WorldWideScience

Sample records for box thermal blanket

  1. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1978-01-01

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  2. Preliminary accident analysis of Loss of Off-Site Power and In-Box LOCA for the CFETR helium cooled solid breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Qiang; Cui, Shijie [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Zhang, Jing; Zhang, Dalin; Su, G.H. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2017-05-15

    Highlights: • The CFETR HCSB blanket has been investigated using RELAP5. • Loss of Off-Site Power is investigated. • The parametric analyses during In-Box LOCA are investigated. • The HCSB blanket for CFETR is designed with sufficient decay heat removal capability. - Abstract: As one of three candidate tritium breeding blanket concepts for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of helium cooled solid breeder (HCSB) blanket was recently proposed. In this paper, the preliminary thermal-hydraulic and safety analyses of the typical outboard equatorial blanket module (No.12) have been carried out using RELAP5/Mod3.4 code. Two design basis accidents are investigated based on the steady-state initialization, including Loss of Off-Site Power and In-Box Loss of Coolant Accident (LOCA). The differences between circulator coast down and circulator rotor locked under Loss of Off-Site Power are compared. Regarding the In-Box LOCA, the influences of different break sizes and locations are thoroughly analyzed based on a relatively accurate modeling method of the heat structures in sub-modules. The analysis results show that the blanket and the combined helium cooling system (HCS) are designed with sufficient decay heat removal capability for both accidents, which can preliminarily verify the feasibility of the conceptual design. The research work can also provide an important reference for parameter optimization of the blanket and its HCS in the next stage.

  3. Comprehensive structural analysis of the HCPB demo blanket under thermal, mechanical, electromagnetic and radiation induced loads

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Norajitra, P.; Ruatto, P.; Scaffidi-Argentina, F.

    1998-01-01

    For the helium-cooled pebble bed (HCPB) blanket, which is one of the two reference concepts studied within the European Demo Development Program, a comprehensive finite element (FEM) structural analysis has been performed. The analysis refers to the steady-state operating conditions of an outboard blanket segment. On the basis of a three-dimensional model of radial-toroidal sections of the segment box, thermal stresses caused by the temperature gradients in the blanket structure have been calculated. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions as well as an accidental over-pressurization of the blanket box have been accounted for. The stresses caused by a central plasma major disruption from an initial current of 20 MA to zero in 20 ms have been also taken into account. Radiation-induced dimensional changes of breeder and multiplier material caused by both helium production and neutron damage, have also been evaluated and discussed. All the above loads have been combined as input for a FEM stress analysis and the resulting stress distribution has been evaluated according to the American Society of Mechanical Engineers (ASME) norms. (orig.)

  4. Rapid thermal cycling of new technology solar array blanket coupons

    Science.gov (United States)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  5. Space environment durability of beta cloth in LDEF thermal blankets

    Science.gov (United States)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  6. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    Science.gov (United States)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  7. Analysis of ER string test thermally instrumented interconnect 80-K MLI blanket

    International Nuclear Information System (INIS)

    Daly, E.; Pletzer, R.

    1992-04-01

    An 80-K Multi Layer Insulation (MLI) blanket in the interconnect region between magnets DD0019 and DD0027 in the Fermi National Accelerator Laboratory (FNAL) ER string was instrumented with temperature sensors to obtain the steady-state temperature gradient through the blanket after string cooldown. A thermal model of the 80-K blanket assembly was constructed to analyze the steady-state temperature gradient data. Estimates of the heat flux through the 80-K MLI blanket assembly and predicted temperature gradients were calculated. The thermal behavior of the heavy polyethylene terapthalate (PET) cover layers separating the shield and inner blanket and inner and outer blankets was derived empirically from the data. The results of the analysis predict a heat flux of 0.363--0.453 W/m 2 based on the 11 sets of data. These flux values are 33--46% below the 80-K MLI blanket heat leak budget of 0.676 W/m 2 . The effective thermal resistance of the two heavy PET cover layers between the shield and inner blanket was found to be 2.1 times that of a single PET spacer layer, and the effective resistance of the two heavy PET cover layers between the inner blanket and outer blanket was found to be 7 times that of a single PET spacer layer. Based on these results, the 80-K MLI blanket assembly appears to be performing more than adequately to meet the 80-K static IR heat leak budget. However, these results should not be construed as a verification of the 80-K static IR heat leak, since no actual heat leak was measured. The results have been used to improve the empirically based model data in the 80-K MLI blanket thermal model, which has previously not included the effects of heavy PET cover layers on 80-K MLI blanket thermal performance

  8. Vibration damage testing of thermal barrier fibrous blanket insulation

    International Nuclear Information System (INIS)

    Black, W.E.; Betts, W.S.

    1984-01-01

    GA Technologies is engaged in a long-term, multiphase program to determine the vibration characteristics of thermal barrier components leading to qualification of assemblies for High Temperature Gas-Cooled Reactor (HTGR) service. The phase of primary emphasis described herein is the third in a series of acoustic tests and uses as background the more elemental tests preceding it. Two sizes of thermal barrier coverplates with one fibrous blanket insulation type were tested in an acoustic environment at sound pressure levels up to 160 dB. Three tests were conducted using sinusoidal and random noise for up to 200 h duration at room temperature. Frequent inspections were made to determine the progression of degradation using definition of stages from a prior test program. Initially the insulation surface adjacent to the metallic seal sheets (noise side) assumed a chafed or polished appearance. This was followed by flattening of the as-received pillowed surface. This stage was followed by a depression being formed in the vicinity of the free edge of the coverplate. Next, loose powder from within the blanket and from fiber erosion accumulated in the depression. Prior experience showed that the next stage of deterioration exhibited a consolidation of the powder to form a local crust. In this test series, this last stage generally failed to materialize. Instead, surface holes generated by solid ceramic particulates (commonly referred to as 'shot') constituted the stage following powdering. With the exception of some manufacturing-induced anomalies, the final stage, namely, gross fiber breakup, did not occur. It is this last stage that must be prevented for the thermal barrier to maintain its integrity. (orig./GL)

  9. Thermal mechanical analysis of a solid breeding blanket

    International Nuclear Information System (INIS)

    Aquaro, Donato

    2003-01-01

    This paper deals with a theoretical model of thermal mechanical behaviour of pebble beds, used as neutron multiplier or tritium breeder in the breeding blanket of a fusion nuclear reactor. The model tries to sum up the advantages of the two approaches ('discrete' method and macroscopic method), presently used for analysing the pebble bed behaviour, without their intrinsic disadvantages. The developed method has the capability to describe the microscopic behaviour of the single sphere (as the discrete approach does), and the capability to model complex structures under variable loads, typical of the macroscopic approach, without doing the unrealistic assumption of continuum homogeneous and isotropic material. The model describes the thermal mechanical behaviour of a single sphere compressed in elastic plastic conditions. The obtained relations have been extrapolated to regular lattices of spheres and subsequently to pebble beds (characterised by a macroscopic parameter called 'packing factor') of simple geometric shapes using statistical considerations. The results of the model have been assessed by comparison with results obtained by means of numerical simulations and experimental tests. The ongoing activity is the implementation in a FEM code of a new finite element, which represents one or several regular lattices of spheres, the non linear stiffness of which is obtained from the mono dimensional compression model of one sphere. The results of the numerical simulation permits to construct and display the strain and stress distribution of the single spheres by means of an implemented graphical interface

  10. Synthesis and Characterization of Fibre Reinforced Silica Aerogel Blankets for Thermal Protection

    Directory of Open Access Journals (Sweden)

    S. Chakraborty

    2016-01-01

    Full Text Available Using tetraethoxysilane (TEOS as the source of silica, fibre reinforced silica aerogels were synthesized via fast ambient pressure drying using methanol (MeOH, trimethylchlorosilane (TMCS, ammonium fluoride (NH4F, and hexane. The molar ratio of TEOS/MeOH/(COOH2/NH4F was kept constant at 1 : 38 : 3.73 × 10−5 : 0.023 and the gel was allowed to form inside the highly porous meta-aramid fibrous batting. The wet gel surface was chemically modified (silylation process using various concentrations of TMCS in hexane in the range of 1 to 20% by volume. The fibre reinforced silica aerogel blanket was obtained subsequently through atmospheric pressure drying. The aerogel blanket samples were characterized by density, thermal conductivity, hydrophobicity (contact angle, and Scanning Electron Microscopy. The radiant heat resistance of the aerogel blankets was examined and compared with nonaerogel blankets. It has been observed that, compared to the ordinary nonaerogel blankets, the aerogel blankets showed a 58% increase in the estimated burn injury time and thus ensure a much better protection from heat and fire hazards. The effect of varying the concentration of TMCS on the estimated protection time has been examined. The improved thermal stability and the superior thermal insulation of the flexible aerogel blankets lead to applications being used for occupations that involve exposure to hazards of thermal radiation.

  11. Thermal-hydraulic analysis of low activity fusion blanket designs

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.; Yu, W.S.

    1977-01-01

    The heat transfer aspects of fusion blankets are considered where: (a) conduction and (b) boiling and condensation are the dominant heat transfer mechanisms. In some cases, unique heat transfer problems arise and additional heat transfer data and analyses may be required

  12. Thermal-hydraulics design comparisons for the tandem mirror hybrid reactor blanket

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Yang, Y.S.; Schultz, K.R.

    1980-09-01

    The Tandem Mirror Hybrid Reactor (TMHR) is a cylindrical reactor, and the fertile materials and tritium breeding fuel elements can be arranged with radial or axial orientation in the blanket module. Thermal-hydraulics performance comparisons were made between plate, axial rod and radial rod fuel geometrices. The three configurations result in different coolant/void fractions and different clad/structure fractions. The higher void fraction in the two rod designs means that these blankets will have to be thicker than the plate design blanket in order to achieve the same level of nuclear interactions. Their higher structural fractions will degrade the uranium breeding ratio and energy multiplication factor of the design. One difficulty in the thermal-hydraulics analysis of the plate design was caused by the varying energy multiplication of the blanket during the lifetime of the plate which forced the use of designs that operated in the transition flow regime at some point during life. To account for this, an approach was adopted from Gas Cooled Fast Reactor (GCFR) experience for the pressure drop calculation and the corresponding heat transfer coefficient that was used for the film drop thermal calculation. Because of the superior nuclear performance, the acceptable thermal-hydraulic characteristics and the mechanical design feasibility, the plate geometry concept was chosen for the reference gas-cooled TMHR blanket design

  13. Thermal stresses and cyclic creep-fatigue in fusion reactor blanket

    International Nuclear Information System (INIS)

    Liu, K.C.

    1977-01-01

    Thermal stresses in the first walls of fusion reactor blankets were studied in detail. ORNL multibucket modules are emphasized. Practicality of using the bucket module rather than other blanket designs is examined. The analysis shows that applying intelligent engineering judgment in design can reduce the thermal stresses significantly. Arrangement of coolant flow and distribution of temperature are reviewed. Creep-fatigue property requirements for a first wall are discussed on the basis of existing design rules and criteria. Some major questions are pointed out and experiments needed to resolve basic uncertainties relative to key design decisions are discussed

  14. Adaptation of the HCPB DEMO TBM as breeding blanket for ITER : Neutronic and thermal analyses

    International Nuclear Information System (INIS)

    Aquaro, D.; Morellini, D.; Cerullo, N.

    2006-01-01

    Two breeding blanket are presently developed in Europe for the DEMO reactor: the first one, the Helium Cooled Lithium Lead (HCLL) uses a liquid breeder while the other , the Helium Cooled Pebble Bed (HCPB), uses a solid breeder in form of pebble bed. The modules of these blankets, called Test Blanket Modules (TBM) will be located in correspondence of the equatorial ports of ITER in order to be tested. ITER FEAT was designed with shielding blankets, therefore in the final stage of the experiment, in the foreseen tritium -deuterium operation phase, the tritium will be supplied to the reactor and not produced inside it. Since the production of tritium is of main importance for the feasibility of a nuclear fusion reactor, perhaps in the ITER final stage, the shielding blanket could be substituted by means of a breeding blanket. The geometry and composition of this breeding blanket would be, of course, similar to that of TBM which demonstrated to have the best performances. This paper illustrates a neutronic and thermal analysis of an hypothetical triziogen blanket for ITER FEAT made similar to a HCPB test module. The main aims of the performed analyses are to determine the Tritium Breeding Ratio (TBR) considering different solid breeders (Li 4 SiO 4 and Li 2 TiO 3 ) with different enrichment in 6 Li and different structural materials (a 9%CRWVTa reduced activation ferritic martensitic steel (EUROFER) or ceramic matrix composites like SiCf/SiC). The breeding blanket design is compared considering the highest value of TBR and the verification of the temperature constraints ( 550 o C for the steel, 950 o C for the breeder and 650 o C for the Beryllium). The neutronic analyses have been performed by means of MCNP-4C code and the thermal analyses using the MSC-MARC code. A TBR about equal 1 was obtained with a SiCf/SiC structural material and a Li 4 SiO 4 breeder. The performed analyses have to be considered preliminary and an academic exercise, nevertheless they could give

  15. Water-cooled lithium-lead box-shaped blanket concept for Demo: thermo-mechanical optimization and manufacturing sequence proposal

    International Nuclear Information System (INIS)

    Baraer, L.; Dinot, N.; Giancarli, L.; Proust, E.; Salavy, J.F.; Severi, Y.; Quintric-Bossy, J.

    1992-01-01

    The development of the water-cooled lithium-lead box-shaped blanket concept for DEMO has now reached the stage of thermo-mechanical optimization. In the previous design phases the preliminary dimensioning of the cooling circuit has permitted to define the water proportions required in the breeder region and to demonstrate, after a minimization of steel proportion and thicknesses, that this concept could reach tritium breeding self-sufficiency. In the present analysis the location of the coolant pipes has been optimized for the whole equatorial plane cross-section of both inboard and outboard segments in order to maintain the maximum Pb-17Li/steel interface temperature below 480 deg C and to minimize the thermal gradients along the steel structures. The consequent thermo-mechanical analysis has shown that the thermal stresses always remain below the allowable limits. Segment fabricability and removal are the next design issues to be analyzed. Within this strategy, a first manufactury sequence for the outboard segment is proposed

  16. Thermal and mechanical design of WITAMIR-I blanket

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.N.

    1980-10-01

    The design philosophy of WITAMIR-I, a Wisconsin Tandem Mirror Reactor design study, uses the experience obtained from our previous tokamak studies and combines it with the unique features of the tandem mirror to obtain an attractive design of a TM power reactor. It is aimed at maximizing the strengths of the tandem mirror while mitigating its weaknesses. The end product should be a safe, reliable, maintainable and a relatively economic power reactor. The general description of the reactor, the plasma calculations, the magnet design, the neutronic calculations and the maintenance considerations are presented elsewhere. This paper presents the blanket design of this reactor study

  17. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    International Nuclear Information System (INIS)

    Li, Jia; Jiang, Kecheng; Zhang, Xiaokang; Nie, Xingchen; Zhu, Qinjun; Liu, Songlin

    2016-01-01

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  18. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  19. Thermal hydraulic analyses of two fusion reactor first wall/blanket concepts

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1978-01-01

    A comparative study has been made of the thermal hydraulic performance of two liquid lithium blanket concepts for tokamak-type reactors. In one concept lithium is circulated through 60-cm deep cylindrical modules oriented so that the module axis is parallel to the reactor minor radius. In the other concept helium carrying channels oriented parallel to the first wall are used to cool a 60-cm thick stagnant lithium blanket. Paralleling studies were carried out wherein the thermal and structural properties of the construction materials were based on those projected for either solution-annealed 316-stainless steel or vanadium-base alloys. The effects of limitations on allowable peak structural temperature, material strength, thermal stress, coolant inlet temperature, and pumping power/thermal power ratio were evaluated. Consequences to thermal hydraulic performance resulting from the presence of or absence of a divertor were also investigated

  20. Thermal hydraulic analyses of two fusion reactor first wall/blanket concepts

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1977-01-01

    A comparative study has been made of the thermal hydraulic performance of two liquid lithium blanket concepts for tokamak-type reactors. In one concept lithium is circulated through 60-cm deep cylindrical modules oriented so that the module axis is parallel to the reactor minor radius. In the other concept helium carrying channels oriented parallel to the first wall are used to cool a 60-cm thick stagnant lithium blanket. Paralleling studies were carried out wherein the thermal and structural properties of the construction materials were based on those projected for either solution-annealed 316-stainless steel or vanadium-base alloys. The effects of limitations on allowable peak structural temperature, material strength, thermal stress, coolant inlet temperature, and pumping power/thermal power ratio were evaluated. Consequences to thermal hydraulic performance resulting from the presence of or absence of a divertor were also investigated

  1. Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications

    Science.gov (United States)

    Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun

    2018-03-01

    The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.

  2. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  3. Thermal response of a pin-type fusion reactor blanket during steady and transient reactor operation

    International Nuclear Information System (INIS)

    Grotz, S.; Ghoniem, N.M.

    1986-02-01

    The thermal analysis of the blanket examines both the steady-state and transient reactor operations. The steady-state analysis covers full power and fractional power operation whereas the transient analysis examines the effects of power ramps and blanket preheat. The blanket configuration chosen for this study is a helium cooled solid breeder design. We first discuss the full power, steady-state temperature fields in the first wall, beryllium rods, and breeder rods. Next we examine the effects of fractional power on coolant flow and temperature field distributions. This includes power plateaus of 10%, 20%, 50%, 80%, and 100% of full power. Also examined are the restrictions on the rates of power ramping between plateaus. Finally we discuss the power and time requirements for pre-heating the primary from cold iron conditions up to startup temperature (250 0 C)

  4. Thermal comfort and safety of cotton blankets warmed at 130°F and 200°F.

    Science.gov (United States)

    Kelly, Patricia A; Cooper, Susan K; Krogh, Mary L; Morse, Elizabeth C; Crandall, Craig G; Winslow, Elizabeth H; Balluck, Julie P

    2013-12-01

    In 2009, the ECRI Institute recommended warming cotton blankets in cabinets set at 130°F or less. However, there is limited research to support the use of this cabinet temperature. To measure skin temperatures and thermal comfort in healthy volunteers before and after application of blankets warmed in cabinets set at 130 and 200°F, respectively, and to determine the time-dependent cooling of cotton blankets after removal from warming cabinets set at the two temperatures. Prospective, comparative, descriptive. Participants (n = 20) received one or two blankets warmed in 130 or 200°F cabinets. First, skin temperatures were measured, and thermal comfort reports were obtained at fixed timed intervals. Second, blanket temperatures (n = 10) were measured at fixed intervals after removal from the cabinets. No skin temperatures approached levels reported in the literature that cause epidermal damage. Thermal comfort reports supported using blankets from the 200°F cabinet, and blankets lost heat quickly over time. We recommend warming cotton blankets in cabinets set at 200°F or less to improve thermal comfort without compromising patient safety. Copyright © 2013 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  5. Thermal Protection with 5% Dextrose Solution Blanket During Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Chen, Enn Alexandria; Neeman, Ziv; Lee, Fred T.; Kam, Anthony; Wood, Brad

    2006-01-01

    A serious complication for any thermal radiofrequency ablation is thermal injury to adjacent structures, particularly the bowel, which can result in additional major surgery or death. Several methods using air, gas, fluid, or thermometry to protect adjacent structures from thermal injury have been reported. In the cases presented in this report, 5% dextrose water (D5W) was instilled to prevent injury to the bowel and diaphragm during radiofrequency ablation. Creating an Insulating envelope or moving organs with D5W might reduce risk for complications such as bowel perforation

  6. First wall thermal hydraulic models for fusion blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization

  7. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    International Nuclear Information System (INIS)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding. (author)

  8. Thermal Hydraulic Analysis of K-DEMO Single Blanket Module for Preliminary Accident Analysis using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.

  9. Effective thermal conductivity of glass-fiber board and blanket standard reference materials

    International Nuclear Information System (INIS)

    Smith, D.R.; Hust, J.G.

    1983-01-01

    This chapter reports on measurements of effective thermal conductivity performed on a series of specimens of glass-fiber board and glass-fiber blanket. Explains that measurements of thermal conductivity were conducted as a function of temperature from 85 to 360 K, of temperature difference with T=10 to 100 K, of bulk density from 11 to 148 kg/m 3 and for nitrogen, argon, and helium inter-fiber fill gases at pressures from atmospheric to high vacuum. Analyzes and compares results with values from the published literature and National Bureau of Standards (NBS) certification data for similar material. Gives polynomial expressions for the functional relation between conductivity, temperature, and density for board and for blanket

  10. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    International Nuclear Information System (INIS)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available

  11. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  12. Development of Thermal-hydraulic Analysis Methodology for Multi-module Breeding Blankets in K-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this paper, the purpose of the analyses is to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. Afterwards, the plan for the whole blanket system analysis using MARS-KS is introduced and the result of the multiple blanket module analysis is summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for the conceptual design of the K-DEMO breeding blanket thermal analysis. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering pressure drops arises in each module. For a feasibility test of the proposed methodology, 10 outboard blankets in a toroidal field sector were simulated, which are connected with each other through the inlet and outlet common headers. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation and thanks to the parallelization using MPI, almost linear speed-up could be obtained.

  13. Nuclear and thermal analyses of supercritical-water-cooled solid breeder blanket for fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Yoshihiko; Sato, Satoshi; Enoeda, Mikio; Hatano, Toshihisa; Kikuchi, Shigeto; Kuroda, Toshimasa; Kosaku, Yasuo; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-11-01

    Within a design study of a fusion DEMO reactor aiming at demonstrating technologies of fusion power plant, supercritical water is applied as a coolant of solid breeder blanket to attain high thermal efficiency. The blanket has multi-layer composed of solid breeder pebbles (Li{sub 2}O) and neutron multiplier pebbles (Be) which are radially separated by cooling panels. The first wall and the breeding region are cooled by supercritical water below and above the pseudo-critical temperature, respectively. Temperature distribution and tritium breeding ratio (TBR) have been estimated by one-dimensional nuclear and thermal calculations. The local TBR as high as 1.47 has been obtained after optimization of temperature distribution in the breeder region under the following conditions: neutron wall loading of 5 MW/m{sup 2}, {sup 6}Li enrichment of 30% and coolant temperature at inlet of breeder region of 380degC. In the case of the higher coolant temperature 430degC of the breeder region the local TBR was reduced to be 1.40. This means that the net TBR higher than 1.0 could be expected with the supercritical-water-cooled blanket, whose temperature distribution in the breeder region would be optimized by following the coolant temperature, and where a coverage of the breeder region is assumed to be 70%. (author)

  14. Thermal analysis of a helium-cooled, tube-bank blanket module for a tandem mirror fusion reactor

    International Nuclear Information System (INIS)

    Werner, R.W.

    1983-01-01

    A blanket module concept for the central cell of a tandem mirror reactor is described which takes advantage of the excellent heat transfer and low pressure drop characteristics of tube banks in cross-flow. The blanket employs solid Li 2 O as the tritium breeding material and helium as the coolant. The lithium oxide is contained in tubes arranged within the submodules as a two-pass, cross-flow heat exchanger. Primarily, the heat transfer and thermal-hydraulic aspects of the blanket design study are described in this paper. In particular, the analytical model used for selection of the best tube-bank design parameters is discussed in some detail

  15. Thermal analysis of a helium-cooled, tube-bank blanket module for a tandem-mirror fusion reactor

    International Nuclear Information System (INIS)

    Werner, R.W.; Hoffman, M.A.; Johnson, G.L.

    1983-01-01

    A blanket module concept for the central cell of a tandem mirror reactor is described which takes advantage of the excellent heat transfer and low pressure drop characteristics of tube banks in cross-flow. The blanket employs solid Li 2 O as the tritium breeding material and helium as the coolant. The lithium oxide is contained in tubes arranged within the submodules as a two-pass, cross-flow heat exchanger. Primarily, the heat transfer and thermal-hydraulic aspects of the blanket design study are described in this paper. In particular, the analytical model used for selection of the best tube-bank design parameters is discussed in some detail

  16. Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng; Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Lin, Shuang [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)

    2016-11-15

    Highlights: • The 3D thermal hydraulic analysis on the whole module of WCCB is performed by CFD method. • Temperature field and mass flow distribution have been obtained. • The design of WCCB is reasonable from the perspective of thermal-hydraulics. • The scheme for further optimization has been proposed. - Abstract: The Water Cooled Ceramic Breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). The thermal-hydraulic analysis is essential because the blanket should remove the high heat flux from the plasma and the volumetric heat generated by neutrons. In this paper, the detailed three dimensional (3D) thermal hydraulic analysis on the whole module of WCCB blanket has been performed by Computational Fluid Dynamics (CFD) method, which is capable of solving conjugate heat transfer between solid structure and fluid. The main results, including temperature field, distribution of mass flow rate and coolant pressure drop, have been calculated simultaneously. These provides beneficial guidance data for the further structural optimization and for the design arrangement of primary and secondary circuit. Under the total heat source of 1.23 MW, the coolant mass flow rate of 5.457 kg/s is required to make coolant water corresponding to the Pressurized Water Reactor (PWR) condition (15.5 MPa, 285 °C–325 °C), generating the total coolant pressure drop (△P) of 0.467 MPa. The results show that the present structural design can make all the materials effectively cooled to the allowable temperature range, except for a few small modifications on the both sides of FW. The main components, including the first wall (FW), cooling plates (CPs), side wall (SWs)&stiffening plates (SPs) and the manifold(1–4), dominate 4.7%/41.7%/13%/40.6% of the total pressure drop, respectively. Additionally, the mass flow rate of each channel has been obtained, showing the peak relative deviation of 3.4% and 2% from the average for the paratactic

  17. Thermal hydraulic and power cycle analysis of liquid lithium blanket designs

    International Nuclear Information System (INIS)

    Misra, B.; Stevens, H.C.; Maroni, V.A.

    1977-01-01

    Thermal hydraulic and power cycle analyses were performed for the first-wall and blanket systems of tokamak-type fusion reactors under a typical set of design and operating conditions. The analytical results for lithium-cooled blanket cells show that with stainless steel as construction material and with no divertor present, the maximum allowable neutron wall loading is approximately 2 MW/m 2 and is limited by thermal stress criteria. With vanadium alloy as construction material and no divertor present, the maximum allowable neutron wall loading is approximately 8 MW/m 2 and is limited by an interplay of constraints imposed on the maximum allowable structural temperature and the minimum allowable coolant inlet temperature. With a divertor these wall loadings can be increased by from 40 to 90 percent. The cost of the vanadium system is found to be competitive with the stainless steel system because of the higher allowable structural temperatures and concomitant higher thermal efficiencies afforded by the vanadium alloys

  18. Thermal-hydraulic and neutronic considerations for designing a lithium-cooled tokamak blanket

    International Nuclear Information System (INIS)

    Chao, J.; Mikic, B.; Todreas, N.

    1978-12-01

    A methodology for the design of lithium cooled blankets is developed. The thermal-hydraulics, neutronics and interactions between them are extensively investigated. In thermal hydraulics, two models illustrate the methodology used to obtain the acceptable ranges for a set of design parameters. The methodology can be used to identify the limiting constraints for a particular design. A complete neutronic scheme is set up for the calculations of the volumetric heating rate as a function of the distance from the first wall, the breeding ratio as a function of the amount of structural material in the blanket, and the radiation damage in terms of atom displacements and gas production rate. Different values of the volume percent of Type-316 stainless steel are assigned in four breeding zones to represent a nonuniformly distributed structural material which satisfies various thermal-hydraulic requirements. The role that the radiation damage plays in the overall design methodology is described. The product of the first wall lifetime and neutron loading is limited by the radiation damage which degrades the mechanical properties of the material

  19. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife.

    Directory of Open Access Journals (Sweden)

    Stephen R Griffiths

    Full Text Available Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance, white boxes (high reflectance, and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and

  20. Thermal-hydraulic investigations on the CEA-ENEA DEMO relevant helium cooled poloidal blanket

    International Nuclear Information System (INIS)

    Dell'Orco, G.; Polazzi, G.; Vallette, F.; Proust, E.; Eid, M.

    1994-01-01

    The CEA-ENEA design of an Helium Cooled Solid Breeder Blanket (HCSBB) for the DEMO reactor, with a breeder in tube (BIT) poloidal arrangement, is based on the use of lithium ceramic pellets, the ENEA γ-LiAlO 2 or the CEA Li 2 ZrO 3 . Due to the geometry of the DEMO reactor plasma chamber, these breeder bundles are adapted to the Vacuum Vessel with a strong poloidal curvature. This curvature influences the thermal-hydraulic behaviour of the coolant flowing inside the bundle. The paper presents the CEA-ENEA first results of the experimental and theoretical programme, aiming at optimizing the breeder module thermal hydraulic design. (author) 6 refs.; 7 figs.; 1 tab

  1. Neutronic and thermal estimation of blanket in-pile mockup with Li2TiO3 pebbles

    International Nuclear Information System (INIS)

    Nagao, Y.; Nakamichi, M.; Tsuchiya, K.; Kawamura, H.

    2001-01-01

    To evaluate exactly temperature distribution in large volume of tritium breeding materials during the blanket in-pile tests with the JMTR, neutronic and thermal calculations were conducted by using Monte Carlo code 'MCNP' with nuclear cross section library of 'FSXLIBJ3R2' and the transient and steady-state distribution code 'TRUMP'. From the results of preliminary estimation of temperature distribution in the blanket in-pile mockup, the calculated values were 24-28% higher than the measured values. One of the reasons is due to overestimation of calculated thermal neutron flux

  2. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  3. Thermal-hydraulic analysis of water cooled breeding blanket of K-DEMO using MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Hun; Park, Il Woong; Kim, Geon-Woo; Park, Goon-Cherl [Seoul National University, Seoul (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • The thermal design of breeding blanket for the K-DEMO is evaluated using MARS-KS. • To confirm the prediction capability of MARS, the results were compared with the CFD. • The results of MARS-KS calculation and CFD prediction are in good agreement. • A transient simulation was carried out so as to show the applicability of MARS-KS. • A methodology to simulate the entire blanket system is proposed. - Abstract: The thermal design of a breeding blanket for the Korean Fusion DEMOnstration reactor (K-DEMO) is evaluated using the Multidimensional Analysis of Reactor Safety (MARS-KS) code in this study. The MARS-KS code has advantages in simulating transient two-phase flow over computational fluid dynamics (CFD) codes. In order to confirm the prediction capability of the code for the present blanket system, the calculation results were compared with the CFD prediction. The results of MARS-KS calculation and CFD prediction are in good agreement. Afterwards, a transient simulation for a conceptual problem was carried out so as to show the applicability of MARS-KS for a transient or accident condition. Finally, a methodology to simulate the multiple blanket modules is proposed.

  4. Microbiological sampling of spacecraft cabling, antennas, solar panels and thermal blankets

    Science.gov (United States)

    Koukol, R. C.

    1973-01-01

    Sampling procedures and techniques described resulted from various flight project microbiological monitoring programs of unmanned planetary spacecraft. Concurrent with development of these procedures, compatibility evaluations were effected with the cognizant spacecraft subsystem engineers to assure that degradation factors would not be induced during the monitoring program. Of significance were those areas of the spacecraft configuration for which special handling precautions and/or nonstandard sample gathering techniques were evolved. These spacecraft component areas were: cabling, high gain antenna, solar panels, and thermal blankets. The compilation of these techniques provides a historical reference for both the qualification and quantification of sampling parameters as applied to the Mariner Spacecraft of the late 1960's and early 1970's.

  5. High heat flux thermal-hydraulic analysis of ITER divertor and blanket systems

    International Nuclear Information System (INIS)

    Raffray, A.R.; Chiocchio, S.; Ioki, K.; Tivey, R.; Krassovski, D.; Kubik, D.

    1998-01-01

    Three separate cooling systems are used for the divertor and blanket components, based mainly on flow routing access and on grouping together components with the highest heat load levels and uncertainties: divertor, limiter/outboard baffle, and primary first wall/inboard baffle. The coolant parameters for these systems are set to accommodate peak heat load conditions with a reasonable critical heat flux (CHF) margin. Material temperature constraints and heat transport system space and cost requirements are also taken into consideration. This paper summarises the three cooling system designs and highlights the high heat flux thermal-hydraulic analysis carried out in converging on the design values for the coolant operating parameters. Application of results from on-going high heat flux R and D and a brief description of future R and D effort to address remaining issues are also included. (orig.)

  6. ITER breeding blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Toshimasa; Enoeda, Mikio; Kikuchi, Shigeto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-11-01

    The ITER breeding blanket employs a ceramic breeder and Be neutron multiplier both in small spherical pebble form. Radial-poloidal cooling panels are arranged in the blanket box to remove the nuclear heating in these materials and to reinforce the blanket structure. At the first wall, Be armor is bonded onto the stainless steel (SS) structure to provide a low Z plasma-compatible surface and to protect the first wall/blanket structure from the direct contact with the plasma during off-normal events. Thermo-mechanical analyses and investigation of fabrication procedure have been performed for this breeding blanket. To evaluate thermo-mechanical behavior of the pebble beds including the dependency of the effective thermal conductivity on stress, analysis methods have been preliminary established by the use of special calculation option of ABAQUS code, which are briefly summarized in this report. The structural response of the breeding blanket module under internal pressure of 4 MPa (in case of in-blanket LOCA) resulted in rather high stress in the blanket side (toroidal end) wall, thus addition of a stiffening rib or increase of the wall thickness will be needed. Two-dimensional elasto-plastic analyses have been performed for the Be/SS bonded interface at the first wall taking a fabrication process based on HIP bonding and thermal cycle due to pulsed plasma operation into account. The stress-strain hysteresis during these process and operation was clarified, and a procedure to assess and/or confirm the bonding integrity was also proposed. Fabrication sequence of the breeding blanket module was preliminarily developed based on the procedure to fabricate part by part and to assemble them one by one. (author)

  7. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    International Nuclear Information System (INIS)

    Cui, Shijie; Zhang, Dalin; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-01

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  8. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  9. Influence of thermal performance on design parameters of a He/LiPb dual coolant DEMO concept blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Mas de les Valls, E., E-mail: elisabet.masdelesvalls@gits.ws [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Heat Engines, Barcelona (Spain); Batet, L. [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Physics and Nuclear Engineering, Barcelona (Spain); Medina, V. de [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Sediment Transport Research Group, Department of Engineering Hydraulic, Marine and Environmental Engineering, Barcelona (Spain); Fradera, J. [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Physics and Nuclear Engineering, Barcelona (Spain); Sanmarti, M. [bFUS-IREC, Jardins de les Dones de Negre 1, 08930 Sant Adria del Besos (Spain); Sedano, L.A. [EURATOM-CIEMAT Association, 28040 Madrid (Spain)

    2012-08-15

    Spanish Breeding Blanket Technology Programme TECNO{sub F}US is exploring the technological capabilities of a Dual-Coolant He/Pb15.7Li breeding blanket for DEMO and studying new breeding blanket design specifications. The progress of the channel conceptual design is being conducted in parallel with the extension of MHD computational capabilities of CFD tools and the underlying physics of MHD models. A qualification of MHD effects under present blanket design specifications and some approaches to their modelling were proposed by the authors in . The analysis was accomplished with the 2D transient algorithm from Sommeria and Moreau and implemented in the OpenFOAM CFD toolbox . The thermal coupling was implemented by means of the Boussinesq hypothesis. Previous analyses showed the need of improvement of FCI thickness and thermal properties in order to obtain a desirable liquid metal temperature gain of 300 Degree-Sign C. In the present study, an assessment through sensitivity and parametric analyses of the required FCI thickness is performed. Numerical simulations have been carried out considering a Robin-type thermal boundary condition which assumes 1D steady state thermal balance across the solid FCI and Eurofer layers. Such boundary condition has been validated with a fluid-solid coupled domain analysis. Results for the studied flow conditions and channel dimensions show that, in order to obtain a liquid metal temperature gain of about 300 Degree-Sign C, the required FCI material should have a very small effective heat transfer coefficient ((k/{delta}) {<=} 1 W/m{sup 2}K) and fluid velocities should be about 0.2 m/s or less. Moreover, special attention has to be placed on the temperature difference across the FCI layer. However, for a maximised liquid metal thermal gain, higher velocities would be preferable, what would also imply a reduced temperature difference across the FCI layer.

  10. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  11. Multiple Module Simulation of Water Cooled Breeding Blankets in K-DEMO Using Thermal-Hydraulic Analysis Code MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A preliminary concept for the Korean fusion demonstration reactor (K-DEMO) has been studied by the National Fusion Research Institute (NFRI) based on the National Fusion Roadmap of Korea. The feasibility studies have been performed in order to establish the conceptual design guidelines of the breeding blanket. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the water-cooled breeding blanket for the K-DEMO reactor. The purpose of this study is to extend the capability of MARS-KS to the overall blanket system analysis which includes 736 blanket modules in total. The strategy for the multi-module blanket system analysis using MARS-KS is introduced and the analysis result of the 46 blanket modules of single sector was summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for thermal analysis of the conceptual design of the K-DEMO breeding blanket. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering the pressure drop that occurs in each module. For a feasibility test of the proposed methodology, 46 blankets in a sector, which are connected with each other through the common headers for the sector inlet and outlet, were simulated. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation. Because of parallelization using the MPI system, the computational time could be reduced significantly. In future, this methodology will be extended to an efficient simulation of multiple sectors, and further validation for transient simulation will be carried out for more practical applications.

  12. Improved thermal/MHD design of self-cooled blankets for high-power-density fusion reactors

    International Nuclear Information System (INIS)

    Sedehi, S.; Lund, K.O.

    1986-01-01

    In this work, an improved self-cooled blanket design is conceived that seeks to minimize the induced current and pressure loss, while maintaining effective cooling and power output. Standard solutions for fully developed MHD flows in rectangular ducts are utilized to describe the magnetic pressure drop in rectangular ducts in terms of the duct aspects ratio. A newly available analytical result for developing and fully developed temperatures is utilized in determining the maximum wall temperature and outlet temperature. Based on results from rectangular ducts, improved annular-type duct designs are proposed and evaluated. The results from the rectangular duct analysis indicate reduced pressure drop and increased thermal performance for large aspect ratio (ratio of duct width in the toroidal B-field direction to width normal to B-field). An infinite aspect ratio occurs for the annular duct design and it is shown that this configuration has superior characteristics as a self-cooled blanket design concept

  13. Numerical simulation of the transient thermal-hydraulic behaviour of the ITER blanket cooling system under the draining operational procedure

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Vallone, E., E-mail: eug.vallone@gmail.com [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • ITER blanket cooling system hydraulic behaviour is studied under draining transient. • A computational approach based on the finite volume method has been followed. • Draining efficiency has been assessed in term of transient duration and residual water. • Transient duration ranges from ∼40 to 50 s, under the reference draining scenario. • Residual water is predicted to range from few tens of gram up to few kilograms. - Abstract: Within the framework of the research and development activities supported by the ITER Organization on the blanket system issues, an intense analysis campaign has been performed at the University of Palermo with the aim to investigate the thermal-hydraulic behaviour of the cooling system of a standard 20° sector of ITER blanket during the draining transient operational procedure. The analysis has been carried out following a theoretical-computational approach based on the finite volume method and adopting the RELAP5 system code. In a first phase, attention has been focused on the development and validation of the finite volume models of the cooling circuits of the most demanding modules belonging to the standard blanket sector. In later phase, attention has been put to the numerical simulation of the thermal-hydraulic transient behaviour of each cooling circuit during the draining operational procedure. The draining procedure efficiency has been assessed in terms of both transient duration and residual amount of coolant inside the circuit, observing that the former ranges typically between 40 and 120 s and the latter reaches at most ∼8 kg, in the case of the cooling circuit of twinned modules #6–7. Potential variations to operational parameters and/or to circuit lay-out have been proposed and investigated to optimize the circuit draining performances. In this paper, the set-up of the finite volume models is briefly described and the key results are summarized and critically discussed.

  14. Mirror reactor blankets

    International Nuclear Information System (INIS)

    Lee, J.D.; Barmore, W.L.; Bender, D.J.; Doggett, J.N.; Galloway, T.R.

    1976-01-01

    The general requirements of a breeding blanket for a mirror reactor are described. The following areas are discussed: (1) facility layout and blanket maintenance, (2) heat transfer and thermal conversion system, (3) materials, (4) tritium containment and removal, and (5) nuclear performance

  15. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended

  16. Detection of insulation flaws and thermal bridges in insulated truck box panels

    OpenAIRE

    Lei, Lei; Bortolin, Alessandro; Bison, Paolo ©; Maldague, X.

    2017-01-01

    This paper focuses on the detection of defects and thermal bridges in insulated truck box panels, utilising infrared thermography. Unlike the traditional way in which passive thermography is applied, this research uses both heating and cooling methods in active thermography configurations. Lamp heating is used as the hot external stimulation, while a compressed air jet is applied as the cold external stimulation. A thermal camera captures the whole process. In addition, numerical simulations ...

  17. Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanz@umich.edu; Zikanov, Oleg

    2017-03-15

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • The flow is strongly modified by the buoyancy force associated with growing T{sub m}. • Thermal convection is suppressed at high Gr. • High temperature difference between top and bottom walls is expected at high Gr. - Abstract: The work continues the exploration of the effect of thermal convection on flows in toroidal ducts of a liquid metal blanket. This time we consider the effect of the mean flow along the duct and of the associated heat transfer diverting the heat deposited by captured neutrons. Numerical simulations are conducted for a model system with two-dimensional (streamwise-uniform) fully developed flow, purely toroidal magnetic field, and perfectly electrically and thermally insulating walls. Realistically high Grashof (up to 10{sup 11}) and Reynolds (up to 10{sup 6}) numbers are used. It is found that the flow develops thermal convection in the transverse plane at moderate Grashof numbers. At large Grashof numbers, the flow is dominated by the top-bottom asymmetry of the streamwise velocity and stable stratification of temperature, which are caused by the buoyancy force due to the mean temperature growing along the duct. This leads to suppression of thermal convection, weak mixing, and substantial gradients of wall temperature. Further analysis based on more realistic models is suggested.

  18. Transmutation and activation of stainless steel 316 SS in a thermal fusion reactor blanket

    International Nuclear Information System (INIS)

    Gruber, J.; Schneider, J.

    1977-10-01

    Using the program MATEXP (matrix exponential method) the influence of neutron flux is calculated for stainless steel 3s16 SS which is used as a structural material in a fusion reactor blanket (CTRD-I). The transmutations, activations and γ-dose rates are determined for an operation time of 20 years. Investigating the decay behaviour after operation time, we found that the long term activity and dose rate was mainly influenced by five nuclides: Fe55, Ni63, Ni59, Co60 and Nb94. (orig.) [de

  19. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    International Nuclear Information System (INIS)

    HEARD, F.J.

    1999-01-01

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels

  20. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    HEARD, F.J.

    1999-04-09

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels.

  1. Limitations on blanket performance

    International Nuclear Information System (INIS)

    Malang, S.

    1999-01-01

    The limitations on the performance of breeding blankets in a fusion power plant are evaluated. The breeding blankets will be key components of a plant and their limitations with regard to power density, thermal efficiency and lifetime could determine to a large degree the attractiveness of a power plant. The performance of two rather well known blanket concepts under development in the frame of the European Blanket Programme is assessed and their limitations are compared with more advanced (and more speculative) concepts. An important issue is the question of which material (structure, breeder, multiplier, coatings) will limit the performance and what improvement would be possible with a 'better' structural material. This evaluation is based on the premise that the performance of the power plant will be limited by the blankets (including first wall) and not by other components, e.g. divertors, or the plasma itself. However, the justness of this premise remains to be seen. It is shown that the different blanket concepts cover a large range of allowable power densities and achievable thermal efficiencies, and it is concluded that there is a high incentive to go for better performance in spite of possibly higher blanket cost. However, such high performance blankets are usually based on materials and technologies not yet developed and there is a rather high risk that the development could fail. Therefore, it is explained that a part of the development effort should be devoted to concepts where the materials and technologies are more or less in hand in order to ensure that blankets for a DEMO reactor can be developed and tested in a given time frame. (orig.)

  2. System code assessment with thermal-hydraulic experiment to develop helium cooled breeding blanket for nuclear fusion reactor

    International Nuclear Information System (INIS)

    Yum, S. B.; Park, I. W.; Park, G. C.; Lee, D. W.

    2012-01-01

    By considering the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He Cooled Molten Lithium (HCML) Test Blanket Module (TBM) for testing in the International Thermonuclear Experimental Reactor (ITER). A performance analysis for the thermal-hydraulics and a safety analysis for an accident caused by a loss of coolant for the KO TBM have been carried out using a commercial CFD code, ANSYS-CFX, and a system code, GAMMA (GAs Multicomponent Mixture Analysis), which was developed by the Gas Cooled Reactor in Korea. To verify the codes, a preliminary study was performed by Lee using a single TBM First Wall (FW) mock-up made from the same material as tho KO TBM, ferritic martensitic steel, using a 6 MPa nitrogen gas loop. The test was performed at pressures of 11, 19, and 29 bar, and under various ranges of flow rate from 0.63 to 2.44kg/min with a constant wall temperature condition. In the present study, a thermal-hydraulic test was performed with the newly constructed helium supplying system, In which the design pressure and temperature were 9 MPa and 500 .deg. C, respectively. In the experiment, the same mock-up was used, and the test was performed under the conditions of 8 MPa pressure, 0.2 kg/s flow rate, which are almost same conditions of the KO TBM FW. One-side of the mock-up was heated with a constant heat flux of 0.5 MW/m 2 using a graphite heating system, KoHLT-2 (Korea Heat Load Test Facility-2). The wall temperatures were measured using installed thermocouples, and they show a strong parity with the code results simulated under the same test conditions

  3. Thermal performance parameters estimation of hot box type solar cooker by using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Hueseyin; Atik, Kemal; Oezkaymak, Mehmet; Recebli, Ziyaddin [Zonguldak Karaelmas University, Karabuk Technical Education Faculty, 78200 Karabuk (Turkey)

    2008-02-15

    Work to date has shown that Artificial Neural Network (ANN) has not been used for predicting thermal performance parameters of a solar cooker. The objective of this study is to predict thermal performance parameters such as absorber plate, enclosure air and pot water temperatures of the experimentally investigated box type solar cooker by using the ANN. Data set is obtained from the box type solar cooker which was tested under various experimental conditions. A feed-forward neural network based on back propagation algorithm was developed to predict the thermal performance of solar cooker with and without reflector. Mathematical formulations derived from the ANN model are presented for each predicting temperatures. The experimental data set consists of 126 values. These were divided into two groups, of which the 96 values were used for training/learning of the network and the rest of the data (30 values) for testing/validation of the network performance. The performance of the ANN predictions was evaluated by comparing the prediction results with the experimental results. The results showed a good regression analysis with the correlation coefficients in the range of 0.9950-0.9987 and mean relative errors (MREs) in the range of 3.925-7.040% for the test data set. The regression coefficients indicated that the ANN model can successfully be used for the prediction of the thermal performance parameters of a box type solar cooker with a high degree of accuracy. (author)

  4. Thermal convection in a toroidal duct of a liquid metal blanket. Part I. Effect of poloidal magnetic field

    International Nuclear Information System (INIS)

    Zhang, Xuan; Zikanov, Oleg

    2017-01-01

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • Poloidal magnetic field suppresses turbulence at high Hartmann number. • Flow structure is dominated by large-scale counter-rotation vortices. • Effective heat transfer is maintained by surviving convection structures. - Abstract: We explore the effect of poloidal magnetic field on the thermal convection flow in a toroidal duct of a generic liquid metal blanket. Non-uniform strong heating (the Grashof number up to 10 11 ) arising from the interaction of high-speed neutrons with the liquid breeder, and strong magnetic field (the Hartmann number up to 10 4 ) corresponding to the realistic reactor conditions are considered. The study continues our earlier work , where the problem was solved for a purely toroidal magnetic field and the convection was found to result in two-dimensional turbulence and strong mixing within the duct. Here, we find that the poloidal component of the magnetic field suppresses turbulence, reduces the flow's kinetic energy and high-amplitude temperature fluctuations, and, at high values of Hartmann number, leads to a steady-state flow. At the same time, the intense mixing by the surviving convection structures remains able to maintain effective heat transfer between the liquid metal and the walls.

  5. Thermal biology of eastern box turtles in a longleaf pine system managed with prescribed fire.

    Science.gov (United States)

    Roe, John H; Wild, Kristoffer H; Hall, Carlisha A

    2017-10-01

    Fire can influence the microclimate of forest habitats by removing understory vegetation and surface debris. Temperature is often higher in recently burned forests owing to increased light penetration through the open understory. Because physiological processes are sensitive to temperature in ectotherms, we expected fire-maintained forests to improve the suitability of the thermal environment for turtles, and for turtles to seasonally associate with the most thermally-optimal habitats. Using a laboratory thermal gradient, we determined the thermal preference range (T set ) of eastern box turtles, Terrapene carolina, to be 27-31°C. Physical models simulating the body temperatures experienced by turtles in the field revealed that surface environments in a fire-maintained longleaf pine forest were 3°C warmer than adjacent unburned mixed hardwood/pine forests, but the fire-maintained forest was never of superior thermal quality owing to wider T e fluctuations above T set and exposure to extreme and potentially lethal temperatures. Radiotracked turtles using fire-managed longleaf pine forests maintained shell temperatures (T s ) approximately 2°C above those at a nearby unburned forest, but we observed only moderate seasonal changes in habitat use which were inconsistent with thermoregulatory behavior. We conclude that turtles were not responding strongly to the thermal heterogeneity generated by fire in our system, and that other aspects of the environment are likely more important in shaping habitat associations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thermally induced outdiffusion studies of deuterium in ceramic breeder blanket materials after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    González, Maria, E-mail: maria.gonzalez@ciemat.es [LNF-CIEMAT, Materials for Fusion Group, Madrid (Spain); Carella, Elisabetta; Moroño, Alejandro [LNF-CIEMAT, Materials for Fusion Group, Madrid (Spain); Kolb, Matthias H.H.; Knitter, Regina [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), Karlsruhe (Germany)

    2015-10-15

    Highlights: • Surface defects in Lithium-based ceramics are acting as trapping centres for deuterium. • Ionizing radiation affects the deuterium sorption and desorption processes. • By extension, the release of the tritium produced in a fusion breeder will be effective. - Abstract: Based on a KIT–CIEMAT collaboration on the radiation damage effects of light ions sorption/desorption in ceramic breeder materials, candidate materials for the ITER EU TBM were tested for their outgassing behavior as a function of temperature and radiation. Lithium orthosilicate based pebbles with different metatitanate contents and pellets of the individual oxide components were exposed to a deuterium atmosphere at room temperature. Then the thermally induced release of deuterium gas was registered up to 800 °C. This as-received behavior was studied in comparison with that after exposing the deuterium-treated samples to 4 MGy total dose of gamma radiation. The thermal desorption spectra reveal differences in deuterium sorption/desorption behavior depending on the composition and the induced ionizing damage. In these breeder candidates, strong desorption rate at approx. 300 °C takes place, which slightly increases with increasing amount of the titanate second phase. For all studied materials, ionizing radiation induces electronic changes disabling a number of trapping centers for D{sub 2} adsorption.

  7. The thermal response of the first wall of a fusion reactor blanket to plasma disruptions

    International Nuclear Information System (INIS)

    Klippel, H.Th.

    1983-09-01

    Major plasma disruptions in Tokamak power reactors are potentially dangerous because high thermal overloading of the first wall may occur, resulting in melting and evaporation. The present uncertainties of the disruption characteristics, in particular the space and time dependence of the energy deposition, lead to a wide variation in the prospective surface energy loads. The thermal response of a first wall of aluminium, stainless steel and of graphite subjected to disruption energy loads up to 1000 J cm -2 has been analysed including the effects of melting and surface evaporation, vapour recondensation, vapour shielding, and the moving of the surface boundary caused by the evaporation. A special calculation model has been developed for this purpose. The main results are the following: by values of local transient energy depositions over 1500 J cm -2 bare stainless steel walls are damaged severely. Further calculations are needed to estimate the endurance limit of several candidate first wall materials. Applications of coatings on surfaces need special attention. For the reference INTOR disruption (approx. 100 J cm -2 ) evaporation is not significant. The effect of vapour shielding on evaporation has been found to be significant. The effect on melting is less pronounced. In a complete analysis the stability and dynamic behaviour of the melted layer under electromagnetic forces should be included. Also a reliable set of plasma disruption characteristics should be gathered

  8. Magnetoconvection in HCLL blankets

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Buehler, L.

    2014-01-01

    In the present work we consider magneto-convective flows in one of the proposed European liquid metal blankets that will be tested in the experimental fusion reactor ITER. Here the PbLi alloy is used as breeder material and helium as coolant. In order to finalize the design of the helium cooled lead lithium (HCLL) blanket, studies are still required to fully understand the behavior of the electrically conducting breeder under the influence of the intense magnetic field that confines the fusion plasma and in case of non-uniform thermal conditions. Liquid metal HCLL blanket flows are expected to be mainly driven by buoyancy forces caused by non-isothermal operating conditions due to neutron volumetric heating and cooling of walls, since only a weak forced ow is foreseen for tritium extraction in external ancillary systems. Buoyancy can therefore become very important and modify the velocity distribution and related heat transfer performance of the blanket. The present numerical study aims at clarifying the influence of electromagnetic and thermal coupling of neighboring fluid domains on magneto-convective flows in geometries relevant for the HCLL blanket concept. According to the last design review two internal cooling plates subdivide the fluid domain into three slender flow regions, which are thermally and electrically coupled through common walls. First a uniform volumetric heat source is considered to identify the basic convective patterns that establish in the liquid metal. Results are then compared with those obtained by applying a realistic radial distribution of the power density as obtained from a neutronic analysis. Velocity and temperature distributions are discussed for various volumetric heat sources and magnetic field strengths.

  9. Thermal convection around a heat source embedded in a box containing a saturated porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Himasekhar, K.; Bau, H.H. (Univ. of Pennsylvania, Philadelphia (USA))

    1988-08-01

    A study of the thermal convection around a uniform flux cylinder embedded in a box containing a saturated porous medium is carried out experimentally and theoretically. The experimental work includes heat transfer and temperature field measurements. It is observed that for low Rayleigh numbers, the flow is two dimensional and time independent. Once a critical Rayleigh number is exceeded, the flow undergoes a Hopf bifurcation and becomes three dimensional and time dependent. The theoretical study involves the numerical solution of the two-dimensional Darcy-Oberbeck-Boussinesq equations. The complicated geometry is conveniently handled by mapping the physical domain onto a rectangle via the use of boundary-fitted coordinates. The numerical code can easily be extended to handle diverse geometric configurations. For low Rayleigh numbers, the theoretical results agree favorably with the experimental observations. However, the appearance of three-dimensional flow phenomena limits the range of utility of the numerical code.

  10. Stress analysis of the tokamak engineering test breeder blanket

    International Nuclear Information System (INIS)

    Huang Zhongqi

    1992-01-01

    The design features of the hybrid reactor blanket and main parameters are presented. The stress analysis is performed by using computer codes SAP5p and SAP6 with the three kinds of blanket module loadings, i.e, the pressure of coolant, the blanket weight and the thermal loading. Numerical calculation results indicate that the stresses of the blanket are smaller than the allowable ones of the material, the blanket design is therefore reasonable

  11. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  12. Oxidative reduction of glove box wipers with a downdraft thermal oxidation system

    International Nuclear Information System (INIS)

    Phelps, M.R.; Wilcox, W.A.

    1996-04-01

    Wipers (rags) used for decontamination and glove box cleanup in the Plutonium Finishing Plant often become soaked with acid and plutonium-rich solutions. After use, these wipers are rinsed in a dilute NaOH solution and dried, but the formation of unstable nitrates and the hydrogen gas caused by hydrolysis are concerns that still must be addressed. This report gives the results of testing with a small downdraft thermal oxidation system that was constructed by Pacific Northwest National Laboratory to stabilize glove wiper waste, reduce the waste volume, and reclaim plutonium. Proof-of-principle testing was conducted with eight runs using various combinations of rag moisture and chemical pretreatment. All runs went to planned completion. Results of these tests indicate that the thermal oxidation system has the potential for providing significant reductions in waste volume. Weight reductions of 150:1 were easily obtainable during this project. Modifications could result in weight reductions of over 200:1, with possible volume reductions of 500:1

  13. Thermalization of a two-dimensional photonic gas in a `white wall' photon box

    Science.gov (United States)

    Klaers, Jan; Vewinger, Frank; Weitz, Martin

    2010-07-01

    Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered-corresponding to a vanishing chemical potential. Here we report on evidence for a thermalized two-dimensional photon gas with a freely adjustable chemical potential. Our experiment is based on a dye-filled optical microresonator, acting as a `white wall' box for photons. Thermalization is achieved in a photon-number-conserving way by photon scattering off the dye molecules, and the cavity mirrors provide both an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. As a striking example of the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.

  14. Design and R and D activities on ceramic breeder blanket for fusion experimental reactors in JAERI

    International Nuclear Information System (INIS)

    Kurasawa, T.; Takatsu, H.; Sato, S.; Nakahira, M.; Furuya, K.; Hashimoto, T.; Kawamura, H.; Kuroda, T.; Tsunematsu, T.; Seki, M.

    1995-01-01

    Design and R and D activities on ceramic breeder blanket of a fusion experimental reactor have been progressed in JAERI. A layered pebble bed type ceramic breeder blanket with water cooling is a prime candidate concept. Design activities have been concentrated on improvement of the design by conducting detailed analyses and also by fabrication procedure consideration based on the current technologies. A wide variety of R and Ds have also been conducted in accordance with the design activities. Development of fabrication technology of the blanket box structure and its mechanical testing, elementary testing on thermal performances of the pebble bed, and engineering-oriented material tests of breeder and beryllium pebbles are the main achievements during the last two years. (orig.)

  15. Fusion blankets for high efficiency power cycles

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Usher, J.L.

    1980-04-01

    Definitions are given of 10 generic blanket types and the specific blanket chosen to be analyzed in detail from each of the 10 types. Dimensions, compositions, energy depositions and breeding ratios (where applicable) are presented for each of the 10 designs. Ultimately, based largely on neutronics and thermal hyraulics results, breeding an nonbreeding blanket options are selected for further design analysis and integration with a suitable power conversion subsystem

  16. Box-Behnken statistical design to optimize thermal performance of energy storage systems

    Science.gov (United States)

    Jalalian, Iman Joz; Mohammadiun, Mohammad; Moqadam, Hamid Hashemi; Mohammadiun, Hamid

    2018-05-01

    Latent heat thermal storage (LHTS) is a technology that can help to reduce energy consumption for cooling applications, where the cold is stored in phase change materials (PCMs). In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing RT25 as phase change material (PCM). Process optimization of the experimental conditions (inlet air temperature and velocity and number of slabs) was carried out by means of Box-Behnken design (BBD) of Response surface methodology (RSM). Two parameters (cooling time and COP value) were chosen to be the responses. Both of the responses were significantly influenced by combined effect of inlet air temperature with velocity and number of slabs. Simultaneous optimization was performed on the basis of the desirability function to determine the optimal conditions for the cooling time and COP value. Maximum cooling time (186 min) and COP value (6.04) were found at optimum process conditions i.e. inlet temperature of (32.5), air velocity of (1.98) and slab number of (7).

  17. Box-Behnken statistical design to optimize thermal performance of energy storage systems

    Science.gov (United States)

    Jalalian, Iman Joz; Mohammadiun, Mohammad; Moqadam, Hamid Hashemi; Mohammadiun, Hamid

    2017-11-01

    Latent heat thermal storage (LHTS) is a technology that can help to reduce energy consumption for cooling applications, where the cold is stored in phase change materials (PCMs). In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing RT25 as phase change material (PCM). Process optimization of the experimental conditions (inlet air temperature and velocity and number of slabs) was carried out by means of Box-Behnken design (BBD) of Response surface methodology (RSM). Two parameters (cooling time and COP value) were chosen to be the responses. Both of the responses were significantly influenced by combined effect of inlet air temperature with velocity and number of slabs. Simultaneous optimization was performed on the basis of the desirability function to determine the optimal conditions for the cooling time and COP value. Maximum cooling time (186 min) and COP value (6.04) were found at optimum process conditions i.e. inlet temperature of (32.5), air velocity of (1.98) and slab number of (7).

  18. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  19. The second advanced lead lithium blanket concept using ODS steel as structural material and SiCf/SiC flow channel inserts as electrical and thermal insulators (Task PPA 2.5). Final report

    International Nuclear Information System (INIS)

    Norajitra, P.; Buehler, L.; Fischer, U.

    1999-12-01

    Preparatory work on the advanced dual coolant (A-DCL) blanket concept using SiC f /SiC flow channel inserts as electrical and thermal insulators has been carried out at the Forschungszentrum Karlsruhe in co-operation with CEA as a conceptual design proposal to the EU fusion power plant study planned to be launched in 2000 within the framework of the EU fusion programme with the main objective of specifying the characteristics of an attractive and viable commercial D-T fusion power plant. The basic principles and design characteristics of this A-DCL blanket concept are presented and its potential with regard to performance (neutron wall load, lifetime, availability) is discussed in this report. The results of this study show that the A-DCL blanket concept has a high potential for further development due to its high thermal efficiency and its simple concept solution. (orig.) [de

  20. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2011-01-01

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  1. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system

    Energy Technology Data Exchange (ETDEWEB)

    Kuscu, Ozlem Selcuk, E-mail: oselcuk@mmf.sdu.edu.tr [Department of Environmental Engineering, Engineering and Architecture Faculty, Sueleyman Demirel University, Cuenuer Campus, 32260 Isparta (Turkey); Sponza, Delia Teresa [Dokuz Eyluel University, Engineering Faculty, Environmental Engineering Department, Buca Kaynaklar campus, Izmir (Turkey)

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  2. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system.

    Science.gov (United States)

    Kuşçu, Özlem Selçuk; Sponza, Delia Teresa

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The preliminary thermal-hydraulic design of one superheated steam water cooled blanket concept based on RELAP5 and MELCOR codes - 15147

    International Nuclear Information System (INIS)

    Guo, Y.; Wang, G.; Cheng, Y.; Peng, C.

    2015-01-01

    Water Cooled Blanket (WCB) is very important in the concept design and energy transfer in future fusion power plant. One concept design of WCB is under computational testing. RELAP5 and MELCOR codes, which are mature and often used in nuclear engineering, are selected as simulation tools. The complex inner flow channels and heat sources are simplified according to its thermal-hydraulic characteristics. Then the nodal models for RELAP5 and MELCOR are built for approximating the concept design. The superheated steam scheme is analyzed by two codes separately under different power levels. After some adjustments of the inlet flow resistance coefficients of some flow channels, the reasonable stable conditions can be obtained. The stable fluid and wall temperature distributions and pressure drops are studied. The results of two codes are compared and some advices are given. (authors)

  4. Proceedings of the eleventh international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    Enoeda, Mikio

    2004-07-01

    This report is the Proceedings of 'the Eleventh International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors, and the Japan-US Fusion Collaboration Framework. This workshop was held in Tokyo, Japan on December 15-17, 2003. About thirty experts from China, EU, Japan, Korea, Latvia, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket. In the workshop, information exchange was performed for designs of solid breeder blankets and test blankets in EU, Russia and Japan, recent results of irradiation tests, HICU, EXOTIC-8 and the irradiation tests by IVV-2M, modeling study on tritium release behavior of Li 2 TiO 3 and so on, fabrication technology developments and characterization of the Li 2 TiO 3 and Li 4 SiO 4 pebbles, research on measurements and modeling of thermo-mechanical behaviors of Li 2 TiO 3 and Li 4 SiO 4 pebbles, and interfacing issues, such as, fabrication technology for blanket box structure, neutronics experiments of blanket mockups by fusion neutron source and tritium recovery system. The 26 of the presented papers are indexed individually. (J.P.N.)

  5. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab

  6. Blanket Manufacturing Technologies : Thermomechanical Tests on HCLL Blanket Mocks Up

    International Nuclear Information System (INIS)

    Laffont, G.; Cachon, L.; Taraud, P.; Challet, F.; Rampal, G.; Salavy, J.F.

    2006-01-01

    In the Helium Cooled Lithium Lead (HCLL) Blanket concept, the lithium lead plays the double role of breeder and multiplier material, and the helium is used as coolant. The HCCL Blanket Module are made of steel boxes reinforced by stiffening plates. These stiffening plates form cells in which the breeder is slowly flowing. The power deposited in the breeder material is recovered by the breeder cooling units constituted by 5 parallel cooling plates. All the structures such as first wall, stiffening and cooling plates are cooled by helium. Due to the complex geometry of these parts and the high level of pressure and temperature loading, thermo-mechanical phenomena expected in the '' HCLL blanket concept '' have motivated the present study. The aim of this study, carried out in the frame of EFDA Work program, is to validate the manufacturing technologies of HCLL blanket module by testing small scale mock-up under breeder blanket representative operating conditions.The first step of this experimental program is the design and manufacturing of a relevant test section in the DIADEMO facility, which was recently upgraded with an He cooling loop (pressure of 80 bar, maximum temperature of 500 o C,flow rate of 30 g/s) taking the opportunity of synergies with the gas-cooled fission reactor R-and-D program. The second step will deal with the thermo-mechanical tests. This paper focuses on the program made to support the cooling plate mock up tests which will be carried out on the DIADEMO facility (CEA) by thermo-mechanical calculations in order to define the relevant test conditions and the experimental parameters to be monitored. (author)

  7. Fusion blanket inherent safety assessment

    International Nuclear Information System (INIS)

    Sze, D.K.; Jung, J.; Cheng, E.T.

    1986-01-01

    Fusion has significant potential safety advantages. There is a strong incentive for designing fusion plants to ensure that inherent safety will be achieved. Accordingly, both the Tokamak Power Systems Studies and MINIMARS have identified inherent safety as a design goal. A necessary condition is for the blanket to maintain its configuration and integrity under all credible accident conditions. A main problem is caused by afterheat removal in an accident condition. In this regard, it is highly desirable to achieve the required level of protection of the plant capital investment and limitation of radioactivity release by systems that rely only on inherent properties of matter (e.g., thermal conductivity, specific heat, etc.) and without the use of active safety equipment. This paper assesses the conditions under which inherent safety is feasible. Three types of accident conditions are evaluated for two blankets. The blankets evaluated are a self cooled vanadium/lithium blanket and a self-cooled vanadium/Flibe blanket. The accident conditions evaluated are: (1) loss-of-flow accident; (2) loss-of-coolant accident (LOCA); and (3) partial loss-of-coolant accident

  8. Box-Behnken experimental design for investigation of stability and thermal conductivity of TiO{sub 2} nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Lotfizadeh Dehkordi, Babak, E-mail: babakld@siswa.um.edu.my; Ghadimi, Azadeh; Metselaar, Henk S. C., E-mail: h.metselaar@um.edu.my [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering (Malaysia)

    2013-01-15

    The aim of this study is to investigate the effect of ultrasonication on the stability and thermal conductivity of TiO{sub 2} water nanofluids. A UV-Vis spectrophotometer was employed to determine the relative stability of nanofluids. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of power of sonication (20-80 %), time of sonication (2-20 min), and volume concentration (0.1-1 vol%) of nanofluids as the independent variables. Second-order polynomial equations were established to predict the responses, thermal conductivity, and stability of nanofluids with the intervals of 1 week and 1 month. The significance of the models was tested by means of analysis of variance (ANOVA). The optimum stability and thermal conductivity of TiO{sub 2} nanofluids with various sonication power and time at volume concentrations of 0.1, 0.55, and 1 % were studied. In addition, a correlation between the stability and thermal conductivity enhancement was derived in this study. The results revealed that, at low concentrations, nanofluids would become stable by low power and short period of sonication; however, no enhancement was observed in the thermal conductivity. Conversely, at high concentrations, stability and high thermal conductivity of nanofluids coincided at 1 vol%.

  9. Pressurizing Behavior on Ingress of Coolant into Pebble Bed of Blanket of Fusion DEMO Reactor

    International Nuclear Information System (INIS)

    Daigo Tsuru; Mikio Enoeda; Masato Akiba

    2006-01-01

    Solid breeder blankets are being developed as candidate blankets for the Fusion DEMO reactor in Japan. JAEA is performing the development of the water cooled and helium cooled solid breeder blankets. The blanket utilizes ceramic breeder pebbles and multiplier pebbles beds cooled by high pressure water or high pressure helium in the cooling tubes placed in the blanket box structure. In the development of the blanket, it is very important to incorporate the safety technology as well as the performance improvement on tritium production and energy conversion. In the safety design and technology, coolant ingress in the blanket box structure is one of the most important events as the initiators. Especially the thermal hydraulics in the pebble bed in the case of the high pressure coolant ingress is very important to evaluate the pressure propagation and coolant flow behavior. This paper presents the preliminary results of the pressure loss characteristics by the coolant ingress in the pebble bed. Experiments have been performed by using alumina pebble bed (4 litter maximum volume of the pebble bed) and nitrogen gas to simulate the helium coolant ingress into breeder and multiplier pebble beds. Reservoir tank of 10 liter is filled with 1.0 MPa nitrogen. The nitrogen gas is released at the bottom part of the alumina pebble bed whose upper part is open to the atmosphere. The pressure change in the pebble bed is measured to identify the pressure loss. The measured values are compared with the predicted values by Ergun's equation, which is the correlation equation on pressure loss of the flow through porous medium. By the results of the experiments with no constraint on the alumina pebble bed, it was clarified that the measured value agreed in the lower flow rate. However, in the higher flow rate where the pressure loss is high, the measured value is about half of the predicted value. The differences between the measured values and the predicted values will be discussed from

  10. Breeding blanket for Demo

    International Nuclear Information System (INIS)

    Proust, E.; Giancarli, L.

    1992-01-01

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently investigated within the framework of the European Test-Blanket Development Programme

  11. ITER convertible blanket evaluation

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.

    1995-01-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate

  12. Numerical investigation of thermally stratified Williamson fluid flow over a cylindrical surface via Keller box method

    Science.gov (United States)

    Bilal, S.; Rehman, Khalil Ur; Malik, M. Y.

    Present study is addressed to express the implementation of Keller-Box technique on physical problem in the field of fluid rheology, for this purpose the Williamson fluid flow is considered along a cylindrical stretching surface manifested with temperature stratification. The flow model is translated mathematically in terms of differential equations. Numerical simulation is executed to trace out the solution structure of developed differential system. The graphical outcomes for the flow regime of two different geometries (i-e cylindrical and plane surface) are reported and examined towards involved physical parameters. Furthermore, the local skin friction coefficient and local Nusselt number are computed numerically. A remarkable agreement of present study is noticed with the previously published results, which confirms the implementation and validation of Keller-Box scheme and it will serve as a helping source for the future correspondence.

  13. ARIES-IV Nested Shell Blanket Design

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Redler, K.; Reis, E.E.; Will, R.; Cheng, E.; Hasan, C.M.; Sharafat, S.

    1993-11-01

    The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design

  14. Thermonuclear blankets

    International Nuclear Information System (INIS)

    Kubota, Tadashi.

    1986-01-01

    Purpose: To increase the effective thermal conductivity between lithium ceramic spheres and a metal container. Constitution: The surface of lithium ceramic spheres is coated with a nickel metal, which is further coated with a thin copper layer. Then, copper spheres with a diameter smaller than that of the lithium ceramic spheres are packed in admixture together with the lithium ceramic spheres in an appropriate volume ratio. Since, copper as a relatively soft metal is coated on the surface of the lithium ceramic spheres and the copper spheres are charged to the gaps between each of the lithium ceramic spheres, the area of contact between the lithium ceramic spheres to each other and that between the lithium ceramic spheres and the metal container are easily increased to improve the effective thermal conductivity, by which the heat removing performance of the plant can be improved. (Yoshino, Y.)

  15. Tritium transport in the water cooled Pb-17Li blanket concept of DEMO

    International Nuclear Information System (INIS)

    Reiter, F.; Tominetti, S.; Perujo, A.

    1992-01-01

    The code TIRP has been used to calculate the time dependence of tritium inventory and tritium permeation into the coolant and into the first wall boxes in the water cooled Pb-17Li blanket concept of DEMO. The calculations have been performed for the martensitic steel MANET and the austenitic steel AISI 316L as blanket structure materials, for water or helium cooling and for convective or no motion of the liquid breeder in the blanket. Tritium inventories are rather low in blankets with MANET structure and higher in those with AISI 316L structure. Tritium permeation rates are too high in both blankets. Further calculations on tritium inventory and permeation are therefore presented for blankets with TiC permeation barriers of 1 μm thickness on various surfaces of the blanket structure and for blankets with any permeation barriers in function of their thickness, tritium diffusivities, tritium surface recombination rates and atomic densities. These last calculations have been performed for a blanket with coatings on the outer surfaces of the blanket and with a tritium residence time of 10 4 s and for a blanket with coatings on both sides of the cooling tubes and stagnant Pb-17Li in the blanket. The second case for a blanket with MANET structure presents a very interesting solution for tritium recovery by permeation into and pumping from the first wall boxes. (orig.)

  16. Study of the multiplication and kinetic effects of salt mixtures and salt blanket micromodels on thermal neutron spectra of heavy water MAKET facility

    International Nuclear Information System (INIS)

    Titarenko, Yu.E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.

    2009-10-01

    The main goal of the Project is to study and evaluate nuclear characteristics of materials and isotopes involved in processes of irradiated nuclear fuel transmutation. This principal task is subdivided into 9 subtasks subject to the neutron or proton source used, the type of the nuclear process under study, isotope collection, characteristics of which are to be investigated, etc. In the presented extract of the Project Activity report the measurements there were used the MAKET zero-power heavy-water reactor in the measurements there was employed a large set of minor actinide samples highly enriched with the main isotope. The samples were obtained with mass-separator SM-2 (VNIIEF). At the heavy-water reactor MAKET (ITEP) there were measured multiplying and kinetic characteristics of salt mixtures basing on the spectra of fast and thermal neutrons. The salt mixtures of zirconium and sodium fluorides were available in salt blanket models (SBM) of cylindrical shape. There were measured the neutron spectra formed by this micro-model as well as the effective fission cross-sections of neptunium, plutonium, americium and curium isotopes caused by SBM neutrons. The neutron spectra in the measurement positions were determined from activation reaction rates. (author)

  17. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  18. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1996-01-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as primary blanket materials, which have the greatest influence in determining the overall design and performance, and secondary blanket materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified. (orig.)

  19. Thermal performance study of a box type solar cooker: evaluation of second figure of merit, F2

    International Nuclear Information System (INIS)

    Subudh Kumar

    2006-01-01

    The thermal performance of a box type solar cooker can be evaluated through the determination of two figures of merit-F 1 and F 2 . The F 1 is defined as the ratio of optical efficiency factor (η o ) the overall heat loss coefficient (U L ) and F 2 relates to the effectiveness of heat exchange between cooker interiors and contents of the pots. The values of F 1 and F 2 can be found experimentally from the stagnation (no-load) and load (water) tests respectively. The sensible heating curve (a plot between pot water temperature and time) from the load test is used for determination of F 2 . An accurate determination of F 2 is necessary for making the correct and reliable assessment of solar cooker performance. In the present work, the thermal analysis has been carried out to simulate the sensible heating curves for different loads of water in the commercially available, fibre body double-glazed box type solar cooker (size 0.245 m 2 ) by using the heat balance equation. The comparison between the simulated and experimental sensible heating curves is presented. The close agreement in the results shows that the simulated heating curve can be employed for predicting the thermal performance (or F 2 ) of the solar cooker. The F 2 for different loads of water in the solar cooker have been obtained using the computer simulation, while considering the variable overall heat loss coefficient U L (a function of pot water temperature). The results indicate that F 2 increases linearly up to a load of 1.5 kg. Thereafter, the increase in the value of F 2 decreases gradually with the load

  20. Overview of the Last Progresses for the European Test Blanket Modules Projects

    International Nuclear Information System (INIS)

    Salavy, J.-F.; Rampal, G.; Boccaccini, L.V.; Meyder, R.; Neuberger, H.; Laesser, R.; Poitevin, Y.; Zmitko, M.; Rigal, E.

    2006-01-01

    The long-term objective of the EU Breeding Blankets programme is the development of DEMO breeding blankets, which shall assure tritium self-sufficiency, an economically attractive use of the heat produced inside the blankets for electricity generation and a sufficiently high shielding of the superconducting magnets for long time operation. In the short-term so-called DEMO relevant Test Blanket Modules (TBMs) of these breeder blanket concepts shall be designed, manufactured, tested, installed, commissioned and operated in ITER for first tests in a fusion environment. The Helium Cooled Lithium-Lead (HCLL) breeder blanket and the Helium Cooled Pebble Bed (HCPB) concepts are the two breeder blanket lines presently developed by the EU. The main objective of the EU test strategy related to TBMs in ITER is to provide the necessary information for the design and fabrication of breeding blankets for a future DEMO reactor. EU TBMs shall therefore use the same structural and functional materials, apply similar fabrication technologies, and test adequate processes and components. This paper gives an overview of the last progresses in terms of system design, calculations, test program, safety and R-and-D done these last two years in order to cope with the ambitious objective to introduce two EU TBM systems for day-1 of ITER operation. The engineering design of the two systems is mostly concluded and the priority is now on the development and qualification of the fabrication technologies. From calculations point of view, the last modelling efforts related to the thermal-hydraulic of the first wall, the tritium behaviour, and the box thermal and mechanical resistance in accidental conditions are presented. Last features of the TBM and cooling system designs and integration in ITER reactor are highlighted. In particular, this paper also describes the safety and licensing analyses performed for each concept to be able to include the TBM systems in the ITER preliminary safety report

  1. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    International Nuclear Information System (INIS)

    Chapin, D.L.; Green, L.; Lee, A.Y.; Culbert, M.E.; Kelly, J.L.

    1979-09-01

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO 2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li 2 O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  2. Thermomechanical analysis of the DFLL test blanket module for ITER

    International Nuclear Information System (INIS)

    Chen Hongli; Wu Yican; Bai Yunqing

    2006-01-01

    The finite element code is used to simulate two kinds of blanket design structure, which are SLL (Quasi-Static Lithium Lead) and DLL (Dual-cooled Lithium Lead) blanket concepts for the Dual Functional Lithium Lead-Test Blanket Module (DFLL-TBM) submitted to the ITER test blanket working group. The temperature and stress distributions have been presented for the two kinds of blanket structure on the basis of the structural design, thermal-hydraulic design and neutronics analysis. Also the mechanical performance is presented for the high temperature component of blanket structure according to the ITER Structural Design Criteria (ISDC). The rationality and feasibility of the two kinds of blanket structure design of DFLL-TBM have been analyzed based on the above results which also acted as the theoretical base for further optimized analysis. (authors)

  3. Tritium transport analysis for CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  4. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  5. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  6. Thermal Transmittance of Porous Hollow Clay Brick by Guarded Hot Box Method

    Science.gov (United States)

    Kim, Joonsoo

    2018-03-01

    The thermal property of a porous hollow clay brick was determined by measuring the thermal transmittance of the wall made of porous hollow clay bricks. Prior to the production of porous hollow clay bricks, nonporous and porous tiny clay bricks were prepared to determine the physico-mechanical properties by modifying the amount of wood flour and firing temperature. The bricks were produced by uniaxial pressing and then fired in an electric furnace. Their physico-mechanical properties were measured by water absorption, apparent porosity, bulk density, and compressive strength. The porous tiny clay bricks were produced with three types of wood flour: coarse wood flour (1-0.36 mm), medium-sized wood flour (0.36-0.15 mm), and fine wood flour (cement bricks. The two walls had a thermal transmittance of 1.42 and 2.72 W\\cdot m^{-2}\\cdot K^{-1}, respectively. The difference in thermal transmittance was due to the pores created with fine wood flour (< 0.08 mm) as a pore-forming agent.

  7. Serial grey-box model of a stratified thermal tank for hierarchical control of a solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Arahal, Manuel R. [Universidad de Sevilla, Dpto. de Ingenieria de Sistemas y Automatica, Camino de los Descubrimientos s/n, 41092 Sevilla (Spain); Cirre, Cristina M. [Convenio Universidad de Almeria-Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain); Berenguel, Manuel [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, 04120, Almeria (Spain)

    2008-05-15

    The ACUREX collector field together with a thermal storage tank and a power conversion system forms the Small Solar Power Systems plant of the Plataforma Solar de Almeria, a facility that has been used for research for the last 25 years. A simulator of the collector field produced by the last author has been available to and used as a test-bed for control strategies. Up to now, however, there is not a model for the whole plant. Such model is needed for hierarchical control schemes also proposed by the authors. In this paper a model of the thermal storage tank is derived using the Simultaneous Perturbation Stochastic Approximation technique to adjust the parameters of a serial grey-box model structure. The benefits of the proposed approach are discussed in the context of the intended use, requiring a model capable of simulating the behavior of the storage tank with low computational load and low error over medium to large horizons. The model is tested against real data in a variety of situations showing its performance in terms of simulation error in the temperature profile and in the usable energy stored in the tank. The results obtained demonstrate the viability of the proposed approach. (author)

  8. Validity of thermally-driven small-scale ventilated filling box models

    Science.gov (United States)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  9. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  10. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  11. Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Aubert, J. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy); Li Puma, A. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Tincani, A. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy)

    2015-10-15

    Highlights: • A DEMO WCLL blanket module thermo-mechanical behaviour has been investigated. • Two models of the WCLL blanket module have been set-up adopting a code based on FEM. • The water flow domain in the module has been considered. • A set of uncoupled steady state thermo-mechanical analyses has been carried out. • Critical temperature is not overcome. Safety verifications are generally satisfied. - Abstract: Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical–computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal–radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed.

  12. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  13. Manufacturing aspects in the design of the breeder unit for Helium Cooled Pebble Bed blankets

    International Nuclear Information System (INIS)

    Rey, J.; Ihli, T.; Filsinger, D.; Polixa, C.

    2007-01-01

    The breeding blanket programme has been in the focus of European fusion research for more than a decade. Recently, it has been driven by the EU Power Plant Conceptual Study (PPCS), investigating the potential of fusion energy in a future economic environment. On the way to the first commercial nuclear fusion reactor (DEMO) new studies for reactor in-vessel components have been initiated. One central focus is the design and manufacturing of the blankets that have to ensure the breeding process to maintain the fuel cycle and are also responsible for the extraction of the main part of the reactor heat for power generation. Two kinds are established: One is the Helium Cooled Pebble Bed (HCPB) and the other the Helium Cooled Liquid Lead (HCLL) blanket. Both designs employ three different cooling plate assemblies. The outer, cooled U-shaped shell, namely the First Wall (FW), with two caps builds the blanket box. The structural strength of the blanket box is realized by integrating Stiffening Grids (SG) that separate the equally spaced Breeder Unit (BU) and allow the box, in case of faulted conditions, to withstand an internal pressure of 8 MPa. The cooled SG constitute the side walls of the BU and are also cooled. The BU consists of a dedicated Cooling Plate (CP) assembly. In present studies about the fabrication of Cooling Plates two kinds of diffusion welding processes are focused on. One is based on a Hot Isostatic Gas Process (HIP). The second is a uni-axial Diffusion Welding Process (DWP). In both cases the bond between the two halves of the cooling plate structure is reached by controlled pressure and heat cycles. Approaching larger, realistic scaled components the uncertainty of ensuring uniform process parameters across the bonding zone increases the risk of defect sources and, therefore, makes it difficult to guarantee the required bonding penetration. This study presents an alternative manufacturing strategy. The premises for this strategy are the reduction of

  14. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  15. Identification of black-box linear models : the case of thermal periodic contact of exhaust valves in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Shojaeefard, M.H.; Fazelpour, M. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Automotive Engineering; Goudarzi, K. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2009-07-01

    In internal combustion engines, hot exhaust gases that pass through the exhaust valve lead to high temperatures in the exhaust valve and the valve seat. Heat must be transferred from the exhaust valve to valve seat as they come in contact with each other during the opening and closing cycle in order to avoid damaging the exhaust valve. The heat transfer rate from the valve to valve seat is a function of many factors, including the thermal contact conductance (TCC) between the valve and valve seat. The objective of this study was to experimentally calculate the TCC for six different frequencies in the quasi-steady-state condition and also to obtain a transfer function to estimate the exhaust valve temperature by using black-box models of system identification. Periodic contact was taken into consideration in the study. The paper presented the experimental setup including the loading system, heat and cooling system, temperature measurement system, specimens properties, and data acquisition system. The paper also described the test procedure and experimental results. System identification was also described. It was concluded that the TCC decreased as the frequency of contact increased. The temperature transfer function was calculated by using the system identification method and having the temperatures at both sides of the contact surface. By knowing the temperature of one rod, the temperature of the other rod was estimated with high accuracy. 16 refs., 4 tabs., 7 figs.

  16. ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, Yu [ENTEK, Moscow (Russian Federation); Avsjannikov, A [ENTEK, Moscow (Russian Federation); Baryshev, M [NIAT, Moscow (Russian Federation); Blinov, Yu [ENTEK, Moscow (Russian Federation); Shatalov, G [KIAE, Moscow (Russian Federation); Vasiliev, N [KIAE, Moscow (Russian Federation); Vinnikov, A [ENTEK, Moscow (Russian Federation); Chernjagin, A [DYNAMICA, Moscow (Russian Federation)

    1995-03-01

    A reference non-breeding blanket is under development now for the ITER Basic Performance Phase for the purpose of high reliability during the first stage of ITER operation. More severe operation modes are expected in this stage with first wall (FW) local heat loads up to 100-300Wcm{sup -2}. Integration of a blanket design with protective and start limiters requires new solutions to achieve high reliability, and possible use of beryllium as a protective material leads to technologies. The rigid shielding blanket concept was developed in Russia to satisfy the above-mentioned requirements. The concept is based on a copper alloy FW, austenitic stainless steel blanket structure, water cooling. Beryllium protection is integrated in the FW design. Fabrication technology and assembly procedure are described in parallel with the equipment used. (orig.).

  17. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  18. Dual coolant blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Schleisiek, K.

    1994-11-01

    A self-cooled liquid metal breeder blanket with helium-cooled first wall ('Dual Coolant Blanket Concept') for a fusion DEMO reactor is described. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. Described are the design of the blankets including the ancillary loop system and the results of the theoretical and experimental work in the fields of neutronics, magnetohydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium control, safety, reliability, and electrically insulating coatings. The remaining open questions and the required R and D programme are identified. (orig.) [de

  19. Blankets for thermonuclear device

    International Nuclear Information System (INIS)

    Maki, Koichi; Fukumoto, Hideshi.

    1986-01-01

    Purpose: To produce tritium more than consumed, through thermonuclear reaction. Constitution: The energy spectrum of neutron generated by neutron multiplying reaction in a neutron multiplying blanket and moderated neutrons has a large ratio in a low energy section. In the low-energy absorption region of stainless steel which is a material of cooling pipes constituting a neutron multiplying blanket cooling channel, the neutrons are absorbed, lessening the neutron multiplying effect. To prevent this, the neutron multiplying blanket cooling channel is covered with tritium breeding blankets, thereby enabling the production of a substantially great amount of tritium more than the amount of tritium to be consumed by the thermonuclear reaction by preventing neutron absorption by the component materials of the cooling channel, improving the tritium breeding ratio by 20 to 25 %, and increasing the efficiency of use of neutrons for tritium generation. (Horiuchi, T.)

  20. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  1. ITER blanket designs

    International Nuclear Information System (INIS)

    Gohar, Y.; Parker, R.; Rebut, P.H.

    1995-01-01

    The ITER first wall, blanket, and shield system is being designed to handle 1.5±0.3 GW of fusion power and 3 MWa m -2 average neutron fluence. In the basic performance phase of ITER operation, the shielding blanket uses austenitic steel structural material and water coolant. The first wall is made of bimetallic structure, austenitic steel and copper alloy, coated with beryllium and it is protected by beryllium bumper limiters. The choice of copper first wall is dictated by the surface heat flux values anticipated during ITER operation. The water coolant is used at low pressure and low temperature. A breeding blanket has been designed to satisfy the technical objectives of the Enhanced Performance Phase of ITER operation for the Test Program. The breeding blanket design is geometrically similar to the shielding blanket design except it is a self-cooled liquid lithium system with vanadium structural material. Self-healing electrical insulator (aluminum nitride) is used to reduce the MHD pressure drop in the system. Reactor relevancy, low tritium inventory, low activation material, low decay heat, and a tritium self-sufficiency goal are the main features of the breeding blanket design. (orig.)

  2. An assessment of the base blanket for ITER

    International Nuclear Information System (INIS)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored

  3. Conceptual design of solid breeder blanket system cooled by supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li{sub 2}TiO{sub 3} or Li{sub 2}O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for

  4. Conceptual design of solid breeder blanket system cooled by supercritical water

    International Nuclear Information System (INIS)

    Enoeda, Mikio; Akiba, Masato; Ohara, Yoshihiro

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li 2 TiO 3 or Li 2 O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for the energy

  5. Self-cooled liquid-metal blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Arheidt, K.; Barleon, L.

    1988-01-01

    A blanket concept for the Next European Torus (NET) where 83Pb-17Li serves both as breeder material and as coolant is described. The concept is based on the use of novel flow channel inserts for a decisive reduction of the magnetohydrodynamic (MHD) pressure drop and employs beryllium as neutron multiplier in order to avoid the need for breeding blankets at the inboard side of the torus. This study includes the design, neutronics, thermal hydraulics, stresses, MHDs, corrosion, tritium recovery, and safety of a self-cooled liquid-metal blanket. The results of the investigations indicate that the self-cooled blanket is an attractive alternative to other driver blanket concepts for NET and that it can be extrapolated to the conditions of a DEMO reactor

  6. Optimization of beryllium for fusion blanket applications

    International Nuclear Information System (INIS)

    Billone, M.C.

    1993-01-01

    The primary function of beryllium in a fusion reactor blanket is neutron multiplication to enhance tritium breeding. However, because heat, tritium and helium will be generated in and/or transported through beryllium and because the beryllium is in contact with other blanket materials, the thermal, mechanical, tritium/helium and compatibility properties of beryllium are important in blanket design. In particular, tritium retention during normal operation and release during overheating events are safety concerns. Accommodating beryllium thermal expansion and helium-induced swelling are important issues in ensuring adequate lifetime of the structural components adjacent to the beryllium. Likewise, chemical/metallurgical interactions between beryllium and structural components need to be considered in lifetime analysis. Under accident conditions the chemical interaction between beryllium and coolant and breeding materials may also become important. The performance of beryllium in fusion blanket applications depends on fabrication variables and operational parameters. First the properties database is reviewed to determine the state of knowledge of beryllium performance as a function of these variables. Several design calculations are then performed to indicate ranges of fabrication and operation variables that lead to optimum beryllium performance. Finally, areas for database expansion and improvement are highlighted based on the properties survey and the design sensitivity studies

  7. Design of ITER shielding blanket

    International Nuclear Information System (INIS)

    Furuya, Kazuyuki; Sato, Satoshi; Hatano, Toshihisa; Tokami, Ikuhide; Kitamura, Kazunori; Miura, Hidenori; Ito, Yutaka; Kuroda, Toshimasa; Takatsu, Hideyuki

    1997-05-01

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  8. Virtual Box

    DEFF Research Database (Denmark)

    Davis, Hilary; Skov, Mikael B.; Stougaard, Malthe

    2007-01-01

    . This paper reports on the design, implementation and initial evaluation of Virtual Box. Virtual Box attempts to create a physical and engaging context in order to support reciprocal interactions with expressive content. An implemented version of Virtual Box is evaluated in a location-aware environment...

  9. Novel blanket design for ICTR's

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Conn, R.W.; Wolfer, W.G.; Larsen, E.N.; Sviatoslavsky, I.N.

    1978-01-01

    A novel blanket design for ICTRs is described. This blanket is used in SOLASE, the conceptual laser fusion reactor of the University of Wisconsin. The blanket to be described offers numerous advantages, including low cost, low weight, low induced radioactivity levels, the potential for hands-on maintenance, modular construction, low pressure, ability to decouple first wall and blanket coolant temperatures, adequate breeding, low tritium inventory and leakage, and sufficiently long life

  10. Fusion-driven sub-critical dual-cooled waste transmutation blanket: design and analysis

    International Nuclear Information System (INIS)

    Wang Weihua; Wu Yican; Ke Yan; Kang Zhicheng; Wang Hongyan; Huang Qunying

    2003-01-01

    The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermal-hydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account. All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis

  11. Study on the temperature control mechanism of the tritium breeding blanket for CFETR

    Science.gov (United States)

    Liu, Changle; Qiu, Yang; Zhang, Jie; Zhang, Jianzhong; Li, Lei; Yao, Damao; Li, Guoqiang; Gao, Xiang; Wu, Songtao; Wan, Yuanxi

    2017-12-01

    The Chinese fusion engineering testing reactor (CFETR) will demonstrate tritium self- sufficiency using a tritium breeding blanket for the tritium fuel cycle. The temperature control mechanism (TCM) involves the tritium production of the breeding blanket and has an impact on tritium self-sufficiency. In this letter, the CFETR tritium target is addressed according to its missions. TCM research on the neutronics and thermal hydraulics issues for the CFETR blanket is presented. The key concerns regarding the blanket design for tritium production under temperature field control are depicted. A systematic theory on the TCM is established based on a multiplier blanket model. In particular, a closed-loop method is developed for the mechanism with universal function solutions, which is employed in the CFETR blanket design activity for tritium production. A tritium accumulation phenomenon is found close to the coolant in the blanket interior, which has a very important impact on current blanket concepts using water coolant inside the blanket. In addition, an optimal tritium breeding ratio (TBR) method based on the TCM is proposed, combined with thermal hydraulics and finite element technology. Meanwhile, the energy gain factor is adopted to estimate neutron heat deposition, which is a key parameter relating to the blanket TBR calculations, considering the structural factors. This work will benefit breeding blanket engineering for the CFETR reactor in the future.

  12. INTOR first wall/blanket/shield activity

    International Nuclear Information System (INIS)

    Gohar, Y.; Billone, M.C.; Cha, Y.S.; Finn, P.A.; Hassanein, A.M.; Liu, Y.Y.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.

    1986-01-01

    The main emphasis of the INTOR first wall/blanket/shield (FWBS) during this period has been upon the tritium breeding issues. The objective is to develop a FWBS concept which produces the tritium requirement for INTOR operation and uses a small fraction of the first wall surface area. The FWBS is constrained by the dimensions of the reference design and the protection criteria required for different reactor components. The blanket extrapolation to commercial power reactor conditions and the proper temperature for power extraction have been sacrificed to achieve the highest possible local tritium breeding ratio (TBR). In addition, several other factors that have been considered in the blanket survey study include safety, reliability, lifetime fluence, number of burn cycles, simplicity, cost, and development issues. The implications of different tritium supply scenarios were discussed from the cost and availability for INTOR conditions. A wide variety of blanket options was explored in a preliminary way to determine feasibility and to see if they can satisfy the INTOR conditions. This survey and related issues are summarized in this report. Also discussed are material design requirements, thermal hydraulic considerations, structure analyses, tritium permeation through the first wall into the coolant, and tritium inventory

  13. Progress on DEMO blanket attachment concept with keys and pins

    International Nuclear Information System (INIS)

    Vizvary, Zsolt; Iglesias, Daniel; Cooper, David; Crowe, Robert; Riccardo, Valeria

    2015-01-01

    Highlights: • DEMO blanket attachment system with keys and pins (without using bolts). • Blanket segments are preloaded by progressively designed springs. • Blanket back plate flexibility has a major impact on spring design. • Mechanical analysis of other components indicates no unresolvable issues. • Thermal analysis indicates acceptable temperatures for the support system. - Abstract: The blanket attachment has to cope with gravity, thermal and electromagnetic loads, also it has to be installed and serviced by remote handling. Pre-stressed components suffer from stress relaxation in irradiated environments such as DEMO. To circumvent this problem pre-stressed component should be either avoided or shielded, and where possible keys and pins should be used. This strategy has been proposed for the DEMO multi-module segments (MMS). The blanket segments are held by two tapered keys each, designed to allow thermal expansions while providing contact with the vacuum vessel and to resist the poloidal and radial moments the latter being dominant at 9.1 MNm inboard and 15 MNm outboard. On the top of the blanket segment there is a pin which provides vertical support. At the bottom another vertical support has to lock them in position after installation and manage the pre-load on the segments. The pre-load is required to deal with the electromagnetic loads during disruption. This is provided by a set of springs, which require shielding as they are preloaded. These are sized to cope with the force (3 MN inboard, 1.4 MN outboard) due to halo currents and the toroidal moment which can reverse. Calculations show that the flexibility of the blanket segment itself plays a significant role in defining the required support system. The blanket segment acts as a preloaded spring and it has to be part of the attachment design as well.

  14. Heat transfer problems in gas-cooled solid blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed

  15. Heating facility for blanket and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Sato, Satoshi; Hatano, Toshihisa; Takatsu, Hideyuki; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hara, Shigemitsu

    1999-03-01

    A design and a fabrication of heating test facility for a mock-up of the blanket module to be installed in International Thermonuclear Experimental Reactor (ITER) have been conducted to evaluate/demonstrate its heat removal performance and structural soundness under cyclic heat loads. To simulate surface heat flux to the blanket module, infrared heating method is adopted so as to heat large surface area uniformly. The infrared heater is used in vacuum environment (10{sup -4} Torr{approx}), and the lamps are cooled by air flowing through an annulus between the lamp and a cover tube made of quartz glass. Elastomer O rings (available to be used up to {approx}300degC) and used for vacuum seal at outer surface of the cover tube. To prevent excessive heating of the O ring, the end part of the cover tube is specially designed including the tube shape, flow path of air and gold coating on the surface of the cover tube to protect the O ring against thermal radiation from glowing tungsten filament. To examine the performance of the facility, steady state and cyclic operation of the infrared heater were conducted using a small-scaled shielding blanket mock-up as a test specimen. The important results are as follows: (1) Heat flux at the surface of the small-scaled mock-up measured by a calorimeter was {approx}0.2 MW/m{sup 2}. (2) A comparison of thermal analysis results and measured temperature responses showed that the small-scaled mock-up had good heat removal performance. (3) Steady state operation and cyclic operation with step response between the rated and zero powers of the infrared heater were successfully performed, and it was confirmed that this heating facility was well-prepared and available for the thermal cyclic test of a blanket module. (author)

  16. Bento Boxes

    Science.gov (United States)

    Hasio, Cindy

    2010-01-01

    Bento boxes are common objects in Japanese culture, designed to hold enough lunch for one person. They have individual compartments and sometimes multiple tiers for rice, vegetables, and other side dishes. They are made of materials ranging from wood, cloth, aluminum, or plastic. In general, the greater the number of foods, the better the box is…

  17. Blanket options for high-efficiency fusion power

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  18. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  19. Fusion blanket for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  20. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  1. Nuclear characteristics of D-D fusion reactor blankets, (1)

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao; Seki, Yasushi.

    1977-01-01

    Fusion reactors operating on the deuterium (D-D) cycle are considered promising for their freedom from tritium breeding in the blanket. In this paper, neutronic and photonic calculations are undertaken covering several blanket models of the D-D fusion reactor, using presently available data, with a view to comparing the nuclear characteristics of these models, in particular, the nuclear heating rates and their spatial distributions. Nine models are taken up for the study, embodying various combinations of coolant, blanket, structural and reflector materials. About 10 MeV is found to be a typical value for the total nuclear energy deposition per source neutron in the models considered here. The realization of high energy gain is contingent upon finding a favorable combination of blanket composition and configuration. The resulting implications on the thermal design aspect are briefly discussed. (auth.)

  2. Structural design study of tritium breeding blanket with a lead layer as a neutron multiplier

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Kitamura, Kazunori; Minato, Akio; Sakamoto, Hiroki; Yamamoto, Takashi

    1980-12-01

    Thermal and structural design study of a tritium breeding blanket with a lead layer for a International Tokamak Reactor (INTOR) is carried out. Tube in shell type blanket with a lead layer is found to be promising. The volume fraction of structural material in the lead layer can be small enough to keep the neutron multiplication effect of lead. Reasonable value of shell effect is attainable due to lead layer in the front part of the blanket. (author)

  3. Conceptual design of ITER shielding blanket

    International Nuclear Information System (INIS)

    Sato, Satoshi; Takatsu, Hideyuki; Kurasawa, Toshimasa

    1995-03-01

    The present report summarizes the design activities of the ITER first wall and shielding blanket conducted by the JA Home Team during this year (1994) in close contact with the JCT, and reported during the four Technical Meetings held at Garching ITER Co-center. These activities are based on the Task Agreement between the JCT and the JA Home Team. In the present report, a layered configuration composed of separate first walls, modular-type blanket modules and separate back plates has been proposed to realize reliable assembly and maintenance schemes as well as to realize reliable component designs under high surface heat loads, high neutron wall loading and electromagnetic loads during disruptions. Outline of the structural design, consideration on fabricability and maintainability, and the results of thermal, mechanical and electromagnetic analyses are described. (author)

  4. Design of the breeder units in the new HCPB modular blanket concept and material requirements

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Fischer, U.; Hermsmeyer, S.; Reimann, J.; Xu, Z.; Koehly, C.

    2004-01-01

    ; according to the experience from the old design no major problems are expected concerning stress levels and gap formation in the pebble beds; in fact, the situation should be more favourable due to the reduced dimensions (max. 20 cm) of the beds that should minimise ratcheting and particle flow phenomena. In respect to tritium extraction, the most favourable features of the HCPB concept (e.g. an overall low partial pressure of tritium in the beds that minimise permeation into the main coolant system) can be kept in the new design; a complication could be the necessity to provide each cell with a system of tubes to inlet the purge helium in the front part of the beds or to divide the purge flow for Be and CB. The modular design of the new HCPB blanket, that makes the breeder units almost independent on the structural design of the box, opens interesting possibilities in the development of these units. The present design can be optimised on the basis of the results of the present R and D programme on Be and CB. In addition, new requirements could appear to improve the design performances or manufacturing: i.e. in respect to filling procedures of the beds (use of pre-packed breeder units) or the necessity of insulating layer to thermally decouple the breeder units from the box or the selection of new materials with a better compatibility with Be and CB at high temperatures as protection of the steel structure. (author)

  5. GLASS BOX

    National Research Council Canada - National Science Library

    Curtis, Laura

    2008-01-01

    The goals of this effort were to develop Glass Box capabilities to allow for the capturing of analyst activities and the associated data resources, track and log the results of automated processing...

  6. Opto-Box

    CERN Document Server

    Bertsche, David; The ATLAS collaboration; Welch, Steven; Smith, Dale Shane; Che, Siinn; Gan, K.K.; Boyd, George Russell Jr

    2015-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm^3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  7. Blanket for thermonuclear device

    International Nuclear Information System (INIS)

    Ozawa, Yoshihiro; Uda, Tatsuhiko; Maki, Koichi.

    1993-01-01

    The present invention provides a blanket of a thermonuclear device which produces tritium fuels consumed in plasmas while converting neutrons generated in the plasmas into heat energy. That is, zirconium is coated to at least one of neutron breeder pebbles and breeder pebbles, to suppress reaction between them by being in direct contact with each other at a high temperature. Further, fins are attached to a cooling pipe at a pitch smaller than the diameter of both of the pebbles, to prevent direct contact at whole surface of the pebbles and the cooling pipe, which would lower a temperature excessively. The length of the fin is controlled to control the thickness of a helium gas gap. With such constitution, direct contact of neutron breeder pebbles and the breeder pebble which are to be filled and mixed, and tend to react at a high temperature, can be prevented. The temperature of the breeding blanket is reliably prevented from lowering below a tritium emitting temperature. The structure is simplified and the production is facilitated. (I.S.)

  8. Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter

    International Nuclear Information System (INIS)

    Chen Yixue; Wu Yican

    2000-01-01

    A preliminary conceptual design on high performance dual-cooled blanket of fusion-driven transmuter is presented based on neutronic calculation. The dual-cooled system has some attractive advantages when utilized in transmutation of HLW (High Level Wastes). The calculation results show that this kind of blanket could safely transmute about 6 ton minor actinides (produced by 170 GW(e) Year PWRs approximately) and 0.4 ton fission products per year, and output 12 GW thermal power. In addition, the variation of power and critical factor of this blanket is relatively little during its 1-year operation period. This blanket is also tritium self-sustainable

  9. Calculations of tritium breeding ratio and inventory distributions of FEB blanket

    International Nuclear Information System (INIS)

    Deng Baiquan

    2001-01-01

    Based on the design features of FEB reactor blanket, the tritium breeding ratio and tritium concentrations in liquid lithium of each breeding zone have been calculated after 10 days full power operation for outboard blanket and one day operation for inboard blanket. The comparisons with the results calculated by Monte-Carlo code MORSE-CGT are made. Meanwhile the inventory in beryllium multiplier after one-year full power operation has also been estimated. An important conclusion has been drew the thermal hydraulic design should be careful to guarantee the blanket temperature should not rise as high as 680 degree C

  10. Li2O-pebble type tritium breeding blanket for fusion experimental reactor, 1

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Iida, Hiromasa; Tanaka, Yoshihisa

    1984-01-01

    The fusion experimental reactor is the next stage device in Japan, which is planned to be constructed following the critical plasma experimental device JT-60 being constructed at present. The breeding blanket installed in nuclear fusion reactors is one of most important structures, and it is required to satisfy the fundamental performance of producing and continuously recovering tritium as the nuclear fusion fuel, and other requirement in good coordination. The Li 2 O pebble type breeding blanket that Kawasaki Heavy Industries Ltd. has examined is the concept for resolving the problems of the mass transfer and thermal stress cracking of Li 2 O, which are important in blanket design. In this paper, the concept and characteristics of this breeding blanket are discussed from the viewpoint of the breeding and continuous recovery of tritium, the ease of manufacture and the maintenance of soundness. The breeding blanket is composed of breeding region, tritium purge region, cooling region, plasma stabilizing conductors and blanket container. Li 2 O is excellent in its tritium breeding performance and heat conductivity. The functions required for the breeding blanket, the fundamental structure, the examples of breeding blanket concept, the selection of breeding blanket concept, the characteristics of Li 2 O pebble type blanket and its future prospect are described. (Kako, I.)

  11. Nuclear Analysis of an ITER Blanket Module

    Science.gov (United States)

    Chiovaro, P.; Di Maio, P. A.; Parrinello, V.

    2013-08-01

    ITER blanket system is the reactor's plasma-facing component, it is mainly devoted to provide the thermal and nuclear shielding of the Vacuum Vessel and external ITER components, being intended also to act as plasma limiter. It consists of 440 individual modules which are located in the inboard, upper and outboard regions of the reactor. In this paper attention has been focused on to a single outboard blanket module located in the equatorial zone, whose nuclear response under irradiation has been investigated following a numerical approach based on the Monte Carlo method and adopting the MCNP5 code. The main features of this blanket module nuclear behaviour have been determined, paying particular attention to energy and spatial distribution of the neutron flux and deposited nuclear power together with the spatial distribution of its volumetric density. Moreover, the neutronic damage of the structural material has also been investigated through the evaluation of displacement per atom and helium and hydrogen production rates. Finally, an activation analysis has been performed with FISPACT inventory code using, as input, the evaluated neutron spectrum to assess the module specific activity and contact dose rate after irradiation under a specific operating scenario.

  12. Liquid lithium blanket processing studies

    International Nuclear Information System (INIS)

    Talbot, J.B.; Clinton, S.D.

    1979-01-01

    The sorption of tritium on yttrium from flowing molten lithium and the subsequent release of tritium from yttrium for regeneration of the metal sorbent were investigated to evaluate the feasibility of such a tritium-recovery process for a fusion reactor blanket of liquid lithium. In initial experiments with the forced convection loop, yttrium samples were contacted with lithium at 300 0 C. A mass transfer coefficient of 2.5 x 10 - cm/sec, which is more than an order of magnitude less than the value measured in earlier static experiments, was determined for the flowing lithium system. Rates of tritium release from yttrium samples were measured to evaluate possible thermal regeneration of the sorbent. Values for diffusion coefficients at 505, 800, and 900 0 C were estimated to be 1.1 x 10 -13 , 4.9 x 10 -12 , and 9.3 x 10 -10 cm 2 /sec, respectively. Tritium release from yttrium was investigated at higher temperatures and with hydrogen added to the argon sweep gas to provide a reducing atmosphere

  13. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  14. Thermal assessment of sunlight impinging on OSIRIS-REx OCAMS PolyCam, OTES, and IMU-sunshade MLI blankets in flight

    Science.gov (United States)

    Choi, Michael K.

    2017-09-01

    The NASA Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft was successfully launched into orbit on September 8, 2016. It is traveling to a near-Earth asteroid (101955) Bennu, study it in detail, and bring back a pristine sample to Earth for scientific analyses. At the Outbound Cruise nominal spacecraft attitude, with Sun on +X, sunlight impinges on the OSIRIS-REx camera suite (OCAMS) PolyCam sunshade multilayer insulation (MLI) with microporous black polytetrafluoroethylene (PTFE), a portion of the PolyCam optics support tube (MLI with germanium black Kapton (GBK)), a portion of the OSIRIS-REx Thermal Emission Spectrometer (OTES) sunshade (MLI with GBK), the Inertia Measurement Unit (IMU) sunshade (MLI with GBK), and the OSIRIS-REx Laser Altimeter (OLA) sunshade (MLI with GBK). Sunlight is reflected or scattered by the above MLIs to the other components on the forward (+Z) deck. It illuminates the forward deck. A detailed thermal assessment on the solar impingement has been performed for the Proximity Ops at the asteroid, Touch-and-Go sample acquisition, and Return Cruise mission phases.

  15. About possible technologies of creation nanostructures blankets

    International Nuclear Information System (INIS)

    Blednova, Zh.M.; Chaevskij, M.I.; Rusinov, P.O.

    2008-01-01

    Possible technologies of formation nanostructures blankets are considered: a method of thermal carrying over of weights in the conditions of a high gradient of temperatures; the combined method including cathode-plasma nitriding in the conditions of low pressure and drawing of nitride of the titan in a uniform work cycle; the combined method including high-frequency ionic nitriding and drawing of carbide of chrome by pyrolysis chrome and organic of connections in plasma of the decaying category. Possibility of formation layered nanostructures layers is shown.

  16. ITER solid breeder blanket materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li 2 ,O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 ) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized

  17. Blanket comparison and selection study. Volume II

    International Nuclear Information System (INIS)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies

  18. Glove box

    International Nuclear Information System (INIS)

    Morita, Atsushi

    1990-01-01

    Wire rope earthquake proof supports having sufficient vibration transmitting and attenuating property are disposed between a fixed floor and the bottom of a glove box in order to improve earthquake proofness of the glove box. The vertical weight of the glove box is supported by support legs slidable on the surface of the fixed floor. The wire rope earthquake-proof supports when undergoing a load, cause stretching and rolling against the external force such as earthquakes, and provide flexible spring support and cause a great damping due to friction with strands. Further, the vertical weight is always supported by the support legs and, when a horizontal weight is applied, the glove box slides on the fixed floor freely with slidable members. In this way, stress concentration generated at joint portions of columns and beams can be moderated greatly and earthquake proofness can be improved. Further, quality control and maintenance for the device is almost unnecessary owing to excellent fatigue-resistant characteristics of the wire rope earthquake proof supports. (N.H.)

  19. An evaluation of fast reactor blankets

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    A comparative study of different types of fast reactor radial blankets is presented. Included are blankets of fertile material UO 2 , THO 2 and Th-metal blankets of pure reflectors C, BeO, Ni and combinations of reflecting and fertile blankets. The results for 1000MWe cores indicate that there is no incentive to use other than fertile blankets. The most favorable fertile material is thorium due to the prospective higher price of U-233

  20. ITER blanket module shield block design and analysis

    International Nuclear Information System (INIS)

    Mitin, D.; Khomyakov, S.; Razmerov, A.; Strebkov, Yu.

    2008-01-01

    This paper presents the alternative design of the shield block cooling path for a typical ITER blanket module with a predominantly sequential flow circuit. A number of serious disadvantages have been observed for the reference design, where the parallel flow circuit is used, which is inherent in the majority of blanket modules. The paper discusses these disadvantages and demonstrates the benefit of the alternative design based on the detailed design and the technological, hydraulic, thermal, structural and strength analyses, conducted for module no. 17

  1. Ceramic sphere-pac breeder design for fusion blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Sullivan, J.D.

    1991-01-01

    Randomly packed beds of ceramic spheres are a practical approach to surrounding fusion plasmas with tritium-breeding material. This paper examines the general properties of sphere-pac beds for application in fusion breeder blankets. The design considerations and models are reviewed for packing, tritium breeding and recovery, thermal conductivity, purge-gas pressure drop, mechanical behavior and fabrication. The design correlations are compared against available fusion ceramic data. Specific conclusions are that ternary (three-size) beds are not attractive for fusion blankets, and that the fusion spheres should be as large as possible subject primarily to packing constraints. (orig.)

  2. Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Li, Min; Lv, Zhongliang; Zhou, Guangming; Liu, Qianwen; Wang, Shuai; Wang, Xiaoliang; Zheng, Jie; Ye, Minyou

    2015-10-15

    Highlights: • A helium cooled solid blanket was proposed as a candidate blanket concept for CFETR. • Material selection, basic structure and gas flow scheme of the blanket were introduced. • A series of performance analyses for the blanket were summarized. - Abstract: To bridge the gap between ITER and DEMO and to realize the fusion energy in China, a fusion device Chinese Fusion Engineering Test Reactor (CFETR) was proposed and is being designed mainly to demonstrate 50–200 MW fusion power, 30–50% duty time factor, tritium self-sustained. Because of the high demand of tritium production and the realistic engineering consideration, the design of tritium breeding blanket for CFETR is a challenging work and getting special attention. As a blanket candidate, a helium cooled solid breeder blanket has been designed with the emphasis on conservative design and realistic blanket technology. This paper introduces the basic blanket scheme, including the material selection, structural design, cooling scheme and purge gas flow path. In addition, some results of neutronics, thermal-hydraulic and stress analysis are presented.

  3. First wall and blanket module safety enhancement by material selection and design decision

    International Nuclear Information System (INIS)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems

  4. 76 FR 18216 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2011-04-01

    ... Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on March 16, 2011, Southern Natural Gas Company (Southern), Post Office Box 2563, Birmingham, Alabama 35202-2563, filed in... Regulations under the Natural Gas Act (NGA) as amended, to abandon in place a supply lateral that extends from...

  5. 76 FR 14387 - Texas Eastern Transmission, LP; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2011-03-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-118-000] Texas Eastern... Eastern Transmission, LP (Texas Eastern), Post Office Box 1642, Houston, Texas 77251-1642, filed in Docket... West Cameron Blocks 566, 565, and 548, offshore Louisiana, under Texas Eastern's blanket certificate...

  6. Glove boxes

    International Nuclear Information System (INIS)

    Eisert, G.A.

    1979-01-01

    An arrangement for effecting access for performing work within a glove box comprises an elongate arm-length impermeable flexible sleeve, a fitting having an aperture therethrough, adapted to be secured in sealing relation in a port, in a wall of the glove box, the fitting including an outwardly extending lip having at least one continuous groove extending around its outer periphery, one end of the sleeve extending through the aperture in fitting and being folded back against the outer periphery of the lip, a resilient fastening ring securing the sleeve in sealing engagement in the groove, clamping means securing the sleeves to the lip and a glove secured in sealing relation via a bushing to the other end of the sleeve. (author)

  7. Feasibility study on thermal-hydraulic design of reduced-moderation PWR-type core

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Ohnuki, Akira; Akimoto, Hajime

    2000-03-01

    At JAERI, a conceptual study on reduced-moderation water reactor (RMWR) has been performed as one of the advanced reactor system which is designed so as to realize the conversion ratio more than unity. In this reactor concept, the gap spacing between the fuel rods is remarkably narrower than in a reactor currently operated. Therefore, an evaluation of the core thermal margin becomes very important in the design of the RMWR. In this study, we have performed a feasibility evaluation on thermal-hydraulic design of RM-PWR type core (core thermal output: 2900 MWt, Rod gaps: 1 mm). In RM-PWR core, seed and blanket regions are exist. In the blanket region, power density is lower than that of the seed region. Then, evaluation was performed under setting a channel box to each fuel assembly in order to adjust the flow rate in each assembly, because it is possible that the coolant boils in the seed region. In the feasibility evaluations, subchannel code COBRA-IV-I was used in combination with KfK DNB (departure nucleate boiling) correlation. When coolant mass flow rate to the blanket fuel assembly is reduced by 40%, and that to the seed fuel assembly is increased, coolant boiling is not occurred in the assembly region calculation. Provided that the channel boxes to the blanket fuel assembly are set up and coolant mass flow rate to the blanket fuel assembly is reduced by 40%, it is confirmed by the whole core calculation that the boiling of the coolant is not occurred and the RM-PWR core is feasible. (author)

  8. Progress in blanket designs using SiCf/SiC composites

    International Nuclear Information System (INIS)

    Giancarli, L.; Golfier, H.; Nishio, S.; Raffray, R.; Wong, C.; Yamada, R.

    2002-01-01

    This paper summarizes the most recent design activities concerning the use of SiC f /SiC composite as structural material for fusion power reactor breeding blanket. Several studies have been performed in the past. The most recent proposals are the TAURO blanket concept in the European Union, the ARIES-AT concept in the US, and DREAM concept in Japan. The first two concepts are self-cooled lithium-lead blankets, while DREAM is an helium-cooled beryllium/ceramic blanket. Both TAURO and ARIES-AT blankets are essentially formed by a SiC f /SiC box acting as a container for the lithium-lead which has the simultaneous functions of coolant, tritium breeder, neutron multiplier and, finally, tritium carrier. The DREAM blanket is characterized by small modules using pebble beds of Be as neutron multiplier material, of Li 2 O (or other lithium ceramics) as breeder material and of SiC as shielding material. The He coolant path includes a flow through the pebble beds and a porous partition wall. For each blanket, this paper describes the main design features and performances, the most recent design improvements, and the proposed manufacturing routes in order to identify specific issues and requirements for the future R and D on SiC f /SiC

  9. Neutronics design aspects of reference ARIES-I fusion blanket

    International Nuclear Information System (INIS)

    Cheng, E.T.

    1990-12-01

    A SiC composite blanket concept was recently conceived for a deuterium-tritium burning, 1000 MW(e) tokamak fusion reactor design, ARIES-I. SiC composite structural material was chosen due to its very low activation features. High blanket nuclear performance and thermal efficiency, adequate tritium breeding, and a low level of activation are important design requirements for the ARIES-I reactor. The major approaches, other than using SiC as structural material, in meeting these design requirements, are to employ beryllium, the only low activation neutron multiplying material, and isotopically tailored Li 2 ZrO 3 , a tritium breeding material stable at high temperature, as blanket materials. 5 refs., 4 figs., 2 tabs

  10. High temperature blankets for the production of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Steinberg, M.; Fillo, J.; Makowitz, H.

    1977-01-01

    The application of very high temperature blankets to improved efficiency of electric power generation and production of H 2 and H 2 based synthetic fuels is described. The blanket modules have a low temperature (300 to 400 0 C) structure (SS, V, Al, etc.) which serves as the vacuum/coolant pressure boundary, and a hot (>1000 0 C) thermally insulated interior. Approximately 50 to 70% of the fusion energy is deposited in the hot interior because of deep penetration by high energy neutrons. Separate coolant circuits are used for the two temperature zones: water for the low temperature structure, and steam or He for the hot interior. Electric generation efficiencies of approximately 60% and H 2 production efficiencies of approximately 50 to 70%, depending on design, are projected for fusion reactors using these high temperature blankets

  11. A 2D Finite Element Modelling of Tritium Permeation Through Cooling Plates for The HCLL DEMO Blanket Module

    International Nuclear Information System (INIS)

    Gabriel, F.; Escuriol, Y.; Dabbene, F.; Salavy, J.F.; Giancarli, L.; Gastaldi, O.

    2006-01-01

    As the Tritium self sufficiency is one of the major challenges for fusion reactor, breeding blankets represent one of the major technological breakthroughs required from passing from ITER to the next step reactor, usually called DEMO. One of the two blanket concepts developed in the EU is the Helium Cooled Lithium Lead (HCLL) blanket which uses the eutectic Pb-15.7Li metal liquid as both breeder and neutron multiplier. The structures, made of EUROFER, a low activation ferritic martensitic steel, are cooled by pressurized helium at 8 MPa and inlet/outlet temperature 300/500 o C. In this concept, the LiPb is fed from the top of the blanket and distributed in parallel vertical channels among pairs of cells (one cell for the radial movement towards the plasma, the other for the return). The liquid metal fills the in-box volume and is slowly re-circulated (few mm per seconds) to remove the produced tritium. In this paper, a local finite element modelling of the tritium permeation rate through the HCLL breeder unit cooling plates is presented. The tritium concentration in the helium circuit and remaining in the lithium lead circuit are evaluated by solving partial differential equations governing the tritium concentration balance, the thermal field and the lithium lead velocity field for a simplified 2D geometrical representation of the breeder unit. This allows estimating the sensitivity effect of coupling these different equations in order to deduce a relevant but simplified modelling for tritium permeation. This is to compare with tritium inventories studies, were the tritium permeation rate is estimated using simplified analytical modelling which generally leads to over estimate the tritium permeation rate to the coolant and so has strong influence on the coolant purification plant design. The finite element modelling performed shows that the Tritium permeation is considerable lower than the one obtained in previous estimations where nominal values of the governing

  12. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  13. The transpiration cooled first wall and blanket concept

    International Nuclear Information System (INIS)

    Barleon, Leopold; Wong, Clement

    2002-01-01

    To achieve high thermal performance at high power density the EVOLVE concept was investigated under the APEX program. The EVOLVE W-alloy first wall and blanket concept proposes to use transpiration cooling of the first wall and boiling or vaporizing lithium (Li) in the blanket zone. Critical issues of this concept are: the Magnetohydrodynamic (MHD) pressure losses of the Li circuit, the evaporation through a capillary structure and the needed superheating of the Li at the first wall and blanket zones. Application of the transpiration concept to the blanket region results in the integrated transpiration cooling concept (ITCC) with either toroidal or poloidal first wall channels. For both orientations the routing of the liquid Li and the Li vapor has been modeled and the corresponding pressure losses have been calculated by varying the width of the supplying slot and the capillary diameter. The concept works when the sum of the active and passive pumping head is higher than the total system pressure losses and when the temperature at the inner side of the first wall does not override the superheating limit of the coolant. This cooling concept has been extended to the divertor design, and the removal of a surface heat flux of up to 10 MW/m 2 appears to be possible, but this paper will focus on the transpiration cooled first wall and blanket concept assessment

  14. Fusion blanket design and optimization techniques

    International Nuclear Information System (INIS)

    Gohar, Y.

    2005-01-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design techniques of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art techniques and tools for performing blanket design and analysis. This report describes some of the BSDOS techniques and demonstrates its use. In addition, the use of the optimization technique of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this report, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design techniques

  15. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  16. Development and testing of a zero stitch MLI blanket using plastic pins for space use

    Science.gov (United States)

    Hatakenaka, Ryuta; Miyakita, Takeshi; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki

    2014-11-01

    New types of MLI blanket have been developed to achieve high thermal performance while maintaining production and assembly workability equivalent to the conventional type. Tag-pins, which are widely used in commercial applications to hook price tags to products, are used to fix the films in place and the pin material is changed to polyetheretherketone (PEEK) for use in space. Thermal performance is measured by using a boil-off calorimeter, in which a rectangular liquid nitrogen tank is used to evaluate the degradation at the bending corner and joint of the blanket. Zero-stitch- and multi-blanket-type MLIs show significantly improved thermal performance (ɛeff is smaller than 0.0050 at room temperature) despite having the same fastener interface as traditional blankets, while the venting design and number of tag-pins are confirmed as appropriate in a depressurization test.

  17. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  18. The blanket interface to TSTA

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Grimm, T.L.; Sze, D.K.; Anderson, J.L.; Bartlit, J.R.; Naruse, Y.; Yoshida, H.

    1988-01-01

    The requirements of tritium technology are centered in three main areas, (1) fuel processing, (2) breeder tritium extraction, and (3) tritium containment. The Tritium Systems Test Assembly (TSTA) now in operation at Los Alamos National Laboratory (LANL) is dedicated to developing and demonstrating the tritium technology for fuel processing and containment. TSTA is the only fusion fuel processing facility that can operate in a continuous closed-loop mode. The tritium throughput of TSTA is 1000 g/d. However, TSTA does not have a blanket interface system. The authors have initiated a study to define a Breeder Blanket Interface (BBIO) for TSTA. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. Various methods of tritium recovery from liquid lithium were assessed: yttrium gettering, permeation windows, and molten salt extraction. The authors' evaluation concluded that the best method was molten salt extraction

  19. Blanket maintenance by remote means using the cassette blanket approach

    International Nuclear Information System (INIS)

    Werner, R.W.

    1978-01-01

    Induced radioactivity in the blanket and other parts of a fusion reactor close to the plasma zone will dictate remote assembly, disassembly, and maintenance procedures. Time will be of the essence in these procedures. They must be practicable and certain. This paper discusses the reduction of a complicated Tokamak reactor to a simpler assembly via the use of a vacuum building in which to house the reactor and the introduction in this new model of cassette blanket modules. The cassettes significantly simplify remote handling

  20. Evaluation of potential blanket concepts for a Demonstration Tokamak Hybrid Reactor

    International Nuclear Information System (INIS)

    Chapin, D.L.; Chi, J.W.H.; Kelly, J.L.

    1978-01-01

    An evaluation has been made of several different blanket concepts for use in a near-term Demonstration Tokamak Hybrid Reactor (DTHR), whose main objective would be to produce a significant amount of fissile fuel while demonstrating the feasibility of the tokamak hybrid reactor concept. The desirability of a simple design using proven technology plus a proliferation resistant fuel cycle led to the selection of a low temperature and pressure water-cooled, zircaloy clad ThO 2 blanket concept to breed 233 U. The nuclear performance and thermal-hydraulics characteristics of the blanket were evaluated to arrive at a consistent design. The blanket was found to be feasible for producing a significant amount of fissile fuel even with the limited operating conditions and blanket coverage in the DTHR

  1. MIT LMFBR blanket physics project progress report No. 7, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Driscoll, M.J.

    1976-01-01

    Work during the period was devoted primarily to a range of analytical/numerical investigations, including evaluation of means to improve external blanket designs, beneficial attributes of the use of internal blankets, improved methods for the calculation of heterogeneous self-shielding and parametric studies of calculated spectral indices. Experimental work included measurements of the ratio of U-238 captures to U-235 fissions in a standard blanket mockup, and completion of development work on the radiophotoluminescent readout of LiF thermoluminescent detectors. The most significant findings were that there is very little prospect for substantial improvement in the breeding performance of external blankets, but internal blankets continue to show promise, particularly if they are used in such a way as to increase the volume fraction of fuel inside the core envelope. An improved equivalence theorem was developed which may allow use of fast reactor methods to calculate heterogeneously self-shielded cross sections in both fast and thermal reactors

  2. Boxing clever

    Energy Technology Data Exchange (ETDEWEB)

    Stanbury, Kate

    1999-09-10

    The outages caused by storms bringing down trees on power transmission lines on Boxing Day 1998 in Scotland, Northern Ireland and Northern England forced ScottishPower to modify its pylon policy. The results of the analysis of pylons requiring work by the Rural Care Team at ScottishPower are summarised, and the identification of the problems caused by the Sitk spruce is reported. The selection of the relocation and clearance remediation option, the policy of replacing one tree with two, the approach to landowners, and the need to consider environmental concerns during the planning of networks are discussed. (UK)

  3. Preliminary Analysis for K-DEMO Water Cooled Breeding Blanket Using MARS-KS

    International Nuclear Information System (INIS)

    Lee, Jeong-Hun; Kim, Geon-Woo; Park, Goon-Cherl; Cho, Hyoung-Kyu; Im, Kihak

    2014-01-01

    In the present study, thermal-hydraulic analyses for the blanket concept are being conducted using the Multidimensional Analysis of Reactor Safety (MARSKS) code, which has been used for the safety analysis of a pressurized water reactor. The purposes of the analyses are to verify the applicability of the code for the proposed blanket system, to investigate the departure of nucleate boiling (DNB) occurrence during the normal and transient conditions, and to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. In this paper, the thermal analysis results of the proposed blanket design using the MARS-KS code are presented for the normal operation and an accident condition of a reduced coolant flow rate. Afterwards, the plan for the whole blanket system analysis using MARSKS is introduced and the result of the first trial for the multiple blanket module analysis is summarized. In the present study, thermal-hydraulic analyses for the blanket concept were conducted using the MARS-KS code for a single blanket module. By comparing the MARS calculation results with the CFD analysis results, it was found that MARS-KS can be applied for the blanket thermal analysis with less number of computational meshes. Moreover, due to its capability on the two-phase flow analysis, it can be used for the transient or accident simulation where a phase change may be resulted in. In the future, the MARS-KS code will be applied for the anticipated transient and design based accident analyses. The investigation of the DNB occurrence during the normal and transient conditions will be of special interest of the analysis using it. After that, a methodology to simulate the entire blanket system was proposed by using the DLL version of MARS-KS. A supervisor program, which controls the multiple DLL files, was developed for the common header modelling. The program explicitly determines the flow rates of each module which can equalize

  4. Opto-Box

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00377159; The ATLAS collaboration

    2016-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm$^{3}$. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  5. Design of self-cooled, liquid-metal blankets for tokamak and tandem mirror reactors

    International Nuclear Information System (INIS)

    Cha, Y.S.; Gohar, Y.; Hassanein, A.M.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.; Szo, D.K.

    1985-01-01

    Results of the self-cooled, liquid-metal blanket design from the Blanket Comparison and Selection Study (BCSS) are summarized. The objectives of the BCSS project are to define a small number (about three) of blanket concepts that should be the focus of the blanket research and development (RandD) program, identify and prioritize the critical issues for the leading blanket concepts, and provide technical input necessary to develop a blanket RandD program plan. Two liquid metals (lithium and lithium-lead (17Li-83Pb)) and three structural materials (primary candidate alloy (PCA), ferritic steel (FS) (HT-9), and vanadium alloy (V-15 Cr-5 Ti)) are included in the evaluations for both tokamaks and tandem mirror reactors (TMRs). TMR is of the tube configuration similar to the Mirror Advanced Reactor Study design. Analyses were performed in the following generic areas for each blanket concept: MHD, thermal hydraulics, stress, neutronics, and tritium recovery. Integral analyses were performed to determine the design window for each blanket design. The Li/Li/V blanket for tokamak and the Li/Li/V, LiPb/LiPb/V, and Li/Li/HT-9 blankets for the TMR are judged to be top-rated concepts. Because of its better thermophysical properties and more uniform nuclear heating profile, liquid lithium is a better coolant than liquid 17Li83Pb. From an engineering point of view, vanadium alloy is a better structural material than either FS or PCA since the former has both a higher allowable structural temperature and a higher allowable coolant/structure interface temperature than the latter. Critical feasibility issues and design constraints for the self-cooled, liquid-metal blanket concepts are identified and discussed

  6. Blanket safety by GEMSAFE methodology

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Saito, Masaki

    2001-01-01

    General Methodology of Safety Analysis and Evaluation for Fusion Energy Systems (GEMSAFE) has been applied to a number of fusion system designs, such as R-tokamak, Fusion Experimental Reactor (FER), and the International Thermonuclear Experimental Reactor (ITER) designs in the both stages of Conceptual Design Activities (CDA) and Engineering Design Activities (EDA). Though the major objective of GEMSAFE is to reasonably select design basis events (DBEs) it is also useful to elucidate related safety functions as well as requirements to ensure its safety. In this paper, we apply the methodology to fusion systems with future tritium breeding blankets and make clear which points of the system should be of concern from safety ensuring point of view. In this context, we have obtained five DBEs that are related to the blanket system. We have also clarified the safety functions required to prevent accident propagations initiated by those blanket-specific DBEs. The outline of the methodology is also reviewed. (author)

  7. Development of blanket remote maintenance system

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou

    1998-01-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  8. Development of blanket remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  9. The TFTR lithium blanket module program

    International Nuclear Information System (INIS)

    Jassby, D.L.; Bertone, P.C.; Creedon, R.L.; File, J.; Graumann, D.W.

    1985-01-01

    The Lithium Blanket Module (LBM) is an approximately 80X80X80 cm cubic module, representative of a helium-cooled lithium oxide fusion reactor blanket module, that will be installed on the TFTR (Tokamak Fusion Test Reactor) in late 1986. The principal objective of the LBM Program is to perform a series of neutron transport and tritium-breeding measurements throughout the LBM when it is exposed to the TFTR toroidal fusion neutron source, and to compare these data with the predictions of Monte Carlo (MCNP) neutronics codes. The LBM consists of 920 2.5-cm diameter breeder rods constructed of lithium oxide (Li 2 O) pellets housed in thin-walled stainless steel tubes. Procedures for mass-producing 25,000 Li 2 O pellets with satisfactory reproducibility were developed using purified Li 2 O powder, and fabrication of all the breeder rods was completed in early 1985. Tritium assay methods were investigated experimentally using both small lithium metal samples and LBM-type pellets. This work demonstrated that the thermal extraction method will be satisfactory for accurate evaluation of the minute concentrations of tritium expected in the LBM pellets (0.1-1nCi/g)

  10. Concepts for fusion fuel production blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1986-06-01

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into useable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  11. Thermohydraulics design and thermomechanics analysis of two European breeder blanket concepts for DEMO. Pt. 1 and Pt. 2. Pt. 1: BOT helium cooled solid breeding blanket. Pt. 2: Dual coolant self-cooled liquid metal blanket

    International Nuclear Information System (INIS)

    Norajitra, P.

    1995-06-01

    Two different breeding blanket concepts are being elaborated at Forschungszentrum Karlsruhe within the framework of the DEMO breeding blanket development, the concept of a helium cooled solid breeding blanket and the concept of a self-cooled liquid metal blanket. The breeder material used in the first concept is Li 4 SiO 4 as a pebble bed arranged separate from the beryllium pebble bed, which serves as multiplier. The breeder material zone is cooled by several toroidally-radially configurated helium cooling plates which, at the same time, act as reinforcements of the blanket structures. In the liquid metal blanket concept lead-lithium is used both as the breeder material and the coolant. It flows at low velocity in poloidal direction downwards and back in the blanket front zone. In both concepts the First Wall is cooled by helium gas. This report deals with the thermohydraulics design and thermomechanics analysis of the two blanket concepts. The performance data derived from the Monte-Carlo computations serve as a basis for the design calculations. The coolant inlet and outlet temperatures are chosen with the design criteria and the economics aspects taken into account. Uniform temperature distribution in the blanket structures can be achieved by suitable branching and routing of the coolant flows which contributes to reducing decisively the thermal stress. The computations were made using the ABAQUS computer code. The results obtained of the stresses have been evaluated using the ASME code. It can be demonstrated that all maximum values of temperature and stress are below the admissible limit. (orig.) [de

  12. Breeding blankets for thermonuclear reactors

    International Nuclear Information System (INIS)

    Rocaboy, Alain.

    1982-06-01

    Materials with structures suitable for this purpose are studied. A bibliographic review of the main solid and liquid lithiated compounds is then presented. Erosion, dimensioning and maintenance problems associated with the limiter and the first wall of the reactor are studied from the point of view of the constraints they impose on the design of the blankets. Detailed studies of the main solid and liquid blanket concepts enable the best technological compromises to be determined for the indispensable functions of the blanket to be assured under acceptable conditions. Our analysis leads to four classes of solution, which cannot at this stage be considered as final recommendations, but which indicate what sort of solutions it is worthwhile exploring and comparing in order to be in a position to suggest a realistic blanket at the time when plasma control is sufficiently good for power reactors to be envisaged. Some considerations on the general architecture of the reactor are indicated. Energy storage with pulsed reactors is discussed in the appendix, and a first approach made to minimizing the total tritium recovery [fr

  13. Feasibility study of incore fission chamber application for neutron flux measurements on the NET blanket

    International Nuclear Information System (INIS)

    Bertalot, L.

    1987-01-01

    A feasibility study has been carried out on the use of in-core fission chambers as neutron diagnostic tools to perform neutron flux measurements on the blanket component of NET. The high neutron and gamma fluxes and the severe thermal-mechanical and magnetic conditions of the blanket structure have been taken into account in this analysis. Preliminary design criteria and specifications of an in-core detector are presented for NET application. A research and development programme is outlined which aims to obtain more information on the tecnological constraints arising from the severe conditions of the NET blanket

  14. Beryllium data base for in-pile mockup test on blanket of fusion reactor, (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroshi; Ishitsuka, Etsuo (Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment); Sakamoto, Naoki; Kato, Masakazu; Takatsu, Hideyuki.

    1992-11-01

    Beryllium has been used in the fusion blanket designs with ceramic breeder as a neutron multiplier to increase the net tritium breeding ratio (TBR). The properties of beryllium, that is physical properties, chemical properties, thermal properties, mechanical properties, nuclear properties, radiation effects, etc. are necessary for the fusion blanket design. However, the properties of beryllium have not been arranged for the fusion blanket design. Therefore, it is indispensable to check and examine the material data of beryllium reported previously. This paper is the first one of the series of papers on beryllium data base, which summarizes the reported material data of beryllium. (author).

  15. Structural analysis under the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    Majumdar, S.

    1985-01-01

    Structural design procedures followed in the Blanket Comparison and Selection Study are briefly reviewed. The American Society of Mechanical Engineers Boilers and Pressure Vessels Code, Section III, Code Case N47 has been used as a design guide. Its relevance to fusion reactor applications, however, is open to question and needs to be evaluated in the future. The primary structural problem encountered in tokamak blanket designs is the high thermal stress due to surface heat flux, with fatigue being an additional concern for pulsed systems. The conflicting requirements of long erosion life and high surface heat flux capability imply that some form of stress relief in the first-wall region will be necessary. Simplified stress and fatigue crack growth analyses are presented to show that the use of orthogonally grooved first wall may be a potential solution for mitigating the thermal stress problem. A comparison of three structural alloys on the basis of both grooved and nongrooved first-wall designs is also presented. Other structural problems encountered in tokamak designs include stresses due to plasma disruptions, and magnetohydrodynamic (MHD) pressure drop in liquid-metal-cooled systems. In particular, it is shown that the maximum stress in the side wall of a uniform duct generated by MHD pressure drop cannot be reduced by increasing the wall thickness or by decreasing the span. In contract to tokamak blankets, tandem mirror blankets are far less severely stressed because of a much lower surface heat flux, coolant pressure, and also because of their axisymmetric geometry. Both blankets, however, will require detailed structural dynamics analysis to verify their ability to withstand seismic loadings if the heavy 17Li-83Pb is used as a coolant

  16. Disruption problematics in segmented blanket concepts

    International Nuclear Information System (INIS)

    Crutzen, Y.; Fantechi, S.; Farfaletti-Casali, F.

    1994-01-01

    In Tokamaks, the hostile operating environment originated by plasma disruption events requires that the first wall/blanket/shield components sustain the large induced electromagnetic (EM) forces without significant structural deformation and within allowable material stresses. As a consequence there is a need to improve the safety features of the blanket design concepts satisfying the disruption problematics and to formulate guidelines on the required internal reinforcements of the blanket components. The present paper describes the recent investigations on blanket reinforcement systems needed in order to optimize the first-wall/blanket/shield structural design for next step and commercial fusion reactors in the context of ITER, DEMO and SEAFP activities

  17. Fusion reactor blanket-main design aspects

    International Nuclear Information System (INIS)

    Strebkov, Yu.; Sidorov, A.; Danilov, I.

    1994-01-01

    The main function of the fusion reactor blanket is ensuring tritium breeding and radiation shield. The blanket version depends on the reactor type (experimental, DEMO, commercial) and its parameters. Blanket operation conditions are defined with the heat flux, neutron load/fluence, cyclic operation, dynamic heating/force loading, MHD effects etc. DEMO/commercial blanket design is distinguished e.g. by rather high heat load and neutron fluence - up to 100 W/cm 2 and 7 MWa/m 2 accordingly. This conditions impose specific requirements for the materials, structure, maintenance of the blanket and its most loaded components - FW and limiter. The liquid Li-Pb eutectic is one of the possible breeder for different kinds of blanket in view of its advantages one of which is the blanket convertibility that allow to have shielding blanket (borated water) or breeding one (Li-Pb eutectic). Using Li-Pb eutectic for both ITER and DEMO blankets have been considered. In the conceptual ITER design the solid eutectic blanket was carried out. The liquid eutectic breeder/coolant is suggested also for the advanced (high parameter) blanket

  18. Box Integrals

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.

    2006-06-01

    By a "box integral" we mean here an expectation $\\langle|\\vec r - \\vec q|^s \\rangle$ where $\\vec r$runs over the unit $n$-cube,with $\\vec q$ and $s$ fixed, explicitly:\\begin eqnarray*&&\\int_01 \\cdots \\int_01 \\left((r_1 - q_1)2 + \\dots+(r_n-q_n)2\\right)^ s/2 \\ dr_1 \\cdots dr_n.\\end eqnarray* The study ofbox integrals leads one naturally into several disparate fields ofanalysis. While previous studies have focused upon symbolic evaluationand asymptotic analysis of special cases (notably $s = 1$), we workherein more generally--in interdisciplinary fashion--developing resultssuch as: (1) analytic continuation (in complex $s$), (2) relevantcombinatorial identities, (3) rapidly converging series, (4) statisticalinferences, (5) connections to mathematical physics, and (6)extreme-precision quadrature techniques appropriate for these integrals.These intuitions and results open up avenues of experimental mathematics,with a view to new conjectures and theorems on integrals of thistype.

  19. The EC conceptual design proposal of a water-cooled convertible blanket for ITER

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Baraer, L.; Bielak, B.; Raepsaet, X.; Salavy, J.F.; Sedano, L.; Szczepanski, J.; Quintric-Bossy, J.; Severi, Y.

    1993-01-01

    For several years the EC laboratories have developed breeding blankets for DEMO. From this experience, it has been derived a proposal of tritium breeding blanket for the Extended Performance Phase (EPP) of ITER. The general basic ideas are the following: (i) the switch from the shielding blanket used during the BPP to the breeding blanket for the EPP should not require segments replacement ('convertible' blanket): (ii) its use should not have significant impact on the Basic Performance Phase (BPP); (iii) design and used materials should assure good safety standards and acceptable public perception; (iv) the blanket coolant should be compatible with the coolant required in the high heat-flux components (e.g. divertor, etc.; (v) the required R and D should fit with the ITER time schedule; (vi) the blanket should be able to withstand large power excursions and to accept long downtimes. The proposed design consists of a water-cooled liquid metal blanket, using the eutectic Pb-17Li during the EPP and a non-breeding Pb-alloy (Pb-18Mg or Pb-50Bi) during the BPP. Each segment is basically formed by a box containing the alloy, cooled by an array of poloidal hairpin-type cooling tubes and reinforced by toroidal and radial stiffeners. The coolant tubes are double-walled tubes allowing leak detections. The selected First Wall (FW) is a toroidally-drilled steel plate with brazed water-cooling U-tube. The structural material is austenitic stainless steel (316L(N)) which limits the maximum acceptable neutron fluence to about 1 MWa/m 2 . The advantages of using other structural materials requiring longer leadtimes, such as ferritic/martensitic steels, are also briefly discussed

  20. Effect of blanket assembly shuffling on LMR neutronic performance

    International Nuclear Information System (INIS)

    Khalil, H.; Fujita, E.K.

    1987-01-01

    Neutronic analyses of advanced liquid-metal reactors (LMRs) have generally been performed with assemblies in different batches scatter-loaded but not shuffled among the core lattice positions between cycles. While this refueling approach minimizes refueling time, significant improvements in thermal performance are believed to be achievable by blanket assembly shuffling. These improvements, attributable to mitigation of the early-life overcooling of the blankets, include reductions in peak clad temperatures and in the temperature gradients responsible for thermal striping. Here the authors summarize results of a study performed to: (1) assess whether the anticipated gains in thermal performance can be realized without sacrificing core neutronic performance, particularly the burnup reactivity swing rho/sub bu/, which determines the rod ejection worth; (2) determine the effect of various blanket shuffling operations on reactor performance; and (3) determine whether shuffling strategies developed for an equilibrium (plutonium-fueled) core can be applied during the transition from an initial uranium-fueled core as is being considered in the US advanced LMR program

  1. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  2. Pebble bed blanket design for deuterium burning tandem mirror reactors

    International Nuclear Information System (INIS)

    Grotz, S.P.; Dhir, V.K.

    1983-01-01

    The UCLA tandem mirror reactor, SATYR, was developed around the capability of tandem mirrors with thermal barriers to burn deuterium at reasonable efficiency levels. The pebble bed concept has been incorporated into our blanket design for the following reasons: 1) Large area-to-volume ratio for purposes of heat removal; 2) Large volume of structure for high thermal capacity thus increasing the safety margin during off-normal incidents; 3) Relatively inexpensive manufacturing costs because of large acceptable tolerances and lack of exotic materials (i.e., lithium). A simplified stress analysis of the blanket module was performed to optimize and simplify the design. The pre-specified stress intensity limitations used were based upon a 30-year predicted lifetime for each module. Along with stress analysis of the vessel a detailed thermal hydraulic analysis of the pebble bed has been completed. Parameters affecting the pebble bed design are fluidization velocity, pressure drop, heat transfer coefficient, thermally induced stress in the spheres and spatial variation of the power density. Although reasonable gross thermal efficiencies of the 2 designs has been achieved (28% for H 2 O and 39% for He) the high net recirculating power fraction for heating and neutral beams results in relatively low net plant efficiencies (21% and 27%). The results show that a blanket can be designed with good thermal efficiency and a relative-ly simple configuration. However, application of this concept to the high Q deuterium-tritium fuel cycle would have difficulties resulting from the need for continuous removal of the tritium. (orig./HP)

  3. Blanket comparison and selection study. Volume I

    International Nuclear Information System (INIS)

    1983-10-01

    The objectives of the Blanket Comparison and Selection Study (BCSS) can be stated as follows: (1) Define a small number (approx. 3) of blanket design concepts that should be the focus of the blanket R and D program. A design concept is defined by the selection of all materials (e.g., breeder, coolant, structure and multiplier) and other major characteristics that significantly influence the R and D requirements. (2) Identify and prioritize the critical issues for the leading blanket concepts. (3) Provide the technical input necessary to develop a blanket R and D program plan. Guidelines for prioritizing the R and D requirements include: (a) critical feasibility issues for the leading blanket concepts will receive the highest priority, and (b) for equally important feasibility issues, higher R and D priority will be given to those that require minimum cost and short time

  4. Design requirement on HYPER blanket fuel assembly

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Nam, C.; Ryu, W. S.; Lee, B. S.; Park, W. S.

    2000-07-01

    This document describes design requirements which are needed for designing the blanket assembly of the HYPER as design guidance. The blanket assembly of the HYPER consists of blanket fuel rods, mounting rail, spacer, upper nozzle with handling socket, bottom nozzle with mounting rail and skeleton structure. The blanket fuel rod consists of top end plug, bottom end plug with key way, blanket fuel slug, and cladding. In the assembly, the rods are in a triangular pitch array. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements for the blanket fuel assembly of the HYPER

  5. Proceedings of the fifteenth international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    Tanigawa, Hisashi; Enoeda, Mikio

    2010-03-01

    This report is the Proceedings of 'the Fifteenth International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors. This workshop was held in Sapporo, Japan on 3-4, Sept. 2009. Twenty six participants from EU, Japan, India, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket development. By this workshop, advance of key technologies for solid breeder blanket development was shared among the participants. Also, desired direction of further investigation and development was recognized. The 20 of the presented papers are indexed individually. (J.P.N.)

  6. Proceedings of the fifteenth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hisashi; Enoeda, Mikio [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki (Japan)

    2010-03-15

    This report is the Proceedings of 'the Fifteenth International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors. This workshop was held in Sapporo, Japan on 3-4, Sept. 2009. Twenty six participants from EU, Japan, India, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket development. By this workshop, advance of key technologies for solid breeder blanket development was shared among the participants. Also, desired direction of further investigation and development was recognized. The 20 of the presented papers are indexed individually. (J.P.N.)

  7. Self-cooled blanket concepts using Pb-17Li as liquid breeder and coolant

    International Nuclear Information System (INIS)

    Malang, S.; Deckers, H.; Fischer, U.; John, H.; Meyder, R.; Norajitra, P.; Reimann, J.; Reiser, H.; Rust, K.

    1991-01-01

    A blanket design concept using Pb-17Li eutectic alloy as both breeder material and coolant is described. Such a self-cooled blanket for the boundary conditions of a DEMO-reactor is under development at the Kernforschungszentrum Karlsruhe (KfK) in the frame of the European blanket development program. Results of investigations in the areas of design, neutronics, magneto-hydrodynamics, thermo-mechanics, ancillary loop systems, and safety are reported. Based on recent progress, it can be concluded that the boundary conditions of a DEMO-reactor can be met, tritium self-sufficiency can be obtained without using beryllium as an additional neutron multiplier, and tritium inventory and permeation are acceptably low. However, to complete judge the feasibility of the proposed concept, further studies are necessary to obtain a better understanding of the magneto-hydrodynamic phenomena and their effects on the thermal-hydraulic performance of a fusion reactor blanket. (orig.)

  8. Liquid metal cooled blanket concept for NET

    International Nuclear Information System (INIS)

    Malang, S.; Casal, V.; Arheidt, K.; Fischer, U.; Link, W.; Rust, K.

    1986-01-01

    A blanket concept for NET using liquid lithium-lead both as breeder material and as coolant is described. The need for inboard breeding is avoided by using beryllium as neutron multiplier in the outboard blanket. Novel flow channel inserts are employed in all poloidal ducts to reduce the MHD pressure drop. The concept offers a simple mechanical design and a higher tritium breeding ratio compared to water- and gas-cooled blankets. (author)

  9. NOEL: a no-leak fusion blanket concept

    International Nuclear Information System (INIS)

    Powell, J.R.; Yu, W.S.; Fillo, J.A.; Horn, F.L.; Makowitz, H.

    1980-01-01

    Analysis and tests of a no-leak fusion blanket concept (NOEL-NO External Leak) are described. Coolant cannot leak into the plasma chamber even if large through-cracks develop in the first wall. Blanket modules contain a two-phase material, A, that is solid (several cm thick) on the inside of the module shell, and liquid in the interior. The solid layer is maintained by imbedded tubes carrying a coolant, B, below the freezing point of A. Most of the 14-MeV neutron energy is deposited as heat in the module interior. The thermal energy flow from the module interior to the shell keeps the interior liquid. Pressure on the liquid A interior is greater than the pressure on B, so that B cannot leak out if failures occur in coolant tubes. Liquid A cannot leak into the plasma chamber through first wall cracks because of the intervening frozen layer. The thermal hydraulics and neutronics of NOEL blankets have been investigated for various metallic (e.g., Li, Pb 2 , LiPb, Pb) and fused salt choices for material A

  10. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  11. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.; Smith, D.L.

    1987-10-01

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  12. Design and analysis of breeding blanket with helium cooled solid breeder for ITER-TBM

    International Nuclear Information System (INIS)

    Yuan Tao; Feng Kaiming; Chen Zhi; Wang Xiaoyu

    2007-01-01

    Test blanket module (TBM) is one of important components in ITER. Some of related blanket technologies of future fusion, such as tritium self-sufficiency, the exaction of high-grade heat, design criteria and safety requirements and environmental impacts, will be demonstrated in ITER-TBM. In ITER device, the three equatorial ports have allocated for TBM testing. China had proposed to develop independently the ITER-TBM with helium cooled solid breeder in 12th meeting of test blanket workgroup (TBWG-12). In this work, the preliminary design and analysis for Chinese HCSB TBM will be carried out. The TBM must be contains the function of the first wall, breeding blanket, shield and structure. Finally, in the period of preliminary investigation, HCSB TBM design adopt modularization concept which is helium as coolant and tritium purge gas, ferritic/martensitic steel as structural material, Lithium orthosilicate (Li 4 SiO 4 ) as tritium breeder, beryllium pebble as neutron multiplier. TBM is allocated in standard vertical frame port. HCSB TBM consist of first wall, backplate, breeding sub-modules, caps, grid and support plate, and breeding sub-modules is arranged by layout of 2 x 6 in blanket box. In this paper, main components of HCSB TBM will be described in detail, also performance analysis of main components have been completed. (authors)

  13. Neutronic analysis of the European reference design of the water cooled lithium lead blanket for a DEMOnstration reactor

    International Nuclear Information System (INIS)

    Petrizzi, L.

    1994-01-01

    Water cooled lithium lead blankets, using liquid Pb-17Li eutectic both as breeder and neutron multiplier material, and martensitic steel as structural material, represent one of the four families under development in the European DEMO blanket programme. Two concepts were proposed, both reaching tritium breeding self-sufficiency: the 'box-shaped' and the 'cylindrical modules'. Also to this scope a new concept has been defined: 'the single box'. A neutronic analysis of the 'single box' is presented. A full 3-D model including the whole assembly and many of the reactor details (divertors, holes, gaps) has been defined, together with a 3-D neutron source. A tritium breeding ration (TBR) value of 1.19 confirms the tritium breeding self-sufficiency of the design. Selected power densities, calculated for the different materials and zones, are here presented. Some shielding capability considerations with respect to the toroidal field coil system are presented too. (author) 10 refs.; 3 figs.; 3 tabs

  14. Air tight electrical box

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, C.G.

    1990-08-14

    An air-impervious electrical box to facilitate air sealing a house comprises an integral, rigid box body having a continuous flange, integral with the body, circumscribing and outwardly extending from the sides of the body. This flange is rearwardly positioned behind the front edges of the sides of the body a predetermined distance so that the electrical box may be secured to framing by nailing through the flange. Drywall is then secured to the frame on top of and adjecent to the flange. Such box eliminates the necessity for solid backing and minimizes passage of air through the box and space between the drywall and the box.

  15. (D,T) Driven thorium hybrid blankets

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Khan, S.; Sahin, S.

    1983-01-01

    Recently, a project has started, with the aim to establish the neutronic performance and the basic design of an experimental fusionfission (hybrid) reactor facility, called AYMAN, in cylinderical geometry. The fusion reactor will have to be simulated by a (D,T) neutron generator. Fissile and fertile fuel will have to surround the neutron generator as a cylinderical blanket to simulate the boundary conditions of the hybrid blanket in a proper way. This geometry is consistent with Tandem Mirror Hybrid Blanket design and with most of the ICF blanket designs. A similar experimental installation will become operational around 1984 at the Swiss Federal Institute of Technology in Lausanne, Switzerland known under the project LOTUS. Due to the limited dimensions of the experimental cavity of the LOTUS-hybrid reactor, the LOTUS blankets have to be designed in plane geometry. Also, the bulky form of the Haefely neutron generator of the LOTUS facility obliges one to design a blanket in the plane geometry. This results in a vacuum left boundary conditions for the LOTUS blanket. The importance of a reflecting left boundary condition on the overall neutronic performance of a hybrid blanket has been analyzed in previous work in detail

  16. Design and analysis of ITER shield blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Junji; Hatano, Toshihisa; Ezato, Kouichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-12-01

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  17. Methods to enhance blanket power density

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01

    The overall objective of this task is to investigate the extent to which the power density in the FED/INTOR breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow advanced reactor blanket modules to be tested on FED/INTOR under representative conditions

  18. NET test blanket design and remote maintenance

    International Nuclear Information System (INIS)

    Holloway, C.; Hubert, P.

    1991-01-01

    The NET machine has three horizontal ports reserved for testing tritium breeding blanket designs during the physics phase and possibly five during the technology phase. The design of the ports and test blankets are modular to accept a range of blanket options, provide radiation shielding and allow routine replacement. Radiation levels during replacement or maintenance require that all operations must be carried out remotely. The paper describes the problems overcome in providing a port design which includes attachment to the vacuum vessel with double vacuum seals, an integrated cooled first wall and support guides for the test blanket module. The method selected to remotely replace the test module whilst controlling the spread of contamination is also adressed. The paper concludes that the provisions of a test blanket facility based on the NET machine design is feasible. (orig.)

  19. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....

  20. Blanket materials for DT fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1981-01-01

    This paper presents an overview of the critical materials issues that must be considered in the development of a tritium breeding blanket for a tokamak fusion reactor that operates on the D-T-Li fuel cycle. The primary requirements of the blanket system are identified and the important criteria that must be considered in the development of blanket technology are summarized. The candidate materials are listed for the different blanket components, e.g., breeder, coolant, structure and neutron multiplier. Three blanket concepts that appear to offer the most potential are: (1) liquid-metal breeder/coolant, (2) liquid-metal breeder/separate coolant, and (3) solid breeder/separate coolant. The major uncertainties associated with each of the design concepts are discussed and the key materials R and D requirements for each concept are identified

  1. Comparison of the leading candidate combinations of blanket materials, thermodynamic cycles, and tritium systems for full scale fusion power plants

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-01-01

    The many possible combinations of blanket materials, tritium generation and recovery systems, and power conversion systems were surveyed and a comprehensive set of designs were generated by using a common set of ground rules that include all of the boundary conditions that could be envisioned for a full-scale commercial fusion power plant. Particular attention was given to the effects of blanket temperature on power plant cycle efficiency and economics, the interdependence of the thermodynamic cycle and the tritium recovery system, and to thermal and pressure stresses in the blanket structure. The results indicate that, of the wide variety of systems that have been considered, the most promising employs lithium recirculated in a closed loop within a niobium blanket structure and cooled with boiling potassium or cesium. This approach gives the simplest and lowest cost tritium recovery system, the lowest pressure and thermal stresses, the simplest structure with the lowest probability of a leak, the greatest resistance to damage from a plasma energy dump, and the lowest rate of plasma contamination by either outgassing or sputtering. The only other blanket materials combination that appears fairly likely to give a satisfactory tritium generation and recovery system is a lithium-beryllium fluoride-Incoloy blanket, and even this system involves major uncertainties in the effectiveness, size, and cost of the tritium recovery system. Further, the Li 2 BeF 4 blanket system has the disadvantage that the world reserves of beryllium are too limited to support a full-blown fusion reactor economy, its poor thermal conductivity leads to cooling difficulties and a requirement for a complex structure with intricate cooling passages, and this inherently leads to an expansive blanket with a relatively high probability of leaks. The other blanket materials combinations yield even less attractive systems

  2. Fusion blankets for catalyzed D--D and D--He3 reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β noncircular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphynyl coolant

  3. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    Science.gov (United States)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  4. Fusion blankets for catalyzed D--D and D--3He reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β non-circular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphenyl coolant

  5. Dustproof cooling of the electrical box

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2018-01-01

    Full Text Available In present are electrical boxes cooled by air through the intake hole on the bottom electrical box to the box space with electrotechnical elements and exhaust through the hole at the top to the surrounding by natural convection. This cooling method is effective but operate with the risk of contamination electrotechnical elements by dust sucking from surrounding air. The goal of this work is solution of the dustproof cooling of the electrical box by natural convection. The work deal with design of the device with the heat transfer by the phase change of the working fluid and experimental measuring its thermal performance at the cooling electrotechnical elements loaded by heat 1 200 W in the dustproof electrical box.

  6. Moving ring field-reversed mirror blanket design considerations

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, L.; Kessel, C.; Norman, J.; Schultz, K.R.

    1981-01-01

    A blanket design for the Moving Ring Field-Reversed Mirror Reactor (MRFRM) is presented in this paper. The design emphasis is placed on minimizing the induced radioactivities in the first-wall, blanket and shield. To this end, aluminum-alloy was selected as the reference structural material, giving dose rates two weeks after shutdown that are 3 to 4 orders of magnitude lower than comparable steel structures. The aluminum first-wall is water-cooled and thermally insulated from the high temperature SiC-clad Li 2 O tritium breeding zone. A local tritium breeding ratio of 1.05 was obtained for the design. The tritium is extracted from the Li 2 O by the use of a small dry helium purge stream through the SiC tubes. About 1 ppM hydrogen is added to the helium purge stream to enhance the tritium recovery rate. Helium at 28 atmospheres pressure is circulated through the blanket and shield, with an outlet temperature of 850 0 C, which is coupled with an existing small size closed-cycle gas turbine (CCGT) power conversion system. The spatial and temporal variations of the first-wall temperature caused by the translational movement of the plasma rings along the axis of the cylindrical reactor were evaluated. The after-heat cooling problems of the first-wall were also considered

  7. Progress in fusion reactors blanket analysis and evaluation at CEA

    International Nuclear Information System (INIS)

    Proust, E.; Gervaise, F.; Carre, F.; Chevereau, G.; Doutriaux, D.

    1986-09-01

    In the frame of the recent CEA studies aiming at the development, evaluation and comparison of solid breeder blanket concepts in view of their adaptation to NET, the evaluation of specific questions related to the first wall design, the present paper examines first the performances of a helium cooled toroidal blanket design for NET, based on innovative Beryllium/Ceramics breeder rod elements. Neutronic and thermo-mechanical optimisation converges on a concept featured by a breeding capability in excess of 1.2, a reasonnable pumping power of 1% and a narrow breeder temperature range (470+-30 deg C of the breeder), the latter being largely independent of the power level. This design proves naturally adapted to ceramic breeder assigned to very strict working conditions, and provides for any change in the thermal and heat transfer characteristics over the blanket lifetime. The final section of the paper is devoted to the evaluation of the heat load poloidal distribution and to the irradiation effects on first wall structural materials

  8. Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Sato, Satoshi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Konno, Chikara; Edao, Yuki; Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Thermo-hydraulic calculation in the TBM at the water ingress event has been done. • Shielding calculations for the ITER equatorial port #18 were conducted by using C-lite model. • Prototypic pebbles of Be{sub 17}Ti{sub 2} and Be{sub 12}V had a good oxidation property similar to Be{sub 12}Ti pebble. • Li rich Li{sub 2}TiO{sub 3} pebbles were successfully fabricated using the emulsion method by controlling sintering atmosphere. • New tritium production/recovery experiments at FNS have been started by using ionization chamber as on-line gas monitor. - Abstract: The development of a water cooled ceramic breeder (WCCB) test blanket module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and development of DEMO blanket, R&D has been performed on the module fabrication technology, breeder and multiplier pebble fabrication technology, tritium production rate evaluation, as well as structural and safety design activities. The fabrication of full-scale first wall, side walls, breeder pebble bed box and back wall was completed, and assembly of TBM with box structure was successfully achieved. Development of advanced breeder and multiplier pebbles for higher chemical stability was continued for future DEMO blanket application. From the view point of TBM test result evaluation and DEMO blanket performance design, the development of the blanket tritium transport simulation technology, investigation of the TBM neutron measurement technology and the evaluation of the tritium production and recovery test using D-T neutron in the fusion neutron source (FNS) facility has been performed. This paper provides an overview of the recent achievements of the development of the WCCB Blanket in Japan.

  9. Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhao [University of Science and Technology of China, Hefei, Anhui (China); Southwestern Institute of Physics, Chengdu, Sichuan (China); Cao, Qixiang; Wu, Xinghua; Wang, Xiaoyu; Zhang, Guoshu [Southwestern Institute of Physics, Chengdu, Sichuan (China); Feng, Kaiming, E-mail: fengkm@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China)

    2016-11-15

    Highlights: • An updated design of Helium Cooled Ceramic breeder Blanket (HCCB) for HCCB-DEMO is proposed in this paper. • The Breeder Unit is transformed to TBM-like sub-modules, with double “banana” shape tritium breeder. Each sub-module is inserted in space formed by Stiffen Grids (SGs). • The performance analysis is performed based on the R&D development of material, fabrication technology and safety assessment in CN ITER TBM program. • Hot spots will be located at the FW bend side. - Abstract: The basic definition of the HCCB-DEMO plant and preliminary blanket designed by Southwestern Institution of Physics was proposed in 2009. The DEMO fusion power is 2550 MW and electric power is 800 MW. Based on development of R&D in breeding blanket, a conceptual design of helium cooled blanket with ceramic breeder in HCCB-DEMO was presented. The main design features of the HCCB-DEMO blanket were: (1) CLF-1 structure materials, Be multiplier and Li{sub 4}SiO{sub 4} breeder; (2) neutronic wall load is 2.3 MW/m{sup 2} and surface heat flux is 0.43 MW/m{sup 2} (2) TBR ≈ 1.15; (3) geometry of breeding units is ITER TBM-like segmentation; (4)Pressure of helium is 8 MPa and inlet/outlet temperature is 300/500 °C. On the basis of these design, some important analytical results are presented in aspects of (i) neutronic behavior of the blanket; (ii) design of 3D structure and thermal-hydraulic lay-out for breeding blanket module; (iii) structural-mechanical behavior of the blanket under pressurization. All of these assessments proved current stucture fulfill the design requirements.

  10. Heat Loads Due To Small Penetrations In Multilayer Insulation Blankets

    Science.gov (United States)

    Johnson, W. L.; Heckle, K. W.; E Fesmire, J.

    2017-12-01

    The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to ease the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fourier’s Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at ∼76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.

  11. Engineering design of a direct-cycle steam-generating blanket for a long-pulse fusion reactor

    International Nuclear Information System (INIS)

    Cort, G.E.; Hagenson, R.L.; Teasdale, R.W.; Fox, W.E.; Soran, P.D.; Cullingford, H.S.; Bathke, C.G.; Krakowski, R.A.

    1979-01-01

    A comprehensive neutronics, thermohydraulic, and mechanical design of a tritium-breeding blanket for use by a conceptual long-pulse Reversed-Field Pinch Reactor (RFPR) is described. On the basis of constraints imposed by cost and the desire to use existing technology, a direct-cycle steam system and stainless-steel construction were used. For reasons of plasma stability, the RFPR blanket supports a 20-mm-thick copper first wall. Located behind the 1.5-m-radius first wall is a 0.50-m-thick stainless-steel blanket containing a granular bed of Li 2 O through which flows low-pressure helium (0.1 MPa) for tritium extraction. Water/steam tubes radially penetrate this packed bed. The large thermal capacity and low thermal diffusivity of the Li 2 O blanket are sufficient to maintain a nearly constant temperature during the approx. 25-s burn period

  12. Convertible shielding to ceramic breeding blanket

    International Nuclear Information System (INIS)

    Furuya, Kazuyuki; Kurasawa, Toshimasa; Sato, Satoshi; Nakahira, Masataka; Togami, Ikuhide; Hashimoto, Toshiyuki; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1995-05-01

    Four concepts have been studied for the ITER convertible blanket: 1)Layered concept 2)BIT(Breeder-Inside-Tube)concept 3)BOT(Breeder-Out of-Tube)concept 4)BOT/mixed concept. All concepts use ceramic breeder and beryllium neutron multiplier, both in the shape of small spherical pebbles, 316SS structure, and H 2 O coolant (inlet/outlet temperatures : 100/150degC, pressure : 2 MPa). During the BPP, only beryllium pebbles (the primary pebble in case of BOT/mixed concept) are filled in the blanket for shielding purpose. Then, before the EPP operation, breeder pebbles will be additionally inserted into the blanket. Among possible conversion methods, wet method by liquid flow seems expecting for high and homogeneous pebble packing. Preliminary 1-D neutronics calculation shows that the BOT/mixed concept has the highest breeding and shielding performance. However, final selection should be done by R and D's and more detail investigation on blanket characteristics and fabricability. Required R and D's are also listed. With these efforts, the convertible blanket can be developed. However, the following should be noted. Though many of above R and D's are also necessary even for non-convertible blanket, R and D's on convertibility will be one of the most difficult parts and need significant efforts. Besides the installation of convertible blanket with required structures and lines for conversion will make the ITER basic machine more complicated. (author)

  13. On blanket concepts of the Helias reactor

    International Nuclear Information System (INIS)

    Wobig, H.; Harmeyer, E.; Herrnegger, F.; Kisslinger, J.

    1999-07-01

    The paper discusses various options for a blanket of the Helias reactor HSR22. The Helias reactor is an upgrade version of the Wendelstein 7-X device. The dimensions of the Helias reactor are: major radius 22 m, average plasma radius 1.8 m, magnetic field on axis 4.75 T, maximum field 10 T, number of field periods 5, fusion power 3000 MW. The minimum distance between plasma and coils is 1.5 m, leaving sufficient space for a blanket and shield. Three options of a breeding blanket are discussed taking into account the specific properties of the Helias configuration. Due to the large area of the first wall (2600 m 2 ) the average neutron power load on the first wall is below 1 MWm .2 , which has a strong impact on the blanket performance with respect to lifetime and cooling requirements. A comparison with a tokamak reactor shows that the lifetime of first wall components and blanket components in the Helias reactor is expected to be at least two times longer. The blanket concepts being discussed in the following are: the solid breeder concept (HCPB), the dual-coolant Pb-17Li blanket concept and the water-cooled Pb-17Li concept (WCLL). (orig.)

  14. Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing

    International Nuclear Information System (INIS)

    Tokuhiro, A.

    1991-11-01

    A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs

  15. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  16. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  17. Beryllium R and D for blanket application

    Energy Technology Data Exchange (ETDEWEB)

    Dalle Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Longhurst, G.R. [Idaho National Engineering Lab., Idaho Falls (United States); Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-10-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.) 29 refs.

  18. Beryllium R and D for blanket application

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Scaffidi-Argentina, F.; Kawamura, H.

    1998-01-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.)

  19. Beryllium R&D for blanket application

    Science.gov (United States)

    Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.

    1998-10-01

    The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.

  20. Benchmark calculations for fusion blanket development

    International Nuclear Information System (INIS)

    Sawan, M.E.; Cheng, E.T.

    1985-01-01

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li/sub 17/Pb/sub 83/ and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the TBR to group structure and weighting spectrum increases and Li enrichment decrease with up to 20% discrepancies for thin natural Li/sub 17/Pb/sub 83/ blankets

  1. Benchmark calculations for fusion blanket development

    International Nuclear Information System (INIS)

    Sawan, M.L.; Cheng, E.T.

    1986-01-01

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li 17 Pb 83 and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the tritium breeding ratio to group structure and weighting spectrum increases as the thickness and Li enrichment decrease with up to 20% discrepancies for thin natural Li 17 Pb 83 blankets. (author)

  2. Environmental considerations for alternative fusion reactor blankets

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Young, J.R.

    1975-01-01

    Comparisons of alternative fusion reactor blanket/coolant systems suggest that environmental considerations will enter strongly into selection of design and materials. Liquid blankets and coolants tend to maximize transport of radioactive corrosion products. Liquid lithium interacts strongly with tritium, minimizing permeation and escape of gaseous tritium in accidents. However, liquid lithium coolants tend to create large tritium inventories and have a large fire potential compared to flibe and solid blankets. Helium coolants minimize radiation transport, but do not have ability to bind the tritium in case of accidental releases. (auth)

  3. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  4. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  5. Preconceptual design of a packed fluidized bed blanket for a fission suppressed thorium-fueled CTHR

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Karbowski, J.S.; Chapin, D.L.

    1981-01-01

    This paper describes a thorium-fueled PFB blanket concept for a Commercial Tokamak Hybrid Reactor. A preliminary mechanical concept is presented and the results of neutronics, thermal-hydraulics and economics analyses are discussed. Futher work needed to design and advance the concept is recommended

  6. Breeding blanket development. Tritium release from breeder

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Nagao, Yoshiharu

    2006-01-01

    Engineering data on neutron irradiation performance of tritium breeders are needed to design the breeding blanket of fusion reactor. In this study, tritium release experiments of the breeders were carried out to examine the effects of various parameters (such as sweep gas flow rate, hydrogen content in sweep gas, irradiation temperature and thermal neutron flux) on tritium generation and release behavior. Lithium titanate (Li 2 TiO 3 ) is considered as a candidate tritium breeder in the blanket design of International Thermonuclear Experimental Reactor (ITER). As for the shape of the breeder material, a small spherical form is preferred to reduce the thermal stress induced in the breeder. Li 2 TiO 3 pebbles of about 170g in total weight and with 0.3 and 2 mm in diameter were manufactured by a wet process, and an assembly packed with the binary Li 2 TiO 3 pebbles was irradiated in Japan Materials Testing Reactor (JMTR). The tritium was generated in the Li 2 TiO 3 pebble bed and released from the pebble bed, and was swept downstream using the sweep gas for on-line analysis of tritium content. Concentration of total tritium and gaseous tritium (HT or T 2 gas) released from the Li 2 TiO 3 pebble bed were measured by ionization chambers, and the ratio of (gaseous tritium)/(total tritium) was evaluated. The sweep gas flow rate was changed from 100 to 900cm 3 /min, and hydrogen content in the sweep gas was changed from 100 to 10000 ppm. Furthermore, thermal neutron flux was changed using a window made of hafnium (Hf) neutron absorber. The irradiation temperature at an outer region of the Li 2 TiO 3 pebble bed was held between 200 and 400degC. The main results of this experiment are summarized as follows. 1) When the temperature at the outside edge of the Li 2 TiO 3 pebble bed exceeded 100degC, the tritium release from the Li 2 TiO 3 pebble bed started. The ratio of the tritium release rate and the tritium generation rate (normalized tritium release rate: R/G) reached

  7. Blanket design for imploding liner systems

    International Nuclear Information System (INIS)

    Schaffer, M. J.

    1980-01-01

    The blanket design comprises hot, molten, rotating liquid vortex systems suitable for rapidly compressing confined plasmas, in which stratified immiscible liquid layers having successively greater mass densities outwardly of the axis of rotation are provided

  8. APT target-blanket fabrication development

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  9. Experimental investigation of MHD pressure losses in a mock-up of a liquid metal blanket

    Science.gov (United States)

    Mistrangelo, C.; Bühler, L.; Brinkmann, H.-J.

    2018-03-01

    Experiments have been performed to investigate the influence of a magnetic field on liquid metal flows in a scaled mock-up of a helium cooled lead lithium (HCLL) blanket. During the experiments pressure differences between points on the mock-up have been recorded for various values of flow rate and magnitude of the imposed magnetic field. The main contributions to the total pressure drop in the test-section have been identified as a function of characteristic flow parameters. For sufficiently strong magnetic fields the non-dimensional pressure losses are practically independent on the flow rate, namely inertia forces become negligible. Previous experiments on MHD flows in a simplified test-section for a HCLL blanket showed that the main contributions to the total pressure drop in a blanket module originate from the flow in the distributing and collecting manifolds. The new experiments confirm that the largest pressure drops occur along manifolds and near the first wall of the blanket module, where the liquid metal passes through small openings in the stiffening plates separating two breeder units. Moreover, the experimental data shows that with the present manifold design the flow does not distribute homogeneously among the 8 stacked boxes that form the breeding zone.

  10. Key achievements in elementary R and Ds on water-cooled solid breeder blanket for ITER Test Blanket Module in JAERI

    International Nuclear Information System (INIS)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Tanigawa, H.; Tobita, K.; Akiba, M.; Hayashi, K.; Ochiai, K.; Nishitani, T.

    2005-01-01

    This paper presents significant progress in research and development (R and D) of key elementary technologies on the water-cooled solid breeder blanket for the ITER test blanket modules (TBMs) in JAERI. Development of module fabrication technology, bonding technology of armors, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup, and tritium release behavior from Li 2 TiO 3 pebble bed under neutron pulsed operation condition are summarized. By the improvement of heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H, can be obtained by homogenizing it at 1150 deg C followed by normalizing at 930 deg C after the Hot Isostatic Pressing (HIP) process. Moreover, a promising bonding process for a tungsten armor and an F82H structural material was developed by using a solid state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it was found that the thermal fatigue lifetime of F82H can be predicted by using Manson-Coffin's law. As for R and Ds on a breeder material, Li 2 TiO 3 , effective thermal conductivity of Li 2 TiO 3 pebble was measured under compressive force simulating the ITER TBM environment. The increase in the effective thermal conductivity of the pebble bed was about 2.5 % at the compressive strain of 0.9 % at 400 deg C. Neutronic performance of the blanket module mockup has been carried out by the 14 MeV neutron irradiation. It was confirmed that the measured tritium production rate agreed with the calculated values within about 10% difference. Also, tritium release from a Li 2 TiO 3 pebble bed was measured under pulsed neutron irradiation conditions simulating the ITER operation. (author)

  11. The fusion blanket program at Chalk River

    International Nuclear Information System (INIS)

    Hastings, I.J.

    1986-03-01

    Work on the Fusion Blanket Program commenced at Chalk River in 1984 June. Co-funded by Canadian Fusion Fuels Technology Project and Atomic Energy of Canada Limited, the Program utilizes Chalk River expertise in instrumented irradiation testing, ceramics, tritium technology, materials testing and compound chemistry. This paper gives highlights of studies to date on lithium-based ceramics, leading contenders for the fusion blanket

  12. Evaluation of heat transfer characteristics of a sphere-packed pipe for Flibe blanket

    International Nuclear Information System (INIS)

    Watanabe, Atsushi; Ebara, Shinji; Sagara, Akio; Hashizume, Hidetoshi

    2013-01-01

    A Flibe blanket has been proposed to be used in FFHR. Since Flibe has poor heat transfer performance, heat transfer promoter is required, and a sphere-packed pipe (SPP) has been proposed to enhance the heat transfer performance in the Flibe blanket. In this paper, the fluid flow and heat transfer characteristics in the SPP is evaluated numerically using a k–ε turbulent model for the flow field and an algebraic model for the thermal field. As a result, it was shown that bypass flows in the SPP play a significant role in heat transfer. Also it is thought that the turbulent energy can strongly affect heat transfer performance

  13. Evaluation of steam as a potential coolant for nonbreeding blanket designs

    International Nuclear Information System (INIS)

    Stevens, H.C.; Misra, B.; Youngdahl, C.K.

    1978-01-01

    A steam-cooled nonbreeding blanket design has been developed as an evolution of the Argonne Experimental Power Reactor (EPR) studies. This blanket concept complete with maintenance considerations is to function at temperatures up to 650 0 C utilizing nickel-based alloys such as Inconel 625. Thermo-mechanical analyses were carried out in conjunction with thermal hydraulic analysis to determine coolant chennel arrangements that permit delivery of superheated steam at 500 0 C directly to a modern fossil plant-type turbine. A dual-cycle system combining a pressurized water circuit coupled with a superheated steam circuit can produce turbine plant conversion efficiencies approaching 41.5%

  14. Size limitations for microwave cavity to simulate heating of blanket material in fusion reactor

    International Nuclear Information System (INIS)

    Wolf, D.

    1987-01-01

    The power profile in the blanket material of a nuclear fusion reactor can be simulated by using microwaves at 200 MHz. Using these microwaves, ceramic breeder materials can be thermally tested to determine their acceptability as blanket materials without entering a nuclear fusion environment. A resonating cavity design is employed which can achieve uniform cross sectional heating in the plane transverse to the neutron flux. As the sample size increases in height and width, higher order modes, above the dominant mode, are propagated and destroy the approximation to the heating produced in a fusion reactor. The limits at which these modes develop are determined in the paper

  15. Cost study of the ESPRESSO blanket for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Raffray, A.R.; Hoffman, M.A.; Gaskins, T.

    1986-02-01

    A detailed cost study of the ESPRESSO blanket concept for the Tandem Mirror Fusion Reactor (TMR) has been performed to complement the thermal-hydraulic parametric study and to help narrow down the choice of parameters for the final design. The ESPRESSO blanket consists of a number of structurally independent ring modules. Each ring module is made up of a number of mutually pressure-supporting canisters containing arrays of breeder tubes. Two separate helium coolant flows are used: a main flow to cool the tube bank and a cooler first wall flow

  16. Workshop on cold-blanket research

    International Nuclear Information System (INIS)

    1977-05-01

    The objective of the workshop was to identify and discuss cold-plasma blanket systems. In order to minimize the bombardment of the walls by hot neutrals the plasma should be impermeable. This requires a density edge-thickness product of nΔ > 10 15 cm -2 . An impermeable cold plasma-gas blanket surrounding a hot plasma core reduces the plasma wall/limiter interaction. Accumulation of impurities in this blanket can be expected. Fuelling from a blanket may be possible as shown by experimental results, though not fully explained by classical transport of neutrals. Refuelling of a reacting plasma had to be ensured by inward diffusion. Experimental studies of a cold impermeable plasma have been done on the tokamak-like Ringboog device. Simulation calculations for the next generation of large tokamaks using a particular transport model, indicate that the plasma edge profile can be controlled to reduce the production of sputtered impurities to an acceptable level. Impurity control requires a small fraction of the radial space to accomodate the cold-plasma layer. The problem of exhaust is, however, more complicated. If the cold-blanket scheme works as predicted in the model calculations, then α-particles generated by fusion will be transported to the cold outside layer. The Communities' experimental programme of research has been discussed in terms of the tokamaks which are available and planned. Two options present themselves for the continuation of cold-blanket research

  17. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aktaa, J., E-mail: jarir.aktaa@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V. [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  18. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    International Nuclear Information System (INIS)

    Aktaa, J.; Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V.

    2014-01-01

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  19. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  20. Development and testing of a zero stitch MLI blanket using plastic pins for space use

    OpenAIRE

    畠中, 龍太; 宮北, 健; 杉田, 寛之; Saitoh, Masanori; Hirai, Tomoyuki; Hatakenaka, Ryuta; Miyakita, Takeshi; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki

    2014-01-01

    New types of MLI blanket have been developed to achieve high thermal performance while maintaining production and assembly workability equivalent to the conventional type. Tag-pins, which are widely used in commercial applications to hook price tags to products, are used to fix the films in place and the pin material is changed to polyetheretherketone (PEEK) for use in space. Thermal performance is measured by using a boil-off calorimeter, in which a rectangular liquid nitrogen tank is used t...

  1. First wall and blanket stresses induced by cyclic fusion core operations

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Kostoff, R.N.

    1981-01-01

    An analysis is made of cyclic thermal loads and stresses for the complete range of operating conditions. Two critical components were examined; the solid wall adjacent to the fusion plasma (first wall) and the fuel elements in the high power density region of the blanket. Simple closed form expressions were derived for temperature increases and thermal stresses that may be evaluated conveniently and rapidly and the values compared for different systems

  2. The power-sharing formula for a seed/blanket core-resolution of a paradox

    International Nuclear Information System (INIS)

    Radkowsky, A.; Segev, M.; Galperin, A.

    1986-01-01

    The ''classical'' formula for the sharing of power between a seed and blanket was based on the two-group diffusion theory model and gave good agreement with experiments conducted in the original Shippingport program and with transport theory. Recently an extensive series of calculations on seed/blanket assemblies showed that the power sharing deviates widely from the classical formula but paradoxically is in good agreement with the one-group formula, which neglects the back leakage of thermal neutrons from the blanket to the seed. The power-sharing formula has now been rederived, and the paradox is resolved by taking into account epithermal absorptions in the seeds. The diffusion theory model is important as a guide to formulating innovative concepts for improved core designs

  3. Diffusion bonding of reduced activation ferritic steel F82H for demo blanket application

    International Nuclear Information System (INIS)

    Kurasawa, T.; Tamura, M.

    1996-01-01

    A reduced activation ferritic steel, a grade F82H developed by JAERI, is a promising candidate structural material for the blanket and the first wall of DEMO reactors. In the present study, diffusion bonding of F82H has been investigated to develop the fabrication procedures of the blanket box and the first wall panel with cooling channels embedded by F82H. The parameters examined are the bonding temperature (810-1050 C), bonding pressure (2-10 MPa) and roughness of the bonding surface (0.5-12.8 μR max ), and metallurgical examination and mechanical tests of the diffusion bonded joints have been conducted. From the tests, sufficient bonding was obtained under the temperatures of 840-1 050 C (compressive stress of 3-12 MPa), and it was found that heat treatment following diffusion bonding is essential to obtain the mechanical properties similar to that of the base metal. (orig.)

  4. Low activity blanket designs and heat transfer for experimental power reactors

    International Nuclear Information System (INIS)

    Fillo, J.; Tichler, P.; Lazareth, O.; Powell, J.

    1976-01-01

    Two minimum activity blanket designs are described, based on the ANL TEPR circular design parameters. A first wall loading (plasma on) of 1.0 MW(th)/m 2 has been assumed. The first option is composed of SAP (sintered aluminum product) modules. The oval shaped SAP shell, in which approximately 45 percent of the fusion energy is removed, is maintained at a temperature of approximately 400 0 C by a He coolant stream. The remaining 55 percent of the fusion energy is deposited in a thermally insulated hot interior (SiC and B 4 C) and removed by a separate He coolant, with exit temperature of 800 0 C. In the second option, the blanket is a thick graphite block structure (approximately 50 cm thickness) with SAP coolant tubes carrying He (50 atm) embedded deep within the graphite to minimize radiation damage. The neutron and gamma energy deposited in the graphite is radiated along internal slots and conducted through the graphite to the coolant tubes. To reduce surface evaporation above 2000 0 C, the blanket surface is radiatively cooled to a low temperature radiation sink, a bank of He cooled SAP tubes. Approximately 20 percent of the fusion energy is removed in this region, the remaining 80 percent in the primary graphite-aluminum blanket. Both blanket options are mounted on heavy Al backing plates, cooled by He, which are in turn supported from the fixed shield

  5. Thermostructural design of the first wall/blanket for the TITAN-RFP fusion reactor

    International Nuclear Information System (INIS)

    Orient, G.E.; Blanchard, J.P.; Ghoniem, N.M.

    1987-01-01

    The mass power density, which is defined as the average power per unit mass within the magnet boundary, is a rough and general measure of economic competitiveness. Conn et al. (1985) have identified a target value of 100 kW(e)/tonne as a reasonable threshold for 'compact' commercial fusion systems. In pursuit of this goal, Hagenson et al. (1984) and Najmabadi et al. (1987) have pointed out the inherent characteristics of the RFP toroidal confinement concept which allow it to exceed this target value. It is inevitable that the compactness of the fusion power core will introduce a unique set of design issues. The special design concerns stem from high thermal surface fluxes, high bulk energy deposition by neutrons, and a relatively short blanket structural lifetime. In the TITAN-RFP, study Najmabadi et al. (1987) investigate a number of blanket (B) and first wall (FW) options suitable for high power density fusion reactors. Final choices were made for two designs: A high pressure aqueous blanket and a vanadium/lithium self-cooled blanket. The first design utilizes a pressurized aqueous loop containing a lithium compound dissolved in water, while the second design is based upon a self-cooled lithium-vanadium blanket. In this paper, we consider the beginning-of-life (BOL) thermostructural design and analysis of only the second concept. (orig./GL)

  6. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  7. Flibe blanket concept for transmuting transuranic elements and long lived fission products

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    A Molten salt (Flibe) fusion blanket concept has been developed to solve the disposition problems of the spent nuclear fuel and the transuranic elements. This blanket concept can achieve the top rated solution, the complete elimination of the transuranic elements and the long-lived fission products. Small driven fusion devices with low neutron wall loading and low neutron fluence can perform this function. A 344-MW integrated fusion power from D-T plasmas for thirty years with an availability factor of 0.75 can dispose of 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. In addition, the utilization of this blanket concept eliminates the need for a geological repository site, which is a major advantage. This application provides an excellent opportunity to develop and to enhance the public acceptance of the fusion energy for the future. The energy from the transmutation process is utilized to produce revenue. Flibe, lithium-lead eutectic, and liquid lead are possible candidates. The liquid blankets have several features, which are suited for W application. It can operate at constant thermal power without interruption for refueling by adjusting the concentration of the transuranic elements and lithium-6. These liquids operate at low-pressure, which reduces the primary stresses in the structure material. Development and fabrication costs of solid transuranic materials are eliminated. Burnup limit of the transuranic elements due to radiation effects is eliminated. Heat is generated within the liquid, which simplifies the heat removal process without producing thermal stresses. These blanket concepts have large negative temperature coefficient with respect to the blanket reactivity, which enhances the safety performance. These liquids are chemically and thermally stable under irradiation conditions, which minimize the radioactive waste volume. The operational record of the Molten Salt Breeder Reactor with Flibe was very successful

  8. Welding techniques development of CLAM steel for Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunjing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China)], E-mail: lcj@ipp.ac.cn; Huang Qunying; Wu Qingsheng; Liu Shaojun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Lei Yucheng [Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Muroga, Takeo; Nagasaka, Takuya [National Institute for Fusion Science, Toki, Jifu, 509-5292 (Japan); Zhang Jianxun [Xi' an Jiaotong University, Xi' an, Shanxi, 710049 (China); Li Jinglong [Northwestern Polytechnical University, Xi' an, Shanxi, 710072 (China)

    2009-06-15

    Fabrication techniques for Test Blanket Module (TBM) with CLAM are being under development. Effect of surface preparation on the HIP diffusion bonding joints was studied and good joints with Charpy impact absorbed energy close to that of base metal have been obtained. The mechanical properties test showed that effect of HIP process on the mechanical properties of base metal was little. Uniaxial diffusion bonding experiments were carried out to study the effect of temperature on microstructure and mechanical properties. And preliminary experiments on Electron Beam Welding (EBW), Tungsten Inert Gas (TIG) Welding and Laser Beam Welding (LBW) were performed to find proper welding techniques to assemble the TBM. In addition, the thermal processes assessed with a Gleeble thermal-mechanical machine were carried out as well to assist the fusion welding research.

  9. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  10. Math in the Box

    Science.gov (United States)

    DeYoung, Mary J.

    2009-01-01

    This article describes how to make an origami paper box and explores the algebra, geometry, and other mathematics that unfolds. A set of origami steps that transforms the paper into an open box can hold mathematical surprises for both students and teachers. An origami lesson can engage students in an open-ended exploration of the relationship…

  11. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  12. Test Blanket Working Group's recent activities

    International Nuclear Information System (INIS)

    Vetter, J.E.

    2001-01-01

    The ITER Test Blanket Working Group (TBWG) has continued its activities during the period of extension of the EDA with a revised charter on the co-ordination of the development work performed by the Parties and by the JCT leading to a co-ordinated test programme on ITER for a DEMO-relevant tritium breeding blanket. This follows earlier work carried out until July 1998, which formed part of the ITER Final Design Report (FDR), completed in 1998. Whilst the machine parameters for ITER-FEAT have been significantly revised compared to the FDR, testing of breeding blanket modules remains a main objective of the test programme and the development of a reactor-relevant breeding blanket to ensure tritium fuel self-sufficiency is recognized a key issue for fusion. Design work and R and D on breeding blanket concepts, including co-operation with the other Contacting Parties of the ITER-EDA for testing these concepts in ITER, are included in the work plans of the Parties

  13. Detailed 3-D nuclear analysis of ITER outboard blanket modules

    International Nuclear Information System (INIS)

    Bohm, Tim; Davis, Andrew; Sawan, Mohamed; Marriott, Edward; Wilson, Paul; Ulrickson, Michael; Bullock, James

    2015-01-01

    Highlights: • Nuclear analysis was performed on detailed CAD models placed in a 40 degree model of ITER. • The regions examined include BM09, the upper ELM coil region (BM11–13), the neutral beam (NB) region (BM13–16), and BM18. • The results show that VV nuclear heating exceeds limits in the NB and upper ELM coil regions. • The results also show that the level of He production in parts of BM18 exceeds limits. • These calculations are being used to modify the design of the ITER blanket modules. - Abstract: In the ITER design, the blanket modules (BM) provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40 degree partially homogenized ITER global model. The regions analyzed include BM09, BM16 near the heating neutral beam injection (HNB) region, BM11–13 near the upper ELM coil region, and BM18. For the BM16 HNB region, the VV nuclear heating behind the NB region exceeds the design limit by up to 80%. For the BM11–13 region, the nuclear heating of the VV exceeds the design limit by up to 45%. For BM18, the results show that He production does not meet the limit necessary for re-welding. The results presented in this work are being used by the ITER Organization Blanket and Tokamak Integration groups to modify the BM design in the cases where limits are exceeded.

  14. Detailed 3-D nuclear analysis of ITER outboard blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Tim, E-mail: tdbohm@wisc.edu [Fusion Technology Institute, University of Wisconsin-Madison, Madison, WI (United States); Davis, Andrew; Sawan, Mohamed; Marriott, Edward; Wilson, Paul [Fusion Technology Institute, University of Wisconsin-Madison, Madison, WI (United States); Ulrickson, Michael; Bullock, James [Formerly, Fusion Technology, Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-15

    Highlights: • Nuclear analysis was performed on detailed CAD models placed in a 40 degree model of ITER. • The regions examined include BM09, the upper ELM coil region (BM11–13), the neutral beam (NB) region (BM13–16), and BM18. • The results show that VV nuclear heating exceeds limits in the NB and upper ELM coil regions. • The results also show that the level of He production in parts of BM18 exceeds limits. • These calculations are being used to modify the design of the ITER blanket modules. - Abstract: In the ITER design, the blanket modules (BM) provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40 degree partially homogenized ITER global model. The regions analyzed include BM09, BM16 near the heating neutral beam injection (HNB) region, BM11–13 near the upper ELM coil region, and BM18. For the BM16 HNB region, the VV nuclear heating behind the NB region exceeds the design limit by up to 80%. For the BM11–13 region, the nuclear heating of the VV exceeds the design limit by up to 45%. For BM18, the results show that He production does not meet the limit necessary for re-welding. The results presented in this work are being used by the ITER Organization Blanket and Tokamak Integration groups to modify the BM design in the cases where limits are exceeded.

  15. Modelling of Box Type Solar Cooker Performance in a Tropical ...

    African Journals Online (AJOL)

    Thermal performance model of box type solar cooker with loaded water is presented. The model was developed using the method of Funk to estimate cooking power in terms of climatic and design parameters for box type solar cooker in a tropical environment. Coefficients for each term used in the model were determined ...

  16. European DEMO BOT solid breeder blanket

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1994-11-01

    The BOT (Breeder Outside Tube) Solid Breeder Blanket for a fusion DEMO reactor is presented. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. In the paper the reference blanket design and external loops are described as well as the results of the theoretical and experimental work in the fields of neutronics, thermohydraulics, mechanical stresses, tritium control and extraction, development and irradiation of the ceramic breeder material, beryllium development, ferromagnetic forces caused by disruptions, safety and reliability. An outlook is given on the remaining open questions and on the required R and D program. (orig.) [de

  17. Fusion breeder sphere - PAC blanket design

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Palmer, B.J.F.

    1987-11-01

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  18. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse.

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs

  19. Effect of nature convection on heat transfer in the liquid LiPb blanket for FDS-II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongyan; Chen Hongli [Huaibei Coal Industry Teachers Coll. (China). Dept. of Physics; Zhou Tao [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics

    2007-07-01

    The He-cooled liquid LiPb tritium breeder (SLL) blanket concept is one of options of the blanket design of the fusion power reactor (FDS-II). The SLL blanket could be developed relatively easily with lower LiPb outlet temperature and slower LiPb flow velocity that allows the utilization of relatively mature material technology. The velocity of the liquid LiPb in the blanket is very slowly only in order to extract tritium. The magnetohydrodynamic (MHD) flow and heat transfer become very complex resulting from the differential heating of walls of the channels, especially adjacent to the First Wall (FW), and internal heat sources inside of the liquid LiPb. It is necessary to analyse the effect of the buoyancy-driven LiPb MHD flow on heat transfer in the channels with electrically and thermally conducting walls adjacent to the FW. The nature convection of the liquid LiPb, due to thermal diffusion, in the poloidal channel adjacent to the FW in the presence of the strong magnetic field of the SLL blanket has been considered and studied. The specially numerical MHD code based on the computational fluid dynamic software has been developed for analysis of the buoyancy-driven MHD flow. The properties of buoyantly convective flows have been investigated for various thermal boundary conditions. The numerical analysis was performed for the effect of nature convection on heat transfer of the liquid LiPb MHD flow in the poloidal channel in the SLL blanket. For the strong temperature gradient in the blanket and internal heat flux of Liquid LiPb, the three-dimensional temperature distributions of the LiPb, the FW and other walls have been given. Finally, The effect of the ratio of MHD buoyancy on the heat transfer characteristics of the LiPb flow have been calculated and presented. (orig.)

  20. LMFBR blanket physics project progress report No. 4

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Lanning, D.D.; Kaplan, I.; Supple, A.T.

    1973-01-01

    During the period covered by the report, July 1, 1972, through June 30, 1973, work was devoted to completion of experimental measurements and data analysis on Blanket Mockup No. 3, a graphite-reflected blanket, and to initiation of experimental work on Blanket Mockup No. 4, a steel-reflected assembly designed to mock up a demonstration plant blanket. Work was also carried out on the analysis of a number of advanced blanket concepts, including the use of high-albedo reflectors, the use of thorium in place of uranium in the blanket region, and the ''parfait'' or completely internal blanket concept. Finally, methods development work was initiated to develop the capability for making gamma heating measurements in the blanket mockups. (U.S.)

  1. Epoxy blanket protects milled part during explosive forming

    Science.gov (United States)

    1966-01-01

    Epoxy blanket protects chemically milled or machined sections of large, complex structural parts during explosive forming. The blanket uniformly covers all exposed surfaces and fills any voids to support and protect the entire part.

  2. Some new ideas for Tandem Mirror blankets

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.

    1981-01-01

    The Tandem Mirror Reactor, with its cylindrical central cell, has led to numerous blanket designs taking advantage of the simple geometry. Also many new applications for fusion neutrons are now being considered. To the pure fusion electricity producers and hybrids producing fissile fuel, we are adding studies of synthetic fuel producers and fission-suppressed hybrids. The three blanket concepts presented are new ideas and should be considered illustrative of the breadth of Livermore's application studies. They are not meant to imply fully analyzed designs

  3. Tritium behaviour in ceramic breeder blankets

    International Nuclear Information System (INIS)

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  4. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  5. Processing and waste disposal needs for fusion breeder blankets system

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1988-01-01

    We evaluated the waste disposal and recycling requirements for two types of fusion breeder blanket (solid and liquid). The goal was to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under U.S. Nuclear Regulatory Commission regulations. Described in this paper are the radionuclides expected in fusion blanket materials, plans for reprocessing and disposal of blanket components, and estimates for the operating costs involved in waste disposal. (orig.)

  6. Tritium inventory and permeation in liquid breeder blankets

    International Nuclear Information System (INIS)

    Reiter, F.

    1990-01-01

    This report reviews studies of the transport of hydrogen isotopes in the DEMO relevant water-cooled Pb-17Li blanket to be tested in NET and in a self-cooled blanket which uses Pb-17Li or Flibe as a liquid breeder material and V or Fe as a first wall material. The time dependences of tritium inventory and permeation in these blankets and of deuterium and tritium recycling in the self-cooled blanket are presented and discussed

  7. Pion in a box

    International Nuclear Information System (INIS)

    Bietenholz, W.; Rakow, P.E.L.; Schierholz, G.; Regensburg Univ.

    2010-02-01

    The residual mass of the pion in a finite spatial box at vanishing quark masses is computed with two flavors of dynamical clover fermions. The result is compared with predictions of chiral perturbation theory in the δ regime. (orig.)

  8. Feasibility study of LiF-BeF2 and chloride salts as blanket coolants for fusion power reactors

    International Nuclear Information System (INIS)

    Imamura, Y.

    1977-09-01

    The feasibility of using molten salts, in particular, nonberyllium-bearing chloride salts, as blanket coolants for Tokamak fusion reactors has been examined for the nucleonic and thermal/hydraulic aspects. It is concluded that the chloride salts, i.e., LiCl--KCl, LiCl--PbCl 2 and LiCl--SnCl 2 , can be used as the blanket coolant for a static lithium metal blanket provided that large blanket thickness can be tolerated, along with the use of U-238 for neutron multiplication in the cases of LiCl--KCl or LiCl--SnCl 2 cooled blankets. However, to make the appraisal complete, the tritium recovery and corrosion problems must be examined extensively, based on data not yet at hand. As for LiF--BeF 2 , it is observed that although the salt mixture can be used for a single fluid blanket with satisfactory nuclear performance, careful attention should be paid to the cooling capability

  9. Infectious disease and boxing.

    Science.gov (United States)

    King, Osric S

    2009-10-01

    There are no unique boxing diseases but certain factors contributing to the spread of illnesses apply strongly to the boxer, coach, and the training facility. This article examines the nature of the sport of boxing and its surrounding environment, and the likelihood of spread of infection through airborne, contact, or blood-borne routes of transmission. Evidence from other sports such as running, wrestling, and martial arts is included to help elucidate the pathophysiologic elements that could be identified in boxers.

  10. [Boxing: traumatology and prevention].

    Science.gov (United States)

    Cabanis, Emmanuel-Alain; Iba-Zizen, Marie-Thérèse; Perez, Georges; Senegas, Xavier; Furgoni, Julien; Pineau, Jean-Claude; Louquet, Jean-Louis; Henrion, Roger

    2010-10-01

    In 1986, a surgeon who, as an amateur boxer himself was concerned with boxers' health, approached a pioneering Parisian neuroimaging unit. Thus began a study in close cooperation with the French Boxing Federation, spanning 25 years. In a first series of 52 volunteer boxers (13 amateurs and 39 professionals), during which MRI gradually replaced computed tomography, ten risk factors were identified, which notably included boxing style: only one of 40 "stylists" with a good boxing technique had cortical atrophy (4.5 %), compared to 15 % of "sloggers". Changes to the French Boxing Federation rules placed the accent on medical prevention. The second series, of 247 boxers (81 amateurs and 266 professionals), showed a clear improvement, as lesions were suspected in 14 individuals, of which only 4 (1.35 %) were probably due to boxing. The third and fourth series were part of a protocol called "Brain-Boxing-Ageing", which included 76 boxers (11 having suffered KOs) and 120 MRI scans, with reproducible CT and MRI acquisitions (9 sequences with 1.5 T then 3 T, and CT). MRI anomalies secondary to boxing were found in 11 % of amateurs and 38 % of professionals (atrophy, high vascular T2 signal areas, 2 cases of post-KO subdural bleeding). CT revealed sinus damage in 13 % of the amateurs and 19 % of the professionals. The risk of acute and chronic facial and brain damage was underline, along with detailed precautionary measures (organization of bouts, role of the referee and ringside doctor, and application of French Boxing Federation rules).

  11. Nonneurologic emergencies in boxing.

    Science.gov (United States)

    Coletta, Domenic F

    2009-10-01

    Professional boxing has done an admirable job in promoting safety standards in its particular sport. However, injuries occur during the normal course of competition and, unfortunately, an occasional life-threatening emergency may arise. Although most common medical emergencies in boxing are injuries from closed head trauma, in this article those infrequent but potentially catastrophic nonneurologic conditions are reviewed along with some less serious emergencies that the physician must be prepared to address.

  12. Key achievements in elementary R&D on water-cooled solid breeder blanket for ITER test blanket module in JAERI

    Science.gov (United States)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.

    2006-02-01

    This paper presents the significant progress made in the research and development (R&D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li2TiO3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 °C followed by normalizing it at 930 °C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R&D on the breeder material, Li2TiO3, the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li2TiO3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li2TiO3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation.

  13. Key achievements in elementary R and D on water-cooled solid breeder blanket for ITER test blanket module in JAERI

    International Nuclear Information System (INIS)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.

    2006-01-01

    This paper presents the significant progress made in the research and development (R and D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li 2 TiO 3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 0 C followed by normalizing it at 930 0 C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R and D on the breeder material, Li 2 TiO 3 , the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li 2 TiO 3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li 2 TiO 3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation

  14. Fusion energy for alternate applications: the design of a high temperature falling bed as a long-lived blanket

    International Nuclear Information System (INIS)

    Harkness, S.D.; Stevens, H.C.; Hall, M.M.; Gohar, M.Y.A.; de Paz, J.F.

    1979-01-01

    The high temperature falling bed conceptual design work has consisted of a coordinated effort in neutronics, materials science, thermal hydraulics and mechanical design. The neutronics work has been based on a one-dimensional transport analysis and has been used to scope the implication of blanket dimensions, breeding materials, ceramic pebble material and coolant choice on both tritium breeding capabilities and energy deposition into the high temperature region of the blanket. The materials science effort has concentrated on defining the selection of a particular ceramic material. The thermal hydraulic analysis has been concerned with sizing the heat transfer system and defining the temperature gradients in the high temperature blanket. The mechanical design work has evaluated how such a system might be constructed from the point of view of maintainability and structural support

  15. ITER driver blanket, European Community design

    International Nuclear Information System (INIS)

    Simbolotti, G.; Zampaglione, V.; Ferrari, M.; Gallina, M.; Mazzone, G.; Nardi, C.; Petrizzi, L.; Rado, V.; Violante, V.; Daenner, W.; Lorenzetto, P.; Gierszewski, P.; Grattarola, M.; Rosatelli, F.; Secolo, F.; Zacchia, F.; Caira, M.; Sorabella, L.

    1993-01-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  16. European blanket development for a demo reactor

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Anzidei, L.

    1994-01-01

    There are four breeding blanket concepts for a fusion DEMO reactor under development within the framework of the fusion technology programme of the European Union (EU). This paper describes the design of these concepts, the accompanying R + D programme and the status of the development. (authors). 8 figs., 1 tab

  17. Nuclear, thermo-mechanical and tritium release analysis of ITER breeding blanket

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Enoeda, Mikio; Hatano, Toshihisa; Sato, Satoshi; Miki, Nobuharu; Akiba, Masato

    2003-06-01

    The design of the breeding blanket in ITER applies pebble bed breeder in tube (BIT) surrounded by multiplier pebble bed. It is assumed to use the same module support mechanism and coolant manifolds and coolant system as the shielding blankets. This work focuses on the verification of the design of the breeding blanket, from the viewpoints which is especially unique to the pebble bed type breeding blanket, such as, tritium breeding performance, tritium inventory and release behavior and thermo-mechanical performance of the ITER breeding blanket. With respect to the neutronics analysis, the detailed analyses of the distribution of the nuclear heating rate and TBR have been performed in 2D model using MCNP to clarify the input data for the tritium inventory and release rate analyses and thermo-mechanical analyses. With respect to the tritium inventory and release behavior analysis, the parametric analyses for selection of purge gas flow rate were carried out from the view point of pressure drop and the tritium inventory/release performance for Li 2 TiO 3 breeder. The analysis result concluded that purge gas flow rate can be set to conventional flow rate setting (88 l/min per module) to 1/10 of that to save the purge gas flow and minimize the size of purge gas pipe. However, it is necessary to note that more tritium is transformed to HTO (chemical form of water) in case of Li 2 TiO 3 compared to other breeder materials. With respect to the thermo-mechanical analyses of the pebble bed blanket structure, the analyses have been performed by ABAQUS with 2D model derived from one of eight facets of a blanket module, based on the reference design. Analyses were performed to identify the temperature distribution incorporating the pebble bed mechanical simulation and influence of mechanical behavior to the thermal behavior. The result showed that the maximum temperature in the breeding material was 617degC in the first row of breeding rods and the minimum temperature was 328

  18. Mechanical design and analysis for a EPR first wall/blanket/shield system

    International Nuclear Information System (INIS)

    Stevens, H.C.; Misra, B.; Youngdahl, C.K.

    1978-01-01

    Continuing studies are in progress at ANL to expand upon the design of a first wall/blanket/shield FW/B/S system and power conversion for a tokamak type Experimental Power Reactor (EPR). The FW/B/S system has evolved from an earlier design for a low beta, circular cross section plasma (major radius = 6 m) to one for a higher beta elongated plasma with a 4.7 m major radius. Basic mechanical design and layout features of the old and new EPR designs showing some of the more important design developments are given. These developments are aimed at simplifying the design, reducing the costs and in addition, improving the plant thermal efficiency and overall maintainability. In the area of the reactor blanket, significant thermal hydraulic and stress analysis have been performed to substantiate the integrity of the chosen concept. This paper deals with the discussion of these improved features

  19. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.).

  20. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.)

  1. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  2. The BOXES Methodology Black Box Dynamic Control

    CERN Document Server

    Russell, David W

    2012-01-01

    Robust control mechanisms customarily require knowledge of the system’s describing equations which may be of the high order differential type.  In order to produce these equations, mathematical models can often be derived and correlated with measured dynamic behavior.  There are two flaws in this approach one is the level of inexactness introduced by linearizations and the other when no model is apparent.  Several years ago a new genre of control systems came to light that are much less dependent on differential models such as fuzzy logic and genetic algorithms. Both of these soft computing solutions require quite considerable a priori system knowledge to create a control scheme and sometimes complicated training program before they can be implemented in a real world dynamic system. Michie and Chambers’ BOXES methodology created a black box system that was designed to control a mechanically unstable system with very little a priori system knowledge, linearization or approximation.  All the method need...

  3. Using one hybrid 3D-1D-3D approach for the conceptual design of WCCB blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Li, Jia [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)

    2017-01-15

    Highlights: • The Hybrid 3D-1D-3D approach is used for radial building design of WCCB. • Nuclear heat obtained by this method agrees well with 3D neutronics results. • The final results of temperature and TBR satisfy with the requirements. • All the results show that this approach is high efficiency and high reliability. - Abstract: A hybrid 3D-1D-3D approach is proposed for the conceptual design of a blanket. Firstly, the neutron wall loading (NWL) of each blanket module is obtained through a neutronics calculation employing a 3D model, which contains the geometry outline of in-vacuum vessel components and the exact neutron source distribution. Secondly, a 1D cylindrical model with the blanket module containing a detailed radial building is adopted for the neutronics analysis, with the aim of calculating the tritium breeding ratio (TBR) and nuclear heating. Being normalized to the NWL, the nuclear heating is transferred to a 2D model for thermal-hydraulics analysis using the FLUENT code. Through a series analysis of nuclear-thermal iterations that considers the tritium breeding ratio (TBR) and thermal performance as optimization objectives, the optimized radial building of each module surrounding plasma can be obtained. Thirdly, the 3D structural design of each module is established by adding side walls, cover plates, stiffening plates, and other components based on the radial building. The 3D neutronics and thermal-hydraulics using the detailed blanket modules are re-analyzed. This approach has been successfully applied to the design of a water-cooled ceramic breeder blanket for the Chinese Fusion Engineering Test Reactor (CFETR). The radial building of each blanket module surrounding plasma is optimized. The global tritium breeding ratio (TBR) calculated by the 3D neutronics analysis is 1.21, and the temperature of all materials in the 3D blanket structure is below the upper limits. As indicated by the comparison of the 1D and 3D neutronics and thermal

  4. Fusion technology development: first wall/blanket system and component testing in existing nuclear facilities

    International Nuclear Information System (INIS)

    Hsu, P.Y.S.; Bohn, T.S.; Deis, G.A.; Judd, J.L.; Longhurst, G.R.; Miller, L.G.; Millsap, D.A.; Scott, A.J.; Wessol, D.E.

    1980-12-01

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment employing an existing nuclear facility, the Engineering Test Reactor at the Idaho National Engineering Laboratory, is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of an existing test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module. The principal reaction considered involves 3 He in the annulus as follows: n + 3 He → p + t + 0.75 MeV. Bulk heating in the test module is accomplished by neutron thermalization, gamma heating, and absorption reactions involving 6 Li in the blanket breeding region. The concept can be extended to modified core configurations that will accommodate test modules of different sizes and types. It makes possible development testing of first wall/blanket systems and other fusion components on a scale and in ways not otherwise available until actual high-power fusion reactors are built

  5. Conceptual design of the blanket mechanical attachment for the helium-cooled lithium-lead reactor

    International Nuclear Information System (INIS)

    Barrera, G.; Branas, B.; Lucas, J.; Doncel, J.; Medrano, M.; Garcia, A.; Giancarli, L.; Ibarra, A.; Li Puma, A.; Maisonnier, D.; Sardain, P.

    2008-01-01

    The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 deg. C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 deg. C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions

  6. Assessment of First Wall and Blanket Options with the Use of Liquid Breeder

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Sawan, M.

    2005-01-01

    As candidate blanket concepts for a U.S. advanced reactor power plant design, with consideration of the time frame for ITER development, we assessed first wall and blanket design concepts based on the use of reduced activation ferritic steel as structural material and liquid breeder as the coolant and tritium breeder. The liquid breeder choice includes the conventional molten salt Li 2 BeF 4 and the low melting point molten salts such as LiBeF 3 and LiNaBeF 4 (FLiNaBe). Both self-cooled and dual coolant molten salt options were evaluated. We have also included the dual coolant leadeutectic Pb-17Li design in our assessment. We take advantage of the molten salt low electrical and thermal conductivity to minimize impacts from the MHD effect and the heat losses from the breeder to the actively cooled steel structure. For the Pb-17Li breeder we employ flow channel inserts of SiC f /SiC composite with low electrical and thermal conductivity to perform respective insulation functions. We performed preliminary assessments of these design options in the areas of neutronics, thermal-hydraulics, safety, and power conversion system. Status of the R and D items of selected high performance blanket concepts is reported. Results from this study will form the technical basis for the formulation of the U.S. ITER test module program and corresponding test plan

  7. Ferritic steels for the first generation of breeder blankets

    International Nuclear Information System (INIS)

    Diegele, E.

    2009-01-01

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  8. Eye trauma in boxing.

    Science.gov (United States)

    Corrales, Gustavo; Curreri, Anthony

    2009-10-01

    In boxing, along with a few other sports, trauma is inherent to the nature of the sport; therefore it is considered a high-risk sport for ocular injuries. The long-term morbidity of ocular injuries suffered by boxers is difficult to estimate due to the lack of structured long-term follow-up of these athletes. Complications of blunt ocular trauma may develop years after the athlete has retired from the ring and is no longer considered to be at risk for boxing-related injuries. This article describes the wide range of eye injuries a boxer can sustain, and their immediate and long-term clinical management.

  9. Design development and manufacturing sequence of the European water-cooled Pb-17Li test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Futterer, M.A.; Bielak, B.; Deffain, J.P.; Giancarli, L.; Li Puma, A.; Salavy, J.F.; Szczepanski, J. [CEA Saclay, Gif-sur-Yvette (France). FDRN/DMT/SERMA; Dellis, C. [CEA Grenoble, DTA-CEREM/SGM, Grenoble (France); Nardi, C. [ENEA Frascati, ERG-FUS-TECN-MEC, Frascati (Italy); Schleisiek, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit

    1998-09-01

    In 1996, the European Community started the development of a water-cooled Pb17Li blanket test module for ITER. First tests are currently scheduled to start with the beginning of the basic performance phase prior to D-T operation. The test module is designed to be a representative for a DEMO breeding blanket and relies on the liquid alloy Pb-17Li as both tritium breeder and neutron multiplier material, and water at PWR pressure and temperature as coolant. The structural material is martensitic steel. The straight, box-like structure of this blanket confines a pool of liquid Pb-17Li which is slowly circulated for ex-situ tritium extraction and lithium adjustment. The box and the Pb-17Li pool are separately cooled, the former with toroido-radial tubes, the latter with a bundle of double-walled U-tubes, equally made of martensitic steel and equipped with a permeation barrier. This paper presents the latest design and three manufacturing schemes with different degrees of technology. Advanced techniques such as solid or powder HIP are proposed to provide design flexibility. With a 3D neutronics analysis, the power and tritium generation were determined. (orig.) 11 refs.

  10. HIP technologies for fusion reactor blankets fabrication

    International Nuclear Information System (INIS)

    Le Marois, G.; Federzoni, L.; Bucci, P.; Revirand, P.

    2000-01-01

    The benefit of HIP techniques applied to the fabrication of fusion internal components for higher performances, reliability and cost savings are emphasized. To demonstrate the potential of the techniques, design of new blankets concepts and mock-ups fabrication are currently performed by CEA. A coiled tube concept that allows cooling arrangement flexibility, strong reduction of the machining and number of welds is proposed for ITER IAM. Medium size mock-ups according to the WCLL breeding blanket concept have been manufactured. The fabrication of a large size mock-up is under progress. These activities are supported by numerical calculations to predict the deformations of the parts during HIP'ing. Finally, several HIP techniques issues have been identified and are discussed

  11. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    Carvalho, S.H. de.

    1980-03-01

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author) [pt

  12. Flow balancing in liquid metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Morley, N.B.

    1995-01-01

    Non-uniform flow distribution between parallel channels is one of the most serious concerns for self-cooled liquid metal blankets with electrically insulated walls. We show that uncertainties in flow distribution can be dramatically reduced by relatively simple design modifications. Several design features which impose flow uniformity by electrically coupling parallel channels are surveyed. Basic mechanisms for ''flow balancing'' are described, and a particular self-regulating concept using discrete passive electrodes is proposed for the US ITER advanced blanket concept. Scoping calculations suggest that this simple technique can be very powerful in equalizing the flow, even with massive insulator failures in individual channels. More detailed analyses and experimental verification will be required to demonstrate this concept for ITER. (orig.)

  13. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  14. Conceptual design of Blanket Remote Handling System for CFETR

    International Nuclear Information System (INIS)

    Wei, Jianghua; Song, Yuntao; Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong

    2015-01-01

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  15. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  16. Economic evaluation of the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    Waganer, L.M.

    1985-01-01

    The economic impact of employing the highly ranked blankets in the Blanket Comparison and Selection Study (BCSS) was evaluated in the context of both a tokamak and a tandem mirror power reactor (TMR). The economic evaluation criterion was determined to be the cost of electricity. The influencing factors that were considered are the direct cost of the blankets and related systems; the annual cost of blanket replacement; and the performance of the blanket, heat transfer, and energy conversion systems. The technical and cost bases for comparison were those of the STARFIRE and Mirror Advanced Reactor Study conceptual design power plants. The economic evaluation results indicated that the nitrate-salt-cooled blanket concept is an economically attractive concept for either reactor type. The water-cooled, solid breeder blanket is attractive for the tokamak and somewhat less attractive for the TMR. The helium-cooled, liquidlithium breeder blanket is the least economically desirable of higher ranked concepts. The remaining self-cooled liquid-metal and the helium-cooled blanket concepts represent moderately attractive concepts from an economic standpoint. These results are not in concert with those found in the other BCSS evaluation areas (engineering feasibility, safety, and research and development (R and D) requirements). The blankets faring well economically had generally lower cost components, lower pumping power requirements, and good power production capability. On the other hand, helium- and lithium-cooled systems were preferred from the standpoints of safety, engineering feasibility, and R and D requirements

  17. Tokamak blanket design study, final report

    International Nuclear Information System (INIS)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m 2 and a particle heat flux of 1 MW/m 2 . Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma

  18. Tokamak blanket design study, final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.

  19. Teaching with Box Tops.

    Science.gov (United States)

    Raiser, Lynne; D'Zamko, Mary Elizabeth

    1984-01-01

    Using environmental materials (such as the phone book and placemats from fast food restaurants) can be a motivating way to teach learning disabled students skills and concepts, as shown in an approach to reading, math, science and nutrition, and social studies instruction using a JELL-O brand gelatin box. (CL)

  20. Glove box posting system

    International Nuclear Information System (INIS)

    McIntosh, A.E.

    1981-01-01

    A system for posting objects into closed containers, such as glove boxes, is described in which the bag used, preferably made of plastic, does not have to be fitted and sealed by the operator during each posting operation. (U.K.)

  1. Mystery Box Marvels

    Science.gov (United States)

    Santos, Joel; Centurio, Tina

    2012-01-01

    What happens in the first week of school could very well set the stage for the rest of the school year. Setting high standards for science activities based in inquiry can start on the first day of science class and develop as the year unfolds. With the use of simple, readily available, inexpensive materials, an efficient mystery box lesson can be…

  2. Helium Loop for the HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Neuberger, H.; Boccaccini, L.V.; Ghidersa, B. E.; Jin, X.; Meyder, R.

    2006-01-01

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium loop for the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) in ITER has been investigated with regard to the layout definition, selection of components, control, dimensioning and integration. This paper presents the status of development. The loop design for the HCPB-TBM in ITER will mainly base on the experience gained from Helium Loop Karlsruhe (HELOKA) which is currently developed at the FZK for experiments under ITER relevant conditions. The ITER loop will be equipped with similar components like HELOKA and will mainly consist of a circulator with variable speed drive, a recuperator, an electric heater, a cooler, a dust filter and auxilary components e.g. pipework and valves. A Coolant Purification System (CPS) and a Pressure Control System (PCS) are foreseen to meet the requirements on coolant conditioning. To prepare a TBM for a new experimental campaign, a succession of operational states like '' cold maintenance '', '' baking '' and '' cold standby '' is required. Before a pulse operation, a '' hot stand-by '' state should be achieved providing the TBM with inlet coolant at nominal conditions. This operation modus is continued in the dwell time waiting for the successive pulse. A '' tritium out-gassing '' will be also required after several TBM-campaigns to remove the inventory rest of T in the beds for measurement purpose. The dynamic circuit behaviour during pulses, transition between different operational states as well as the behaviour in accident situations are investigated with RELAP. The main components of the loop will be accommodated inside the Tokamak Cooling Water System(TCWS)- vault from where the pipes require connection to the TBM which is attached to port 16 of the vacuum vessel. Therefore pipes across the ITER- building of about 110 m in length (each) are required. Additional equipment is also located in the port cell

  3. Neutronics Experiment on A HCPB Breeder Blanket Mock-Up

    International Nuclear Information System (INIS)

    Paola Batistoni, P.; Angelone, M.; Bettinali, L.

    2006-01-01

    A neutronics experiment has been performed in the frame of European Fusion Technology Program on a mock-up of the EU Test Blanket Module (TBM), Helium Cooled Pebble Bed (HCPB) concept, with the objective to validate the capability of nuclear data to predict nuclear responses, such as the tritium production rate (TPR), with qualified uncertainties. The experiment has been carried out at the FNG 14-MeV neutron source in collaboration between ENEA, Technische Universitaet Dresden, Forschungszentrum Karlsruhe, J. Stefan Institute Ljubljana and with the participation of JAEA. The mock-up, designed in such a way to replicate all relevant nuclear features of the TBM-HCPB, consisted of a steel box containing beryllium block and two intermediate steel cassettes, filled with of Li 2 CO 3 powder, replicating the breeder insert main characteristics: radial thickness, distance between ceramic layers, thickness of ceramic layers and of steel walls. In the experiment, the TPR has been measured using Li 2 CO 3 pellets at various depths at two symmetrical positions at each depth, one in the upper and one in the lower cassette. Twelve pellets were used at each position to determine the TPR profile through the cassette. Three independent measurements were performed by ENEA, TUD/VKTA and JAEA. The neutron flux in the beryllium layer was measured as well using activation foils. The measured tritium production in the TBM (E) was compared with the same quantity (C) calculated by the MCNP.4c using a very detailed model of the experimental set up, and using neutron cross sections from the European Fusion File (EFF ver.3.1) and from the Fusion Evaluated Nuclear Data Library (FENDL ver. 2.1, ITER reference neutron library). C/E ratios were obtained with a total uncertainty on the C/E comparison less than 9% (2 s). A sensitivity and uncertainty analysis has also been performed to evaluate the calculation uncertainty due to the uncertainty on neutron cross sections. The results of such

  4. Ocular complications of boxing

    Science.gov (United States)

    Bianco, M; Vaiano, A; Colella, F; Coccimiglio, F; Moscetti, M; Palmieri, V; Focosi, F; Zeppilli, P; Vinger, P

    2005-01-01

    Objectives: To investigate the prevalence of ocular injuries in a large population of boxers over a period of 16 years, in particular, the most severe lesions that may be vision threatening. Methods: Clinical records of the medical archive of the Italian Boxing Federation were analysed. A total of 1032 boxers were examined from February 1982 to October 1998. A complete ophthalmological history was available for 956, who formed the study population (a total of 10 697 examinations). The following data were collected: age when started boxing; duration of competitive boxing career (from the date of the first bout); weight category; a thorough ocular history. The following investigations were carried out: measurement of visual acuity and visual fields, anterior segment inspection, applanation tonometry, gonioscopy, and examination of ocular fundus. Eighty age matched healthy subjects, who had never boxed, formed the control group. Results: Of the 956 boxers examined, 428 were amateur (44.8%) and 528 professional (55.2%). The median age at first examination was 23.1 (4.3) years (range 15–36). The prevalence of conjunctival, corneal, lenticular, vitreal, ocular papilla, and retinal alterations in the study population was 40.9% compared with 3.1% in the control group (p⩽0.0001). The prevalence of serious ocular findings (angle, lens, macula, and peripheral retina alterations) was 5.6% in boxers and 3.1% in controls (NS). Conclusions: Boxing does not result in a higher prevalence of severe ocular lesions than in the general population. However, the prevalence of milder lesions (in particular with regard to the conjunctiva and cornea) is noteworthy, justifying the need for adequate ophthalmological surveillance. PMID:15665199

  5. Status of EC solid breeder blanket designs and R and D for demo fusion reactors

    International Nuclear Information System (INIS)

    Proust, E.; Anzidei, L.; Moons, F.

    1994-01-01

    Within the European Community Fusion Technology Program two solid breeder blankets for a DEMO reactor are being developed. The two blankets have various features in common: helium as coolant and as tritium purge gas, the martensitic steel MANET as structural material and beryllium as neutron multiplier. The configurations of the two blankets are however different: in the B.I.T. (Breeder Inside Tube) concept the breeder materials are LiAlO 2 or Li 2 ZrO 3 in the form of annular pellets contained in tubes surrounded by beryllium blocks, the coolant helium being outside the tubes, whereas in the B.O.T. (Breeder out of Tube) the breeder and multiplier material are Li 4 SiO 4 and beryllium pebbles forming a mixed bed placed outside the tubes containing the coolant helium. The main critical issues for both blankets are the behavior of the breeder ceramics and of beryllium under irradiation and the tritium control. Other issues are the low temperature irradiation induced embrittlement of MANET, the mechanical effects caused by major plasma disruptions, and safety and reliability. The R and D work concentrate on these issues. The development of martensitic steels including MANET is part of a separate program. Breeder ceramics and beryllium irradiations have been so far performed for conditions which do not cover the peak values injected in the DEMO blankets. Further irradiations in thermal reactors and in fast reactors, especially for beryllium, are required. An effective tritium control requires the development of permeation barriers and/or of methods of oxidation of the tritium in the main helium cooling systems. First promising results have been obtained also in field of mechanical effects from plasma disruptions and safety and reliability, however further work is required in the reliability field and to validate the codes for the calculations of the plasma disruption effects. (authors). 8 figs., 2 tabs., 53 refs

  6. Status of ITER blanket attachment design and related R and D

    International Nuclear Information System (INIS)

    Sadakov, S.; Khomiakov, S.; Calcagno, B.; Chappuis, Ph.; Dellopoulos, G.; Kolganov, V.; Merola, M.; Poddubnyi, I.; Raffray, R.; Raharijaona, J.J.; Ulrickson, M.; Zhmakin, A.

    2013-01-01

    Highlights: • ITER blanket attachment system went through a significant design upgrade and become basically compliant with specified design loads and required cyclic lifetime. • Upgrade of flexible supports allowed the doubling of cross sections of central bolts. Ceramic coatings were relocated to much larger areas on conical pairs screwed into shield blocks. • Key pads were relocated from keys of vacuum vessel into keyways of shield blocks and reshaped to enlarge areas of lateral interfaces with ceramic electro-insulating coatings. • Ceramic coatings are hidden between pads and enclosures in keyways with a purpose to minimize their wear rate, which depends on peak friction stress and cyclic sliding path. • Ceramic coatings to be verified by experiment, with several R and D aimed to collect statistically sufficient data on their reliability and durability in ITER relevant cyclic loading conditions. -- Abstract: Main function of the ITER blanket system [1–3] is to shield the vacuum vessel (VV) from nuclear radiation and thermal energy coming from the plasma. Blanket system consists of discrete blanket modules (BM). Each BM is composed of a first wall panel and a shield block (SB). The shield block is attached to the VV by means of four flexible supports and three or four shear keys, through key pads. All listed supports do have parts with ceramic electro-insulating coatings necessary to exclude the largest loops of eddy currents and restrict EM loads. Electrical connection of each SB to the VV is through two elastic electrical straps. Cooling water is supplied to each BM by one coaxial water connector. This paper summarizes the recent evolution of the blanket attachment system toward design solutions compatible with design loads and numbers of load cycles, and providing sufficient reliability and durability. This evolution was done in a frame of pre-defined external interfaces. The ongoing supporting R and D is also briefly described

  7. Blanket and vacuum vessel design of the next tokamak. (Swimming pool type)

    International Nuclear Information System (INIS)

    Iida, H.; Minato, A.; Kitamura, K.

    1983-01-01

    The structural design study of a reactor module for a swimming pool type reactor (SPTR) was conducted. Since pool water plays the role of radiation shielding in the SPTR, the module does not have a solid shield. It consists of tritium breeding blankets, divertor collector plates and a vacuum vessel. The object of this study is to show the reactor module design which has a simple structure and a sufficient tritium breeding ratio. A large coverage of the plasma chamber surface with tritium breeding blanket is essential in order to obtain a high tritium breeding ratio. A breeding blanket is also placed behind the divertor collector plate, i.e. in the upper and lower region, as well as in the outboard and inboard regions of the module. A concept in which the first wall is an integral part of the blanket is employed to minimize the thickness of structural and cooling material brazed in front of the breeding material (Li 2 O) and to enhance the tritium breeding capability. In order to simplify the module structure the vacuum vessel and breeding blanket is also integrated in the inboard region. One of the features inherent in the swimming pool type reactor is an additional external force on the vacuum vessel, namely hydraulic pressure. A detailed structural analysis of the vacuum vessel is performed. Divertor collector plates are assemblies of co-axial tubes. They minimize the electromagnetic force on the plate induced by the plasma disruption. A thermal and structural analysis and life time estimation of the first wall and divertor collector plates are performed. (author)

  8. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  9. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    International Nuclear Information System (INIS)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl; Im, Ki Hak

    2016-01-01

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds

  10. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  11. Neutronic optimization of solid breeder blankets for STARFIRE design

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.A.

    1980-01-01

    Extensive neutronic tradeoff studies were carried out to define and optimize the neutronic performance of the different solid breeder options for the STARFIRE blanket design. A set of criteria were employed to select the potential blanket materials. The basic criteria include the neutronic performance, tritium-release characteristics, material compatibility, and chemical stability. Three blanket options were analyzed. The first option is based on separate zones for each basic blanket function where the neutron multiplier is kept in a separate zone. The second option is a heterogeneous blanket type with two tritium breeder zones. In the first zone the tritium breeder is assembled in a neutron multiplier matrix behind the first wall while the second zone has a neutron moderator matrix instead of the neutron multiplier. The third blanket option is similar to the second concept except the tritium breeder and the neutron multiplier form a homogeneous mixture

  12. Processing and waste disposal representative for fusion breeder blanket systems

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1987-01-01

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made

  13. A review of fusion breeder blanket technology, part 1

    International Nuclear Information System (INIS)

    Jackson, D.P.; Selander, W.N.; Townes, B.M.

    1985-01-01

    This report presents the results of a study of fusion breeder blanket technology. It reviews the role of the breeder blanket, the current understanding of the scientific and engineering bases of liquid metal and solid breeder blankets and the programs now underway internationally to resolve the uncertainities in current knowledge. In view of existing national expertise and experience, a solid breeder R and D program for Canada is recommended

  14. Decommissioning a small glove box

    International Nuclear Information System (INIS)

    Bond, R.D.; McSherry, K.

    1985-11-01

    An account is given of dismantling a fuel fabrication glove box using simple tooling. The fissile content of the box was first measured by several non-destructive techniques. After cleaning, the box was dismantled using hand tools and finally packed for disposal. A record of operator radiation doses, the time taken for each stage of the operation and packing information is given. (author)

  15. Electromagnetic analysis of ITER shield blanket under VDE

    International Nuclear Information System (INIS)

    Kang Weishan; Chen Jiming; Wu Jihong; Wang Mingxu

    2010-01-01

    Electromagnetic force and torque of ITER shield blanket system and their surrounding major component under vertical displacement event (VDE) were calculated with finite element method. ANSYS APDL was used to simulate the shape and magnitude of plasmas current dynamically in the VDE course, and external magnetic field was imposed, then the induced current distribution inside the all conductor including the blanket was obtained from the calculation. The force and torque for every blanket module was obtained to assess the safety of blanket system under VDE. (authors)

  16. Minimum thickness blanket-shield for fusion reactors

    International Nuclear Information System (INIS)

    Karni, Y.; Greenspan, E.

    1989-01-01

    A lower bound on the minimum thickness fusion reactor blankets can be designed to have, if they are to breed 1.267 tritons per fusion neutron, is identified by performing a systematic nucleonic optimization of over a dozen different blanket concepts which use either Be, Li 17 Pb 83 , W or Zr for neutron multiplication. It is found that Be offers minimum thickness blankets; that the blanket and shield (B/S) thickness of Li 17 Pb 83 based blankets which are supplemented by Li 2 O and/or TiH 2 are comparable to the thickness of Be based B/S; that of the Be based blankets, the aqueous self-cooled one offers one of the most compact B/S; and that a number of blanket concepts might enable the design of B/S which is approximately 12 cm and 39 cm thinner than the B/S thickness of, respectively, conventional self-cooled Li 17 Pb 83 and Li blankets. Aqueous self-cooled tungsten blankets could be useful for experimental fusion devices provided they are designed to be heterogeneous. (orig.)

  17. An analysis of electron beam welds in a dual coolant liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Cizelj, L.; Riesch-Oppermann, H.; Kernforschungszentrum Karlsruhe GmbH

    1994-10-01

    Numerical simulation of electron beam welding of blanket segments was performed using non-linear finite element code ABAQUS. The thermal and stress fields were assumed uncoupled, while preserving the temperature dependency of all material parameters. The martensite-austenite and austenite-martensite transformations were taken into account through volume shrinking/expansion effects, which is consistent with available data. The distributions of post welding residual stress in a complex geometry of the first wall are obtained. Also, the effects of preheating and post-welding heat treatment were addressed. Time dependent temperature and stress-strain fields obtained provide good insight into the welding process. They may be used directly to support reliability and life-time studies of blanket structures. On the other hand, they provide useful hints about the feasibility of the geometrical configurations as proposed by different design concepts. (orig.) [de

  18. Influence of start up and pulsed operation on tritium release and inventory of NET ceramic blanket

    International Nuclear Information System (INIS)

    Iseli, M.; Esser, B.

    1989-01-01

    A first estimate for the tritium release behaviour of a ceramic breeder blanket in pulsed operation is obtained by assuming a linear steady state temperature distribution and taking into account the time constant of the thermal behaviour. The release behaviour of the breeder exposed to consecutive periods of tritium generation is described with an analytical solution of the diffusion equation. The results are compared with a simple exponential approach valid for surfacte desorption controlled release. The exponential model is used to simulate a blanket with aluminate as breeder material, which takes longest to reach steady state. The simulation demonstrates that a significant fraction (>67%) of steady state can be achieved after a testing time of about one day. (author). 7 refs.; 8 figs.; 3 tabs

  19. Qualification of MHD effects in dual-coolant DEMO blanket and approaches to their modelling

    International Nuclear Information System (INIS)

    Mas de les Valls, E.; Batet, L.; Medina, V. de; Fradera, J.; Sedano, L.A.

    2011-01-01

    Design refinements of vertical insulated banana-shaped liquid metal channels are being considered as a progress of conceptual design of dual-coolant liquid metal blankets (DEMO specifications). Among them: (a) optimised channel geometry and (b) improvements on flow channel inserts. Progress of channel conceptual design is conducted in parallel with underlying physics of MHD models in diverse aspects: (1) MHD models, (2) MHD turbulence, (3) LM buoyancy effects, (4) three-dimensional flows, and (5) LM/FCI/wall electrical and thermal coupling; in order to progress on common liquid metal flow characterisation, pressure drop and three-dimensional flows. The analyses are assumed as extension of those previous carried out for the DCLL blankets for new design refinements. At the present stage of the conceptual design progress, a preliminary thermofluid MHD study is of crucial interest for further design improvements and future detailed modelling. The paper overviews the ongoing modelling studies, making model refinements explicit, and anticipates some modelling results.

  20. Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.

    1999-01-01

    Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study

  1. High dose neutron irradiation damage in beryllium as blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V.P. E-mail: fae@niiar.ru; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B. E-mail: vniinm.400@g23.relkom.ru

    2001-11-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10{sup 22} and 8.0x10{sup 22} cm{sup -2} (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10{sup 22} cm{sup -2} (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10{sup 22} cm{sup -2} (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket.

  2. High dose neutron irradiation damage in beryllium as blanket material

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B.

    2001-01-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10 22 and 8.0x10 22 cm -2 (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10 22 cm -2 (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10 22 cm -2 (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket

  3. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket

    Directory of Open Access Journals (Sweden)

    Rosa Lo Frano

    2018-05-01

    Full Text Available An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li4SiO4 is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1–1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena. The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders.

  4. Boxed Permutation Pattern Matching

    DEFF Research Database (Denmark)

    Amit, Mika; Bille, Philip; Cording, Patrick Hagge

    2016-01-01

    the goal is to only find the boxed subsequences of T that are order-isomorphic to P. This problem was introduced by Bruner and Lackner who showed that it can be solved in O(n3) time. Cho et al. [CPM 2015] gave an O(n2m) time algorithm and improved it to O(n2 logm). In this paper we present a solution...

  5. The Box Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactor...... description of this momentum flow. The Box Method is a practical method for the description of an Air Terminal Device which will save grid points and ensure the right level of the momentum flow....

  6. Preliminary electromagnetic analysis of Helium Cooled Solid Blanket for CFETR by MAXWELL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Cheng; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-11-15

    Highlights: • A FEM model of the blanket and magnetic system was built. • Electromagnetic forces and moments of the typical blanket for ferromagnetic and non-ferromagnetic materials were computed and analyzed. • Maxwell forces and Lorentz forces were computed and compared. • Eddy current in the blanket was analyzed under MD condition. - Abstract: A Helium Cooled Solid Blanket (HCSB) for CFETR (Chinese Fusion Engineering Test Reactor) was designed by USTC. The structural and thermal-hydraulic analysis has been carried out, while electromagnetic analysis was not carefully researched. In this paper, a FEM (finite element method) model of the HCSB was developed and electromagnetic forces as well as moments was computed by a FEM software called MAXWELL integrated in ANSYS Workbench. In the geometrical model, flow channels and small connecting parts were neglected because of the extreme complication and the reasonable conservative assumption by neglecting these circumstantial details. As for electromagnetic (EM) analysis, Lorentz forces due to eddy currents caused by main disruption and Maxwell forces due to the magnetization of RAFM steel (i.e. EUROFER97) were computed. Since the unavailability of the details of the plasma in CFETR, when disruptions happen, the condition where a linear current quench of main disruption occurs was assumed. The maximum magnitude of the electromagnetic forces was 356.45 kN and the maximum value of the coupled electromagnetic moments was 1899.40 N m around the radial direction. It is feasible to couple electromagnetic analysis, structural analysis and thermal-hydraulic analysis in the future since MAXWELL has good channels to exchange data between different analytic parts.

  7. Systematic methodology for estimating direct capital costs for blanket tritium processing systems

    International Nuclear Information System (INIS)

    Finn, P.A.

    1985-01-01

    This paper describes the methodology developed for estimating the relative capital costs of blanket processing systems. The capital costs of the nine blanket concepts selected in the Blanket Comparison and Selection Study are presented and compared

  8. Beryllium research on FFHR molten salt blanket

    International Nuclear Information System (INIS)

    Terai, T.; Tanaka, S.; Sze, D.-K.

    2000-01-01

    Force-free helical reactor, FFHR, is a demo-relevant heliotron-type D-T fusion reactor based on the great amount of R and D results obtained in the LHD project. Since 1993, collaboration works have made great progress in design studies of FFHR with standing on the major advantage of current-less steady operation with no dangerous plasma disruptions. There are two types of reference designs, FFHR-1 and FFHR-2, where molten Flibe (LiF-BeF2) is utilized as tritium breeder and coolant. In this paper, we present the outline of FFHR blanket design and some related R and D topics focusing on Be utilization. Beryllium is used as a neutron multiplier in the design and Be pebbles are placed in the front part of the tritium breeding zone. In a Flibe blanket, HF (TF) generated due to nuclear transmutation will be a problem because of its corrosive property. Though nickel-based alloys are thought to be intact in such a corrosive environment, FFHR blanket design does not adopt the alloys because of their induced radioactivity. The present candidate materials for the structure are low-activated ferritic steel (JLF-1), V-4Cr-4Ti, etc. They are capable to be corroded by HF in the operation condition, and Be is expected to work as a reducing agent in the system as well. Whether Be pebbles placed in a Flibe flow can work well or not is a very important matter. From this point, Be solubility in Flibe, reaction rate of the Redox reaction with TF in the liquid and on the surface of Be pebbles under irradiation, flowing behavior of Flibe through a Be pebble bed, etc. should be investigated. In 1997, in order to establish more practical and new data bases for advanced design works, we started a collaboration work of R and D on blanket engineering, where the Be research above mentioned is included. Preliminary dipping-test of Be sheets and in-situ tritium release experiment from Flibe with Be sheets have got started. (orig.)

  9. Structural materials for fusion reactor blanket systems

    International Nuclear Information System (INIS)

    Bloom, E.E.; Smith, D.L.

    1984-01-01

    Consideration of the required functions of the blanket and the general chemical, mechanical, and physical properties of candidate tritium breeding materials, coolants, structural materials, etc., leads to acceptable or compatible combinations of materials. The presently favored candidate structural materials are the austenitic stainless steels, martensitic steels, and vanadium alloys. The characteristics of these alloy systems which limit their application and potential performance as well as approaches to alloy development aimed at improving performance (temperature capability and lifetime) will be described. Progress towards understanding and improving the performance of structural materials has been substantial. It is possible to develop materials with acceptable properties for fusion applications

  10. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-06-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-1 through 4 and PULSAR 1 and 2. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. Also, the requirements of engineering and physics systems for a pulsed reactor were evaluated by the PULSAR design studies. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies

  11. Outside the box

    International Nuclear Information System (INIS)

    Pichon, Max

    2011-01-01

    Full text: Queensland-based Hydrasyst wants to take its motto of 'Do more with less' into the greywater sector with a new water recycling and energy recovery technology launched in November, called The Grey Box. The company is initially targeting large industrial laundries as they are major generators of greywater and heavy energy users, but it has ambitions well beyond that. The average commercial laundry consumes 1-5ML of water a week, using about 16 litres for every 1kg of clothing washed. Hydrasyst director Stephen Balemi said The Grey Box can slash the volume by 80 per cent. While he was reluctant to disclose too much technical detail, he claimed it is the only technology serving the $1 billion a year laundry sector that combines microfiltration / ultrafiltration membrane technology and energy reduction components. The heart of the system is a ceramic hollow fibre membrane. Balemi said it produces higher filtrate quality than competitors, meaning the recycled water can be reused more often, and can process feed water of up to 70°C compared to typical ultrafiltration membranes that cap out at about 38°C. This means the recycled water can be reused at higher temperatures, with the heat in it recovered by a precise steam heater built into The Grey Box. “As an overall measure, it saves 80 per cent of the water that is processed and saves 20 per cent of the energy,” Balemi said. Four systems have already been installed, with one going into a large commercial laundry in south Queensland and another to AMP's state-of-the-art 6 Green Star building in Brisbane. “We can modify them slightly to suit the industry, depending on the quality of raw water they are trying to recycle and also depending on the size of the project,,” said Balemi. Where many organisations build systems to specification, The Grey Box is offered in three standard sizes: the HY20 (20kL per day, based on a 10 hour day), HY80 (80kL per day) and HY130 (130kL per day). They can be used

  12. Two-phase-flow cooling concept for fusion reactor blankets

    International Nuclear Information System (INIS)

    Bender, D.J.; Hoffman, M.A.

    1977-01-01

    The new two-phase heat transfer medium proposed is a mixture of potassium droplets and helium which permits blanket operation at hih temperature and low pressure, while maintaining acceptable pumping power requirements, coolant ducting size, and blanket structure fractions. A two-phase flow model is described. The helium pumping power and the primary heat transfer loop are discussed

  13. Overview of the TFTB lithium blanket module program

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-01-01

    The Lithium Blanket Module (LBM) is an ∼ 80-cm 3 module, representative of a helium-cooled lithium oxide fusion reactor blanket module. This paper summarizes the design, development, and construction of the LBM, and indicates the present status of the LBM program

  14. Remote handling demonstration of ITER blanket module replacement

    International Nuclear Information System (INIS)

    Kakudate, S.; Nakahira, M.; Oka, K.; Taguchi, K.; Obara, K.; Tada, E.; Shibanuma, K.; Tesini, A.; Haange, R.; Maisonnier, D.

    2001-01-01

    In ITER, the in-vessel components such as blanket are to be maintained or replaced remotely since they will be activated by 14 MeV neutrons, and a complete exchange of shielding blanket with breeding blanket is foreseen after the Basic Performance Phase. The blanket is segmented into about seven hundred modules to facilitate remote maintainability and allow individual module replacement. For this, the remote handing equipment for blanket maintenance is required to handle a module with a dead weight of about 4 tonne within a positioning accuracy of a few mm under intense gamma radiation. According to the ITER R and D program, a rail-mounted vehicle manipulator system was developed and the basic feasibility of this system was verified through prototype testing. Following this, development of full-scale remote handling equipment has been conducted as one of the ITER Seven R and D Projects aiming at a remote handling demonstration of the ITER blanket. As a result, the Blanket Test Platform (BTP) composed of the full-scale remote handling equipment has been completed and the first integrated performance test in March 1998 has shown that the fabricate remote handling equipment satisfies the main requirements of ITER blanket maintenance. (author)

  15. Accelerator driven heavy water blanket on circulating fuel

    International Nuclear Information System (INIS)

    Kazaritsky, V.D.; Blagovolin, P.P.; Mladov, V.R.; Okhlopkov, M.L.; Batyaev, V.F.; Stepanov, N.V.; Seliverstov, V.V.

    1997-01-01

    A conceptual design of a heavy water blanket with circulating fuel for an accelerator driven transmutation system is described. The hybrid system consists of a high-current linear accelerator of protons and 4 targets, each placed inside a subcritical blanket

  16. Achievements of element technology development for breeding blanket

    International Nuclear Information System (INIS)

    Enoeda, Mikio

    2005-03-01

    Japan Atomic Energy Research Institute (JAERI) has been performing the development of breeding blanket for fusion power plant, as a leading institute of the development of solid breeder blankets, according to the long-term R and D program of the blanket development established by the Fusion Council of Japan in 1999. This report is an overview of development plan, achievements of element technology development and future prospect and plan of the development of the solid breeding blanket in JAERI. In this report, the mission of the blanket development activity in JAERI, key issues and roadmap of the blanket development have been clarified. Then, achievements of the element technology development were summarized and showed that the development has progressed to enter the engineering testing phase. The specific development target and plan were clarified with bright prospect. Realization of the engineering test phase R and D and completion of ITER test blanket module testing program, with universities/NIFS cooperation, are most important steps in the development of breeding blanket of fusion power demonstration plant. (author)

  17. Objectives and status of EUROfusion DEMO blanket studies

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, L.V., E-mail: lorenzo.boccaccini@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Aiello, G.; Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bachmann, C. [EUROfusion, PPPT, Garching (Germany); Barrett, T. [CCFE, Abingdon OX14 3DB (United Kingdom); Del Nevo, A. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Demange, D. [Karlsruhe Institute of Technology (KIT) (Germany); Forest, L. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Hernandez, F.; Norajitra, P. [Karlsruhe Institute of Technology (KIT) (Germany); Porempovic, G. [Fuziotech Engineering Ltd (Hungary); Rapisarda, D. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Sardain, P. [CEA/IRFM, 13115 Saint-Paul-lès-Durance (France); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Vala, L. [Centrum výzkumu Řež, 250 68 Husinec-Řež (Czech Republic)

    2016-11-01

    Highlights: • Short description of the new Breeding Blanket Project in the EUROfusion consortium for the design of the EU PPPT DEMO: objectives. • Presentation of the design approach used in the development of the Breeding Blanket design: requirements. • Breeding Blanket design; in particular the four blanket concepts included in the study are presented, recent results highlighted and the status discussed. • Auxiliary systems and related R&D programme: in particular the work areas addressed in the Project (Tritium Technology, Pb-Li and Solid Breeders Technology, First Wall Design and R&D, Manufacturing) are presented, recent results highlighted and the status discussed. - Abstract: The design of a DEMO reactor requires the design of a blanket system suitable of reliable T production and heat extraction for electricity production. In the frame of the EUROfusion Consortium activities, the Breeding Blanket Project has been constituted in 2014 with the goal to develop concepts of Breeding Blankets for the EU PPPT DEMO; this includes an integrated design and R&D programme with the goal to select after 2020 concepts on fusion plants for the engineering phase. The design activities are presently focalized around a pool of solid and liquid breeder blanket with helium, water and PbLi cooling. Development of tritium extraction and control technology, as well manufacturing and development of solid and PbLi breeders are part of the programme.

  18. 18 CFR 284.303 - OCS blanket certificates.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false OCS blanket certificates. 284.303 Section 284.303 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Pipelines on Behalf of Others § 284.303 OCS blanket certificates. Every OCS pipeline [as that term is...

  19. Neutronic design for the TFTR lithium blanket module

    International Nuclear Information System (INIS)

    Cheng, E.T.; Engholm, B.A.; Su, S.D.

    1981-01-01

    The preliminary design of a lithium blanket module (LBM) to be installed and tested in the TFTR has been performed under subcontract to PPPL and EPRI. The objectives of the LBM program are calculation and measurement of neutron fluences and tritium production in a breeding blanket module using state of art techniques, comparison of calculations with measurements, and acquisition of operational experience with a fusion reactor blanket module. The neutronic design of the LBM is one of the key areas of this program in which the LBM composition and geometry are optimized and the boundary material effects on the tritium production in the blanket module are explored. The concept of employing sintered Li/sub 2/O pellets in tubes is proposed for the blanket design

  20. MIT LMFBR blanket research project. Final summary report

    International Nuclear Information System (INIS)

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record

  1. Axial blanket enrichment optimization of the NPP Krsko fuel

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    2001-01-01

    In this paper optimal axial blanket enrichment of the NPP Krsko fuel is investigated. Since the optimization is dictated by economic categories that can significantly vary in time, two step approach is applied. In the first step simple relationship between the equivalent change in enrichment of axial blankets and central fuel region is established. The relationship is afterwards processed with economic criteria and constraints to obtain optimal axial blanket enrichment. In the analysis realistic NPP Krsko conditions are considered. Except for the fuel enrichment all other fuel characteristics are the same as in the fuel used in the few most recent cycles. A typical reload cycle after the plant power uprate is examined. Analysis has shown that the current blanket enrichment is close to the optimal. Blanket enrichment reduction results in an approximately 100 000 US$ savings per fuel cycle.(author)

  2. Neutron dosimetry for the TFTR Lithium-Blanket-Module program

    International Nuclear Information System (INIS)

    Harker, Y.D.; Tsang, F.Y.; Caffrey, A.J.; Homeyer, W.G.; Engholm, B.A.

    1981-01-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-a-kind neutronics experiment involving a prototypical fusion reactor blanket module with a distributed neutron source from the plasma of the TFTR at Princeton Plasma Physics Laboratory. The objectives of the LBM program are: (1) to test the capabilities of neutron transport codes when applied to fusion test reactor blanket conditions, and (2) to obtain tritium breeding performance data on a typical design concept of a fusion-reactor blanket. This paper addresses the issues relative to the measurement of neutron fields in the LBM, presents the results of preliminary design studies concerning neutron measurements and also presents the results of blanket mockup experiments performed at the Idaho National Engineering Laboratory

  3. LMFBR Blanket Physics Project progress report No. 2

    International Nuclear Information System (INIS)

    Forbes, I.A.; Driscoll, M.J.; Rasmussen, N.C.; Lanning, D.D.; Kaplan, I.

    1971-01-01

    This is the second annual report of an experimental program for the investigation of the neutronics of benchmark mock-ups of LMFBR blankets. Work was devoted primarily to measurements on Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial blanket and its steel reflector. Activation traverses and neutron spectra were measured in the blanket; calculations of activities and spectra were made for comparison with the measured data. The heterogeneous self-shielding effect for 238 U capture was found to be the most important factor affecting the comparison. Optimization and economic studies were made which indicate that the use of a high-albedo reflector material such as BeO or graphite may improve blanket neutronics and economics

  4. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    Science.gov (United States)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  5. Comparison of different fusion nuclear data libraries using the European INTOR blanket design

    International Nuclear Information System (INIS)

    Pelloni, S.; Stepanek, J.; Dudziak, D.

    1982-12-01

    The European Community International Tokamak Reactor (INTOR-EC) was used to investigate the influence of different cross-section libraries on the tritium breeding ratio. Nucleonic analyses were performed using the discrete-ordinates transport codes ANISN and ONEDANT, and the recently developed Swiss surface-flux code SURCU, for the Li 17 Pb 83 and Li 2 SiO 3 blanket designs. Nuclear data considered were from the DLC-37, VITAMIN-C (DLC-41) and Los Alamos-NJOY fusion libraries. In addition the reaction rates were estimated using the MACKLIB-IV response library. It is shown that very good agreement (within 0.5%) between the breeding ratios obtained using the VITAMIN-C and Los Alamos libraries could be obtained, whereas the corresponding values calculated using VITAMIN-C and MACKLIB-IV data sets collapsed into 25 neutron and 21 gamma groups differ up to 23%. It is found that this large discrepancy is due to the 6 Li(n, α) reaction cross sections in the low energy range between 4 and 0.03 eV. Furthermore, the collapsed DLC-37 library is not adequate for fusion blankets with a soft spectrum. It is important that greater care be given to preparation of broad group cross section sets, especially in the thermal energy region for blankets containing highly moderating materials. (Auth.)

  6. Blanket coverage : small technology companies hope to mine some Athabasca riches of their own

    Energy Technology Data Exchange (ETDEWEB)

    Marsters, S.

    2006-09-15

    This article presented details of the Pyrogel 6350, an insulating fabric comprised of a nanotechnology-enabled flexible fabric with aerogel integrated into its matrix. Aerogel is the lightest solid known to science and is created by replacing the liquid phase in a gel with gas. Originally developed for National American Space Agency (NASA) spacesuits, the United States military uses aerogel-based blankets to provide infrared suppression around engine compartments and hot components. Designed specifically for the oilsands market, the Pyrogel 6350 combines extreme thermal performance in a flexible blanket form which is ideal for the insulation of process equipment, pipelines and vessels used in oil sands production. The Pyrogel 6350 is currently being installed on 3 kilometres of high-pressure steam lines at Devon Canada's steam-assisted gravity drainage (SAGD) Jackfish project. The fabric's R-value per inch is 4 to 6 times greater than conventional types of insulation. It was concluded that use of the aerogel blankets will result in a 3 inch reduction in pipe insulation thickness, and provide significant savings in installation costs. 2 figs.

  7. Present status of irradiation tests on tritium breeding blanket for fusion reactor

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Sagawa, Hisashi; Shimakawa, Satoshi; Tsuchiya, Kunihiko; Kuroda, Toshimasa; Kawamura, Hiroshi.

    1994-01-01

    To develop a tritium breeding blanket for a fusion reactor, irradiation tests in fission reactors are indispensable for obtaining data on irradiation effects on materials, and neutronics/thermal characteristics and tritium production/recovery performance of the blanket. Various irradiation tests have been conducted in the world, especially to investigate tritium release characteristics from tritium breeding and neutron multiplier materials, and materials integrity under irradiation. In Japan, VOM experiments at JRR-2 for ceramic breeders and experiments at JMTR for ceramic breeders and beryllium as a neutron multiplier have been performed. Several universities have also investigated ceramic breeders. In the EC, the EXOTIC experiments at HFR in the Netherlands and the SIBELIUS, the LILA, the LISA and the MOZART experiments for ceramic breeders have carried out. In Canada, NRU has been used for the CRITIC experiments. The TRIO experiments at ORR(ORNL), experiments at RTNS-II, FUBR and ATR have been conducted in the USA. The last two are experiments with high neutron fluence aiming at investigating materials integrity under irradiation. The BEATRIX-I and -II experiments have proceeded under international collaboration of Japan, Canada, the EC and the USA. This report shows the present status of these irradiation tests following a review of the blanket design in the ITER CDA(Conceptual Design Activity). (author)

  8. Preliminary Analysis on Decay Heat Removal Capability of Helium Cooled Solid Breeder Test Blanket Module

    International Nuclear Information System (INIS)

    Ahn, Mu Young; Cho, Seung Yon; Kim, Duck Hoi; Lee, Eun Seok; Kim, Hyung Seok; Suh, Jae Seung; Yun, Sung Hwan; Cho, Nam Zin

    2007-01-01

    One of the main ITER goals is to test and validate design concepts of tritium breeding blankets relevant to DEMO or fusion power plants. Korea Helium-Cooled Solid Breeder (HCSB) Test Blanket Module (TBM) has been developed with overall objectives of achieving this goal. The TBM employs high pressure helium to cool down the First Wall (FW), Side Wall (SW) and Breeding Zone (BZ). Therefore, safety consideration is a part of the design process. Each ITER Party performing the TBM program is requested to reach a similar level of confidence in the TBM safety analysis. To meet ITER's request, Failure Mode and Effects Analysis (FMEA) studies have been performed on the TBM to identify the Postulated Initial Event (PIE). Although FMEA on the KO TBM has not been completed, in-vessel, in-box and ex-vessel Loss Of Coolant Accident (LOCA) are considered as enveloping cases of PIE in general. In this paper, accidental analyses for the three selected LOCA were performed to investigate the decay heat removal capability of the TBM. To simulate transient thermo-hydraulic behavior of the TBM for the selected scenarios, RELAP5/MOD3.2 code was used

  9. Microclimate boxes for panel paintings

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1998-01-01

    The use of microclimate boxes to protect vulnerable panel paintings is, therefore, not a new phenomenon of the past two or three decades. Rather, it has been a concern for conservators and curators to protect these objects of art at home and in transit since the end of the nineteenth century....... The increased number of travelling exhibitions in recent years has heightened the need to protect paintings during circulation (Thomson 1961; Mecklenburg 1991). The use and design of microclimate boxes have been evolving since 1892. These boxes may be divided into three broad groups: those using an active...... buffer material to stabilize the internal RH, a more recent box containing no added buffer material, and, in recent times, boxes with an altered gas content. Another concern is the appearance (aesthetics) of the box....

  10. Box-particle intensity filter

    OpenAIRE

    Schikora, Marek; Gning, Amadou; Mihaylova, Lyudmila; Cremers, Daniel; Koch, Wofgang; Streit, Roy

    2012-01-01

    This paper develops a novel approach for multi-target tracking, called box-particle intensity filter (box-iFilter). The approach is able to cope with unknown clutter, false alarms and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic and data association uncertainty. The box-iFilter reduces the number of particles significantly, which improves the runtime considerably. The low particle number enables thi...

  11. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  12. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    International Nuclear Information System (INIS)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li 2 O) and lithium zirconate (Li 2 ZrO 3 ) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers

  13. The Classroom Animal: Box Turtles.

    Science.gov (United States)

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  14. Boxing-related head injuries.

    Science.gov (United States)

    Jayarao, Mayur; Chin, Lawrence S; Cantu, Robert C

    2010-10-01

    Fatalities in boxing are most often due to traumatic brain injury that occurs in the ring. In the past 30 years, significant improvements in ringside and medical equipment, safety, and regulations have resulted in a dramatic reduction in the fatality rate. Nonetheless, the rate of boxing-related head injuries, particularly concussions, remains unknown, due in large part to its variability in clinical presentation. Furthermore, the significance of repeat concussions sustained when boxing is just now being understood. In this article, we identify the clinical manifestations, pathophysiology, and management of boxing-related head injuries, and discuss preventive strategies to reduce head injuries sustained by boxers.

  15. Dustless Process for Minor Actinide-Bearing Blanket Fabrication

    International Nuclear Information System (INIS)

    Caisso, M.; Lebreton, F.; Horlait, D.; Delahaye, Th.; Picart, S.; Martin, Ph.M.; Renard, C.; Roussel, P.; Neuville, D.R.; Belin, R.C.; Dardenne, K.; Rothe, J.; Ayral, A.

    2015-01-01

    U 1-x Am x O 2±δ mixed-oxides are considered promising compounds for americium heterogeneous transmutation in fast neutron reactor. At lab-scale, the fabrication of americium bearing blankets (AmBB) under the form of ceramic pellets, required for irradiation, follows a powder metallurgy route which generates highly contaminant fine particles. Considering scale-up, dustless processes that can avoid particle dispersion in the fabrication lines are thus recommended. With this aim, the development of an innovative route called calcined resin microsphere pelletizing (CRMP) process has been initiated. The general approach consists in synthesising mixed-oxide microsphere precursors from beads of ion exchange resin through an adaptation of the weak acid resin process (WAR), and their pelletizing before sintering. This study focuses on the microsphere synthesis and particularly on the mechanisms implied during the thermal conversion of metal loaded ion exchange resin in porous mixed-oxide microspheres. The results are discussed, in a first time, on the basis of the synthesis of oxide microspheres integrating uranium and americium surrogates (Ce and Gd respectively) before a transposition to the highly active materials in a second time. (authors)

  16. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1983-06-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matrices. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  17. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1984-02-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matricies. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  18. Experimental study of multipurpose solar hot box at Freiburg, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Nandwani, S.S. [Iowa State University, Ames (United States). International Inst. of Theoretical and Applied Physics; Steinhart, J.; Henning, H.M.; Rommel, M.; Wittwer, V. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    1997-12-31

    With the aim to test an compare some properties of materials and common geometries that are used for designing solar cookers, water heaters, etc. we have made a solar hot box with two similar compartments. In the present study this hot box has been used for, (a) comparing the behavior of a metallic slab filled with a phase change material for short term heat storage, with a conventional absorbing sheet, (b) the use of a selectively coated, as compared to a normal black painted, cooking pot, and (c) for finding the overall heat loss coefficient and thermal capacity of the box. Experiments with the solar hot box will yield valuable information on solar systems that are to be constructed. Besides its use for research this multi-purpose device has been used both to pasteurize up to 14-16 l of water and for cooking. (author)

  19. Development of advanced blanket materials for solid breeder blanket of fusion reactor

    International Nuclear Information System (INIS)

    Ishitsuka, E.

    2002-01-01

    Advanced solid breeding blanket design in the DEMO reactor requires the tritium breeder and neutron multiplier that can withstand the high temperature and high dose of neutron irradiation. Therefore, the development of such advanced blanket materials is indispensable. In this paper, the cooperation activities among JAERI, universities and industries in Japan on the development of these advanced materials are reported. Advanced tritium breeding material to prevent the grain growth in high temperature had to be developed because the tritium release behavior degraded by the grain growth. As one of such materials, TiO 2 -doped Li 2 TiO 3 has been studied, and TiO 2 -doped Li 2 TiO 3 pebbles was successfully fabricated. For the advanced neutron multiplier, the beryllium intermetallic compounds that have high melting point and good chemical stability have been studied. Some characterization of Be 12 Ti was studied. The pebble fabrication study for Be 12 Ti was also performed and Be 12 Ti pebbles were successfully fabricated. From these activities, the bright prospect to realize the DEMO blanket by the application of TiO 2 -doped Li 2 TiO 3 and beryllium intermetallic compounds was obtained. (author)

  20. Comparative study of the more promising combinations of blanket materials, power conversion systems, and tritium recovery and containment systems for fusion reactors

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-11-01

    The many possible combinations of blanket materials, tritium generation and recovery systems, and power conversion systems were surveyed first by reviewing the principal design studies that have been prepared and then by examining a comprehensive set of designs generated by using a common set of ground rules that included all of the boundary conditions that could be envisioned. The results indicate that, of the wide variety of systems that have been considered, by far the most promising employs lithium recirculated in a closed loop within a niobium blanket structure and cooled with boiling potassium or cesium. This approach gives the simplest and lowest cost tritium recovery system, the lowest pressure and thermal stresses, the simplest structure with the lowest probability of a leak, the greatest resistance to damage from a plasma energy dump, and the lowest rate of plasma contamination by either outgassing or sputtering. The only other blanket materials combination that appears fairly likely to give a satisfactory tritium generation and recovery system is an Li 2 BeF 4 -Incoloy blanket, and even this system involves major uncertainties in the effectiveness, size, and cost of the tritium recovery system. Further, the Li 2 BeF 4 blanket system has the disadvantage that the world reserves of beryllium are too limited to support a full-blown fusion reactor economy, its poor thermal conductivity leads to cooling difficulties and a requirement for a complex structure with intricate cooling passages, and this inherently leads to an expensive blanket with a relatively high probability of leaks. The other blanket materials combinations yield even less attractive systems

  1. Thermal conductivity of fusion solid breeder materials

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tam, S.W.

    1986-06-01

    Several simple and useful formulae for estimating the thermal conductivity of lithium-containing ceramic tritium breeder materials for fusion reactor blankets are given. These formulae account for the effects of irradiation, as well as solid breeder configuration, i.e., monolith or a packed bed. In the latter case, a coated-sphere concept is found more attractive in incorporating beryllia (a neutron multiplier) into the blanket than a random mixture of solid breeder and beryllia spheres

  2. Design analyses of self-cooled liquid metal blankets

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations

  3. Neutronics analysis for aqueous self-cooled fusion reactor blankets

    International Nuclear Information System (INIS)

    Varsamis, G.; Embrechts, M.J.; Jaffa, R.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1986-06-01

    The tritium breeding performance of several Aqueous Self-Cooled Blanket (ASCB) configurations for fusion reactors has been evaluated. The ASCB concept employs small amounts of lithium compound dissolved in light or heavy water to serve as both coolant and breeding medium. The inherent simplicity of this concept allows the development of blankets with minimal technological risk. The tritium breeding performance of the ASCB concept is a critical issue for this family of blankets. Contrary to conventional blanket designs there will be a significant contribution to the tritium breeding ratio (TBR) in the water coolant/breeder of duct shields, and the 3-D TBR will therefore be similar to the 1-D TBR. The tritium breeding performance of an ASCB for a MARS-like-tandem reactor and an ASCB based breeding-shield for the Next European Torus (NET) are assessed. Two design options for the MARS-like blanket are discussed. One design employs a vanadium first wall, and zircaloy for the structural material. The trade-offs between light water and heavy water cooling options for this zircaloy blanket are discussed. The second design option for MARS relies on the use of a vanadium alloy as the stuctural material, and heavy water as the coolant. It is demonstrated that both design options lead to low-activation blankets that allow class C burial. The breeder-shield for NET consists of a water-cooled stainless steel shield

  4. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Naruse, Yuji; Yamaoka, Mitsuaki; Ohara, Atsushi; Ono, Kiyoshi; Kobayashi, Shigetada.

    1992-06-01

    Aqueous solution blanket using lithium salts such as LiNO 3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  5. Acsys in a box

    International Nuclear Information System (INIS)

    Briegel, C.; Finstrom, D.; Hendricks, B.; King, C.; Lackey, S.; Neswold, R.; Nicklaus, D.; Patrick, J.; Petrov, A.; Rechenmacher, R.; Schumann, C.; Smedinghoff, J.

    2012-01-01

    The Accelerator Control System (ACSYS) at Fermilab has evolved to enable this relatively large control system to be encapsulated into a 'box' such as a laptop. The goal was to provide a platform isolated from the 'online' control system. This platform can be used internally for making major upgrades and modifications without impacting operations. It also provides a stand-alone environment for research and development including a turnkey control system for collaborators. Over time, the code base running on Scientific Linux has enabled all the salient features of the Fermilab's control system to be captured in an off-the-shelf laptop. The anticipated additional benefits of packaging the system include improved maintenance, reliability, documentation, and future enhancements. (authors)

  6. Boxing with Bell

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    When Protech Mining moved onto a greenfields site near Ermelo in mid-November last year to start work on the establishment of a box cut for an underground bituminous coal and anthracite mine for Delta Colliery, the company could not have foreseen the difficulties it was to encounter from the unusually high rainfall which fell, almost without abatement, from the time the first sod was turned. Production at the so called Mooiplants mine will commence in March 2001. Mining will take place at a maximum depth of 47 m and coal will be extracted from underground by two conveyor belts and stockpiled. Bell B40 CM mining trucks and an 18 Bell B20 articulated dump truck will be in the haulage fleet. 3 photos.

  7. UO$sub 2$/sodium thermal interaction experiments at A.W.R.E. Foulness since January 1972

    Energy Technology Data Exchange (ETDEWEB)

    Darby, K. I.; Pottinger, R. C.; Turner, R. G.; Rees, N. J.M.

    1974-01-15

    From 2nd specialist meeting on sodium fuel interaction in fast reactors; Ispra-Varese, Italy (21 Nov 1973). Work has continued to refine the experimental techniques. The unwanted gas content of the pyrotechnic charge has been identified as absorbed water vapor and a dry glove box assembly system is being constructed to remove it from the pyrotechnic charges. Some bomb calorimeter firings of both burst and unburst charges have confirmed the total theoretical energy release, and recent chemical analyses of the debris recovered from sodium (by chemical extraction with alcohol) showed the pyrotechnic reaction had substantially burnt to completion. Experiments to correlate rate of charge burning with the pressure nise in the charge container are proceeding using a transparent quartz charge holder and photography together with attempted thermocouple measurements. Charges with UO/sub 2/ diluent have been fired under sodium and water producing effects identical to previously reported experiments using Al/sub 2/O/sub 3/ diluent. Steps are currently being taken to separate debris from sodium by the purely physical process of distillation. Pyrotechnic charges diluted with finely divided aluminium metal and separately with silver have been fired under water in a viewing vessel to see if a metal/water thermal interaction could be demonstrated in this rig. This new vessel retains the original internal cylindrical geometry with optical correction on the viewing window for the cylindrical lens effect. These experiments produced very much higher gas blanket pressures on the first bubble expansion but this is thought to be a vapor pressure effect from the charge. The main debris engulfment is seen to take place shortly after the first peak gas blanket pressure and there is some evidence of a variation in the gas blanket pressure decay at this point in time. This may be evidence of a thermal interaction. One frictional plate has been constructed and used (50% void area) wtth a

  8. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-09-01

    The plastic materials used in the multilayer insulation (MLI) blankets of the superconducting magnets of the Superconducting Super Collider (SSC) are comprised entirely of polyesters. This paper reports on tests conducted in three separate experimental blanket arrangements. The tests explore the thermal performance of two candidate blanket joint configurations each employing a variation of a stepped-butted joint nested between sewn blanket seams. The results from the joint configurations are compared to measurements made describing the thermal performance of the basic blanket materials as tested in an ideal joint configuration. Twenty foil sensors were incorporated within each test blanket to measure interstitial layer and joint layer temperatures. Heat flux and thermal gradients are reported for high and degraded insulating vacuums, and during transient and steady state conditions. In complement with this paper is an associate paper bearing the same title head but with the title extension 'Part 1: Instrumentation and experimental preparation (300K-80K)'. 5 refs., 8 figs., 2 tabs

  9. Extension of the AUS reactor neutronics system for application to fusion blanket neutronics

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1984-03-01

    The AUS modular code scheme for reactor neutronics computations has been extended to apply to fusion blanket neutronics. A new group cross-section library with 200 neutron groups, 37 photon groups and kerma factor data has been generated from ENDF/B-IV. The library includes neutron resonance subgroup parameters and temperature-dependent data for thermal neutron scattering matrices. The validity of the overall calculation system for fusion applications has been checked by comparison with a number of published conceptual design studies

  10. Evaluation of alternative methods of simulating asymmetric bulk heating in fusion reactor blanket/shield components

    International Nuclear Information System (INIS)

    Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Wadkins, R.P.; Wessol, D.E.

    1981-10-01

    As a part of Phase O, Test Program Element-II of the Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program, a study was conducted by EG and G Idaho, Inc., to identify, characterize, and recommend alternative approaches for simulating fusion bulk heating in blanket/shield components. This is the report on that effort. Since the usefulness of any simulation approach depends upon the particular experiment considered, classes of problem types (thermal-hydraulic, thermomechanical, etc.) and material types (structure, solid breeder, etc.) are developed. The evaluation of the various simulation approaches is performed for the various significant combinations of problem class and material class. The simulation approaches considered are discrete-source heating, direct resistance, electromagnetic induction, microwave heating, and nuclear heating. From the evaluations performed for each experiment type, discrete - source heating emerges as a good approach for bulk heating simulation in thermal - hydraulics experiments, and nuclear heating appears to be a good approach in experiments addressing thermomechanics and combined thermal-hydraulic/thermomechanics

  11. Fuel assembly, channel box of fuel assembly, fuel spacer of fuel assembly and method of manufacturing channel box

    International Nuclear Information System (INIS)

    Chaki, Masao; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Nishida, Koji; Kawasaki, Terufumi.

    1997-01-01

    In a fuel assembly of a BWR type reactor, fuel rods disposed at corners of side walls of a channel box or in the periphery of the side walls are partially removed, and recessed portions are formed on the side walls of the channel box from which the fuel rods are removed. Spaces closed at the sides are formed in the inner side of the corner portions. Openings are formed for communicating the closed space with the outside of the channel box. Then, the channel area of the outer side of the channel box is increased, through which much water flows to increase the amount of water in the reactor core thereby promoting the moderation of neutrons and providing thermal neutrons suitable to nuclear fission. The degree of freedom for distribution of the spaces in the reactor core is increased to improve neutron economy thereby enabling to utilize reactor fuels effectively. (N.H.)

  12. Overview of EU activities on DEMO liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Malang, S.; Reimann, J.; Perujo, A.

    1994-01-01

    The present paper gives an overview of both design and experimental activities within the European Union (EU) concerning the development of liquid metal breeder blankets for DEMO. After several years of studies on breeding blankets, two blanket concepts are presently considered, both using the eutectic Pb-17Li: the dual-coolant concept and the water-cooled concept. The analysis of such concepts has permitted to identify the experimental areas where further data are required. Tritium control and MHD-issues are, at present, the activities on which is devoted the greatest effort within the EU. (authors). 4 figs., 4 tabs., 39 refs

  13. Availability analysis of the ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Noguchi, Yuto; Takeda, Nobukazu; Kakudate, Satoshi

    2015-01-01

    The ITER blanket remote handling system (BRHS) is required to replace 440 blanket first wall panels in a two-year maintenance period. To investigate this capability, an availability analysis of the system was carried out. Following the analysis procedure defined by the ITER organization, the availability analysis consists of a functional analysis and a reliability block diagram analysis. In addition, three measures to improve availability were implemented: procurement of spare parts, in-vessel replacement of cameras, and simultaneous replacement of umbilical cables. The availability analysis confirmed those measures improve the availability and capability of the BRHS to replace 440 blanket first wall panels in two years. (author)

  14. Molten salt cooling/17Li-83Pb breeding blanket concept

    International Nuclear Information System (INIS)

    Sze, D.K.; Cheng, E.T.

    1985-02-01

    A description of a fusion breeding blanket concept using draw salt coolant and static 17 Li- 83 Pb is presented. 17 Li- 83 Pb has high breeding capability and low tritium solubility. Draw salt operates at low pressure and is inert to water. Corrosion, MHD, and tritium containment problems associated with the MARS design are alleviated because of the use of a static LiPb blanket. Blanket tritium recovery is by permeation toward the plasma. A direct contact steam generator is proposed to eliminate some generic problems associated with a tube shell steam generator

  15. Conceptual design of blanket structures for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  16. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    International Nuclear Information System (INIS)

    1978-01-01

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified

  17. A Li-particulate blanket concept for ITER

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.

    1989-01-01

    The Li-particulate blanket design concept the authors proposed for the International Thermonuclear Experimental Reactor (ITER) uses a dilute suspension of fine solid breeder particles in a carrier gas as the combined coolant and lithium breeder stream. This blanket concept has a simple mechanical and hydraulic configuration, low inventory of bred tritium, and simple tritium extraction system. Existing technology can be used to implement the design for ITER. The concept has the potential to be a highly reliable shield and blanket design for ITER with relatively low development and capital costs

  18. Development of ITER shielding blanket prototype mockup by HIP bonding

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Kuroda, Toshimasa; Enoeda, Mikio; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Office of ITER Project Promotion, Tokyo (Japan)

    2000-07-01

    minimize thermal effects on the mechanical properties and to reduce the number of fabrication steps. Based on the results of study for optimization of the simultaneous HIP bonding conditions, the HIP conditions were 1050degC, 150 MPa and holding time of 2 hours. Before this assembly for the HIP process, a deep drilling was performed for the coolant channels of the shield block from both sides of the block, then the shield block was bent by 10000-ton press machine to provide the specified curvature. During the bending, iced water was inserted into the drilled holes to prevent excessive deformation of the holes. Iced water was applied as the inserted material in this study because it was easy to remove the inserted material from the drilled holes and chemical reaction could be prevented during removal of the inserted materials. After the HIP process, the first wall surface was finally machined. The back part of the module was also machined to provide coolant manifolds, then cover plates of the manifolds were welded by TIG welding. A series of measurements and inspections was performed in the course of fabrication to make sure the dimensional accuracy and integrity of pressure boundaries. A destructive inspection was also performed with a cut specimen from the edge of the fabricated module to examine the bondability of HIPed interfaces. As a result of this fabrication experience, sufficient bonding by the single step solid HIP process has been demonstrated, and sufficient technical data base on the fabrication of the ITER shielding blanket module has been obtained. (author)

  19. Cassette blanket and vacuum building: key elements in fusion reactor maintenance

    International Nuclear Information System (INIS)

    Werner, R.W.

    1977-01-01

    The integration of two concepts important to fusion power reactors is discussed. The first concept is the vacuum building which improves upon the current fusion reactor designs. The second concept, the use of the cassette blanket within the vacuum building environment, introduces four major improvements in blanket design: cassette blanket module, zoning concept, rectangular blanket concept, and internal tritium recovery

  20. What Makes a Better Box?

    Science.gov (United States)

    Moyer, Richard; Everett, Susan

    2010-01-01

    Every morning, many Americans start their day with a bowl of cereal. Some spend time while they eat breakfast reading the back of the cereal box, but few consider its size, shape, and construction, or realize that it was designed by an engineer. This article describes a lesson in which students design, build, and critique cereal boxes. The lesson…

  1. Spirit Boxes: Expressions of Culture.

    Science.gov (United States)

    DeMuro, Ted

    1984-01-01

    After studying the culture and art of the ancient civilizations of South America, Mesopotamia, Greece, and Egypt, secondary level art students made spirit boxes as expressions of the various cultures. How to make the boxes and how to prepare the face molds are described. (RM)

  2. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  3. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Grief, Andrew; Merrill, Brad J.; Humrickhouse, Paul; Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon; Poitevin, Yves; Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard

    2016-01-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  4. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Grief, Andrew [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Merrill, Brad J.; Humrickhouse, Paul [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID (United States); Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom)

    2016-11-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  5. High temperature blankets for non-electrical/electrical applications of fusion reactors: Progress report, July 15, 1983--November 30, 1984

    International Nuclear Information System (INIS)

    Ribe, F.L.; Woodruff, G.L.

    1988-01-01

    We report a continuation of work done in collaboration with the Lawrence Livermore National Laboratory (LLNL) on design studies of the tandem-mirror fusion reactor (TMR) coupled to the General Atomic (GA) sulfur-iodine thermochemical process for producing hydrogen. During this report period the emphasis was on a solid-breeder gas cooled ''cannister'' blanket for TMR-based hydrogen production. This work was integrated with the Department of Energy (DOE), Office of Fusion Energy (OFE) Blanket Comparison and Selection Study, coordinated by the Argonne National Laboratory (ANL). The areas investigated by the two principal investigators and their students were the following: Plasma engineering of the TMR, including the magnets. Neutronics transport support for the synfuel blanket and shield. Completion of studies of the GA sulfur-iodine process. Under subcontract D.S. Rowe of Rowe and Associates worked with both UW and LLNL personnel on Mechanical design and thermal hydraulics of a high temperature, solid breeder blanket. 2 refs., 3 figs

  6. On the use of tin-lithium alloys as breeder material for blankets of fusion power plants

    International Nuclear Information System (INIS)

    Fuetterer, M.A.; Aiello, G.; Barbier, F.; Giancarli, L.; Poitevin, Y.; Sardain, P.; Szczepanski, J.; Li Puma, A.; Ruvutuso, G.; Vella, G.

    2000-01-01

    Tin-lithium alloys have several attractive thermo-physical properties, in particular high thermal conductivity and heat capacity, that make them potentially interesting candidates for use in liquid metal blankets. This paper presents an evaluation of the advantages and drawbacks caused by the substitution of the currently employed alloy lead-lithium (Pb-17Li) by a suitable tin-lithium alloy: (i) for the European water-cooled Pb-17Li (WCLL) blanket concept with reduced activation ferritic-martensitic steel as the structural material; (ii) for the European self-cooled TAURO blanket with SiC f /SiC as the structural material. It was found that in none of these blankets Sn-Li alloys would lead to significant advantages, in particular due to the low tritium breeding capability. Only in forced convection cooled divertors with W-alloy structure, Sn-Li alloys would be slightly more favorable. It is concluded that Sn-Li alloys are only advantageous in free surface cooled reactor internals, as this would make maximum use of the principal advantage of Sn-Li, i.e., the low vapor pressure

  7. Welding and cutting characteristics of blanket/first wall module to back plate for fusion experimental reactor

    International Nuclear Information System (INIS)

    Sato, Shinichi; Osaki, Toshio; Koga, Shinji

    1996-01-01

    The first wall and the blanket of the International Thermonuclear Experimental Reactor (ITER) are used under severe conditions such as the neutron irradiation by plasma, surface thermal load, the electromagnetic force at the time of plasma disruption and others. Consequently, from the viewpoint of the necessity for disassembling and maintenance, those are divided into modules in toroidal and poloidal directions. In this study, as to the welding of the back plate and the legs supporting blanket modules, which are installed in a vacuum vessel, the characteristic test paying attention to the deformation at the time of welding was carried out, and the optimal welding conditions and the characteristics of welding deformation and others were clarified. Moreover, when water jet method was used for cutting the welded parts of the supporting legs, the properties of the cut parts, the time for cutting and others were examined. The performance required for the welded parts of blanket modules with back plate is shown. The basic test of welding conditions using plate models, partial model test and whole model test are reported. The test of water jet cutting for the maintenance of shielding blanket modules is described. (K.I.)

  8. Development of an engineering-scale nuclear test of a solid-breeder fusion-blanket concept

    International Nuclear Information System (INIS)

    Deis, G.A.; Bohn, T.S.; Hsu, P.Y.; Miller, L.G.; Scott, A.J.; Watts, K.D.; Welch, E.C.

    1983-08-01

    As part of the Phase I effort on Program Element-II (PE-II) of the Office of Fusion Energy/Argonne National Laboratory First Wall/Blanket/Shield Engineering Technology Program, a study has been performed to develop preconceptual hardware designs and preliminary test program descriptions for two fission-reactor-based tests of a water-cooled, solid-breeder fusion reactor blanket concept. First, a list of potentially acceptable reactor facilities is developed, based on a list of required reactor characteristics. From this set of facilities, two facilities are selected for study: the Oak Ridge Research Reactor (ORR) and the Power Burst Facility (PBF). A test which employs a cylindrical unit cell of a solid-breeder fusion reactor blanket, with pressurized-water cooling is designed for each facility. The test design is adjusted to the particular characteristics of each reactor. These two test designs are then compared on the basis of technical issues and cost. Both tests can satisfy the PE-II mission: blanket thermal hydraulic and thermomechanical issues. In addition, both reactors will produce prototypical tritium production rates and profiles and release characteristics with little or no additional modifications

  9. Channel box dimension measuring method

    International Nuclear Information System (INIS)

    Oshima, Hirotake; Jo, Hiroto.

    1994-01-01

    The present invention provides a method for measuring the entire length of a channel box of a fuel assembly of a BWR type reactor. Namely, four sensors are used as one set that generate ultrasonic waves from oblique upper portion, oblique lower portion, upper portion and lower portion of the channel box respectively. The distances between the four sensors and each of the portions of the channel box are measured respectively for both of a reference member and a member to be measured. The entire length of the channel box is measured by calculating the measured values and the angles of the obliquely disposed sensors according to a predetermined formula. According to the method of the present invention, the inclination of the channel box to be measured can be corrected. In addition, accuracy of the measurement is improved and the measuring time is saved as well as the measuring device and operation can be simplified. (I.S.)

  10. The thermo-mechanical design of the water cooled PB-17Li test blanket module for ITER

    International Nuclear Information System (INIS)

    Nardi, C.; Palmieri, A.; Pinna, T.; Porfini, M.T.; Rapisarda, M.; Roccella, M.; Futterer, M.; Lucca, F.

    1998-01-01

    The Water Cooled Lithium Lead (WCLL) blanket is one of the two European concepts to be further developed. A Test Blanket Module (TBM) representative of the DEMO blanket shall be tested in ITER. This paper reports on the activities related to the thermo-mechanical design analysis, taking into account the electromagnetic and neutronic loads in normal and off normal conditions. These loads were applied to a finite elements model of the structure, and the structural response was compared to the allowable value, dependent on the operating conditions. Besides the loads assumed by the design specifications (pressure, temperature, etc), electro-mechanical and thermal loads have been evaluated. A model of the TBM has been performed to compute the loads related to the electromagnetic effects of a centered plasma disruption. The thermal loads have been evaluated considering the heat deposition from the plasma and from the neutrons. The neutronic analysis has been carried out also in order to evaluate the shielding characteristics of the TBM. Taking into account the thermal and mechanical loads a fracture mechanics analysis has been carried out. From this analysis the J Ic parameter was evaluated at the crack tip and compared with the allowable value. The work carried out showed that the TBM present design fulfills ITER normal operation requirements. (authors)

  11. Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system

    International Nuclear Information System (INIS)

    Neves, S.F.; Couto, S.; Campos, J.B.L.M.; Mayor, T.S.

    2015-01-01

    The optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment, and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on

  12. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    International Nuclear Information System (INIS)

    Powers, J.

    2008-01-01

    looking at fast ignition and hot spot ignition fusion options are documented, along with limited scoping studies performed to investigate other options of interest that surfaced during the main design effort. Lastly, side studies that were not part of the main design effort but may alter future work performed on LIFE engine designs are shown. The majority of all work reported in this document was performed during the Molten Salt Fast Ignition Moderator Study (MSFIMS) which sought to optimize the amount of moderator mixed into the molten salt region in order to produce the most compelling design. The studies in this report are of a limited scope and are intended to provide a preliminary neutronics analysis of the design concepts described herein to help guide decision processes and explore various options that a LIFE engine with a molten salt blanket might enable. None of the designs shown in this report, even reference cases selected for detailed description and analysis, have been fully optimized. The analyses were performed primarily as a neutronics study, though some consultation was made regarding thermal-hydraulic and structural concerns during both scoping out an initial model and subsequent to identifying a neutronics-based reference case to ensure that the design work contained no glaring mechanical or thermal issues that would preclude its feasibility. Any analyses and recommendations made in this report are either primarily or solely from the point of view of LIFE neutronics and ignore other fundamental issues related to molten salt fuel blankets such as chemical processing feasibility and political feasibility of a molten salt system

  13. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J

    2008-10-23

    . Preliminary design studies looking at fast ignition and hot spot ignition fusion options are documented, along with limited scoping studies performed to investigate other options of interest that surfaced during the main design effort. Lastly, side studies that were not part of the main design effort but may alter future work performed on LIFE engine designs are shown. The majority of all work reported in this document was performed during the Molten Salt Fast Ignition Moderator Study (MSFIMS) which sought to optimize the amount of moderator mixed into the molten salt region in order to produce the most compelling design. The studies in this report are of a limited scope and are intended to provide a preliminary neutronics analysis of the design concepts described herein to help guide decision processes and explore various options that a LIFE engine with a molten salt blanket might enable. None of the designs shown in this report, even reference cases selected for detailed description and analysis, have been fully optimized. The analyses were performed primarily as a neutronics study, though some consultation was made regarding thermal-hydraulic and structural concerns during both scoping out an initial model and subsequent to identifying a neutronics-based reference case to ensure that the design work contained no glaring mechanical or thermal issues that would preclude its feasibility. Any analyses and recommendations made in this report are either primarily or solely from the point of view of LIFE neutronics and ignore other fundamental issues related to molten salt fuel blankets such as chemical processing feasibility and political feasibility of a molten salt system.

  14. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... Granules grown in the bottom part of UASB reactor were more compact and tense ...

  15. Electromagnetic effects involving a tokamak reactor first wall and blanket

    International Nuclear Information System (INIS)

    Turner, L.R.; Evans, K. Jr.; Gelbard, E.; Prater, R.

    1980-01-01

    Four electromagnetic effects experienced by the first wall and blanket of a tokamak reactor are considered. First, the first wall provides reduction of the growth rate of vertical axisymmetric instability and stabilization of low mode number interval kink modes. Second, if a rapid plasma disruption occurs, a current will be induced on the first wall, tending to maintain the field formerly produced by the plasma. Third, correction of plasma movement can begin on a time scale much faster than the L/R time of the first wall and blanket. Fourth, field changes, especially those from plasma disruption or from rapid discharge of a toroidal field coil, can cause substantial eddy current forces on elements of the first wall and blanket. These effects are considered specifically for the first wall and blanket of the STARFIRE commercial reactor design study

  16. Fusion-reactor blanket-material safety-compatibility studies

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

    1982-11-01

    Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO 2 , Li 2 ZrO 3 , Li 2 SiO 3 , Li 4 SiO 4 and LiTiO 3 ) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li 7 Pb 2 alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li 17 Pb 83 alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li 17 Pb 83 alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns

  17. Aqueous self-cooled blanket concepts for fusion reactors

    International Nuclear Information System (INIS)

    Varsamis, G.; Embrechts, M.J.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1987-01-01

    A novel aqueous self-cooled blanket (ASCB) concept has been proposed. The water coolant also serves as the tritium breeding medium by dissolving small amounts of lithium compound in the water. The tritium recovery requirements of the ASCB concept may be facilitated by the novel in-situ radiolytic tritium separation technique in development at Chalk River Nuclear Laboratories. In this separation process deuterium gas is bubbled through the blanket coolant. Due to radiation induced processes, the equilibrium constant favors tritium migration to the deuterium gas stream. It is expected that the inherent simplicity of this design will result in a highly reliable, safe and economically attractive breeding blanket for fusion reactors. The available base of relevant information accumulated through water-cooled fission reactor programs should greatly facilitate the R and D effort required to validate the proposed blanket concept. Tests for tritium separation and corrosion compatibility show encouraging results for the feasibility of this concept

  18. Blast venting through blanket material in the HYLIFE ICF reactor

    International Nuclear Information System (INIS)

    Liu, J.C.; Peterson, P.F.; Schrock, V.E.

    1992-01-01

    This work presents a numerical study of blast venting through various blanket configurations in the HYLIFE ICF reactor design. The study uses TSUNAMI -- a multi-dimensional, high-resolution, shock capturing code -- to predict the momentum exchange and gas dynamics for blast venting in complex geometries. In addition, the study presents conservative predictions of wall loading by gas shock and impulse delivered to the protective liquid blanket. Configurations used in the study include both 2700 MJ and 350 MJ fusion yields per pulse for 5 meter and 3 meter radius reactor chambers. For the former, an annular jet array is used for the blanket geometry, while in the latter, both annular jet array as well as slab geometries are used. Results of the study indicate that blast venting and wall loading may be manageable in the HYLIFE-II design by a judicious choice of blanket configuration

  19. Imploding-liner reactor nucleonic studies: the LINUS blanket

    International Nuclear Information System (INIS)

    Dudziak, D.J.

    1977-09-01

    Scoping nucleonic studies have been performed for a small imploding-liner fusion reactor concept. Tritium breeding ratio and time-dependent energy deposition rates were the primary parameters of interest in the study. Alloys of Pb and LiPb were considered for the liquid liner (blanket), and tritium breeding was found to be more than adequate with blankets less than 1 m thick. However, neutron leakages into the solid cylinder block surrounding the liquid liner are generally quite high, so considerable effort was concentrated on minimizing these values. Time-dependent calculations reveal that 89% of the energy is deposited in the blanket within 2 μs. Thus, LINUS's blanket should remain intact for the requisite neutron and gamma-ray lifetimes

  20. Application of vanadium alloys to a fusion reactor blanket

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center)

    1984-05-01

    Vanadium and vanadium alloys are of interest in fusion reactor blanket applications due to their low induced radioactivity and outstanding elevated temperature mechanical properties during neutron irradiation. The major limitation to the use of vanadium is its sensitivity to oxygen impurities in the blanket environment, leading to oxygen embrittlement. A quantitative analysis was performed of the interaction of gaseous impurities in a helium coolant with vanadium and the V-15Cr-5Ti alloy under conditions expected in a fusion reactor blanket. It was shown that the use of unalloyed V would impose severe restrictions on the helium gas cleanup system due to excessive oxygen buildup and embrittlement of the metal. However, internal oxidation effects and the possibly lower terminal oxygen solubility in the alloy would impose much less severe cleanup constraints. It is suggested that V-15Cr-5Ti is a promising candidate for certain blanket applications and deserves further consideration.

  1. Thinking Inside the Box

    International Nuclear Information System (INIS)

    Boeheim, Charles T.

    2007-01-01

    In early 2007, SLAC was faced with a shortage of both electrical power and cooling in the main computer building, at the same time that the BaBar collaboration needed a new cluster of 250 batch machines installed. A number of different options were explored for the expansion. Provision of additional electrical power to the building was estimated to take one to two years, and cost several million dollars; additional cooling was even worse. Space in a Silicon Valley co-location facilities was reasonable on a one-year timescale, but broke even in costs by the end of three years, and were more expensive after that. There were also unresolved questions about the affects of additional latency from an offsite compute cluster to the onsite disk servers. The option of converting existing experimental hall space into computer space was estimated at one year, with uncertain availability. An option to aggressively replace several existing clusters with more power-efficient equipment was studied closely, but was disruptive to continued operations, expensive, and didn't provide any additional headroom. Finally, the installation of a Sun Project Blackbox (PBB) unit was selected as providing the capacity on a timescale of six months for a reasonable cost with minimal disruption to service. SLAC obtained and installed a beta unit and have been running it in production since September 2007. The experiences described are with the Early Access version of the PBB. The production version of the box has engineering changes based in part on our experiences

  2. Blanket of a hybrid thermonuclear reactor with liquid- metal cooling

    International Nuclear Information System (INIS)

    Terent'ev, I.K.; Fedorovich, E.P.; Paramonov, P.M.; Zhokhov, K.A.

    1982-01-01

    Blanket design of a hybrid thermopuclear reactor with a liquid metal coolant is described. To decrease MHD-resistance for uranium zone fuel elements a cylindrical shape is suggested and movement of liquid-metal coolant in fuel element packets is presumed to be in perpendicular to the magnetic field and fuel element axes direction. The first wall is cooled by water, blanket-by lithium-lead alloy

  3. Recent developments in fusion first wall, blanket, and shield technology

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1983-01-01

    This brief overview of first wall, blanket and shield technology reviews the changes and trends in important design issues in first wall, blanket and shield design and related technology from the 1970's to the 1980's. The emphasis is on base technology rather than either systems engineering or materials development. The review is limited to the two primary confinement systems, tokamaks and mirrors, and production of electricity as the primary goal for development

  4. Evaluation of organic moderator/coolants for fusion breeder blankets

    International Nuclear Information System (INIS)

    Romero, J.B.

    1980-03-01

    Organic coolants have several attractive features for fusion breeder blanket design. Their apparent compatibility with lithium and their ideal physical and nuclear properties allows straight-forward, high performance designs. Radiolytic damage can be reduced to about the same order as comparable fission systems by using multiplier/stripper blanket designs. Tritium recovery from the organic should be straightforward, but additional data is needed to make a better assessment of the economics of the process

  5. Main features and potentialities of gas-blanket systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    A review is given of the features and potentialities of cold-blanket systems, with respect to plasma equilibrium, stability, and reactor technology. The treatment is concentrated on quasi-steady magnetized plasmas confined at moderately high beta values. The cold-blanket concept has specific potentialities as a fusion reactor, e.g. in connection with the desired densities and dimensions of full-scale systems, refuelling, as well as ash and impurity removal, and stability. (author)

  6. Feasibility study of fusion breeding blanket concept employing graphite reflector

    International Nuclear Information System (INIS)

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  7. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  8. Overview of first wall/blanket/shield technology

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1983-04-01

    This brief overview of first wall, blanket, and shield technology focuses first on changes and trends in important design issues from the 1970's to the 1980's, then on current perceptions of critical issues in first wall, blanket, and shield design and related technology. The emphasis is on base technology rather than either systems engineering or materials development, on the two primary confinement systems, tokamaks and mirrors, and on production of electricity as the primary goal for development

  9. Applications of the Aqueous Self-Cooled Blanket concept

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.J.; Varsamis, G.; Wrisley, K.; Deutch, L.; Gierszewski, P.

    1986-01-01

    In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids

  10. Electrical connectors for blanket modules in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Poddubnyi, I., E-mail: poddubnyyii@nikiet.ru [Open Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Street 2/8, Moscow (Russian Federation); Khomiakov, S.; Kolganov, V. [Open Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Street 2/8, Moscow (Russian Federation); Sadakov, S.; Calcagno, B.; Chappuis, Ph.; Roccella, R.; Raffray, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France); Danilov, I.; Leshukov, A.; Strebkov, Y. [Open Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Street 2/8, Moscow (Russian Federation); Ulrickson, M. [Sandia National Laboratories MS-1129, PO Box 5800, Albuquerque, NM 87185 (United States)

    2014-10-15

    Highlights: • Analysis of static and cyclic strength for L-shaped and Z-shaped ES has been performed. • Analysis results do show that for L-shaped ES static and cyclic strength criteria are not satisfied. • Static and cyclic strength criteria are met well by ES with Z-shaped elastic elements. • ES with Z-shaped elastic elements has been adopted as a new baseline design for ITER. - Abstract: Blanket electrical connectors (E-straps, ES) are low-impedance electrical bridges crossing gaps between blanket modules (BMs) and vacuum vessel (VV). Similar ES are used between two parts on each BM: the first wall panel (FW) and shield block (SB). The main functions of E-straps are to: (a) conduct halo currents intercepting some rows of BM, (b) provide grounding paths for all BMs, and (c) operate as electrical shunts which protect water cooling pipes (branch pipes) from excessive halo and eddy currents. E-straps should be elastic enough to absorb 3-D imposed displacements of BM relative VV in a scale of ±2 mm and at the same time strong enough to not be damaged by EM loads. Each electrical strap is a package of flexible conductive sheets made of CuCrZr bronze. Halo current up to 137 kA and some components of eddy currents do pass through one E-strap for a few tens or hundreds milliseconds during the plasma vertical displacement events (VDE) and disruptions. These currents deposit Joule heat and cause rather high electromagnetic loads in a strong external magnetic field, reaching 9 T. A gradual failure of ES to conduct Halo and Eddy currents with low enough impedance gradually redistributes these currents into branch pipes and cause excessive EM loads. When branch pipes will be bent so much that will touch surrounding structures, the Joule heating in accidental electrical contact spots will cause local melting and may lead to a water leak. The paper presents and compares two design options of E-straps: with L-shaped and Z-shaped elastic elements. The latter option was

  11. ITER blanket module connectors. Design, analysis and testing for procurement arrangement

    International Nuclear Information System (INIS)

    Khomiakov, S.; Poddubnyi, I.; Kolganov, V.; Zhmakin, A.; Parshutin, E.; Danilov, I.; Strebkov, Yu.; Skladnov, K.; Vlasov, D.; Cheburova, A.; Romannikov, A.; Raffray, R.; Egorov, K.; Chappuis, Ph.; Sadakov, S.; Calcagno, B.; Roccella, R.

    2016-01-01

    Highlights: • Procurement Arrangement on Blanket Module Connections (BMC) was signed by ITER Organization and Russian Federation Domestic Agency in late 2014. • “N.A. Dollezhal Research and Development Institute of Power Engineering” (NIKIET) was selected as a general supplier of BMC. • NIKIET plays a key role in design development, analytical and experimental justification and manufacturing of BMC. • NIKIET shall fabricate, test and deliver to ITER 2109 flexible supports, 2561 pads, 1053 electrical straps and 1053 pedestals. - Abstract: A standard ITER Blanket module (BM) is attached to the Vacuum Vessel (VV) with a special system of Blanket Module Connections (BMCs) comprising flexible supports, insulating key pads and electrical straps. BMCs fix the modules relative to the VV and manage the current flow. They accommodate transient, cyclic, thermal and electro-magnetic (EM) loads in a vacuum environment and under neutron radiation. Dynamic, thermal-structural and strength analyses have been performed in support of the BMC design and the results have been experimentally confirmed. The components with uncertain behavior including partially and non-preloaded threads, insulation coating, and electrical contacts were designed by experiments. The effort to develop a reliable and robust design of the BMCs in time for the signature of the Procurement Arrangement on BMCs between ITER Organization and Russian Federation in late 2014 spanned several years. It includes design and analysis as well as experimental activities by the ITER Organization and by JSC “NIKIET” (Russia), which, as an affirmed subcontractor will manufacture and supply BMCs to the ITER site. This paper summarizes the overall effort focusing in particular on the more recent PA supporting activities.

  12. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Pinaev, S.S.; Muraviev, E.V.; Romanov, P.V.

    2005-01-01

    High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease magnetohydrodynamic resistance authors propose to form insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the insulating coatings characteristics ρδ is ∼ 10 -5 Ohm·m 2 for steels and 5,0x10 -6 - 5,0x10 -5 Ohm·m 2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steamgenerators and equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem of technology of lead and lead-bismuth coolants for power high temperature radioactive facilities has been solved. Accidents, emergency situations such as leakage of steamgenerators or depressurization of gas system in facilities with lead and lead-bismuth coolants have been explored and suppressed. (author)

  13. ITER blanket module connectors. Design, analysis and testing for procurement arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Khomiakov, S., E-mail: khomias58@mail.ru [Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Str. 2/8, Moscow (Russian Federation); Poddubnyi, I.; Kolganov, V.; Zhmakin, A.; Parshutin, E.; Danilov, I.; Strebkov, Yu.; Skladnov, K.; Vlasov, D.; Cheburova, A. [Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Str. 2/8, Moscow (Russian Federation); Romannikov, A. [Institution “Project Center ITER”, 123098, Academic Kurchatov' s Sq.,1, Moscow (Russian Federation); Raffray, R.; Egorov, K.; Chappuis, Ph.; Sadakov, S.; Calcagno, B.; Roccella, R. [ITER Organization, Route de Vinon sur Verdon, 13067 St. Paul-Lez-Durance (France)

    2016-11-01

    Highlights: • Procurement Arrangement on Blanket Module Connections (BMC) was signed by ITER Organization and Russian Federation Domestic Agency in late 2014. • “N.A. Dollezhal Research and Development Institute of Power Engineering” (NIKIET) was selected as a general supplier of BMC. • NIKIET plays a key role in design development, analytical and experimental justification and manufacturing of BMC. • NIKIET shall fabricate, test and deliver to ITER 2109 flexible supports, 2561 pads, 1053 electrical straps and 1053 pedestals. - Abstract: A standard ITER Blanket module (BM) is attached to the Vacuum Vessel (VV) with a special system of Blanket Module Connections (BMCs) comprising flexible supports, insulating key pads and electrical straps. BMCs fix the modules relative to the VV and manage the current flow. They accommodate transient, cyclic, thermal and electro-magnetic (EM) loads in a vacuum environment and under neutron radiation. Dynamic, thermal-structural and strength analyses have been performed in support of the BMC design and the results have been experimentally confirmed. The components with uncertain behavior including partially and non-preloaded threads, insulation coating, and electrical contacts were designed by experiments. The effort to develop a reliable and robust design of the BMCs in time for the signature of the Procurement Arrangement on BMCs between ITER Organization and Russian Federation in late 2014 spanned several years. It includes design and analysis as well as experimental activities by the ITER Organization and by JSC “NIKIET” (Russia), which, as an affirmed subcontractor will manufacture and supply BMCs to the ITER site. This paper summarizes the overall effort focusing in particular on the more recent PA supporting activities.

  14. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Malang, S.; Sawan, M.; Dagher, Mohamad; Smolentsev, S.; Merrill, Brad; Youssef, M.; Reyes, Susanna; Sze, Dai Kai; Morley, Neil B.; Sharafat, Shahran; Calderoni, P.; Sviatoslavsky, G.; Kurtz, Richard J.; Fogarty, Paul J.; Zinkle, Steven J.; Abdou, Mohamed A.

    2006-02-01

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17LI is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Ph-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure.

  15. Design and development of ceramic breeder demo blanket

    International Nuclear Information System (INIS)

    Enoeda, M.; Sato, S.; Hatano, T.

    2001-01-01

    Ceramic breeder blanket development has been widely conducted in Japan from fundamental researches to project-oriented engineering scaled development. A long term R and D program has been launched in JAERI since 1996 as a course of DEMO blanket development. The objectives of this program are to provide engineering data base and fabrication technologies of the DEMO blanket, aiming at module testing in ITER currently scheduled to start from the beginning of the ITER operation as a near-term target. Two types of DEMO blanket systems, water cooled blanket and helium cooled blanket, have been designed to be consistent with the SSTR (Steady State Tokamak Reactor) which is the reference DEMO reactor design in JAERI. Both of them utilize packed small pebbles of breeder Li 2 O or Li 2 TiO 3 as a candidate) and neutron multiplier (Be) and rely on the development of advanced structural materials (a reduced activation ferritic steel F82H) compatible with high temperature operation. (author)

  16. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    Science.gov (United States)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  17. Stress analysis of blanket vessel for JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Minato, A.

    1979-01-01

    A blanket structure of JAERI Experimental Fusion Reactor (JXFR) consists of about 2,300 blanket cells with round cornered rectangular cross sections (twelve slightly different shapes) and is placed in a vacuum vessel. Each blanket vessel is a double-walled thin-shell structure made of Type 316 stainless steel with a spherical domed surface at the plasma side. Ribs for coolant channel are provided between inner and outer walls. The blanket cell contains Li 2 O pebbles and blocks for tritium breeding and stainless steel blocks for neutron reflection. A coolant is helium gas at 10 kgf/cm 2 (0.98 MPa) and its inlet and outlet temperatures are 300 0 C and 500 0 C. The maxima of heat flux and nuclear heating rate at the first wall are 12 W/cm 2 and 2 W/cc. A design philosophy of the blanket structure is based on high tritium breeding ratio and more effective shielding performance. The thin-shell vessel with a rectangular cross section satisfies the design philosophy. We have designed the blanket structure so that the adjacent vessels are mutually supporting in order to decrease the large deformation and stress due to internal pressure in case of the thin-shell vessel. (orig.)

  18. Studies on steps affecting tritium residence time in solid blanket

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    1987-01-01

    For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)

  19. Mechanical analysis of an assembly box with honeycomb structure

    International Nuclear Information System (INIS)

    Herbell, Heiko; Himmel, Steffen; Schulenberg, Thomas

    2008-01-01

    Fuel assembly concepts for supercritical water cooled reactors have often been designed with assembly and moderator boxes to provide additional moderator water in the core in case of higher coolant temperatures. The fuel assembly considered here has been designed for the High Performance Light Water Reactor (HPLWR) with three succeeding heat up steps, one evaporator and two superheater steps. The high coolant pressure drop of such a core design causes, however, a higher pressure difference across the box walls than those typically occurring in boiling water reactors. Hot, superheated steam conditions, on the other hand, require thermally insulated box walls rather than solid box walls to reduce heating of the moderator water. In this paper an innovative design for moderator- and assembly boxes is investigated which consists of an alumina filled stainless steel honeycomb structure, built as a sandwich design between two stainless steel liners. The liners in contact with the colder moderator water are perforated to lower the pressure load on the honeycomb structure. As a consequence, the alumina will be soaked with supercritical water causing stagnant flow conditions in the honeycomb cells. In comparison to solid box walls, the use of the presented design can provide the same stiffness but with a drastic reduction of structural material and thus less neutron absorption. Finite Element Analyses are used to verify the required stiffness, to identify stress concentrations, and to optimize the design. (author)

  20. Transmutation blanket design for a Tokamak system

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A. Fortini; Costa, Antonella L.

    2011-01-01

    Sub-critical advanced reactor with a D-T fusion neutron source based on Tokamak technology is an innovative type of nuclear system. Due to the high quantity of neutrons produced by fusion reactions, it could be well spent in the transmutation process of the transuranic elements. Nevertheless, to achieve a successful transmutation, it is necessary to know the neutron fluence along the radial axis and its characteristics. In this work, it evaluated the neutron flux and interaction frequency along the radial axis changing the material of the first wall. W-alloy, beryllium and the combination of both were studied and regions more suitable to transmutation were determined. The results demonstrated that the better zone to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements W-alloy/W-alloy and W-alloy/Beryllium would be able to hold the requirements of high fluence and hardening spectrum needed to transuranic transmutation. The system was simulated using the MCNP5 code, the ITER Final Design Report, 2001, and the FENDL/MC-2.1 nuclear data library. (author)

  1. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    Science.gov (United States)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with

  2. Fuel element box inspection device

    International Nuclear Information System (INIS)

    Ortmayer, R.M.; Pick, W.

    1985-01-01

    The invention concerns a device for inspecting the outer geometry of a long fuel element box by measuring the surface contours over its longitudinal crossection and along its length by sensors. These are kept in a sledge which can be moved along the fuel element guide in a slot guide. The measurement signals reach an evaluation device outside the longitudinal box. (orig./HP) [de

  3. Black holes in a box

    International Nuclear Information System (INIS)

    Witek, Helvi; Cardoso, Vitor; Nerozzi, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos; Zilhao, Miguel; Sperhake, Ulrich

    2010-01-01

    The evolution of BHs in 'confining boxes' is interesting for a number of reasons, particularly because it mimics some aspects of anti-de Sitter spacetimes. These admit no Cauchy surface and are a simple example of a non-globally hyperbolic spacetime. We are here interested in the potential role that boundary conditions play in the evolution of a BH system. For that, we imprison a binary BH in a box, at which boundary we set mirror-like boundary conditions.

  4. Loss-of-Coolant and Loss-of-Flow Accidents in the SEAFP first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1995-01-01

    This paper presents the RELAP5/MOD3 thermal-hydraulic analysis of three Loss-of-Coolant Accidents (LOCAs) and three Loss-of-Flow Accidents (LOFAs) in the first wall/blanket cooling system of the SEAFP reactor design. The analyses deal with the transient thermal-hydraulic behaviour inside the cooling systems and the temperature development inside the nuclear components. As it appears, the temperature increase in the first wall Be-coating is limited to 30 K when an emergency plasma shutdown is initiated within 10 s following pump trip. (orig.)

  5. Loss-of-coolant and loss-of-flow accidents in the SEAFP first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1994-07-01

    This paper presents the RELAP5/MOD3 thermal-hydraulic analysis of three Loss-of-Coolant Accidents (LOCAs) and three Loss-of-Flow Accidents (LOFAs) in the first wall/blanket cooling system of the SEAFP reactor design. The analyses deal with the transient thermal-hydraulic behaviour inside the cooling systems and the temperature development inside the nuclear components. As it appears, the temperature increase in the first wall Be-coating is limited to 30 K when an emergency plasma shutdown is initiated within 10 s following pump trip. (orig.)

  6. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  7. Trade-off study of liquid metal self-cooled blankets

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of this study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. The primary results of the study are as follows: a) the lithium-lead blanket achieves a higher TBR with a smaller blanket thickness relative to the lithium blanket; b) the lithium blanket generates more energy per fusion neutron relative to the lithium-lead blanket; c) among the possible reflector materials, the carbon reflector produces the highest TBR; d) the high-Z reflector materials (Mo, Cu, W, or steel) generate more energy per fusion neutron and produce smaller TBRs relative to the carbon reflector; e) lithium-6 enrichment is required for the lithium-lead blanket to reduce the total blanket thickness; and f) the energy deposition per fusion neutron reaches a saturation as the blanket thickness, the fraction of the high-Z material in the reflector, or the reflector zone thickness increases (this allows one to design the blanket for a specific TBR without reducing the energy production)

  8. The influence of external source intensity in accelerator/target/blanket system on conversion ratio and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kochurov, B.P. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    1995-10-01

    The analysis of neutron balance relation for a subcritical system with external source shows that a high ratio of neutron utilization (conversion ratio, breeding ratio) much exceeding similar values for nuclear reactors (both thermal or fast spectrum) is reachable in accelerator/target/blanket system with high external neutron source intensity. An accelerator/target/blanket systems with thermal power in blanket about 1850 Mwt and operating during 30 years have been investigated. Continual feed up by plutonium (fissile material) and Tc-99 (transmuted material) was assumed. Accelerator beam intensity differed 6.3 times (16 mA - Case 1, and 100 mA-Case 2). Conversion ratio (CR) was defined as the ratio of Tc-99 nuclei transmuted to the number of Pu nuclei consumed. High value of conversion ratio considerably exceeding 1 (CR=1.66) was obtained in the system with high source intensity as compared with low source system (CR=0.77). Net output of electric power of high source intensity system is about twice lower due to consumption of electric power for accelerator feed up. The loss of energy for Tc-99 transmutation is estimated as 40 Mev(el)/nuclei. Yet high conversion ratio (or breeding ratio) achievable in electronuclear installations with high intensity of external source can effectively be used to close fuel cycle (including incineration of wastes) or to develop growing nuclear power production system.

  9. A helium-cooled blanket design of the low aspect ratio reactor

    International Nuclear Information System (INIS)

    Wong, C.P.; Baxi, C.B.; Reis, E.E.; Cerbone, R.; Cheng, E.T.

    1998-03-01

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh

  10. Carbon tiles as spectral-shifter for long-life liquid blanket in LHD-type reactor FFHR

    International Nuclear Information System (INIS)

    Sagara, A.; Imagawa, S.; Tanaka, T.; Muroga, T.; Kubota, Y.; Dolan, T.; Hashizume, H.; Kunugi, T.; Fukada, S.; Shimizu, A.; Terai, T.; Mitarai, O.

    2006-01-01

    In terms of engineering feasibility for long-life Flibe blanket in LHD-type reactor FFHR, the Spectral-shifter and Tritium breeder Blanket (STB) concept is evaluated by taking neutron irradiation effects into account under system integration such as Flibe cooling and components replacement. FEM calculations for the neutron wall loading of 1.5 MW/m 2 show that the temperature of the STB armor tile can be kept below 2000 K by optimizing the first metal wall thickness. The heat load experiment on the STB armor mockup confirms feasibility of the temperature control and mechanical joining. Degradation of STB armor tiles due to neutron irradiation requires replacement of them every few years by means of remote handling 'screw coasters' using helical winding, where the replaced tiles are low level wastes. Although the STB concept is feasible within nuclear and thermal properties, more detailed structural optimization is needed including the mechanical and chemical properties

  11. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  12. Plate forming and break down pizza box

    Science.gov (United States)

    Pantisano, Frank; Devine, Scott M.

    1992-01-01

    A standard corrugated paper pizza box is provided with slit cuts cut through the top panel of the pizza box in a shape to form four circular serving plates with a beveled raised edge and cross slit cuts through the bottom panel of the pizza box separating the box into four essentially equal portions for easy disposal.

  13. Injury risk in professional boxing.

    Science.gov (United States)

    Bledsoe, Gregory H; Li, Guohu; Levy, Fred

    2005-10-01

    Although a popular endeavor, boxing has fallen under increased scrutiny because of its association with traumatic brain injury. However, few studies have investigated the overall epidemiology of boxing injuries from representative samples, and no study has ever documented the incidence of injuries in female boxers. This study is a review of professional boxing data from the state of Nevada from September 2001 through March 2003. Medical and outcome data for all professional boxing matches occurring in Nevada between September 2001 and March 2003 (n = 524 matches) were analyzed on the basis of a pair-matched, case-control design. Cases were boxers who received an injury during the boxing matches. Boxers who were not injured served as control subjects. Both conditional and unconditional logistic regression models were used to assess risk factors for injury. The overall incidence rate of injury was 17.1 per 100 boxer-matches, or 3.4 per 100 boxer-rounds. Facial laceration accounted for 51% of all injuries, followed by hand injury (17%), eye injury (14%), and nose injury (5%). Male boxers were significantly more likely than female boxers to receive injuries (3.6 versus 1.2 per 100 boxer-rounds, P = 0.01). Male boxing matches also ended in knockouts and technical knockouts more often than did female matches (P boxing matches is high, particularly among male boxers. Superficial facial lacerations are the most common injury reported. Male boxers have a higher rate of knockout and technical knockouts than female boxers. Further research is necessary to determine the outcomes of injury, particularly the long-term neurologic outcome differences between sexes.

  14. Assessment of alkali metal coolants for the ITER blanket

    International Nuclear Information System (INIS)

    Natesan, K.; Reed, C.B.; Mattas, R.F.

    1994-01-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper will address the thermodynamics of interactions between the liquid metals (i.e., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data will be used to assess the long-term performance of the first wall in a liquid metal environment

  15. Thermomechanical characterization of joints for blanket and divertor application processed by electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Wolfgang; Lorenz, Julia; Konys, Jürgen; Basuki, Widodo; Aktaa, Jarir

    2016-11-01

    Highlights: • Electroplating is a relevant technology for brazing of blanket and divertor parts. • Tungsten, Eurofer and steel joints successfully fabricated. • Reactive interlayers improve adherence and reduce failure risks. • Qualification of joints performed by thermo-mechanical testing and aging. • Shear strength of joints comparable with conventionally brazing of steels. - Abstract: Fusion technology requires in the fields of first wall and divertor development reliable and adjusted joining processes of plasma facing tungsten to heat sinks or blanket structures. The components to be bonded will be fabricated from tungsten, steel or other alloys like copper. The parts have to be joined under functional and structural aspects considering the metallurgical interactions of alloys to be assembled and the filler materials. Application of conventional brazing showed lacks ranging from bad wetting of tungsten up to embrittlement of fillers and brazing zones. Thus, the deposition of reactive interlayers and filler components, e.g. Ni, Pd or Cu was initiated to overcome these metallurgical restrictions and to fabricate joints with aligned mechanical behavior. This paper presents results concerning the joining of tungsten, Eurofer and stainless steel for blanket and divertor application by applying electroplating technology. Metallurgical and mechanical characterization by shear testing were performed to analyze the joints quality and application limits in dependence on testing temperature between room temperature and 873 K and after thermal aging of up to 2000 h. The tested interlayers Ni and Pd enhanced wetting and enabled the processing of reliable joints with a shear strength of more than 200 MPa at RT.

  16. Box graphs and resolutions I

    Directory of Open Access Journals (Sweden)

    Andreas P. Braun

    2016-04-01

    Full Text Available Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU(5 by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.

  17. Decontamination of TRU glove boxes

    International Nuclear Information System (INIS)

    Crawford, J.H.

    1978-03-01

    Two glove boxes that had been used for work with transuranic nuclides (TRU) for about 12 years were decontaminated in a test program to collect data for developing a decontamination facility for large equipment highly contaminated with alpha emitters. A simple chemical technique consisting of a cycle of water flushes and alkaline permanganate and oxalic acid washes was used for both boxes. The test showed that glove boxes and similar equipment that are grossly contaminated with transuranic nuclides can be decontaminated to the current DIE nonretrievable disposal guide of <10 nCi TRU/g with a moderate amount of decontamination solution and manpower. Decontamination of the first box from an estimated 1.3 Ci to about 5 mCi (6 nCi/g) required 1.3 gallons of decontamination solution and 0.03 man-hour of work for each square foot of surface area. The second box was decontaminated from an estimated 3.4 Ci to about 2.8 mCi (4.2 nCi/g) using 0.9 gallon of decontamination solution and 0.02 man-hour for each square foot of surface area. Further reductions in contamination were achieved by repetitive decontamination cycles, but the effectiveness of the technique decreased sharply after the initial cycle

  18. First-aid boxes - Reminder

    CERN Multimedia

    GS Department

    2010-01-01

    With a view to ensuring optimum use of the first-aid boxes on the CERN site, we should like to remind you of various changes introduced in March 2009: The TSO of the buildings concerned is responsible for the first-aid boxes, including checking their contents.   First-aid boxes may be restocked ONLY at the CERN stores (SCEM No. 54.99.80). This is no longer possible at the Infirmary. The associated cost is charged to the Departments.   First-aid boxes should be used only for mild injuries. All other cases should be referred to the Medical Service Infirmary (Bldg. 57 – ground-floor, tel. 73802) between 8.00 a.m. and 5.30 p.m. or to the Fire and Rescue Service (tel. 74444). N.B.: This information does not apply to the red emergency first-aid boxes in the underground areas or to the emergency kits for use in the event of being splashed with hydrofluoric acid.

  19. Status of blanket design for RTO/RC ITER

    International Nuclear Information System (INIS)

    Yamada, M.; Ioki, K.; Cardella, A.; Elio, F.; Miki, N.

    2000-01-01

    Design has progressed on the FW/blanket for the RTO/RC (reduced technical objective/ reduced cost) ITER. The basic functions and structures are the same as for the 1998 ITER design. However, design and fabrication methods of the FW/blanket have been improved to achieve ∝ 50% reduction of the construction cost compared to that for the 1998 ITER design. Detailed blanket module designs with flat separable FW panels have been developed to reduce the fabrication cost and the future radioactive waste. Most of the R and D performed so far during the EDA (engineering design activity) is still applicable. Further cost reduction methods are also being investigated and additional R and D is being performed. (orig.)

  20. Computation Method Comparison for Th Based Seed-Blanket Cores

    International Nuclear Information System (INIS)

    Kolesnikov, S.; Galperin, A.; Shwageraus, E.

    2004-01-01

    This work compares two methods for calculating a given nuclear fuel cycle in the WASB configuration. Both methods use the ELCOS Code System (2-D transport code BOXER and 3-D nodal code SILWER) [4] are compared. In the first method, the cross-sections of the Seed and Blanket, needed for the 3-D nodal code are generated separately for each region by the 2-D transport code. In the second method, the cross-sections of the Seed and Blanket, needed for the 3-D nodal code are generated from Seed-Blanket Colorsets (Fig.1) calculated by the 2-D transport code. The evaluation of the error introduced by the first method is the main objective of the present study

  1. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  2. Heating an aquaculture pond with a solar pool blanket

    Energy Technology Data Exchange (ETDEWEB)

    Wisely, B; Holliday, J E; MacDonald, R E

    1982-01-01

    A floating solar blanket of laminated bubble plastic was used to heat a 0.11 ha seawater pond of 1.3 m depth. The covered pond maintained daily temperatures 6 to 9/sup 0/C above two controls. Local air temperatures averaged 14 to 19/sup 0/C. Oysters, prawns, seasquirts, and fish in the covered pond all survived. After three weeks, the blanket separated. This was the result of pond temperatures exceeding 30/sup 0/C, the maximum manufacturer's specification. Floating blankets fabricated to higher specifications would be useful for maintaining above-ambient temperatures in small ponds or tanks in temporary situations during cold winter months and might have a more permanent use.

  3. Solid breeder test blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ying, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States)]. E-mail: ying@fusion.ucla.edu; Abdou, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Calderoni, P. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Sharafat, S. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Youssef, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); An, Z. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Abou-Sena, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Kim, E. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Reyes, S. [LANL, Livermore, CA (United States); Willms, S. [LANL, Los Alamos, NM (United States); Kurtz, R. [PNNL, Richland, WA (United States)

    2006-02-15

    This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration of fusion break-in phenomena and configuration scoping. Specific emphasis is placed on first wall structural response, evaluation of neutronic parameters, assessment of thermomechanical behavior and characterization of tritium release. The tests will be conducted with three unit cell arrays/sub-modules. The development approach includes: (1) design the unit cell/sub-module for low temperature operations and (2) refer to a reactor blanket design and use engineering scaling to reproduce key parameters under ITER wall loading conditions, so that phenomena under investigation can be measured at a reactor-like level.

  4. Direct LiT Electrolysis in a Metallic Fusion Blanket

    International Nuclear Information System (INIS)

    Olson, Luke

    2016-01-01

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  5. The evolution of US helium-cooled blankets

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.

    1991-01-01

    This paper reviews and compares four helium-cooled fusion reactor blanket designs. These designs represent generic configurations of using helium to cool fusion reactor blankets that were studied over the past 20 years in the United States of America (US). These configurations are the pressurized module design, the pressurized tube design, the solid particulate and gas mixture design, and the nested shell design. Among these four designs, the nested shell design, which was invented for the ARIES study, is the simplest in configuration and has the least number of critical issues. Both metallic and ceramic-composite structural materials can be used for this design. It is believed that the nested shell design can be the most suitable blanket configuration for helium-cooled fusion power and experimental reactors. (orig.)

  6. Status of fusion reactor blanket evaluation studies in France

    International Nuclear Information System (INIS)

    Carre, F.; Chevereau, G.; Gervaise, F.; Proust, E.

    1985-03-01

    In the frame of recent CEA studies aiming at the evaluation and at the comparison of various candidate blanket concepts in moderate power conditions (Psub(n) approximately 2 MW/m 2 ), the present work examines the neutronic and thermomechanical performances of a water cooled Li 17 Pb 83 tubular blanket and those of a helium cooled canister blanket taking advantage of the excellent breeding capability of composite Beryllium/LiAlO 2 (85/15%) breeder elements. The purpose of the following discussion is to justify the impetus for these reference concepts and to summarize the state of their evaluation studies updated by the continuous assimilation of calculations and experiments in progress

  7. EU DEMO blanket concepts safety assessment. Final report of Working Group 6a of the Blanket Concept Selection Exercise

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Porfiri, T.

    1996-06-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four blanket concepts under development. Two of them use lithium ceramics, the other two concepts employ an eutectic lead-lithium alloy (Pb-17Li) as breeder material. The two most promising concepts were to select in 1995 for further development. In order to prepare the selection, a Blanket Concept Selection Exercise (BCSE) has been inititated by the participating associations under the auspices of the European Commission. This BCSE has been performed in 14 working groups which, in a comparative evaluation of the four blanket concepts, addressed specific fields. The working group safety addressed the safety implications. This report describes the methodology adopted, the safety issues identified, their comparative evaluation for the four concepts, and the results and conclusions of the working group to be entered into the overall evaluation. There, the results from all 14 working groups have been combined to yield a final ranking as a basis for the selection. In summary, the safety assessment showed that the four European blanket concepts can be considered as equivalent in terms of the safety rating adopted, each concept, however, rendering safety concerns of different quality in different areas which are substantiated in this report. (orig.) [de

  8. Medical and Safety Reforms in Boxing

    Science.gov (United States)

    Jordan, Barry D.

    1988-01-01

    The continued existence of boxing as an accepted sport in civilized society has been long debated. The position of the American Medical Association (AMA) has evolved from promoting increased safety and medical reform to recommending total abolition of both amateur and professional boxing. In response to the AMA opposition to boxing, the boxing community has attempted to increase the safeguards in amateur and professional boxing. The United States of America Amateur Boxing Federation, which is the national regulatory agency for all amateur boxing in the United States, has taken several actions to prevent the occurrence of acute brain injury and is currently conducting epidemiologic studies to assess the long-term neuropsychologic consequences of amateur boxing. In professional boxing, state regulatory agencies such as the New York State Athletic Commission have introduced several medical interventions to prevent and reduce neurologic injury. The lack of a national regulatory agency to govern professional boxing has stimulated the formation of the Association of Boxing Commissions and potential legislation for the federal regulation of professional boxing by a federally chartered organization called the United States Boxing Commission. The AMA's opposition to boxing and the medical and safety reforms implemented by the proponents of boxing are discussed. PMID:3385788

  9. Identifying competencies of boxing coaches

    Directory of Open Access Journals (Sweden)

    Ioannis Tasiopoulos

    2014-10-01

    Full Text Available The purpose of this study was to find out the management skills required by boxing coaches to administrate their clubs. For the purposes of this study a scale was constructed which was answered by 98 boxing coaches. Explanatory factor analysis revealed seven factors: Communication-public relations (5 items, event management (4 items, management techniques (4 items, new technologies (4 items, prevention-safety (2 items, sport (5 items and sports facilities (2 items. The Cronbach of the scale was 0.85. The five competencies that rated by the coaches were: Supervisors of the area of training, maintaining excellent communication with athletes, using new technologies (e-mail, internet, handling disciplinary matters, accidents, complaints and reports on some sporting games and promoted harmony among athletes. We concluded that boxing coaches understand that the competencies required for meeting their obligations, were related to sports, prevention, safety and communications-public relations.

  10. Thermal limits for passive safety of fusion reactors

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Massidda, J.E.; Oshima, M.

    1989-01-01

    The thermal response of the first wall and blanket due to power/cooling mismatch in the absence of operation action is examined. The analyses of coolant and power transients are carried out on six reference blanket designs representing a broad range of fusion first wall and blanket technology. It is concluded that the requirement of plant protection will impose sufficiently stringent peak neutron wall loading limits to avoid a serious threat to the public. It is found that for the D-T design,s the operating wall loading may have to be limited to 3 - 8 MW/m/sup 2/ for passive plant protection, depending on the plant design

  11. Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin

    2016-02-15

    Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.

  12. Neurochemical aftermath of amateur boxing.

    Science.gov (United States)

    Zetterberg, Henrik; Hietala, M Albert; Jonsson, Michael; Andreasen, Niels; Styrud, Ewa; Karlsson, Ingvar; Edman, Ake; Popa, Cornel; Rasulzada, Abdullah; Wahlund, Lars-Olof; Mehta, Pankaj D; Rosengren, Lars; Blennow, Kaj; Wallin, Anders

    2006-09-01

    Little solid information is available on the possible risks for neuronal injury in amateur boxing. To determine whether amateur boxing and severity of hits are associated with elevated levels of biochemical markers for neuronal injury in cerebrospinal fluid. Longitudinal study. Referral center specializing in evaluation of neurodegenerative disorders. Fourteen amateur boxers (11 men and 3 women) and 10 healthy male nonathletic control subjects. The boxers underwent lumbar puncture 7 to 10 days and 3 months after a bout. The control subjects underwent LP once. Neurofilament light protein, total tau, glial fibrillary acidic protein, phosphorylated tau, and beta-amyloid protein 1-40 (Abeta([1-40])) and 1-42 (Abeta([1-42])) concentrations in cerebrospinal fluid were measured. Increased levels after a bout compared with after 3 months of rest from boxing were found for 2 markers for neuronal and axonal injury, neurofilament light protein (mean +/- SD, 845 +/- 1140 ng/L vs 208 +/- 108 ng/L; P = .008) and total tau (mean +/- SD, 449 +/- 176 ng/L vs 306 +/- 78 ng/L; P = .006), and for the astroglial injury marker glial fibrillary acidic protein (mean +/- SD, 541 +/- 199 ng/L vs 405 +/- 138 ng/L; P = .003). The increase was significantly higher among boxers who had received many hits (>15) or high-impact hits to the head compared with boxers who reported few hits. In the boxers, concentrations of neurofilament light protein and glial fibrillary acidic protein, but not total tau, were significantly elevated after a bout compared with the nonathletic control subjects. With the exception of neurofilament light protein, there were no significant differences between boxers after 3 months of rest from boxing and the nonathletic control subjects. Amateur boxing is associated with acute neuronal and astroglial injury. If verified in longitudinal studies with extensive follow-up regarding the clinical outcome, analyses of cerebrospinal fluid may provide a scientific basis for

  13. Overview of the TFTR Lithium Blanket Module program

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-01-01

    The LBM (Lithium Blanket Module) is an approximately cubic module, about 80 cm on each side, with construction representative of a helium-cooled lithium oxide fusion reactor blanket module. Measurements of neutron transport and tritium breeding in the LBM will be made in irradiation programs first with a point-neutron source, and subsequently with the D-D and D-T fusion-neutron sources of the TFTR. This paper summarizes the objectives of the LBM program, the design, development and construction of the LBM, and progress in the experimental tests

  14. Progress and achievements of the ITER L-4 blanket project

    International Nuclear Information System (INIS)

    Daenner, W.; Toschi, R.; Cardella, A.

    1999-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined.The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  15. Ceramic BOT type blanket with poloidal helium cooling

    International Nuclear Information System (INIS)

    Cardella, A.; Daenenr, W.; Iseli, M.; Ferrari, M.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.

    1989-01-01

    This paper briefly describes the work done and results achieved over the past two years on the ceramic breeder BOT blanket with poloidal helium cooling. A conclusive remark on the brick/plate option described previously is followed by short descriptions of the low and high performance pebble bed options elaborated as alternatives for both NET and DEMO. The results show, togethre with those about the poloidal cooling of the First Wall, good prospects for this blanket type provided that the questions connected wiht an extensive use of beryllium find a satisfactor answer. (author). 5 refs.; 7 figs.; 1 tab

  16. Progress and achievements of the ITER L-4 blanket project

    International Nuclear Information System (INIS)

    Daenner, W.; Toschi, R.; Cardella, A.

    2001-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined. The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  17. Limiter and first wall of the fusion reactor blanket

    International Nuclear Information System (INIS)

    Danilov, I.; Skladnov, K.; Kolganov, V.

    1994-01-01

    Previous designing of the first wall and limiter has allowed to determine their possible embodiment depending on the parameters and operation conditions of the blanket. As a rule limiter is a separate structure located on the plasma facing surface of the blanket assembly. Possible versions of the limiter/FW which may be considered: (1) limiters with mechanical attachment of the protective part; (2) limiters with the attachment with brazing; (3) limiters with common/separate cooling system; (4) limiter as a substitute of the FW. Generally the FW/limiter structure includes protective shield and its cooling system which consist of protective coating, heat accumulator, conductive layer and attachment locks

  18. An aqueous lithium salt blanket option for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, D.; Varsamis, G. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Nuclear Engineering and Engineering Physics); Deutsch, L.; Rathke, J. (Grumman Corp., Bethpage, NY (USA). Advanced Energy Systems); Gierszewski, P. (Canadian Fusion Fuels Technology Project (CFFTP), Mississauga, ON (Canada))

    1989-04-01

    An aqueous lithium salt blanket (ALSB) concept is proposed which could be the basis for either a power reactor blanket or a test module in an engineering test reactor. The design is based on an austenitic stainless steel structure, a beryllium multiplier, and a salt breeder concentration of about 32 g LiNO/sub 3/ per 100 cm/sup 3/ of H/sub 2/O. To limit tritium release rates, the salt breeder solution is separated from the water coolant circuit. The overall tritium system cost for a 2400 MW (fusion power) reactor is estimated to be 180 million Dollar US87 installed. (orig.).

  19. Improvement of Core Performance by Introduction of Moderators in a Blanket Region of Fast Reactors

    Directory of Open Access Journals (Sweden)

    Toshio Wakabayashi

    2013-01-01

    Full Text Available An application of deuteride moderator for fast reactor cores is proposed for power flattening that can mitigate thermal spikes and alleviate the decrease in breeding ratio, which sometimes occurs when hydrogen moderator is applied as a moderator. Zirconium deuteride is employed in a form of pin arrays at the inner most rows of radial blanket fuel assemblies, which works as a reflector in order to flatten the radial power distribution in the outer core region of MONJU. The power flattening can be utilized to increase core average burn-up by increasing operational time. The core characteristics have been evaluated with a continuous-energy model Monte Carlo code MVP and the JENDL-3.3 cross-section library. The result indicates that the discharged fuel burn-up can be increased by about 7% relative to that of no moderator in the blanket region due to the power flattening when the number of deuteride moderator pins is 61. The core characteristics and core safety such as void reactivity, Doppler coefficient, and reactivity insertion that occurred at dissolution of deuteron were evaluated. It was clear that the serious drawback did not appear from the viewpoints of the core characteristics and core safety.

  20. Experimental and numerical study of the pressure drop for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Min-Su; Kim, Sawoong; Jung, Hun-Chea; Shim, Hee-Jin; Ahn, Hee-Jae

    2016-11-01

    Highlights: • The results of the experiment and the numerical analysis are compared. • The numerical analysis results are lower than the experimental results. • The margin of the pressure drop is suggested. - Abstract: The blanket shield block (SB) is located inside the ITER vacuum chamber, and the main function is to provide the thermal and nuclear shielding to the vacuum vessel and external components. The SB is foreseen to undergo a significant heat load which is a body load throughout the whole thickness of the SB under normal operation conditions. Therefore, the cooling configuration in SB should be designed very carefully based on the various experiences. The pressure drop in the cooling design is one of the most important factors to balance a water distribution of overall blanket cooling system. In order to verify the pressure drop characteristic and validate the design methodology of SB, experiment and numerical analysis are performed and compared their results. These results would be a benchmarking of the numerical results with experimental results to assess the gap between calculations and experiments.

  1. ANL ITER high-heat-flux blanket-module heat transfer experiments

    International Nuclear Information System (INIS)

    Kasza, K.E.

    1992-02-01

    An Argonne National Laboratory facility for conducting tests on multilayered slab models of fusion blanket designs is being developed; some of its features are described. This facility will allow testing under prototypic high heat fluxes, high temperatures, thermal gradients, and variable mechanical loadings in a helium gas environment. Steady and transient heat flux tests are possible. Electrical heating by a two-sided, thin stainless steel (SS) plate electrical resistance heater and SS water-cooled cold panels placed symmetrically on both sides of the heater allow achievement of global one-dimensional heat transfer across blanket specimen layers sandwiched between the hot and cold plates. The heat transfer characteristics at interfaces, as well as macroscale and microscale thermomechanical interactions between layers, can be studied in support of the ITER engineering design effort. The engineering design of the test apparatus has shown that it is important to use multidimensional thermomechanical analysis of sandwich-type composites to adequately analyze heat transfer. This fact will also be true for the engineering design of ITER

  2. Detail Design of the hydrogen system and the gas blanketing system for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Kim, Young Ki; Wu, Sang Ik; Kim, Bong Su; Lee, Yong Seop

    2007-04-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system (HRS). Because of its installed location, the hydrogen system is designed to be surrounded by the gas blanketing system to notify the leakage on the system and to prevent hydrogen leakage out of the CNS. The hydrogen system, consisted of hydrogen charging unit, hydrogen storage unit, hydrogen buffer tank, and hydrogen piping, is designed to smoothly and safely supply hydrogen to and to draw back hydrogen from the IPA of the CNS under the HRS operation mode. Described is that calculation for total required hydrogen amount in the CNS as well as operation schemes of the hydrogen system. The gas blanketing system (GBS) is designed for the supply of the compressed nitrogen gas into the air pressurized valves for the CNS, to isolate the hydrogen system from the air and the water, and to prevent air or water intrusion into the vacuum system as well as the hydrogen system. All detail descriptions are shown inhere as well as the operation scheme for the GBS

  3. Pulsed activation analyses of the ITER blanket design options considered in the blanket trade-off study

    International Nuclear Information System (INIS)

    Wang, Q.; Henderson, D.L.

    1995-01-01

    Pulsed activation calculations have been performed on two blanket options considered as part of the ITER home team blanket trade-off study. The objective was to compare the activity, afterheat and waste disposal rating (WDR) results of a composite blanket-shield design for the continuous operation approximation to a pulsed operation case to determine whether the differences are at most the duty factor as predicted by the two nuclide chain model. Up to a cooling period of 100 years, the pulsed activity and afterheat values were below the continuous oepration results and well within (except for one afterheat value) the maximum deviation predicted by the two nuclide chain model. No differences in the WDR values were noted as they are, to a large extent, based on long-lived nuclides which are insensitive to short-term changes in the operation history. (orig.)

  4. A methodology for accident analysis of fusion breeder blankets and its application to helium-cooled lead–lithium blanket

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew; Trow, Martin; Dillistone, Michael

    2016-01-01

    'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.

  5. Japanese contributions to the Japan-US workshop on blanket design/technology

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Seki, Yasushi; Minato, Akio; Kobayashi, Takeshi; Mori, Seiji; Kawasaki, Hiromitsu; Sumita, Kenji.

    1983-02-01

    This report describes Japanese papers presented at the Japan-US Workshop on Blanket Design/Technology which was held at Argonne National Laboratory, November 10 - 11, 1982. Overview of Fusion Experimental Reactor (FER), JAERI's activities related to first wall/blanket/shield, summary of FER blanket and its technology development issues and summary of activities at universities on fusion reactor blanket engineering are covered. (author)

  6. 46 CFR 111.81-1 - Outlet boxes and junction boxes; general.

    Science.gov (United States)

    2010-10-01

    ... fixture, wiring device, or similar item, including each separately installed connection and junction box... used. (d) As appropriate, each outlet-box or junction-box installation must meet the following...

  7. On the Dirichlet's Box Principle

    Science.gov (United States)

    Poon, Kin-Keung; Shiu, Wai-Chee

    2008-01-01

    In this note, we will focus on several applications on the Dirichlet's box principle in Discrete Mathematics lesson and number theory lesson. In addition, the main result is an innovative game on a triangular board developed by the authors. The game has been used in teaching and learning mathematics in Discrete Mathematics and some high schools in…

  8. Glove boxes and similar containments

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    According to the present invention a glove box or similar containment is provided with an exhaust system including a vortex amplifier venting into the system, the vortex amplifier also having its main inlet in fluid flow connection with the containment and a control inlet in fluid flow connection with the atmosphere outside the containment. (U.S.)

  9. Innovations in Los Alamos alpha box design

    International Nuclear Information System (INIS)

    Ledbetter, J.M.; Dowler, K.E.; Cook, J.H.

    1985-01-01

    Destructive examinations of irradiated fuel pins containing plutonium fuel must be performed in shielded hot cells with strict provisions for containing the plutonium. Alpha boxes provide containment for the plutonium, toxic fission products, and other hazardous highly radioactive materials. The alpha box contains windows for viewing and a variety of transfer systems specially designed to allow transfers in and out of the alpha box without spread of the hazardous materials that are contained in the box. Alpha boxes have been in use in the Wing 9 hot cells at Los Alamos National Laboratory for more than 20 years. Features of the newly designed alpha boxes are presented

  10. Design requirement on KALIMER blanket fuel assembly duct

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, H. Y.; Nam, C.; Kim, J. O.

    1998-03-01

    This document describes design requirements which are needed for designing the blanket fuel assembly duct of the KALIMER as design guidance. The blanket fuel assembly duct of the KALIMER consists of fuel rods, mounting rail, nosepiece, duct with pad, handling socket with pad. Blanket fuel rod consists of top end plug, bottom end plug with solid ferritic-martensitic steel rod and key way blanket fuel slug, cladding, and wire wrap. In the assembly, the rods are in a triangular pitch array, and the rod bundle is attached to the nosepiece with mounting rails. The bottom end of the assembly duct is formed by a long nosepiece which provides the lower restraint function and the paths for coolant inlet. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. (author). 20 refs., 4 figs

  11. Summary of the target-blanket breakout group

    Energy Technology Data Exchange (ETDEWEB)

    Capiello, M.; Bell, C. [Los Alamos National Laboratory, NM (United States); Barthold, W.

    1995-10-01

    This breakout group discussed a number of topics and issues pertaining to target and blanket concepts for accelerator-driven systems. This major component area is one marked by a broad spectrum of technical approaches. It is therefore less defined than other major component areas such as the accelerator and is at an earlier stage of technical needs and task specification. The working group did reach a number of general conclusions and recommendations that are summarized. The Conference and the Target/Blanket Breakout Group provided a first opportunity for people working on a variety of missions and concepts to get together and exchange information. A number of subcritical systems applicable for a spectrum of missions were proposed at the Conference and discussed in the Breakout Group. Missions included plutonium disposition, energy production, waste destruction, isotope production, and neutron scattering. The Target/Blanket Breakout Group also defined areas where parameters and data should be addressed as target/blanket design activities become more detailed and sophisticated.

  12. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  13. First-wall/blanket materials selection for STARFIRE tokamak reactor

    International Nuclear Information System (INIS)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed

  14. Fusion blanket testing in MFTF-α + T

    International Nuclear Information System (INIS)

    Kleefeldt, K.

    1985-01-01

    The Mirror Fusion Test Facility-α + T (MFTF-α + T) is an upgraded version of the current MFTF-B test facility at Lawrence Livermore National Laboratory, and is designed for near-term fusion-technology-integrated tests at a neutron flux of 2 MW/m 2 . Currently, the fusion community is screening blanket and related issues to determine which ones can be addressed using MFTF-α + T. In this work, the minimum testing needs to address these issues are identified for the liquid-metal-cooled blanket and the solid-breeder blanket. Based on the testing needs and on the MFTF-α + T capability, a test plan is proposed for three options; each option covers a six to seven year testing phase. The options reflect the unresolved question of whether to place the research and development (R and D) emphasis on liquid-metal or solid-breeder blankets. In each case, most of the issues discussed can be addressed to a reasonable extent in MFTF-α+T

  15. On the conditions of existence of cold-blanket systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-12-01

    An extende analysis of the partially ionized boundary layer of a magnetized plasma has been performed, leading to the following results: (i) In a first approximation the ion density at the inner ''edge'' of the layer becomes related to the wall-near neutral gas density, in a way being independent of the spatial distribution of the ionization rate. (ii) The particle and momentum balance equations, and the associated impermeability condition of the plasma with respect to neutral gas penetration, are not sufficient to specify a cold-blanket state, but have to be combined with considerations of the heat blance. This leads to lower and upper power input limits, thus defining conditions for the existence of a cold-blanket state. At decreasing beta values , or increasing radiation losses, there are situations where such a state cannot exist at all. (iii) It should become possible to fulfill the cold-blanket conditions in full-scale reactors as well as in certain model experiments. Probably these conditions can also be satisfied in large tokamaks like JET, and by fast gas injection in devices such as Alcator, but not in medium-size tokamaks being operated at moderately high ion densities. (iv) A strong ''boundary layer stabilization'' mechanism due to the joint viscosity-resistivity-pressure effects is available under cold-blanket conditions. (author)

  16. Performance evaluation on force control for ITER blanket installation

    Energy Technology Data Exchange (ETDEWEB)

    Aburadani, A., E-mail: aburadani.atsushi@jaea.go.jp [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Takeda, N.; Shigematsu, S.; Murakami, S.; Tanigawa, H.; Kakudate, S. [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Nakahira, M.; Hamilton, D.; Tesini, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► It is crucial issues to avoid any jamming between the blanket modules and the keys. ► Force control for AC servo motor was developed to reduce excessive loads. ► This jam prevention force control method is directly measured and controlled by AC servo motor controllers. ► In the recent test, the module was passively positioned onto keys using the torque control method. -- Abstract: The most critical issue for the ITER blanket installation is to avoid any jamming between the blanket modules and the keys as a result of excessive loading during the module installation process. This is complicated by the limited clearance of 0.5 mm between the modules and the keys. To solve these technical issues, force control, such as controlling the torque for the AC servo motors, was developed to reduce excessive loads which may have an impact on the end-effector and to defer the forces acting on the groove of the blanket. This jam prevention force control method is directly measured and controlled by AC servo motor controllers. The AC servo motors are equipped to move the manipulator and end-effector during module installation.

  17. Performance evaluation on force control for ITER blanket installation

    International Nuclear Information System (INIS)

    Aburadani, A.; Takeda, N.; Shigematsu, S.; Murakami, S.; Tanigawa, H.; Kakudate, S.; Nakahira, M.; Hamilton, D.; Tesini, A.

    2013-01-01

    Highlights: ► It is crucial issues to avoid any jamming between the blanket modules and the keys. ► Force control for AC servo motor was developed to reduce excessive loads. ► This jam prevention force control method is directly measured and controlled by AC servo motor controllers. ► In the recent test, the module was passively positioned onto keys using the torque control method. -- Abstract: The most critical issue for the ITER blanket installation is to avoid any jamming between the blanket modules and the keys as a result of excessive loading during the module installation process. This is complicated by the limited clearance of 0.5 mm between the modules and the keys. To solve these technical issues, force control, such as controlling the torque for the AC servo motors, was developed to reduce excessive loads which may have an impact on the end-effector and to defer the forces acting on the groove of the blanket. This jam prevention force control method is directly measured and controlled by AC servo motor controllers. The AC servo motors are equipped to move the manipulator and end-effector during module installation

  18. Tritium inventory in Li2ZrO3 blanket

    International Nuclear Information System (INIS)

    Nishikawa, M.; Baba, A.

    1998-01-01

    Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO 2 blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO 2 blanket is applied to a Li 2 ZrO 3 blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments. (orig.)

  19. Examination of compression and resilience characteristics of fibrous insulation blankets

    International Nuclear Information System (INIS)

    Brislin, R.J.; Middleton, A.

    1979-08-01

    Load-deflection characteristics of alumina and alumino-silicate fibrous blankets were experimentally determined. Load retention and springback capability of combinations of these materials were measured in a 10,000-hour test at surface temperatures of 650 to 1000 0 C (1200 to 1832 0 F). Experimental results are presented and future testing plans are discussed

  20. Effects of buffer thickness on ATW blanket performances

    International Nuclear Information System (INIS)

    Yang, Won Sik

    2001-01-01

    This paper presents the preliminary results of target and buffer design studies for a lead-bismuth eutectic (LBE) cooled accelerator transmutation of waste (ATW) system, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using an 840 MWt LBE cooled ATW design, the effects of buffer thickness on the blanket performances have been studied. Varying the buffer thickness for a given blanket configuration, system performances have been estimated by a series of calculations using MCNPX and REBUS-3 codes. The effects of source importance change are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. As the irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. The results show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable