine the in vivo genotoxic activity of dichlorvos, λlacZ transgenic mice (Muta(TM)Mouse) were treated i.p. with single (4.4 or 11 mg/kg) or multiple (5x11 mg/kg) doses of this agent and sacrificed 4 h or 14 days post-treatment for DNA adduct measurement or mutant frequency analysis, r

  14. Two food-borne heterocyclic amines: Metabolism and DNA adduct formation of amino-alpha-carbolines

    DEFF Research Database (Denmark)

    Frederiksen, Hanne

    2005-01-01

    The amino-alpha-carbolines 2-amino-9H-pyrido[2,3-b]indole (A alpha C) and 2-amino-3-methyl-9H-pyrido-[2,3-b]indole (MeA alpha C) are two mutagenic and carcinogenic heterocyclic amines formed during ordinary cooking. Amino-alpha-carbolines can be formed in model systems by pyrolyzing tryptophan...... or proteins of animal or vegetable origin, furthermore they are found in many cooked foods, such as fish, meat, and chicken. The specific mutagenicity of the amino-a-carbolines are lower in the Ames Salmonella assay than other heterocyclic amines, but in rodent studies the carcinogenicity of the aminoa, alpha......-carbolines are comparable to other heterocyclic amines. The metabolic pathways of the amino-alpha-carbolines have been studied in vitro and in vivo, and the detoxified phase I and phase II metabolites characterized and quantified. The metabolic activation of the amino-a-carbolines and the formation of DNA-adducts have also...

  15. Bulky DNA Adducts in Cord Blood, Maternal Fruit-and-Vegetable Consumption, and Birth Weight in a European Mother–Child Study (NewGeneris)

    OpenAIRE

    Pedersen, Marie; Schoket, Bernadette; Godschalk, Roger W.; Wright, John; von Stedingk, Hans; Törnqvist, Margareta; Sunyer, Jordi; Nielsen, Jeanette K.; Merlo, Domenico Franco; Mendez, Michelle A.; Meltzer, Helle Margrete; Lukacs, Viktoria; Landström, Anette; Kyrtopoulos, Soterios A; Kovacs, Katalin

    2013-01-01

    Background: Tobacco-smoke, airborne, and dietary exposures to polycyclic aromatic hydrocarbons (PAHs) have been associated with reduced prenatal growth. Evidence from biomarker-based studies of low-exposed populations is limited. Bulky DNA adducts in cord blood reflect the prenatal effective dose to several genotoxic agents including PAHs. Objectives: We estimated the association between bulky DNA adduct levels and birth weight in a multicenter study and examined modification of this associat...

  16. Association between mutation spectra and stable and unstable DNA adduct profiles in Salmonella for benzo[a]pyrene and dibenzo[a,l]pyrene

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, David M., E-mail: demarini.david@epa.gov [Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Hanley, Nancy M.; Warren, Sarah H.; Adams, Linda D.; King, Leon C. [Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2011-09-01

    Highlights: {yields} Benzo[a]pyrene (BP) induces stable DNA adducts and mutations primarily at guanine. {yields} Dibenzo[a,l]pyrene (DBP) induces them primarily at adenine. {yields} BP induces abasic sites, but DBP does not in the Salmonella mutagenicity assay. {yields} Stable DNA adducts alone appear to account for the mutation spectrum of DBP. {yields} Stable DNA adducts and possibly abasic sites account for the mutation spectrum of BP. - Abstract: Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ({sup 32}P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine

  17. Error-prone replication bypass of the primary aflatoxin B1 DNA adduct, AFB1-N7-Gua.

    Science.gov (United States)

    Lin, Ying-Chih; Li, Liang; Makarova, Alena V; Burgers, Peter M; Stone, Michael P; Lloyd, R Stephen

    2014-06-27

    Hepatocellular carcinomas (HCCs) are the third leading cause of cancer deaths worldwide. The highest rates of early onset HCCs occur in geographical regions with high aflatoxin B1 (AFB1) exposure, concomitant with hepatitis B infection. Although the carcinogenic basis of AFB1 has been ascribed to its mutagenic effects, the mutagenic property of the primary AFB1-DNA adduct, AFB1-N7-Gua, in mammalian cells has not been studied extensively. Taking advantage of the ability to create vectors containing a site-specific DNA adduct, the mutagenic potential was determined in primate cells. This adduct was highly mutagenic following replication in COS-7 cells, with a mutation frequency of 45%. The spectrum of mutations was predominantly G to T base substitutions, a result that is consistent with previous mutation data derived from aflatoxin-associated HCCs. To assess which DNA polymerases (pol) might contribute to the mutational outcome, in vitro replication studies were performed. Unexpectedly, replicative pol δ and the error-prone translesion synthesis pol ζ were able to accurately bypass AFB1-N7-Gua. In contrast, replication bypass using pol κ was shown to occur with low fidelity and could account for the commonly detected G to T transversions.

  18. SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.; Johnson, Francis; Huang, Bo

    2008-06-09

    N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.

  19. Reactivity of monofunctional cis-platinum adducts as a function of DNA sequence.

    Science.gov (United States)

    Malinge, J M; Leng, M

    1988-08-11

    The purpose of this work was to study the chemical reactivity of monofunctional cis-platinum-nucleic acid adducts as a function of nucleic acid sequence. The first part of the paper deals with the formation of these adducts. It is shown that the ternary nucleic acid-cis-platinum-ethidium bromide complexes in which ethidium bromide and nucleotide residues are cross-linked by cis-platinum, are relatively unstable at 37 degrees C. In the presence of acridine, ethidium bromide (but not cis-platinum) is slowly released which leads to the formation of monofunctional cis-platinum-nucleic acid adducts. After removal of acridine, the monofunctional adducts react further to become bifunctional. The second part of the paper deals with the kinetics of disappearance of the monofunctional adducts in several polynucleotides but not in poly(dG).poly(dC). When the adducts possess a chloride ligand, the limiting step in the cross-linking is the rate of aquation reaction of the chloride ligand. The rate constants are an order of magnitude larger when the monofunctional adducts do not possess a chloride ligand. In both the cases, the rate constants are apparently independent of the nucleic acid sequence.

  20. Complex relationships between occupation, environment, DNA adducts, genetic polymorphisms and bladder cancer in a case-control study using a structural equation modeling.

    Science.gov (United States)

    Porru, Stefano; Pavanello, Sofia; Carta, Angela; Arici, Cecilia; Simeone, Claudio; Izzotti, Alberto; Mastrangelo, Giuseppe

    2014-01-01

    DNA adducts are considered an integrate measure of carcinogen exposure and the initial step of carcinogenesis. Their levels in more accessible peripheral blood lymphocytes (PBLs) mirror that in the bladder tissue. In this study we explore whether the formation of PBL DNA adducts may be associated with bladder cancer (BC) risk, and how this relationship is modulated by genetic polymorphisms, environmental and occupational risk factors for BC. These complex interrelationships, including direct and indirect effects of each variable, were appraised using the structural equation modeling (SEM) analysis. Within the framework of a hospital-based case/control study, study population included 199 BC cases and 213 non-cancer controls, all Caucasian males. Data were collected on lifetime smoking, coffee drinking, dietary habits and lifetime occupation, with particular reference to exposure to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs). No indirect paths were found, disproving hypothesis on association between PBL DNA adducts and BC risk. DNA adducts were instead positively associated with occupational cumulative exposure to AAs (p = 0.028), whereas XRCC1 Arg 399 (poccupational cumulative exposure to AAs with DNA adducts and BC risk, strengthening the central role of AAs in bladder carcinogenesis. However the lack of an association between PBL DNA adducts and BC risk advises that these snapshot measurements are not representative of relevant exposures. This would envisage new scenarios for biomarker discovery and new challenges such as repeated measurements at different critical life stages.

  1. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.

    Science.gov (United States)

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure-activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment.

  2. Miscoding properties of 1,N{sup 6}-ethanoadenine, a DNA adduct derived from reaction with antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Bo; Guliaev, Anton B.; Chenna, Ahmed; Singer, B.

    2003-03-05

    1,N{sup 6}-Ethanoadenine (EA) is an exocyclic adduct formed from DNA reaction with the antitumor agent, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). To understand the role of this adduct in the mechanism of mutagenicity or carcinogenicity by BCNU, an oligonucleotide with a site-specific EA was synthesized using phosphoramidite chemistry. We now report the in vitro miscoding properties of EA in translesion DNA synthesis catalyzed by mammalian DNA polymerases (pols) {alpha}, {beta}, {eta} and {iota}. These data were also compared with those obtained for the structurally related exocyclic adduct, 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using a primer extension assay, both pols {alpha} and {beta} were primarily blocked by EA or {var_epsilon}A with very minor extension. Pol {eta} a member of the Y family of polymerases, was capable of catalyzing a significant amount of bypass across both adducts. Pol {eta} incorporated all four nucleotides opposite EA and {var_epsilon}A, but with differential preferences and mainly in an error-prone manner. Human pol {iota}, a paralog of human pol {eta}, was blocked by both adducts with a very small amount of synthesis past {var_epsilon}A. It incorporated C and, to a much lesser extent, T, opposite either adduct. In addition, the presence of an A adduct, e.g. {var_epsilon}A, could affect the specificity of pol {iota} toward the template T immediately 3 feet to the adduct. In conclusion, the four polymerases assayed on templates containing an EA or {var_epsilon}A showed differential bypass capacity and nucleotide incorporation specificity, with the two adducts not completely identical in influencing these properties. Although there was a measurable extent of error-free nucleotide incorporation, all these polymerases primarily misincorporated opposite EA, indicating that the adduct, similar to {var_epsilon}A, is a miscoding lesion.

  3. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.

    Science.gov (United States)

    Punt, Ans; Paini, Alicia; Spenkelink, Albertus; Scholz, Gabriele; Schilter, Benoit; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2016-04-18

    Estragole is a known hepatocarcinogen in rodents at high doses following metabolic conversion to the DNA-reactive metabolite 1'-sulfooxyestragole. The aim of the present study was to model possible levels of DNA adduct formation in (individual) humans upon exposure to estragole. This was done by extending a previously defined PBK model for estragole in humans to include (i) new data on interindividual variation in the kinetics for the major PBK model parameters influencing the formation of 1'-sulfooxyestragole, (ii) an equation describing the relationship between 1'-sulfooxyestragole and DNA adduct formation, (iii) Monte Carlo modeling to simulate interindividual human variation in DNA adduct formation in the population, and (iv) a comparison of the predictions made to human data on DNA adduct formation for the related alkenylbenzene methyleugenol. Adequate model predictions could be made, with the predicted DNA adduct levels at the estimated daily intake of estragole of 0.01 mg/kg bw ranging between 1.6 and 8.8 adducts in 10(8) nucleotides (nts) (50th and 99th percentiles, respectively). This is somewhat lower than values reported in the literature for the related alkenylbenzene methyleugenol in surgical human liver samples. The predicted levels seem to be below DNA adduct levels that are linked with tumor formation by alkenylbenzenes in rodents, which were estimated to amount to 188-500 adducts per 10(8) nts at the BMD10 values of estragole and methyleugenol. Although this does not seem to point to a significant health concern for human dietary exposure, drawing firm conclusions may have to await further validation of the model's predictions.

  4. Fibre-induced lipid peroxidation leads to DNA adduct formation in Salmonella typhimurium TA104 and rat lung fibroblasts.

    Science.gov (United States)

    Howden, P J; Faux, S P

    1996-03-01

    Certain end-products of lipid peroxidation bind to DNA forming a fluorescent chromophore. Incubation of both Salmonella typhimurium TA104 and a rat lung fibroblast cell line, RFL-6, with various types of mineral fibre resulted in a time- and dose-dependent increase in DNA fluorescence. The increase in DNA fluorescence was shown to be directly related to the amount of iron that could be mobilized from the fibre surface using in vitro studies in the absence of cells or bacteria. Crocidolite and man-made vitreous fibre-21 (MMVF-21) mobilized significant quantities of iron and were significantly more active than chrysotile and refactory ceramic fibre-1 (RCF-1). Fibre-induced malondialdehyde-DNA adduct formation, the fluorescent product, was increased by incubating cells with buthionine sulfoximine and ameliorated by co-treatment with N-acetylcysteine, indicating a protective role for glutathione. Similarly, vitamin E was also shown to inhibit DNA adduct formation. These results suggest that mineral fibre-induced lipid peroxidation produced genotoxic products which can diffuse into nucleus and interact with cellular DNA. In conclusion, fibre-induced lipid peroxidation may be a possible mechanism in the genotoxic action of fibrous materials.

  5. Increased levels of the acetaldehyde-derived DNA adduct N 2-ethyldeoxyguanosine in oral mucosa DNA from Rhesus monkeys exposed to alcohol.

    Science.gov (United States)

    Balbo, Silvia; Juanes, Rita Cervera; Khariwala, Samir; Baker, Erich J; Daunais, James B; Grant, Kathleen A

    2016-09-01

    Alcohol is a human carcinogen. A causal link has been established between alcohol drinking and cancers of the upper aerodigestive tract, colon, liver and breast. Despite this established association, the underlying mechanisms of alcohol-induced carcinogenesis remain unclear. Various mechanisms may come into play depending on the type of cancer; however, convincing evidence supports the concept that ethanol's major metabolite acetaldehyde may play a major role. Acetaldehyde can react with DNA forming adducts which can serve as biomarkers of carcinogen exposure and potentially of cancer risk. The major DNA adduct formed from this reaction is N (2)-ethylidenedeoxyguanosine, which can be quantified as its reduced form N (2)-ethyl-dG by LC-ESI-MS/MS. To investigate the potential use of N (2)-ethyl-dG as a biomarker of alcohol-induced DNA damage, we quantified this adduct in DNA from the oral, oesophageal and mammary gland tissues from rhesus monkeys exposed to alcohol drinking over their lifetimes and compared it to controls. N (2)-Ethyl-dG levels were significantly higher in the oral mucosa DNA of the exposed animals. Levels of the DNA adduct measured in the oesophageal mucosa of exposed animals were not significantly different from controls. A correlation between the levels measured in the oral and oesophageal DNA, however, was observed, suggesting a common source of formation of the DNA adducts. N (2) -Ethyl-dG was measured in mammary gland DNA from a small cohort of female animals, but no difference was observed between exposed animals and controls. These results support the hypothesis that acetaldehyde induces DNA damage in the oral mucosa of alcohol-exposed animals and that it may play role in the alcohol-induced carcinogenic process. The decrease of N (2)-ethyl-dG levels in exposed tissues further removed from the mouth also suggests a role of alcohol metabolism in the oral cavity, which may be considered separately from ethanol liver metabolism in the

  6. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in human including interindividual variation indicates efficient detoxification and a negligible genotoxicity risk.

    Science.gov (United States)

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2013-09-01

    A number of α,β-unsaturated aldehydes are present in food both as natural constituents and as flavouring agents. Their reaction with DNA due to their electrophilic α,β-unsaturated aldehyde moiety may result in genotoxicity as observed in some in vitro models, thereby raising a safety concern. A question that remains is whether in vivo detoxification would be efficient enough to prevent DNA adduct formation and genotoxicity. In this study, a human physiologically based kinetic/dynamic (PBK/D) model of trans-2-hexenal (2-hexenal), a selected model α,β-unsaturated aldehyde, was developed to examine dose-dependent detoxification and DNA adduct formation in humans upon dietary exposure. The kinetic model parameters for detoxification were quantified using relevant pooled human tissue fractions as well as tissue fractions from 11 different individual subjects. In addition, a Monte Carlo simulation was performed so that the impact of interindividual variation in 2-hexenal detoxification on the DNA adduct formation in the population as a whole could be examined. The PBK/D model revealed that DNA adduct formation due to 2-hexenal exposure was 0.039 adducts/10⁸ nucleotides (nt) at the estimated average 2-hexenal dietary intake (0.04 mg 2-hexenal/kg bw) and 0.18 adducts/10⁸ nt at the 95th percentile of the dietary intake (0.178 mg 2-hexenal/kg bw) in the most sensitive people. These levels are three orders of magnitude lower than natural background DNA adduct levels that have been reported in disease-free humans (6.8-110 adducts/10⁸ nt), suggesting that the genotoxicity risk for the human population at realistic dietary daily intakes of 2-hexenal may be negligible.

  7. 乙烯基DNA加合物检测技术研究%Analytical Method for Etheno DNA Adducts

    Institute of Scientific and Technical Information of China (English)

    田永峰; 侯宏卫; 刘勇; 胡清源; 王安

    2012-01-01

    In order to deeply study etheno-DNA adducts, The variety of DNA oxidative damages, repair mechanisms, and their products are summarized. The generative mechanism in vivo and analytical method of etheno-DNA adducts, including 1, N6-ethenoadenine (eAde), 1, N2- ethenoguanine (εGua), and 3, N4-ethenocytosine (εCyt) are reviewed. The current analytical methods of etheno-DNA adducts have been discussed, which include lmmunoaffinity Chromatography/32p-postlabelling technique (IC-32P), Gas Chromatogeraph-Mass Spectrometer (GC-MS). and liquid Chromatography-tandem Mass Spectrometer (LC-MS/MS). IC-32phas the excellent performance on the sensibility, but when determining etheno-DNA adducts, complex operations and many steps have been involved. As analytical devices, the characteristics of mass spectrometer make the device obtain ideal sensibility and specificity. GC-MS method has the lower limit of determination than that for IX-MS/MS method. As sample derivatization is needed, the sample usually cost more for the method of GC-MS during the pre-handling; LC-MS/MS method offers many practical advantages on the pre-handing, stability, selectivity, and sensibility. These advantages could enhance the efficiency of samples analysis. IX-MS/MS is the ideal analytical method for the research on etheno-DNA adducts. The mechanism of DNA oxidative damage is inconclusive. As the biomarkers of DNA oxidative damages, etheno-DNA adducts possess significant meanings on the risk evaluation of lipid peroxidation.%为了深入的研究乙烯基DNA加台物,本文综述了DNA氧化损伤的种类、修复机制和产物以及3种乙烯基DNA加台物:乙烯基腺嘌呤(1,N6-ethenoadenine,εAde)、乙烯基鸟嘌呤(1.N2-ethenoguanine,εGua)和乙烯基胞嘧啶(3,N4-ethenocytosine,εcyt)的体内生成机制.讨论了目前检测乙烯基DNA加合物的方法,如32P-标记法,气相色谱-质谱法,液相色谱-串联质谱法等.32P-标记法在检测灵敏度方面表现

  8. DNA adducts induced by food mutagen PhIP in a mouse model expressing human sulfotransferases 1A1 and 1A2.

    Science.gov (United States)

    Høie, Anja Hortemo; Monien, Bernhard Hans; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2016-04-25

    Food processing contaminant 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) has previously been shown to induce formation of DNA adducts in vivo. In a previous study the adduct levels were found to increase in a mouse model expressing human (h) sulfotransferases (SULTs) 1A1 and 1A2 after PhIP exposure, detected by (32)P-postlabelling. Isotope dilution ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) is emerging as the method of choice for selective and reproducible detection of known DNA adducts. In the present study we investigated the level and distribution of PhIP induced DNA adducts in male FVB mice 9-11 weeks of age with hSULT mice or wild-type mice (wt) using UPLC-MS/MS. Mice received a single administration of 75 mg/kg bw PhIP by oral gavage, and DNA was analysed 3h after exposure. C8-(2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine- N(2)-yl)-2'-deoxyguanosine (C8-PhIP-dG) adduct levels are significantly higher in PhIP exposed hSULT mice compared with PhIP exposed wt mice. The liver was the least affected organ in wild-type mice, whereas it was the most affected organ in hSULT mice with a 14-fold higher adduct level.

  9. Tamoxifen Forms DNA Adducts In Human Colon After Administration Of A Single [14C]-Labeled Therapeutic Dose.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K; Tompkins, E M; Boocock, D J; Martin, E A; Farmer, P B; Turteltaub, K W; Ubick, E; Hemingway, D; Horner-Glister, E; White, I H

    2007-05-23

    Tamoxifen is widely prescribed for the treatment of breast cancer and is also licensed in the U.S. for the prevention of this disease. However, tamoxifen therapy is associated with an increased occurrence of endometrial cancer in women and there is also evidence that it may elevate the risk of colorectal cancer. The underlying mechanisms responsible for tamoxifen-induced carcinogenesis in women have not yet been elucidated but much interest has focussed on the role of DNA adduct formation. We investigated the propensity of tamoxifen to bind irreversibly to colorectal DNA when given to ten women as a single [{sup 14}C]-labeled therapeutic (20 mg) dose, {approx}18 h prior to undergoing colon resections. Using the sensitive technique of accelerator mass spectrometry, coupled with HPLC separation of enzymatically digested DNA, a peak corresponding to authentic dG-N{sup 2}-tamoxifen adduct was detected in samples from three patients, at levels ranging from 1-7 adducts/10{sup 9} nucleotides. No [{sup 14}C]-radiolabel associated with tamoxifen or its major metabolites was detected. The presence of detectable CYP3A4 protein in all colon samples suggests this tissue has the potential to activate tamoxifen to {alpha}-hydroxytamoxifen, in addition to that occurring in the systemic circulation, and direct interaction of this metabolite with DNA could account for the binding observed. Although the level of tamoxifeninduced damage displayed a degree of inter-individual variability, when present it was {approx}10-100 times higher than that reported for other suspect human colon carcinogens such as PhIP. These findings provide a mechanistic basis through which tamoxifen could increase the incidence of colon cancers in women.

  10. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.

  11. Characterization of Thioether-Linked Protein Adducts of DNA Using a Raney-Ni Mediated Desulfurization Method and Liquid Chromatography-Electrospray-Tandem Mass Spectrometry

    Science.gov (United States)

    Chowdhury, Goutam; Guengerich, F. Peter

    2015-01-01

    This unit contains a complete procedure for the detection and structural characterization of DNA protein crosslinks (DPCs). The procedure also describes an approach for the quantitation of the various structurally distinct DPCs. Although various methods have been described in the literature for labile DPCs, characterization of non-labile adducts remain a challenge. Here we present a novel approach for characterization of both labile and non-labile adducts by the use of a combination of chemical, enzymatic, and mass spectrometric approaches. A Raney Ni-catalyzed reductive desulfurization method was used for removal of the bulky peptide adducts, enzymatic digestion was used to digest the protein to smaller peptides and DNA to nucleosides, and finally LC-ESI-tandem mass spectrometry (MS) was utilized for detection and characterization of nucleoside adducts. PMID:25754888

  12. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells.

    Science.gov (United States)

    Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-wen; Hu, Yu; Chen, Wei-sheng; Chou, David; Liu, Yan; Donin, Nicholas; Huang, William C; Lepor, Herbert; Wu, Xue-Ru; Wang, Hailin; Beland, Frederick A; Tang, Moon-shong

    2014-06-15

    Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS.

  13. Effect of Increased Water Intake on Urinary DNA Adduct Levels and Mutagenicity in Smokers: A Randomized Study

    Directory of Open Access Journals (Sweden)

    Inmaculada Buendia Jimenez

    2015-01-01

    Full Text Available The association between fluid intake and bladder cancer risk remains controversial. Very little is known about to which extent the amount of water intake influences the action of excreting toxics upon the urinary system. This proof of concept trial investigates the effect of water intake on mutagenesis in smokers, a high risk population for bladder cancer. Methods. Monocentric randomized controlled trial. Inclusion Criteria. Male subjects aged 2045–45 y/o, smokers, and small drinkers (24-hour urinary volume 700 mOsmol/kg. Outcomes. 4-ABP DNA adducts formation in exfoliated bladder cells in 24-hour urine collection and urinary mutagenicity in 24-hour urine. Test Group. Subjects consumed 1.5 L daily of the study product (EVIAN on top of their usual water intake for 50 days. Control Group. Subjects continued their usual lifestyle habits. Results. 65 subjects were randomized. Mean age was 30 y/o and mean cigarettes per day were 20. A slight decrease in adducts formation was observed between baseline and last visit but no statistically significant difference was demonstrated between the groups. Urinary mutagenicity significantly decreased. The study shows that increasing water intake decreases urinary mutagenicity. It is not confirmed by urinary adducts formation. Further research would be necessary.

  14. Complex relationships between occupation, environment, DNA adducts, genetic polymorphisms and bladder cancer in a case-control study using a structural equation modeling.

    Directory of Open Access Journals (Sweden)

    Stefano Porru

    Full Text Available DNA adducts are considered an integrate measure of carcinogen exposure and the initial step of carcinogenesis. Their levels in more accessible peripheral blood lymphocytes (PBLs mirror that in the bladder tissue. In this study we explore whether the formation of PBL DNA adducts may be associated with bladder cancer (BC risk, and how this relationship is modulated by genetic polymorphisms, environmental and occupational risk factors for BC. These complex interrelationships, including direct and indirect effects of each variable, were appraised using the structural equation modeling (SEM analysis. Within the framework of a hospital-based case/control study, study population included 199 BC cases and 213 non-cancer controls, all Caucasian males. Data were collected on lifetime smoking, coffee drinking, dietary habits and lifetime occupation, with particular reference to exposure to aromatic amines (AAs and polycyclic aromatic hydrocarbons (PAHs. No indirect paths were found, disproving hypothesis on association between PBL DNA adducts and BC risk. DNA adducts were instead positively associated with occupational cumulative exposure to AAs (p = 0.028, whereas XRCC1 Arg 399 (p<0.006 was related with a decreased adduct levels, but with no impact on BC risk. Previous findings on increased BC risk by packyears (p<0.001, coffee (p<0.001, cumulative AAs exposure (p = 0.041 and MnSOD (p = 0.009 and a decreased risk by MPO (p<0.008 were also confirmed by SEM analysis. Our results for the first time make evident an association between occupational cumulative exposure to AAs with DNA adducts and BC risk, strengthening the central role of AAs in bladder carcinogenesis. However the lack of an association between PBL DNA adducts and BC risk advises that these snapshot measurements are not representative of relevant exposures. This would envisage new scenarios for biomarker discovery and new challenges such as repeated measurements at different

  15. Variation in PAH-related DNA adduct levels among non-smokers: the role of multiple genetic polymorphisms and nucleotide excision repair phenotype.

    Science.gov (United States)

    Etemadi, Arash; Islami, Farhad; Phillips, David H; Godschalk, Roger; Golozar, Asieh; Kamangar, Farin; Malekshah, Akbar Fazel-Tabar; Pourshams, Akram; Elahi, Seerat; Ghojaghi, Farhad; Strickland, Paul T; Taylor, Philip R; Boffetta, Paolo; Abnet, Christian C; Dawsey, Sanford M; Malekzadeh, Reza; van Schooten, Frederik J

    2013-06-15

    Polycyclic aromatic hydrocarbons (PAHs) likely play a role in many cancers even in never-smokers. We tried to find a model to explain the relationship between variation in PAH-related DNA adduct levels among people with similar exposures, multiple genetic polymorphisms in genes related to metabolic and repair pathways, and nucleotide excision repair (NER) capacity. In 111 randomly selected female never-smokers from the Golestan Cohort Study in Iran, we evaluated 21 SNPs in 14 genes related to xenobiotic metabolism and 12 SNPs in eight DNA repair genes. NER capacity was evaluated by a modified comet assay, and aromatic DNA adduct levels were measured in blood by32P-postlabeling. Multivariable regression models were compared by Akaike's information criterion (AIC). Aromatic DNA adduct levels ranged between 1.7 and 18.6 per 10(8) nucleotides (mean: 5.8 ± 3.1). DNA adduct level was significantly lower in homozygotes for NAT2 slow alleles and ERCC5 non-risk-allele genotype, and was higher in the MPO homozygote risk-allele genotype. The sum of risk alleles in these genes significantly correlated with the log-adduct level (r = 0.4, p adduct levels. NER capacity was affected by polymorphisms in the MTHFR and ERCC1 genes. Female non-smokers in this population had PAH-related DNA adduct levels three to four times higher than smokers and occupationally-exposed groups in previous studies, with large inter-individual variation which could best be explained by a combination of Phase I genes and NER capacity.

  16. Reactivity of monofunctional cis-platinum adducts as a function of DNA sequence.

    OpenAIRE

    Malinge, J M; Leng, M

    1988-01-01

    The purpose of this work was to study the chemical reactivity of monofunctional cis-platinum-nucleic acid adducts as a function of nucleic acid sequence. The first part of the paper deals with the formation of these adducts. It is shown that the ternary nucleic acid-cis-platinum-ethidium bromide complexes in which ethidium bromide and nucleotide residues are cross-linked by cis-platinum, are relatively unstable at 37 degrees C. In the presence of acridine, ethidium bromide (but not cis-platin...

  17. Metabolomic profiling unravels DNA adducts in human breast that are formed from peroxidase mediated activation of estrogens to quinone methides.

    Directory of Open Access Journals (Sweden)

    Nilesh W Gaikwad

    Full Text Available Currently there are three major hypotheses that have been proposed for estrogen induced carcinogenicity, however exact etiology remains unknown. Based on the chemical logic, studies were undertaken to investigate if estrogens could generate quinone methides in an oxidative environment which then could cause DNA damage in humans. In presence of MnO2 estrogens were oxidized to quinone methides. Surprisingly quinone methides were found to be stable with t1/2 of 20.8 and 4.5 min respectively. Incubation of estrogens with lactoperoxidase (LPO and H2O2 resulted in formation of respective quinone methides (E1(E2-QM. Subsequent addition of adenine to the assay mixture lead to trapping of E1(E2-QM, resulting in formation of adenine adducts of estrogens, E1(E2-9-N-Ade. Targeted ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS based metabolomic analysis of the breast tissue extracts showed the presence of adenine adducts of estrogens, E1(E2-9-N-Ade, along with other estrogen related metabolites. Identity of E1(E2-N-Ade in LPO assay extracts and breast tissue extracts were confirmed by comparing them to pure synthesized E1(E2-9-N-Ade standards. From these results, it is evident that peroxidase enzymes or peroxidase-like activity in human breast tissue could oxidize estrogens to electrophilic and stable quinone methides in a single step that covalently bind to DNA to form adducts. The error prone repair of the damaged DNA can result in mutation of critical genes and subsequently cancer. This article reports evidence for hitherto unknown estrogen metabolic pathway in human breast, catalyzed by peroxidase, which could initiate cancer.

  18. Typical signature of DNA damage in white blood cells: a pilot study on etheno adducts in Danish mother-newborn child pairs

    DEFF Research Database (Denmark)

    Arab, K; Pedersen, Marie; Nair, J;

    2009-01-01

    The impact of DNA damage commonly thought to be involved in chronic degenerative disease causation is particularly detrimental during fetal development. Within a multicenter study, we analyzed 77 white blood cell (WBC) samples from mother-newborn child pairs to see if imprinting of DNA damage...... in mother and newborn shows a similar pattern. Two adducts 1,N(6)-ethenodeoxyadenosine (epsilondA) and 3,N(4)-ethenodeoxycytidine (epsilondC) were measured by our ultrasensitive immunoaffinity (32)P-post-labeling method. These miscoding etheno-DNA adducts are generated by the reaction of lipid peroxidation...... arising from endogenous reactive aldehydes in WBC of both mother and newborn can be reliably assessed by epsilondA and epsilondC as biomarkers. The high correlation of etheno adduct levels in mother and child WBC suggests that a typical signature of DNA damage is induced similarly in fetus and mother...

  19. Detection and quantitation of benzo(a)pyrene-DNA adducts in brain and liver tissues of Beluga whales (Delphinapterus leucas) from the St. Lawrence and Mackenzie Estuaries

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.

    1988-01-01

    It should be noted that there are few analytical techniques available for the detection and quantitation of chemical adducts in the DNA of living organisms. The reasons for this are: the analytical technique often has to accommodate the unique chemical and/or physical properties of the individual chemical or its metabolite; the percentage of total chemical that becomes most of the parent compound is usually detoxified and excreted; not all adducts that form between the genotoxic agent and DNA are stable or are involved in the development of subsequent deleterious events in the organism; and the amount of DNA available for analysis is often quite limited. 16 refs., 1 tab.

  20. Malabaricone C-containing mace extract inhibits safrole bioactivation and DNA adduct formation both in vitro and in vivo.

    Science.gov (United States)

    Martati, Erryana; Boonpawa, Rungnapa; van den Berg, Johannes H J; Paini, Alicia; Spenkelink, Albertus; Punt, Ans; Vervoort, Jacques; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2014-04-01

    Safrole, present in mace and its essential oils, causes liver tumors in rodents at high dose levels due to formation of a DNA reactive 1'-sulfooxysafrole. The present study identifies malabaricone C as a mace constituent able to inhibit safrole DNA adduct formation at the level of sulfotransferase mediated bioactivation. This inhibition was incorporated into physiologically based biokinetic rat and human models. Dosing safrole at 50mg/kg body weight and malabaricone C-containing mace extract at a ratio reflecting the relative presence in mace, and assuming 100% or 1% uptake of malabaricone C-containing mace extract, the model predicted inhibition of 1'-sulfooxysafrole formation for rats and humans by 90% and 100% or 61% and 91%, respectively. To validate the model, mace extract and safrole were co-administered orally to Sprague-Dawley rats. LC-ECI-MS/MS based quantification of DNA adduct levels revealed a significant (padduct formation by malabaricone C-containing mace extract in the liver of rats exposed to safrole. The data obtained were used to perform a refined risk assessment of safrole. Overall, the results suggest a lower tumor incidence when safrole would be tested within a relevant food matrix containing sulfotransferase inhibitors compared to dosing pure safrole.

  1. DNA adducts in human and mouse skin maintained in short-term culture and treated with petrol and diesel engine lubricating oils.

    Science.gov (United States)

    Carmichael, P L; Ni Shé, M; Phillips, D H

    1991-05-24

    Human and mouse skin samples maintained in short-term organ culture were treated topically with used engine oils from petrol- and diesel-powered vehicles. Mice were also treated topically in vivo for comparison. DNA was isolated and analysed by 32P-postlabelling and the labeled DNA digests were resolved on polyethyleneimine-cellulose tlc sheets. A large number of radioactive adduct spots were observed in DNA from skin treated with the used petrol-engine oil, indicating the formation of adducts by many components of the complex oil mixture. Total adduct levels were similar in mouse skin (both in vivo and in vitro) and in human skin, although qualitative differences in the adduct maps were apparent between the human and mouse skin DNA. Treatment with the used diesel engine oil produced adduct levels no greater than that of control samples in mouse skin (in vivo and in vitro), although significant levels were found in human skin DNA from one donor. The results correlate well with the carcinogenic activity of these oils in experimental animals, helping to substantiate the conclusion that petrol engine oils (but not diesel engine oils) may present a carcinogenic risk to man if appropriate measures to minimise skin contact are not observed.

  2. Quantification of DNA adducts formed in liver, lungs, and isolated lung cells of rats and mice exposed to (14)C-styrene by nose-only inhalation.

    Science.gov (United States)

    Boogaard, P J; de Kloe, K P; Wong, B A; Sumner, S C; Watson, W P; van Sittert, N J

    2000-10-01

    Bronchiolo-alveolar tumors were observed in mice exposed chronically to 160 ppm styrene, whereas no tumors were seen in rats up to concentrations of 1000 ppm. Clara cells, which are predominant in the bronchiolo-alveolar region in mouse lungs but less numerous in rat and human lung, contain various cytochrome P450s, which may oxidize styrene to the rodent carcinogen styrene-7,8-oxide (SO) and other reactive metabolites. Reactive metabolites may form specific DNA adducts and induce the tumors observed in mice. To determine DNA adducts in specific tissues and cell types, rats and mice were exposed to 160 ppm [ring-U-(14)C]styrene by nose-only inhalation for 6 h in a recirculating exposure system. Liver and lungs were isolated 0 and 42 h after exposure. Fractions enriched in Type II cells and Clara cells were isolated from rat and mouse lung, respectively. DNA adduct profiles differed quantitatively and qualitatively in liver, total lung, and enriched lung cell fractions. At 0 and 42 h after exposure, the two isomeric N:7-guanine adducts of SO (measured together, HPEG) were present in liver at 3.0 +/- 0.2 and 1.9 +/- 0.3 (rat) and 1.2 +/- 0.2 and 3.2 +/- 0.5 (mouse) per 10(8) bases. Several other, unidentified adducts were present at two to three times higher concentrations in mouse, but not in rat liver. In both rat and mouse lung, HPEG was the major adduct at approximately 1 per 10(8) bases at 0 h, and these levels halved at 42 h. In both rat Type II and non-Type II cells, HPEG was the major adduct and was about three times higher in Type II cells than in total lung. For mice, DNA adduct levels in Clara cells and non-Clara cells were similar to total lung. The hepatic covalent binding index (CBI) at 0 and 42 h was 0.19 +/- 0.06 and 0.14 +/- 0.03 (rat) and 0. 25 +/- 0.11 and 0.44 +/- 0.23 (mouse), respectively. The pulmonary CBIs, based on tissues combined for 0 and 42 h, were 0.17 +/- 0.04 (rat) and 0.24 +/- 0.04 (mouse). Compared with CBIs for other genotoxicants

  3. Structure and mechanism of error-free replication past the major benzo[a]pyrene adduct by human DNA polymerase κ.

    Science.gov (United States)

    Jha, Vikash; Bian, Chuanbing; Xing, Guangxin; Ling, Hong

    2016-06-02

    Benzo[a]pyrene (BP) is a well-known and frequently encountered carcinogen which generates a bulky DNA adduct (+)-trans-10S-BP-N(2)-dG (BP-dG) in cells. DNA polymerase kappa (polκ) is the only known Y-family polymerase that bypasses BP-dG accurately and thus protects cells from genotoxic BP. Here, we report the structures of human polκ in complex with DNA containing either a normal guanine (G) base or a BP-dG adduct at the active site and a correct deoxycytidine. The structures and supporting biochemical data reveal a unique mechanism for accurate replication by translesion synthesis past the major bulky adduct. The active site of polκ opens at the minor groove side of the DNA substrate to accommodate the bulky BP-dG that is attached there. More importantly, polκ stabilizes the lesion DNA substrate in the same active conformation as for regular B-form DNA substrates and the bulky BPDE ring in a 5' end pointing conformation. The BP-dG adducted DNA substrate maintains a Watson-Crick (BP-dG:dC) base pair within the active site, governing correct nucleotide insertion opposite the bulky adduct. In addition, polκ's unique N-clasp domain supports the open conformation of the enzyme and the extended conformation of the single-stranded template to allow bypass of the bulky lesion. This work illustrates the first molecular mechanism for how a bulky major adduct is replicated accurately without strand misalignment and mis-insertion.

  4. DNA polymerase eta participates in the mutagenic bypass of adducts induced by benzo[a]pyrene diol epoxide in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Alden C Klarer

    Full Text Available Y-family DNA-polymerases have larger active sites that can accommodate bulky DNA adducts allowing them to bypass these lesions during replication. One member, polymerase eta (pol eta, is specialized for the bypass of UV-induced thymidine-thymidine dimers, correctly inserting two adenines. Loss of pol eta function is the molecular basis for xeroderma pigmentosum (XP variant where the accumulation of mutations results in a dramatic increase in UV-induced skin cancers. Less is known about the role of pol eta in the bypass of other DNA adducts. A commonly encountered DNA adduct is that caused by benzo[a]pyrene diol epoxide (BPDE, the ultimate carcinogenic metabolite of the environmental chemical benzo[a]pyrene. Here, treatment of pol eta-deficient fibroblasts from humans and mice with BPDE resulted in a significant decrease in Hprt gene mutations. These studies in mammalian cells support a number of in vitro reports that purified pol eta has error-prone activity on plasmids with site-directed BPDE adducts. Sequencing the Hprt gene from this work shows that the majority of mutations are G>T transversions. These data suggest that pol eta has error-prone activity when bypassing BPDE-adducts. Understanding the basis of environmental carcinogen-derived mutations may enable prevention strategies to reduce such mutations with the intent to reduce the number of environmentally relevant cancers.

  5. In vivo formation of N7-guanine DNA adduct by safrole 2',3'-oxide in mice.

    Science.gov (United States)

    Shen, Li-Ching; Chiang, Su-Yin; Lin, Ming-Huan; Chung, Wen-Sheng; Wu, Kuen-Yuh

    2012-09-18

    Safrole, a naturally occurring product derived from spices and herbs, has been shown to be associated with the development of hepatocellular carcinoma in rodents. Safrole 2',3'-oxide (SFO), an electrophilic metabolite of safrole, was shown to react with DNA bases to form detectable DNA adducts in vitro, but not detected in vivo. Therefore, the objective of this study was to investigate the formation of N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine (N7γ-SFO-Gua) resulting from the reaction of SFO with the most nucleophilic site of guanine in vitro and in vivo with a newly developed isotope-dilution high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method. N7γ-SFO-Gua and [(15)N(5)]-N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine ([(15)N(5)]-N7γ-SFO-Gua) were first synthesized, purified, and characterized. The HPLC-ESI-MS/MS method was developed to measure N7γ-SFO-Gua in calf thymus DNA treated with 60 μmol of SFO for 72 h and in urine samples of mice treated with a single dose of SFO (30 mg/kg body weight, intraperitoneally). In calf thymus DNA, the level of N7γ-SFO-Gua was 2670 adducts per 10(6)nucleotides. In urine of SFO-treated mice, the levels of N7γ-SFO-Gua were 1.02±0.14 ng/mg creatinine (n=4) on day 1, 0.73±0.68 ng/mg creatinine (n=4) on day 2, and below the limit of quantitation on day 3. These results suggest that SFO can cause in vivo formation of N7γ-SFO-Gua, which may then be rapidly depurinated from the DNA backbone and excreted through urine.

  6. Bulky DNA Adducts in Cord Blood, Maternal Fruit-and-Vegetable Consumption, and Birth Weight in a European Mother-Child Study (NewGeneris)

    DEFF Research Database (Denmark)

    Pedersen, Marie; Schoket, Bernadette; Godschalk, Roger W

    2013-01-01

    Background: Tobacco-smoke, airborne, and dietary exposures to polycyclic aromatic hydrocarbons (PAHs) have been associated with reduced prenatal growth. Evidence from biomarker-based studies of low-exposed populations is limited. Bulky DNA adducts in cord blood reflect the prenatal effective dose...... with those with high intake (-58 g; 95% CI: -206, 90 g)Conclusions: Maternal exposure to genotoxic agents that induce the formation of bulky DNA adducts may affect intrauterine growth. Maternal fruit and vegetable consumption may be protective.Citation: Pedersen M, Schoket B, Godschalk RW, Wright J, von......, Kleinjans JC, Segerbäck D, Kogevinas M. 2013. Bulky DNA adducts in cord blood, maternal fruit-and-vegetable consumption, and birth weight in a European mother-child study (NewGeneris). Environ Health Perspect 121:1200-1206; http://dx.doi.org/10.1289/ehp.1206333....

  7. DNA adducts and PM(10) exposure in traffic-exposed workers and urban residents from the EPIC-Florence City study.

    Science.gov (United States)

    Palli, Domenico; Saieva, Calogero; Munnia, Armelle; Peluso, Marco; Grechi, Daniele; Zanna, Ines; Caini, Saverio; Decarli, Adriano; Sera, Francesco; Masala, Giovanna

    2008-09-15

    Air pollution and particulate matter in urban areas have been associated with increased mortality from cardiovascular and respiratory diseases and increased cancer risk. Carcinogenic effects of particulate matter have been related to the contents of specific compounds, such as polycyclic aromatic hydrocarbons. The latter may form bulky DNA adducts, that may be considered as candidate markers of cancer risk. We have recently shown that traffic-exposed workers and the general population in Florence have divergent levels of DNA adducts, possibly related to different levels of exposure to genotoxic agents from vehicle emissions. In the current study, in a series of 214 Florence City healthy adults enrolled in a prospective study in the period 1993-1998 (152 residents / 62 traffic-exposed workers), we investigated the correlation between individual levels of DNA bulky adducts and PM(10) exposure scores based on daily environmental measures provided by the local Environmental Protection Agency for the whole study period, by two types of urban monitoring stations (high- and low-traffic). We found that PM(10) cumulative scores from high-traffic stations over the last 1-2 weeks prior to blood drawing significantly correlated (r=0.58, p=0.02) with DNA adduct levels among non-smoking traffic-exposed workers (but not among residents with no occupational exposure to vehicle emissions). A multivariate regression analysis adjusted for possible confounders confirmed these findings. PM(10) scores from low-traffic stations did not show any correlation. These results show that DNA adduct levels in non-smoking workers reflect the average levels of exposure to PM(10) in high-traffic urban areas experienced over a time period of 1-2 weeks. Since DNA adduct levels have been found predictive of lung cancer risk, our findings provide clues relevant to the reduction of genotoxic damage and possibly cancer risk among traffic-exposed urban workers.

  8. Oxidative Stress Induced Lipid Peroxidation And DNA Adduct Formation In The Pathogenesis Of Multiple Myeloma And Lymphoma

    Directory of Open Access Journals (Sweden)

    Tandon, Ravi

    2013-02-01

    Full Text Available Objective: To access the oxidative stress status by quantification of byproducts generated during lipid peroxidation and DNA breakdown products generated during DNA damage in the blood serum of multiple myeloma and lymphoma patients.Material & Methods: Case control study comprised of 40 patients of multiple myeloma and 20 patients of lymphoma along with 20 age and sex-matched healthy subjects as controls. Levels of Malondialdehyde and 8-hydroxy-2-deoxy-Guanosine were measured to study the oxidative stress status in the study subjects.Results: The level of markers of DNA damage and lipid peroxidation were found to be raised significantly in the study subjects in comparison to healthy controls. The results indicate oxidative stress and DNA damage activity increase progressively with the progression of disease.Conclusion: Oxidative stress causes DNA damage and Lipid peroxidation which results in the formation of DNA adducts leading to mutations thereby indicate the role of oxidative stress in the pathogenesis of multiple myeloma and lymphoma.

  9. Towards biomarker-dependent individualized chemotherapy: exploring cell-specific differences in oxaliplatin-DNA adduct distribution using accelerator mass spectrometry.

    Science.gov (United States)

    Hah, Sang Soo; Henderson, Paul T; Turteltaub, Kenneth W

    2010-04-15

    Oxaliplatin is a third-generation platinum-based anticancer drug that is currently used in the treatment of metastatic colorectal cancer. Oxaliplatin, like other platinum-based anticancer drugs such as cisplatin and carboplatin, is known to induce apoptosis in tumor cells by binding to nuclear DNA, forming monoadducts, and intra- and interstrand diadducts. Previously, we reported an accelerator mass spectrometry (AMS) assay to measure the kinetics of oxaliplatin-induced DNA damage and repair [Hah, S. S.; Sumbad, R. A.; de Vere White, R. W.; Turteltaub, K. W.; Henderson, P. T. Chem. Res. Toxicol.2007, 20, 1745]. Here, we describe another application of AMS to the measurement of oxaliplatin-DNA adduct distribution in cultured platinum-sensitive testicular (833K) and platinum-resistant breast (MDA-MB-231) cancer cells, which resulted in elucidation of cell-dependent differentiation of oxaliplatin-DNA adduct formation, implying that differential adduction and/or accumulation of the drug in cellular DNA may be responsible for the sensitivity of cancer cells to platinum treatment. Ultimately, we hope to use this method to measure the intrinsic platinated DNA adduct repair capacity in cancer patients for use as a biomarker for diagnostics or a predictor of patient outcome.

  10. No effects of chlorophyllin on IQ (2-amino-3-methylimidazo[4,5-f]-quinoline)-genotoxicity and -DNA adduct formation in Drosophila.

    Science.gov (United States)

    Negishi, Tomoe; Shinoda, Aki; Ishizaki, Nao; Hayatsu, Hikoya; Sugiyama, Chitose

    2004-02-01

    Previously we demonstrated that chlorophyllin suppressed the genotoxicities of many carcinogens. However, the genotoxicity of IQ (2-amino-3-methylimidazo[4,5-f]quinoline), a carcinogenic heterocyclic amine, was not suppressed in Drosophila. On the contrary, it has been reported that chrolophyllin suppressed the genotoxicity of IQ in rodents, rainbow trout and Salmonella. We demonstrated that the chlorophyllin-induced suppression of MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline)-genotoxicity was associated with a decrease in MeIQx-DNA adduct formation in Drosophila larval DNA. MeIQx represents another type of heterocyclic amine and is similar to IQ in structure. In this study we utilized (32)P-postlabeling to examine whether chlorophyllin reduced IQ-DNA adduct formation in Drosophila DNA in the same way as MeIQx. The results revealed that the formation of IQ-DNA adducts was unaffected by treatment with chlorophyllin. This was consistent with the absence of any inhibitory effect on genotoxicity as observed in the Drosophila repair test. These results suggest that IQ-behavior in Drosophila is not affected by chlorophyllin, indicating that the process of IQ-DNA adduct formation followed by expression of genotoxicity in Drosophila may be different from that in other organisms.

  11. Effects of the co-carcinogen catechol on benzo(a)pyrene metabolism and DNA adduct formation in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Melikian, A.A.; Leszczynska, J.M.; Hecht, S.S.; Hoffmann, D.

    1986-01-01

    We have studied the effects of the co-carcinogen catechol (1,2-dihydroxybenzene) on the metabolic activation of (/sup 3/H) benzo(a)pyrene (BaP) in mouse skin, in vivo and on the binding of BaP metabolites to DNA and protein at intervals from 0.5-24 h. Upon topical application of 0.015 mg (/sup 3/H)BaP and 0.25 or 0.5 mg catechol per mouse, catechol had little effect on the total amount of (/sup 3/H)BaP metabolized in mouse skin, but it affected the relative proportions of (/sup 3/H)BaP metabolites. Catechol (0.5 mg/mouse) decreased the proportion of water-soluble (/sup 3/H)BaP metabolites, ethyl acetate-soluble polar metabolites and quinones, but doubled the levels of unconjugated 3-hydroxy-BaP at all measured intervals after treatment. Catechol also caused a small increase in the levels of trans-7,8-dihydroxy-7,8-dihydroBaP and trans-9,10-dihydroxy-9,10-dihydroBaP 0.5 h after treatment. Two hours after treatment, the levels of these metabolites subsided to those of the controls. Catechol did not affect the levels of glutathione conjugates of BaP. However, it caused a decrease in glucuronide and sulphate conjugate formation from BaP. Catechol caused an approximately 2-fold increase in the formation of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BPDE) DNA adducts and elevated the ratio of anti-syn-BPDE-DNA adducts 1.6 to 2.9-fold. Catechol treatment increased the radioactivity associated with epidermal proteins after (/sup 3/H)BaP application. Because catechol increased levels of 3-hydroxyBaP, we considered the possibility that 3-hydroxyBaP might enhance the tumor initiating activities of BaP or BPDE in mouse skin; a bioassay demonstrated that this was not the case. The results of this study indicate that one important effect of catechol related to its co-carcinogenicity is its ability to enhance formation of anti-BPDE-DNA adducts in mouse skin.

  12. Mutations Induced by Benzo[a]pyrene and Dibenzo[a,l]pyrene in lacI Transgenic B6C3F1 Mouse Lung Result from Stable DNA Adducts

    Science.gov (United States)

    Dibenzo[a,l]pyrene (DB[a,l]P) and benzo[a]pyrene (B[a]P) are carcinogenic polycyclic aromatic hydrocarbons (PAH) that are each capable of forming a variety of covalent adducts with DNA. Some of the DNA adducts formed by these PAHs have been demonstrated to spontaneously depurina...

  13. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuangying, E-mail: shuangying.yu@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Tang, Song, E-mail: song.tang@usask.ca [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Mayer, Gregory D., E-mail: greg.mayer@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Cobb, George P., E-mail: george_cobb@baylor.edu [Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798 (United States); Maul, Jonathan D., E-mail: jonathan.maul@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States)

    2015-02-15

    Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • Responses included induction of DNA photo-adducts and DNA damage and repair genes. • Elevated DNA adduct levels occurred for co-exposures compared to UVB alone. • One mechanism is that pesticides may alter nuclear excision repair gene expression. - Abstract: Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides

  14. Alcohol, Aldehydes, Adducts and Airways.

    Science.gov (United States)

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  15. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos.

    Science.gov (United States)

    Yu, Shuangying; Tang, Song; Mayer, Gregory D; Cobb, George P; Maul, Jonathan D

    2015-02-01

    Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides increased transcript abundance of CSA and MUTL. In addition, mRNA abundance of HSP70 and GADD45α were increased by endosulfan and mRNA abundance of XPG was increased by α-cypermethrin. XPC, HR23B, XPG, and GADD45α exhibited elevated mRNA concentrations whereas there was a reduction in MUTL transcript concentrations in UVB-alone treatments. It appeared that even

  16. Urinary Metabolites of the Dietary Carcinogen PhIP are Predictive of Colon DNA Adducts After a Low Dose Exposure in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Malfatti, M; Dingley, K; Nowell, S; Ubick, E; Mulakken, N; Nelson, D; Lang, N; Felton, J; Turteltaub, K

    2006-04-28

    Epidemiologic evidence indicates that exposure to heterocyclic amines (HAs) in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of HAs which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of HA bioactivation in humans, the most mass abundant HA, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers were administered a dietary relevant dose of [{sup 14}C]PhIP 48-72 h prior to surgery to remove colon tumors. Urine was collected for 24 h after dosing for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All ten subjects were phenotyped for CYP1A2, NAT2, and SULT1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N{sup 2}-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide, had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.

  17. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    Science.gov (United States)

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  18. Pharmacodynamics of cisplatin in human head and neck cancer : correlation between platinum content, DNA adduct levels and drug sensitivity in vitro and in vivo

    NARCIS (Netherlands)

    Welters, M.J.P.; Fichtinger-Schepman, A.M.J.; Baan, R.A.; Jacobs-Bergmans, A.J.; Kegel, A.; Vijgh, W.J.F. van der; Braakhuis, B.J.M.

    1999-01-01

    Total platinum contents and cisplatin-DNA adduct levels were determined in vivo in xenografted tumour tissues in mice and in vitro in cultured tumour cells of head and neck squamous cell carcinoma (HNSCC), and correlated with sensitivity to cisplatin. In vivo, a panel of five HNSCC tumour lines grow

  19. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne a,ß-unsaturated aldehydes.

    NARCIS (Netherlands)

    Kiwamoto, R.; Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic a,ß-unsaturated aldehydes present in food raise a concern because the a,ß-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present s

  20. Comparative synchronous fluorescence spectrophotometry and 32P-postlabeling analysis of PAH-DNA adducts in human lung and the relationship to TP53 mutations

    DEFF Research Database (Denmark)

    Andreassen, Åshild; Kure, Elin H.; Nielsen, Per Sabro;

    1996-01-01

    Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were studied in human lung from 39 lung cancer patients by synchronous fluorescence spectrophotometric (SFS) and 32P-postlabeling assays. Regression analysis of the samples failed to detect any correlation between benzo[a]pyrene-diolepoxide (BPDE)...

  1. Inhibition of HIV-1 reverse transcriptase-catalyzed synthesis by intercalated DNA Benzo[a]Pyrene 7,8-Dihydrodiol-9,10-Epoxide adducts.

    Directory of Open Access Journals (Sweden)

    Parvathi Chary

    Full Text Available To aid in the characterization of the relationship of structure and function for human immunodeficiency virus type-1 reverse transcriptase (HIV-1 RT, this investigation utilized DNAs containing benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE-modified primers and templates as a probe of the architecture of this complex. BPDE lesions that differed in their stereochemistry around the C10 position were covalently linked to N (6-adenine and positioned in either the primer or template strand of a duplex template-primer. HIV-1 RT exhibited a stereoisomer-specific and strand-specific difference in replication when the BPDE-lesion was placed in the template versus the primer strand. When the C10 R-BPDE adduct was positioned in the primer strand in duplex DNA, 5 nucleotides from the 3΄ end of the primer terminus, HIV-1 RT could not fully replicate the template, producing truncated products; this block to further synthesis did not affect rates of dissociation or DNA binding affinity. Additionally, when the adducts were in the same relative position, but located in the template strand, similar truncated products were observed with both the C10 R and C10 S BPDE adducts. These data suggest that the presence of covalently-linked intercalative DNA adducts distant from the active site can lead to termination of DNA synthesis catalyzed by HIV-1 RT.

  2. Association between Mutation Spectra and Stable and Unstable DNA Adduct Profiles in Salmonella for Benzo[a]pyrene and Dibenzo[a.l]pyrene

    Science.gov (United States)

    Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments ha...

  3. Biomarkers for Exposure to Ambient Air Pollution - Comparison of Carcinogen-DNA Adduct Levels with Other Exposure Markers and Markers for Oxidative Stress

    DEFF Research Database (Denmark)

    Autrup, Herman; Daneshvar, Bahram; Dragsted, Lars Ove;

    1999-01-01

    Human exposure to genotoxic compounds present in ambient air has been studied using selected biomarkers in nonsmoking Danish bus drivers and postal workers. A large interindividual variation in biomarker levels was observed. Significantly higher levels of bulky carcinogen-DNA adducts (75.42 adduc...

  4. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis

    Science.gov (United States)

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-B[a]P-7,8-diol-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: 1.] The induction of apurinic sites from r...

  5. DNA adducts and strand breaks in workers exposed to vapours and aerosols of bitumen: associations between exposure and effect.

    Science.gov (United States)

    Marczynski, Boleslaw; Raulf-Heimsoth, Monika; Spickenheuer, Anne; Pesch, Beate; Kendzia, Benjamin; Mensing, Thomas; Engelhardt, Beate; Lee, Eun-Hyun; Schindler, Birgit K; Heinze, Evelyn; Welge, Peter; Bramer, Rainer; Angerer, Jürgen; Breuer, Dietmar; Käfferlein, Heiko U; Brüning, Thomas

    2011-06-01

    To study the associations between exposure to vapours and aerosols of bitumen and genotoxic effects, a cross-sectional and cross-shift study was conducted in 320 exposed workers and 118 non-exposed construction workers. Ambient air measurements were carried out to assess external exposure to vapours and aerosols of bitumen. Hydroxylated metabolites of naphthalene, phenanthrene and pyrene were measured in urine, whereas (+)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide ((+)-anti-BPDE), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodGuo) and DNA strand breaks were determined in blood. Significantly higher levels of 8-oxodGuo adducts and DNA strand breaks were found in both pre- and post-shift blood samples of exposed workers compared to those of the referents. No differences between exposed workers and referents were observed for (+)-anti-BPDE. Moreover, no positive associations between DNA damage and magnitude of airborne exposure to vapours and aerosols of bitumen could be observed in our study. Additionally, no relevant association between the urinary metabolites of PAH and the DNA damage in blood was observed. Overall, our results indicate increased oxidative DNA damage in workers exposed to vapours and aerosols of bitumen compared to non-exposed referents at the group level. However, increased DNA strand breaks in bitumen workers were still within the range of those found in non-exposed and healthy persons as reported earlier. Due to the lack of an association between oxidative DNA damage and exposure levels at the workplaces under study, the observed increase in genotoxic effects in bitumen workers cannot be attributed to vapours and aerosols of bitumen.

  6. Replication bypass of the trans-4-Hydroxynonenal-derived (6S,8R,11S)-1,N(2)-deoxyguanosine DNA adduct by the sulfolobus solfataricus DNA polymerase IV.

    Science.gov (United States)

    Banerjee, Surajit; Christov, Plamen P; Kozekova, Albena; Rizzo, Carmelo J; Egli, Martin; Stone, Michael P

    2012-02-20

    trans-4-Hydroxynonenal (HNE) is the major peroxidation product of ω-6 polyunsaturated fatty acids in vivo. Michael addition of the N(2)-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N(2)-dGuo (1,N(2)-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N(2)-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N(2)-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua → Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct, the (6S,8R,11S)-1,N(2)-dGuo lesion remained in the ring-closed conformation at the active site. The incoming dNTP, either d

  7. Biological significance of DNA adducts investigated by simultaneous analysis of different endpoints of genotoxicity in L5178Y mouse lymphoma cells treated with methyl methanesulfonate.

    Science.gov (United States)

    Brink, Andreas; Schulz, Berta; Stopper, Helga; Lutz, Werner K

    2007-12-01

    The biological significance of DNA adducts is under continuous discussion because analytical developments allow determination of adducts at ever lower levels. Central questions refer to the biological consequences of adducts and to the relationship between background DNA damage and exposure-related increments. These questions were addressed by measuring the two DNA adducts 7-methylguanine (7-mG) and O(6)-methyl-2'-deoxyguanosine (O(6)-mdGuo) by LC-MS/MS in parallel to two biological endpoints of genotoxicity (comet assay and in vitro micronucleus test), using large batches of L5178Y mouse lymphoma cells treated with methyl methanesulfonate (MMS). The background level of 7-mG was 1440 adducts per 10(9) nucleotides while O(6)-mdGuo was almost 50-fold lower (32 adducts per 10(9) nucleotides). In the comet assay and the micronucleus test, background was in the usual range seen with smaller batches of cells (2.1% Tail DNA and 12 micronuclei-containing cells per 1000 binucleated cells, respectively). For the comparison of the four endpoints for dose-related increments above background in the low-response region we assumed linearity at low dose and used the concept of the "doubling dose", i.e., we estimated the concentration of MMS necessary to double the background measures. Doubling doses of 4.3 and 8.7microM MMS were deduced for 7-mG and O(6)-mdGuo, respectively. For doubling the background measures in the comet assay and the micronucleus test, 5 to 15-fold higher concentrations of MMS were necessary (45 and 66microM, respectively). This means that the contribution of an increase in DNA methylation to biological endpoints of genotoxicity is overestimated. For xenobiotics that generate adducts without background, the difference is even more pronounced because the dose-response curve starts at zero and the limit of detection of an increase is not affected by background variation. Consequences for the question of thresholds in dose-response relationships and for the

  8. Base sequence effects on DNA replication influenced by bulky adducts. Final report, March 1, 1995--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Geacintov, N.E.

    1997-05-31

    Polycyclic aromatic hydrocarbons (PAH) are environmental pollutants that are present in air, food, and water. While PAH compounds are chemically inert and are sparingly soluble in aqueous solutions, in living cells they are metabolized to a variety of oxygenated derivatives, including the high mutagenic and tumorigenic diol epoxide derivatives. The diol epoxides of the sterically hindered fjord region compound benzo[c]phenanthrene (B[c]PhDE) are among the most powerful tumorigenic compounds in animal model test systems. In this project, site-specifically modified oligonucleotides containing single B[c]PhDE-N{sup 6}-dA lesions derived from the reactions of the 1S,2R,3R,4S and 1R,2S,3S,4R diol epoxides of B[c]PhDE with dA residues were synthesized. The replication of DNA catalyzed by a prokaryotic DNA polymerase (the exonuclease-free Klenow fragment E. Coli Po1 I) in the vicinity of the lesion at base-specific sites on B[c]PhDE-modified template strands was investigated in detail. The Michaelis-Menten parameters for the insertion of single deoxynucleotide triphosphates into growing DNA (primer) strands using the modified dA* and the bases just before and after the dA* residue as templates, depend markedly on the stereochemistry of the B[c]PhDE-modified dA residues. These observations provide novel insights into the mechanisms by which bulky PAH-DNA adducts affect normal DNA replication.

  9. Sequence-specific Hydrolysis of Single-stranded DNA by PNA-Cerium (Ⅳ) Adduct

    Institute of Scientific and Technical Information of China (English)

    He Bai SHEN; Feng WANG; Yong Tao YANG

    2005-01-01

    A novel artificial site specific cleavage reagent, with peptide nucleic acid (PNA) as sequence-recognizing moiety and cerium (Ⅳ) ions as "scissors" for cleaving target DNA, was synthesized. Subsequently, it was employed in the cleavage of target 26-mer single-stranded DNA (ssDNA), which has 10-mer sequence complementary with PNA recognizer in the hybrids,under physiological conditions. Reversed-phase high-performance liquid chromatogram (RPHPLC) experiments indicated that the artificial site specific cleavage reagent could cleave the target DNA specifically.

  10. Cockayne syndrome: varied requirement of transcription-coupled nucleotide excision repair for the removal of three structurally different adducts from transcribed DNA.

    Directory of Open Access Journals (Sweden)

    Nataliya Kitsera

    Full Text Available Hereditary defects in the transcription-coupled nucleotide excision repair (TC-NER pathway of damaged DNA cause severe neurodegenerative disease Cockayne syndrome (CS, however the origin and chemical nature of the underlying DNA damage had remained unknown. To find out, to which degree the structural properties of DNA lesions determine the extent of transcription arrest in human CS cells, we performed quantitative host cell reactivation analyses of expression vectors containing various synthetic adducts. We found that a single 3-(deoxyguanosin-N2-yl-2-acetylaminofluorene adduct (dG(N2-AAF constitutes an unsurmountable obstacle to transcription in both CS-A and CS-B cells and is removed exclusively by the CSA- and CSB-dependent pathway. In contrast, contribution of the CS proteins to the removal of two other transcription-blocking DNA lesions - N-(deoxyguanosin-8-yl-2-acetylaminofluorene (dG(C8-AAF and cyclobutane thymine-thymine (TT dimer - is only minor (TT dimer or none (dG(C8-AAF. The unique properties of dG(N2-AAF identify this adduct as a prototype for a new class of DNA lesions that escape the alternative global genome repair and could be critical for the CS pathogenesis.

  11. Metabolism of aflatoxin B1 and identification of the major aflatoxin B1-DNA adducts formed in cultured human bronchus and colon

    DEFF Research Database (Denmark)

    1979-01-01

    compared to aflatoxin B1, the binding level of benzo(a)pyrene to both bronchial and colonic DNA was generally higher. The major adducts formed in both tissues by the interaction of aflatoxin B1 and DNA were chromatographically identical to 2,3-dihydro-2-(N7-guanyl)-3-hydroxyaflatoxin B1 (Structure 1......) with the guanyl group and hydroxy group in trans-position and an adduct which has been tentatively identified by other investigators as 2,3-dihydro-2-(N5-formyl-2',5',6'-triamino-4'-oxo-N5-pyrimidyl)-3-hydroxyaflatoxin B1 (Structure 11). Seventy % of the radioactivity associated with bronchial DNA was found...... in these two peaks, and the ratio of radioactivity between the peaks was nearly 1. In colonic DNA, the ratio between Structures 1 and 11 was approximately 2. These observations add aflatoxin B1 to the list of chemical procarcinogens metabolized by cultured human tissues and in which the carcinogen-DNA adducts...

  12. Benzo[a]pyrene (BP) DNA adduct formation in DNA repair-deficient p53 haploinsufficient [Xpa(-/-)p53(+/-)] and wild-type mice fed BP and BP plus chlorophyllin for 28 days.

    Science.gov (United States)

    John, Kaarthik; Pratt, M Margaret; Beland, Frederick A; Churchwell, Mona I; McMullen, Gail; Olivero, Ofelia A; Pogribny, Igor P; Poirier, Miriam C

    2012-11-01

    We have evaluated DNA damage (DNA adduct formation) after feeding benzo[a]pyrene (BP) to wild-type (WT) and cancer-susceptible Xpa(-/-)p53(+/-) mice deficient in nucleotide excision repair and haploinsufficient for the tumor suppressor p53. DNA damage was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS), which measures r7,t8,t9-trihydroxy-c-10-(N (2)-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG), and a chemiluminescence immunoassay (CIA), using anti-r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA antiserum, which measures both BPdG and the other stable BP-DNA adducts. When mice were fed 100 ppm BP for 28 days, BP-induced DNA damage measured in esophagus, liver and lung was typically higher in Xpa(-/-)p53(+/-) mice, compared with WT mice. This result is consistent with the previously observed tumor susceptibility of Xpa(-/-)p53(+/-) mice. BPdG, the major DNA adduct associated with tumorigenicity, was the primary DNA adduct formed in esophagus (a target tissue in the mouse), whereas total BP-DNA adducts predominated in higher levels in the liver (a non-target tissue in the mouse). In an attempt to lower BP-induced DNA damage, we fed the WT and Xpa(-/-)p53(+/-) mice 0.3% chlorophyllin (CHL) in the BP-containing diet for 28 days. The addition of CHL resulted in an increase of BP-DNA adducts in esophagus, liver and lung of WT mice, a lowering of BPdG in esophagi of WT mice and livers of Xpa(-/-)p53(+/-) mice and an increase of BPdG in livers of WT mice. Therefore, the addition of CHL to a BP-containing diet showed a lack of consistent chemoprotective effect, indicating that oral CHL administration may not reduce PAH-DNA adduct levels consistently in human organs.

  13. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Suk [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Guo, Chunlu; Thompson, Eric L. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Jiang, Yanlin [Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Kelley, Mark R. [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Vasko, Michael R. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Lee, Suk-Hee, E-mail: slee@iu.edu [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States)

    2015-09-15

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.

  14. Dual function of Ixr1 in transcriptional regulation and recognition of cisplatin-DNA adducts is caused by differential binding through its two HMG-boxes.

    Science.gov (United States)

    Vizoso-Vázquez, A; Lamas-Maceiras, M; Fernández-Leiro, R; Rico-Díaz, A; Becerra, M; Cerdán, M E

    2017-02-01

    Ixr1 is a transcriptional factor involved in the response to hypoxia, which is also related to DNA repair. It binds to DNA through its two in-tandem high mobility group box (HMG-box) domains. Each function depends on recognition of different DNA structures, B-form DNA at specific consensus sequences for transcriptional regulation, or distorted DNA, like cisplatin-DNA adducts, for DNA repair. However, the contribution of the HMG-box domains in the Ixr1 protein to the formation of different protein-DNA complexes is poorly understood. We have biophysically and biochemically characterized these interactions with specific DNA sequences from the promoters regulated by Ixr1, or with cisplatin-DNA adducts. Both HMG-boxes are necessary for transcriptional regulation, and they are not functionally interchangeable. The in-tandem arrangement of their HMG-boxes is necessary for functional folding and causes sequential cooperative binding to specific DNA sequences, with HMG-box A showing a higher contribution to DNA binding and bending than the HMG-box B. Binding of Ixr1 HMG boxes to specific DNA sequences is entropy driven, whereas binding to platinated DNA is enthalpy driven for HMG-box A and entropy driven for HMG-box B. This is the first proof that HMG-box binding to different DNA structures is associated with predictable thermodynamic differences. Based on our study, we present a model to explain the dual function of Ixr1 in the regulation of gene expression and recognition of distorted DNA structures caused by cisplatin treatment.

  15. Serum Level of Antibody against Benzo[a]pyrene-7,8-diol-9,10-epoxide-DNA Adducts in People Dermally Exposed to PAHs

    Directory of Open Access Journals (Sweden)

    Lenka Borska

    2014-01-01

    Full Text Available Some specific antibodies indicate the presence of antigenic structures on DNA (DNA adducts that can play an important role in the process of mutagenesis and/or carcinogenesis. They indicate the presence of increased genotoxic potential (hazard prior to the formation of disease (primary prevention. The present study was focused on the serum level of benzo[a]pyrene 7,8-diol-9,10-epoxide-DNA adducts antibodies (anti-BPDE-DNA in psoriatic patients (n=55 dermally exposed to different levels of polycyclic aromatic hydrocarbons (PAHs. The general goal of the study was to contribute to better understanding of the value of the assumed biomarker (anti-BPDE-DNA for evaluation of the organism's answer to genotoxic exposure to PAHs. Elevated level of exposure to PAHs resulted in the increased level of anti-BPDE-DNA. However, almost all levels of anti-BPDE-DNA ranged within the field of low values. Both variants of GT (CCT-3% and CCT-5% induced higher expression of anti-BPDE-DNA in the group of nonsmokers. Significant relations between the level of anti-BPDE-DNA and PASI score, total duration of the therapy, or time of UVR exposure were not found. Further studies are needed to reduce interpretation uncertainty of this promising bioindicator.

  16. Structural perturbations induced by the alpha-anomer of the aflatoxin B(1) formamidopyrimidine adduct in duplex and single-strand DNA.

    Science.gov (United States)

    Brown, Kyle L; Voehler, Markus W; Magee, Shane M; Harris, Constance M; Harris, Thomas M; Stone, Michael P

    2009-11-11

    The guanine N7 adduct of aflatoxin B(1) exo-8,9-epoxide hydrolyzes to form the formamidopyrimidine (AFB-FAPY) adduct, which interconverts between alpha and beta anomers. The beta anomer is highly mutagenic in Escherichia coli, producing G --> T transversions; it thermally stabilizes the DNA duplex. The AFB-alpha-FAPY adduct blocks replication; it destabilizes the DNA duplex. Herein, the structure of the AFB-alpha-FAPY adduct has been elucidated in 5'-d(C(1)T(2)A(3)T(4)X(5)A(6)T(7)T(8)C(9)A(10))-3'.5'-d(T(11)G(12)A(13)A(14)T(15)C(16)A(17)T(18)A(19)G(20))-3' (X = AFB-alpha-FAPY) using molecular dynamics calculations restrained by NMR-derived distances and torsion angles. The AFB moiety intercalates on the 5' face of the pyrimidine moiety at the damaged nucleotide between base pairs T(4).A(17) and X(5).C(16), placing the FAPY C5-N(5) bond in the R(a) axial conformation. Large perturbations of the epsilon and zeta backbone torsion angles are observed, and the base stacking register of the duplex is perturbed. The deoxyribose orientation shifts to become parallel to the FAPY base and displaced toward the minor groove. Intrastrand stacking between the AFB moiety and the 5' neighbor thymine remains, but strong interstrand stacking is not observed. A hydrogen bond between the formyl group and the exocyclic amine of the 3'-neighbor adenine stabilizes the E conformation of the formamide moiety. NMR studies reveal a similar 5'-intercalation of the AFB moiety for the AFB-alpha-FAPY adduct in the tetramer 5'-d(C(1)T(2)X(3)A(4))-3', involving the R(a) axial conformation of the FAPY C5-N(5) bond and the E conformation of the formamide moiety. Since in duplex DNA the AFB moiety of the AFB-beta-FAPY adduct also intercalates on the 5' side of the pyrimidine moiety at the damaged nucleotide, we conclude that favorable 5'-stacking leads to the R(a) conformational preference about the C5-N(5) bond; the same conformational preference about this bond is also observed at the nucleoside

  17. Direct reduction of N-acetoxy-PhIP by tea polyphenols: a possible mechanism for chemoprevention against PhIP-DNA adduct formation.

    Science.gov (United States)

    Lin, Dong-Xin; Thompson, Patricia A; Teitel, Candee; Chen, Jun-Shi; Kadlubar, Fred F

    2003-01-01

    The chemopreventive effect of tea against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adduct formation and its mechanism were studied. Rats were exposed to freshly prepared aqueous extracts of green tea (3% (w/v)) as the sole source of drinking water for 10 days prior to administration with a single dose of PhIP (10 mg/kg body weight) by oral gavage. PhIP-DNA adducts in the liver, colon, heart, and lung were measured using the 32P-postlabelling technique. Rats pre-treated with tea and given PhIP 20 h before sacrifice had significantly reduced levels of PhIP-DNA adducts as compared with controls given PhIP alone. The possible mechanism of protective effect of tea on PhIP-DNA adduct formation was then examined in vitro. It was found that an aqueous extract of green and black tea, mixtures of green and black tea polyphenols, as well as purified polyphenols could strongly inhibit the DNA binding of N-acetoxy-PhIP, a putative ultimate carcinogen of PhIP formed in vivo via metabolic activation. Among these, epigallocatechin gallate was exceptionally potent. HPLC analyses of these incubation mixtures containing N-acetoxy-PhIP and the tea polyphenols each revealed the production of the parent amine, PhIP, indicating the involvement of a redox mechanism. In view of the presence of relatively high levels of tea polyphenols in rat and human plasma after ingestion of tea, this study suggests that direct reduction of the ultimate carcinogen N-acetoxy-PhIP by tea polyphenols is likely to be involved in the mechanism of chemoprotection of tea against this carcinogen.

  18. Direct reduction of N-acetoxy-PhIP by tea polyphenols: a possible mechanism for chemoprevention against PhIP-DNA adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Lin Dongxin; Thompson, Patricia A.; Teitel, Candee; Chen Junshi; Kadlubar, Fred F

    2003-03-01

    The chemopreventive effect of tea against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adduct formation and its mechanism were studied. Rats were exposed to freshly prepared aqueous extracts of green tea (3% (w/v)) as the sole source of drinking water for 10 days prior to administration with a single dose of PhIP (10 mg/kg body weight) by oral gavage. PhIP-DNA adducts in the liver, colon, heart, and lung were measured using the {sup 32}P-postlabelling technique. Rats pre-treated with tea and given PhIP 20 h before sacrifice had significantly reduced levels of PhIP-DNA adducts as compared with controls given PhIP alone. The possible mechanism of protective effect of tea on PhIP-DNA adduct formation was then examined in vitro. It was found that an aqueous extract of green and black tea, mixtures of green and black tea polyphenols, as well as purified polyphenols could strongly inhibit the DNA binding of N-acetoxy-PhIP, a putative ultimate carcinogen of PhIP formed in vivo via metabolic activation. Among these, epigallocatechin gallate was exceptionally potent. HPLC analyses of these incubation mixtures containing N-acetoxy-PhIP and the tea polyphenols each revealed the production of the parent amine, PhIP, indicating the involvement of a redox mechanism. In view of the presence of relatively high levels of tea polyphenols in rat and human plasma after ingestion of tea, this study suggests that direct reduction of the ultimate carcinogen N-acetoxy-PhIP by tea polyphenols is likely to be involved in the mechanism of chemoprotection of tea against this carcinogen.

  19. Effect of increased intake of dietary animal fat and fat energy on oxidative damage, mutation frequency, DNA adduct level and DNA repair in rat colon and liver

    DEFF Research Database (Denmark)

    Vogel, Ulla; Daneshvar, Bahram; Autrup, Herman;

    2003-01-01

    was observed. Intake of lard fat resulted in increased ascorbate synthesis and affected markers of oxidative damage to proteins in liver cytosol, but not in plasma. The effect was observed at all lard doses and was not dose-dependent. However, no evidence of increased oxidative DNA damage was found in liver...... supplemented with 0, 3, 10 or 30% w/w lard. After 3 weeks, the mutation frequency, DNA repair gene expression, DNA damage and oxidative markers were determined in liver, colon and plasma. The mutation frequency of the lambda gene cII did not increase with increased fat or energy intake in colon or liver....... The DNA-adduct level measured by 32P-postlabelling decreased in both liver and colon with increased fat intake. In liver, this was accompanied by a 2-fold increase of the mRNA level of nucleotide excision repair (NER) gene ERCC1. In colon, a non-statistically significant increase in the ERCC1 mRNA levels...

  20. Effect of increased intake of dietary animal fat and fat energy on oxidative damage, mutation frequency, DNA adduct level and DNA repair in rat colon and liver

    DEFF Research Database (Denmark)

    Vogel, Ulla Birgitte; Danesvar, B.; Autrup, H.;

    2003-01-01

    was observed. Intake of lard fat resulted in increased ascorbate synthesis and affected markers of oxidative damage to proteins in liver cytosol, but not in plasma. The effect was observed at all lard doses and was not dose-dependent. However, no evidence of increased oxidative DNA damage was found in liver...... supplemented with 0, 3, 10 or 30% w/w lard. After 3 weeks, the mutation frequency, DNA repair gene expression, DNA damage and oxidative markers were determined in liver, colon and plasma. The mutation frequency of the lambda gene cII did not increase with increased fat or energy intake in colon or liver....... The DNA-adduct level measured by P-32-postlabelling decreased in both liver and colon with increased fat intake. In liver, this was accompanied by a 2-fold increase of the mRNA level of nucleotide excision repair (NER) gene ERCC1. In colon, a non-statistically significant increase in the ERCC1 mRNA levels...

  1. DNA Adduct Formation from Metabolic 5'-Hydroxylation of the Tobacco-Specific Carcinogen N'-Nitrosonornicotine in Human Enzyme Systems and in Rats.

    Science.gov (United States)

    Zarth, Adam T; Upadhyaya, Pramod; Yang, Jing; Hecht, Stephen S

    2016-03-21

    N'-Nitrosonornicotine (NNN) is carcinogenic in multiple animal models and has been evaluated as a human carcinogen. NNN can be metabolized by cytochrome P450s through two activation pathways: 2'-hydroxylation and 5'-hydroxylation. While most previous studies have focused on 2'-hydroxylation in target tissues of rats, available evidence suggests that 5'-hydroxylation is a major activation pathway in human enzyme systems, in nonhuman primates, and in target tissues of some other rodent carcinogenicity models. In the study reported here, we investigated DNA damage resulting from NNN 5'-hydroxylation by quantifying the adduct 2-(2-(3-pyridyl)-N-pyrrolidinyl)-2'-deoxyinosine (py-py-dI). In rats treated with NNN in the drinking water (7-500 ppm), py-py-dI was the major DNA adduct resulting from 5'-hydroxylation of NNN in vivo. Levels of py-py-dI in the lung and nasal cavity were the highest, consistent with the tissue distribution of CYP2A3. In rats treated with (S)-NNN or (R)-NNN, the ratios of formation of (R)-py-py-dI to (S)-py-py-dI were not the expected mirror image, suggesting that there may be a carrier for one of the unstable intermediates formed upon 5'-hydroxylation of NNN. Rat hepatocytes treated with (S)- or (R)-NNN or (2'S)- or (2'R)-5'-acetoxyNNN exhibited a pattern of adduct formation similar to that of live rats. In vitro studies with human liver S9 fraction or human hepatocytes incubated with NNN (2-500 μM) demonstrated that py-py-dI formation was greater than the formation of pyridyloxobutyl-DNA adducts resulting from 2'-hydroxylation of NNN. (S)-NNN formed more total py-py-dI adducts than (R)-NNN in human liver enzyme systems, which is consistent with the critical role of CYP2A6 in the 5'-hydroxylation of NNN in human liver. The results of this study demonstrate that the major DNA adduct resulting from NNN metabolism by human enzymes is py-py-dI and provide potentially important new insights into the metabolic activation of NNN in rodents and humans.

  2. DNA adducts induced by in vitro activation of diesel and biodiesel exhaust extracts

    Science.gov (United States)

    The abstract reports the results of studies assessing the relative DNA damage potential of extracts of exhaust particles resulting from the combustion of petroleum diesel, biodiesel, and petroleum diesel-biodiesel blends. Results indicate that the commercially available B20 petr...

  3. Synthesis, characterization and DNA cleavage activity of nickel(II adducts with aromatic heterocyclic bases

    Directory of Open Access Journals (Sweden)

    G. H. PHILIP

    2010-01-01

    Full Text Available Mixed ligand complexes of nickel(II with 2,4-dihydroxyaceto-phenone oxime (DAPO and 2,4-dihydroxybenzophenone oxime (DBPO as primary ligands, and pyridine (Py and imidazole (Im as secondary ligands were synthesized and characterized by molar conductivity, magnetic moments measurements, as well as by electronic, IR, and 1H-NMR spectroscopy. Electrochemical studies were performed by cyclic voltammetry. The active signals are assignable to the NiIII/II and NiII/I redox couples. The binding interactions between the metal complexes and calf thymus DNA were investigated by absorption and thermal denaturation. The cleavage activity of the complexes was determined using double-stranded pBR322 circular plasmid DNA by gel electrophoresis. All complexes showed increased nuclease activity in the presence of the oxidant H2O2. The nuclease activities of mixed ligand complexes were compared with those of the parent copper(II complexes.

  4. Astragalin from Cassia alata induces DNA adducts in vitro and repairable DNA damage in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Saito, Samuel; Silva, Givaldo; Santos, Regineide Xavier; Gosmann, Grace; Pungartnik, Cristina; Brendel, Martin

    2012-01-01

    Reverse phase-solid phase extraction from Cassia alata leaves (CaRP) was used to obtain a refined extract. Higher than wild-type sensitivity to CaRP was exhibited by 16 haploid Saccharomyces cerevisiae mutants with defects in DNA repair and membrane transport. CaRP had a strong DPPH free radical scavenging activity with an IC(50) value of 2.27 μg mL(-1) and showed no pro-oxidant activity in yeast. CaRP compounds were separated by HPLC and the three major components were shown to bind to DNA in vitro. The major HPLC peak was identified as kampferol-3-O-β-d-glucoside (astragalin), which showed high affinity to DNA as seen by HPLC-UV measurement after using centrifugal ultrafiltration of astragalin-DNA mixtures. Astragalin-DNA interaction was further studied by spectroscopic methods and its interaction with DNA was evaluated using solid-state FTIR. These and computational (in silico) docking studies revealed that astragalin-DNA binding occurs through interaction with G-C base pairs, possibly by intercalation stabilized by H-bond formation.

  5. 1,N(2)-propanodeoxyguanosine adduct formation in aortic DNA following inhalation of acrolein.

    OpenAIRE

    2001-01-01

    Recent reports indicate that many of the cytotoxic and health-threatening components of environmental tobacco smoke (ETS) reside in the vapor phase of the smoke. We have reported previously that inhalation of 1,3-butadiene, a prominent vapor phase component of ETS, accelerates arteriosclerotic plaque development in cockerels. In this study we asked whether inhaled acrolein, a reactive aldehyde that is also a prominent vapor-phase component of ETS, damages artery-wall DNA and accelerates plaqu...

  6. Estrogen-DNA Adducts as Novel Biomarkers for Ovarian Cancer Risk and for Use in Prevention

    Science.gov (United States)

    2013-03-01

    urine samples [4] and genetic polymorphisms in four selected estrogen- metabolizing enzymes in DNA saliva samples from 50 women diagnosed with ovarian...The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed...5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: 5f. WORK UNIT

  7. Insertion of dNTPs Opposite the 1,N[superscript 2]-Propanodeoxyguanosine Adduct by Sulfolobus solfataricus P2 DNA Polymerase IV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yazhen; Musser, Sarah K.; Saleh, Sam; Marnett, Lawrence J.; Egli, Martin; Stone, Michael P. (Vanderbilt)

    2008-08-04

    1,N{sup 2}-Propanodeoxyguanosine (PdG) is a stable structural analogue for the 3-(2'-deoxy-{beta}-d-erythro-pentofuranosyl)pyrimido[1,2-?]purin-10(3H)-one (M{sub 1}dG) adduct derived from exposure of DNA to base propenals and to malondialdehyde. The structures of ternary polymerase-DNA-dNTP complexes for three template-primer DNA sequences were determined, with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4), at resolutions between 2.4 and 2.7 {angstrom}. Three template 18-mer-primer 13-mer sequences, 5'-d(TCACXAAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTT)-3' (template I), 5'-d(TCACXGAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTC)-3' (template II), and 5'-d(TCATXGAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTC)-3' (template III), where X is PdG, were analyzed. With templates I and II, diffracting ternary complexes including dGTP were obtained. The dGTP did not pair with PdG, but instead with the 5'-neighboring template dC, utilizing Watson-Crick geometry. Replication bypass experiments with the template-primer 5?-TCACXAAATCCTTACGAGCATCGCCCCC-3'{center_dot}5'-GGGGGCGATGCTCGTAAGGATTT-3', where X is PdG, which includes PdG in the 5'-CXA-3' template sequence as in template I, showed that the Dpo4 polymerase inserted dGTP and dATP when challenged by the PdG adduct. For template III, in which the template sequence was 5'-TXG-3', a diffracting ternary complex including dATP was obtained. The dATP did not pair with PdG, but instead with the 5'-neighboring T, utilizing Watson-Crick geometry. Thus, all three ternary complexes were of the 'type II' structure described for ternary complexes with native DNA [Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Cell 107, 91--102]. The PdG adduct remained in the anti conformation about the glycosyl bond in each of these threee ternary complexes. These results provide insight into how -1

  8. Single-stranded oligonucleotide adducts formed by Pt complexes favoring left-handed base canting: steric effect of flanking residues and relevance to DNA adducts formed by Pt anticancer drugs.

    Science.gov (United States)

    Saad, Jamil S; Marzilli, Patricia A; Intini, Francesco P; Natile, Giovanni; Marzilli, Luigi G

    2011-09-01

    Platinum anticancer drug binding to DNA creates large distortions in the cross-link (G*G*) and the adjacent XG* base pair (bp) steps (G* = N7-platinated G). These distortions, which are responsible for anticancer activity, depend on features of the duplex (e.g., base pairing) and of the cross-link moiety (e.g., the position and canting of the G* bases). The duplex structure stabilizes the head-to-head (HH) over the head-to-tail (HT) orientation and right-handed (R) over left-handed (L) canting of the G* bases. To provide fundamental chemical information relevant to the assessment of such duplex effects, we examine (S,R,R,S)-BipPt(oligo) adducts (Bip = 2,2'-bipiperidine with S,R,R,S chiral centers at the N, C, C, and N chelate ring atoms, respectively; oligo = d(G*pG*) with 3'- and/or 5'-substituents). The moderately bulky (S,R,R,S)-Bip ligand favors L canting and slows rotation about the Pt-G* bonds, and the (S,R,R,S)-BipPt(oligo) models provide more useful data than do dynamic models derived from active Pt drugs. All 5'-substituents in (S,R,R,S)-BipPt(oligo) adducts favor the normal HH conformer (∼97%) by destabilizing the HT conformer through clashes with the 3'-G* residue rather than through favorable H-bonding interactions with the carrier ligand in the HH conformer. For all (S,R,R,S)-BipPt(oligo) adducts, the S pucker of the 5'-X residue is retained. For these adducts, a 5'-substituent had only modest effects on the degree of L canting for the (S,R,R,S)-BipPt(oligo) HH conformer. This small flanking 5'-substituent effect on an L-canted HH conformer contrasts with the significant decrease in the degree of R canting previously observed for flanking 5'-substituents in the R-canted (R,S,S,R)-BipPt(oligo) analogues. The present data support our earlier hypothesis that the distortion distinctive to the XG* bp step (S to N pucker change and movement of the X residue) is required for normal stacking and X·X' WC H bonding and to prevent XG* residue clashes.

  9. Cytochrome P450 system expression and DNA adduct formation in the liver of Zacco platypus following waterborne benzo(a)pyrene exposure: implications for biomarker determination.

    Science.gov (United States)

    Lee, Jin Wuk; Kim, Yong Hwa; Yoon, Seokjoo; Lee, Sung Kyu

    2014-09-01

    Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that causes mutations and tumor formation. Zacco platypus is a sentinel species that is suitable for monitoring aquatic environments. We studied cytochrome P450 system (CYP system) expression and DNA adduct formation in the liver of Z. platypus following waterborne exposure to BaP. The results showed both dose and time dependency. The significant induction levels of CYP system mRNA and protein reached maximums at 2 days and 14 days, respectively, and hepatosomatic index was maximally induced at 4 days during 14 days BaP exposure. DNA adduct formation was significantly induced compared to corresponding controls (t-test, p adduct formation was a useful biomarker in risk assessment of waterborne BaP exposure at 4 days. CYP1A was a more sensitive biomarker than CYP reductase for BaP exposure when considering both the mRNA and protein level. Furthermore, our results show that Z. platypus is a useful species for assessing the risk of waterborne BaP exposure.

  10. Assessment of interactions between PAH exposure and genetic polymorphisms on PAH-DNA adducts in African American, Dominican, and Caucasian mothers and newborns.

    Science.gov (United States)

    Wang, Shuang; Chanock, Stephen; Tang, Deliang; Li, Zhigang; Jedrychowski, Wieslaw; Perera, Frederica P

    2008-02-01

    Polycyclic aromatic hydrocarbons (PAH) are widespread pollutants commonly found in air, food, and drinking water. Benzo[a]pyrene is a well-studied representative PAH found in air from fossil fuel combustion and a transplacental carcinogen experimentally. PAHs bind covalently to DNA to form DNA adducts, an indicator of DNA damage, and an informative biomarker of potential cancer risk. Associations between PAH-DNA adduct levels and both cancer risk and developmental deficits have been seen in previous experimental and epidemiologic studies. Several genes have been shown to play an important role in the metabolic activation or detoxification of PAHs, including the cytochrome P450 genes CYP1A1 and CYP1B1 and the glutathione S-transferase (GST) genes GSTM1, and GSTT2. Genetic variation in these genes could influence susceptibility to adverse effects of PAHs in polluted air. Here, we have explored interactions between prenatal PAH exposure and 17 polymorphisms in these genes (rs2198843, rs1456432, rs4646903, rs4646421, rs2606345, rs7495708, rs2472299, rs162549, rs1056837, rs1056836, rs162560, rs10012, rs2617266, rs2719, rs1622002, rs140194, and gene deletion GSTM1-02) and haplotypes on PAH-DNA adducts in cord blood of 547 newborns and in maternal blood of 806 mothers from three different self-described ethnic groups: African Americans, Dominicans, and Caucasians. PAHs were measured by personal air monitoring of mothers during pregnancy. Significant interactions (p < 0.05) were observed between certain genetic polymorphisms and CYP1A1 haplotype and PAHs in mothers and their newborns in the three ethnic groups. However, with our limited sample size, the current findings are suggestive only, warranting further study.

  11. Effect of green tea catechins and hydrolyzable tannins on benzo[a]pyrene-induced DNA adducts and structure-activity relationship.

    Science.gov (United States)

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C

    2010-04-19

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)-DNA adducts and the possible structure-activity relationship. BP (1 microM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1-200 microM) or vehicle. The purified DNA was analyzed by (32)P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC(50) = 16 microM) > epicatechin gallate (24 microM) > epigallocatechin (146 microM) > epicatechin (462 microM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC(50) = 4 microM) and pentagalloglucose (IC(50) = 26 microM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 microM) in the presence of test compounds (200 microM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography-mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP-DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is

  12. Complete protection against aflatoxin B(1)-induced liver cancer with a triterpenoid: DNA adduct dosimetry, molecular signature, and genotoxicity threshold.

    Science.gov (United States)

    Johnson, Natalie M; Egner, Patricia A; Baxter, Victoria K; Sporn, Michael B; Wible, Ryan S; Sutter, Thomas R; Groopman, John D; Kensler, Thomas W; Roebuck, Bill D

    2014-07-01

    In experimental animals and humans, aflatoxin B1 (AFB1) is a potent hepatic toxin and carcinogen. The synthetic oleanane triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), a powerful activator of Keap1-Nrf2 signaling, protects against AFB1-induced toxicity and preneoplastic lesion formation (GST-P-positive foci). This study assessed and mechanistically characterized the chemoprotective efficacy of CDDO-Im against AFB1-induced hepatocellular carcinoma (HCC). A lifetime cancer bioassay was undertaken in F344 rats dosed with AFB1 (200 μg/kg rat/day) for four weeks and receiving either vehicle or CDDO-Im (three times weekly), one week before and throughout the exposure period. Weekly, 24-hour urine samples were collected for analysis of AFB1 metabolites. In a subset of rats, livers were analyzed for GST-P foci. The comparative response of a toxicogenomic RNA expression signature for AFB1 was examined. CDDO-Im completely protected (0/20) against AFB1-induced liver cancer compared with a 96% incidence (22/23) observed in the AFB1 group. With CDDO-Im treatment, integrated level of urinary AFB1-N(7)-guanine was significantly reduced (66%) and aflatoxin-N-acetylcysteine, a detoxication product, was consistently elevated (300%) after the first AFB1 dose. In AFB1-treated rats, the hepatic burden of GST-P-positive foci increased substantially (0%-13.8%) over the four weeks, but was largely absent with CDDO-Im intervention. The toxicogenomic RNA expression signature characteristic of AFB1 was absent in the AFB1 + CDDO-Im-treated rats. The remarkable efficacy of CDDO-Im as an anticarcinogen is established even in the face of a significant aflatoxin adduct burden. Consequently, the absence of cancer requires a concept of a threshold for DNA damage for cancer development.

  13. Biological significance of DNA adducts: comparison of increments over background for various biomarkers of genotoxicity in L5178Y tk(+/-) mouse lymphoma cells treated with hydrogen peroxide and cumene hydroperoxide.

    Science.gov (United States)

    Brink, Andreas; Richter, Ingrid; Lutz, Ursula; Wanek, Paul; Stopper, Helga; Lutz, Werner K

    2009-08-01

    DNA is affected by background damage of the order of one lesion per one hundred thousand nucleotides, with depurination and oxidative damage accounting for a major part. This damage contributes to spontaneous mutation and cancer. DNA adducts can be measured with high sensitivity, with limits of detection lower than one adduct per one billion nucleotides. Minute exposures to an exogenous DNA-reactive agent may therefore result in measurable adduct formation, although, as an increment over total DNA damage, a small increment in mutation cannot be measured and would be considered negligible. Here, we investigated whether this discrepancy also holds for adducts that are present as background induced by oxidative stress. L5178Y tk(+/-) mouse lymphoma cells were incubated for 4h with hydrogen peroxide (0, 0.8, 4, 20, 100, 500muM) or cumene hydroperoxide (0, 0.37, 1.1, 3.3, 10muM). Five endpoints of genotoxicity were measured in parallel from aliquots of three replicates of large batches of cells: Two DNA adducts, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 1,N(6)-etheno-2'-deoxyadenosine (varepsilondAdo) measured by LC-MS/MS, as well as strand breaks assessed with the comet assay and in vitro micronucleus test, and gene mutation as assessed using the thymidine kinase gene mutation assay. Background measures of 8-oxodGuo and varepsilondAdo were 500-1000 and 50-90 adducts per 10(9) nucleotides. Upon treatment, neither hydrogen peroxide nor cumene hydroperoxide significantly increased the DNA adduct levels above control. In contrast, dose-related increases above background were observed with both oxidants in the comet assay, the micronucleus test and the gene mutation assay. Differences in sensitivity of the assays were quantified by estimating the concentration of oxidant that resulted in a doubling of the background measure. We conclude that the increase in DNA breakage and mutation induced by hydrogen peroxide and cumene hydroperoxide observed in our in vitro

  14. The importance of carcinogen dose in chemoprevention studies: quantitative interrelationships between, dibenzo[a,l]pyrene dose, chlorophyllin dose, target organ DNA adduct biomarkers and final tumor outcome.

    Science.gov (United States)

    Pratt, M Margaret; Reddy, Ashok P; Hendricks, Jerry D; Pereira, Cliff; Kensler, Thomas W; Bailey, George S

    2007-03-01

    Chlorophyllin (CHL) is a potent antimutagen in vitro, an effective anti-carcinogen in several animal models, and significantly reduced urinary biomarkers of aflatoxin B(1) (AFB(1)) exposure in a human population. Here we report an expanded analysis of CHL chemoprevention using the potent environmental hydrocarbon dibenzo[a,l]pyrene (DBP). A dose-dose matrix design employed over 12 000 rainbow trout to evaluate the interrelationships among dietary carcinogen dose, anti-carcinogen dose, carcinogen-DNA adduct levels at exposure and eventual tumor outcome in two target organs. Included was an evaluation of the pharmaceutical CHL preparation (Derifil), used previously in a study of individuals chronically exposed to AFB(1). CHL was pre-, co- and post-fed at doses of 0-6000 p.p.m. and co-fed with DBP at doses of 0-371.5 p.p.m. for 4 weeks. This protocol generated a total of 21 dose-dose treatment groups, each evaluated with three or more replicates of 100 animals. The DBP-only treatment produced dose-responsive increases in liver and stomach DBP-DNA adducts, whereas increasing CHL co-treatment doses produced successive inhibition in liver (49-83%) and stomach (47-75%) adduct levels at each DBP dose examined. The remaining 8711 trout were necropsied, 10 months later. DBP treatment alone produced a logit incidence versus log [DBP] dose-response curve in stomach that was linear; CHL co-treatment provided dose-dependent tumor inhibition which ranged from 30 to 68% and was predictable from the adduct response. The Derifil CHL preparation was also found to effectively reduce DNA adduction and final tumor incidence in stomach (as well as liver), with a potency compatible with its total chlorin content. Liver tumor incidence in the DBP-only groups appeared to plateau near 60%. At DBP doses of DNA adducts as biomarkers. At 225 p.p.m. DBP, however, very high CHL doses were

  15. Urinary physiologic and chemical metabolic effects on the urothelial cytotoxicity and potential DNA adducts of o-phenylphenol in male rats.

    Science.gov (United States)

    Smith, R A; Christenson, W R; Bartels, M J; Arnold, L L; St John, M K; Cano, M; Garland, E M; Lake, S G; Wahle, B S; McNett, D A; Cohen, S M

    1998-06-01

    ortho-Phenylphenol (OPP), a fungicide and antibacterial agent with food residues, is carcinogenic to rat bladder. The present studies provide information on changes in urinary composition and urinary metabolites, urothelial cytotoxicity and regenerative hyperplasia, and DNA adducts in male F344 rats fed OPP. An initial experiment evaluated dietary doses of 0, 1,000, 4,000, and 12,500 ppm OPP fed for 13 weeks. There was no evidence of urinary calculi, microcrystalluria, or calcium phosphate-containing precipitate, but urothelial cytotoxicity and hyperplasia occurred at the highest dose only. In a second experiment, rats were fed dietary OPP levels of 0, 800, 4,000, 8,000, and 12,500 ppm. Urinary pH was > 7 in all groups. Urinary volume was increased at the 2 highest doses with consequent decreases in osmolality, creatinine, and other solutes. Total urinary OPP metabolite excretions were increased, mostly excreted as conjugates of OPP and of phenylhydroquinone. Free OPP or free metabolites accounted for less than 2% excreted in the urine without a dose response. Urothelial toxicity and hyperplasia occurred only at doses of 8,000 and 12,500 ppm. OPP-DNA adducts were not detected in the urothelium at any dose. In summary, OPP produces cytotoxicity and proliferation of the urothelium at dietary doses > or = 8,000 ppm without formation of urinary solids. The paucity of unconjugated metabolites and the lack of OPP-DNA adducts suggests that OPP is acting as a bladder carcinogen in male rats by inducing cytotoxicity and hyperplasia without it or its metabolites directly binding to DNA.

  16. Genetic polymorphisms in biotransformation enzymes for benzo[a]pyrene and related levels of benzo[a]pyrene-7,8-diol-9,10-epoxide-DNA adducts in Goeckerman therapy.

    Science.gov (United States)

    Beranek, Martin; Fiala, Zdenek; Kremlacek, Jan; Andrys, Ctirad; Hamakova, Kvetoslava; Chmelarova, Marcela; Palicka, Vladimir; Borska, Lenka

    2016-07-25

    Goeckerman therapy (GT) for psoriasis combines the therapeutic effect of crude coal tar (CCT) and ultraviolet radiation (UVR). CCT contains polycyclic aromatic hydrocarbons, some of which can form DNA adducts that may induce mutations and contribute to carcinogenesis. The aim of our work was to evaluate the relationship between concentrations of benzo[a]pyrene-7,8-diol-9,10-epoxide-DNA adducts (BPDE-DNA adducts) and rs4646903 (CYP1A1 gene), rs1048943 (CYP1A1), rs1056836 (CYP1B1), rs1051740 (EPHX1), rs2234922 (EPHX1) and rs8175347 (UGT1A1) polymorphic sites, and GSTM1 null polymorphism in 46 patients with chronic stable plaque psoriasis who underwent GT. The level of BPDE-DNA adducts was determined using the OxiSelect BPDE-DNA Adduct ELISA Kit. Polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (rs4646903, rs1048943, rs1051740, and rs2234922), fragment analysis (rs8175347), real-time PCR (rs1056836), and digital droplet PCR polymorphism (GSTM1) were used. CYP1B1*1/*1 wild-type subjects and CYP1B1*3/*1 heterozygotes for rs1056836 formed significantly higher amounts of BPDE-DNA adducts than CYP1B1*3/*3 homozygotes (p=0.031 and p=0.005, respectively). Regarding rs1051740, individuals with EPHX1*3/*1 heterozygosity revealed fewer adducts than EPHX1*1/*1 wild-type subjects (p=0.026). Our data suggest that CYP1B1/EPHX1 genotyping could help to predict the risk of DNA damage and to optimize doses of coal tar and UVR exposure in psoriatic patients in whom GT was applied.

  17. DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human hepatocytes.

    Science.gov (United States)

    Nauwelaërs, Gwendoline; Bellamri, Medjda; Fessard, Valérie; Turesky, Robert J; Langouët, Sophie

    2013-09-16

    Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25-100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ∼5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a 10,000-fold concentration range (1 nM-10 μM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes suggest that AαC can contribute to DNA damage

  18. In vitro studies of the genotoxic effects of bitumen and coal-tar fume condensates: comparison of data obtained by mutagenicity testing and DNA adduct analysis by 32P-postlabelling.

    Science.gov (United States)

    De Méo, M; Genevois, C; Brandt, H; Laget, M; Bartsch, H; Castegnaro, M

    1996-08-14

    Bitumens contain traces of polycyclic aromatic compounds (PACs), a part of which will end up in the fumes emitted during hot handling of bitumen-containing products, e.g. during roadpaving. Although exposure of workers to these fumes is low, it might lead to health problems. Studies on bitumen fume condensates (BFCs) showed weak to moderate mutagenic activities, but studies on DNA adduct formation have not been reported. Therefore, a study was initiated in which fumes were generated from two road grade bitumens, in such a way that they were representative of the fumes produced in the field. The combined vapour/particulates were tested in vitro for their ability to produce DNA adducts and in modified Ames mutation assays, using a number of different strains. An attempt was made to relate the results to chemical data, such as the content of a number of individual polycyclic aromatic hydrocarbons (PAHs) and with a measure for the total PAC content. As a reference material fume condensate from coal-tar (coal-tar pitch volatiles; CTPV) were subjected to the same tests. All fume condensates tested were mutagenic to all strains and induced the formation of DNA adducts. The patterns of DNA adducts, obtained by 32P-postlabelling, arising from the BFCs were qualitatively different from the patterns of adducts obtained from the CTPVs, implying qualitative differences in the nature of the compounds responsible for the formation of these adducts. This is corroborated by the observation that for BFCs quantitative adduct levels are higher than would be expected based on the PAH content. These data thus indicate that the PAHs analysed are not the sole components responsible for adduct formation from BFCs, but that an important contribution comes from other (hetero- and/or substituted-) PACs.

  19. Mechanism of Error-Free Bypass of the Environmental Carcinogen N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase η.

    Science.gov (United States)

    Patra, Amritraj; Politica, Dustin A; Chatterjee, Arindom; Tokarsky, E John; Suo, Zucai; Basu, Ashis K; Stone, Michael P; Egli, Martin

    2016-11-03

    The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP.

  20. Formation of DNA adducts in the skin of psoriasis patients, in human skin in organ culture, and in mouse skin and lung following topical application of coal-tar and juniper tar.

    Science.gov (United States)

    Schoket, B; Horkay, I; Kósa, A; Páldeák, L; Hewer, A; Grover, P L; Phillips, D H

    1990-02-01

    Preparations of coal-tar and juniper tar (cade oil) that are used in the treatment of psoriasis are known to contain numerous potentially carcinogenic polycyclic aromatic hydrocarbons (PAH). Evidence of covalent binding to DNA by components of these mixtures was sought in a) human skin biopsy samples from 12 psoriasis patients receiving therapy with these agents, b) human skin explants maintained in organ culture and treated topically with the tars, and c) the skin and lungs of mice treated with repeated doses of the formulations following the regimen used in the clinic. DNA was isolated from the human and mouse tissues and digested enzymically to mononucleotides. 32P-Post-labeling analysis revealed the presence of aromatic DNA adducts in the biopsy samples at levels of up to 0.4 fmol total adducts/microgram DNA. Treatment of human skin in organ culture produced similar levels of adducts, while treatment with dithranol, a non-mutagenic therapeutic agent, resulted in chromatograms indistinguishable from those from untreated controls. In mouse skin, coal-tar ointment and juniper tar gave similar DNA adduct levels, with a similar time-course of removal: maximum levels (0.5 fmol/microgram DNA) at 24 h after the final treatment declined rapidly to 0.05 fmol/microgram at 7 d, thereafter declining slowly over the succeeding 25 d. However, while coal-tar ointment produced only very low levels of adducts in mouse lung (less than 0.03 fmol/microgram DNA), juniper tar produced adducts at a high level (0.7 fmol/microgram DNA) that were persistent in this tissue. These results provide direct evidence for the formation of potentially carcinogenic DNA damage in human and mouse tissue by components of these therapeutic tar preparations.

  1. Carcinogenicity and DNA adduct formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and enantiomers of its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in F-344 rats.

    Science.gov (United States)

    Balbo, Silvia; Johnson, Charles S; Kovi, Ramesh C; James-Yi, Sandra A; O'Sullivan, M Gerard; Wang, Mingyao; Le, Chap T; Khariwala, Samir S; Upadhyaya, Pramod; Hecht, Stephen S

    2014-12-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is metabolized to enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), found in the urine of virtually all people exposed to tobacco products. We assessed the carcinogenicity in male F-344 rats of (R)-NNAL (5 ppm in drinking water), (S)-NNAL (5 ppm), NNK (5 ppm) and racemic NNAL (10 ppm) and analyzed DNA adduct formation in lung and pancreas of these rats after 10, 30, 50 and 70 weeks of treatment. All test compounds induced a high incidence of lung tumors, both adenomas and carcinomas. NNK and racemic NNAL were most potent; (R)-NNAL and (S)-NNAL had equivalent activity. Metastasis was observed from primary pulmonary carcinomas to the pancreas, particularly in the racemic NNAL group. DNA adducts analyzed were O (2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O (2)-POB-dThd), 7-[4-(3-pyridyl)-4-oxobut-1-yl]guanine(7-POB-Gua),O (6)-[4-(3-pyridyl)-4-oxobut-1-yl]deoxyguanosine(O (6)-POB-dGuo),the 4-(3-pyridyl)-4-hydroxybut-1-yl(PHB)adductsO (2)-PHB-dThd and 7-PHB-Gua, O (6)-methylguanine (O (6)-Me-Gua) and 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB)-releasing adducts. Adduct levels significantly decreased with time in the lungs of rats treated with NNK. Pulmonary POB-DNA adducts and O (6)-Me-Gua were similar in rats treated with NNK and (S)-NNAL; both were significantly greater than in the (R)-NNAL rats. In contrast, pulmonary PHB-DNA adduct levels were greatest in the rats treated with (R)-NNAL. Total pulmonary DNA adduct levels were similar in (S)-NNAL and (R)-NNAL rats. Similar trends were observed for DNA adducts in the pancreas, but adduct levels were significantly lower than in the lung. The results of this study clearly demonstrate the potent pulmonary carcinogenicity of both enantiomers of NNAL in rats and provide important new information regarding DNA damage by these compounds in lung and pancreas.

  2. A feasibility study of the use of saliva as an alternative to leukocytes as a source of DNA for the study of Pt-DNA adducts in cancer patients receiving platinum-based chemotherapy.

    Science.gov (United States)

    Taylor, Sarah E; Wood, Joanna P; Thomas, Anne L; Jones, George D D; Reid, Helen J; Sharp, Barry L

    2014-12-01

    This note presents a comparison of the use of saliva versus leukocytes for the determination of Pt-DNA adducts obtained from patients undergoing platinum-based chemotherapy. Samples of both blood and saliva were taken pre- and post-treatment and were analysed via sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) to determine the level of Pt-DNA adducts formed. As expected, significant inter-patient variability was seen; however, a lack of correlation between the levels of adducts observed in saliva and blood samples was also observed (Pearson correlation coefficient r = -0.2598). A high yield of DNA was obtained from saliva samples, but significant difficulties were experienced in obtaining patient adherence to the saliva sampling procedure. In both leukocyte and saliva samples, not only was Pt from previous chemotherapy cycles detected, but the rapid appearance of Pt in the DNA was noted in both sample types 1 h after treatment.

  3. Analysis of DNA adducts formed in vivo in rats and mice from 1,2-dibromoethane, 1,2-dichloroethane, dibromomethane, and dichloromethane using HPLC/accelerator mass spectrometry and relevance to risk estimates.

    Science.gov (United States)

    Watanabe, Kengo; Liberman, Rosa G; Skipper, Paul L; Tannenbaum, Steven R; Guengerich, F Peter

    2007-11-01

    Dihaloalkanes are of toxicological interest because of their high-volume use in industry and their abilities to cause tumors in rodents, particularly dichloromethane and 1,2-dichloroethane. The brominated analogues are not used as extensively but are known to produce more toxicity in some systems. Rats and mice were treated i.p. with (14)C-dichloromethane, -dibromomethane, -1,2-dichloroethane, or -1,2-dibromoethane [5 mg (kg body weight)(-1)], and livers and kidneys were collected to rapidly isolate DNA. The DNA was digested using a procedure designed to minimize processing time, because some of the potential dihalomethane-derived DNA-glutathione (GSH) adducts are known to be unstable, and the HPLC fractions corresponding to major adduct standards were separated and analyzed for (14)C using accelerator mass spectrometry. The level of liver or kidney S-[2-(N(7)-guanyl)ethyl]GSH in rats treated with 1,2-dibromoethane was approximately 1 adduct/10(5) DNA bases; in male or female mice, the level was approximately one-half of this. The levels of 1,2-dichloroethane adducts were 10-50-fold lower. None of four known (in vitro) GSH-DNA adducts was detected at a level of >2/10(8) DNA bases from dibromomethane or dichloromethane. These results provide parameters for risk assessment of these compounds: DNA binding occurs with 1,2-dichloroethane but is considerably less than from 1,2-dibromoethane in vivo, and low exposure to dihalomethanes does not produce appreciable DNA adduct levels in rat or mouse liver and kidney of the doses used. The results may be used to address issues in human risk assessment.

  4. 32P-postlabeling analysis of DNA adduction in mice by synthetic metabolites of the environmental carcinogen, 7H-dibenzo[c,g]carbazole: chromatographic evidence for 3-hydroxy-7H-dibenzo[c,g]carbazole being a proximate genotoxicant in liver but not skin.

    Science.gov (United States)

    Schurdak, M E; Stong, D B; Warshawsky, D; Randerath, K

    1987-04-01

    The DNA adduction by the environmental carcinogen 7H-dibenzo[c,g]carbazole (DBC) and chemically synthesized 2-OH, 3-OH, and 4-OH metabolites of DBC was investigated in liver and skin of female CD-1 mice. After topical application to the skin of 37 mumol/kg of DBC or the phenolic metabolites, DNA adducts were measured by a 32P-post-labeling assay employing carrier-free [gamma-32P]ATP and ATP-deficient conditions. In liver, DBC produced four major and several minor chromatographically distinct adducts of as yet undetermined chemical structure. The adduct pattern elicited by 3-OH-DBC was qualitatively similar to the DBC adduct pattern, while this was not the case for 2-OH-DBC and 4-OH-DBC. On the basis of co-chromatography experiments under various conditions, the DBC and 3-OH-DBC adducts appeared identical, and the total of adduction elicited by these compounds in liver was substantial. Similar results were observed when DBC or 3-OH-DBC were administered i.p. As a major difference between the two compounds, one 3-OH-DBC adduct (no. 3) was 4.4- and 7.0-fold lower than the corresponding DBC adduct after i.p. and topical dosing, respectively. In skin, DBC produced two major adduct fractions after topical application, one of which could be chromatographically resolved into three subcomponents. Prominent adducts produced in skin DNA by each of the three metabolites were different from those elicited by DBC, and the level of adduction by the metabolites was significantly lower than that by DBC. Comparison of the skin and liver DBC-DNA adduct patterns after topical application of DBC showed that only one of the four major chromatographically resolved skin adducts corresponded to a major liver adduct (no. 3), and that total adduction in liver was 13.5-fold higher than in skin. These results suggested that activation of DBC to DNA-binding compounds in liver occurs through at least two pathways with 3-OH-DBC being a proximate carcinogen involved in the formation of most of the

  5. Simultaneous measurement of benzo[a]pyrene-induced Pig-a and lacZ mutations, micronuclei and DNA adducts in Muta™ Mouse.

    Science.gov (United States)

    Lemieux, Christine L; Douglas, George R; Gingerich, John; Phonethepswath, Souk; Torous, Dorothea K; Dertinger, Stephen D; Phillips, David H; Arlt, Volker M; White, Paul A

    2011-12-01

    In this study we compared the response of the Pig-a gene mutation assay to that of the lacZ transgenic rodent mutation assay, and demonstrated that multiple endpoints can be measured in a 28-day repeat dose study. Muta™Mouse were dosed daily for 28 days with benzo[a]pyrene (BaP; 0, 25, 50 and 75 mg/kg body weight/day) by oral gavage. Micronucleus (MN) frequency was determined in reticulocytes (RETs) 48 hr following the last dose. 72 h following the last dose, mice were euthanized, and tissues (glandular stomach, small intestine, bone marrow and liver) were collected for lacZ mutation and DNA adduct analysis, and blood was evaluated for Pig-a mutants. BaP-derived DNA adducts were detected in all tissues examined and significant dose-dependent increases in mutant Pig-a phenotypes (i.e., RET(CD24-) and RBC (CD24-)) and lacZ mutants were observed. We estimate that mutagenic efficiency (i.e., rate of conversion of adducts into mutations) was much lower for Pig-a compared to lacZ, and speculate that this difference is likely explained by differences in repair capacity between the gene targets, and differences in the cell populations sampled for Pig-a versus lacZ. The BaP doubling doses for both gene targets, however, were comparable, suggesting that similar mechanisms are involved in the accumulation of gene mutations. Significant dose-related increases in % MN were also observed; however, the doubling dose was considerably higher for this endpoint. The similarity in dose response kinetics of Pig-a and lacZ provides further evidence for the mutational origin of glycosylphosphatidylinositol (GPI)-anchor deficiencies detected in the Pig-a assay.

  6. Modulations of benzo[a]pyrene-induced DNA adduct, cyclin D1 and PCNA in oral tissue by 1,4-phenylenebis(methylene)selenocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kun-Ming [Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Sacks, Peter G. [Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010 (United States); Spratt, Thomas E.; Lin, Jyh-Ming; Boyiri, Telih [Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Schwartz, Joel [University of Illinois, College of Dentistry, Chicago, IL 60612 (United States); Richie, John P.; Calcagnotto, Ana [Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033 (United States); Das, Arunangshu; Bortner, James [Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Zhao, Zonglin [Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010 (United States); Department of Environmental Medicine, School of Medicine, New York University, New York, NY 10010 (United States); Amin, Shantu [Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033 (United States); Guttenplan, Joseph [Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010 (United States); Department of Environmental Medicine, School of Medicine, New York University, New York, NY 10010 (United States); El-Bayoumy, Karam, E-mail: kee2@psu.edu [Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 (United States)

    2009-05-22

    Tobacco smoking is an important cause of human oral squamous cell carcinoma (SCC). Tobacco smoke contains multiple carcinogens include polycyclic aromatic hydrocarbons typified by benzo[a]pyrene (B[a]P). Surgery is the conventional treatment approach for SCC, but it remains imperfect. However, chemoprevention is a plausible strategy and we had previously demonstrated that 1,4-phenylenebis(methylene)selenocyanate (p-XSC) significantly inhibited tongue tumors-induced by the synthetic 4-nitroquinoline-N-oxide (not present in tobacco smoke). In this study, we demonstrated that p-XSC is capable of inhibiting B[a]P-DNA adduct formation, cell proliferation, cyclin D1 expression in human oral cells in vitro. In addition, we showed that dietary p-XSC inhibits B[a]P-DNA adduct formation, cell proliferation and cyclin D1 protein expression in the mouse tongue in vivo. The results of this study are encouraging to further evaluate the chemopreventive efficacy of p-XSC initially against B[a]P-induced tongue tumors in mice and ultimately in the clinic.

  7. 丙烯醛-DNA加合物的研究进展%REVIEW:THE FORMATION AND MUTAGENESIS OF ACROLEIN-DNA ADDUCTS

    Institute of Scientific and Technical Information of China (English)

    尹瑞川; 汪海林

    2011-01-01

    丙烯醛是一种活泼的a,β不饱和醛,在环境中广泛存在,香烟烟气和厨房油烟是人体丙烯醛暴露的主要环境来源.另一方面机体内丙烯醛可以通过脂质过氧化、氨基酸氧化等多种途径自发生成.进入人体后,丙烯醛和DNA发生加合生成丙烯醛-DNA加合物,目前研究最多的是丙烯醛-dG加合物,包括a-OH-PdG和γ-OH-PdG,其中γ-OH-PdG是主要dG加合物,可引起基因突变(约1%),以G→T突变为主,而次要加合物a-OH-PdG的突变概率高于γ-OH-PdG(约8%),同样以G→T突变为主,并且这些加合物与一些癌症密切相关,如吸烟相关肺癌和膀胱癌等.此外,丙烯醛可以与其它碱基发生加合,生成其它类型的DNA加合物,包括丙烯醛-dA、dC和dT加合物,其中一些加合物的结构已表征,并在体外反应中存在.%Acrolein, one of the most reactive α,β unsaturated aldehydes, is an ubiquitous environmental pollutant and is found in cigarette smoking and cooking. On the other hand, acrolein can also be endogenously released during lipid peroxidation, myeloperoxidase-mediated degradation of amino acids, and so on. Acrolein can directly react with DNA without metabolic activation. As a result several types of DNA adducts could be produced. Currently, most of studies focus on Acrolein-dG adduct, including α-OH-PdG and γ-OH-PdG. The measured amount of γ-OH-PdG is higher than α-OH-PdG in human body and it can generate about 1% gene mutation, while gene mutation frequency is 8% for α-OH-PdG. Both adducts mainly induce G→T mutation.In addition, other base adducts may also be generated in vitro, including Aerolein-dA, dC, and dT adducts.But their metabolism and genotoxicity are unknown. To unbiasedly judge the genotoxicity of acrolein, the formation, metabolism and genotoxicity of non-dG adducts should be considered.

  8. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Beata Janowska, Marek Komisarski, Paulina Prorok, Beata Sokołowska, Jarosław Kuśmierek, Celina Janion, Barbara Tudek

    2009-01-01

    Full Text Available One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE. HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.

  9. Chemoprevention of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced carcinogen-DNA adducts by Chinese cabbage in rats

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    AIM The food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces colon and mammary gland tumors in rats and has been implicated in the etiology of human colorectal cancer. This study was conducted to examine the potentially preventive effect of Chinese cabbage (Brassica chinensis), a brassica vegetable most commonly consumed in China, against this carcinogen-induced DNA adduct formation in rats and its possible mechanisms.METHODS Sprague-Dawley rats were maintained for 10 days on basal diet or diet containing 20% (w/ w) freeze-dried cabbage powder prior to administration of a single dose of PhIP (10 mg/ kg) by oral gavage. Rats were sacrificed at 20 h after PhIP treatment and PhIP-DNA adducts in the colon, heart, lung and liver were analyzed using 32P-postlabeling technique. Levels of hepatic cytochrome P450 (CYP) 1A1 and 1A2, as indicated by 7-ethoxyresorufin O-deethylase and 7-methlxyresorufin O-demethylase activity, and cytosolic glutathione S-transferases (GSTs) towards 1-chloro-2, 4-dinitrobenzene (CDNB) in the liver, lung and colon were measured.RESULTS Rats pre-treated with Chinese cabbage and given a single dose of PhIP had reduced levels of PhIP-DNA adducts in the colon, heart, lung and liver, with inhibition rates of 82.3%, 60.6%, 48.4% and 48.9%, respectively (P<0.01). The enzyme assays revealed that Chinese cabbage induced both CYP1A1 and 1A2 activity, but the induction was preferential for CYP1A1 over 1A2 (81% vs 51%). GST activity towards CDNB in the liver and lung, but not colon, was also significantly increased by cabbage treatment.CONCLUSION The results indicate that Chinese cabbage has a preventive effect on PhIP-initiated carcinogenesis in rats and the mechanism is likely to involve the induction of detoxification enzymes.

  10. Metabolism of benzo(a)pyrene and identification of the major benzo(a)pyrene-DNA adducts in cultured human colon

    DEFF Research Database (Denmark)

    1978-01-01

    ]benzo(a)pyrene for another 24 hr and the binding to cellular DMA and protein was measured. Two adducts, formed between benzo(a)pyrene and DMA, have been isolated. The major adduct (72 to 100%) was formed between the 10-position of benzo(a)pyrene diol-epoxide I and the 2-amino group of guanine, and the minor adduct...

  11. Basil extract inhibits the sulfotransferase mediated formation of DNA adducts of the procarcinogen 1'-hydroxyestragole by rat and human liver S9 homogenates and in HepG2 human hepatoma cells

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Punt, A.; Delatour, T.; Rietjens, I.M.C.M.

    2008-01-01

    The effects of a basil extract on the sulfation and concomitant DNA adduct formation of the proximate carcinogen 1¿-hydroxyestragole were studied using rat and human liver S9 homogenates and the human hepatoma cell line HepG2. Basil was chosen since it contains the procarcinogen estragole that can b

  12. Prediction of treatment outcome by cisplatin-DNA adduct formation in patients with stage III/IV head and neck squamous cell carcinoma, treated by concurrent cisplatin-radiation (RADPLAT).

    NARCIS (Netherlands)

    Hoebers, F.J.; Pluim, D.; Verheij, M.; Balm, A.J.M.; Bartelink, H.; Schellens, J.H.M.; Begg, A.C.

    2006-01-01

    The purpose of our study was to test the predictive value of cisplatin-DNA adduct levels in head and neck squamous cell carcinoma (HNSCC) patients treated with cisplatin-radiation. Patients with advanced-stage HNSCC were treated within a randomized trial, investigating the optimal route of cisplatin

  13. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin

    NARCIS (Netherlands)

    Alhusainy, W.; Paini, A.; Berg, van den J.H.J.; Punt, A.; Scholz, G.; Schilter, B.; Bladeren, van P.J.; Taylor, S.; Adams, T.B.; Rietjens, I.

    2013-01-01

    ScopeThe present work investigates whether the previous observation that the basil flavonoid nevadensin is able to inhibit sulfotransferase (SULT)-mediated estragole DNA adduct formation in primary rat hepatocytes could be validated in vivo. Methods and resultsEstragole and nevadensin were co-admini

  14. JM216-, JM118-, and cisplatin-induced cytotoxicity in relation to platinum-DNA adduct formation, glutathione levels and p53 status in human tumour cell lines with different sensitivities to cisplatin

    NARCIS (Netherlands)

    Fokkema, E; Groen, HJM; Helder, MN; de Vries, EGE; Meijer, C

    2002-01-01

    The aim of this study is to establish anti-tumour potency of the new oral platinum drug JM216 and its metabolite JM118 in relation to the platinum (Pt)-DNA adduct formation, glutathione (GSH)-levels, and p53 status in human cancer cell lines with different sensitivities to cisplatin (CDDP). These pa

  15. Nucleotide excision repair deficiency increases levels of acrolein-derived cyclic DNA adduct and sensitizes cells to apoptosis induced by docosahexaenoic acid and acrolein.

    Science.gov (United States)

    Pan, Jishen; Sinclair, Elizabeth; Xuan, Zhuoli; Dyba, Marcin; Fu, Ying; Sen, Supti; Berry, Deborah; Creswell, Karen; Hu, Jiaxi; Roy, Rabindra; Chung, Fung-Lung

    2016-07-01

    The acrolein derived cyclic 1,N(2)-propanodeoxyguanosine adduct (Acr-dG), formed primarily from ω-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) under oxidative conditions, while proven to be mutagenic, is potentially involved in DHA-induced apoptosis. The latter may contribute to the chemopreventive effects of DHA. Previous studies have shown that the levels of Acr-dG are correlated with apoptosis induction in HT29 cells treated with DHA. Because Acr-dG is shown to be repaired by the nucleotide excision repair (NER) pathway, to further investigate the role of Acr-dG in apoptosis, in this study, NER-deficient XPA and its isogenic NER-proficient XAN1 cells were treated with DHA. The Acr-dG levels and apoptosis were sharply increased in XPA cells, but not in XAN1 cells when treated with 125μM of DHA. Because DHA can induce formation of various DNA damage, to specifically investigate the role of Acr-dG in apoptosis induction, we treated XPA knockdown HCT116+ch3 cells with acrolein. The levels of both Acr-dG and apoptosis induction increased significantly in the XPA knockdown cells. These results clearly demonstrate that NER deficiency induces higher levels of Acr-dG in cells treated with DHA or acrolein and sensitizes cells to undergo apoptosis in a correlative manner. Collectively, these results support that Acr-dG, a ubiquitously formed mutagenic oxidative DNA adduct, plays a role in DHA-induced apoptosis and suggest that it could serve as a biomarker for the cancer preventive effects of DHA.

  16. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene.

    Science.gov (United States)

    Stiborová, Marie; Indra, Radek; Moserová, Michaela; Frei, Eva; Schmeiser, Heinz H; Kopka, Klaus; Philips, David H; Arlt, Volker M

    2016-08-15

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.

  17. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing.

    Science.gov (United States)

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H; Cai, Yuqin; Rodriguez, Fabian A; Sayer, Jane M; Jerina, Donald M; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2012-12-04

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.

  18. Effect of hepatic cytochrome P450 (P450) oxidoreductase deficiency on 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-DNA adduct formation in P450 reductase conditional null mice.

    Science.gov (United States)

    Arlt, Volker M; Singh, Rajinder; Stiborová, Marie; Gamboa da Costa, Gonçalo; Frei, Eva; Evans, James D; Farmer, Peter B; Wolf, C Roland; Henderson, Colin J; Phillips, David H

    2011-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), formed during the cooking of foods, induces colon cancer in rodents. PhIP is metabolically activated by cytochromes P450 (P450s). To evaluate the role of hepatic P450s in the bioactivation of PhIP, we used Reductase Conditional Null (RCN) mice, in which cytochrome P450 oxidoreductase (POR), the unique electron donor to P450s, can be specifically deleted in hepatocytes by pretreatment with 3-methylcholanthrene (3-MC), resulting in the loss of essentially all hepatic P450 function. RCN mice were treated orally with 50 mg/kg b.wt. PhIP daily for 5 days, with and without 3-MC pretreatment. PhIP-DNA adducts (i.e., N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [dG-C8-PhIP]), measured by liquid chromatography-tandem mass spectrometry, were highest in colon (1362 adducts/10(8) deoxynucleosides), whereas adduct levels in liver were ∼3.5-fold lower. Whereas no differences in PhIP-DNA adduct levels were found in livers with active POR versus inactivated POR, adduct levels were on average ∼2-fold lower in extrahepatic tissues of mice lacking hepatic POR. Hepatic microsomes from RCN mice with or without 3-MC pretreatment were also incubated with PhIP and DNA in vitro. PhIP-DNA adduct formation was ∼8-fold lower with hepatic microsomes from POR-inactivated mice than with those with active POR. Most of the hepatic microsomal activation of PhIP in vitro was attributable to CYP1A. Our results show that PhIP-DNA adduct formation in colon involves hepatic N-oxidation, circulation of activated metabolites via the bloodstream to extrahepatic tissues, and further activation, resulting in the formation of dG-C8-PhIP. Besides hepatic P450s, PhIP may be metabolically activated mainly by a non-P450 pathway in liver.

  19. DNA polymerases κ and ζ cooperatively perform mutagenic translesion synthesis of the C8-2'-deoxyguanosine adduct of the dietary mutagen IQ in human cells.

    Science.gov (United States)

    Bose, Arindam; Pande, Paritosh; Jasti, Vijay P; Millsap, Amy D; Hawkins, Edward K; Rizzo, Carmelo J; Basu, Ashis K

    2015-09-30

    The roles of translesion synthesis (TLS) DNA polymerases in bypassing the C8-2'-deoxyguanosine adduct (dG-C8-IQ) formed by 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a highly mutagenic and carcinogenic heterocyclic amine found in cooked meats, were investigated. Three plasmid vectors containing the dG-C8-IQ adduct at the G1-, G2- or G3-positions of the NarI site (5'-G1G2CG3CC-3') were replicated in HEK293T cells. Fifty percent of the progeny from the G3 construct were mutants, largely G→T, compared to 18% and 24% from the G1 and G2 constructs, respectively. Mutation frequency (MF) of dG-C8-IQ was reduced by 38-67% upon siRNA knockdown of pol κ, whereas it was increased by 10-24% in pol η knockdown cells. When pol κ and pol ζ were simultaneously knocked down, MF of the G1 and G3 constructs was reduced from 18% and 50%, respectively, to <3%, whereas it was reduced from 24% to <1% in the G2 construct. In vitro TLS using yeast pol ζ showed that it can extend G3*:A pair more efficiently than G3*:C pair, but it is inefficient at nucleotide incorporation opposite dG-C8-IQ. We conclude that pol κ and pol ζ cooperatively carry out the majority of the error-prone TLS of dG-C8-IQ, whereas pol η is involved primarily in its error-free bypass.

  20. Oxidative Damage to Nucleic Acids and Benzo(apyrene-7,8-diol-9,10-epoxide-DNA Adducts and Chromosomal Aberration in Children with Psoriasis Repeatedly Exposed to Crude Coal Tar Ointment and UV Radiation

    Directory of Open Access Journals (Sweden)

    Lenka Borska

    2014-01-01

    Full Text Available The paper presents a prospective cohort study. Observed group was formed of children with plaque psoriasis (n=19 treated by Goeckerman therapy (GT. The study describes adverse (side effects associated with application of GT (combined exposure of 3% crude coal tar ointment and UV radiation. After GT we found significantly increased markers of oxidative stress (8-hydroxy-2′-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine, significantly increased levels of benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE DNA adducts (BPDE-DNA, and significantly increased levels of total number of chromosomal aberrations in peripheral lymphocytes. We found significant relationship between (1 time of UV exposure and total number of aberrated cells and (2 daily topical application of 3% crude coal tar ointment (% of body surface and level of BPDE-DNA adducts. The findings indicated increased hazard of oxidative stress and genotoxic effects related to the treatment. However, it must be noted that the oxidized guanine species and BPDE-DNA adducts also reflect individual variations in metabolic enzyme activity (different extent of bioactivation of benzo[a]pyrene to BPDE and overall efficiency of DNA/RNA repair system. The study confirmed good effectiveness of the GT (significantly decreased PASI score.

  1. DNA adducts, mutant frequencies and mutation spectra in λlacZ transgenic mice treated with N-nitrosodimethylamine

    NARCIS (Netherlands)

    Souliotis, V.L.; Delft, J.H.M. van; Steenwinkel, M.-J.S.T.; Baan, R.A.; Kyrtopoulos, S.A.

    1998-01-01

    Groups of λlacZ transgenic mice were treated i.p. with N-nitrosodimethylamine (NDMA) as single doses of 5 mg/kg or 10 mg/kg or as 10 daily doses of 1 mg/kg and changes in DNA N7- or O6-methylguanine or the repair enzyme O6-alkylguanine-DNA alkyltransferase (AGT) were followed for up to 14 days in va

  2. Detection of DNA and globin adducts of polynuclear aromatic hydrocarbon diol epoxides by gas chromatography-mass spectrometry and -3H-CH3I postlabeling of released tetraols.

    Science.gov (United States)

    Melikian, A A; Sun, P; Coleman, S; Amin, S; Hecht, S S

    1996-03-01

    Gas chromatography-negative ion chemical ionization mass spectrometry--selected ion monitoring (GC-NICI-MS-SIM) was employed to detect tetramethyl ether derivatives of tetraols formed upon hydrolysis of DNA and globin adducts derived from diol epoxides of benzo[a]-pyrene (BP) and other polynuclear aromatic hydrocarbons (PAH). The tetramethyl ether derivatives could also be detected by [3H]CH3I postlabeling. The methodology involves the following steps: (1) isolation of DNA or globin; (2) mild acid hydrolysis under vacuum; (3) isolation of the resulting tetraols and derivatization to the corresponding tetramethyl ethers using methyl sulfinyl carbanion and unlabeled or 3H-labeled CH3I; (4) analysis by GC-NICI-MS-SIM or HPLC with radioflow detection. The optimum conditions for hydrolysis of adducts and derivatization of the resulting tetraols as well as the feasibility of this approach for detecting PAH adducts in mice and humans were explored. Using the set of four BP-tetraols that can be formed upon hydrolysis of adducts formed from r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) or r-7,t-8-dihydroxy-c-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (syn-BPDE) as models, the stability of the tetraols under the hydrolysis conditions was investigated. Adducts derived from anti-BPDE yield predominantly the stable r-7,t-8,9-c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (trans-anti-BP-tetraol), while adducts derived from syn-BPDE released cis-syn-BP-tetraol as a major hydrolysis product. Hydrolysis under vacuum significantly increased the recovery of tetraols. Conditions for derivatization of the BP-tetraols as well as tetraols derived from several other PAH anti-diol epoxides were investigated. Tetramethyl ethers proved to be superior derivatives that were stable, easy to prepare in high yields, and detectable with high sensitivity by GC-NICI-MS-SIM (1-50 fmol per injection). Alternatively, these derivatives could be detected by HPLC with

  3. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids.

    Science.gov (United States)

    Wangpradit, Orarat; Rahaman, Asif; Mariappan, S V Santhana; Buettner, Garry R; Robertson, Larry W; Luthe, Gregor

    2016-02-01

    Covalent bond formations of free radical metabolites with biomolecules like DNA and proteins are thought to constitute a major mechanism of toxicity and carcinogenesis. Glutathione (GSH) is generally accepted as a radical scavenger protecting the cell. In the present study, we investigated a semiquinone radical (SQ(●-)) metabolite of the semivolatile 4-chlorobiphenyl, using electron paramagnetic resonance spectroscopy, and oxygen consumption. Proton nuclear magnetic resonance ((1)H NMR) and liquid chromatography-mass spectrometry (LC-MS) were also employed to elucidate the radical interaction with DNA, amino acids, and GSH. We found that DNA and oligonucleotides stabilized SQ(●-) by electron delocalization in the π-stacking system, resulting in persistent radical intercalated, rather than forming a covalent bond with SQ(●-). This finding was strongly supported by the semiempirical calculation of the semioccupied molecular orbital and the linear combination of the atomic orbitals, indicating 9.8 kcal mol(-1) energy gain. The insertion of SQ(●-) into the DNA strand may result in DNA strand breaks and interruption of DNA replication process or even activate radical mediated secondary reactions. The presence of amino acids resulted in a decrease of the electron paramagnetic resonance (EPR) signal of SQ(●-) and correlated with their isoelectric points. The pH shifts the equilibrium of the dianions of hydroquinone and influenced indirectly the formation of SQ(●-). Similar findings were observed with GSH and Cys. GSH and Cys functioned as indirect radical scavengers; their activities depend on their chemical equilibria with the corresponding quinones, and their further reaction via Michael addition. The generally accepted role of GSH as radical scavenger in biological systems should be reconsidered based upon these findings, questioning the generally accepted view of radical interaction of semiquinones with biologically active compounds, like DNA, amino acids

  4. Modulation of adult rat benzo(a)pyrene (BaP) metabolism and DNA adduct formation by neonatal diethylstilbestrol (DES) exposure.

    Science.gov (United States)

    Ramesh, Aramandla; Inyang, Frank; Knuckles, Maurice E

    2004-12-01

    This study seeks to elucidate the role of diethylstilbestrol (DES), a synthetic estrogen on benzo(a)pyrene (BaP) metabolism in the male rat reproductive tissues. Offspring of timed-pregnant Sprague-Dawley rats were neonatally treated on days 2, 4, and 6 post-partum with 1.45 micromol/kg of DES. Ten weeks after birth, the adult rats were challenged with radiolabeled benzo(a)pyrene (3H BaP) (10 micromol/kg) and the rats were sacrificed 2 h after BaP exposure. Prostrate, testis, lung, liver, urine and feces samples were collected and extracted using a mixture of H2O, MeOH and CHCl3. The extracts were analyzed by reverse phase HPLC. The concentrations of BaP organic metabolites in DES rats were lower compared to controls (vehicle-treated rats). On the other hand, concentrations of aqueous metabolites were significantly increased in DES treated animals. The toxication to detoxication ratios were significantly decreased in DES rats compared to controls. This trend is also reflected in the decreased concentrations of BaP-DNA adducts in DES rats. Collectively these results suggest that DES is capable of modulating the metabolic pathway of BaP towards detoxification thereby preventing the manifestation of toxicity.

  5. Fat content and nitrite-curing influence the formation of oxidation products and NOC-specific DNA adducts during in vitro digestion of meat.

    Science.gov (United States)

    Van Hecke, Thomas; Vossen, Els; Vanden Bussche, Julie; Raes, Katleen; Vanhaecke, Lynn; De Smet, Stefaan

    2014-01-01

    The effects of fat content and nitrite-curing of pork were investigated on the formation of cytotoxic and genotoxic lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, volatile simple aldehydes), protein oxidation products (protein carbonyl compounds) and NOC-specific DNA adducts (O6-carboxy-methylguanine) during in vitro digestion. The formation of these products during digestion is suggested to be responsible for the association between red meat and processed meat consumption and colorectal cancer risk. Digestion of uncured pork to which fat was added (total fat content 5 or 20%), resulted in significantly higher lipid and protein oxidation in the mimicked duodenal and colonic fluids, compared to digestion of pork without added fat (1% fat). A higher fat content also significantly favored the formation of O6-carboxy-methylguanine in the colon. Nitrite-curing of meat resulted in significantly lower lipid and protein oxidation before and after digestion, while an inconsistent effect on the formation of O6-carboxy-methylguanine was observed. The presented results demonstrate that haem-Fe is not solely responsible for oxidation and nitrosation reactions throughout an in vitro digestion approach but its effect is promoted by a higher fat content in meat.

  6. Nitrite curing of chicken, pork, and beef inhibits oxidation but does not affect N-nitroso compound (NOC)-specific DNA adduct formation during in vitro digestion.

    Science.gov (United States)

    Van Hecke, Thomas; Vanden Bussche, Julie; Vanhaecke, Lynn; Vossen, Els; Van Camp, John; De Smet, Stefaan

    2014-02-26

    Uncured and nitrite-cured chicken, pork, and beef were used as low, medium, and high sources of heme-Fe, respectively, and exposed to an in vitro digestion model simulating the mouth, stomach, duodenum, and colon. With increasing content of iron compounds, up to 25-fold higher concentrations of the toxic lipid oxidation products malondialdehyde, 4-hydroxy-2-nonenal, and other volatile aldehydes were formed during digestion, together with increased protein carbonyl compounds as measurement of protein oxidation. Nitrite curing of all meats lowered lipid and protein oxidation to the level of oxidation in uncured chicken. Strongly depending on the individual fecal inoculum, colonic digestion of beef resulted in significantly higher concentrations of the NOC-specific DNA adduct O(6)-carboxymethyl-guanine compared to chicken and pork, whereas nitrite curing had no significant effect. This study confirms previously reported evidence that heme-Fe is involved in the epidemiological association between red meat consumption and colorectal cancer, but questions the role of nitrite curing in this association.

  7. Fat content and nitrite-curing influence the formation of oxidation products and NOC-specific DNA adducts during in vitro digestion of meat.

    Directory of Open Access Journals (Sweden)

    Thomas Van Hecke

    Full Text Available The effects of fat content and nitrite-curing of pork were investigated on the formation of cytotoxic and genotoxic lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, volatile simple aldehydes, protein oxidation products (protein carbonyl compounds and NOC-specific DNA adducts (O6-carboxy-methylguanine during in vitro digestion. The formation of these products during digestion is suggested to be responsible for the association between red meat and processed meat consumption and colorectal cancer risk. Digestion of uncured pork to which fat was added (total fat content 5 or 20%, resulted in significantly higher lipid and protein oxidation in the mimicked duodenal and colonic fluids, compared to digestion of pork without added fat (1% fat. A higher fat content also significantly favored the formation of O6-carboxy-methylguanine in the colon. Nitrite-curing of meat resulted in significantly lower lipid and protein oxidation before and after digestion, while an inconsistent effect on the formation of O6-carboxy-methylguanine was observed. The presented results demonstrate that haem-Fe is not solely responsible for oxidation and nitrosation reactions throughout an in vitro digestion approach but its effect is promoted by a higher fat content in meat.

  8. Structural and Functional Analysis of Sulfolobus solfataricus Y-Family DNA Polymerase Dpo4-Catalyzed Bypass of the Malondialdehyde−Deoxyguanosine Adduct

    Energy Technology Data Exchange (ETDEWEB)

    Eoff, Robert L.; Stafford, Jennifer B.; Szekely, Jozsef; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter; Marnett, Lawrence J.; (Vanderbilt)

    2010-01-12

    Oxidative stress can induce the formation of reactive electrophiles, such as DNA peroxidation products, e.g., base propenals, and lipid peroxidation products, e.g., malondialdehyde. Base propenals and malondialdehyde react with DNA to form adducts, including 3-(2'-deoxy-{beta}-d-erythro-pentofuranosyl)pyrimido[1,2-{alpha}]purin-10(3H)-one (M{sub 1}dG). When paired opposite cytosine in duplex DNA at physiological pH, M{sub 1}dG undergoes ring opening to form N{sup 2}-(3-oxo-1-propenyl)-dG (N{sup 2}-OPdG). Previous work has shown that M{sub 1}dG is mutagenic in bacteria and mammalian cells and that its mutagenicity in Escherichia coli is dependent on induction of the SOS response, indicating a role for translesion DNA polymerases in the bypass of M{sub 1}dG. To probe the mechanism by which translesion polymerases bypass M{sub 1}dG, kinetic and structural studies were conducted with a model Y-family DNA polymerase, Dpo4 from Sulfolobus solfataricus. The level of steady-state incorporation of dNTPs opposite M{sub 1}dG was reduced 260-2900-fold and exhibited a preference for dATP incorporation. Liquid chromatography-tandem mass spectrometry analysis of the full-length extension products revealed a spectrum of products arising principally by incorporation of dC or dA opposite M{sub 1}dG followed by partial or full-length extension. A greater proportion of -1 deletions were observed when dT was positioned 5' of M{sub 1}dG. Two crystal structures were determined, including a 'type II' frameshift deletion complex and another complex with Dpo4 bound to a dC-M{sub 1}dG pair located in the postinsertion context. Importantly, M{sub 1}dG was in the ring-closed state in both structures, and in the structure with dC opposite M{sub 1}dG, the dC residue moved out of the Dpo4 active site, into the minor groove. The results are consistent with the reported mutagenicity of M{sub 1}dG and illustrate how the lesion may affect replication events.

  9. DNA adduct formation and oxidative stress in colon and liver of Big Blue rats after dietary exposure to diesel particles

    DEFF Research Database (Denmark)

    Dybdahl, Marianne; Risom, Lotte; Møller, Peter

    2003-01-01

    Exposure to diesel exhaust particles (DEP) via the gastrointestinal route may impose risk of cancer in the colon and liver. We investigated the effects of DEP given in the diet to Big Blue rats by quantifying a panel of markers of DNA damage and repair, mutation, oxidative damage to proteins...... and lipids, and antioxidative defence mechanisms in colon mucosa cells, liver tissue and the blood compartment. Seven groups of rats were fed a diet with 0, 0.2, 0.8, 2, 8, 20 or 80 mg DEP/kg feed for 21 days. DEP induced a significant increase in DNA strand breaks in colon and liver. There was no effect...... of ERCC1 gene was affected in liver, but not in colon. In addition to these effects, DEP exposure induced apoptosis in liver. There was no significant change in mutation frequency in colon or liver. The levels of oxidative protein modifications (oxidized arginine and proline residues) were increased...

  10. Translesion Synthesis of the N(2)-2'-Deoxyguanosine Adduct of the Dietary Mutagen IQ in Human Cells: Error-Free Replication by DNA Polymerase κ and Mutagenic Bypass by DNA Polymerases η, ζ, and Rev1.

    Science.gov (United States)

    Bose, Arindam; Millsap, Amy D; DeLeon, Arnie; Rizzo, Carmelo J; Basu, Ashis K

    2016-09-19

    Translesion synthesis (TLS) of the N(2)-2'-deoxyguanosine (dG-N(2)-IQ) adduct of the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated in human embryonic kidney 293T cells by replicating plasmid constructs in which the adduct was individually placed at each guanine (G1, G2, or G3) of the NarI sequence (5'-CG1G2CG3CC-3'). TLS efficiency was 38%, 29%, and 25% for the dG-N(2)-IQ located at G1, G2, and G3, respectively, which suggests that dG-N(2)-IQ is bypassed more efficiently by one or more DNA polymerases at G1 than at either G2 or G3. TLS efficiency was decreased 8-35% in cells with knockdown of pol η, pol κ, pol ι, pol ζ, or Rev1. Up to 75% reduction in TLS occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down, suggesting that these three polymerases play important roles in dG-N(2)-IQ bypass. Mutation frequencies (MFs) of dG-N(2)-IQ at G1, G2, and G3 were 23%, 17%, and 11%, respectively, exhibiting a completely reverse trend of the previously reported MF of the C8-dG adduct of IQ (dG-C8-IQ), which is most mutagenic at G3 ( ( 2015 ) Nucleic Acids Res. 43 , 8340 - 8351 ). The major type of mutation induced by dG-N(2)-IQ was targeted G → T, as was reported for dG-C8-IQ. In each site, knockdown of pol κ resulted in an increase in MF, whereas MF was reduced when pol η, pol ι, pol ζ, or Rev1 was knocked down. The reduction in MF was most pronounced when pol η, pol ζ, and Rev1 were simultaneously knocked down and especially when the adduct was located at G3, where MF was reduced by 90%. We conclude that pol κ predominantly performs error-free TLS of the dG-N(2)-IQ adduct, whereas pols η, pol ζ, and Rev1 cooperatively carry out the error-prone TLS. However, in vitro experiments using yeast pol ζ and κ showed that the former was inefficient in full-length primer extension on dG-N(2)-IQ templates, whereas the latter was efficient in both error-free and error-prone extensions. We believe that the observed differences

  11. Significant interactions between maternal PAH exposure and haplotypes in candidate genes on B[a]P-DNA adducts in a NYC cohort of non-smoking African-American and Dominican mothers and newborns.

    Science.gov (United States)

    Iyer, Shoba; Perera, Frederica; Zhang, Bingzhi; Chanock, Stephen; Wang, Shuang; Tang, Deliang

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) are a class of chemicals common in the environment. Certain PAH are carcinogenic, although the degree to which genetic variation influences susceptibility to carcinogenic PAH remains unclear. Also unknown is the influence of genetic variation on the procarcinogenic effect of in utero exposures to PAH. Benzo[a]pyrene (B[a]P) is a well-studied PAH that is classified as a probable human carcinogen. Within our New York City-based cohort, we explored interactions between maternal exposure to airborne PAH during pregnancy and maternal and newborn haplotypes (and in one case, a single-nucleotide polymorphism) in key B[a]P metabolism genes on B[a]P-DNA adducts in paired cord blood samples. The study subjects included non-smoking African-American (n = 132) and Dominican (n = 235) women with available data on maternal PAH exposure, paired cord adducts and genetic data who resided in the Washington Heights, Central Harlem and South Bronx neighborhoods of New York City. We selected seven maternal and newborn genes related to B[a]P metabolism, detoxification and repair for our analyses: CYP1A1, CYP1A2, CYP1B1, GSTM3, GSTT2, NQO1 and XRCC1. We found significant interactions between maternal PAH exposure and haplotype on cord B[a]P-DNA adducts in the following genes: maternal CYP1B1, XRCC1 and GSTM3, and newborn CYP1A2 and XRCC1 in African-Americans; and maternal XRCC1 and newborn NQO1 in Dominicans. These novel findings highlight differences in maternal and newborn genetic contributions to B[a]P-DNA adduct formation, as well as ethnic differences in gene-environment interactions, and have the potential to identify at-risk subpopulations who are susceptible to the carcinogenic potential of B[a]P.

  12. Significant interactions between maternal PAH exposure and single nucleotide polymorphisms in candidate genes on B[a]P-DNA adducts in a cohort of non-smoking Polish mothers and newborns.

    Science.gov (United States)

    Iyer, Shoba; Wang, Ya; Xiong, Wei; Tang, Deliang; Jedrychowski, Wieslaw; Chanock, Stephen; Wang, Shuang; Stigter, Laura; Mróz, Elzbieta; Perera, Frederica

    2016-08-26

    Polycyclic aromatic hydrocarbons (PAH) are a class of chemicals common in the environment. Certain PAH are carcinogenic, although the degree to which genetic variation influences susceptibility to carcinogenic PAH remains unclear. Also unknown is the influence of genetic variation on the procarcinogenic effect of in utero exposures to PAH. Benzo[a]pyrene (B[a]P) is a well-studied PAH that is classified as a known human carcinogen. Within our Polish cohort, we explored interactions between maternal exposure to airborne PAH during pregnancy and maternal and newborn single nucleotide polymorphisms (SNPs) in plausible B[a]P metabolism genes on B[a]P-DNA adducts in paired cord blood samples. The study subjects included non-smoking women (n = 368) with available data on maternal PAH exposure, paired cord adducts, and genetic data who resided in Krakow, Poland. We selected eight common variants in maternal and newborn candidate genes related to B[a]P metabolism, detoxification, and repair for our analyses: CYP1A1, CYP1A2, CYP1B1, GSTM1, GSTT2, NQO1, and XRCC1 We observed significant interactions between maternal PAH exposure and SNPs on cord B[a]P-DNA adducts in the following genes: maternal CYP1A1 and GSTT2, and newborn CYP1A1 and CYP1B1 These novel findings highlight differences in maternal and newborn genetic contributions to B[a]P-DNA adduct formation and have the potential to identify at-risk subpopulations who are susceptible to the carcinogenic potential of B[a]P.

  13. Metabolic activation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine and DNA adduct formation depends on p53: Studies in Trp53(+/+),Trp53(+/-) and Trp53(-/-) mice.

    Science.gov (United States)

    Krais, Annette M; Speksnijder, Ewoud N; Melis, Joost P M; Singh, Rajinder; Caldwell, Anna; Gamboa da Costa, Gonçalo; Luijten, Mirjam; Phillips, David H; Arlt, Volker M

    2016-02-15

    The expression of the tumor suppressor p53 can influence the bioactivation of, and DNA damage induced by, the environmental carcinogen benzo[a]pyrene, indicating a role for p53 in its cytochrome P450 (CYP)-mediated biotransformation. The carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which is formed during the cooking of food, is also metabolically activated by CYP enzymes, particularly CYP1A2. We investigated the potential role of p53 in PhIP metabolism in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with a single oral dose of 50 mg/kg body weight PhIP. N-(Deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP-C8-dG) levels in DNA, measured by liquid chromatography-tandem mass spectrometry, were significantly lower in liver, colon, forestomach and glandular stomach of Trp53(-/-) mice compared to Trp53(+/+) mice. Lower PhIP-DNA adduct levels in the livers of Trp53(-/-) mice correlated with lower Cyp1a2 enzyme activity (measured by methoxyresorufin-O-demethylase activity) in these animals. Interestingly, PhIP-DNA adduct levels were significantly higher in kidney and bladder of Trp53(-/-) mice compared to Trp53(+/+) mice, which was accompanied by higher sulfotransferase (Sult) 1a1 protein levels and increased Sult1a1 enzyme activity (measured by 2-naphthylsulfate formation from 2-naphthol) in kidneys of these animals. Our study demonstrates a role for p53 in the metabolism of PhIP in vivo, extending previous results on a novel role for p53 in xenobiotic metabolism. Our results also indicate that the impact of p53 on PhIP biotransformation is tissue-dependent and that in addition to Cyp1a enzymes, Sult1a1 can contribute to PhIP-DNA adduct formation.

  14. Dynamics and mechanism of UV-damaged DNA repair in indole-thymine dimer adduct: molecular origin of low repair quantum efficiency.

    Science.gov (United States)

    Guo, Xunmin; Liu, Zheyun; Song, Qinhua; Wang, Lijuan; Zhong, Dongping

    2015-02-26

    Many biomimetic chemical systems for repair of UV-damaged DNA showed very low repair efficiency, and the molecular origin is still unknown. Here, we report our systematic characterization of the repair dynamics of a model compound of indole-thymine dimer adduct in three solvents with different polarity. By resolving all elementary steps including three electron-transfer processes and two bond-breaking and bond-formation dynamics with femtosecond resolution, we observed the slow electron injection in 580 ps in water, 4 ns in acetonitrile, and 1.38 ns in dioxane, the fast back electron transfer without repair in 120, 150, and 180 ps, and the slow bond splitting in 550 ps, 1.9 ns, and 4.5 ns, respectively. The dimer bond cleavage is clearly accelerated by the solvent polarity. By comparing with the biological repair machine photolyase with a slow back electron transfer (2.4 ns) and a fast bond cleavage (90 ps), the low repair efficiency in the biomimetic system is mainly determined by the fast back electron transfer and slow bond breakage. We also found that the model system exists in a dynamic heterogeneous C-clamped conformation, leading to a stretched dynamic behavior. In water, we even identified another stacked form with ultrafast cyclic electron transfer, significantly reducing the repair efficiency. Thus, the comparison of the repair efficiency in different solvents is complicated and should be cautious, and only the dynamics by resolving all elementary steps can finally determine the total repair efficiency. Finally, we use the Marcus electron-transfer theory to analyze all electron-transfer reactions and rationalize all observed electron-transfer dynamics.

  15. Chicken Fetal Liver DNA Damage and Adduct Formation by Activation-Dependent DNA-Reactive Carcinogens and Related Compounds of Several Structural Classes

    OpenAIRE

    2014-01-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9–11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet...

  16. 18. Adduct detection in human monitoring for carcinogen exposure

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Determination of the covalently bound products (adducts) of carcinogens with DNA or proteins may be used for the monitoring of exposure to these compounds. Protein adducts are generally stable and are not enzymatically repaired, and the use of these for cxposure monitoring is normally carried out with globin or albumin, because

  17. The effect of knockout of sulfotransferases 1a1 and 1d1 and of transgenic human sulfotransferases 1A1/1A2 on the formation of DNA adducts from furfuryl alcohol in mouse models.

    Science.gov (United States)

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2014-10-01

    Furfuryl alcohol is a rodent carcinogen present in numerous foodstuffs. Sulfotransferases (SULTs) convert furfuryl alcohol into the DNA reactive and mutagenic 2-sulfoxymethylfuran. Sensitive techniques for the isotope-dilution ultra performance liquid chromatography-tandem mass spectrometry quantification of resulting DNA adducts, e.g. N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were developed. To better understand the contribution of specific SULT forms to the genotoxicity of furfuryl alcohol in vivo, we studied the tissue distribution of N (2)-MF-dG in different mouse models. Earlier mutagenicity studies with Salmonella typhimurium strains expressing different human and murine SULT forms indicated that human SULT1A1 and murine Sult1a1 and 1d1 catalyze furfuryl alcohol sulfo conjugation most effectively. Here, we used three mouse lines to study the bioactivation of furfuryl alcohol by murine SULTs, FVB/N wild-type (wt) mice and two genetically modified models lacking either murine Sult1a1 or Sult1d1. The animals received a single dose of furfuryl alcohol, and the levels of the DNA adducts were determined in liver, kidney, lung, colon and small intestine. The effect of Sult1d1 gene disruption on the genotoxicity of furfuryl alcohol was moderate and limited to kidney and small intestine. In contrast, the absence of functional Sult1a1 had a massive influence on the adduct levels, which were lowered by 33-73% in all tissues of the female Sult1a1 null mice compared with the wt animals. The detection of high N (2)-MF-dG levels in a humanized mouse line expressing hSULT1A1/1A2 instead of endogeneous Sult1a1 and Sult1d1 supports the hypothesis that furfuryl alcohol is converted to the mutagenic 2-sulfoxymethylfuran also in humans.

  18. DNA Sequence Modulates Geometrical Isomerism of the trans-8,9- Dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)- 9-hydroxy Aflatoxin B1 Adduct.

    Science.gov (United States)

    Li, Liang; Brown, Kyle L; Ma, Ruidan; Stone, Michael P

    2015-02-16

    Aflatoxin B(1) (AFB(1)), a mycotoxin produced by Aspergillus flavus, is oxidized by cytochrome P450 enzymes to aflatoxin B(1)-8,9-epoxide, which alkylates DNA at N7-dG. Under basic conditions, this N7-dG adduct rearranges to yield the trans-8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy aflatoxin B(1) (AFB(1)−FAPY) adduct. The AFB(1)−FAPY adduct exhibits geometrical isomerism involving the formamide moiety. NMR analyses of duplex oligodeoxynucleotides containing the 5′-XA-3′, 5′-XC-3′, 5′-XT-3′, and 5′-XY-3′ sequences (X = AFB(1)−FAPY; Y = 7-deaza-dG)demonstrate that the equilibrium between E and Z isomers is controlled by major groove hydrogen bonding interactions.Structural analysis of the adduct in the 5′-XA-3′ sequence indicates the preference of the E isomer of the formamide group,attributed to formation of a hydrogen bond between the formyl oxygen and the N(6) exocyclic amino group of the 3′-neighboradenine. While the 5′-XA-3′ sequence exhibits the E isomer, the 5′-XC-3′ sequence exhibits a 7:3 E:Z ratio at equilibrium at 283K. The E isomer is favored by a hydrogen bond between the formyl oxygen and the N(4)-dC exocyclic amino group of the 3′-neighbor cytosine. The 5′-XT-3′ and 5′-XY-3′ sequences cannot form such a hydrogen bond between the formyl oxygen and the 3′-neighbor T or Y, respectively, and in these sequence contexts the Z isomer is favored. Additional equilibria between α and β anomers and the potential to exhibit atropisomers about the C5−N(5) bond do not depend upon sequence. In each of the four DNA sequences, the AFB(1)−FAPY adduct maintains the β deoxyribose configuration. Each of these four sequences feature the atropisomer of the AFB(1) moiety that is intercalated above the 5′-face of the damaged guanine. This enforces the Ra axialc onformation for the C5−N(5) bond.

  19. The Impact of Glucuronidation on the Bioactivation and DNA Adduction of the Cooked-Food Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b] pyridine in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Malfatti, M A; Ubick, E A; Felton, J S

    2005-03-31

    UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of many different chemicals. Glucuronidation is especially important for detoxifying reactive intermediates from metabolic reactions, which otherwise can be biotransformed into highly reactive cytotoxic or carcinogenic species. Detoxification of certain food-borne carcinogenic heterocyclic amines (HAs) is highly dependent on UGT1A-mediated glucuronidation. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most mass abundant carcinogenic HA found in well-done cooked meat, is extensively glucuronidated by UGT1A proteins. In humans, CYP1A2 catalyzed N-hydroxylation and subsequent UGT1A-mediated glucuronidation is a dominant pathway in the metabolism of PhIP. Therefore, changes in glucuronidation rates could significantly alter PhIP metabolism. To determine the importance of UGT1A-mediated glucuronidation in the biotransformation of PhIP, UGT1A proficient Wistar and UGT1A deficient Gunn rats were exposed to a single 100 {micro}g/kg oral dose of [{sup 14}C]-PhIP. Urine was collected over 24 h and the PhIP urinary metabolite profiles were compared between the two strains. After the 24 h exposure, livers and colon were removed and analyzed for DNA adduct formation by accelerator mass spectrometry. Wistar rats produced several PhIP and N-hydroxy-PhIP glucuronides that accounted for {approx}25% of the total amount of recovered urinary metabolites. In the Gunn rats, PhIP and N-hydroxy-PhIP glucuronides were reduced by 68-92%, compared to the Wistar rats, and comprised only 4% of the total amount of recovered urinary metabolites. PhIP-DNA adduct analysis from the Gunn rats revealed a correlation between reduced PhIP and N-hydroxy-PhIP glucuronide levels in the urine and increased hepatic DNA adducts, compared to the Wistar rats. These results indicate that UGT1A-mediated glucuronidation of PhIP and N-hydroxy-PhIP is an important pathway for PhIP detoxification. Failure to form glucuronide conjugates

  20. Aristoxazole analogues. Conversion of 8-nitro-1-naphthoic acid to 2-methylnaphtho[1,2-d]oxazole-9-carboxylic acid: comments on the chemical mechanism of formation of DNA adducts by the aristolochic acids.

    Science.gov (United States)

    Priestap, Horacio A; Barbieri, Manuel A; Johnson, Francis

    2012-07-27

    2-Methylnaphtho[1,2-d]oxazole-9-carboxylic acid was obtained by reduction of 8-nitro-1-naphthoic acid with zinc-acetic acid. This naphthoxazole is a condensation product between an 8-nitro-1-naphthoic acid reduction intermediate and acetic acid and is a lower homologue of aristoxazole, a similar condensation product of aristolochic acid I with acetic acid that was previously reported. Both oxazoles are believed to arise via a common nitrenium/carbocation ion mechanism that is likely related to that which leads to aristolochic acid-DNA-adducts.

  1. Biomarkers of genotoxicity of air pollution (the AULIS project): bulky DNA adducts in subjects with moderate to low exposures to airborne polycyclic aromatic hydrocarbons and their relationship to environmental tobacco smoke and other parameters

    DEFF Research Database (Denmark)

    Georgiadis, P.; Topinka, J.; Stoikidou, M.

    2001-01-01

    tobacco smoke (ETS), namely (i) declared times of exposure to ETS during the 24 h prior to blood donation, (ii) plasma cotinine levels and (iii) chrysene/benzo[g,h,i]perylene ratios in the profile of personal PAH exposure. Furthermore, among the Halkida campus area subjects (but not the remaining subjects......, exposure to ETS was a significant determinant of the observed DNA damage. Gender had a consistent and significant effect on adduct levels (males having higher levels), which remained significant even after multiple regression analysis. Habitual consumption of roasted meat was significantly associated...

  2. Development and application of an LC-MS/MS method for the detection of the vinyl chloride-induced DNA adduct N2,3-ethenoguanine in tissues of adult and weanling rats following the exposure to [13C2]-VC

    Science.gov (United States)

    In the 1970s exposure to vinyl chloride (VC) was shown to cause liver angiosarcoma in VC workers. We have developed a new LC-MS/MS method for analyzing the promutagenic DNA adduct N2,3-ethenoguanine and have applied this to DNA from tissues of both adult and weanling rats expose...

  3. Ethanol and 4-methylpyrazole increase DNA adduct formation of furfuryl alcohol in FVB/N wild-type mice and in mice expressing human sulfotransferases 1A1/1A2.

    Science.gov (United States)

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-03-01

    Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans.

  4. Indole-3-carbinol induces a rat liver glutathione transferase subunit (Yc2) with high activity toward aflatoxin B1 exo-epoxide. Association with reduced levels of hepatic aflatoxin-DNA adducts in vivo.

    Science.gov (United States)

    Stresser, D M; Williams, D E; McLellan, L I; Harris, T M; Bailey, G S

    1994-01-01

    Aflatoxin B1 (AFB1), a metabolite of the grain mold Aspergillus flavus, is a potent hepatocarcinogen and widespread contaminant of human food supplies. AFB1-induced tumors or preneoplastic lesions in experimental animals can be inhibited by cotreatment with several compounds, including indole-3-carbinol (I3C), a component of cruciferous vegetables, and the well-known Ah receptor agonist beta-naphthoflavone (BNF). This study examines the influence of these two agents on the AFB1-glutathione detoxication pathway and AFB1-DNA adduction in rat liver. After 7 days of feeding approximately equally inhibitory doses of I3C (0.2%) or BNF (0.04%) alone or in combination, male Fischer 344 rats were administered [3H]AFB1 (0.5 mg/kg, 480 microCi/kg) intraperitoneally and killed 2 hr later. All three experimental diets inhibited in vivo AFB1-DNA adduction (BNF, 46%; I3C, 68%; combined, 51%). Based on Western blots using antibodies specific for the glutathione S-transferase (GST), subunit Yc2 (subunit 10) appeared to be substantially elevated by the diets containing I3C (I3C diet, 4.0-fold increase in band density; combined diet, 2.8-fold). The BNF diet appeared to elevate Yc2 to a lesser extent (2.2-fold increase in band density).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA.

    Science.gov (United States)

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10(8) dm(3) mol(-1) s(-1) and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10-1000 μmol dm(-3)) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid.

  6. Isolation and characterization of electrophiles from 2-haloethylnitrosoureas forming cytotoxic DNA cross-links and cyclic nucleotide adducts and the analysis of base site-selectivity by ab initio calculations.

    Science.gov (United States)

    Lown, J W; Koganty, R R; Bhat, U G; Chauhan, S M; Sapse, A M; Allen, E B

    1986-01-01

    E- and Z-2-haloethyldiazotates--electrophilic species hitherto suggested as intermediates in the reactions of 2-haloethylnitrosoureas (HENUs) under physiological conditions--were synthesized and characterized by 1H-, 15N- and 13C-NMR (nuclear magnetic resonance). They were stabilized and solubilized in organic solvents as their 18-crown-6 ether complexes. Characterization of the Z-2-fluoroethyldiazotate by 19F- and 13C-NMR, and comparison with the Z-2-chloroethyl compound, confirmed facile cyclization to the 1,2,3-oxadiazoline and subsequent decomposition to nitrogen and ethylene oxide. The E-2-haloethyldiazotates form DNA interstrand cross-links at a rate, and to an extent, and with a DNA base dependence, which parallels the behaviour of the parent HENUs, while the Z isomers alkylate DNA but show minimal cross-linking. Both E-and Z-(2'-chloroethyl)thioethyldiazotates, neither of which can undergo cyclization, cross-link DNA efficiently. Self-consistent-field (SCF) ab initio calculations provided optimized geometries, atomic charges and LUMO (Lowest Unoccupied Molecular Orbital) atom contributions for the E- and Z-2-haloethyldiazohydroxides. The HSAB (Hard and Soft Acids and Bases) theory, in conjunction with HOMO (Highest Occupied Molecular Orbital) values on key DNA base sites, accounted for the observed site-selectivity in the formation of identified cross-links produced by 1,3-bis-(2-chloroethyl)-1-nitrosourea. Independent chemical studies on cytosine derivatives corroborated the predicted site selectivity of attack by electrophiles and the formation of ethanocytidine cyclic adducts.

  7. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Gábelová, Alena, E-mail: alena.gabelova@savba.sk [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Poláková, Veronika [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Prochazka, Gabriela [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden); Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm (Sweden); Kretová, Miroslava; Poloncová, Katarína; Regendová, Eva; Luciaková, Katarína [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Segerbäck, Dan [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden)

    2013-08-15

    To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture

  8. Mutagenicity, stable DNA adducts, and abasic sites induced in Salmonella by phenanthro[3,4-b]- and phenanthro[4,3-b]thiophenes, sulfur analogs of benzo[c]phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Carol D. [Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); King, Leon C.; Nesnow, Stephen [Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC, 27711 (United States); Umbach, David M. [Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709 (United States); Kumar, Subodh [Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, State University of New York College at Buffalo, Buffalo, NY 14222 (United States); DeMarini, David M. [Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC, 27711 (United States)], E-mail: demarini.david@epa.gov

    2009-02-10

    Sulfur-containing polycyclic aromatic hydrocarbons (thia-PAHs or thiaarenes) are common constituents of air pollution and cigarette smoke, but only a few have been studied for health effects. We evaluated the mutagenicity in Salmonella TA98, TA100, and TA104 of two sulfur-containing derivatives of benzo[c]phenanthrene, phenanthro[3,4-b]thiophene (P[3,4-b]T), and phenanthro[4,3-b]thiophene (P[4,3-b]T) as well as their dihydrodiol and sulfone derivatives. In addition, we assessed levels of stable DNA adducts (by {sup 32}P-postlabeling) as well as abasic sites (by an aldehydic-site assay) produced by six of these compounds in TA100. P[3,4-b]T and its 6,7- and 8,9-diols, P[3,4-b]T sulfone, P[4,3-b]T, and its 8,9-diol were mutagenic in TA100. P[3,4-b]T sulfone, the most potent mutagen, was approximately twice as potent as benzo[a]pyrene in both TA98 and TA100. Benzo-ring dihydrodiols were much more potent than K-region dihydrodiols, which had little or no mutagenic activity in any strain. P[3,4-b]T sulfone produced abasic sites and not stable DNA adducts; the other five compounds examined, B[c]P, B[c]P 3,4-diol, P[3,4-b]T, P[3,4-b]T 8,9-diol, and P[4,3-b]T 8,9-diol, produced only stable DNA adducts. P[3,4-b]T sulfone was the only compound that produced significant levels of frameshift mutagenicity and induced mutations primarily at GC sites. In contrast, B[c]P, its 3,4-diol, and the 8,9 diols of the phenanthrothiophenes induced mutations primarily at AT sites. P[3,4-b]T was not mutagenic in TA104, whereas P[3,4-b]T sulfone was. The two isomeric forms (P[3,4-b]T and P[4,3-b]T) are apparently activated differently, with the latter, but not the former, involving a diol pathway. This study is the first illustrating the potential importance of abasic sites in the mutagenicity of thia-PAHs.

  9. Major groove orientation of the (2S)-N(6)-(2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine DNA adduct induced by 1,2-epoxy-3-butene.

    Science.gov (United States)

    Kowal, Ewa A; Wickramaratne, Susith; Kotapati, Srikanth; Turo, Michael; Tretyakova, Natalia; Stone, Michael P

    2014-10-20

    1,3-Butadiene (BD) is an environmental and occupational toxicant classified as a human carcinogen. It is oxidized by cytochrome P450 monooxygenases to 1,2-epoxy-3-butene (EB), which alkylates DNA. BD exposures lead to large numbers of mutations at A:T base pairs even though alkylation of guanines is more prevalent, suggesting that one or more adenine adducts of BD play a role in BD-mediated genotoxicity. However, the etiology of BD-mediated genotoxicity at adenine remains poorly understood. EB alkylates the N(6) exocyclic nitrogen of adenine to form N(6)-(hydroxy-3-buten-1-yl)-2'-dA ((2S)-N(6)-HB-dA) adducts ( Tretyakova , N. , Lin , Y. , Sangaiah , R. , Upton , P. B. , and Swenberg , J. A. ( 1997 ) Carcinogenesis 18 , 137 - 147 ). The structure of the (2S)-N(6)-HB-dA adduct has been determined in the 5'-d(C(1)G(2)G(3)A(4)C(5)Y(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19) C(20)C(21)G(22))-3' duplex [Y = (2S)-N(6)-HB-dA] containing codon 61 (underlined) of the human N-ras protooncogene, from NMR spectroscopy. The (2S)-N(6)-HB-dA adduct was positioned in the major groove, such that the butadiene moiety was oriented in the 3' direction. At the Cα carbon, the methylene protons of the modified nucleobase Y(6) faced the 5' direction, which placed the Cβ carbon in the 3' direction. The Cβ hydroxyl group faced toward the solvent, as did carbons Cγ and Cδ. The Cβ hydroxyl group did not form hydrogen bonds with either T(16) O(4) or T(17) O(4). The (2S)-N(6)-HB-dA nucleoside maintained the anti conformation about the glycosyl bond, and the modified base retained Watson-Crick base pairing with the complementary base (T(17)). The adduct perturbed stacking interactions at base pairs C(5):G(18), Y(6):T(17), and A(7):T(16) such that the Y(6) base did not stack with its 5' neighbor C(5), but it did with its 3' neighbor A(7). The complementary thymine T(17) stacked well with both 5' and 3' neighbors T(16) and G(18). The presence of the (2S)-N(6

  10. Translesion synthesis across 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N6-γ-HMHP-dA) adducts by human and archebacterial DNA polymerases.

    Science.gov (United States)

    Kotapati, Srikanth; Maddukuri, Leena; Wickramaratne, Susith; Seneviratne, Uthpala; Goggin, Melissa; Pence, Matthew G; Villalta, Peter; Guengerich, F Peter; Marnett, Lawrence; Tretyakova, Natalia

    2012-11-09

    The 1,N(6)-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N(6)-γ-HMHP-dA) adducts are formed upon bifunctional alkylation of adenine nucleobases in DNA by 1,2,3,4-diepoxybutane, the putative ultimate carcinogenic metabolite of 1,3-butadiene. The presence of a substituted 1,N(6)-propano group on 1,N(6)-γ-HMHP-dA is expected to block the Watson-Crick base pairing of the adducted adenine with thymine, potentially contributing to mutagenesis. In this study, the enzymology of replication past site-specific 1,N(6)-γ-HMHP-dA lesions in the presence of human DNA polymerases (hpols) β, η, κ, and ι and archebacterial polymerase Dpo4 was investigated. Run-on gel analysis with all four dNTPs revealed that hpol η, κ, and Dpo4 were able to copy the modified template. In contrast, hpol ι inserted a single base opposite 1,N(6)-γ-HMHP-dA but was unable to extend beyond the damaged site, and a complete replication block was observed with hpol β. Single nucleotide incorporation experiments indicated that although hpol η, κ, and Dpo4 incorporated the correct nucleotide (dTMP) opposite the lesion, dGMP and dAMP were inserted with a comparable frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed the ability of bypass polymerases to insert dTMP, dAMP, or dGMP opposite 1,N(6)-γ-HMHP-dA and detected large amounts of -1 and -2 deletion products. Taken together, these results indicate that hpol η and κ enzymes bypass 1,N(6)-γ-HMHP-dA lesions in an error-prone fashion, potentially contributing to A→T and A→C transversions and frameshift mutations observed in cells following treatment with 1,2,3,4-diepoxybutane.

  11. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one.

    Science.gov (United States)

    Carlsson, Henrik; Törnqvist, Margareta

    2016-06-01

    Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure.

  12. N7-guanine adducts of the epoxy metabolites of 1,3-butadiene in mice lung.

    Science.gov (United States)

    Koivisto, P; Peltonen, K

    2001-06-01

    Epoxy metabolites of 1,3-butadiene are electrophilic and can bind to nucleophilic sites in DNA forming DNA adducts. In this study, guanine N7 adducts of epoxy butene and guanine N7 adducts of epoxy butanediol were measured in lung tissues of mice inhalation exposed to various concentrations of 1,3-butadiene. 32P-postlabeling of DNA adducts were used to demonstrate that the DNA adducts derived from epoxybutene and epoxybutanediol were formed in a dose dependent manner. More than 98% of all adducts detected were formed from epoxybutanediol. Enantiomeric distribution of the adducts formed in vivo differs from that of in vitro experiments demonstrated before. In the case of epoxybutene most of the adducts were formed to the terminal carbon of the S-epoxybutene enantiomer. Most of the adducts derived from epoxybutanediol were formed from the 2S-3R enantiomer. The data demonstrates that enzymatic processes involved with activation and/or detoxification of the metabolites are enantiospecific and/or DNA repair machinery repairs the damage with stereochemical considerations. These are the crucial factors if interspecies differences in tumor sensitiveness is concerned.

  13. Use of ion mobility mass spectrometry and a collision cross-section algorithm to study an organometallic ruthenium anticancer complex and its adducts with a DNA oligonucleotide.

    Science.gov (United States)

    Williams, Jonathan P; Lough, Julie Ann; Campuzano, Iain; Richardson, Keith; Sadler, Peter J

    2009-11-01

    We report the development of an enhanced algorithm for the calculation of collision cross-sections in combination with Travelling-Wave ion mobility mass spectrometry technology and its optimisation and evaluation through the analysis of an organoruthenium anticancer complex [(eta6-biphenyl)Ru(II)(en)Cl]+. Excellent agreement was obtained between the experimentally determined and theoretically determined collision cross-sections of the complex and its major product ion formed via collision-induced dissociation. Collision cross-sections were also experimentally determined for adducts of this ruthenium complex with the single-stranded oligonucleotide hexamer d(CACGTG). Ion mobility tandem mass spectrometry measurements have allowed the binding sites for ruthenium on the oligonucleotide to be determined.

  14. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    Energy Technology Data Exchange (ETDEWEB)

    Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Bunde, Kristi L. [College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331 (United States); Harper, Tod A. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); McQuistan, Tammie J. [Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States); Löhr, Christiane V. [Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331 (United States); Bramer, Lisa M. [Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M. [Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Tilton, Susan C. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Krueger, Sharon K. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States); and others

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.

  15. Chlorophyllin significantly reduces benzo[a]pyrene-DNA adduct formation and alters cytochrome P450 1A1 and 1B1 expression and EROD activity in normal human mammary epithelial cells.

    Science.gov (United States)

    Keshava, Channa; Divi, Rao L; Einem, Tracey L; Richardson, Diana L; Leonard, Sarah L; Keshava, Nagalakshmi; Poirier, Miriam C; Weston, Ainsley

    2009-03-01

    We hypothesized that chlorophyllin (CHLN) would reduce benzo[a]pyrene-DNA (BP-DNA) adduct levels. Using normal human mammary epithelial cells (NHMECs) exposed to 4 microM BP for 24 hr in the presence or absence of 5 microM CHLN, we measured BP-DNA adducts by chemiluminescence immunoassay (CIA). The protocol included the following experimental groups: BP alone, BP given simultaneously with CHLN (BP+CHLN) for 24 hr, CHLN given for 24 hr followed by BP for 24 hr (preCHLN, postBP), and CHLN given for 48 hr with BP added for the last 24 hr (preCHLN, postBP+CHLN). Incubation with CHLN decreased BPdG levels in all groups, with 87% inhibition in the preCHLN, postBP+CHLN group. To examine metabolic mechanisms, we monitored expression by Affymetrix microarray (U133A), and found BP-induced up-regulation of CYP1A1 and CYP1B1 expression, as well as up-regulation of groups of interferon-inducible, inflammation and signal transduction genes. Incubation of cells with CHLN and BP in any combination decreased expression of many of these genes. Using reverse transcription real time PCR (RT-PCR) the maximal inhibition of BP-induced gene expression, >85% for CYP1A1 and >70% for CYP1B1, was observed in the preCHLN, postBP+CHLN group. To explore the relationship between transcription and enzyme activity, the ethoxyresorufin-O-deethylase (EROD) assay was used to measure the combined CYP1A1 and CYP1B1 activities. BP exposure caused the EROD levels to double, when compared with the unexposed controls. The CHLN-exposed groups all showed EROD levels similar to the unexposed controls. Therefore, the addition of CHLN to BP-exposed cells reduced BPdG formation and CYP1A1 and CYP1B1 expression, but EROD activity was not significantly reduced.

  16. Implication of the E. coli K12 uvrA and recA genes in the repair of 8-methoxypsoralen-induced mono adducts and crosslinks on plasmid DNA; Implicacion de los genes uvrA de E. coli K12 en la reparacion de monoaductos y entrecruzamien tos inducidos en DNA plasmidico por 8-metoxipso raleno mas luz ultravioleta A

    Energy Technology Data Exchange (ETDEWEB)

    Paramio, J.M.; Bauluz, C.; Vidania, R. de

    1986-07-01

    Genotoxicity of psoralen damages on plasmid DNA has been studied. pBR322 DNA was randomly modified with several concentrations of 8-methoxypsoralen plus 365 nm-UV light. After transformation into E. coli strains (wild-type, uvrA and recA) plasmid survival and mutagenesis were analyzed. To study the influence of the SOS response on plasmid recovery, preirradiation of the cells was performed. In absence of cell preirradiation, crosslinks were not repaired in any strain. Mono adducts were also lethal but in part removed by the excision-repair pathway. Preirradiation of the cells significantly. increased plasmid recovery in recA+ celia. In uvrA- only the mutagenic pathway seemed to be involved in the repair of the damaged DNA. Wild type strain showed the highest increase in plasmid survival, involving the repair of mono adducts and some fraction of crosslinks mainly through an error-free repair pathway. This suggests an enhancement of the excision repair promoted by the induction of SOS functions. (Author) 32 refs.

  17. CYP1A1 and CYP1B1 gene expression and DNA adduct formation in normal human mammary epithelial cells exposed to benzo[a]pyrene in the absence or presence of chlorophyllin.

    Science.gov (United States)

    John, Kaarthik; Divi, Rao L; Keshava, Channa; Orozco, Christine C; Schockley, Marie E; Richardson, Diana L; Poirier, Miriam C; Nath, Joginder; Weston, Ainsley

    2010-06-28

    Benzo[a]pyrene (BP) is a potent pro-carcinogen and ubiquitous environmental pollutant. Here, we examined the induction and modulation of CYP1A1 and CYP1B1 and 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG) adduct formation in DNA from 20 primary normal human mammary epithelial cell (NHMEC) strains exposed to BP (4muM) in the absence or presence of chlorophyllin (5muM). Real-time polymerase chain reaction (RT-PCR) analysis revealed strong induction of both CYP1A1 and CYP1B1 by BP, with high levels of inter-individual variability. Variable BPdG formation was found in all strains by r7, t8-dihydroxy-t-9, 10 epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA chemiluminescence assay (CIA). Chlorophyllin mitigated BP-induced CYP1A1 and CYP1B1 gene expression in all 20 strains when administered with BP. Chlorophyllin, administered prior to BP-exposure, mitigated CYP1A1 expression in 18/20 NHMEC strains (pchlorophyllin followed by administration of the carcinogen with chlorophyllin (pchlorophyllin is likely to be a good chemoprotective agent for a large proportion of the human population.

  18. Acetaldehyde Adducts in Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    Mashiko Setshedi

    2010-01-01

    Full Text Available Chronic alcohol abuse causes liver disease that progresses from simple steatosis through stages of steatohepatitis, fibrosis, cirrhosis, and eventually hepatic failure. In addition, chronic alcoholic liver disease (ALD, with or without cirrhosis, increases risk for hepatocellular carcinoma (HCC. Acetaldehyde, a major toxic metabolite, is one of the principal culprits mediating fibrogenic and mutagenic effects of alcohol in the liver. Mechanistically, acetaldehyde promotes adduct formation, leading to functional impairments of key proteins, including enzymes, as well as DNA damage, which promotes mutagenesis. Why certain individuals who heavily abuse alcohol, develop HCC (7.2–15% versus cirrhosis (15–20% is not known, but genetics and co-existing viral infection are considered pathogenic factors. Moreover, adverse effects of acetaldehyde on the cardiovascular and hematologic systems leading to ischemia, heart failure, and coagulation disorders, can exacerbate hepatic injury and increase risk for liver failure. Herein, we review the role of acetaldehyde adducts in the pathogenesis of chronic ALD and HCC.

  19. 2-Hydrazinobenzothiazole-based etheno-adduct repair protocol (HERP): a method for quantitative determination of direct repair of etheno-bases.

    Science.gov (United States)

    Shivange, Gururaj; Kodipelli, Naveena; Anindya, Roy

    2015-04-01

    Etheno-DNA adducts are mutagenic and lead to genomic instability. Enzymes belonging to Fe(II)/2-oxoglutarate-dependent dioxygenase family repair etheno-DNA adducts by directly removing alkyl chain as glyoxal. Presently there is no simple method to assess repair reaction of etheno-adducts. We have developed a rapid and sensitive assay for studying etheno-DNA adduct repair by Fe(II)/2-oxoglutarate-dependent dioxygenases. Using AlkB as model Fe(II)/2-oxoglutarate-dependent dioxygenases, we performed in vitro repair of etheno-adducts containing DNA and detected glyoxal by reacting with 2-hydrazinobenzothiazole which forms complex yellow color compound with distinct absorption spectrum with a peak absorption at 365 nm. We refer this method as 2-hydrazinobenzothiazole-based etheno-adduct repair protocol or HERP. Our novel approach for determining repair of etheno-adducts containing DNA overcomes several drawbacks of currently available radioisotope-based assay.

  20. Structures of benzo(a)pyrene-nucleic acid adducts formed in human and bovine bronchial explants

    DEFF Research Database (Denmark)

    1977-01-01

    obtained evidence that the same derivative is involved in the binding of BP to the DNA of human bronchial explants, although details of the specific isomer involved and of the structure of the adduct were not reported. We describe here studies on RNA and DNA adducts formed by human bronchial explants...... and provide evidence that the structures of the major adducts are similar to those formed in the analogous bovine system....

  1. Collision of Trapped Topoisomerase 2 with Transcription and Replication: Generation and Repair of DNA Double-Strand Breaks with 5′ Adducts

    Directory of Open Access Journals (Sweden)

    Hong Yan

    2016-07-01

    Full Text Available Topoisomerase 2 (Top2 is an essential enzyme responsible for manipulating DNA topology during replication, transcription, chromosome organization and chromosome segregation. It acts by nicking both strands of DNA and then passes another DNA molecule through the break. The 5′ end of each nick is covalently linked to the tyrosine in the active center of each of the two subunits of Top2 (Top2cc. In this configuration, the two sides of the nicked DNA are held together by the strong protein-protein interactions between the two subunits of Top2, allowing the nicks to be faithfully resealed in situ. Top2ccs are normally transient, but can be trapped by cancer drugs, such as etoposide, and subsequently processed into DSBs in cells. If not properly repaired, these DSBs would lead to genome instability and cell death. Here, I review the current understanding of the mechanisms by which DSBs are induced by etoposide, the unique features of such DSBs and how they are repaired. Implications for the improvement of cancer therapy will be discussed.

  2. Assessment of three classes of DNA adducts in human placentas from smoking and non-snoking women in the Czech Republic

    Science.gov (United States)

    Three classes of DNA damage were assessed in human placentas collected (2000-2004) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon ...

  3. Cisplatin-DNA adduct formation in kidneys of cisplatin-exposed rats protected from nephrotoxicity by acivicin or glutathione%阿西维辛或谷胱甘肽降低顺铂引起的肾脏毒性和顺铂-DNA加合物在鼠肾脏中的水平

    Institute of Scientific and Technical Information of China (English)

    张治华; Marie H HANIGAN; Miriam C POIRIER

    2004-01-01

    目的为了了解阿西维辛(acivicin)和GSH预防肾脏毒性的机制,研究了顺铂-DNA加合物在大鼠肾脏中的水平.方法顺铂(6 mg·kg-1)从尾静脉注入大鼠,5 d后处死.其他两组动物在给顺铂前2.5 h,给予阿西维辛或者GSH.测量顺铂-DNA加合物在肾脏中的浓度、血中尿素氮(BUN)和丝氨酸肌酸的浓度.结果在给顺铂前2.5 h,给10 mg·kg-1阿西维辛完全阻断了顺铂引起的肾脏毒性.具体表现是血氮和肌酸浓度降低,DNA加合物减少了17.1%(P<0.05).在给顺铂前,给500 mg·kg-1 GSH,肾脏毒性和顺铂-DNA加合物水平均显著性减低(P<0.05).另外,在DNA加合物和血氮之间存在着一个弱正相关关系.结论 DNA加合物在顺铂引起的肾脏毒性中引了一些作用.但是DNA加合物和血氮之间的弱相关关系提示DNA加合物与肾脏毒性只有较弱的联系,在顺铂引起的肾脏毒性中不是主要因素.%AIM In order to examine the mechanisms by which these compounds prevent the development of nephrotoxicity, we investigated cisplatin-DNA adduct formation in kidneys of rats given either cisplatin alone or pretreatments with acivicin or GSH. METHODS Rats were given cisplatin 6 mg·kg-1 body weight by tail vein injection and sacrificed 5 days later. RESULTSPretreatment with acivicin 10 mg·kg-1 body weight 2.5 h before the cisplatin completely blocked cisplatin-induced nephrotoxicity, as determined by blood urea nitrogen(BUN) and serine creatinine, and reduced renal DNA adducts by 17.1% (not statistically significant). Pretreatment with GSH 500 mg·kg-1 body weight significantly reduced nephrotoxicity and lowered cisplatin-DNA adduct levels by 45.2% (P<0.05). In addition, a weakly-positive linear relationship was observed between cisplatin-DNA adducts and BUN level (r=0.47, P=0.03), and adducts and serum creatinine level (r=0.50, P=0.02). CONCLUSION The associations observed between cisplatin-DNA adduct levels and these nephrotoxic end points suggest

  4. DNA adduct formation and oxidative stress in colon and liver of Big Blue (R) rats after dietary exposure to diesel particles

    DEFF Research Database (Denmark)

    Dybdahl, M.; Risom, L.; Møller, P.

    2003-01-01

    Exposure to diesel exhaust particles (DEP) via the gastrointestinal route may impose risk of cancer in the colon and liver. We investigated the effects of DEP given in the diet to Big Blue(R) rats by quantifying a panel of markers of DNA damage and repair, mutation, oxidative damage to proteins...... and lipids, and antioxidative defence mechanisms in colon mucosa cells, liver tissue and the blood compartment. Seven groups of rats were fed a diet with 0, 0.2, 0.8, 2, 8, 20 or 80 mg DEP/kg feed for 21 days. DEP induced a significant increase in DNA strand breaks in colon and liver. There was no effect...... of ERCC1 gene was affected in liver, but not in colon. In addition to these effects, DEP exposure induced apoptosis in liver. There was no significant change in mutation frequency in colon or liver. The levels of oxidative protein modifications (oxidized arginine and proline residues) were increased...

  5. Characterization of a Hemoglobin Adduct from Ethyl Vinyl Ketone Detected in Human Blood Samples.

    Science.gov (United States)

    Carlsson, Henrik; Motwani, Hitesh V; Osterman Golkar, Siv; Törnqvist, Margareta

    2015-11-16

    Electrophiles have the ability to form adducts to nucleophilic sites in proteins and DNA. Internal exposure to such compounds thus constitutes a risk for toxic effects. Screening of adducts using mass spectrometric methods by adductomic approaches offers possibilities to detect unknown electrophiles present in tissues. Previously, we employed untargeted adductomics to detect 19 unknown adducts to N-terminal valine in hemoglobin (Hb) in human blood. This article describes the characterization of one of these adducts, which was identified as the adduct from ethyl vinyl ketone (EVK). The mean adduct level was 40 ± 12 pmol/g Hb in 12 human blood samples; adduct levels from acrylamide (AA) and methyl vinyl ketone (MVK) were quantified for comparison. Using l-valine p-nitroanilide (Val-pNA), introduced as a model of the N-terminal valine, the rate of formation of the EVK adduct was studied, and the rate constant determined to 200 M(-1)h(-1) at 37 °C. In blood, the reaction rate was too fast to be feasibly measured, EVK showing a half-life adduct was found to be unstable, with a half-life of 7.6 h. From the mean adduct level measured in human blood, a daily dose (area under the concentration-time-curve, AUC) of 7 nMh EVK was estimated. The AUC of AA from intake via food is about 20 times higher. EVK is naturally present in a wide range of foods and is also used as a food additive. Most probably, naturally formed EVK is a major source to observed adducts. Evaluation of available toxicological data and information on occurrence of EVK indicate that further studies of EVK are motivated. This study illustrates a quantitative strategy in the initial evaluation of the significance of an adduct detected through adduct screening.

  6. Modulation of CYP1A1, CYP1B1 and DNA adducts level by green and white tea in Balb/c mice.

    Science.gov (United States)

    Kumar, Manoj; Jain, Mridula; Sehgal, Amit; Sharma, V L

    2012-12-01

    In the current investigation the ameliorative effect of 2% extract of green tea (GT) and white tea (WT) against benzo(a)pyrene (BaP) induced toxicity and DNA damage has been studied in liver and lung of Balb/c mice (8 animals per group). The activities of phase I enzymes such as 7-ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase (PROD) were found to be increased (plung of BaP treated (125 mg/kg b.w. orally) group. The enhanced activities of EROD and PROD were inhibited in group that received pretreatment with GT and WT for 35 days. Pretreatment with GT and WT also elevated (ptea as a cancer chemopreventive agent.

  7. Base-Displaced Intercalated Conformation of the 2-Amino-3-methylimidazo[4,5-f]quinoline N(2)-dG DNA Adduct Positioned at the Nonreiterated G(1) in the NarI Restriction Site.

    Science.gov (United States)

    Stavros, Kallie M; Hawkins, Edward K; Rizzo, Carmelo J; Stone, Michael P

    2015-07-20

    The conformation of an N(2)-dG adduct arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined in 5'-d(C(1)T(2)C(3)X(4)G(5)C(6)G(7)C(8)C(9)A(10)T(11)C(12))-3':5'-d(G(13)A(14)T(15)G(16)G(17)C(18)G(19)C(20)C(21)G(22)A(23)G(24))-3'; X = N(2)-dG-IQ, in which the modified nucleotide X(4) corresponds to G(1) in the 5'-d(G(1)G(2)CG(3)CC)-3' NarI restriction endonuclease site. Circular dichroism (CD) revealed blue shifts relative to the unmodified duplex, consistent with adduct-induced twisting, and a hypochromic effect for the IQ absorbance in the near UV region. NMR revealed that the N(2)-dG-IQ adduct adopted a base-displaced intercalated conformation in which the modified guanine remained in the anti conformation about the glycosidic bond, the IQ moiety intercalated into the duplex, and the complementary base C(21) was displaced into the major groove. The processing of the N(2)-dG-IQ lesion by hpol η is sequence-dependent; when placed at the reiterated G(3) position, but not at the G(1) position, this lesion exhibits a propensity for frameshift replication [Choi, J. Y., et al. (2006) J. Biol. Chem., 281, 25297-25306]. The structure of the N(2)-dG-IQ adduct at the nonreiterated G(1) position was compared to that of the same adduct placed at the G(3) position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450-3463]. CD indicted minimal spectral differences between the G(1) vs G(3) N(2)-dG-IQ adducts. NMR indicated that the N(2)-dG-IQ adduct exhibited similar base-displaced intercalated conformations at both the G(1) and G(3) positions. This result differed as compared to the corresponding C8-dG-IQ adducts placed at the same positions. The C8-dG-IQ adduct adopted a minor groove conformation when placed at position G(1) but a base-displaced intercalated conformation when placed at position G(3) in the NarI sequence. The present studies suggest that differences in lesion bypass by hpol η may be

  8. Mutagenicity of 2-amino-3-methylimidazo[4,5-f]quinoline in colon and liver of Big Blue rats: role of DNA adducts, strand breaks, DNA repair and oxidative stress

    DEFF Research Database (Denmark)

    Moller, P.; Wallin, H.; Vogel, U.;

    2002-01-01

    The contribution of oxidative stress, different types of DNA damage and expression of DNA repair enzymes in colon and liver mutagenesis induced by 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) was investigated in four groups of six Big Blue rats fed diets with 0, 20, 70, and 200 mg IQ/kg for 3...

  9. Mutagenicity of 2-amino-3-methylimidazo[4,5-f]quinoline in colon and liver of Big Blue Rats: role of DNA adducts, strand breaks, DNA repair and oxidative stress

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Håkan; Vogel, Ulla;

    2002-01-01

    The contribution of oxidative stress, different types of DNA damage and expression of DNA repair enzymes in colon and liver mutagenesis induced by 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) was investigated in four groups of six Big Blue rats fed diets with 0, 20, 70, and 200 mg IQ/kg for 3...

  10. Aromatic adducts and lung cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Spanish cohort.

    Science.gov (United States)

    Gilberson, Tamra; Peluso, Marco E M; Munia, Armelle; Luján-Barroso, Leila; Sánchez, María-José; Navarro, Carmen; Amiano, Pilar; Barricarte, Aurelio; Quirós, J Ramón; Molina-Montes, Esther; Sánchez-Cantalejo, Emilio; Tormo, María-José; Chirlaque, María-Dolores; Ardanaz, Eva; Dorronsoro, Miren; Confortini, Massimo; Bonet, Catalina; Sala, Núria; González, Carlos A; Agudo, Antonio

    2014-09-01

    In this case-cohort study, we examined the association between bulky DNA adducts and the risk of lung cancer within the European Prospective Investigation into Cancer and Nutrition (EPIC) Spanish cohort with an average 7-year follow-up, including 98 cases of primary lung cancer and 296 subjects randomly selected from the cohort. Aromatic adducts were measured using (32)P-postlabeling in leukocyte DNA from blood samples collected at enrollment. The association between DNA adducts and the risk of lung cancer was estimated using a Cox proportional hazards model with a modified partial likelihood. There was an overall significant increased risk for developing lung cancer when DNA adduct concentrations were doubled, with relative risk (RR) adjusting for all relevant confounders of 1.36 with 95% confidence interval (CI) 1.18-157. There was a significant increased risk for developing lung cancer when DNA adduct concentrations were doubled for current smokers and among subjects exposed to PAH at work; there was also a slightly higher increase among males than females. However, no statistically significant differences were observed for the effect of adduct levels across smoking status, sex or occupational exposure to PAH. A meta-analysis combined four prospective studies, including this study, resulting in a significant association among current smokers, with an overall estimate of 34% increase in the risk of lung cancer when doubling the level of aromatic DNA adducts in leukocytes.

  11. A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh.

    Science.gov (United States)

    Sholder, Gabriel; Loechler, Edward L

    2015-01-01

    Quantitating relative (32)P-band intensity in gels is desired, e.g., to study primer-extension kinetics of DNA polymerases (DNAPs). Following imaging, multiple (32)P-bands are often present in lanes. Though individual bands appear by eye to be simple and well-resolved, scanning reveals they are actually skewed-Gaussian in shape and neighboring bands are overlapping, which complicates quantitation, because slower migrating bands often have considerable contributions from the trailing edges of faster migrating bands. A method is described to accurately quantitate adjacent (32)P-bands, which relies on having a standard: a simple skewed-Gaussian curve from an analogous pure, single-component band (e.g., primer alone). This single-component scan/curve is superimposed on its corresponding band in an experimentally determined scan/curve containing multiple bands (e.g., generated in a primer-extension reaction); intensity exceeding the single-component scan/curve is attributed to other components (e.g., insertion products). Relative areas/intensities are determined via pixel analysis, from which relative molarity of components is computed. Common software is used. Commonly used alternative methods (e.g., drawing boxes around bands) are shown to be less accurate. Our method was used to study kinetics of dNTP primer-extension opposite a benzo[a]pyrene-N(2)-dG-adduct with four DNAPs, including Sulfolobus solfataricus Dpo4 and Sulfolobus acidocaldarius Dbh. Vmax/Km is similar for correct dCTP insertion with Dpo4 and Dbh. Compared to Dpo4, Dbh misinsertion is slower for dATP (∼20-fold), dGTP (∼110-fold) and dTTP (∼6-fold), due to decreases in Vmax. These findings provide support that Dbh is in the same Y-Family DNAP class as eukaryotic DNAP κ and bacterial DNAP IV, which accurately bypass N(2)-dG adducts, as well as establish the scan-method described herein as an accurate method to quantitate relative intensity of overlapping bands in a single lane, whether generated

  12. Sodium adduct formation efficiency in ESI source.

    Science.gov (United States)

    Kruve, Anneli; Kaupmees, Karl; Liigand, Jaanus; Oss, Merit; Leito, Ivo

    2013-06-01

    Formation of sodium adducts in electrospray (ESI) has been known for long time, but has not been used extensively in practice, and several important aspects of Na(+) adduct formation in ESI source have been almost unexplored: the ionization efficiency of different molecules via Na(+) adduct formation, its dependence on molecular structure and Na(+) ion concentration in solution, fragmentation behaviour of the adducts as well as the ruggedness (a prerequisite for wider practical use) of ionization via Na(+) adduct formation. In this work, we have developed a parameter describing sodium adducts formation efficiency (SAFE) of neutral molecules and have built a SAFE scale that ranges for over four orders of magnitude and contains 19 compounds. In general, oxygen bases have higher efficiency of Na(+) adducts formation than nitrogen bases because of the higher partial negative charge on oxygen atoms and competition from protonation in the case of nitrogen bases. Chelating ability strongly increases the Na(+) adduct formation efficiency. We show that not only protonation but also Na(+) adduct formation is a quantitative and reproducible process if relative measurements are performed.

  13. Synthesis of Mitomycin C and Decarbamoylmitomycin C N(2) deoxyguanosine-adducts.

    Science.gov (United States)

    Champeil, Elise; Cheng, Shu-Yuan; Huang, Bik Tzu; Conchero-Guisan, Marta; Martinez, Thibaut; Paz, Manuel M; Sapse, Anne-Marie

    2016-04-01

    Mitomycin C (MC) and Decarbamoylmitomycin C (DMC) - a derivative of MC lacking the carbamate on C10 - are DNA alkylating agents. Their cytotoxicity is attributed to their ability to generate DNA monoadducts as well as intrastrand and interstrand cross-links (ICLs). The major monoadducts generated by MC and DMC in tumor cells have opposite stereochemistry at carbon one of the guanine-mitosene bond: trans (or alpha) for MC and cis (or beta) for DMC. We hypothesize that local disruptions of DNA structure from trans or cis adducts are responsible for the different biochemical responses produced by MC and DMC. Access to DNA substrates bearing cis and trans MC/DMC lesions is essential to verify this hypothesis. Synthetic oligonucleotides bearing trans lesions can be obtained by bio-mimetic methods. However, this approach does not yield cis adducts. This report presents the first chemical synthesis of a cis mitosene DNA adduct. We also examined the stereopreference exhibited by the two drugs at the mononucleotide level by analyzing the formation of cis and trans adducts in the reaction of deoxyguanosine with MC or DMC using a variety of activation conditions. In addition, we performed Density Functional Theory calculations to evaluate the energies of these reactions. Direct alkylation under autocatalytic or bifunctional conditions yielded preferentially alpha adducts with both MC and DMC. DFT calculations showed that under bifunctional activation, the thermodynamically favored adducts are alpha, trans, for MC and beta, cis, for DMC. This suggests that the duplex DNA structure may stabilize/oriente the activated pro-drugs so that, with DMC, formation of the thermodynamically favored beta products are possible in a cellular environment.

  14. The presence of aflatoxin B₁-FAPY adduct and human papilloma virus in cervical smears from cancer patients in Mexico.

    Science.gov (United States)

    Carvajal, Magda; Berumen, Jaime; Guardado-Estrada, Mariano

    2012-01-01

    The carcinogenic biomarker aflatoxin B(1)-formamidopyrimidine 2,3-dihydro-2-(N-formyl)-2',5',6'-triamino-4'-4'-oxy-N-pyrimidyl-3-hydroxy-AFB(1) called AFB(1)-FAPY adduct, and Human Papilloma Virus (HPV) types 16 and 18 were quantified from DNA cervical scrapes from 40 women with cervical cancer (CC) and 14 healthy women as controls. The relationship between the AFB(1)-FAPY adduct and HPV types 16 and 18 was determined. Competitive inhibitory indirect ELISA was validated with 94% inhibition to quantify the AFB(1)-FAPY adducts in picograms per milligram of DNA (limit of detection = 0.1 pg/mg, and limit of quantification = 10 pg/mg), polymerase chain reaction and DNA sequencing to identify HPV types. The average concentration of AFB(1)-FAPY adducts/mg DNA in the CC cases was 1025 pg, 1420 pg with HPV16 and 630 pg sharing HPV18 (p = 0.03). In comparison, healthy controls had ≤ 2.6 pg/mg DNA, a statistically significant difference (p = 0.00006). The presence of AFB(1)-FAPY adduct increased six-fold the risk for CC between cases and controls, the odds ratio was 6.1 (95% CI = 1.4-25.4). There was a close relationship between the AFB(1)-FAPY adducts and HPV16 in CC samples.

  15. Synthesis of an oligodeoxyribonucleotide adduct of mitomycin C by the postoligomerization method via a triamino mitosene.

    Science.gov (United States)

    Champeil, Elise; Paz, Manuel M; Ladwa, Sweta; Clement, Cristina C; Zatorski, Andrzej; Tomasz, Maria

    2008-07-23

    The cancer chemotherapeutic agent mitomycin C (MC) alkylates and cross-links DNA monofunctionally and bifunctionally in vivo and in vitro, forming six major MC-deoxyguanosine adducts of known structures. The synthesis of one of the monoadducts (8) by the postoligomerization method was accomplished both on the nucleoside and oligonucleotide levels, the latter resulting in the site-specific placement of 8 in a 12-mer oligodeoxyribonucleotide 26. This is the first application of this method to the synthesis of a DNA adduct of a complex natural product. Preparation of the requisite selectively protected triaminomitosenes 14 and 24 commenced with removal of the 10-carbamoyl group from MC, followed by reductive conversion to 10-decarbamoyl-2,7-diaminomitosene 10. This substance was transformed to 14 or 24 in several steps. Both were successfully coupled to the 2-fluoro-O(6)-(2-trimethylsilylethyl)deoxyinosine residue of the 12-mer oligonucleotide. The N(2)-phenylacetyl protecting group of 14 after its coupling to the 12-mer oligonucleotide could not be removed by penicillinamidase as expected. Nevertheless, the Teoc protecting group of 24 after coupling to the 12-mer oligonucleotide was removed by treatment with ZnBr2 to give the adducted oligonucleotide 26. However, phenylacetyl group removal was successful on the nucleoside-level synthesis of adduct 8. Proof of the structure of the synthetic nucleoside adduct included HPLC coelution and identical spectral properties with a natural sample, and (1)H NMR. Structure proof of the adducted oligonucleotide 26 was provided by enzymatic digestion to nucleosides and authentic adduct 8, as well as MS and MS/MS analysis.

  16. LC-MS/MS screening strategy for unknown adducts to N-terminal valine in hemoglobin applied to smokers and nonsmokers.

    Science.gov (United States)

    Carlsson, Henrik; von Stedingk, Hans; Nilsson, Ulrika; Törnqvist, Margareta

    2014-12-15

    Electrophilically reactive compounds have the ability to form adducts with nucleophilic sites in DNA and proteins, constituting a risk for toxic effects. Mass spectrometric detection of adducts to N-terminal valine in hemoglobin (Hb) after detachment by modified Edman degradation procedures is one approach for in vivo monitoring of exposure to electrophilic compounds/metabolites. So far, applications have been limited to one or a few selected reactive species, such as acrylamide and its metabolite glycidamide. This article presents a novel screening strategy for unknown Hb adducts to be used as a basis for an adductomic approach. The method is based on a modified Edman procedure, FIRE, specifically developed for LC-MS/MS analysis of N-terminal valine adducts in Hb detached as fluorescein thiohydantoin (FTH) derivatives. The aim is to detect and identify a priori unknown Hb adducts in human blood samples. Screening of valine adducts was performed by stepwise scanning of precursor ions in small mass increments, monitoring four fragments common for the FTH derivative of valine with different N-substitutions in the multiple-reaction mode, covering a mass range of 135 Da (m/z 503-638). Samples from six smokers and six nonsmokers were analyzed. Control experiments were performed to compare these results with known adducts and to check for artifactual formation of adducts. In all samples of smokers and nonsmokers, seven adducts were identified, of which six have previously been studied. Nineteen unknown adducts were observed, and 14 of those exhibited fragmentation patterns similar to earlier studied FTH derivatives of adducts to valine. Identification of the unknown adducts will be the focus of future work. The presented methodology is a promising screening tool using Hb adducts to indicate exposure to potentially toxic electrophilic compounds and metabolites.

  17. Biophysical aspects of lysozyme adduct with monocrotophos.

    Science.gov (United States)

    Amaraneni, Sreenivasa Rao; Kumar, Sudhir; Gourinath, Samudrala

    2014-09-01

    The present study on in vitro formation and characterization of lysozyme adduct with monocrotophos (MP) evaluates the potential of lysozyme to be used as a sensitive biomarker to monitor exposure levels to the commonly used organophosphorus pesticide monocrotophos. Crystallization of lysozyme protein adduct with monocrotophos was also undertaken to understand the adduct formation mechanism at a molecular level. The binding of organophosphorus pesticides to lysozyme is one of the key steps in their mutagenicity. The formation and structural characterization of lysozyme adduct with monocrotophos was done using MALDI-TOFMS, fluorescence, UV/Vis spectroscopy, circular dichroism, and X-ray diffraction studies. We report the crystal structure of lysozyme adduct with monocrotophos at 1.9 Å. It crystallized in the P43 space group with two monomers in one asymmetric unit having one molecule of monocrotophos bound to each protein chain. The results proved that the fluorescence quenching of lysozyme by monocrotophos is due to binding of monocrotophos with a tryptophan residue of lysozyme. Monocrotophos interacts most strongly with the Trp-108 and Asp-52 of lysozyme. The interactions of the monocrotophos molecule with the lysozyme suggest the formation of a stable adduct. In addition, the alteration of lysozyme secondary structure in the presence of monocrotophos was confirmed by circular dichroism and fluorescence inhibition of lysozyme by increasing monocrotophos and UV/Vis spectrophotometry. The formation of lysozyme adduct with monocrotophos was confirmed by MALDI-TOFMS.

  18. Hybridization characteristics of biomolecular adaptors, covalent DNA streptavidin conjugates

    NARCIS (Netherlands)

    Niemeyer, CM; Burger, W; Hoedemakers, RMJ

    1998-01-01

    Semisynthetic, covalent streptavidin-DNA adducts are versatile molecular connectors for the fabrication of both nano-and microstructured protein arrays by use of DNA hybridization. In this study, the hybridization characteristics of six adduct species, each containing a different DNA sequence of 21

  19. Interaction studies between a 1,10-phenanthroline adduct of palladium(II) dithiocarbamate anti-tumor complex and calf thymus DNA. A synthesis spectral and in-vitro study

    Science.gov (United States)

    Mansouri-Torshizi, Hassan; Saeidifar, Maryam; Divsalar, Adeleh; Saboury, Ali. Akbar

    2010-09-01

    The interaction of calf thymus DNA (CT-DNA) with a novel synthesized and characterized Palladium (II) complex with the formula of [Pd (Et-dtc) (phen)] NO 3 (where phen is 1,10-phenanthroline and Et-dtc is ethyldithiocarbamate) was extensively studied by various spectroscopic techniques. UV-vis studies imply that there is a set of 6 binding sites for the complex on DNA with positive cooperativity in the binding process. This complex unexpectedly denatures the DNA at very low concentration (˜9.8 μM). Gel filtration studies indicate that the binding of metal complex with DNA is strong enough not to readily break. Fluorescence studies show that the palladium complex intercalates in DNA through the planar 1,10-phenanthroline ligand presented in its structure. Several binding and thermodynamic parameters are also described. Furthermore, anti-tumor studies of this water soluble complex against human cell tumor lines (K562) have been done. It shows 50% cytotoxic concentration (Ic 50) value much lower than that of cisplatin.

  20. Formation of 1,N6-etheno-2'-deoxyadenosine adducts by trans,trans-2, 4-Decadienal.

    Science.gov (United States)

    Carvalho, V M; Di Mascio, P; de Arruda Campos, I P; Douki, T; Cadet, J; Medeiros, M H

    1998-09-01

    trans,trans-2,4-Decadienal (DDE) is an important breakdown product of lipid peroxidation. This aldehyde is cytotoxic to mammalian cells and is known to be implicated in DNA damage. Therefore, attempts were made in this work to assess the reactivity of DDE with 2'-deoxyadenosine (dAdo). It was shown that DDE is able to bind to 2'-deoxyadenosine, yielding highly fluorescent products. Besides 1, N6-etheno-2'-deoxyadenosine (epsilondAdo), two other related adducts, 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2, 1-i]purin-7-yl]-1,2,3-octanetriol and 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2, 1-i]purin-7-yl]-1,2-heptanediol, were isolated by reverse phase high-performance liquid chromatography and characterized on the basis of their UV, fluorescence, nuclear magnetic resonance, and mass spectrometry features. The reaction mechanism for the formation of the DDE-2'-deoxyadenosine adducts involves 2,4-decadienal epoxidation and subsequent addition to the N2 amino group of 2'-deoxyadenosine, followed by cyclization at the N-1 site. Adducts differ by the length of carbon side chain and the number of hydroxyl groups. The present data indicate that DDE can be epoxidized by peroxides, and the resulting products are able to form several adducts with 2'-deoxyadenosine and/or DNA. Endogenous DNA adduct formation can contribute to the already reported high cytotoxicity of DDE to mammalian cells.

  1. Hip adduction and abduction strength profiles in elite soccer players

    DEFF Research Database (Denmark)

    Serner, Andreas; Petersen, Jesper; Madsen, Thomas Moller

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side-......-to-side symmetry in isometric hip adduction and abduction strength can be assumed in soccer players remains uncertain....

  2. 40 CFR 721.4590 - Mannich-based adduct.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mannich-based adduct. 721.4590 Section... Substances § 721.4590 Mannich-based adduct. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66)...

  3. Hip adduction and abduction strength profiles in elite soccer players

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Serner, Andreas; Petersen, Jesper;

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side...

  4. Synthesis of an oligodeoxyribonucleotide adduct of mitomycin C by the postoligomerization method via a triamino mitosene

    OpenAIRE

    Champeil, Elise; Paz, Manuel M.; Ladwa, Sweta; Cristina C. Clement; ZATORSKI, ANDRZEJ; Tomasz, Maria

    2008-01-01

    The cancer chemotherapeutic agent mitomycin C (MC) alkylates and cross-links DNA monofunctionally and bifunctionally in vivo and in vitro, forming six major MC-deoxyguanosine adducts of known structures. The synthesis of one of the monoadducts (8) by the postoligomerization method was accomplished both on the nucleoside and oligonucleotide levels, the latter resulting in the site-specific placement of 8 in a 12-mer oligodeoxyribonucleotide 26. This is the first application of this method to t...

  5. trans,trans-2,4-decadienal-induced 1,N(2)-etheno-2'-deoxyguanosine adduct formation.

    Science.gov (United States)

    Loureiro, A P; Di Mascio, P; Gomes, O F; Medeiros, M H

    2000-07-01

    A number of ring-extended DNA adducts resulting from the reaction of alpha,beta-unsaturated aldehydes, or their epoxides, with DNA bases have been characterized in recent years. These adducts may lead to miscoding during DNA replication, resulting, if not repaired, in mutations that can contribute to cancer development. trans,trans-2, 4-Decadienal (DDE) is one of the highly cytotoxic aldehydes endogenously formed from lipid peroxidation. To evaluate its DNA damaging potential, we have investigated the reaction of DDE with 2'-deoxyguanosine (dGuo) in the presence of peroxides. Three stable adducts were isolated by reverse-phase HPLC. Adduct A1, 3-(2-deoxy-beta-D-erythro-pentafuranosyl)-5,9-dihydro-9H-imidazo[2 , 1-i]purin-9-hydroxy, is a tautomer of 1, N(2)-etheno-2'-deoxyguanosine, a well-known reaction product of epoxy aldehydes with dGuo. Two new diasteroisomeric products, A2-1 and A2-2, 1-¿[3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-5, 9-dihydro-9H-imidazo[2,1-i]purin-9-hydroxy]-7-yl¿-2-one-3-octanol, were isolated and characterized on the basis of their spectroscopic features as 1,N(2)-etheno adducts possessing a carbon side chain with a carbonyl and a hydroxyl group. The proposed reaction mechanism for the formation of adducts A2 involves DDE double epoxidation and hydrolysis of the C4 epoxy group prior to nucleophilic addition of the exocyclic amino group of dGuo to C1 of the aldehyde, followed by cyclization via nucleophilic attack on the C2 epoxy group by N-1 and elimination of H(2)O. After treatment of calf thymus DNA with DDE, formation of adducts A1 and A2 was detected by the LC/ESI/MS-MS technique. These results can contribute to a better understanding of the chemical structures of adducts resulting from the reaction of aldehydes with nucleic acid bases, a necessary step in assessing the genotoxic risks associated with this class of compounds.

  6. Detection of DNA damage by Escherichia coli UvrB-binding competition assay is limited by the stability of the UvrB-DNA complex.

    Science.gov (United States)

    Routledge, M N; Allan, J M; Garner, R C

    1997-07-01

    To investigate the use of UvrB-binding to detect DNA damage, mobility shift gel electrophoresis was used to detect binding of UvrB protein to a 136 bp DNA fragment that was randomly adducted with aflatoxin B1 8,9-epoxide and end-labelled with 32P. After polyacrylamide gel electrophoresis, the shifted band that contained DNA bound by UvrB was quantified as a percentage of total radioactive substrate DNA. This method was applied to analyse plasmid DNA that was adducted with various DNA modifying agents in vitro. These adducts competed for UvrB-binding to the labelled substrate. By competing for UvrB-binding with 10 ng of plasmid DNA that was adducted with known levels of aflatoxin B1, 2-amino-3-methylimidazo[4,5-f]quinoline, or benzo[a]pyrene diol epoxide, UvrB competition could be quantified for DNA adducted with between one adduct in 10(2) and one adduct in 10(5) normal nucleotides. However, plasmid DNA exposed to N-methyl-N-nitrosourea or methylene blue + visible light, did not compete for UvrB-binding, even though the presence of UvrABC sensitive sites were confirmed on this DNA by a UvrABC incision assay. Mono-adducted 96-bp DNA substrates, which contained an internal 32P-label and either a single apurinic site, aflatoxin B1-guanine adduct, O6-methylguanine, 8-oxo-deoxyguanosine or non-adducted guanine, were also used as substrates for UvrA- and UvrB-binding to examine the stability of UvrB-DNA complexes with specific adducts. Under similar conditions used for the competition assay, significant UvrB-binding was seen only for the aflatoxin adducted substrate. These results suggest that stability of UvrB-binding varies greatly between bulky and non-bulky adducts. It was also found that rat liver DNA from untreated rats inhibited UvrB-binding to the substrate DNA in the competition assay, to a degree that was equivalent to competition with plasmid adducted at one adduct in 10(3) normal nucleotides.

  7. Absolute configuration, stability, and interconversion of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine valine adducts and their phenylthiohydantoin derivatives

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2015-06-01

    Full Text Available Pyrrolizidine alkaloid-containing plants are widespread in the world and probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids require metabolic activation to form dehydropyrrolizidine alkaloids that bind to cellular proteins and DNA leading to hepatotoxicity, genotoxicity, and tumorigenicity. At present, it is not clear how dehydropyrrolizidine alkaloids bind to cellular amino acids and proteins to induced toxicity. We previously reported that reaction of dehydromonocrotaline with valine generated four highly unstable 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP-derived valine (DHP-valine adducts that upon reaction with phenyl isothiocyanate (PITC formed four DHP-valine-PITC adduct isomers. In this study, we report the absolute configuration and stability of DHP-valine and DHP-valine-PITC adducts, and the mechanism of interconversion between DHP-valine-PITC adducts.

  8. Prolonged Acetaminophen-Protein Adduct Elimination During Renal Failure, Lack of Adduct Removal by Hemodiafiltration, and Urinary Adduct Concentrations After Acetaminophen Overdose.

    Science.gov (United States)

    Curry, Steven C; Padilla-Jones, Angela; O'Connor, Ayrn D; Ruha, Anne-Michelle; Bikin, Dale S; Wilkins, Diana G; Rollins, Douglas E; Slawson, Matthew H; Gerkin, Richard D

    2015-06-01

    Elevated concentrations of serum acetaminophen-protein adducts, measured as protein-derived acetaminophen-cysteine (APAP-CYS), have been used to support a diagnosis of APAP-induced liver injury when histories and APAP levels are unhelpful. Adducts have been reported to undergo first-order elimination, with a terminal half-life of about 1.6 days. We wondered whether renal failure would affect APAP-CYS elimination half-life and whether continuous venovenous hemodiafiltration (CVVHDF), commonly used in liver failure patients, would remove adducts to lower their serum concentrations. Terminal elimination half-lives of serum APAP-CYS were compared between subjects with and without renal failure in a prospective cohort study of 168 adults who had ingested excessive doses of APAP. APAP-CYS concentrations were measured in plasma ultrafiltrate during CVVHDF at times of elevated serum adduct concentrations. Paired samples of urine and serum APAP-CYS concentrations were examined to help understand the potential importance of urinary elimination of serum adducts. APAP-CYS elimination half-life was longer in 15 renal failure subjects than in 28 subjects with normal renal function (41.3 ± 2.2 h versus 26.8 ± 1.1 h [mean ± SEM], respectively, p adduct elimination, and consideration of prolonged elimination needs to be considered if attempting back-extrapolation of adduct concentrations. CVVHDF did not remove detectable APAP-CYS, suggesting approximate APAP-protein adduct molecular weights ≥ 50,000 Da. The presence of urinary APAP-CYS in the minority of instances was most compatible with renal adduct production and protein shedding into urine rather than elimination of serum adducts.

  9. Polymerase Bypass of N6-Deoxyadenosine Adducts Derived from Epoxide Metabolites of 1,3-Butadiene

    Science.gov (United States)

    Kotapati, Srikanth; Wickramaratne, Susith; Esades, Amanda; Boldry, Emily J.; Dorr, Danae Quirk; Pence, Matthew G.; Guengerich, F. Peter; Tretyakova, Natalia Y.

    2015-01-01

    N 6-(2-Hydroxy-3-buten-1-yl)-2′-deoxyadenosine (N6-HB-dA I) and N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (N6,N6-DHB-dA) are exocyclic DNA adducts formed upon alkylation of the N6 position of adenine in DNA by epoxide metabolites of 1,3-butadiene (BD), a common industrial and environmental chemical classified as a human and animal carcinogen. Since the N6-H atom of adenine is required for Watson-Crick hydrogen bonding with thymine, N6-alkylation can prevent adenine from normal pairing with thymine, potentially compromising the accuracy of DNA replication. To evaluate the ability of BD-derived N6-alkyladenine lesions to induce mutations, synthetic oligodeoxynucleotides containing site-specific (S)-N6-HB-dA I and (R,R)-N6,N6-DHB-dA adducts were subjected to in vitro translesion synthesis in the presence of human DNA polymerases β, η, ι, and κ. While (S)-N6-HB-dA I was readily bypassed by all four enzymes, only polymerases η and κ were able to carry out DNA synthesis past (R,R)-N6,N6-DHB-dA. Steady-state kinetic analyses indicated that all four DNA polymerases preferentially incorporated the correct base (T) opposite (S)-N6-HB-dA I. In contrast, hPol β was completely blocked by (R,R)-N6,N6-DHB-dA, while hPol η and κ inserted A, G, C, or T opposite the adduct with similar frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed that while translesion synthesis past (S)-N6-HB-dA I was mostly error-free, replication of DNA containing (R,R)-N6,N6-DHB-dA induced significant numbers of A, C, and G insertions and small deletions. These results indicate that singly substituted (S)-N6-HB-dA I lesions are not miscoding, but exocyclic (R,R)-N6,N6-DHB-dA adducts are strongly mispairing, probably due to their inability to form stable Watson-Crick pairs with dT. PMID:26098310

  10. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    Science.gov (United States)

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde.

  11. Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores*

    Science.gov (United States)

    Zienicke, Benjamin; Chen, Li-Yi; Khawn, Htoi; Hammam, Mostafa A. S.; Kinoshita, Hideki; Reichert, Johannes; Ulrich, Anne S.; Inomata, Katsuhiko; Lamparter, Tilman

    2011-01-01

    We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion. PMID:21071442

  12. Fluorescence of phytochrome adducts with synthetic locked chromophores.

    Science.gov (United States)

    Zienicke, Benjamin; Chen, Li-Yi; Khawn, Htoi; Hammam, Mostafa A S; Kinoshita, Hideki; Reichert, Johannes; Ulrich, Anne S; Inomata, Katsuhiko; Lamparter, Tilman

    2011-01-14

    We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.

  13. A liquid-crystalline hexa-adduct of [60]fullerene

    OpenAIRE

    Chuard, Thierry; Deschenaux, Robert; Hirsch, Andreas; Schönberger, Hubert

    2006-01-01

    A hexa-adduct of [60]fullerene was synthesized by addition of a mesomorphic twin cyanobiphenyl malonate derivative to C60; whereas the malonate derivative gave a monotropic nematic phase, the fullerene hexa-adduct showed an enantiotropic smectic A phase.

  14. Synthesis and Photophysical Properties of C60-carbazole Adducts

    Institute of Scientific and Technical Information of China (English)

    YIN ,Gui(尹桂); YIN,Gui; MAO,Xin-Ping(毛新平); MAO,Xin-Ping; SUO,Zhi-Yong(锁志勇); SUO,Zhi-Yong; XU,Zheng(徐正); XU,Zheng

    2001-01-01

    Three C60-cartazole adducts have been synthesized by 1,3-dipolar cycloaddition reaction.Intramolecular energy/electron transfer from carbazole to C60 was observed by steady-state absorption and fluorescence spectra.The fluorescence spectra of these adducts were similau to each other and dependent on the excitation wavelength and solvent.

  15. Chemical discrimination between dC and 5MedC via their hydroxylamine adducts.

    Science.gov (United States)

    Münzel, Martin; Lercher, Lukas; Müller, Markus; Carell, Thomas

    2010-11-01

    The presence of the methylated nucleobase (5Me)dC in CpG islands is a key factor that determines gene silencing. False methylation patterns are responsible for deteriorated cellular development and are a hallmark of many cancers. Today genes can be sequenced for the content of (5Me)dC only with the help of the bisulfite reagent, which is based exclusively on chemical reactivity differences established by the additional methyl group. Despite intensive optimization of the bisulfite protocol, the method still has specificity problems. Most importantly ∼95% of the DNA analyte is degraded during the analysis procedure. We discovered that the reagent O-allylhydroxylamine is able to discriminate between dC and (5Me)dC. The reagent, in contrast to bisulfite, does not exploit reactivity differences but gives directly different reaction products. The reagent forms a stable mutagenic adduct with dC, which can exist in two states (E versus Z). In case of dC the allylhydroxylamine adduct switches into the E-isomeric form, which generates dC to dT transition mutations that can easily be detected by established methods. Significantly, the (5Me)dC-adduct adopts exclusively the Z-isomeric form, which causes the polymerase to stop. O-allylhydroxylamine does allow differentiation between dC and (5Me)dC with high accuracy, leading towards a novel and mild chemistry for methylation analysis.

  16. Immune response to acetaldehyde-human serum albumin adduct among healthy subjects related to alcohol intake.

    Science.gov (United States)

    Romanazzi, Valeria; Schilirò, Tiziana; Carraro, Elisabetta; Gilli, Giorgio

    2013-09-01

    Acetaldehyde (AA) is the main metabolic product in ethanol metabolism, although it can also derive from sources of airborne pollution. As a typical aldehyde, AA is able to react with a variety of molecular targets, including DNA and protein. This property justifies the hypothesis of a immune reaction against this kind of adduct, to be studied by a seroprevalence screening approach. In this study, the correlation between drinking habits and the amount of circulating AA-human serum albumin adduct (AA-HSA) was evaluated in a group of healthy subjects, non alcohol-addicted. Daily ethanol intake (grams) was inferred for each subject using the information collected through a questionnaire, and AA-HSA antibodies (AA-HSA ab) analyses were performed using the Displacement Assay on whole blood samples. The findings showed a correlation between ethanol intake and immune response to molecular adduct. These results underscore the evaluation of AA-HSA ab amount as a suitable molecular marker for alcohol intake that can be applied in future investigations on a large scale for prevention screening.

  17. The knee adduction moment during gait is associated with the adduction angle measured during computer-assisted total knee arthroplasty.

    Science.gov (United States)

    Roda, Richard D; Wilson, Janie L Astephen; Wilson, David A J; Richardson, Glen; Dunbar, Michael J

    2012-06-01

    Computer-assisted surgery can be used to measure 3-dimensional knee function during arthroplasty surgery; however, it is unknown if the movement of the knee measured during surgery is related to the in vitro, dynamic state of the knee joint, specifically the knee adduction moment during gait, which has been related to implant migration. The purpose of this study was to determine if the preoperative adduction moment is correlated with the knee abduction/adduction angle measured intraoperatively. A statistically significant correlation was found between the mean (r(2) = 0.59; P = .001) and peak (r(2) = 0.53; P = .003) preoperative knee adduction moment and the mean abduction/adduction angle measured intraoperatively. The association found in this study suggests the potential for incorporating functional information that relates to surgical outcome into surgical decision making using computer-assisted surgery.

  18. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  19. Fast repair of dAMP hydroxyl radical adduct by verbascoside via electron transfer

    Institute of Scientific and Technical Information of China (English)

    石益民; 王文锋; 姚思德; 林维真; 韩镇辉; 师彦平; 贾忠建; 郑荣梁

    1999-01-01

    DNA damaged by oxygen radicals has been implicated as a causative event in a number of degenerative diseases, including cancer and aging. So it is very impotant to look for ways in which either oxygen radicals are scavenged prior to DNA damage or damaged DNA is repaired to supplement the cells’ inadequate repair capacity. The repair activity and its mechanism of verbaseoside, isolated from Pedicularis species, towards dAMP-OH·was studied with pulse radiolytic technique. On pulse irradiation of nitrous oxide saturated 2 mmol/L dAMP aqueous solution containing verbascoside, the transient absorption spectrum of the hydroxyl adduct of dAMP decayed with the formation of that of the phenoxyl radical of verbascoside well under 100 microseconds after electron pulse irradiation. The result indicated that dAMP hydroxyl adducts can be repaired by verbascoside. The rate constants of the repair reaction was deduced to be 5.9×108 dm3·mol-1·s-1. A deeper understanding of this new repair mechanism will undo

  20. Interaction of benzo[a]pyrene diol epoxide isomers with human serum albumin: Site specific characterisation of adducts and associated kinetics

    Science.gov (United States)

    Motwani, Hitesh V.; Westberg, Emelie; Törnqvist, Margareta

    2016-11-01

    Carcinogenicity of benzo[a]pyrene {B[a]P, a polycyclic aromatic hydrocarbon (PAH)} involves DNA-modification by B[a]P diol epoxide (BPDE) metabolites. Adducts to serum albumin (SA) are not repaired, unlike DNA adducts, and therefore considered advantageous in assessment of in vivo dose of BPDEs. In the present work, kinetic experiments were performed in relation to the dose (i.e. concentration over time) of different BPDE isomers, where human SA (hSA) was incubated with respective BPDEs under physiological conditions. A liquid chromatography (LC) tandem mass spectrometry methodology was employed for characterising respective BPDE-adducts at histidine and lysine. This strategy allowed to structurally distinguish between the adducts from racemic anti- and syn-BPDE and between (+)- and (‑)-anti-BPDE, which has not been attained earlier. The adduct levels quantified by LC-UV and the estimated rate of disappearance of BPDEs in presence of hSA gave an insight into the reactivity of the diol epoxides towards the N-sites on SA. The structure specific method and dosimetry described in this work could be used for accurate estimation of in vivo dose of the BPDEs following exposure to B[a]P, primarily in dose response studies of genotoxicity, e.g. in mice, to aid in quantitative risk assessment of PAHs.

  1. Infrared spectroscopy of fullerene C60/anthracene adducts

    CERN Document Server

    Garcia-Hernandez, D A; Manchado, A

    2013-01-01

    Recent Spitzer Space Telescope observations of several astrophysical environments such as Planetary Nebulae, Reflection Nebulae, and R Coronae Borealis stars show the simultaneous presence of mid-infrared features attributed to neutral fullerene molecules (i.e., C60) and polycyclic aromatic hydrocarbons (PAHs). If C60 fullerenes and PAHs coexist in fullerene-rich space environments, then C60 may easily form adducts with a number of different PAH molecules; at least with catacondensed PAHs. Here we present the laboratory infrared spectra (~2-25 um) of C60 fullerene and anthracene Dies-Alder mono- and bis-adducts as produced by sonochemical synthesis. We find that C60/anthracene Diels-Alder adducts display spectral features strikingly similar to those from C60 (and C70) fullerenes and other unidentified infrared emission features. Thus, fullerene-adducts - if formed under astrophysical conditions and stable/abundant enough - may contribute to the infrared emission features observed in fullerene-containing circu...

  2. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  3. DNA adductomics.

    Science.gov (United States)

    Balbo, Silvia; Turesky, Robert J; Villalta, Peter W

    2014-03-17

    Systems toxicology is a broad-based approach to describe many of the toxicological features that occur within a living system under stress or subjected to exogenous or endogenous exposures. The ultimate goal is to capture an overview of all exposures and the ensuing biological responses of the body. The term exposome has been employed to refer to the totality of all exposures, and systems toxicology investigates how the exposome influences health effects and consequences of exposures over a lifetime. The tools to advance systems toxicology include high-throughput transcriptomics, proteomics, metabolomics, and adductomics, which is still in its infancy. A well-established methodology for the comprehensive measurement of DNA damage resulting from every day exposures is not fully developed. During the past several decades, the (32)P-postlabeling technique has been employed to screen the damage to DNA induced by multiple classes of genotoxicants; however, more robust, specific, and quantitative methods have been sought to identify and quantify DNA adducts. Although triple quadrupole and ion trap mass spectrometry, particularly when using multistage scanning (LC-MS(n)), have shown promise in the field of DNA adductomics, it is anticipated that high-resolution and accurate-mass LC-MS(n) instrumentation will play a major role in assessing global DNA damage. Targeted adductomics should also benefit greatly from improved triple quadrupole technology. Once the analytical MS methods are fully mature, DNA adductomics along with other -omics tools will contribute greatly to the field of systems toxicology.

  4. Stable acetaldehyde--protein adducts as biomarkers of alcohol exposure.

    Science.gov (United States)

    Conduah Birt, J E; Shuker, D E; Farmer, P B

    1998-02-01

    The consumption of alcoholic beverages has been associated with increased risks of a number of chronic disorders including cancers. It is still not clear whether ethyl alcohol or other components such as metabolites are directly involved in the carcinogenic process or whether the effects are due to the modulation of metabolism of other carcinogens. At present, there is no good biomarker of alcohol intake, particularly at low or moderate levels of consumption. A number of studies have shown the ability of the major metabolite acetaldehyde to react with proteins in vitro to give stable and unstable adducts. The interaction of acetaldehyde with model peptides, which correspond to N-terminal globin sequences, was studied. The major stable adduct was identified by mass spectrometry and NMR as a diastereoisomeric mixture of imidazolidinones. This is believed to be formed by reaction and cyclization of the initial Schiff base adduct with the N-terminal valine. Incubation of human globin with acetaldehyde (0-2 mM) yielded products which were identified as the N-terminal adducts by electrospray ionization mass spectrometry (ESI-MS) of proteolytic digests. The specificity and sensitivity of the analysis was improved by the use of on-line HPLC-ESI-MS. Tryptic digests of the modified globin which contained both the N-terminal acetaldehyde adducts of alpha-globin (heptapeptide) and beta-globin (octapeptide) were resolved. These results suggest that analysis of stable imidazolidinone adducts is a promising approach to estimation of alcohol exposure.

  5. Modeling the conformational preference of the carbon-bonded covalent adduct formed upon exposure of 2'-deoxyguanosine to ochratoxin A.

    Science.gov (United States)

    Sharma, Purshotam; Manderville, Richard A; Wetmore, Stacey D

    2013-05-20

    The conformational flexibility of the C8-linked guanine adduct formed from attachment of ochratoxin A (OTA) was analyzed using a systematic computational approach and models ranging from the nucleobase to the adducted DNA helix. A focus was placed on the influence of the C8-modification of 2'-deoxyguanosine (dG) on the preferred relative arrangement of the nucleobase and the C8-substituent and, more importantly, the anti/syn conformational preference with respect to the glycosidic bond. Although OTA is twisted with respect to the base in the nucleobase model, addition of the deoxyribose sugar induces a further twist and restricts rotation about the C-C linkage due to close contacts between OTA and the sugar. The nucleoside model preferentially adpots a syn orientation (by 10-20 kJ mol(-1) depending on the OTA conformation) due to the presence of an O5'-H···N3 interaction. However, when this hydrogen bond is eliminated, which better mimics the DNA environment, a small (simulations and free energy analysis predict that both syn- and anti-conformations of OTB-dG are equally stable in helices when paired opposite cytosine. These results indicate that the adduct will likely adopt a syn conformation in an isolated nucleoside and nucleotide, while a mixture of syn and anti conformations will be observed in DNA duplexes. Since the syn conformation could stabilize base mismatches upon DNA replication or Z-DNA structures with varied biological outcomes, future computational and experimental work should elucidate the consequences of the conformational preference of this potentially harmful DNA lesion.

  6. A Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy.

    Science.gov (United States)

    Trinh, Thu Le; Zhu, Guizhi; Xiao, Xilin; Puszyk, William; Sefah, Kwame; Wu, Qunfeng; Tan, Weihong; Liu, Chen

    2015-01-01

    AS1411 (previously known as AGRO100) is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this study, we utilized a simple technique to conjugate a widely-used chemotherapeutic agent, doxorubicin (Dox), to AS1411 to form a synthetic Drug-DNA Adduct (DDA), termed as AS1411-Dox. We demonstrate the utility of AS1411-Dox in the treatment of hepatocellular carcinoma (HCC) by evaluating the targeted delivery of Dox to Huh7 cells in vitro and in a murine xenograft model of HCC.

  7. A Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy.

    Directory of Open Access Journals (Sweden)

    Thu Le Trinh

    Full Text Available AS1411 (previously known as AGRO100 is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this study, we utilized a simple technique to conjugate a widely-used chemotherapeutic agent, doxorubicin (Dox, to AS1411 to form a synthetic Drug-DNA Adduct (DDA, termed as AS1411-Dox. We demonstrate the utility of AS1411-Dox in the treatment of hepatocellular carcinoma (HCC by evaluating the targeted delivery of Dox to Huh7 cells in vitro and in a murine xenograft model of HCC.

  8. Structural basis for recognition of 5'-phosphotyrosine adducts by TDP2

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ke; Kurahash, Kayo; Gao, Rui; Tsutakawa, Susan E.; Tainer, John A.; Pommier, Yves; Aihara, Hideki

    2012-12-19

    The DNA repair enzyme TDP2 resolves 5'-phosphotyrosyl-DNA adducts, and is responsible for resistance to anti-cancer drugs that target covalent topoisomerase-DNA complexes. TDP2 also participates in key signaling pathways during development and tumorigenesis, and cleaves a protein-RNA linkage during picornavirus replication. The crystal structure of zebrafish TDP2 bound to DNA reveals a deep and narrow basic groove that selectively accommodates the 5'-end of single-stranded DNA in a stretched conformation. The crystal structure of the full-length C. elegans TDP2 shows that this groove can also accommodate an acidic peptide stretch in vitro, with Glu and Asp sidechains occupying the DNA backbone phosphate binding sites. This extensive molecular mimicry suggests a potential mechanism for auto-regulation and how TDP2 may interact with phosphorylated proteins in signaling. Our study provides a framework to interrogate functions of TDP2 and develop inhibitors for chemotherapeutic and antiviral applications.

  9. Structural characterization of diastereoisomeric ethano adducts derived from the reaction of 2'-deoxyguanosine with trans,trans-2,4-decadienal.

    Science.gov (United States)

    Loureiro, Ana Paula M; de Arruda Campos, Ivan P; Gomes, Osmar F; di Mascio, Paolo; Medeiros, Marisa H G

    2004-05-01

    Background levels of exocyclic DNA adducts have been detected in rodent and human tissues. Several studies have focused on bifunctional electrophiles generated from lipid peroxidation as one of the endogenous sources of these lesions. We have previously shown that the reaction of 2'-deoxyguanosine (dGuo) with trans,trans-2,4-decadienal (DDE), a highly cytotoxic aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of a number of different base derivatives. Three of these derivatives have been fully characterized as 1,N(2)-etheno-2'-deoxyguanosine adducts. In the present work, four additional adducts, designated A3-A6, were isolated from in vitro reactions by reversed-phase HPLC and fully characterized on the basis of spectroscopic measurements. Adducts A3-A6 are four diastereoisomeric 1,N(2)-hydroxyethano-2'-deoxyguanosine derivatives possessing a carbon side chain with a double bond and a hydroxyl group. The systematic name of these adducts is 6-hydroxy-3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-7-((E)-1-hydroxy-oct-2-enyl)-3,5,6,7-tetrahydro-imidazo[1,2-a]purin-9-one. The proposed reaction mechanism yielding adducts A3-A6 involves DDE epoxidation at C2, followed by nucleophilic addition of the exocyclic amino group of dGuo to the C1 of the aldehyde and cyclization, via nucleophilic attack, on the C2 epoxy group by N-1. The formation of adducts A1-A6 has been investigated in acidic, neutral, and basic pH in the presence of H(2)O(2) or tert-butyl hydroperoxide. Neutral conditions, in the presence of H(2)O(2), have favored the formation of adducts A1 and A2, with minor amounts of A3-A6, which were prevalent under basic conditions. These data indicate that DDE can modify DNA bases through different oxidative pathways involving its two double bonds. It is important to structurally characterize DNA base derivatives induced by alpha,beta-unsaturated aldehydes so that the genotoxic risks associated with the lipid peroxidation

  10. Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment.

    Science.gov (United States)

    Adouni, M; Shirazi-Adl, A

    2014-05-01

    Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics-kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17Nm is varied by ±50% to 25.5Nm and 8.5Nm. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.

  11. Examination of microsomal cytochrome P450-catalyzed in vitro activation of o-phenylphenol to DNA binding metabolite(s) by 32P-postlabeling technique.

    Science.gov (United States)

    Pathak, D N; Roy, D

    1992-09-01

    It has been previously reported that the reactive metabolites phenylsemiquinone and phenylbenzoquinone are generated during microsomal cytochrome P450-catalyzed redox cycling of o-phenylphenol (OPP). However, covalent modification of DNA by OPP-reactive metabolites has yet not been demonstrated. In the present study we have investigated the covalent binding in DNA by OPP-reactive metabolites using 32P-postlabeling. Analysis of adducts by 32P-postlabeling in products of chemical reaction of DNA with phenylbenzoquinone revealed four major and several minor adducts. The chemical reaction of deoxyguanosine 3'-phosphate with phenylbenzoquinone also showed four major adducts. The chromatographic mobility of major adducts of deoxyguanosine 3'-phosphate-phenylbenzoquinone was identical to that of major adducts of DNA-phenylbenzoquinone. The major adducts are demonstrated to be stable. The total covalent binding in deoxyguanosine 3'-phosphate by phenylbenzoquinone (686,000-687,000 amol/nmol nucleotide) was higher than that observed in DNA (26,500-28,000 amol/nmol nucleotides). Reaction of DNA with OPP or a hydroxylated metabolite of OPP, phenylhydroquinone, in the presence of microsomes and NADPH or cumene hydroperoxide showed four major adducts. Adduct formation in DNA by OPP or phenylhydroquinone in the presence of the microsomal activation system was drastically decreased by known inhibitors of cytochrome P450. The chromatographic mobility of major adducts in DNA by OPP or phenylhydroquinone in the presence of microsomal activation system matched with those major adducts observed in deoxyguanosine 3'-phosphate or DNA reacted with pure phenylbenzoquinone. These data demonstrate that OPP or phenylhydroquinone, a hydroxylated metabolite of OPP, is able to bind covalently to DNA in the presence of a microsomal cytochrome P450 activation system. Phenylbenzoquinone is one of the DNA-binding metabolite(s) of OPP. It is concluded that OPP is genotoxic in an in vitro system and

  12. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    Science.gov (United States)

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  13. Study on the Interaction between Antitumor Drug Daunomycin and DNA

    Institute of Scientific and Technical Information of China (English)

    CHENG Gui-Fang; ZHAO Jie; TU Yong-Hua; HE Pin-Gang; FANG Yu-Zhi

    2005-01-01

    A detection of anthracycline antitumor drug daunomycin (DNR) reacting with DNA in simulate metabolism in vitro has been made. It was found that DNR could react with DNA to form DNR-DNA adducts. The adduct compositions of DNR with fish sperm DNA and thermally denaturated DNA were determined. The equilibrium association constant K of DNR with fish sperm DNA is 1.98 × 105 L/mol and that of DNR with denaturated DNA is 2.29 × 104 L/mol. Semiquinone free radicals, metabolic products of DNR, can destroy both fish sperm DNA and its thermally denaturated DNA. It is verified by hyperchromic effect increase observed in UV spectrum and AFM experiments. The mechanism of DNA degradation has also been investigated. Results obtained allow one to explain the reason of side effect of anthracycline drug and give the way to depress, which were of clinical significance.

  14. A stabilised tris(hydroxymethyl)aminomethane adduct in reduced collagen.

    Science.gov (United States)

    Cannon, D J; Davison, P F

    1976-01-01

    The reduction of collagen with sodium [3H] borohydride in the presence of Tris buffer results in the stabilization of a Schiff base adduct which is formed between allysine residues and tris(hydroxymethyl)aminomethane. The reduced, radioactive derivative of this adduct has been identified in hydrolyzates or reduced collagen. It elutes before hydroxylysine on an amino acid analyzer column close to the position of dihydroxylysinonorleucine. Similar artifacts may occur when aldehydes present in or added to proteins react with Tris or other amines prior to reduction.

  15. Flanking bases influence the nature of DNA distortion by platinum 1,2-intrastrand (GG cross-links.

    Directory of Open Access Journals (Sweden)

    Debadeep Bhattacharyya

    Full Text Available The differences in efficacy and molecular mechanisms of platinum anti-cancer drugs cisplatin (CP and oxaliplatin (OX are thought to be partially due to the differences in the DNA conformations of the CP and OX adducts that form on adjacent guanines on DNA, which in turn influence the binding of damage-recognition proteins that control downstream effects of the adducts. Here we report a comprehensive comparison of the structural distortion of DNA caused by CP and OX adducts in the TGGT sequence context using nuclear magnetic resonance (NMR spectroscopy and molecular dynamics (MD simulations. When compared to our previous studies in other sequence contexts, these structural studies help us understand the effect of the sequence context on the conformation of Pt-GG DNA adducts. We find that both the sequence context and the type of Pt-GG DNA adduct (CP vs. OX play an important role in the conformation and the conformational dynamics of Pt-DNA adducts, possibly explaining their influence on the ability of many damage-recognition proteins to bind to Pt-DNA adducts.

  16. UNUSUALLY STABLE ADDUCT BETWEEN METHANOLYZED AMOXICILLIN OR AMPICILLIN AND THEIR DIKETOPIPERAZINE DERIVATIVES.

    Science.gov (United States)

    Kosińska, Katarzyna; Frański, Rafał; Frańska, Magdalena

    2016-01-01

    Amoxicillin and ampicillin were subjected to methanolysis. As expected, the methanolysis products were observed by HPLC-ESI-MS. Besides these products, diketopiperazine derivatives were also detected. Additionally, unusually stable adduct formed between the products of methanolysis and diketopiperazine derivatives was also identified. Analogical adducts were detected when ethanolysis was performed instead of methanolysis. HPLC-ESI-MS analysis of the separated adducts confirmed that the adducts were composed of methanolysis products and diketopiperazine derivatives.

  17. Application of the adductome approach to assess intertissue DNA damage variations in human lung and esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Kanaly, Robert A. [Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan); Department of Environmental Biosciences, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama 236-0027 (Japan); Matsui, Saburo [Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan); Hanaoka, Tomoyuki [Epidemiology and Prevention Division, National Cancer Center Research Institute, Tokyo 104-0045 (Japan); Matsuda, Tomonari [Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan)], E-mail: matsuda@z05.mbox.media.kyoto-u.ac.jp

    2007-12-01

    Methods for determining the differential susceptibility of human organs to DNA damage have not yet been explored to any large extent due to technical constraints. The development of comprehensive analytical approaches by which to detect intertissue variations in DNA damage susceptibility may advance our understanding of the roles of DNA adducts in cancer etiology and as exposure biomarkers at least. A strategy designed for the detection and comparison of multiple DNA adducts from different tissue samples was applied to assess esophageal and peripherally- and centrally-located lung tissue DNA obtained from the same person. This adductome approach utilized LC/ESI-MS/MS analysis methods designed to detect the neutral loss of 2'-deoxyribose from positively ionized 2'-deoxynucleoside adducts transmitting the [M+H]{sup +} > [M+H-116]{sup +} transition over 374 transitions. In the final analyses, adductome maps were produced which facilitated the visualization of putative DNA adducts and their relative levels of occurrence and allowed for comprehensive comparisons between samples, including a calf thymus DNA negative control. The largest putative adducts were distributed similarly across the samples, however, differences in the relative amounts of putative adducts in lung and esophagus tissue were also revealed. The largest-occurring lung tissue DNA putative adducts were 90% similar (n = 50), while putative adducts in esophagus tissue DNA were shown to be 80 and 84% similar to central and peripheral lung tissue DNA respectively. Seven DNA adducts, N{sup 2}-ethyl-2'-deoxyguanosine (N{sup 2}-ethyl-dG), 1,N{sup 6}-etheno-2'-deoxyadenosine ({epsilon}dA), {alpha}-S- and {alpha}-R-methyl-{gamma}-hydroxy-1,N{sup 2}-propano-2'-deoxyguanosine (1,N{sup 2}-PdG{sub 1}, 1,N{sup 2}-PdG{sub 2}), 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-8-hydroxy-pyrimido[1,2-a] purine-(3H)-one (8-OH-PdG) and the two stereoisomers of 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro

  18. Methyl-Cytosine-Driven Structural Changes Enhance Adduction Kinetics of an Exon 7 fragment of the p53 Gene

    Science.gov (United States)

    Malla, Spundana; Kadimisetty, Karteek; Fu, You-Jun; Choudhary, Dharamainder; Schenkman, John B.; Rusling, James F.

    2017-01-01

    Methylation of cytosine (C) at C-phosphate-guanine (CpG) sites enhances reactivity of DNA towards electrophiles. Mutations at CpG sites on the p53 tumor suppressor gene that can result from these adductions are in turn correlated with specific cancers. Here we describe the first restriction-enzyme-assisted LC-MS/MS sequencing study of the influence of methyl cytosines (MeC) on kinetics of p53 gene adduction by model metabolite benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), using methodology applicable to correlate gene damage sites for drug and pollutant metabolites with mutation sites. This method allows direct kinetic measurements by LC-MS/MS sequencing for oligonucleotides longer than 20 base pairs (bp). We used MeC and non-MeC (C) versions of a 32 bp exon 7 fragment of the p53 gene. Methylation of 19 cytosines increased the rate constant 3-fold for adduction on G at the major reactive CpG in codon 248 vs. the non-MeC fragment. Rate constants for non-CpG codons 244 and 243 were not influenced significantly by MeC. Conformational and hydrophobicity changes in the MeC-p53 exon 7 fragment revealed by CD spectra and molecular modeling increase the BPDE binding constant to G in codon 248 consistent with a pathway in which preceding reactant binding greatly facilitates the rate of covalent SN2 coupling.

  19. Methyl-Cytosine-Driven Structural Changes Enhance Adduction Kinetics of an Exon 7 fragment of the p53 Gene

    Science.gov (United States)

    Malla, Spundana; Kadimisetty, Karteek; Fu, You-Jun; Choudhary, Dharamainder; Schenkman, John B.; Rusling, James F.

    2017-01-01

    Methylation of cytosine (C) at C-phosphate-guanine (CpG) sites enhances reactivity of DNA towards electrophiles. Mutations at CpG sites on the p53 tumor suppressor gene that can result from these adductions are in turn correlated with specific cancers. Here we describe the first restriction-enzyme-assisted LC-MS/MS sequencing study of the influence of methyl cytosines (MeC) on kinetics of p53 gene adduction by model metabolite benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), using methodology applicable to correlate gene damage sites for drug and pollutant metabolites with mutation sites. This method allows direct kinetic measurements by LC-MS/MS sequencing for oligonucleotides longer than 20 base pairs (bp). We used MeC and non-MeC (C) versions of a 32 bp exon 7 fragment of the p53 gene. Methylation of 19 cytosines increased the rate constant 3-fold for adduction on G at the major reactive CpG in codon 248 vs. the non-MeC fragment. Rate constants for non-CpG codons 244 and 243 were not influenced significantly by MeC. Conformational and hydrophobicity changes in the MeC-p53 exon 7 fragment revealed by CD spectra and molecular modeling increase the BPDE binding constant to G in codon 248 consistent with a pathway in which preceding reactant binding greatly facilitates the rate of covalent SN2 coupling. PMID:28102315

  20. 40 CFR 721.465 - Alkoxylated alkylpolyol acrylates, adduct with alkylamine (generic).

    Science.gov (United States)

    2010-07-01

    ..., adduct with alkylamine (generic). 721.465 Section 721.465 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.465 Alkoxylated alkylpolyol acrylates, adduct with... substances identified generically as alkoxylated alkylpolyol acrylates, adduct with alkylamine (PMNs...

  1. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Science.gov (United States)

    2010-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  2. Triphosgene mediated chlorination of Baylis-Hillman adducts

    Indian Academy of Sciences (India)

    Narender Reddy Thatikonda; Naga Sesha Sai Pavan Kumar Chebolu; Mahendar Budde; Jayathirtha Rao Vaidya

    2012-03-01

    An efficient method for the preparation of allyl chlorides from Baylis-Hillman adducts has been developed using triphosgene/pyridine system. This method is best illustrated by its advantages like operational simplicity, excellent yields, short reaction time, simple procedure and stereoselectivity.

  3. EMG evaluation of hip adduction exercises for soccer players

    DEFF Research Database (Denmark)

    Serner, Andreas; Jakobsen, Markus Due; Andersen, Lars Louis

    2014-01-01

    for the adductor longus during eight hip adduction strengthening exercises and peak EMG was normalised (nEMG) using an isometric maximal voluntary contraction (MVC) as reference. Furthermore, muscle activation of the gluteus medius, rectus abdominis and the external abdominal obliques was analysed during...

  4. Spin traps: in vitro toxicity and stability of radical adducts.

    Science.gov (United States)

    Khan, Nadeem; Wilmot, Carmen M; Rosen, Gerald M; Demidenko, Eugene; Sun, Jie; Joseph, Joy; O'Hara, Julia; Kalyanaraman, B; Swartz, Harold M

    2003-06-01

    We have evaluated the effects of DMPO, CMPO, EMPO, BMPO, and DEPMPO on functioning CHO cells and the stability of the radical adducts in the presence of cells. The potential toxic effects of the spin traps were measured by two estimates of cell viability (trypan blue exclusion and colony formation) and one of cell function (rate of oxygen consumption). We also studied the effects of the spin traps on colony formation in a second cell line, 9L tumor cells. Toxicity varied with the type of cell line and the parameter that was measured. In aqueous solutions the order of stability for all spin adducts was SO(3) > OH > CH(3), while in cell suspensions it was SO(3) > OH approximately CH(3). The radical adducts of the new spin traps have significantly increased stability as compared to DMPO. These results indicate that the new spin traps potentially offer increased stability of spin adducts in functioning cells. It also is clear that it is necessary to carry out appropriate studies of the stability and toxicity in the system that is to be studied for any particular use of these spin traps. It then should be feasible to select the spin trap(s) best suited for the proposed study.

  5. SOME SULFATO ADDUCTS AND DERIVATIVE: SYNTHESIS AND SPECTROSCOPIC STUDY

    Directory of Open Access Journals (Sweden)

    MOUHAMADOU BIRAME DIOP

    2014-11-01

    Full Text Available Three new adducts and derivative have been synthesized and studied by infrared and NMR spectroscopies. The suggested structures are discrete with a sulfate behaving as a monochelating, bichelating or monodentate ligand, the environments around the tin centre being octahedral or pentagonal bipyramidal. In all the studied compounds, proposed supramolecular architectures may be obtained when intermolecular hydrogen bonds are considered.

  6. Theoretical study of the hydroxyl radical addition to uracil and photochemistry of the formed U6OH• adduct.

    Science.gov (United States)

    Francés-Monerris, Antonio; Merchán, Manuela; Roca-Sanjuán, Daniel

    2014-03-20

    Hydroxyl radical ((•)OH) is produced in biological systems by external or endogenous agents. It can damage DNA/RNA by attacking pyrimidine nucleobases through the addition to the C5═C6 double bond. The adduct resulting from the attachment at the C5 position prevails in the experimental measurements, although the reasons for this preference remain unclear. The first aim of this work is therefore to shed light on the comprehension of this important process. Thus, the thermal (•)OH addition to the C5═C6 double bond of uracil has been studied theoretically by using DFT, MP2, and the multiconfigurational CASPT2//CASSCF methodologies. The in-vacuo results obtained with the latter protocol plus the analysis of solvent effects support the experimental observation. A significant lower barrier height is predicted for the C5 pathway with respect to that of the C6 route. In contrast to the C5 adduct, the C6 adduct is able to absorb visible light. Hence, the second aim of the work is to study the photochemistry of this species using the CASPT2//CASSCF methodology within the framework of the photochemical reaction path approach (PRPA). The nonradiative decay to the ground state of this compound has been characterized. A photoreactive character is predicted for the C6 adduct in the excited states according to the presence of excited-state minima along the main decay channel. Finally, a new mechanism of photodissociation has been explored, which implies the photoinduced regeneration of the canonical nucleobase by irradiating with visible light, being therefore relevant in RNA protection against damage by reactive oxygen species.

  7. Synthesis and characterization of manganese-glycine and copper-glycine adducts

    Directory of Open Access Journals (Sweden)

    Robson Fernandes de Farias

    2002-09-01

    Full Text Available This work reports the synthesis and characterization of adducts of general formula MCl2.ngly, where M= Mn and Cu; n= 2 and 4, and gly= glycine. The manganese adducts were synthesized by dissolution of both, manganese chloride and glycine in water, whereas the copper adducts were obtained by using an alternative solid state synthesis approach. For all adducts, the obtained infrared data shows that the coordination involves the amine nitrogen atom, as well as an oxygen atom of the COO- group. The TG curves for the synthesized adducts exhibit only one mass loss step associated with the release of glycine molecules.

  8. Synthesis, structure, and reactivity of diazene adducts: isolation of iso-diazene stabilized as a borane adduct.

    Science.gov (United States)

    Reiß, Fabian; Schulz, Axel; Villinger, Alexander

    2014-09-08

    This work describes the synthesis and full characterization of a series of GaCl3 and B(C6 F5 )3 adducts of diazenes R(1) NNR(2) (R(1) =R(2) =Me3 Si, Ph; R(1) =Me3 Si, R(2) =Ph). Trans-PhNNPh forms a stable adduct with GaCl3 , whereas no adduct, but instead a frustrated Lewis acid-base pair is formed with B(C6 F5 )3 . The cis-PhNNPh⋅B(C6 F5 )3 adduct could only be isolated when UV light was used, which triggers the isomerization from trans- to cis-PhNNPh, which provides more space for the bulky borane. Treatment of trans-PhNNSiMe3 with GaCl3 led to the expected trans-PhNNSiMe3 ⋅GaCl3 adduct but the reaction with B(C6 F5 )3 triggered a 1,2-Me3 Si shift, which resulted in the formation of a highly labile iso-diazene, Me3 Si(Ph)NN; stabilized as a B(C6 F5 )3 adduct. Trans-Me3 SiNNSiMe3 forms a labile cis-Me3 SiNNSiMe3 ⋅B(C6 F5 )3 adduct, which isomerizes to give the transient iso-diazene species (Me3 Si)2 NN⋅B(C6 F5 )3 upon heating. Both iso-diazene species insert easily into one BC bond of B(C6 F5 )3 to afford hydrazinoboranes. All new compounds were fully characterized by means of X-ray crystallography, vibrational spectroscopy, CHN analysis, and NMR spectroscopy. All compounds were further investigated by DFT and the bonding situation was assessed by natural bond orbital (NBO) analysis.

  9. Experimental and computational evidence for hydrogen bonding interaction between 2′-deoxyadenosine conjugate adduct and amino-terminated organic film on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Szwajca, A., E-mail: Anna.Szwajca@amu.edu.pl [Faculty of Chemistry, A" . Mickiewicz University, Umultowska 89 b, 61-614 Poznań (Poland); Krzywiecki, M. [Institute of Physics-CSE, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice (Poland); Pluskota-Karwatka, D. [Faculty of Chemistry, A" . Mickiewicz University, Umultowska 89 b, 61-614 Poznań (Poland)

    2015-08-03

    A simple method for immobilization of malonaldehyde-acetaldehyde conjugate adduct with DNA base onto an amino-terminated surface of silicon from water solution is proposed. The Si(001) surface which contains OH groups was modified with 3-aminopropyltrimethoxysilane (APTMS) to serve as a linker between the silica surface and the organic adduct. The 2′-deoxyadenosine adduct was adsorbed on the APTMS/Si surface from acetonitrile/water solution. This nucleoside derivative is stable under laboratory conditions and emits a natural fluorescence, allowing for its adsorption on the APTMS/Si surface to be easily verified by fluorescence microscopy, non-contact atomic force microscopy and attenuated total reflectance Fourier transform infrared spectroscopy. The degree of surface coverage by the adduct was evaluated by X-ray photoelectron spectroscopy (XPS). Analysis of the XPS spectra revealed bands at 400.2 eV and 533.1 eV which are characteristic of a hydrogen bonded –NH{sub 2} and –OH group. This observation implies that the free electron donating –NH{sub 2} groups from the APTMS layer makes hydrogen bonds with the fluorescent adduct and immobilize it on the surface. The wetting angle of the APTMS/Si surface before and after adsorption of the nucleoside derivative does not differ significantly, which points to the involvement of an – OH group from 2′-deoxyadenosine to be involved in hydrogen bonding. These experimental results were further supported using quantum chemical calculations to demonstrate that the 2′deoxyadenosine adduct makes hydrogen bonds with the APTMS molecule. Furthermore, this hydrogen bond involves the –NH{sub 2} group from APTMS and –OH group at carbon atoms C3 and C6 from the deoxyribose ring of 2′deoxyadenosine. - Highlights: • DNA base adduct was immobilized onto amino-terminated silicon surface. • Hydrogen bonds were observed between aminosilane molecules and deoxyribose ring. • Fluorescent film was characterized by

  10. Point mutations induced by 1,2-epoxy-3-butene N1 deoxyinosine adducts.

    Science.gov (United States)

    Rodriguez, D A; Kowalczyk, A; Ward, J B; Harris, C M; Harris, T M; Lloyd, R S

    2001-01-01

    The National Toxicology Program has recently classified 1,3-butadiene (BD) as a human carcinogen. BD is metabolized to the intermediates 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-dihydroxy-3,4-epoxybutane. All three metabolites have been implicated in producing specific types of DNA damage and as genotoxic agents in mice, rat, and human cells. This study has focused on EB-induced N1 deoxyinosine lesions that are formed by deamination of deoxyadenosine following reaction of the epoxide at the N(1) position. The R and S stereoisomers of this lesion were incorporated site-specifically within the context of an 11-mer oligodeoxynucleotide, incorporated into M13mp7L2 single-stranded DNA, and transfected into E. coli. Both stereoisomers modestly reduced plaque-forming ability, indicating that neither lesion presents a base modification that cannot be bypassed. The resulting plaques were assessed for point mutations using differential hybridization and DNA sequence analyses. The overall mutagenic spectrum revealed that the N1 adducts were highly mutagenic (approximately 90% per replication cycle), causing a predominance of A --> G transitions.

  11. Crystal Structure of Ethanolamine 5-Nitrosalicylic Acid Organic Adduct

    Institute of Scientific and Technical Information of China (English)

    金轶; 车云霞; 魏荣敏; 郑吉民

    2004-01-01

    The title adduct (C18H24N4O12, Mr = 488.41) crystallizes in monoclinic, space group P21/c with a = 4.0514(19), b = 25.193(11), c = 10.751(5)(A), β = 95.070(8)o, V = 1093.0(9)(A)3, Z = 4, Dc = 1.484 g/cm3, F(000) = 512, μ(MoKα) = 1.26 cm-1, T = 293 K, the final R = 0.0593 and wR = 0.0862 for 956 observed reflections with I > 2(I). The compound is a 1:1 adduct of ethanolamine and 5-nitrosalicylic acid. The nitrogen atom of ethanolamine is protonated. In this crystal there exist a number of hydrogen bonds which link the ethanolamine and 5-nitrosalicylic acid molecules to form a three-dimensional infinite network structure.

  12. Diagnosis and dosimetry of exposure to sulfur mustard: Development of a standard operating procedure for mass spectrometric analysis of haemoglobin adducts - Exploratory research on albumin and keratin adducts

    NARCIS (Netherlands)

    Noort, D.; Fidder, A.; Hulst, A.G.; Jong, L.P.A. de; Benschop, H.P.

    2000-01-01

    Experiments were carried out to develop a standard operating procedure for analysis of sulfur mustard adducts to the N-terminal valine in haemoglobin and to explore adduct formation with albumin and keratin. In the first approach, gas chromatography-negative chemical ionization/mass spectrometry (GC

  13. Diagnosis and dosimetry of exposure to sulfur mustard: Development of a standard operating procedure for hemoglobin adducts: Exploratory research on albumin and keratin adducts

    NARCIS (Netherlands)

    Noort, D.; Fidder, A.; Jong, L.P.A. de; Schans, G.P. van der; Benschop, H.P.

    2000-01-01

    A standard operating procedure (SOP) for determination of the sulfur mustard adduct to the N-terminal valine in hemoglobin was developed. By using this SOP, it was found that the Nterminal valine adduct in globin of hairless guinea pigs and marmosets which had been exposed to sulfur mustard (0.5 LD5

  14. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  15. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    Science.gov (United States)

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  16. Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores*

    OpenAIRE

    Zienicke, Benjamin; Chen, Li-Yi; Khawn, Htoi; Hammam, Mostafa A. S.; Kinoshita, Hideki; Reichert, Johannes; Ulrich, Anne S.; Inomata, Katsuhiko; Lamparter, Tilman

    2010-01-01

    We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive...

  17. NEW HYDROGENOXALATO ADDUCTS AND MALONATO COMPLEX: SYNTHESIS AND SPECTROSCOPIC STUDIES

    Directory of Open Access Journals (Sweden)

    MOUHAMADOU BIRAME DIOP

    2014-08-01

    Full Text Available Two new hydrogenoxalato and one malonato adduct and complex have been synthesized and studied by infrared and NMR spectroscopies. The suggested structures are discrete, the hydrogenoxalate behaving as a monodentate ligand or only involved in hydrogen bonding, the environment around the tin (IV centre being tetrahedral or trigonal bipyramidal. The malonate anion is a monodentate ligand. In all the suggested structures, when extra hydrogen bonds are considered, supramolecular architectures are obtained.

  18. SOME NEW SULFONATO ADDUCT: SYNTHESIS AND SPECTROSCOPIC STUDIES

    Directory of Open Access Journals (Sweden)

    MOUHAMADOU BIRAME DIOP

    2015-02-01

    Full Text Available Three new adducts have been synthesized and studied by infrared and NMR spectroscopies. The suggested structures are discrete with a pyridine -3- sulfonate acting as a tri O-chelating and N-donor or as a non σ coordinating ligand, a 4-aminobenzenesulfonate behaving as a monodentate O-donor, the environments around the tin centre being tetrahedral, octahedral or seven coordinated. In all the studied compounds, supramolecular architectures are obtained when hydrogen bonds are considered.

  19. NEW HALO- AND ORGANOTIN (IV PHENYLARSENIATO ADDUCTS AND DERIVATIVES

    Directory of Open Access Journals (Sweden)

    BOCAR TRAORE

    2013-12-01

    Full Text Available Four new phenylarseniato adducts and organotin derivatives have been synthesized and studied by infrared. The suggested structures are polymeric, (SnX4; X = Cl, Br and SnPh3Cl while being discrete for SnPh2Cl(PhAsO3H2isoBu2NH2. When OH- - - Cl, NH - - - O or NH- - -Cl hydrogen bonds are involved, supramolecular architectures are obtained.

  20. Synthesis and selenation of tandem multicomponent condensation adducts

    OpenAIRE

    Hua, Guoxiong; Du, Junyi; Fuller, Amy; Athukorala Arachchige, Kasun Sankalpa; Cordes, David Bradford; Slawin, Alexandra Martha Zoya; Woollins, J. Derek

    2015-01-01

    A number of four-component condensation adducts, which were readily obtained from one-pot reaction of aryl carboxylic acids, arylaldehydes, arylamines and c-hexylisocyanide, were treated with two equivalents of Woollins’ reagent leading to the formation of a series of novel selenoamides with one or two C=Se groups, or heterocyclic compounds such as 1,3-selenazole and 1,3-selenazolidin-5-one Postprint Peer reviewed

  1. NEW HYDROGENOXALATO ADDUCTS AND MALONATO COMPLEX: SYNTHESIS AND SPECTROSCOPIC STUDIES

    OpenAIRE

    2014-01-01

    Two new hydrogenoxalato and one malonato adduct and complex have been synthesized and studied by infrared and NMR spectroscopies. The suggested structures are discrete, the hydrogenoxalate behaving as a monodentate ligand or only involved in hydrogen bonding, the environment around the tin (IV) centre being tetrahedral or trigonal bipyramidal. The malonate anion is a monodentate ligand. In all the suggested structures, when extra hydrogen bonds are considered, supramolecular architectures are...

  2. PHOSPHATO AND PHOSPHONATO ADDUCTS: SYNTHESIS AND SPECTROSCOPIC STUDY

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2014-05-01

    Full Text Available Two new adducts have been synthesized and studied by infrared and NMR spectroscopy. The suggested structures are discrete or of infinite chain type with a phosphate behaving as a bidentate ligand, a phosphonate acting as a monodentate ligand, the environments around the tin centre being tetrahedral or trigonal bipyramidal. In all the studied compounds, supramolecular architectures are obtained when hydrogen bonds are considered.

  3. Oxidative Stress, DNA Damage, and Inflammation Induced by Ambient Air and Wood Smoke Particulate Matter in Human A549 and THP-1 Cell Lines

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup

    2011-01-01

    of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-R as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled...

  4. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    Science.gov (United States)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  5. Charge transfer adducts of metal complexes of π-donor ligands with I 2 and TCNQ

    Science.gov (United States)

    Bera, T. R.; Sen, D.; Ghosh, R.

    1989-01-01

    Copper(II) and nickel(II) biguanides and O-alkyl-1-amidinourea can act as donors for the formation of charge transfer (CT) adducts with I 2 and tetracyanoquinodimethane (TNCQ) as acceptors. Iodine adducts are characterized both in solid and solution states whereas TCNQ adducts obtain only in solution. Appearance of a broad band at 355 nm for iodine adducts and at 335 nm for TNCQ adducts and shifting of i.r. frequencies support the formation of donor acceptor associates. Elemental analysis establishes 1:1 stoichiometry of the solid adducts. The K and ɛ values determined by modified Benesi—Hildebrand, Scott and Rose—Drago equations are found to be of the order of 10 4 and 10 3 respectively at 298 K in methanol. The solvent effect on the K values is discussed in terms of coupled solute-solute and solute-solvent equilibria.

  6. Hydrolytic Cleavage Products of Globin Adducts in Urine as Possible Biomarkers of Cumulative Dose: Proof of Concept Using Styrene Oxide as a Model Adduct-Forming Compound.

    Science.gov (United States)

    Mráz, Jaroslav; Hanzlíková, Iveta; Moulisová, Alena; Dušková, Šárka; Hejl, Kamil; Bednářová, Aneta; Dabrowská, Ludmila; Linhart, Igor

    2016-04-18

    A new experimental model was designed to study the fate of globin adducts with styrene 7,8-oxide (SO), a metabolic intermediate of styrene and a model electrophilic compound. Rat erythrocytes were incubated with SO at 7 or 22 °C. Levels of specific amino acid adducts in globin were determined by LC/MS analysis of the globin hydrolysate, and erythrocytes with known adduct content were administered intravenously to recipient rats. The course of adduct elimination from the rat blood was measured over the following 50 days. In the erythrocytes incubated at 22 °C, a rapid decline in the adduct levels on the first day post-transfusion followed by a slow phase of elimination was observed. In contrast, the adduct elimination in erythrocytes incubated at 7 °C was nearly linear, copying elimination of intact erythrocytes. In the urine of recipient rats, regioisomeric SO adducts at cysteine, valine, lysine, and histidine in the form of amino acid adducts and/or their acetylated metabolites as well as SO-dipeptide adducts were identified by LC/MS supported by synthesized reference standards. S-(2-Hydroxy-1-phenylethyl)cysteine and S-(2-hydroxy-2-phenylethyl)cysteine, the most abundant globin adducts, were excreted predominantly in the form of the corresponding urinary mercapturic acids (HPEMAs). Massive elimination of HPEMAs via urine occurred within the first day from the erythrocytes incubated at both 7 and 22 °C. However, erythrocytes incubated at 7 °C also showed a slow second phase of elimination such that HPEMAs were detected in urine up to 50 days post-transfusion. These results indicate for the first time that globin adducts can be cleaved in vivo to modified amino acids and dipeptides. The cleavage products and/or their predictable metabolites are excreted in urine over the whole life span of erythrocytes. Some of the urinary adducts may represent a new type of noninvasive biomarker for exposure to adduct-forming chemicals.

  7. Correlation between Quadriceps Endurance and Adduction Moment in Medial Knee Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Soon-Hyuck Lee

    Full Text Available It is not clear whether the strength or endurance of thigh muscles (quadriceps and hamstring is positively or negatively correlated with the adduction moment of osteoarthritic knees. This study therefore assessed the relationships between the strength and endurance of the quadriceps and hamstring muscles and adduction moment in osteoarthritic knees and evaluated predictors of the adduction moment. The study cohort comprised 35 patients with unilateral medial osteoarthritis and varus deformity who were candidates for open wedge osteotomy. The maximal torque (60°/sec and total work (180°/sec of the quadriceps and hamstring muscles and knee adduction moment were evaluated using an isokinetic testing device and gait analysis system. The total work of the quadriceps (r = 0.429, P = 0.037 and hamstring (r = 0.426, P = 0.045 muscles at 180°/sec each correlated with knee adduction moment. Preoperative varus deformity was positively correlated with adduction moment (r = 0.421, P = 0.041. Multiple linear regression analysis showed that quadriceps endurance at 180°/sec was the only factor independently associated with adduction moment (β = 0.790, P = 0.032. The adduction moment of osteoarthritic knees correlated with the endurance, but not the strength, of the quadriceps muscle. However, knee adduction moment did not correlate with the strength or endurance of the hamstring muscle.

  8. Synthesis and Characterization of the Adducts of Bis(O-ethyldithiocarbonatocopper(II with Substituted Pyridines

    Directory of Open Access Journals (Sweden)

    Gurpreet Kour

    2013-01-01

    Full Text Available Monomeric five coordinated adducts of bis(O-ethyldithiocarbonatocopper(II of general formula [Cu(C2H5OCS22(L], [L = 2-, 3-, 4-methylpyridines and 2-, 3-, 4-ethylpyridines] have been synthesized and characterized by elemental analysis, i.r. and electronic spectroscopy, magnetic and conductivity measurements. Analytical results show that the adducts have 1 : 1 stoichiometry. The adducts were found to be paramagnetic and their magnetic moments at room temperature lie within the 1.81–1.94 B.M. range and this indicates the presence of one unpaired electron. All the adducts have distorted square pyramidal geometry.

  9. /sup 32/P-Postlabeling test for covalent DNA binding of chemicals in vivo: Application to a variety of aromatic carcinogens and methylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.V.; Gupta, R.C.; Randerath, E.; Randerath, K.

    1984-02-01

    Carcinogen--DNA adducts were detected and determined by /sup 32/P-postlabeling assay after exposure of mouse or rat tissues in vivo to a total of 28 compounds comprising 7 arylamines and derivatives, 3 azo compounds, 2 nitroaromatics, 12 polycyclic aromatic hydrocarbons, and 4 methylating agents. DNA was isolated from mouse skin, mouse liver, and rat liver after treatment with the individual carcinogens, then digested enzymatically to deoxyribonucleoside 3'-monophosphates, which were converted to 5'-/sup 32/P-labeled deoxyribonucleoside 3',5'-bisphosphates by T4 polynucleotide kinase-catalyzed (/sup 32/P)phosphate transfer from (gamma-/sup 32/P)ATP. The nucleotides were resolved by anion-exchange t.l.c. on polyethyleneimine-cellulose and detected by autoradiography. The determination of low levels of DNA binding of the aromatic carcinogens entailed the removal of normal nucleotides prior to the resolution of adduct nucleotides. For this purpose, an alternative procedure employing reversed-phase t.l.c. was devised which offered advantages for the detection of quantitatively minor adducts. The procedures described enabled the detection of 1 aromatic DNA adduct in approximately 10(/sup 8/) normal nucleotides, while the limit of detection of methylated adducts was 1 adduct in approximately 6 X 10(/sup 5/) nucleotides. The results show that a great number of carcinogen-DNA adducts of diverse structure are substrates for /sup 32/P-labeling by polynucleotide kinase-catalyzed phosphorylation. Because covalent DNA adduct formation in vivo appears to be an essential property of the majority of chemical carcinogens, /sup 32/P-postlabeling analysis of carcinogen--DNA adducts in mammalian tissues may serve as a test for the screening of chemicals for potential carcinogenicity.

  10. Stability, accumulation and cytotoxicity of an albumin-cisplatin adduct

    DEFF Research Database (Denmark)

    Møller, Charlotte; Tastesen, Hanne Sørup; Gammelgaard, Bente

    2010-01-01

    The accumulation and cytotoxicity of a 10 µmol L¿¹ equimolar human serum albumin-cisplatin adduct (HSA-Pt) was investigated in suspension Ehrlich Ascites Tumor Cells (EATC) and adherent Ehrlich Lettré Ascites Cells (Lettré). HSA-Pt did not induce apoptosis nor was it taken up by the cells to any...... significant amount within 24 h incubation. The accumulation and cytotoxicity of HSA-Pt was compared to 10 µmol L¿¹ cisplatin for which a larger accumulation and cytotoxicity were observed in EATC compared to Lettré. The experiment was performed with cell medium exchange every fourth hour as HSA...

  11. Differences in lysine adduction by acrolein and methyl vinyl ketone: implications for cytotoxicity in cultured hepatocytes.

    Science.gov (United States)

    Kaminskas, Lisa M; Pyke, Simon M; Burcham, Philip C

    2005-11-01

    Acrolein is a highly toxic environmental pollutant that readily alkylates the epsilon-amino group of lysine residues in proteins. In model systems, such chemistry involves sequential addition of two acrolein molecules to a given nitrogen, forming bis-Michael-adducted species that undergo aldol condensation and dehydration to form Nepsilon-(3-formyl-3,4-dehydropiperidino)lysine. Whether this ability to form cyclic adducts participates in the toxicity of acrolein is unknown. To address this issue, we compared the chemistry of protein adduction by acrolein to that of its close structural analogue methyl vinyl ketone, expecting that the alpha-methyl group would hinder the intramolecular cyclization of any bis-adducted species formed by methyl vinyl ketone. Both acrolein and methyl vinyl ketone displayed comparable protein carbonylating activity during in vitro studies with the model protein bovine serum albumin, confirming the alpha,beta,-unsaturated bond of both compounds is an efficient Michael acceptor for protein nucleophiles. However, differences in adduction chemistry became apparent during the use of electrospray ionization-MS to monitor reaction products in a lysine-containing peptide after modification by each compound. For example, although a Schiff base adduct was detected following reaction of the peptide with acrolein, an analogous species was not formed by methyl vinyl ketone. Furthermore, while ions corresponding to mono- and bis-Michael adducts were detected at the N-terminus and lysine residues following peptide modification by both carbonyls, only acrolein modification generated ions attributable to cyclic adducts. Despite these differences in adduction chemistry, in mouse hepatocytes, the two compounds exhibited very comparable abilities to induce rapid, concentration-dependent cell death as well as protein carbonylation. These findings suggest that the acute toxicity of short-chain alpha,beta-unsaturated carbonyl compounds involves their ability to

  12. Mechanism of repair of acrolein- and malondialdehyde-derived exocyclic guanine adducts by the α-ketoglutarate/Fe(II) dioxygenase AlkB.

    Science.gov (United States)

    Singh, Vipender; Fedeles, Bogdan I; Li, Deyu; Delaney, James C; Kozekov, Ivan D; Kozekova, Albena; Marnett, Lawrence J; Rizzo, Carmelo J; Essigmann, John M

    2014-09-15

    The structurally related exocyclic guanine adducts α-hydroxypropano-dG (α-OH-PdG), γ-hydroxypropano-dG (γ-OH-PdG), and M1dG are formed when DNA is exposed to the reactive aldehydes acrolein and malondialdehyde (MDA). These lesions are believed to form the basis for the observed cytotoxicity and mutagenicity of acrolein and MDA. In an effort to understand the enzymatic pathways and chemical mechanisms that are involved in the repair of acrolein- and MDA-induced DNA damage, we investigated the ability of the DNA repair enzyme AlkB, an α-ketoglutarate/Fe(II) dependent dioxygenase, to process α-OH-PdG, γ-OH-PdG, and M1dG in both single- and double-stranded DNA contexts. By monitoring the repair reactions using quadrupole time-of-flight (Q-TOF) mass spectrometry, it was established that AlkB can oxidatively dealkylate γ-OH-PdG most efficiently, followed by M1dG and α-OH-PdG. The AlkB repair mechanism involved multiple intermediates and complex, overlapping repair pathways. For example, the three exocyclic guanine adducts were shown to be in equilibrium with open-ring aldehydic forms, which were trapped using (pentafluorobenzyl)hydroxylamine (PFBHA) or NaBH4. AlkB repaired the trapped open-ring form of γ-OH-PdG but not the trapped open-ring of α-OH-PdG. Taken together, this study provides a detailed mechanism by which three-carbon bridge exocyclic guanine adducts can be processed by AlkB and suggests an important role for the AlkB family of dioxygenases in protecting against the deleterious biological consequences of acrolein and MDA.

  13. Fullerene–Carbene Lewis Acid–Base Adducts

    KAUST Repository

    Li, Huaping

    2011-08-17

    The reaction between a bulky N-heterocylic carbene (NHC) and C60 leads to the formation of a thermally stable zwitterionic Lewis acid-base adduct that is connected via a C-C single bond. Low-energy absorption bands with weak oscillator strengths similar to those of n-doped fullerenes were observed for the product, consistent with a net transfer of electron density to the C60 core. Corroborating information was obtained using UV photoelectron spectroscopy, which revealed that the adduct has an ionization potential ∼1.5 eV lower than that of C60. Density functional theory calculations showed that the C-C bond is polarized, with a total charge of +0.84e located on the NHC framework and -0.84e delocalized on the C 60 cage. The combination of reactivity, characterization, and theoretical studies demonstrates that fullerenes can behave as Lewis acids that react with C-based Lewis bases and that the overall process describes n-doping via C-C bond formation. © 2011 American Chemical Society.

  14. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Science.gov (United States)

    2010-07-01

    ... ester with pentaerythritol. 721.3680 Section 721.3680 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  15. Comparison of EMG activity on abdominal muscles during plank exercise with unilateral and bilateral additional isometric hip adduction.

    Science.gov (United States)

    Kim, Soo-Yong; Kang, Min-Hyeok; Kim, Eui-Ryong; Jung, In-Gui; Seo, Eun-Young; Oh, Jae-Seop

    2016-10-01

    The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (pmuscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (pabdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction.

  16. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    Directory of Open Access Journals (Sweden)

    Leah G. Luna

    2014-01-01

    Full Text Available 4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results

  17. DNA damage in internal organs after cutaneous exposure to sulphur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Batal, Mohamed [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex (France); Boudry, Isabelle; Mouret, Stéphane; Cléry-Barraud, Cécile; Wartelle, Julien [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex (France); Bérard, Izabel [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Douki, Thierry, E-mail: thierry.douki@cea.fr [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France)

    2014-07-01

    Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, and liver of SKH-1 mice cutaneously exposed to 2, 6 and 60 mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target. - Highlights: • Sulphur mustard reaches internal organs after skin exposure • Adducts are detected in the DNA of internal organs • Brain is the organ with the highest level of DNA damage • The barrier function of skin is lost at high dose of sulphur mustard • DNA adducts persist in organs for 2 or 3 weeks.

  18. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER.

  19. Hemoglobin adducts as biomarkers of estrogen homeostasis: elevation of estrogenquinones as a risk factor for developing breast cancer in Taiwanese women.

    Science.gov (United States)

    Lin, Che; Hsieh, Wei-Chung; Chen, Dar-Ren; Kuo, Shou-Jen; Yu, Wen-Fa; Hu, Suh-Woan; Sue, Hung-Jie; Ko, Mao-Hui; Juan, Chang-Hsin; Chung, Kuo-Suan; Lin, Po-Hsiung

    2014-03-21

    The aim of this study was to establish a methodology to analyze estrogen quinone-derived adducts, including 17β-estradiol-2,3-quinone (E2-2,3-Q) and 17β-estradiol-3,4-quinone (E2-3,4-Q), in human hemoglobin (Hb). The methodology was then used to measure the levels of these adducts in Hb derived from female breast cancer patients (n=143) as well as controls (n=147) in Taiwan. Our result confirmed that both E2-2,3-Q- and E2-3,4-Q-derived adducts, including E2-2,3-Q-4-S-Hb and E2-3,4-Q-2-S-Hb, were detected in all breast cancer patients with median levels at 434 (215-1472) and 913 (559-2384) (pmol/g), respectively. Levels of E2-2,3-Q-4-S-Hb correlated significantly with those of E2-3,4-Q-2-S-Hb (r=0.622-0.628, pQ-4-S-Hb and E2-3,4-Q-2-S-Hb in breast cancer patients compared to those in the controls (pbreast cancer risk. We hypothesize that combination of genetic events and environmental factors may modulate estrogen homeostasis and enhance the production of estrogen quinones which lead to subsequent generation of pro-mutagenic DNA lesions in breast cancer patients.

  20. 7-cysteine-pyrrole conjugate: A new potential DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Xia, Qingsu; Ma, Liang; Fu, Peter P

    2016-01-01

    Pyrrolizidine alkaloids (PAs) require metabolic activation to exert cytotoxicity, genotoxicity, and tumorigenicity. We previously reported that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts are responsible for PA-induced liver tumor formation in rats. In this study, we determined that metabolism of riddelliine and monocrotaline by human or rat liver microsomes produced 7-cysteine-DHP and DHP. The metabolism of 7-glutathionyl-DHP by human and rat liver microsomes also generated 7-cysteine-DHP. Further, reaction of 7-cysteine-DHP with calf thymus DNA in aqueous solution yielded the described DHP-derived DNA adducts. This study represents the first report that 7-cysteine-DHP is a new PA metabolite that can lead to DNA adduct formation.

  1. Theoretical Investigation of Detailed Thermodynamic Character of Possible Difunctional Adducts Model

    Institute of Scientific and Technical Information of China (English)

    CHANG Guan-Ru; ZHOU Li-Xin; CHEN Dong

    2006-01-01

    The B3LYP/6-31G* level of theory was used to optimize trans-[Pt(NH3)(Am)G-L], where Am = quinoline or thiazole and L is chosen as the model for functional groups of peptide side chains, and for adenine and guanine sites of DNA as the ultimate target of platinum anticancer drugs. Bond dissociating energy and stability energy of complexes are chosen to study detailedly ther- modynamic character of possible difunctional adducts model. In order to investigate the influence of a polarizable environment on the energy of the Pt-L bond formation, we adopt a new bonding energy formula brought forward by Lippard and his coworkers: ΔH(Sol) = ΔH(SCF) + ΔG(Solv), which is quite appropriate to compare with what is found in experimental studies. Our calculated results demonstrate that N-containing ligands are more favored in view of thermodynamics both in gas phrase and in solution. However, it is worthly to be noted that addition of solvation free energies result in moderate correction of bonding energy in relative ordering, and the largest ones both present in imidazole ligand, not in guanine ligand. Finally, the nature of bond is analyzed in terms of partial charges distribution based on NBO population.

  2. Effects of Captan on DNA and DNA metabolic processes in human diploid fibroblasts.

    Science.gov (United States)

    Snyder, R D

    1992-01-01

    The fungicide Captan has been examined for its effects on DNA and DNA processing in order to better understand the genotoxicity associated with this agent. Captan treatment resulted in production of DNA single strand breaks and DNA-protein cross-links and elicited an excision repair response in human diploid fibroblasts. Captan was also shown to inhibit cellular DNA synthesis and to form stable adducts in herring sperm and human cellular DNA. Misincorporation of nucleotides into Captan-treated synthetic DNA templates was significantly elevated in an in vitro assay using E. coli DNA polymerase I, suggesting that DNA adduct formation by Captan could have mutagenic consequences. In sum, these studies demonstrate that Captan is capable of interacting with DNA at a number of levels and that these interactions could provide the basis for Captan's genotoxicity. The extreme cytotoxicity of this fungicide, however, could be due to other cellular effects since at the IC50 for cell killing, approximately 0.8 microM, none of the above genotoxic events could be detected by the methods employed.

  3. Non Covalent Interactions and Internal Dynamics in Adducts of Freons

    Science.gov (United States)

    Caminati, Walther; Gou, Qian; Evangelisti, Luca; Feng, Gang; Spada, Lorenzo; Vallejo-López, Montserrat; Lesarri, Alberto; Cocinero, Emilio J.

    2014-06-01

    The complexation of chlorofluorocarbons (CFCs) with atmospheric water and pollutants of the atmosphere affects their reactivity and it seems to accelerate, for example, the decomposition rate of freons in the atmosphere [1]. For this reason we characterized shapes, stabilities, nature of the non-covalent interactions, structures and internal dynamics of a number of complexes of CFCs with water and of their dimers or oligomers by rotational spectroscopy. It has been found that hydrogenated CFCs form adducts with other molecules through weak hydrogen bonds (WHBs). Their C-H groups can act as proton donors, enhanced by the electron withdrawing of the halogen atoms, interacting with the electron rich regions of the partner molecules [2]. Also in adducts or oligomers of hydrogenated CFCs the monomer units are held together by nets of WHBs [3]. When CFCs are perhalogenated, the positive electrostatic region ("σ-hole") can interact electrostatically with negative sites of another, or of the same molecular entity, giving rise, according to IUPAC, to the so called halogen bond (HaB). However, it has been observed that when the perhalogenated CFCs has a Π electron system, a lone pair•••Π interaction (Bürgi-Dunitz) is favoured [4]. We describe here the HaBs that CF4 and CF3Cl form with a variety of partner molecules such as water, ammonia, dimethyl ether, etc. Important spectroscopic features outline strong dynamics effects taking place in this kind of complex. References [1] V. Vaida, H. G. Kjaergaard, K. J. Feierabend, Int. Rev. Phys. Chem. 22 (2003) 203. [2] See, for example: W. Caminati, S. Melandri, A. Maris, P. Ottaviani, Angew. Chem. Int. Ed. 45 (2006) 2438. [3] G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. Prampolini, W. Caminati, Chem. Commun. 50 (2014) 171. [4] Q. Gou, G. Feng, L. Evangelisti, W. Caminati, Angew. Chem. Int. Ed. 52 (2013) 52 11888.

  4. Bone Aging in DNA Repair Deficient Trichothiodystrophy Mice

    NARCIS (Netherlands)

    K.E.M. Diderich (Karin)

    2010-01-01

    textabstractOur genome is continuously damaged by environmental, endogenous agents as well as by the instrinsic instability of DNA. For example, UV light gives rise to helix-distorting cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6,4)-pyrimidone adducts (6-4PPs). Ionizing radiation can cause

  5. Aminoguanidine pyridoxal adduct is superior to aminoguanidine for preventing diabetic nephropathy in mice.

    Science.gov (United States)

    Miyoshi, H; Taguchi, T; Sugiura, M; Takeuchi, M; Yanagisawa, K; Watanabe, Y; Miwa, I; Makita, Z; Koike, T

    2002-07-01

    Aminoguanidine inhibits the formation of advanced glycation end-products, and has been extensively examined in animals. However, administration of aminoguanidine decreases the hepatic content of pyridoxal phosphate. In order to avoid this problem, we developed an aminoguanidine pyridoxal Schiff base adduct and examined its efficacy in vitro as well as in a model of diabetic nephropathy. Mice with streptozotocin-induced diabetes were treated with aminoguanidine or aminoguanidine pyridoxal adduct for 9 weeks. An in vitro study was also performed to assess the antioxidant activity of aminoguanidine and its pyridoxal adduct. Neither drug altered glycemic control. Aminoguanidine pyridoxal adduct significantly improved urinary albumin excretion by 78.1 % compared with the diabetic control, and also had a better preventive effect on the progression of renal pathology than aminoguanidine did. Inhibition of glycation by both drugs was similar, but the antioxidant activity of the pyridoxal adduct was far superior. These findings suggest that aminoguanidine pyridoxal adduct may be superior to aminoguanidine, as it not only prevents vitamin B6 deficiency but is also better at controlling diabetic nephropathy, as this adduct inhibits oxidation as well as glycation.

  6. Hemoglobin adducts of N-substituted aryl compounds in exposure control and risk assessment.

    Science.gov (United States)

    Neumann, H G; Birner, G; Kowallik, P; Schütze, D; Zwirner-Baier, I

    1993-03-01

    Arylamines, nitroarenes, and azo dyes yield a common type of metabolite, the nitroarene, which produces a hydrolyzable adduct with protein and is closely related to the critical, ultimate toxic and genotoxic metabolite. The target dose as measured by hemoglobin adducts in erythrocytes reflects not only the actual uptake from the environment but also an individual's capacity for metabolic activation and is therefore an improved dosimeter for human exposure. The usefulness of hemoglobin adducts in molecular epidemiology is now widely recognized. With regard to risk assessment, many questions need to be answered. The described experiments in rats address some of these questions. The relationship between binding to hemoglobin in erythrocytes and to proteins in plasma has been found to vary considerably for a number of diamines. The fraction of hydrolyzable adducts out of the total protein adducts formed also varies in both compartments. This indicates that the kind of circulating metabolites and their availability in different compartments is compound specific. This has to do with the complex pattern of competing metabolic pathways, and the role of N-acetylation and deacetylation is emphasized. An example of nonlinear dose dependence adds to the complexity. Analysis of hemoglobin adducts reveals interesting insights into prevailing pathways, which not only apply to the chemical, but may also be useful to assess an individual's metabolic properties. In addition, it is demonstrated that the greater part of erythrocytes and benzidine-hemoglobin adducts are eliminated randomly in rats, i.e., following first-order kinetics.

  7. Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53

    Science.gov (United States)

    Denissenko, Mikhail F.; Pao, Annie; Tang, Moon-Shong; Pfeifer, Gerd P.

    1996-10-01

    Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273. These same positions are the major mutational hotspots in human lung cancers. Thus, targeted adduct formation rather than phenotypic selection appears to shape the P53 mutational spectrum in lung cancer. These results provide a direct etiological link between a defined chemical carcinogen and human cancer.

  8. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  9. Glottal configuration, acoustic, and aerodynamic changes induced by variation in suture direction in arytenoid adduction procedures.

    Science.gov (United States)

    Inagi, Katsuhide; Connor, Nadine P; Suzuki, Tatsutoshi; Ford, Charles N; Bless, Diane M; Nakajima, Masami

    2002-10-01

    Arytenoid adduction is a phonosurgical procedure in which the arytenoid cartilages are approximated to reduce posterior glottal gap size and improve voice. Voice outcomes following arytenoid adduction are not always optimal. The goal of this study was to systematically vary suture direction and force of pull on the arytenoid cartilages in a human excised laryngeal model to determine the optimal combination of factors for reducing glottal gap and improving voice. Several factors demonstrated significant effects. Changes in suture direction and force of pull affected glottal configuration in both the horizontal and vertical planes. Increased force of pull on the muscular process resulted in increased adduction of the vocal process for all suture directions. Changes in suture direction and force of pull also affected acoustic and aerodynamic measures of induced voice. Therefore, voice outcomes can be optimized with arytenoid adduction if the vocal fold plane is accurately adjusted.

  10. Lifetimes and stabilities of familiar explosive molecular adduct complexes during ion mobility measurements.

    Science.gov (United States)

    McKenzie-Coe, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-08-21

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailor the stability of the molecular adduct complex. The flexibility of TIMS to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments/low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with high confidence levels.

  11. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  12. Investigation of protein-styrene oxide adducts as a molecularbiomarker of human exposed to styrene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hemoglobin-styrene oxide adducts in blood has been studied as a molecular biomarker of worker exposed to styrene.Determination of protein-styrene oxide adducts in different biological samples with modified Raney-Ni procedure is described in this paper. The following biological samples have been investigated: fresh rat blood reacted with styrene oxide in vitro; rat blood reacted with styrene or styrene oxide in vivo; vein blood from workers exposed to styrene in two factories. The data showed that there was a good linear dose-response relationship between reacting dose of styrene oxide or styrene and amount of protein-styrene oxide adducts in both in vitro and in vivo experiments. For human samples, a dose-response relationship between protein adducts and styrene exposure can be found in glass fiber factory, but not in piano manufacture plant.

  13. Differences in Butadiene Adduct Formation between Rats and Mice Not Due to Selective Inhibition of CYP2E1 by Butadiene Metabolites

    Science.gov (United States)

    Pianalto, Kaila M.; Hartman, Jessica H.; Boysen, Gunnar; Miller, Grover P.

    2013-01-01

    CYP2E1 metabolizes 1,3-butadiene (BD) into genotoxic and possibly carcinogenic 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol (EB-diol). The dose response of DNA and protein adducts derived from BD metabolites increase linearly at low BD exposures and then saturate at higher exposures in rats, but not mice. It was hypothesized that differences in adduct formation between rodents reflect more efficient BD oxidation in mice than rats. Herein, we assessed whether BD-derived metabolites selectively inhibit rat but not mouse CYP2E1 activity using B6C3F1 mouse and Fisher 344 rat liver microsomes. Basal CYP2E1 activities toward 4-nitrophenol were similar between rodents. Through IC50 studies, EB was the strongest inhibitor (IC50 54 μM, mouse; 98 μM, rat), BD-diol considerably weaker (IC50 1200 μM, mouse; 1000 μM, rat), and DEB inhibition nonexistent (IC50 >25 mM). Kinetic studies showed that in both species EB and BD-diol inhibited 4-nitrophenol oxidation through two-site mechanisms in which inhibition constants reflected trends observed in IC50 studies. None of the reactive epoxide metabolites inactivated CYP2E1 irreversibly. Thus, there was no selective inhibition or inactivation of rat CYP2E1 by BD metabolites relative to mouse Cyp2e1, and it can be inferred that CYP2E1 activity toward BD between rodent species would similarly not be impacted by the presence of BD metabolites. Inhibition of CYP2E1 by BD metabolites is then not responsible for the reported species difference in BD metabolism, formation of BD-derived DNA and protein adducts, mutagenicity and tumorigenesis. PMID:24021170

  14. In vivo genotoxicity of sodium ortho-phenylphenol: phenylbenzoquinone is one of the DNA-binding metabolite(s) of sodium ortho-phenylphenol.

    Science.gov (United States)

    Pathak, D N; Roy, D

    1993-04-01

    We have previously demonstrated microsomal cytochromes P450-dependent redox cycling of o-phenylphenol and in vitro genotoxicity of o-phenylphenol. In the present work, we have investigated in vivo covalent modification in skin DNA by Na-o-phenylphenol using the 32P-postlabeling method in an attempt to understand the biochemical mechanism of promotion of chemical-induced skin carcinogenesis by Na-o-phenylphenol. Topical application of Na-o-phenylphenol or phenylhydroquinone, a hydroxylated metabolite of o-phenylphenol, to female CD-1 mice skin produced 4 distinct major and several minor adducts in skin DNA. The total covalent bindings in skin DNA produced by treatment of mice with 10 mg and 20 mg Na-o-phenylphenol (doses shown to be effective for tumor promotion) were 0.31 fmoles/microgram DNA and 0.62 fmoles/microgram DNA, respectively. The adducts were not observed in untreated animal skin DNA. Pretreatment of mice with alpha-naphthylisothiocyanate, an inhibitor of cytochromes P450, or indomethacin, an inhibitor of prostaglandin synthase, resulted in lower levels of DNA adducts produced by Na-OPP. The in vitro incubation of DNA with o-phenylphenol or phenylhydroquinone in the presence of cytochromes P450 activation or prostaglandin synthase activation system produced 4 major adducts. The adduct pattern observed in the presence of in vitro enzymatic activation systems appears to be similar in chromatographic mobility to the in vivo adduct pattern. The chemical reaction of DNA or deoxyguanosine monophosphate with pure phenylbenzoquinone, an electrophilic metabolite of o-phenylphenol, also produced 4 major and several minor adducts. The 4 major adducts obtained in chemical reaction of phenylbenzoquinone with deoxyguanosine monophosphate are identical in chromatographic mobility to those of in vivo or in vitro DNA adducts. The results of this study demonstrated that o-phenylphenol or phenylhydroquinone, a hydroxylated metabolite of o-phenylphenol, is able to

  15. Halothane potentiates the alcohol-adduct induced TNF-alpha release in heart endothelial cells

    Directory of Open Access Journals (Sweden)

    Freeman Thomas L

    2005-04-01

    Full Text Available Abstract Background The possibility exists for major complications to occur when individuals are intoxicated with alcohol prior to anesthetization. Halothane is an anesthetic that can be metabolized by the liver into a highly reactive product, trifluoroacetyl chloride, which reacts with endogenous proteins to form a trifluoroacetyl-adduct (TFA-adduct. The MAA-adduct which is formed by acetaldehyde (AA and malondialdehyde reacting with endogenous proteins, has been found in both patients and animals chronically consuming alcohol. These TFA and MAA-adducts have been shown to cause the release of inflammatory products by various cell types. If both adducts share a similar mechanism of cell activation, receiving halothane anesthesia while intoxicated with alcohol could exacerbate the inflammatory response and lead to cardiovascular injury. Methods We have recently demonstrated that the MAA-adduct induces tumor necrosis factor-α (TNF-α release by heart endothelial cells (HECs. In this study, pair and alcohol-fed rats were randomized to receive halothane pretreatments intra peritoneal. Following the pretreatments, the intact heart was removed, HECs were isolated and stimulated with unmodified bovine serum albumin (Alb, MAA-modified Alb (MAA-Alb, Hexyl-MAA, or lipopolysaccharide (LPS, and supernatant concentrations of TNF-α were measured by ELISA. Results Halothane pre-treated rat HECs released significantly greater TNF-α concentration following MAA-adduct and LPS stimulation than the non-halothane pre-treated in both pair and alcohol-fed rats, but was significantly greater in the alcohol-fed rats. Conclusion These results demonstrate that halothane and MAA-adduct pre-treatment increases the inflammatory response (TNF-α release. Also, these results suggest that halothane exposure may increase the risk of alcohol-induced heart injury, since halothane pre-treatment potentiates the HEC TNF-α release measured following both MAA-Alb and LPS

  16. Structural Elucidation of a Carnosine-Acrolein Adduct and its Quantification in Human Urine Samples.

    Science.gov (United States)

    Bispo, Vanderson S; de Arruda Campos, Ivan P; Di Mascio, Paolo; Medeiros, Marisa H G

    2016-01-19

    Aldehydes accumulate in inflammation, during myocardial infarction and have been associated with pain symptoms. One pathway of aldehyde detoxification is the conjugation with carnosine. A 3-methylpyridinium carnosine adduct from the reaction of carnosine and acrolein was characterized using extensive spectroscopic measurements. The adduct with urinary concentrations of 1.82 ± 0.68 nmol/mg of creatinine is one of the most abundant acrolein metabolites in urine and opens promising therapeutic strategies for carnosine.

  17. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames.

    Directory of Open Access Journals (Sweden)

    Satoshi Yamaguchi

    Full Text Available Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles.Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System.There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables, while the effect was not significant for the angular impulse (P = 0.84. No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables, indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames.The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.

  18. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M. [New York Medical College, Department of Pathology, Valhalla (United States); Ahr, Hans-Juergen; Schmidt, Ulrich [Bayer AG, Institute of Toxicology, Wuppertal (Germany); Enzmann, Harald H. [Federal Institute for Drugs and Medical Devices, Bonn (Germany)

    2004-10-01

    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using {sup 32}P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had {sup 32}P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  19. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    Science.gov (United States)

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  20. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future

    Science.gov (United States)

    2016-01-01

    Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans. PMID:27989119

  1. N-acetylcysteine prevents the geldanamycin cytotoxicity by forming geldanamycin-N-acetylcysteine adduct.

    Science.gov (United States)

    Mlejnek, Petr; Dolezel, Petr

    2014-09-05

    Geldanamycin (GDN) is a benzoquinone ansamycin antibiotic with anti-proliferative activity on tumor cells. GDN cytotoxicity has been attributed to the disruption of heat shock protein 90 (Hsp90) binding and stabilizing client proteins, and by the induction of oxidative stress with concomitant glutathione (GSH) depletion. The later mechanism of cytotoxicity can be abrogated by N-acetylcysteine (NAC). It was suggested that NAC prevents GDN cytotoxicity mainly by the restoring of glutathione (GSH) level (Clark et al., 2009). Here we argue that NAC does not protect cells from the GDN cytotoxicity by restoring the level of GSH. A detailed LC/MS/MS analysis of cell extracts indicated formation of GDN adducts with GSH. The amount of the GDN-GSH adduct is proportional to the GDN concentration and increases with incubation time. While nanomolar and low micromolar GDN concentrations induce cell death without an apparent GSH decrease, only much higher micromolar GDN concentrations cause a significant GSH decrease. Therefore, only high micromolar GDN concentrations can cause cell death which might be related to GSH depletion. Addition of NAC leads to the formation of adducts with GDN which diminish formation of GDN adducts with GSH. NAC also forms stable adducts with GDN extracellularly. Although NAC induces an increase in the GSH pool, this effect is not crucial for abrogation of GDN cytotoxicity. Indeed, the presence of NAC in the growth medium causes a rapid conversion of GDN into the GDN-NAC adduct, which is the real cause of the abrogated GDN cytotoxicity.

  2. Scavenging of Toxic Acrolein by Resveratrol and Hesperetin and Identification of Adducts.

    Science.gov (United States)

    Wang, Weixin; Qi, Yajing; Rocca, James R; Sarnoski, Paul J; Jia, Aiqun; Gu, Liwei

    2015-11-04

    The objective of this study was to investigate the ability of resveratrol and hesperetin to scavenge acrolein at pH 7.4 and 37 °C. About 6.4 or 5.2% of acrolein remained after reaction with resveratrol or hesperetin for 12 h at equimolar concentrations. An acrolein-resveratrol adduct and two acrolein-hesperetin adducts were isolated. Their structures were elucidated using mass and NMR spectroscopy. Acrolein reacted with resveratrol at the C-2 and C-3 positions through nucleophilic addition and formed an additional heterocyclic ring. Two similar monoacrolein-conjugated adducts were identified for hesperetin. Spectroscopic data suggested each acrolein-hesperetin adduct was a mixture of four stereoisomers due to the existence of two chiral carbon atoms. Yield of adducts was low at pH 5.4 but increased at pH 7.4 and 8.4. Higher pH also promoted the formation of diacrolein adducts. Results suggest that resveratrol and hesperetin exert health benefits in part through neutralizing toxic acrolein in vivo.

  3. Abacavir forms novel cross-linking abacavir protein adducts in patients.

    Science.gov (United States)

    Meng, Xiaoli; Lawrenson, Alexandre S; Berry, Neil G; Maggs, James L; French, Neil S; Back, David J; Khoo, Saye H; Naisbitt, Dean J; Park, B Kevin

    2014-04-21

    Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC.

  4. 4-hydroxynonenal protein adducts: Key mediator in Rett syndrome oxinflammation.

    Science.gov (United States)

    Valacchi, Giuseppe; Pecorelli, Alessandra; Cervellati, Carlo; Hayek, Joussef

    2017-01-05

    In the last 15 years a strong correlation between oxidative stress (OxS) and Rett syndrome (RTT), a rare neurodevelopmental disorder known to be caused in 95% of the cases, by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, has been well documented. Here, we revised, summarized and discussed the current knowledge on the role of lipid peroxidation byproducts, with special emphasis on 4-hydroxynonenal (4HNE), in RTT pathophysiology. The posttranslational modifications of proteins via 4HNE, known as 4HNE protein adducts (4NHE-PAs), causing detrimental effects on protein functions, appear to contribute to the clinical severity of the syndrome, since their levels increase significantly during the subsequent 4 clinical stages, reaching the maximum degree at stage 4, represented by a late motor deterioration. In addition, 4HNE-PA are only partially removed due to the compromised functionality of the proteasome activity, contributing therefore to the cellular damage in RTT. All this will lead to a characteristic subclinical inflammation, defined "OxInflammation", derived by a positive feedback loop between OxS byproducts and inflammatory mediators that in a long run further aggravates the clinical features of RTT patients. Therefore, in a pathology completely orphan of any therapy, aiming 4HNE as a therapeutic target could represent a coadjuvant treatment with some beneficial impact in these patients.‬‬‬.

  5. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    Science.gov (United States)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  6. Antineoplastic effect of iodine and iodide in dimethylbenz[a]anthracene-induced mammary tumors: association between lactoperoxidase and estrogen-adduct production.

    Science.gov (United States)

    Soriano, Ofelia; Delgado, Guadalupe; Anguiano, Brenda; Petrosyan, Pavel; Molina-Servín, Edith D; Gonsebatt, Maria E; Aceves, Carmen

    2011-08-01

    Several groups, including ours, have reported that iodine exhibited antiproliferative and apoptotic effects in various cancer cells only if this element is supplemented as molecular iodine, or as iodide, to cells that are able to oxidize it with the enzyme thyroperoxidase. In this study, we analyzed the effect of various concentrations of iodine and/or iodide in the dimethylbenz[a]anthracene (DMBA) mammary cancer model in rats. The results show that 0.1% iodine or iodide increases the expression of peroxisome proliferator-activated receptor type γ (PPARγ), triggering caspase-mediated apoptosis pathways in damaged mammary tissue (DMBA-treated mammary gland) as well as in frank mammary tumors, but not in normal mammary gland. DMBA treatment induces the expression of lactoperoxidase, which participates in the antineoplastic effect of iodide and could be involved in the pro-neoplastic effect of estrogens, increasing the formation of DNA adducts. In conclusion, our results show that a supplement of 0.1% molecular iodine/potassium iodide (0.05/0.05%) exert antineoplastic effects, preventing estrogen-induced DNA adducts and inducing apoptosis through PPARγ/caspases in pre-cancer and cancerous cells. Since this iodine concentration does not modify the cytology (histology, apoptosis rate) or physiology (triiodothyronine and thyrotropin) of the thyroid gland, we propose that it be considered as an adjuvant treatment for premenopausal mammary cancer.

  7. Compact bis-adduct fullerenes and additive-assisted morphological optimization for efficient organic photovoltaics.

    Science.gov (United States)

    Lai, Yun-Yu; Liao, Ming-Hung; Chen, Yen-Ting; Cao, Fong-Yi; Hsu, Chain-Shu; Cheng, Yen-Ju

    2014-11-26

    Bis-adduct fullerenes surrounded by two insulating addends sterically attenuate intermolecular interaction and cause inferior electron transportation. In this research, we have designed and synthesized a new class of bis-adduct fullerene materials, methylphenylmethano-C60 bis-adduct (MPC60BA), methylthienylmethano-C60 bis-adduct (MTC60BA), methylphenylmethano-C70 bis-adduct (MPC70BA), and methylthienylmethano-C70 bis-adduct (MTC70BA), functionalized with two compact phenylmethylmethano and thienylmethylmethano addends via cyclopropyl linkages. These materials with much higher-lying lowest unoccupied molecular orbital (LUMO) energy levels successfully enhanced the Voc values of the P3HT-based solar cell devices. The compact phenylmethylmethano and thienylmethylmethano addends to promote fullerene intermolecular interactions result in aggregation-induced phase separation as observed by the atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of the poly(3-hexylthiophene-2,5-diyl) (P3HT)/bis-adduct fullerene thin films. The device based on the P3HT/MTC60BA blend yielded a Voc of 0.72 V, a Jsc of 5.87 mA/cm(2), and a fill factor (FF) of 65.3%, resulting in a power conversion efficiency (PCE) of 2.76%. The unfavorable morphologies can be optimized by introducing a solvent additive to fine-tune the intermolecular interactions. 1-Chloronaphthalene (CN) having better ability to dissolve the bis-adduct fullerenes can homogeneously disperse the fullerene materials into the P3HT matrix. Consequently, the aggregated fullerene domains can be alleviated to reach a favorable morphology. With the assistance of CN additive, the P3HT/MTC60BA-based device exhibited enhanced characteristics (a Voc of 0.78 V, a Jsc of 9.04 mA/cm(2), and an FF of 69.8%), yielding a much higher PCE of 4.92%. More importantly, the additive-assisted morphological optimization is consistently effective to all four compact bis-adduct fullerenes regardless of the methylphenylmethano

  8. Revisiting the stability of endo/exo Diels-Alder adducts between cyclopentadiene and 1,4-benzoquinone

    Energy Technology Data Exchange (ETDEWEB)

    Tormena, Claudio F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Lacerda Junior, Valdemar [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Oliveira, Kleber T. de [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas

    2010-07-01

    In this work it is presented a detailed theoretical analysis of the relative stability of endo/exo Diels-Alder adducts formed by the reaction between cyclopentadiene (1) and 1,4-benzoquinone (2). The intrinsic reaction coordinate (IRC) showed the existence of only one transition state for the reaction studied, for both endo 3 and exo 4 adducts. The energies of both adducts were obtained at high level of theory (CBS-Q) confirming that the endo adduct is more stable than exo, which is in the opposite way to the observed in reactions that usually follow Alder's rule. An electronic structure analysis was performed through NBO methodology, indicating that the attractive delocalization interaction predominates over the steric repulsive interaction in the endo adducts. In summary, for the studied cycloaddition reaction the endo adduct is the thermodynamic and kinetic product, which can be also confirmed by experimental data mentioned in this work. (author)

  9. Modulation of Estrogen-Depurinating DNA Adducts by Sulforaphane for Breast Cancer

    Science.gov (United States)

    2014-12-01

    estrogen metabolism enzymes. Scr , scrambled; siKp, siKEAP1. C. Effect of siKEAP1 on NQO1 activity. Values are mean ± SE of 3 independent...glutathione conjugates, respectively, following addition of 4-OHE2 to cells pre-treated with either SFN or siKEAP1. Veh, vehicle; Scr , scrambled vector. Values...synthesized by published procedures (7,22–24). A  mixed standard solution of 10 µg/ml was obtained by mixing 10  µl of individual stock solutions (1 mg/ml

  10. Nitroglycerin induces DNA damage and vascular cell death in the setting of nitrate tolerance.

    Science.gov (United States)

    Mikhed, Yuliya; Fahrer, Jörg; Oelze, Matthias; Kröller-Schön, Swenja; Steven, Sebastian; Welschof, Philipp; Zinßius, Elena; Stamm, Paul; Kashani, Fatemeh; Roohani, Siyer; Kress, Joana Melanie; Ullmann, Elisabeth; Tran, Lan P; Schulz, Eberhard; Epe, Bernd; Kaina, Bernd; Münzel, Thomas; Daiber, Andreas

    2016-07-01

    Nitroglycerin (GTN) and other organic nitrates are widely used vasodilators. Their side effects are development of nitrate tolerance and endothelial dysfunction. Given the potential of GTN to induce nitro-oxidative stress, we investigated the interaction between nitro-oxidative DNA damage and vascular dysfunction in experimental nitrate tolerance. Cultured endothelial hybridoma cells (EA.hy 926) and Wistar rats were treated with GTN (ex vivo: 10-1000 µM; in vivo: 10, 20 and 50 mg/kg/day for 3 days, s.c.). The level of DNA strand breaks, 8-oxoguanine and O (6)-methylguanine DNA adducts was determined by Comet assay, dot blot and immunohistochemistry. Vascular function was determined by isometric tension recording. DNA adducts and strand breaks were induced by GTN in cells in vitro in a concentration-dependent manner. GTN in vivo administration leads to endothelial dysfunction, nitrate tolerance, aortic and cardiac oxidative stress, formation of DNA adducts, stabilization of p53 and apoptotic death of vascular cells in a dose-dependent fashion. Mice lacking O (6)-methylguanine-DNA methyltransferase displayed more vascular O (6)-methylguanine adducts and oxidative stress under GTN therapy than wild-type mice. Although we were not able to prove a causal role of DNA damage in the etiology of nitrate tolerance, the finding of GTN-induced DNA damage such as the mutagenic and toxic adduct O (6)-methylguanine, and cell death supports the notion that GTN based therapy may provoke adverse side effects, including endothelial function. Further studies are warranted to clarify whether GTN pro-apoptotic effects are related to an impaired recovery of patients upon myocardial infarction.

  11. Selective activation of mitomycin A by thiols to form DNA cross-links and monoadducts: biochemical basis for the modulation of mitomycin cytotoxicity by the quinone redox potential.

    Science.gov (United States)

    Paz, M M; Das, A; Palom, Y; He, Q Y; Tomasz, M

    2001-08-16

    Mitomycin A (MA) but not mitomycin C (MC) cross-linked linearized (32)P-pBR322 DNA in the presence of dithiothreitol (DTT) or glutathione (GSH), as shown by a sensitive DNA cross-link assay. Incubation of calf-thymus DNA with MA and DTT or mercaptoethanol (MER) resulted in the formation of MA-DNA adducts, which were isolated from nuclease digests of the drug-DNA complexes by HPLC. The adducts were characterized by their UV absorption spectra, electrospray ionization mass spectrometry (ESIMS), and facile conversion from 7-methoxy- to 7-amino-substituted mitosene type adducts upon 10% NH(4)OH treatment, which were identical with known adducts of MC. Both DNA interstrand and intrastrand cross-link adducts, linking two deoxyguanosine residues at N(2), as well as several deoxyguanosine-N(2) monoadducts of MA, were identified. No DNA adducts were formed with MC under the same conditions. A specificity of DNA cross-link formation for the CpG sequence was observed using 12-mer synthetic oligodeoxyribonucleotides as substrates and as DNA sequence models, in analogy to the known CpG sequence specificity of MC-induced DNA cross-links. MA is known to be more cytotoxic by 2-3 orders of magnitude than MC, and this property correlates with redox potentials of MA (-0.19 V) and MA analogues that are higher than those of MC (-0.40 V) and its analogues. It is suggested that the biochemical basis for the higher cytotoxic potency of MA is MA's propensity to be reductively activated by cellular thiols while MC is resistant to thiol activation. This distinction is probably derived from the large difference between the quinone redox potentials of the two drugs.

  12. Detection of Dichlorvos Adducts in a Hepatocyte Cell Line

    Science.gov (United States)

    2014-06-30

    G6019) was obtained from Sigma (St. Louis, MS), human actin gamma recombinant protein (ACTG1, H00000071) and lactate dehydrogenase A recombi - nant...microRNA and mRNA expression profiling analysis of dichlorvos cytotoxicity in porcine kidney epithelial PK15 cells. DNA Cell Biol. 2011, 30 (12), 1073...Dissociation of DDVP-induced DNA strand breaks from oxidative damage in isolated rat hepatocytes. Toxicology 1996, 108 (1−2), 49−56. (40) Clapp, C.; Portt, L

  13. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ

    Science.gov (United States)

    Copeland, William C.; Kasiviswanathan, Rajesh; Longley, Matthew J.

    2016-01-01

    Summary Mitochondrial DNA is replicated by the nuclear encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand crosslinks from chemotherapy agents. Although many of these lesions block DNA replication, Pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by Pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis. PMID:26530671

  14. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ.

    Science.gov (United States)

    Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J

    2016-01-01

    Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.

  15. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    Science.gov (United States)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  16. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  17. Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency.

    Directory of Open Access Journals (Sweden)

    Benjamin Hilton

    Full Text Available XPC-RAD23B (XPC plays a critical role in human nucleotide excision repair (hNER as this complex recognizes DNA adducts to initiate NER. To determine the mutagenic potential of structurally different bulky DNA damages, various studies have been conducted to define the correlation of XPC-DNA damage equilibrium binding affinity with NER efficiency. However, little is known about the effects of XPC-DNA damage recognition kinetics on hNER. Although association of XPC is important, our current work shows that the XPC-DNA dissociation rate also plays a pivotal role in achieving NER efficiency. We characterized for the first time the binding of XPC to mono- versus di-AAF-modified sequences by using the real time monitoring surface plasmon resonance technique. Strikingly, the half-life (t1/2 or the retention time of XPC in association with damaged DNA shares an inverse relationship with NER efficiency. This is particularly true when XPC remained bound to clustered adducts for a much longer period of time as compared to mono-adducts. Our results suggest that XPC dissociation from the damage site could become a rate-limiting step in NER of certain types of DNA adducts, leading to repression of NER.

  18. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal.

    Science.gov (United States)

    Nadkarni, D V; Sayre, L M

    1995-03-01

    The lipid peroxidation product trans-4-hydroxy-2-nonenal (HNE) has been implicated in the covalent modification of low-density lipoproteins (LDL) thought to contribute to the over-accumulation of LDL in the arterial wall in the initial stages of atherosclerosis. Proposals for the exact structures of "early" protein side-chain modifications until now have been based on indirect evidence. In this paper, the structures of first-formed His- and Lys-based adducts were elucidated by correlating NMR spectral properties with those obtained on models with reduced chiral center content, in some cases following hydride reduction. In this manner, we could confirm unambiguously the structure of a HNE-His imidazole(N tau) Michael adduct, stabilized as a cyclic hemiacetal and isolated from a neutral aqueous 1:1 stoichiometry reaction mixture. In the case of Lys/amine reactivity, where an excess of amine is needed to avert HNE aldol condensation, the predominance of a 1:1 Michael adduct in homogeneous aqueous solution and a 1:2 Michael-Schiff base adduct under two-phase aqueous-organic conditions could be verified by isolation of the respective borohydride-reduced forms. The 1:2 adduct, shown to exist as the cyclic hemiaminal, could represent a stable lysine-based cross-link in certain protein microenvironments.

  19. Serine Protease Catalysis: A Computational Study of Tetrahedral Intermediates and Inhibitory Adducts.

    Science.gov (United States)

    Ngo, Phong D; Mansoorabadi, Steven O; Frey, Perry A

    2016-08-04

    Peptide boronic acids and peptidyl trifluoromethyl ketones (TFKs) inhibit serine proteases by forming monoanionic, tetrahedral adducts to serine in the active sites. Investigators regard these adducts as analogs of monoanionic, tetrahedral intermediates. Density functional theory (DFT) calculations and fractional charge analysis show that tetrahedral adducts of model peptidyl TFKs are structurally and electrostatically very similar to corresponding tetrahedral intermediates. In contrast, the DFT calculations show the structures and electrostatic properties of analogous peptide boronate adducts to be significantly different. The peptide boronates display highly electrostatically positive boron, with correspondingly negative ligands in the tetrahedra. In addition, the computed boron-oxygen and boron-carbon bond lengths in peptide boronates (which are identical or very similar to the corresponding bonds in a peptide boronate adduct of α-lytic protease determined by X-ray crystallography at subangstrom resolution) are significantly longer than the corresponding bond lengths in model tetrahedral intermediates. Since protease-peptidyl TFKs incorporate low-barrier hydrogen bonds (LBHBs) between an active site histidine and aspartate, while the protease-peptide boronates do not, these data complement the spectroscopic and chemical evidence for the participation of LBHBs in catalysis by serine proteases. Moreover, while the potency of these classes of inhibitors can be correlated to the structures of the peptide moieties, the present results indicate that the strength of their bonds to serine contribute significantly to their inhibitory properties.

  20. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    Science.gov (United States)

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; pacetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  1. Metabolic stability of superoxide adducts derived from newly developed cyclic nitrone spin traps.

    Science.gov (United States)

    Bézière, Nicolas; Hardy, Micael; Poulhès, Florent; Karoui, Hakim; Tordo, Paul; Ouari, Olivier; Frapart, Yves-Michel; Rockenbauer, Antal; Boucher, Jean-Luc; Mansuy, Daniel; Peyrot, Fabienne

    2014-02-01

    Reactive oxygen species are by-products of aerobic metabolism involved in the onset and evolution of various pathological conditions. Among them, the superoxide radical is of special interest as the origin of several damaging species such as H2O2, hydroxyl radical, or peroxynitrite (ONOO(-)). Spin trapping coupled with ESR is a method of choice to characterize these species in chemical and biological systems and the metabolic stability of the spin adducts derived from reaction of superoxide and hydroxyl radicals with nitrones is the main limit to the in vivo application of the method. Recently, new cyclic nitrones bearing a triphenylphosphonium or permethylated β-cyclodextrin moiety have been synthesized and their spin adducts demonstrated increased stability in buffer. In this article, we studied the stability of the superoxide adducts of four new cyclic nitrones in the presence of liver subcellular fractions and biologically relevant reductants using an original setup combining a stopped-flow device and an ESR spectrometer. The kinetics of disappearance of the spin adducts were analyzed using an appropriate simulation program. Our results highlight the interest of the new spin trapping agents CD-DEPMPO and CD-DIPPMPO for specific detection of superoxide with high stability of the superoxide adducts in the presence of liver microsomes.

  2. Foot rotation--a potential target to modify the knee adduction moment.

    Science.gov (United States)

    Teichtahl, A J; Morris, M E; Wluka, A E; Baker, R; Wolfe, R; Davis, S R; Cicuttini, F M

    2006-05-01

    Isolating the particular joints/limb segments associated with knee adductor moment variability may provide clinically important data that could help to identify strategies to reduce medial tibiofemoral joint load. The aim of this study was to examine whether or not foot and thigh rotation during human locomotion are significant determinants of knee adductor moment variability. Three-dimensional gait analyses were performed on 32 healthy adult women (mean age 54+/-12 years, mean BMI 25+/-4 kg m(-2)) with radiologically normal knees. The relationships between foot rotation, thigh rotation and the external knee adduction moment were examined during early and late-stance phases of the gait cycle. The degree of foot rotation correlated significantly with the magnitude of the peak knee adduction moment during late stance (r=0.40, p=0.024). No significant associations were apparent between thigh rotation and the peak knee adduction moment. The association between foot rotation and the knee adduction moment in this study suggests that women who walk with external rotation at the foot reduce their knee adduction moment during late stance. This result implies that changes in foot kinematics can modify the medial tibiofemoral load during gait, which may be important in the prevention and management of knee osteoarthritis.

  3. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen adducts in serum and liver proteins of acetaminophen-treated mice.

    Science.gov (United States)

    Pumford, N R; Hinson, J A; Potter, D W; Rowland, K L; Benson, R W; Roberts, D W

    1989-01-01

    Using a recently developed enzyme-linked immunosorbent assay specific for 3-(cystein-S-yl)acetaminophen adducts we have quantitated the formation of these specific adducts in liver and serum protein of B6C3F1 male mice dosed with acetaminophen. Administration of acetaminophen at doses of 50, 100, 200, 300, 400 and 500 mg/kg to mice resulted in evidence of hepatotoxicity (increase in serum levels of alanine aminotransferase and aspartate aminotransferase) at 4 hr in the 300, 400 and 500 mg/kg treatment groups only. The formation of 3-(cystein-S-yl)acetaminophen adducts in liver protein was not observed in the groups receiving 50, 100 and 200 mg/kg doses, but was observed in the groups receiving doses above 300 mg/kg of acetaminophen. Greater levels of adduct formation were observed at the higher doses. 3-(Cystein-S-yl)acetaminophen protein adducts were also observed in serum of mice receiving hepatotoxic doses of acetaminophen. After a 400 mg/kg dose of acetaminophen, 3-(cystein-S-yl)acetaminophen adducts in the liver protein reached peak levels 2 hr after dosing. By 12 hr the levels decreased to approximately 10% of the peak level. In contrast, 3-(cystein-S-yl)acetaminophen adducts in serum protein were delayed, reaching a sustained peak 6 to 12 hr after dosing. The dose-response correlation between the appearance of serum aminotransferases and 3-(cystein-S-yl)acetaminophen adducts in serum protein and the temporal correlation between the decrease in 3-(cystein-S-yl)acetaminophen adducts in liver protein and the appearance of adducts in serum protein are consistent with a hepatic origin of the adducts detected in serum protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose

    Directory of Open Access Journals (Sweden)

    Judge Bryan S

    2011-03-01

    Full Text Available Abstract Background Acetaminophen-cysteine adducts (APAP-CYS are a specific biomarker of acetaminophen exposure. APAP-CYS concentrations have been described in the setting of acute overdose, and a concentration >1.1 nmol/ml has been suggested as a marker of hepatic injury from acetaminophen overdose in patients with an ALT >1000 IU/L. However, the concentrations of APAP-CYS during therapeutic dosing, in cases of acetaminophen toxicity from repeated dosing and in cases of hepatic injury from non-acetaminophen hepatotoxins have not been well characterized. The objective of this study is to describe APAP-CYS concentrations in these clinical settings as well as to further characterize the concentrations observed following acetaminophen overdose. Methods Samples were collected during three clinical trials in which subjects received 4 g/day of acetaminophen and during an observational study of acetaminophen overdose patients. Trial 1 consisted of non-drinkers who received APAP for 10 days, Trial 2 consisted of moderate drinkers dosed for 10 days and Trial 3 included subjects who chronically abuse alcohol dosed for 5 days. Patients in the observational study were categorized by type of acetaminophen exposure (single or repeated. Serum APAP-CYS was measured using high pressure liquid chromatography with electrochemical detection. Results Trial 1 included 144 samples from 24 subjects; Trial 2 included 182 samples from 91 subjects and Trial 3 included 200 samples from 40 subjects. In addition, we collected samples from 19 subjects with acute acetaminophen ingestion, 7 subjects with repeated acetaminophen exposure and 4 subjects who ingested another hepatotoxin. The mean (SD peak APAP-CYS concentrations for the Trials were: Trial 1- 0.4 (0.20 nmol/ml, Trial 2- 0.1 (0.09 nmol/ml and Trial 3- 0.3 (0.12 nmol/ml. APAP-CYS concentrations varied substantially among the patients with acetaminophen toxicity (0.10 to 27.3 nmol/ml. No subject had detectable APAP

  5. Spectral characterization of environment-sensitive adducts of interleukin-1 beta.

    Science.gov (United States)

    Epps, D E; Yem, A W; Fisher, J F; McGee, J E; Paslay, J W; Deibel, M R

    1992-02-15

    We have determined the fluorescence properties of two covalently attached acrylodan derivatives of recombinant human interleukin-1 beta, namely the Cys-8 and Lys-103 adducts. The emission and excitation maxima indicated the presence of two operationally distinct conformers for each probe. The iodide quenching and the kinetics of fluorescence changes associated with guanidinium chloride-induced denaturation show that each covalent adduct exists both in hydrated and dehydrated environments. Furthermore, fluorescence changes associated with the binding of the adducts to a recombinant soluble murine receptor indicated that only the conformers with the label in the hydrophobic environment are competent toward the soluble murine interleukin receptor and that the hydrated and dehydrated conformers are in a dynamic equilibrium on the time scale of the binding experiments.

  6. Rotational Investigation of the Adducts of Formic Acid with Alcohols, Ethers and Esters

    Science.gov (United States)

    Evangelisti, Luca; Spada, Lorenzo; Li, Weixing; Caminati, Walther

    2016-06-01

    Mixtures of formic acid with methyl alcohol, with isopropyl alcohol, with tert-butyl alcohol, with dimethylether and with isopropylformiate have been supersonically expanded as pulsed jets. The obtained cool plumes have been analyzed by Fourier transform microwave spectroscopy. It has been possible to assign the rotational spectra of the 1:1 adducts of formic acid with tert-butyl alcohol, with dimethyl ether and with isopropylformiate. The conformational shapes and geometries of these adducts, as well as the topologies of their itermolecular hydrogen bonds will be presented. An explanation is given of the failure of the assignments of the rotational spectra of the adducts of formic acid with methyl alcohol and isopropyl alcohol.

  7. Kinetic studies of the decom position reaction of adducts of dinuclear Fe( Ⅱ )/O2

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Kinetic studies of the decomposition reaction of dinuclear Fe( Ⅱ ) adducts [Fe2(N-Et-HPTB){O2P(OPh)2}](CIO4)2 (1)and [Fe2(N-Et-HPTB) {O2P(Ph)2}] (CIO4)2 (2) with O2 have been carried out at low temperature using UV-vis spectra. The decomposition reaction of Fe( Ⅱ)/O2 adducts was first-order in the experimental conditions, and the activation parameters were obtained. △H¢ = 85.62 kJ @ mol-1, △S≠= 19.43 J @ mol-1 @ K-1 for compound (1) and △H¢ = 97.97 kJ @ mol-1,△S≠ = 55.68 J @ mol-1 @ K-1 for compound (2). These results are similar to those of dioxygen adducts of other metals complexes and natural enzymes such as methane monooxygenase (MMOH).

  8. Simultaneous analysis of hemoglobin adducts of acrylamide and glycidamide by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Pérez, H L; Cheong, H K; Yang, J S; Osterman-Golkar, S

    1999-10-01

    Acrylamide (AA) is a carcinogen in experimental animals. Glycidamide (GA), formed by metabolic epoxidation of AA, is believed to be responsible for the carcinogenicity of AA. Occupational exposure to AA has been assessed earlier by measurement of its adducts with N-terminal valine in hemoglobin. A background of AA adducts [N-(2-carbamoylethyl)valine (AAVal), about 30 pmol/g globin] was found in individuals without known exposure to the compound. The method previously available for adducts of GA only allowed analysis of samples from highly exposed individuals and showed similar levels of AAVal and adducts of GA [N-(2-hydroxy-2-carbamoylethyl)valine (GAVal)]. We have developed a sensitive method for simultaneous quantification of adducts of GA and AA, which is suitable down to low exposure levels. The method is based on the so-called modified Edman method, where globin is reacted with pentafluorophenyl isothiocyanate under neutral conditions. The valine adducts are then extracted in the form of pentafluorophenylthiohydantoin (PFPTH) derivatives. The analytical procedure included reaction of the PFPTH derivatives with acetic anhydride in order to protect the hydroxyl group of GAVal. The PFPTH derivatives of AAVal and GAVal were analyzed by gas chromatography/tandem mass spectrometry. ((2)H(3))AAVal-PFPTH was used as the internal standard. The method was applied to samples from 11 workers at an AA production plant, 1 nonexposed nonsmoker, and a few participants of a smoking cessation program. AAVal levels were in the range 27-1854 pmol/g globin. Recorded levels of GAVal were 3-12% of those of AAVal, suggesting that previous measurements of GAVal overestimate GAVal at low levels of exposure to AA.

  9. "Danger" conditions increase sulfamethoxazole-protein adduct formation in human antigen-presenting cells.

    Science.gov (United States)

    Lavergne, S N; Wang, H; Callan, H E; Park, B K; Naisbitt, D J

    2009-11-01

    Antigen-presenting cells (APC) are thought to play an important role in the pathogenesis of drug-induced immune reactions. Various pathological factors can activate APC and therefore influence the immune equilibrium. It is interesting that several diseases have been associated with an increased rate of drug allergy. The aim of this project was to evaluate the impact of such "danger signals" on sulfamethoxazole (SMX) metabolism in human APC (peripheral blood mononuclear cells, Epstein-Barr virus-modified B lymphocytes, monocyte-derived dendritic cells, and two cell lines). APC were incubated with SMX (100 microM-2 mM; 5 min-24 h), in the presence of pathological factors: bacterial endotoxins (lipopolysaccharide and staphylococcal enterotoxin B), flu viral proteins, cytokines [interleukin (IL)-1beta, IL-6, IL-10; tumor necrosis factor-alpha; interferon-gamma; and transforming growth factor-beta], inflammatory molecules (prostaglandin E2, human serum complement, and activated protein C), oxidants (buthionine sulfoximine and H(2)O(2)), and hyperthermia (37.5-39.5 degrees C). Adduct formation was evaluated by enzyme-linked immunosorbent assay and confocal microscopy. SMX-protein adduct formation was time- and concentration-dependent for each cell type tested, in both physiological and dang