WorldWideScience

Sample records for bovine skeletal muscle

  1. Infectivity in skeletal muscle of cattle with atypical bovine spongiform encephalopathy.

    Science.gov (United States)

    Suardi, Silvia; Vimercati, Chiara; Casalone, Cristina; Gelmetti, Daniela; Corona, Cristiano; Iulini, Barbara; Mazza, Maria; Lombardi, Guerino; Moda, Fabio; Ruggerone, Margherita; Campagnani, Ilaria; Piccoli, Elena; Catania, Marcella; Groschup, Martin H; Balkema-Buschmann, Anne; Caramelli, Maria; Monaco, Salvatore; Zanusso, Gianluigi; Tagliavini, Fabrizio

    2012-01-01

    The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (∼70% versus ∼10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrP(res) type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance.

  2. Electrical impedance in bovine skeletal muscle as a model for the study of neuromuscular disease.

    Science.gov (United States)

    Tarulli, Andrew W; Chin, Anne B; Partida, Ramon A; Rutkove, Seward B

    2006-12-01

    Electrical impedance myography (EIM) consists of a set of bioimpedance methods configured for neuromuscular disease assessment, in which high-frequency electrical current is applied to a limb and the consequent surface voltage pattern over a muscle is evaluated. Prior human work has shown that the EIM parameters of resistance, reactance and phase change in different neuromuscular disease states including neurogenic and myopathic conditions. These parameters are also sensitive to the angle at which current is applied and measured relative to muscle fiber direction, a characteristic known as anisotropy. In order to obtain insights into the impedance characteristics of mammalian skeletal muscle without the confounding effects of an overlying skin-fat layer, bone and irregular muscle shape, we performed EIM on three 'nearly ideal' round 16 cm diameter, 1 cm equal thickness pieces of bovine rectus abdominis muscle. Using a standardized tetrapolar electrode array with 50 kHz electrical current, we identified strong anisotropy in the measured reactance and phase, with weaker anisotropy identified for resistance. We also found that increasing amounts of muscle maceration, a rough model of myopathic or traumatic muscle fiber injury, reduced phase and muscle anisotropy when current was injected perpendicular to the muscle fibers. These findings support that EIM parameters, including muscle anisotropy, are likely to be sensitive to the pathological changes that occur in neuromuscular disease states.

  3. Genome-wide patterns of promoter sharing and co-expression in bovine skeletal muscle

    Directory of Open Access Journals (Sweden)

    Dalrymple Brian P

    2011-01-01

    Full Text Available Abstract Background Gene regulation by transcription factors (TF is species, tissue and time specific. To better understand how the genetic code controls gene expression in bovine muscle we associated gene expression data from developing Longissimus thoracis et lumborum skeletal muscle with bovine promoter sequence information. Results We created a highly conserved genome-wide promoter landscape comprising 87,408 interactions relating 333 TFs with their 9,242 predicted target genes (TGs. We discovered that the complete set of predicted TGs share an average of 2.75 predicted TF binding sites (TFBSs and that the average co-expression between a TF and its predicted TGs is higher than the average co-expression between the same TF and all genes. Conversely, pairs of TFs sharing predicted TGs showed a co-expression correlation higher that pairs of TFs not sharing TGs. Finally, we exploited the co-occurrence of predicted TFBS in the context of muscle-derived functionally-coherent modules including cell cycle, mitochondria, immune system, fat metabolism, muscle/glycolysis, and ribosome. Our findings enabled us to reverse engineer a regulatory network of core processes, and correctly identified the involvement of E2F1, GATA2 and NFKB1 in the regulation of cell cycle, fat, and muscle/glycolysis, respectively. Conclusion The pivotal implication of our research is two-fold: (1 there exists a robust genome-wide expression signal between TFs and their predicted TGs in cattle muscle consistent with the extent of promoter sharing; and (2 this signal can be exploited to recover the cellular mechanisms underpinning transcription regulation of muscle structure and development in bovine. Our study represents the first genome-wide report linking tissue specific co-expression to co-regulation in a non-model vertebrate.

  4. Infectivity in skeletal muscle of cattle with atypical bovine spongiform encephalopathy.

    Directory of Open Access Journals (Sweden)

    Silvia Suardi

    Full Text Available The amyloidotic form of bovine spongiform encephalopathy (BSE termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (∼70% versus ∼10%, respectively. This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrP(res type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance.

  5. Infectivity in Skeletal Muscle of Cattle with Atypical Bovine Spongiform Encephalopathy

    Science.gov (United States)

    Gelmetti, Daniela; Corona, Cristiano; Iulini, Barbara; Mazza, Maria; Lombardi, Guerino; Moda, Fabio; Ruggerone, Margherita; Campagnani, Ilaria; Piccoli, Elena; Catania, Marcella; Groschup, Martin H.; Balkema-Buschmann, Anne; Caramelli, Maria; Monaco, Salvatore; Zanusso, Gianluigi; Tagliavini, Fabrizio

    2012-01-01

    The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (∼70% versus ∼10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrPres type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance. PMID:22363650

  6. Association of an ACSL1 gene variant with polyunsaturated fatty acids in bovine skeletal muscle.

    Science.gov (United States)

    Widmann, Philipp; Nuernberg, Karin; Kuehn, Christa; Weikard, Rosemarie

    2011-11-11

    The intramuscular fat deposition and the fatty acid profiles of beef affect meat quality. High proportions of unsaturated fatty acids are related to beef flavor and are beneficial for the nutritional value of meat. Moreover, a variety of clinical and epidemiologic studies showed that particularly long-chain omega-3 fatty acids from animal sources have a positive impact on human health and disease. To screen for genetic factors affecting fatty acid profiles in beef, we initially performed a microsatellite-based genome scan in a F(2) Charolais × German Holstein resource population and identified a quantitative trait locus (QTL) for fatty acid composition in a region on bovine chromosome 27 where previously QTL affecting marbling score had been detected in beef cattle populations. The long-chain acyl-CoA synthetase 1 (ACSL1) gene was identified as the most plausible functional and positional candidate gene in the QTL interval due to its direct impact on fatty acid metabolism and its position in the QTL interval. ACSL1 is necessary for synthesis of long-chain acyl-CoA esters, fatty acid degradation and phospholipid remodeling. We validated the genomic annotation of the bovine ACSL1 gene by in silico comparative sequence analysis and experimental verification. Re-sequencing of the complete coding, exon-flanking intronic sequences, 3' untranslated region (3'UTR) and partial promoter region of the ACSL1 gene revealed three synonymous mutations in exons 6, 7, and 20, six noncoding intronic gene variants, six polymorphisms in the promoter region, and four variants in the 3' UTR region. The association analysis identified the gene variant in intron 5 of the ACSL1 gene (c.481-233A>G) to be significantly associated with the relative content of distinct fractions and ratios of fatty acids (e.g., n-3 fatty acids, polyunsaturated, n-3 long-chain polyunsaturated fatty acids, trans vaccenic acid) in skeletal muscle. A tentative association of the ACSL1 gene variant with

  7. Association of an ACSL1 gene variant with polyunsaturated fatty acids in bovine skeletal muscle

    Directory of Open Access Journals (Sweden)

    Widmann Philipp

    2011-11-01

    Full Text Available Abstract Background The intramuscular fat deposition and the fatty acid profiles of beef affect meat quality. High proportions of unsaturated fatty acids are related to beef flavor and are beneficial for the nutritional value of meat. Moreover, a variety of clinical and epidemiologic studies showed that particularly long-chain omega-3 fatty acids from animal sources have a positive impact on human health and disease. Results To screen for genetic factors affecting fatty acid profiles in beef, we initially performed a microsatellite-based genome scan in a F2 Charolais × German Holstein resource population and identified a quantitative trait locus (QTL for fatty acid composition in a region on bovine chromosome 27 where previously QTL affecting marbling score had been detected in beef cattle populations. The long-chain acyl-CoA synthetase 1 (ACSL1 gene was identified as the most plausible functional and positional candidate gene in the QTL interval due to its direct impact on fatty acid metabolism and its position in the QTL interval. ACSL1 is necessary for synthesis of long-chain acyl-CoA esters, fatty acid degradation and phospholipid remodeling. We validated the genomic annotation of the bovine ACSL1 gene by in silico comparative sequence analysis and experimental verification. Re-sequencing of the complete coding, exon-flanking intronic sequences, 3' untranslated region (3'UTR and partial promoter region of the ACSL1 gene revealed three synonymous mutations in exons 6, 7, and 20, six noncoding intronic gene variants, six polymorphisms in the promoter region, and four variants in the 3' UTR region. The association analysis identified the gene variant in intron 5 of the ACSL1 gene (c.481-233A>G to be significantly associated with the relative content of distinct fractions and ratios of fatty acids (e.g., n-3 fatty acids, polyunsaturated, n-3 long-chain polyunsaturated fatty acids, trans vaccenic acid in skeletal muscle. A tentative association

  8. Myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese shorthorn cattle.

    Science.gov (United States)

    Takahashi, H; Sato, K; Yamaguchi, T; Miyake, M; Watanabe, H; Nagasawa, Y; Kitagawa, E; Terada, S; Urakawa, M; Rose, M T; McMahon, C D; Watanabe, K; Ohwada, S; Gotoh, T; Aso, H

    2014-07-01

    The purpose of this study was to determine whether myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese Shorthorn cattle. Plasma concentrations of glucose were lower in DM cattle than in NM cattle (P DM cattle than in NM cattle (P DM cattle did not differ with respect to skeletal muscle expression of GLUT1 and myocyte enhancer factor-2c (MEF2c), a transcription factor of GLUT4. In differentiated myoblasts, the expression of GLUT1, GLUT4, and MEF2c mRNAs was greater in DM cattle than in NM cattle (P DM cattle relative to that of NM cattle (P DM myoblasts (P DM cattle to produce muscle relative to the NM cattle may be due to their greater sensitivity to insulin and greater use of glucose. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Bovine cytochrome c oxidases, purified from heart, skeletal muscle, liver and kidney, differ in the small subunits but show the same reaction kinetics with cytochrome c

    NARCIS (Netherlands)

    Sinjorgo, K. M.; Durak, I.; Dekker, H. L.; Edel, C. M.; Hakvoort, T. B.; van Gelder, B. F.; Muijsers, A. O.

    1987-01-01

    (1) Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate of purified cytochrome c oxidase preparations revealed that bovine kidney, skeletal muscle and heart contain different cytochrome c oxidase isoenzymes, which show differences in mobility of the subunits encoded by the

  10. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence......, of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle...

  11. Skeletal muscle tissue engineering

    National Research Council Canada - National Science Library

    Bach, A. D; Beier, J. P; Stern‐Staeter, J; Horch, R. E

    2004-01-01

    The reconstruction of skeletal muscle tissue either lost by traumatic injury or tumor ablation or functional damage due to myopathies is hampered by the lack of availability of functional substitution...

  12. Effect of Dietary Restriction and Subsequent Re-Alimentation on the Transcriptional Profile of Bovine Skeletal Muscle

    OpenAIRE

    Keogh, Kate; Kenny, David A.; Cormican, Paul; McCabe, Matthew S.; Kelly, Alan K.; Waters, Sinead M.

    2016-01-01

    Compensatory growth (CG), an accelerated growth phenomenon which occurs following a period of dietary restriction is exploited worldwide in animal production systems as a method to lower feed costs. However the molecular mechanisms regulated CG expression remain to be elucidated fully. This study aimed to uncover the underlying biology regulating CG in cattle, through an examination of skeletal muscle transcriptional profiles utilising next generation mRNA sequencing technology. Twenty Holste...

  13. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  14. Noncontrast skeletal muscle oximetry.

    Science.gov (United States)

    Zheng, Jie; An, Hongyu; Coggan, Andrew R; Zhang, Xiaodong; Bashir, Adil; Muccigrosso, David; Peterson, Linda R; Gropler, Robert J

    2014-01-01

    The objective of this study was to develop a new noncontrast method to directly quantify regional skeletal muscle oxygenation. The feasibility of the method was examined in five healthy volunteers using a 3 T clinical MRI scanner, at rest and during a sustained isometric contraction. The perfusion of skeletal muscle of the calf was measured using an arterial spin labeling method, whereas the oxygen extraction fraction of the muscle was measured using a susceptibility-based MRI technique. In all volunteers, the perfusion in soleus muscle increased significantly from 6.5 ± 2.0 mL (100 g min)(-1) at rest to 47.9 ± 7.7 mL (100 g min)(-1) during exercise (P oxygen extraction fraction did not change significantly, the rate of oxygen consumption increased from 0.43 ± 0.13 to 4.2 ± 1.5 mL (100 g min)(-1) (P muscle but with greater oxygen extraction fraction increase than the soleus muscle. This is the first MR oximetry developed for quantification of regional skeletal muscle oxygenation. A broad range of medical conditions could benefit from these techniques, including cardiology, gerontology, kinesiology, and physical therapy. Copyright © 2013 Wiley Periodicals, Inc.

  15. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    Lipid is stored as triacylglycerol (TG) in lipid droplets and is in skeletal muscle stored as intra muscular triacylglycerol (IMTG). IMTG is considered an energy pool that is utilized by lipolysis during situations with low cellular energy availability, such as exercise. Lipolysis is in skeletal ......, is not an important signaling molecule in the mechanism behind insulin resistance and type 2 diabetes The findings of this PhD thesis are presented in one manuscript and in one published paper. In addition, the thesis comprises unpublished work....

  16. PDH regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian

    regulation in human skeletal muscle. 2: Effect of muscle glycogen on PDH regulation in human skeletal muscle at rest and during exercise. 3: The impact of physical inactivity on PDH regulation in human skeletal muscle at rest and during exercise. 4: Elucidating the importance of PGC-1? in PDH regulation...... in mouse skeletal muscle at rest and in response to fasting and during recovery from exercise. The studies indicate that the content of PDH-E1? in human muscle follows the metabolic profile of the muscle, rather than the myosin heavy chain fiber distribution of the muscle. The larger lactate accumulation...... in human skeletal muscle. It may be noted that the increased PDK4 protein associated with elevated plasma FFA occurs already 2 hours after different dietary intake. A week of physical inactivity (bed rest), leading to whole body glucose intolerance, does not affect muscle PDH-E1? content, or the exercise...

  17. A vertebrate slow skeletal muscle actin isoform

    National Research Council Canada - National Science Library

    Mudalige, Wasana A. K. A; Jackman, Donna M; Waddleton, Deena M; Heeley, David H

    2007-01-01

    Salmonids utilize a unique, class II isoactin in slow skeletal muscle. This actin contains 12 replacements when compared with those from salmonid fast skeletal muscle, salmonid cardiac muscle and rabbit skeletal muscle...

  18. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation...... composition, the organizational structure of connective tissue, the role of connective tissue in muscle contraction and the generation of force, metabolic regulation of arterial structure focusing on associated collagen changes, and a new highly-specific technique for following in three-dimensions changes...... in the structure of fibrous collagen and myofibers at high-resolution. The results demonstrate that the collagen composition in the extra cellular matrix of Gadus morhua fish muscle is much more complex than previously anticipated, as it contains type III, IV, V  and VI collagen in addition to type I. The vascular...

  19. Effect of Dietary Restriction and Subsequent Re-Alimentation on the Transcriptional Profile of Bovine Skeletal Muscle.

    Science.gov (United States)

    Keogh, Kate; Kenny, David A; Cormican, Paul; McCabe, Matthew S; Kelly, Alan K; Waters, Sinead M

    2016-01-01

    Compensatory growth (CG), an accelerated growth phenomenon which occurs following a period of dietary restriction is exploited worldwide in animal production systems as a method to lower feed costs. However the molecular mechanisms regulated CG expression remain to be elucidated fully. This study aimed to uncover the underlying biology regulating CG in cattle, through an examination of skeletal muscle transcriptional profiles utilising next generation mRNA sequencing technology. Twenty Holstein Friesian bulls were fed either a restricted diet for 125 days, with a target growth rate of 0.6 kg/day (Period 1), following which they were allowed feed ad libitum for a further 55 days (Period 2) or fed ad libitum for the entirety of the trial. M. longissimus dorsi biopsies were harvested from all bulls on days 120 and 15 of periods 1 and 2 respectively and RNAseq analysis was performed. During re-alimentation in Period 2, previously restricted animals displayed CG, growing at 1.8 times the rate of the ad libitum control animals. Compensating animals were also more feed efficient during re-alimentation and compensated for 48% of their previous dietary restriction. 1,430 and 940 genes were identified as significantly differentially expressed (Benjamini Hochberg adjusted P future breeding programmes.

  20. Paraplegia increases skeletal muscle autophagy.

    Science.gov (United States)

    Fry, Christopher S; Drummond, Micah J; Lujan, Heidi L; DiCarlo, Stephen E; Rasmussen, Blake B

    2012-11-01

    Paraplegia results in significant skeletal muscle atrophy through increases in skeletal muscle protein breakdown. Recent work has identified a novel SIRT1-p53 pathway that is capable of regulating autophagy and protein breakdown. Soleus muscle was collected from 6 male Sprague-Dawley rats 10 weeks after complete T4-5 spinal cord transection (paraplegia group) and 6 male sham-operated rats (control group). We utilized immunoblotting methods to measure intracellular proteins and quantitative real-time polymerase chain reaction to measure the expression of skeletal muscle microRNAs. SIRT1 protein expression was 37% lower, and p53 acetylation (LYS379) was increased in the paraplegic rats (P paraplegia group compared with controls (P paraplegia appears to increase skeletal muscle autophagy independent of SIRT1 signaling. We conclude that chronic paraplegia may cause an increase in autophagic cell death and negatively impact skeletal muscle protein balance. Copyright © 2012 Wiley Periodicals, Inc.

  1. Effect of Dietary Restriction and Subsequent Re-Alimentation on the Transcriptional Profile of Bovine Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Kate Keogh

    Full Text Available Compensatory growth (CG, an accelerated growth phenomenon which occurs following a period of dietary restriction is exploited worldwide in animal production systems as a method to lower feed costs. However the molecular mechanisms regulated CG expression remain to be elucidated fully. This study aimed to uncover the underlying biology regulating CG in cattle, through an examination of skeletal muscle transcriptional profiles utilising next generation mRNA sequencing technology. Twenty Holstein Friesian bulls were fed either a restricted diet for 125 days, with a target growth rate of 0.6 kg/day (Period 1, following which they were allowed feed ad libitum for a further 55 days (Period 2 or fed ad libitum for the entirety of the trial. M. longissimus dorsi biopsies were harvested from all bulls on days 120 and 15 of periods 1 and 2 respectively and RNAseq analysis was performed. During re-alimentation in Period 2, previously restricted animals displayed CG, growing at 1.8 times the rate of the ad libitum control animals. Compensating animals were also more feed efficient during re-alimentation and compensated for 48% of their previous dietary restriction. 1,430 and 940 genes were identified as significantly differentially expressed (Benjamini Hochberg adjusted P < 0.1 in periods 1 and 2 respectively. Additionally, 2,237 genes were differentially expressed in animals undergoing CG relative to dietary restriction. Dietary restriction in Period 1 was associated with altered expression of genes involved in lipid metabolism and energy production. CG expression in Period 2 occurred in association with greater expression of genes involved in cellular function and organisation. This study highlights some of the molecular mechanisms regulating CG in cattle. Differentially expressed genes identified are potential candidate genes for the identification of biomarkers for CG and feed efficiency, which may be incorporated into future breeding programmes.

  2. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  3. Skeletal muscle performance and ageing.

    Science.gov (United States)

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2017-11-19

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  4. Simvastatin effects on skeletal muscle

    DEFF Research Database (Denmark)

    Larsen, Steen; Stride, Nis; Hey-Mogensen, Martin

    2013-01-01

    Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9)....

  5. Skeletal Muscle Na+ Channel Disorders

    OpenAIRE

    Dina eSimkin; Saïd eBendahhou

    2011-01-01

    Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the impo...

  6. Skeletal muscle ultrasound.

    NARCIS (Netherlands)

    Pillen, S.; Alfen, N. van

    2011-01-01

    Muscle ultrasound is a convenient technique to visualize normal and pathological muscle tissue as it is non-invasive and real-time. Neuromuscular disorders give rise to structural muscle changes that can be visualized with ultrasound: atrophy can be objectified by measuring muscle thickness, while

  7. Skeletal muscle ultrasound.

    Science.gov (United States)

    Pillen, Sigrid; van Alfen, Nens

    2011-12-01

    Muscle ultrasound is a convenient technique to visualize normal and pathological muscle tissue as it is non-invasive and real-time. Neuromuscular disorders give rise to structural muscle changes that can be visualized with ultrasound: atrophy can be objectified by measuring muscle thickness, while infiltration of fat and fibrous tissue increases muscle echo intensity, i.e. the muscles become whiter on the ultrasound image. Muscle echo intensity needs to be quantified to correct for age-related increase in echo intensity and differences between individual muscles. This can be done by gray scale analysis, a method that can be easily applied in daily clinical practice. Using this technique, it is possible to detect neuromuscular disorders with predictive values of 90%. Only in young children and metabolic myopathies the sensitivity is lower. Ultrasound is a dynamic technique and therefore capable of visualizing normal and pathological muscle movements. Fasciculations can easily be differentiated from other muscle movements. Ultrasound appeared to be even more sensitive in detecting fasciculations compared to Electromyography (EMG) and clinical observations, because it can visualize a large muscle area and deeper located muscles. With improving resolution and frame rate it has recently become clear that also smaller scale spontaneous muscle activity such as fibrillations can be detected by ultrasound. This opens the way to a broader use of muscle ultrasound in the diagnosis of peripheral nerve and muscle disorders.

  8. Skeletal muscle ultrasound

    Directory of Open Access Journals (Sweden)

    Sigrid Pillen

    2010-12-01

    Full Text Available Muscle ultrasound is a convenient technique to visualize normal and pathological muscle tissue as it is non-invasive and real-time. Neuromuscular disorders give rise to structural muscle changes that can be visualized with ultrasound: atrophy can be objectified by measuring muscle thickness, while infiltration of fat and fibrous tissue increase muscle echo intensity, i.e. the muscles become whiter on the ultrasound image. Muscle echo intensity need to be quantified to correct for age-related increase in echo intensity and differences between individual muscles. This can be done by gray scale analysis, a method that can be easily applied in daily clinical practice. Using this technique it is possible to detect neuromuscular disorders with predictive values of 90 percent. Only in young children and metabolic myopathies the sensitivity is lower. Ultrasound is a dynamic technique and therefore capable of visualizing normal and pathological muscle movements. Fasciculations can easily be differentiated from other muscle movements. Ultrasound appeared to be even more sensitive in detecting fasciculations compared to EMG and clinical observations, because it can visualize a large muscle area and deeper located muscles. With improving resolution and frame rate it has recently become clear that also smaller scale spontaneous muscle activity such as fibrillations can be detected by ultrasound. This opens the way to a broader use of muscle ultrasound in the diagnosis of peripheral nerve and muscle disorders.

  9. Skeletal muscle satellite cells

    Science.gov (United States)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form

  10. The Skeletal Muscle Satellite Cell

    Science.gov (United States)

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  11. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  12. Mechanical modeling of skeletal muscle functioning.

    NARCIS (Netherlands)

    van der Linden, B.J.J.J.

    1998-01-01

    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  13. AMPK in skeletal muscle function and metabolism

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Hingst, Janne R; Fentz, Joachim

    2017-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK's role as an energy sensor is particularly critical in tissues displaying...... highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation......, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives...

  14. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes...... caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  15. Skeletal muscle ultrasonography: Visual versus quantitative evaluation.

    NARCIS (Netherlands)

    Pillen, S.; Keimpema, M. Van; Nievelstein, R.A.; Verrips, A.; Kruijsbergen-Raijmann, W. van; Zwarts, M.J.

    2006-01-01

    In this study, we compared the sensitivity and specificity of visual versus quantitative evaluation of skeletal muscle ultrasound in children suspected of having a neuromuscular disorder (NMD). Ultrasonography (US) scans of four muscles (biceps brachii, forearm flexors, quadriceps femoris, anterior

  16. Signaling pathways controlling skeletal muscle mass.

    Science.gov (United States)

    Egerman, Marc A; Glass, David J

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed "atrophy", is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle.

  17. Aging of Skeletal Muscle Fibers

    Science.gov (United States)

    Miljkovic, Natasa; Lim, Jae-Young; Miljkovic, Iva

    2015-01-01

    Aging has become an important topic for scientific research because life expectancy and the number of men and women in older age groups have increased dramatically in the last century. This is true in most countries of the world including the Republic of Korea and the United States. From a rehabilitation perspective, the most important associated issue is a progressive decline in functional capacity and independence. Sarcopenia is partly responsible for this decline. Many changes underlying the loss of muscle mass and force-generating capacity of skeletal muscle can be understood at the cellular and molecular levels. Muscle size and architecture are both altered with advanced adult age. Further, changes in myofibers include impairments in several physiological domains including muscle fiber activation, excitation-contraction coupling, actin-myosin cross-bridge interaction, energy production, and repair and regeneration. A thorough understanding of these alterations can lead to the design of improved preventative and rehabilitative interventions, such as personalized exercise training programs. PMID:25932410

  18. Skeletal Muscle Microvasculature: A Highly Dynamic Lifeline.

    Science.gov (United States)

    Latroche, Claire; Gitiaux, Cyril; Chrétien, Fabrice; Desguerre, Isabelle; Mounier, Rémi; Chazaud, Bénédicte

    2015-11-01

    Skeletal muscle is highly irrigated by blood vessels. Beyond oxygen and nutrient supply, new vessel functions have been identified. This review presents vessel microanatomy and functions at tissue, cellular, and molecular levels. Mechanisms of vessel plasticity are described during skeletal muscle development and acute regeneration, and in physiological and pathological contexts. ©2015 Int. Union Physiol. Sci./Am. Physiol. Soc.

  19. Sympathetic actions on the skeletal muscle.

    Science.gov (United States)

    Roatta, Silvestro; Farina, Dario

    2010-01-01

    The sympathetic nervous system (SNS) modulates several functions in skeletal muscle fibers, including metabolism, ionic transport across the membrane, and contractility. These actions, together with the sympathetic control of other organ systems, support intense motor activity. However, some SNS actions on skeletal muscles may not always be functionally advantageous. Implications for motor control and sport performance are discussed.

  20. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... and adipose tissue leptin release in vivo. We recruited 16 healthy male human participants. Catheters were inserted into the femoral artery and vein draining skeletal muscle, as well as an epigastric vein draining the abdominal subcutaneous adipose tissue. By combining the veno-arterial differences in plasma...... leptin with measurements of blood flow, leptin release from both tissues was quantified. To induce changes in leptin, the participants were infused with either saline or adrenaline in normo-physiological concentrations. The presence of leptin in skeletal muscle was confirmed by western blotting. Leptin...

  1. Channelopathies of skeletal muscle excitability

    Science.gov (United States)

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  2. Skeletal muscle is an endocrine organ.

    Science.gov (United States)

    Iizuka, Kenji; Machida, Takuji; Hirafuji, Masahiko

    2014-01-01

    Skeletal muscle plays a key role in postural retention as well as locomotion for maintaining the physical activities of human life. Skeletal muscle has a second role as an elaborate energy production and consumption system that influences the whole body's energy metabolism. Skeletal muscle is a specific organ that engenders a physical force, and exercise training has been known to bring about multiple benefits for human health maintenance and/or improvement. The mechanisms underlying the improvement of the human physical condition have been revealed: skeletal muscle synthesizes and secretes multiple factors, and these muscle-derived factors, so-called as myokines, exert beneficial effects on peripheral and remote organs. In this short review, we focus on the third aspect of skeletal muscle function - namely, the release of multiple types of myokines, which constitute a broad network for regulating the function of remote organs as well as skeletal muscle itself. We conclusively show that skeletal muscle is one of the endocrine organs and that understanding the mechanisms of production and secretion of myokines may lead to a new pharmacological approach for treatment of clinical disorders.

  3. [In vitro construction of skeletal muscle tissues.

    Science.gov (United States)

    Morimoto, Yuya; Takeuchi, Shoji

    In conventional culture methods using culture dishes, myotubes formed by fusion of myoblasts adhere to the surface of the culture dishes. Because the adherence causes interruption of myotube contractions and immobilization of myotubes from the culture dishes, the conventional culture methods have limitations to applications of the myotubes into drug developments and medical treatments. In order to avoid their adherence, many researchers have proposed in vitro construction of skeletal muscle tissues which both ends are fixed to anchors. The skeletal muscle tissues achieve their contractions freely according to electrical stimulations or optical stimulations, and transfer of them to other experimental setup by releasing them form the anchors. By combining the skeletal muscle tissues with force sensors, the skeletal muscle tissues are available to drug screening tests based on contractile force as a functional index. Furthermore, survival of the skeletal muscle tissues are demonstrated by implantation of them to animals. Thus, in vitro constructed skeletal muscle tissues is now recognized as attractive tools in medical fields. This review will summarize fabrication methods, properties and medical applicability of the skeletal muscle tissues.

  4. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  5. Satellite cells: the architects of skeletal muscle.

    Science.gov (United States)

    Chang, Natasha C; Rudnicki, Michael A

    2014-01-01

    The outstanding regenerative capacity of skeletal muscle is attributed to the resident muscle stem cell termed satellite cell. Satellite cells are essential for skeletal muscle regeneration as they ultimately provide the myogenic precursors that rebuild damaged muscle tissue. Satellite cells characteristically are a heterogeneous population of stem cells and committed progenitor cells. Delineation of cellular hierarchy and understanding how lineage fate choices are determined within the satellite cell population will be invaluable for the advancement of muscle regenerative therapies. © 2014 Elsevier Inc. All rights reserved.

  6. Advances and challenges in skeletal muscle angiogenesis

    DEFF Research Database (Denmark)

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva

    2016-01-01

    during health, but poorly controlled in disease - resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact...... on metabolism, endocrine function, and locomotion, and is tightly regulated at many different levels. Skeletal muscle is also high adaptable, and thus one of the few organ systems which can be experimentally manipulated (e.g. by exercise) to study physiologic regulation of angiogenesis. This review will focus...

  7. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a risk...... factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review...... for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment....

  8. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), pindex of mitochondrial density, also fell progressively from cardiac, skeletal, to smooth muscle (222±13; 115±2; 48±2 umol•g(-1)•min(-1), p... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  9. Skeletal muscle glucose uptake during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2005-01-01

    The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4...

  10. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  11. Fiber types in mammalian skeletal muscles

    National Research Council Canada - National Science Library

    Schiaffino, Stefano; Reggiani, Carlo

    2011-01-01

    Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors...

  12. Space travel directly induces skeletal muscle atrophy

    Science.gov (United States)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  13. The skeletal muscle circadian clock: current insights

    Directory of Open Access Journals (Sweden)

    Nakao R

    2017-11-01

    Full Text Available Reiko Nakao,1 Takeshi Nikawa,2 Katsutaka Oishi1,3,4 1Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST, Tsukuba, 2Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 3Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, 4Department of Computational and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan Abstract: Skeletal muscle functions in locomotion, postural support, and energy metabolism. The loss of skeletal muscle mass and function leads to diseases such as sarcopenia and metabolic disorders. Inactivity (lack of exercise and an imbalanced diet (increased fat or decreased protein intake are thought to be involved in the prevalence of such pathologies. On the other hand, recent epidemiological studies of humans have suggested that circadian disruption caused by shift work, jet lag, and sleep disorders is associated with obesity and metabolic syndrome. Experimental studies of mice deficient in clock genes have also identified skeletal muscle defects, suggesting a molecular link between circadian clock machinery and skeletal muscle physiology. Furthermore, accumulating evidence about chronotherapy, including chronopharmacology, chrononutrition, and chronoexercise, has indicated that timing is important to optimize medical intervention for various diseases. The present review addresses current understanding of the functional roles of the molecular clock with respect to skeletal muscle and the potential of chronotherapy for diseases associated with skeletal muscle. Keywords: biological rhythm, metabolic syndrome, physical activity, neural signal, chronotherapy

  14. ISOLATION OF SKELETAL MUSCLE NUCLEI

    Science.gov (United States)

    Edelman, Jean C.; Edelman, P. Michael; Knigge, Karl M.; Schwartz, Irving L.

    1965-01-01

    A method employing aqueous media for isolation of nuclei from rat skeletal muscle is described. The technique involves (a) mincing and then homogenizing in a 0.32 M sucrose-salt solution with a Potter-Elvehjem type homogenizer using a Delrin (an acetal resin) pestle and a carefully controlled, relatively large pestle-to-glass clearance, (b) filtering through fiberglass and stainless steel screens of predetermined mesh size to remove myofibrils and connective tissue, and (c) centrifuging in a 2.15 M sucrose-salt solution containing 0.7 mM ATP. Electron and phase-contrast microscopic observations show that the nuclei are intact, unencumbered by cytoplasmic tags, and possess well preserved distinct nucleoli, nucleoplasm, and nuclear membranes. Cytoplasmic contamination is minimal and mainly mitochondrial. Chemical assays of the nuclear fraction show that the DNA/protein and RNA/DNA ratios are comparable to those obtained in other tissues. These ratios, as well as the low specific activity obtained for cytochrome c oxidase and the virtual absence of myofibrillar ATPase, indicate a high degree of purity with minimal mitochondrial and myofibrillar contamination. The steps comprising the technique and the reasons for their selection are discussed. PMID:4287141

  15. Intraurethral Injection of Autologous Minced Skeletal Muscle

    DEFF Research Database (Denmark)

    Gräs, Søren; Klarskov, Niels; Lose, Gunnar

    2014-01-01

    PURPOSE: Intraurethral injection of in vitro expanded autologous skeletal muscle derived cells is a new regenerative therapy for stress urinary incontinence. We examined the efficacy and safety of a simpler alternative strategy using freshly harvested, minced autologous skeletal muscle tissue...... with its inherent content of regenerative cells. MATERIALS AND METHODS: A total of 20 and 15 women with uncomplicated and complicated stress urinary incontinence, respectively, received intraurethral injections of minced autologous skeletal muscle tissue and were followed for 1 year. Efficacy was assessed...... noted. CONCLUSIONS: Intraurethral injection of minced autologous muscle tissue is a simple surgical procedure that appears safe and moderately effective in women with uncomplicated stress urinary incontinence. It compares well to a more complicated regenerative strategy using in vitro expanded muscle...

  16. Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity

    Science.gov (United States)

    Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut

    2015-01-01

    Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235

  17. Arachidonate metabolism in bovine gallbladder muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, M.; Hidaka, T.; Ueta, T.; Ogura, R.

    1983-04-01

    Incubation of (1-/sup 14/C)arachidonic acid (AA) with homogenates of bovine gallbladder muscle generated a large amount of radioactive material having the chromatographic mobility of 6-keto-PGF1 alpha (stable product of PGI2) and smaller amounts of products that comigrated with PGF2 alpha PGE2. Formation of these products was inhibited by the cyclooxygenase inhibitor indomethacin. The major radioactive product identified by thin-layer chromatographic mobility and by gas chromatography - mass spectrometric analysis was found to be 6-keto-PGF1 alpha. The quantitative metabolic pattern of (1-/sup 14/C)PGH2 was virtually identical to that of (1-/sup 14/C)AA. Incubation of arachidonic acid with slices of bovine gallbladder muscle released labile anti-aggregatory material in the medium, which was inhibited by aspirin or 15-hydroperoxy-AA. These results indicate that bovine gallbladder muscle has a considerable enzymatic capacity to produce PGI2 from arachidonic acid.

  18. Skeletal muscle development and regeneration.

    NARCIS (Netherlands)

    Grefte, S.; Kuijpers-Jagtman, A.M.; Torensma, R.; Hoff, J.W. Von den

    2007-01-01

    In the late stages of muscle development, a unique cell population emerges that is a key player in postnatal muscle growth and muscle regeneration. The location of these cells next to the muscle fibers triggers their designation as satellite cells. During the healing of injured muscle tissue,

  19. Interleukin-6 myokine signaling in skeletal muscle

    DEFF Research Database (Denmark)

    Muñoz-Cánoves, Pura; Scheele, Camilla; Pedersen, Bente K

    2013-01-01

    Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL-6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL-6 signaling has b...

  20. Connexins in skeletal muscle development and disease.

    Science.gov (United States)

    Merrifield, Peter A; Laird, Dale W

    2016-02-01

    Gap junctions consist of clusters of intercellular channels composed of connexins that connect adjacent cells and allow the exchange of small molecules. While the 21 member multi-gene family of connexins are ubiquitously found in humans, only Cx39, Cx40, Cx43 and Cx45 have been documented in developing myoblasts and injured adult skeletal muscle while healthy adult skeletal muscle is devoid of connexins. The use of gap junctional blockers and cultured myoblast cell lines have suggested that these connexins play a critical role in myotube formation and muscle regeneration. More recent genetically-modified mouse models where Cx43 function is greatly compromized or ablated have further supported a role for Cx43 in regulating skeletal muscle development. In the last decade, we have become aware of a cohort of patients that have a development disorder known as oculodentodigital dysplasia (ODDD). These patients harbor either gain or loss of Cx43 function gene mutations that result in many organ anomalies raising questions as to whether they suffer from defects in skeletal muscle formation or regeneration upon injury. Interesting, some ODDD patients report muscle weakness and loss of limb control but it is not clear if this is neurogenic or myogenic in origin. This review will focus on the role connexins play in muscle development and repair and discuss the impact of Cx43 mutants on muscle function. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Vasodilatory mechanisms in contracting skeletal muscle

    DEFF Research Database (Denmark)

    Clifford, Philip S.; Hellsten, Ylva

    2004-01-01

    Skeletal muscle blood flow is closely coupled to metabolic demand, and its regulation is believed to be mainly the result of the interplay of neural vasoconstrictor activity and locally derived vasoactive substances. Muscle blood flow is increased within the first second after a single contraction...... and stabilizes within 30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid rise...

  2. Proteome Analysis of Bovine Muscle Associated with the Marbling Score

    Directory of Open Access Journals (Sweden)

    Y. N. Shen

    2012-08-01

    Full Text Available The breeding value of marbling score in skeletal muscle is an important factor for evaluating beef quality. In the present study, we investigated proteins associated with the breeding value of the marbling score for bovine sirloin to select potential biomarkers to improve meat quality through comparative proteomic analysis. Proteins isolated from muscle were separated by two-dimensional gel electrophoresis. After analyzing images of the stained gel, seven protein spots for the high marbling score group were identified corresponding to changes in expression that were at least two-fold compared to the low marbling score group. Four spots with increased intensities in the high marbling score group were identified as phosphoglycerate kinase 1, triosephophate isomerase, acidic ribosomal phosphoprotein PO, and capping protein (actin filament Z-line alpha 2. Spots with decreased intensities in the high marbling score group compared to the low score group were identified as 14-3-3 epsilon, carbonic anhydrase II, and myosin light chain 1. Expression of myosin light chain 1 and carbonic anhydrase 2 was confirmed by Western blotting. Taken together, these data could help improve the economic performance of cattle and provide useful information about the underlying the function of bovine skeletal muscle.

  3. Skeletal muscle as an immunogenic organ

    DEFF Research Database (Denmark)

    Nielsen, Søren; Pedersen, Bente Klarlund

    2008-01-01

    During the past few years, a possible link between skeletal muscle contractile activity and immune changes has been established. This concept is based on the finding that exercise provokes an increase in a number of cytokines. We have suggested that cytokines and other peptides that are produced......; expressed and released by muscle fibers and exert either paracrine or endocrine effects should be classified as 'myokines'. Human skeletal muscle has the capacity to express several myokines belonging to distinct different cytokine classes and contractile activity plays a role in regulating the expression...... of cytokines in skeletal muscle. In the present review, we focus on the myokines interleukin (IL)-6, IL-8 and IL-15 and their possible anti-inflammatory, immunoregulatory and metabolic roles....

  4. Lactate oxidation in human skeletal muscle mitochondria

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B

    2013-01-01

    Lactate is an important intermediate metabolite in human bioenergetics and is oxidized in many different tissues including the heart, brain, kidney, adipose tissue, liver, and skeletal muscle. The mechanism(s) explaining the metabolism of lactate in these tissues, however, remains unclear. Here, we...... analyze the ability of skeletal muscle to respire lactate by using an in situ mitochondrial preparation that leaves the native tubular reticulum and subcellular interactions of the organelle unaltered. Skeletal muscle biopsies were obtained from vastus lateralis muscle in 16 human subjects. Samples were...... of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P = 0.003). The addition...

  5. The benefits of coffee on skeletal muscle.

    Science.gov (United States)

    Dirks-Naylor, Amie J

    2015-12-15

    Coffee is consumed worldwide with greater than a billion cups of coffee ingested every day. Epidemiological studies have revealed an association of coffee consumption with reduced incidence of a variety of chronic diseases as well as all-cause mortality. Current research has primarily focused on the effects of coffee or its components on various organ systems such as the cardiovascular system, with relatively little attention on skeletal muscle. Summary of current literature suggests that coffee has beneficial effects on skeletal muscle. Coffee has been shown to induce autophagy, improve insulin sensitivity, stimulate glucose uptake, slow the progression of sarcopenia, and promote the regeneration of injured muscle. Much more research is needed to reveal the full scope of benefits that coffee consumption may exert on skeletal muscle structure and function. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Colostrum supplementation protects against exercise - induced oxidative stress in skeletal muscle in mice

    Directory of Open Access Journals (Sweden)

    Appukutty Mahenderan

    2012-11-01

    Full Text Available Abstract Background This study examined the effects of bovine colostrum on exercise –induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum and each group had three subgroups (day 0, 21 and 42. Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle. Results Exercise—induced a significant oxidative stress in skeletal muscles as evidenced by the elevated lipid hydroperoxides and xanthine oxidase levels. There was a significant decrease in skeletal muscle total antioxidants and superoxide dismutase levels. Daily colostrum supplement significantly reduced the lipid hydroperoxides and xanthine oxidase enzyme level and increased the total antioxidant levels in the leg muscle. Conclusion Thus, the findings of this study showed that daily bovine colostrum supplementation was beneficial to skeletal muscle to reduce the oxidant-induced damage during muscular exercise.

  7. Skeletal muscle pathology in Huntington's disease.

    Science.gov (United States)

    Zielonka, Daniel; Piotrowska, Izabela; Marcinkowski, Jerzy T; Mielcarek, Michal

    2014-01-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a polyglutamine stretch within the huntingtin protein (HTT). The neurological symptoms, that involve motor, cognitive and psychiatric disturbances, are caused by neurodegeneration that is particularly widespread in the basal ganglia and cereberal cortex. HTT is ubiquitously expressed and in recent years it has become apparent that HD patients experience a wide array of peripheral organ dysfunction including severe metabolic phenotype, weight loss, HD-related cardiomyopathy and skeletal muscle wasting. Although skeletal muscles pathology became a hallmark of HD, the mechanisms underlying muscular atrophy in this disorder are unknown. Skeletal muscles account for approximately 40% of body mass and are highly adaptive to physiological and pathological conditions that may result in muscle hypertrophy (due to increased mechanical load) or atrophy (inactivity, chronic disease states). The atrophy is caused by degeneration of myofibers and their replacement by fibrotic tissue is the major pathological feature in many genetic muscle disorders. Under normal physiological conditions the muscle function is orchestrated by a network of intrinsic hypertrophic and atrophic signals linked to the functional properties of the motor units that are likely to be imbalanced in HD. In this article, we highlight the emerging field of research with particular focus on the recent studies of the skeletal muscle pathology and the identification of new disease-modifying treatments.

  8. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  9. Transplantation of Skeletal Muscle Stem Cells.

    Science.gov (United States)

    Hall, Monica N; Hall, John K; Cadwallader, Adam B; Pawlikowski, Bradley T; Doles, Jason D; Elston, Tiffany L; Olwin, Bradley B

    2017-01-01

    Transplanting adult stem cells provides a stringent test for self-renewal and the assessment of comparative engraftment in competitive transplant assays. Transplantation of satellite cells into mammalian skeletal muscle provided the first critical evidence that satellite cells function as adult muscle stem cells. Transplantation of a single satellite cell confirmed and extended this hypothesis, providing proof that the satellite cell is a bona fide adult skeletal muscle stem cell as reported by Sacco et al. (Nature 456(7221):502-506). Satellite cell transplantation has been further leveraged to identify culture conditions that maintain engraftment and to identify self-renewal deficits in satellite cells from aged mice. Conversion of iPSCs (induced pluripotent stem cells) to a satellite cell-like state, followed by transplantation, demonstrated that these cells possess adult muscle stem cell properties as reported by Darabi et al. (Stem Cell Rev Rep 7(4):948-957) and Mizuno et al. (FASEB J 24(7):2245-2253). Thus, transplantation strategies involving either satellite cells derived from adult muscles or derived from iPSCs may eventually be exploited as a therapy for treating patients with diseased or failing skeletal muscle. Here, we describe methods for isolating dispersed adult mouse satellite cells and satellite cells on intact myofibers for transplantation into recipient mice to study muscle stem cell function and behavior following engraftment .

  10. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  11. Mechanotransduction pathways in skeletal muscle hypertrophy.

    Science.gov (United States)

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.

  12. Disease-Induced Skeletal Muscle Atrophy and Fatigue

    NARCIS (Netherlands)

    Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge

    2016-01-01

    Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal

  13. Tissue engineering for skeletal muscle regeneration.

    Science.gov (United States)

    Rizzi, Roberto; Bearzi, Claudia; Mauretti, Arianna; Bernardini, Sergio; Cannata, Stefano; Gargioli, Cesare

    2012-07-01

    Stem cells and regenerative medicine have obtained a remarkable consent from the scientific community for their promising ability to recover aged, injured and diseased tissue. However, despite the noteworthy potential, hurdles currently hinder their use and clinical application: cell survival, immune response, tissue engraftment and efficient differentiation. Hence a new interdisciplinary scientific approach, such as tissue engineering, is going deep attempts to mimic neo-tissue-genesis as well as stem cell engraftment amelioration. Skeletal muscle tissue engineering represents a great potentiality in medicine for muscle regeneration exploiting new generation injectable hydrogel as scaffold supporting progenitor/stem cells for muscle differentiation reconstructing the natural skeletal muscle tissue architecture influenced by matrix mechanical and physical property and by a dynamic environment.

  14. YAP-Mediated Mechanotransduction in Skeletal Muscle.

    Science.gov (United States)

    Fischer, Martina; Rikeit, Paul; Knaus, Petra; Coirault, Catherine

    2016-01-01

    Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP), a transcriptional coactivator downstream of the Hippo pathway and its paralog, the transcriptional co-activator with PDZ-binding motif (TAZ), were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction.

  15. Autophagy and skeletal muscles in sepsis.

    Directory of Open Access Journals (Sweden)

    Mahroo Mofarrahi

    Full Text Available Mitochondrial injury develops in skeletal muscles during the course of severe sepsis. Autophagy is a protein and organelle recycling pathway which functions to degrade or recycle unnecessary, redundant, or inefficient cellular components. No information is available regarding the degree of sepsis-induced mitochondrial injury and autophagy in the ventilatory and locomotor muscles. This study tests the hypotheses that the locomotor muscles are more prone to sepsis-induced mitochondrial injury, depressed biogenesis and autophagy induction compared with the ventilatory muscles.Adult male C57/Bl6 mice were injected with i.p. phosphate buffered saline (PBS or E. coli lipopolysaccharide (LPS, 20 mg/kg and sacrificed 24 h later. The tibialis anterior (TA, soleus (SOLD and diaphragm (DIA muscles were quickly excised and examined for mitochondrial morphological injury, Ca(++ retention capacity and biogenesis. Autophagy was detected with electron microscopy, lipidation of Lc3b proteins and by measuring gene expression of several autophagy-related genes. Electron microscopy revealed ultrastructural injuries in the mitochondria of each muscle, however, injuries were more severe in the TA and SOL muscles than they were in the DIA. Gene expressions of nuclear and mitochondrial DNA transcription factors and co-activators (indicators of biogenesis were significantly depressed in all treated muscles, although to a greater extent in the TA and SOL muscles. Significant autophagosome formation, Lc3b protein lipidation and upregulation of autophagy-related proteins were detected to a greater extent in the TA and SOL muscles and less so in the DIA. Lipidation of Lc3b and the degree of induction of autophagy-related proteins were significantly blunted in mice expressing a muscle-specific IκBα superrepresor.We conclude that locomotor muscles are more prone to sepsis-induced mitochondrial injury, decreased biogenesis and increased autophagy compared with the

  16. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    Science.gov (United States)

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-09-16

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  17. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--mechanism of growth hormone stimulation of skeletal muscle growth in cattle.

    Science.gov (United States)

    Jiang, H; Ge, X

    2014-01-01

    Growth hormone, also called somatotropin (ST), is a polypeptide hormone produced by the anterior pituitary. The major functions of GH include stimulating bone and skeletal muscle growth, lipolysis, milk production, and expression of the IGF-I gene in the liver. Based on these functions, recombinant bovine ST (bST) and recombinant porcine ST (pST) have been used to improve milk production in dairy cows and lean tissue growth in pigs, respectively. However, despite these applications, the mechanisms of action of GH are not fully understood. Indeed, there has been a lot of controversy over the role of liver-derived circulating IGF-I and locally produced IGF-I in mediating the growth-stimulatory effect of GH during the last 15 yr. It is in this context that we have conducted studies to further understand how GH stimulates skeletal muscle growth in cattle. Our results do not support a role of skeletal muscle-derived IGF-I in GH-stimulated skeletal muscle growth in cattle. Our results indicate that GH stimulates skeletal muscle growth in cattle, in part, by stimulating protein synthesis in muscle through a GH receptor-mediated, IGF-I-independent mechanism. In this review, besides discussing these results, we also argue that liver-derived circulating IGF-I should be still considered as the major mechanism that mediates the growth-stimulatory effect of GH on skeletal muscle in cattle and other domestic animals.

  18. Redox characterization of functioning skeletal muscle

    Directory of Open Access Journals (Sweden)

    Li eZuo

    2015-11-01

    Full Text Available Skeletal muscle physiology is influenced by the presence of chemically reactive molecules such as reactive oxygen species (ROS. These molecules regulate multiple redox-sensitive signaling pathways that play a critical role in cellular processes including gene expression and protein modification. While ROS have gained much attention for their harmful effects in muscle fatigue and dysfunction, research has also shown ROS to facilitate muscle adaptation after stressors such as physical exercise. This manuscript aims to provide a comprehensive review of the current understanding of redox signaling in skeletal muscle. ROS-induced oxidative stress and its role in the aging process are discussed. Mitochondria have been shown to generate large amounts of ROS during muscular contractions, and thus are susceptible to oxidative stress. ROS can modify proteins located in the mitochondrial membrane leading to cell death and osmotic swelling. ROS also contribute to the necrosis and inflammation of muscle fibers that is associated with muscular diseases including Duchenne muscular dystrophy (DMD. It is imperative that future research continues to investigate the exact role of ROS in normal skeletal muscle function as well as muscular dysfunction and disease.

  19. Gamma dosimetric parameters in some skeletal muscle relaxants

    Indian Academy of Sciences (India)

    H C MANJUNATHA

    2017-08-29

    Aug 29, 2017 ... But literature survey also reveals that there is no such studies on measurements in the skeletal muscle relaxants. Hence there is a need to measure the mass attenuation coefficient in skeletal muscle relaxants. To know the after-effects of radiation on skeletal muscle, it is important to consider the attenuation ...

  20. Tissue engineering skeletal muscle for orthopaedic applications

    Science.gov (United States)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  1. Training induced adaptation in horse skeletal muscle

    NARCIS (Netherlands)

    Dam, K.G. van

    2006-01-01

    It appears that the physiological and biochemical adaptation of skeletal muscle to training in equine species shows a lot of similarities with human and rodent physiological adaptation. On the other hand it is becoming increasingly clear that intra-cellular mechanisms of adaptation (substrate

  2. Signalling role of skeletal muscle during exercise

    NARCIS (Netherlands)

    Catoire, M.

    2014-01-01

    Abstract Upon  acute exercise skeletal muscle is immediately and heavily recruited, while other organs appear to play only a minor role during exercise. These other organs show significant changes and improvements in function, although they are not directly targeted by

  3. Cellular Players in Skeletal Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Laura Cristina Ceafalan

    2014-01-01

    Full Text Available Skeletal muscle, a tissue endowed with remarkable endogenous regeneration potential, is still under focused experimental investigation mainly due to treatment potential for muscle trauma and muscular dystrophies. Resident satellite cells with stem cell features were enthusiastically described quite a long time ago, but activation of these cells is not yet controlled by any medical interventions. However, after thorough reports of their existence, survival, activation, and differentiation there are still many questions to be answered regarding the intimate mechanism of tissue regeneration. This review delivers an up-to-date inventory of the main known key players in skeletal muscle repair, revealed by various models of tissue injuries in mechanical trauma, toxic lesions, and muscular dystrophy. A better understanding of the spatial and temporal relationships between various cell populations, with different physical or paracrine interactions and phenotype changes induced by local or systemic signalling, might lead to a more efficient approach for future therapies.

  4. Factors related to skeletal muscle mass in the frail elderly.

    Science.gov (United States)

    Sagawa, Keiichiro; Kikutani, Takeshi; Tamura, Fumiyo; Yoshida, Mitsuyoshi

    2017-01-01

    It is important for the elderly to maintain their skeletal muscle mass, which in turn helps to maintain physical functions. This study aimed to clarify factors related to skeletal muscle mass maintenance. Home-bound elderly (94 men and 216 women), at least 75 years of age, attending a day-care center in Tokyo, were enrolled in this study. Dentists specializing in dysphagia rehabilitation evaluated skeletal muscle mass, occlusal status and swallowing function. Physical function, cognitive function and nutritional status were also evaluated by interviewing caregivers. Correlations of skeletal muscle mass with various factors were determined in each gender group. Multiple regression analysis revealed that skeletal muscle mass was significantly related to nutritional status in both men and women. In men, there was a significant difference in skeletal muscle mass between those with and without occlusion of the natural teeth. Our results suggest that dental treatments and dentures would be useful for maintaining skeletal muscle mass, especially in men.

  5. Engineering vascularized skeletal muscle tissue

    NARCIS (Netherlands)

    Levenberg, Shulamit; Rouwkema, Jeroen; Macdonald, Mara; Garfein, Evan S.; Kohane, Daniel S.; Darland, Diane C.; Marini, Robert; van Blitterswijk, Clemens; Mulligan, Richard C.; D'Amore, Patricia A.; Langer, Robert

    2005-01-01

    One of the major obstacles in engineering thick, complex tissues such as muscle is the need to vascularize the tissue in vitro. Vascularization in vitro could maintain cell viability during tissue growth, induce structural organization and promote vascularization upon implantation. Here we describe

  6. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    Science.gov (United States)

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971

  7. Reactive Oxygen Species in Skeletal Muscle Signaling

    Directory of Open Access Journals (Sweden)

    Elena Barbieri

    2012-01-01

    Full Text Available Generation of reactive oxygen species (ROS is a ubiquitous phenomenon in eukaryotic cells' life. Up to the 1990s of the past century, ROS have been solely considered as toxic species resulting in oxidative stress, pathogenesis and aging. However, there is now clear evidence that ROS are not merely toxic species but also—within certain concentrations—useful signaling molecules regulating physiological processes. During intense skeletal muscle contractile activity myotubes' mitochondria generate high ROS flows: this renders skeletal muscle a tissue where ROS hold a particular relevance. According to their hormetic nature, in muscles ROS may trigger different signaling pathways leading to diverging responses, from adaptation to cell death. Whether a “positive” or “negative” response will prevail depends on many variables such as, among others, the site of ROS production, the persistence of ROS flow or target cells' antioxidant status. In this light, a specific threshold of physiological ROS concentrations above which ROS exert negative, toxic effects is hard to determine, and the concept of “physiologically compatible” levels of ROS would better fit with such a dynamic scenario. In this review these concepts will be discussed along with the most relevant signaling pathways triggered and/or affected by ROS in skeletal muscle.

  8. Skeletal muscle proteomics in livestock production.

    Science.gov (United States)

    Picard, Brigitte; Berri, Cécile; Lefaucheur, Louis; Molette, Caroline; Sayd, Thierry; Terlouw, Claudia

    2010-05-01

    Proteomics allows studying large numbers of proteins, including their post-translational modifications. Proteomics has been, and still are, used in numerous studies on skeletal muscle. In this article, we focus on its use in the study of livestock muscle development and meat quality. Changes in protein profiles during myogenesis are described in cattle, pigs and fowl using comparative analyses across different ontogenetic stages. This approach allows a better understanding of the key stages of myogenesis and helps identifying processes that are similar or divergent between species. Genetic variability of muscle properties analysed by the study of hypertrophied cattle and sheep are discussed. Biological markers of meat quality, particularly tenderness in cattle, pigs and fowl are presented, including protein modifications during meat ageing in cattle, protein markers of PSE meat in turkeys and of post-mortem muscle metabolism in pigs. Finally, we discuss the interest of proteomics as a tool to understand better biochemical mechanisms underlying the effects of stress during the pre-slaughter period on meat quality traits. In conclusion, the study of proteomics in skeletal muscles allows generating large amounts of scientific knowledge that helps to improve our understanding of myogenesis and muscle growth and to control better meat quality.

  9. Quantitative skeletal muscle ultrasound: diagnostic value in childhood neuromuscular disease.

    NARCIS (Netherlands)

    Pillen, S.; Verrips, A.; Alfen, N. van; Arts, I.M.P.; Sie, L.T.L.; Zwarts, M.J.

    2007-01-01

    In this study we investigated the diagnostic value of quantitative skeletal muscle ultrasonography in 150 consecutively referred children with symptoms suspect for a neuromuscular disorder. Muscle thickness and quantitatively determined echo intensity of four muscles and the distribution of these

  10. Characterizing microstructural changes of skeletal muscle tissues using spectral transformed Mueller matrix polarization parameters

    Science.gov (United States)

    He, Chao; He, Honghui; Chang, Jintao; Ma, Hui

    2016-03-01

    Polarization imaging techniques are recognized as potentially powerful tools to detect the structural changes of biological tissues. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information, therefore can be applied in biomedical studies. In this paper, we adopt the polarization reflectance spectral imaging to analyze the microstructural changes of hydrolyzing skeletal muscle tissues. We measure the Mueller matrix, which is a comprehensive description of the polarization properties, of the bovine skeletal muscle samples in different periods of time, and analyze its behavior using the multispectral Mueller matrix transformation (MMT) technique. The experimental results show that for bovine skeletal muscle tissues, the backscattered spectral MMT parameters have different values and variation features at different stages. We can also find the experimental results indicate that the stages of hydrolysis for bovine skeletal muscle samples can be judged by the spectral MMT parameters. The results presented in this work show that combining with the spectral technique, the MMT parameters have the potential to be used as tools for meat quality detection and monitoring.

  11. Tissue Engineered Strategies for Skeletal Muscle Injury

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression, and elevation, nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.

  12. Training induced adaptation in horse skeletal muscle

    OpenAIRE

    Dam, K.G. van

    2006-01-01

    It appears that the physiological and biochemical adaptation of skeletal muscle to training in equine species shows a lot of similarities with human and rodent physiological adaptation. On the other hand it is becoming increasingly clear that intra-cellular mechanisms of adaptation (substrate transport, enzyme activity, etc) differ considerably between species. The major drawbacks in equine training physiological research are the lack of an appropriate training model and the lack of control o...

  13. Skeletal Muscle Mitochondria and Aging: A Review

    Directory of Open Access Journals (Sweden)

    Courtney M. Peterson

    2012-01-01

    Full Text Available Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline.

  14. Effect of limb immobilization on skeletal muscle

    Science.gov (United States)

    Booth, F. W.

    1982-01-01

    Current knowledge and questions remaining concerning the effects of limb immobilization on skeletal muscle is reviewed. The most dramatic of these effects is muscle atrophy, which has been noted in cases of muscles fixed at or below their resting length. Immobilization is also accompanied by a substantial decrease in motoneuronal discharges, which results in the conversion of slow-twitch muscle to muscle with fast-twitch characteristics. Sarcolemma effects include no change or a decrease in resting membrane potential, the appearance of extrajunctional acetylcholine receptors, and no change in acetylcholinesterase activity. Evidence of changes in motoneuron after hyperpolarization characteristics suggests that the muscle inactivity is responsible for neuronal changes, rather than vice versa. The rate of protein loss from atrophying muscles is determined solely by the first-order rate constant for degradation. Various other biochemical and functional changes have been noted, including decreased insulin responsiveness and protein synthesis. The model of limb immobilization may also be useful for related studies of muscle adaptation.

  15. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    OpenAIRE

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu; Khademhosseini, Ali

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technic...

  16. Disease-Induced Skeletal Muscle Atrophy and Fatigue.

    Science.gov (United States)

    Powers, Scott K; Lynch, Gordon S; Murphy, Kate T; Reid, Michael B; Zijdewind, Inge

    2016-11-01

    Numerous health problems, including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders, often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal muscle weakness can increase the duration of hospitalization, result in exercise limitation, and contribute to a poor quality of life. Importantly, skeletal muscle atrophy is also associated with increased morbidity and mortality of patients. Therefore, improving our understanding of the mechanism(s) responsible for skeletal muscle weakness and fatigue in patients is a required first step to develop clinical protocols to prevent these skeletal muscle problems. This review will highlight the consequences and potential mechanisms responsible for skeletal muscle atrophy and fatigue in patients experiencing acute critical illness, cancer, chronic inflammatory diseases, and neurological disorders.

  17. Disease-Induced Skeletal Muscle Atrophy and Fatigue

    Science.gov (United States)

    Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge

    2016-01-01

    Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal muscle weakness can increase the duration of hospitalization, result in exercise limitation, and contribute to a poor quality of life. Importantly, skeletal muscle atrophy is also associated with increased morbidity and mortality of patients. Therefore, improving our understanding of the mechanism(s) responsible for skeletal muscle weakness and fatigue in patients is a required first step to develop clinical protocols to prevent these skeletal muscle problems. This review will highlight the consequences and potential mechanisms responsible for skeletal muscle atrophy and fatigue in patients suffering from acute critical illness, cancer, chronic inflammatory diseases, and neurological disorders. PMID:27128663

  18. Measurement of skeletal muscle collagen breakdown by microdialysis

    DEFF Research Database (Denmark)

    Miller, B F; Ellis, D; Robinson, M M

    2011-01-01

    Exercise increases the synthesis of collagen in the extracellular matrix of skeletal muscle. Breakdown of skeletal muscle collagen has not yet been determined because of technical limitations. The purpose of the present study was to use local sampling to determine skeletal muscle collagen breakdown......, healthy male subjects performed a bout of resistance exercise with one leg, followed 17–21 h later by in vivo skeletal muscle sampling by microdialysis in exercised (EX) and control (CON) legs. Microdialysis reliably predicted [OHP] in vitro (R2=0.90). Analysis with GC–MS was strongly correlated...... to traditional analysis methods (CON: slope=1.03, R2=0.896, and Pskeletal muscle...

  19. GLUT-3 expression in human skeletal muscle

    Science.gov (United States)

    Stuart, C. A.; Wen, G.; Peng, B. H.; Popov, V. L.; Hudnall, S. D.; Campbell, G. A.

    2000-01-01

    Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.

  20. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension

    Directory of Open Access Journals (Sweden)

    Gerrard Dave

    2007-04-01

    Full Text Available Abstract Background Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. Methods We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. Results We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. Conclusion These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight.

  1. Monitoring temporal microstructural variations of skeletal muscle tissues by multispectral Mueller matrix polarimetry

    Science.gov (United States)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2017-02-01

    Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.

  2. Sex hormones and skeletal muscle weakness

    DEFF Research Database (Denmark)

    Sipilä, Sarianna; Narici, Marco; Kjaer, Michael

    2013-01-01

    Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia...... and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss...... properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal...

  3. PGC-1α-mediated adaptations in skeletal muscle

    DEFF Research Database (Denmark)

    Olesen, Jesper; Kiilerich, Kristian; Pilegaard, Henriette

    2010-01-01

    Lifestyle-related diseases are rapidly increasing at least in part due to less physical activity. The health beneficial effects of regular physical activity include metabolic adaptations in skeletal muscle, which are thought to be elicited by cumulative effects of transient gene responses to each...... to be an underlying mechanism for adaptations in skeletal muscle, when exercise is repeated. The current review presents some of the key findings in PGC-1alpha-mediated regulation of metabolically related, anti-oxidant and inflammatory proteins in skeletal muscle in the basal state and in response to exercise...... training, and describes functional significance of PGC-1alpha-mediated effects in skeletal muscle. In addition, regulation of PGC-1alpha expression and activity in skeletal muscle is described. The impact of changes in PGC-1alpha expression in mouse skeletal muscle and the ability of PGC-1alpha to regulate...

  4. Inferring crossbridge properties from skeletal muscle energetics.

    Science.gov (United States)

    Barclay, C J; Woledge, R C; Curtin, N A

    2010-01-01

    Work is generated in muscle by myosin crossbridges during their interaction with the actin filament. The energy from which the work is produced is the free energy change of ATP hydrolysis and efficiency quantifies the fraction of the energy supplied that is converted into work. The purpose of this review is to compare the efficiency of frog skeletal muscle determined from measurements of work output and either heat production or chemical breakdown with the work produced per crossbridge cycle predicted on the basis of the mechanical responses of contracting muscle to rapid length perturbations. We review the literature to establish the likely maximum crossbridge efficiency for frog skeletal muscle (0.4) and, using this value, calculate the maximum work a crossbridge can perform in a single attachment to actin (33 x 10(-21) J). To see whether this amount of work is consistent with our understanding of crossbridge mechanics, we examine measurements of the force responses of frog muscle to fast length perturbations and, taking account of filament compliance, determine the crossbridge force-extension relationship and the velocity dependences of the fraction of crossbridges attached and average crossbridge strain. These data are used in combination with a Huxley-Simmons-type model of the thermodynamics of the attached crossbridge to determine whether this type of model can adequately account for the observed muscle efficiency. Although it is apparent that there are still deficiencies in our understanding of how to accurately model some aspects of ensemble crossbridge behaviour, this comparison shows that crossbridge energetics are consistent with known crossbridge properties.

  5. Skeletal muscle disorders of glycogenolysis and glycolysis.

    Science.gov (United States)

    Godfrey, Richard; Quinlivan, Ros

    2016-07-01

    Skeletal muscle disorders of glycogenolysis and glycolysis account for most of the conditions collectively termed glycogen storage diseases (GSDs). These disorders are rare (incidence 1 in 20,000-43,000 live births), and are caused by autosomal or X-linked recessive mutations that result in a specific enzyme deficiency, leading to the inability to utilize muscle glycogen as an energy substrate. McArdle disease (GSD V) is the most common of these disorders, and is caused by mutations in the gene encoding muscle glycogen phosphorylase. Symptoms of McArdle disease and most other related GSDs include exercise intolerance, muscle contracture, acute rhabdomyolysis, and risk of acute renal failure. Older patients may exhibit muscle wasting and weakness involving the paraspinal muscles and shoulder girdle. For patients with these conditions, engaging with exercise is likely to be beneficial. Diagnosis is frequently delayed owing to the rarity of the conditions and lack of access to appropriate investigations. A few randomized clinical trials have been conducted, some focusing on dietary modification, although the quality of the evidence is low and no specific recommendations can yet be made. The development of EUROMAC, an international registry for these disorders, should improve our knowledge of their natural histories and provide a platform for future clinical trials.

  6. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle.

    Science.gov (United States)

    Porter, Craig; Reidy, Paul T; Bhattarai, Nisha; Sidossis, Labros S; Rasmussen, Blake B

    2015-09-01

    Loss of mitochondrial competency is associated with several chronic illnesses. Therefore, strategies that maintain or increase mitochondrial function will likely be of benefit in numerous clinical settings. Endurance exercise has long been known to increase mitochondrial function in the skeletal muscle. Comparatively little is known regarding the effect of resistance exercise training (RET) on skeletal muscle mitochondrial respiratory function. The purpose of the current study was to determine the effect of chronic resistance training on skeletal muscle mitochondrial respiratory capacity and function. Here, we studied the effect of a 12-wk RET program on skeletal muscle mitochondrial function in 11 young healthy men. Muscle biopsies were collected before and after the 12-wk training program, and mitochondrial respiratory capacity was determined in permeabilized myofibers by high-resolution respirometry. RET increased lean body mass and quadriceps muscle strength by 4% and 15%, respectively (P training (P function of skeletal muscle mitochondria.

  7. Cardiovascular regulation by skeletal muscle reflexes in health and disease

    National Research Council Canada - National Science Library

    Murphy, Megan N; Mizuno, Masaki; Mitchell, Jere H; Smith, Scott A

    2011-01-01

    .... These neurally mediated cardiovascular adjustments to physical activity are regulated, in part, by a peripheral reflex originating in contracting skeletal muscle termed the exercise pressor reflex...

  8. Regulation of PDH, GS and insulin signalling in skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup

    The aims of the present thesis were to investigate 1) The impact of physical inactivity on insulinstimulated Akt, TBC1D4 and GS regulation in human skeletal muscle, 2) The impact of exercise training on glucose-mediated regulation of PDH and GS in skeletal muscle in elderly men, 3) The impact...... with physical inactivity in humans, and physical inactivity did not affect the ability of exercise to enhance insulinmediated skeletal muscle glucose extraction. 2) Exercise training-improved glucose handling in aged human skeletal muscle was associated with increased content of key proteins in glucose...

  9. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    Previous studies have investigated if cryopreservation is a viable approach for functional mitochondrial analysis. Different tissues have been studied, and conflicting results have been published. The aim of the present study was to investigate if mitochondria in human skeletal muscle maintain...... functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...... of oxidative phosphorylation was significantly (P cryopreserved human skeletal muscle samples. Cryopreservation impaired respiration with substrates linked to Complex I more than for Complex II (P

  10. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    Directory of Open Access Journals (Sweden)

    Einar Eftestøl

    Full Text Available Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  11. Effect of vitamin D on skeletal muscle.

    Science.gov (United States)

    Walrand, Stéphane

    2016-06-01

    Beyond its traditional biological roles on bone health, extra-skeletal effects of vitamin D are currently under extensive research. The expression of the vitamin D receptor in most tissues has also strengthened the argument for its multiple functions. Among these, the effect of vitamin D on the mass and muscle performance has long been discussed. In ancient Greece, Herodotus recommended the sun as a cure for the "weak and soft muscles" and former Olympians exposed to sunlight to improve their physical performance. In 1952, Dr Spellerberg, a sports physiologist, has conducted an extensive study on the effects of UV irradiation on the performance of elite athletes. Following the significant results of this investigation, the scientist has informed the Olympic Committee that UV irradiation had a "persuasive" effect on physical performance and motor skills. These data are consistent with many subsequent studies reporting an improvement in physical activity, speed and endurance in young subjects treated with UV or with supplements containing vitamin D. Additional observation indicates a significant effect on muscle strength, particularly in the lower limbs. Concerning the mechanisms involved, some recent fundamental studies have shown that vitamin D exerts some molecular effects within the muscle cell. Specifically, a regulatory effect of vitamin D on calcium flux, mineral homeostasis and signaling pathways controlling protein anabolism has been reported in muscle tissue. Several epidemiological studies show that low vitamin D status is always associated with a decrease in muscle mass, strength and contractile capacity in older people. Vitamin D deficiency accelerates muscle loss with age (sarcopenia), and therefore leads to a reduction in physical capacity and to an increased risk of falls and fractures. In contrast, an additional intake of vitamin D in older people significantly improves muscle function and physical performance.

  12. Osmoregulatory processes and skeletal muscle metabolism

    Science.gov (United States)

    Boschmann, Michael; Gottschalk, Simone; Adams, Frauke; Luft, Friedrich C.; Jordan, Jens

    Prolonged microgravity during space flight is associated with a decrease in blood and extracellular volume. These changes in water and electrolyte balance might activate catabolic processes which contribute finally to the loss of muscle and bone mass and strength. Recently, we found a prompt increase that energy expenditure by about 30% in both normal and overweight men and women after drinking 500 ml water. This effect is mediated by an increased sympathetic nervous system activity, obviously secondary to stimulation of osmosensitive afferent neurons in the liver, and skeletal muscle is possibly one effector organ. Therefore, we tested the hypothesis that this thermogenic response to water is accompanied by a stimulation of aerobic glucose metabolism in skeletal muscle. To this end, 16 young healthy volunteers (8 men) were studied. After an overnight fast (12h), a microdialysis probe was implanted into the right M. quadriceps femoris vastus lateralis and subsequently perfused with Ringer's solution (+50 mM ethanol). After 1h, volunteers were asked to drink 500 ml water (22° C) followed by continuing microdialysis for another 90 min. Dialysates (15 min fractions) were analyzed for [ethanol], [glucose], [lactate], [pyruvate], and [glycerol] in order to assess changes in muscle tissue perfusion (ethanol dilution technique), glycolysis and lipolysis. Blood samples were taken and heart rate (HR) and blood pressure (BP) were monitored. Neither HR and systolic and diastolic BP, nor plasma [glucose], [lactate], [insulin], and [C peptide] changed significantly after water drinking. Also, tissue perfusion and dialysate [glucose] did not change significantly. However, dialysate [lactate] increased by about 10 and 20% and dialysate [pyruvate] by about 100 and 200% in men and women, respectively. In contrast, dialysate [glycerol] decreased by about 30 and 20% in men and women, respectively. Therefore, drinking of 500 ml water stimulates aerobic glucose metabolism and inhibits

  13. Increased skeletal muscle capillarization enhances insulin sensitivity

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth

    2014-01-01

    . Skeletal muscle specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist Prazosin to the drinking water of Sprague Dawley rats (n=33) while 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-week Prazosin treatment, which ensured...... that Prazosin was cleared from the blood stream. Whole-body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]-Glucose during the plateau phase of the clamp. Whole-body...

  14. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  15. Masseter muscle thickness in different skeletal morphology: An ultrasonographic study

    Directory of Open Access Journals (Sweden)

    Rani Sushma

    2010-01-01

    Full Text Available Background: The thickness of the masseter muscle during relaxation and contraction states was measured by ultrasonography. Subjects were classified according to their sagittal skeletal relationships. The association between muscle thickness and facial morphology was studied. Context: Masseter muscle thickness influences the skeletal patterns. Aim: To measure and compare the thickness of the masseter muscle in individuals with skeletal class I occlusion and skeletal class II malocclusions and to correlate its relationship with craniofacial morphology. Settings and Design: The study was conducted in a hospital setup and was designed to study the thickness of the masseter muscle in different skeletal morphologies. Materials and Methods: Seventy two individuals between the ages of 18 and 25 years were divided into Group I, Group IIA and Group IIB according to their skeletal relationships. Masseter muscle thickness was measured by ultrasonography. Eight linear and six angular cephalometric measurements were assessed. Statistical Analysis Used: Analysis of variance and Pearson′s correlation analysis. Results: There was a statistically significant difference in muscle thickness between subjects of different skeletal patterns. Significant positive correlation between masseter muscle thickness and posterior total face height, jarabak ratio, ramus height, mandibular length and significant negative correlations with mandibular plane angle, gonial angle and PP-MP angle were observed. Conclusion: This study indicates the strong association between the masseter muscle and skeletal morphology.

  16. Endoplasmic Reticulum Stress in Skeletal Muscle Homeostasis and Disease

    OpenAIRE

    Rayavarapu, Sree; Coley, William; Nagaraju, Kanneboyina

    2012-01-01

    Our appreciation of the role of endoplasmic reticulum(ER) stress pathways in both skeletal muscle homeostasis and the progression of muscle diseases is gaining momentum. This review provides insight into ER stress mechanisms during physiologic and pathological disturbances in skeletal muscle. The role of ER stress in the response to dietary alterations and acute stressors, including its role in autoimmune and genetic muscle disorders, has been described. Recent studies identifying ER stress m...

  17. Satellite cell proliferation in adult skeletal muscle

    Science.gov (United States)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  18. Current opportunities and challenges in skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Koning, Merel; Harmsen, Martin C; van Luyn, Marja J A; Werker, Paul M N

    The purpose of this article is to give a concise review of the current state of the art in tissue engineering (TE) of skeletal muscle and the opportunities and challenges for future clinical applicability. The endogenous progenitor cells of skeletal muscle, i.e. satellite cells, show a high

  19. Regulatory factors and cell populations involved in skeletal muscle regeneration.

    NARCIS (Netherlands)

    Broek, R.W. Ten; Grefte, S.; Hoff, J.W. von den

    2010-01-01

    Skeletal muscle regeneration is a complex process, which is not yet completely understood. Satellite cells, the skeletal muscle stem cells, become activated after trauma, proliferate, and migrate to the site of injury. Depending on the severity of the myotrauma, activated satellite cells form new

  20. Mitochondrial biogenesis and angiogenesis in skeletal muscle of the elderly

    DEFF Research Database (Denmark)

    Iversen, Ninna; Krustrup, Peter; Rasmussen, Hans N

    2011-01-01

    The aim of this study was to test the hypotheses that 1) skeletal muscles of elderly subjects can adapt to a single endurance exercise bout and 2) endurance trained elderly subjects have higher expression/activity of oxidative and angiogenic proteins in skeletal muscle than untrained elderly people...

  1. Regulation of mechano growth factor in skeletal muscle and heart

    NARCIS (Netherlands)

    Ottens, M.

    2010-01-01

    The mechano growth factor (MGF) is expressed in mechanically overloaded skeletal muscle. MGF was discovered in 1996 as an alternative splice product of the IGF-1 gene. Since then, its significance has been investigated particularly in skeletal muscle, because the local expression of MGF could

  2. Skeletal muscle stem cells from animals I. Basic cell biology

    Science.gov (United States)

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  3. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    enzymes. Skeletal muscle consists of thousands of muscle fibers. These fibers can roughly be classified into type I and type II muscle fibers. The overall aim of this PhD thesis was to investigate the effect of insulin and exercise on human muscle fiber type specific metabolic signaling. The importance...

  4. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle

    National Research Council Canada - National Science Library

    Zhen Yan; Mitsuharu Okutsu; Yasir N. Akhtar; Vitor A. Lira

    2011-01-01

    .... Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial...

  5. [Research progress of scaffold materials in skeletal muscle tissue engineering].

    Science.gov (United States)

    Huang, Weiyi; Liao, Hua

    2010-11-01

    To review the current researches of scaffold materials for skeletal muscle tissue engineering, to predict the development trend of scaffold materials in skeletal muscle tissue engineering in future. The related literature on skeletal muscle tissue engineering, involving categories and properties of scaffold materials, preparative technique and biocompatibility, was summarized and analyzed. Various scaffold materials were used in skeletal muscle tissue engineering, including inorganic biomaterials, biodegradable polymers, natural biomaterial, and biomedical composites. According to different needs of the research, various scaffolds were prepared due to different biomaterials, preparative techniques, and surface modifications. The development trend and perspective of skeletal muscle tissue engineering are the use of composite materials, and the preparation of composite scaffolds and surface modification according to the specific functions of scaffolds.

  6. Compatibility of hyaluronic acid hydrogel and skeletal muscle myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei; Zhang Li; Sun Liang; Wang Chengyue [Jinzhou Central Hospital, Jinzhou 121000 (China); Fan Ming; Liu Shuhong, E-mail: Weiwang_Ly@yahoo.com.c [Institute of Basic Medical Sciences, Academy of Military Medical Science, Beijing 100850 (China)

    2009-04-15

    Compatibility of hyaluronic acid hydrogel (HAH) and skeletal muscle myoblasts has been investigated for the first time in the present paper. Skeletal muscle myoblasts were separated from skeletons of rats and incubated with a HAH-containing culture medium. Cell morphology, hydrophilicity and cell adhesion of the HAH scaffold were investigated using optical microscopy, scanning electron microscopy, Hoechest33258 fluorescent staining, the immunocytochemistry method and water adsorption rate measurement. It was found that at a proper concentration (around 0.5%) of hyaluronic acid, the hydrogel possessed good compatibility with skeletal muscle myoblasts. The hydrogel can create a three-dimensional structure for the growth of skeletal muscle myoblasts and benefit cell attachment to provide a novel scaffold material for the tissue engineering of skeletal muscle.

  7. Omega-3 Fatty Acids and Skeletal Muscle Health

    Science.gov (United States)

    Jeromson, Stewart; Gallagher, Iain J.; Galloway, Stuart D. R.; Hamilton, D. Lee

    2015-01-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  8. Omega-3 Fatty Acids and Skeletal Muscle Health.

    Science.gov (United States)

    Jeromson, Stewart; Gallagher, Iain J; Galloway, Stuart D R; Hamilton, D Lee

    2015-11-19

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.

  9. Omega-3 Fatty Acids and Skeletal Muscle Health

    Directory of Open Access Journals (Sweden)

    Stewart Jeromson

    2015-11-01

    Full Text Available Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.

  10. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...... endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle....

  11. Skeletal Muscle Insulin Resistance in Endocrine Disease

    Directory of Open Access Journals (Sweden)

    Melpomeni Peppa

    2010-01-01

    Full Text Available We summarize the existing literature data concerning the involvement of skeletal muscle (SM in whole body glucose homeostasis and the contribution of SM insulin resistance (IR to the metabolic derangements observed in several endocrine disorders, including polycystic ovary syndrome (PCOS, adrenal disorders and thyroid function abnormalities. IR in PCOS is associated with a unique postbinding defect in insulin receptor signaling in general and in SM in particular, due to a complex interaction between genetic and environmental factors. Adrenal hormone excess is also associated with disrupted insulin action in peripheral tissues, such as SM. Furthermore, both hyper- and hypothyroidism are thought to be insulin resistant states, due to insulin receptor and postreceptor defects. Further studies are definitely needed in order to unravel the underlying pathogenetic mechanisms. In summary, the principal mechanisms involved in muscle IR in the endocrine diseases reviewed herein include abnormal phosphorylation of insulin signaling proteins, altered muscle fiber composition, reduced transcapillary insulin delivery, decreased glycogen synthesis, and impaired mitochondrial oxidative metabolism.

  12. Myofibre damage in human skeletal muscle

    DEFF Research Database (Denmark)

    Crameri, R M; Aagaard, P; Qvortrup, K

    2007-01-01

    Disruption to proteins within the myofibre after a single bout of unaccustomed eccentric exercise is hypothesized to induce delayed onset of muscle soreness and to be associated with an activation of satellite cells. This has been shown in animal models using electrical stimulation but not in hum......Disruption to proteins within the myofibre after a single bout of unaccustomed eccentric exercise is hypothesized to induce delayed onset of muscle soreness and to be associated with an activation of satellite cells. This has been shown in animal models using electrical stimulation...... but not in humans using voluntary exercise. Untrained males (n=8, range 22-27 years) performed 210 maximal eccentric contractions with each leg on an isokinetic dynamometer, voluntarily (VOL) with one leg and electrically induced (ES) with the other leg. Assessments from the skeletal muscle were obtained prior......, a significant disruption of cytoskeletal proteins (desmin) and a rise of myogenic growth factors (myogenin) occurred only in ES. Intracellular disruption and destroyed Z-lines were markedly more pronounced in ES (40%) compared with VOL (10%). Likewise, the increase in satellite cell markers [neural cell...

  13. The influence of skeletal muscle on systemic aging and lifespan

    OpenAIRE

    Demontis, Fabio; Piccirillo, Rosanna; Goldberg, Alfred L.; Perrimon, Norbert

    2013-01-01

    Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age-related diseases such as metabolic syndrome, cancer, Alzheimer’s disease, and Parkinson’s disease. Here we review recent studies in mammals and Drosophila highlighting how nutrient- and stress-sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that ...

  14. Skeletal Muscle Hypertrophy and Cardiometabolic Benefits after Spinal Cord Injury

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0671 TITLE: Skeletal Muscle Hypertrophy and Cardiometabolic Benefits after Spinal Cord Injury PRINCIPAL...29 Sep 2016 4. TITLE AND SUBTITLE Spinal Cord Injury 5a. CONTRACT NUMBER Skeletal Muscle Hypertrophy and Cardiometabolic Benefits after Spinal...metabolism, increasing leg muscle size and preventing an increase in leg fat mass. 15. SUBJECT TERMS RESISTANCE TRAINING, SPINAL CORD INJURY , BODY

  15. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    Science.gov (United States)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  16. Making muscle: skeletal myogenesis in vivo and in vitro.

    Science.gov (United States)

    Chal, Jérome; Pourquié, Olivier

    2017-06-15

    Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro. © 2017. Published by The Company of Biologists Ltd.

  17. Tissue Triage and Freezing for Models of Skeletal Muscle Disease

    Science.gov (United States)

    Meng, Hui; Janssen, Paul M.L.; Grange, Robert W.; Yang, Lin; Beggs, Alan H.; Swanson, Lindsay C.; Cossette, Stacy A.; Frase, Alison; Childers, Martin K.; Granzier, Henk; Gussoni, Emanuela; Lawlor, Michael W.

    2014-01-01

    Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease. PMID:25078247

  18. Tissue triage and freezing for models of skeletal muscle disease.

    Science.gov (United States)

    Meng, Hui; Janssen, Paul M L; Grange, Robert W; Yang, Lin; Beggs, Alan H; Swanson, Lindsay C; Cossette, Stacy A; Frase, Alison; Childers, Martin K; Granzier, Henk; Gussoni, Emanuela; Lawlor, Michael W

    2014-07-15

    Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease.

  19. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-08-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing. However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  20. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-09-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing.  However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  1. A metabolic link to skeletal muscle wasting and regeneration

    Directory of Open Access Journals (Sweden)

    René eKoopman

    2014-02-01

    Full Text Available Due to its essential role in movement, insulating the internal organs, generating heat to maintain core body temperature, and acting as a major energy storage depot, any impairment to skeletal muscle structure and function may lead to an increase in both morbidity and mortality. In the context of skeletal muscle, altered metabolism is directly associated with numerous pathologies and disorders, including diabetes, and obesity, while many skeletal muscle pathologies have secondary changes in metabolism, including cancer cachexia, sarcopenia and the muscular dystrophies. Furthermore, the importance of cellular metabolism in the regulation of skeletal muscle stem cells is beginning to receive significant attention. Thus, it is clear that skeletal muscle metabolism is intricately linked to the regulation of skeletal muscle mass and regeneration. The aim of this review is to discuss some of the recent findings linking a change in metabolism to changes in skeletal muscle mass, as well as describing some of the recent studies in developmental, cancer and stem-cell biology that have identified a role for cellular metabolism in the regulation of stem cell function, a process termed ‘metabolic reprogramming’.

  2. Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength

    Directory of Open Access Journals (Sweden)

    Anabelle S. Cornachione

    2014-07-01

    Full Text Available Protein arginylation is a posttranslational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 deletion driven by the skeletal muscle-specific creatine kinase (Ckmm promoter. Ckmm-Ate1 mice were viable and outwardly normal; however, their skeletal muscle strength was significantly reduced in comparison to controls. Mass spectrometry of isolated skeletal myofibrils showed a limited set of proteins, including myosin heavy chain, arginylated on specific sites. Atomic force microscopy measurements of contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of myosin filaments, could be fully rescued by rearginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in muscle and exerts a direct effect on muscle strength through arginylation of myosin.

  3. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding/fasting and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regards to protein turnover......, there is now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated...... downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)-calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work...

  4. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann

    2012-01-01

    During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or the extraluminal side of the blood vessels. A number...... that this remaining hyperemia may be explained by cAMP and cGMP independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow...

  5. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...... and strongly stimulate both MPC differentiation and MPC fusion. It thus appears, in humans, that fibroblasts exert a strong positive regulatory influence on MPC activity, in line with observations during in vivo skeletal muscle regeneration....

  6. Coordination of metabolic plasticity in skeletal muscle.

    Science.gov (United States)

    Hood, David A; Irrcher, Isabella; Ljubicic, Vladimir; Joseph, Anna-Maria

    2006-06-01

    Skeletal muscle is a highly malleable tissue, capable of pronounced metabolic and morphological adaptations in response to contractile activity (i.e. exercise). Each bout of contractile activity results in a coordinated alteration in the expression of a variety of nuclear DNA and mitochondrial DNA (mtDNA) gene products, leading to phenotypic adaptations. This results in an increase in muscle mitochondrial volume and changes in organelle composition, referred to as mitochondrial biogenesis. The functional consequence of this biogenesis is an improved resistance to fatigue. Signals initiated by the exercise bout involve changes in intracellular Ca2+ as well as alterations in energy status (i.e. ATP/ADP ratio) and the consequent activation of downstream kinases such as AMP kinase and Ca2+-calmodulin-activated kinases. These kinases activate transcription factors that bind DNA to affect the transcription of genes, the most evident manifestation of which occurs during the post-exercise recovery period when energy metabolism is directed toward anabolism, rather than contractile activity. An important protein that is affected by exercise is the transcriptional coactivator PGC-1alpha, which cooperates with multiple transcription factors to induce the expression of nuclear genes encoding mitochondrial proteins. Once translated in the cytosol, these mitochondrially destined proteins are imported into the mitochondrial outer membrane, inner membrane or matrix space via specific import machinery transport components. Contractile activity affects the expression of the import machinery, as well as the kinetics of import, thus facilitating the entry of newly synthesized proteins into the expanding organelle. An important set of proteins that are imported are the mtDNA transcription factors, which influence the expression and replication of mtDNA. While mtDNA contributes only 13 proteins to the synthesis of the organelle, these proteins are vital for the proper assembly of multi

  7. Peripheral endocannabinoids regulate skeletal muscle development and maintenance

    Directory of Open Access Journals (Sweden)

    Dongjiao Zhao

    2010-12-01

    Full Text Available As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the peripheral endocannabinoid system in skeletal muscle development and maintenance. Cultures of C2C12 cells, primary satellite cells and mouse skeletal muscle single fibers were used as model systems for our studies. We found an increase in cannabinoid receptor type 1 (CB1 mRNA and endocannabinoid synthetic enzyme mRNA skeletal muscle cells during differentiation. We also found that activation of CB1 inhibited myoblast differentiation, expanded the number of satellite cells, and stimulated the fast-muscle oxidative phenotype. Our findings contribute to understanding of the role of the endocannabinoid system in skeletal muscle metabolism and muscle oxygen consumption, and also help to explain the effects of the peripheral endocannabinoid system on whole-body energy balance.

  8. Lifting the nebula: novel insights into skeletal muscle contractility.

    Science.gov (United States)

    Ottenheijm, Coen A C; Granzier, Henk

    2010-10-01

    Nebulin is a giant protein and a constituent of the skeletal muscle sarcomere. The name of this protein refers to its unknown (i.e., nebulous) function. However, recent rapid advances reveal that nebulin plays important roles in the regulation of muscle contraction. When these functions of nebulin are compromised, muscle weakness ensues, as is the case in patients with nemaline myopathy.

  9. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  10. Glucose deprivation attenuates sortilin levels in skeletal muscle cells.

    Science.gov (United States)

    Ariga, Miyako; Yoneyama, Yosuke; Fukushima, Toshiaki; Ishiuchi, Yuri; Ishii, Takayuki; Sato, Hitoshi; Hakuno, Fumihiko; Nedachi, Taku; Takahashi, Shin-Ichiro

    2017-03-31

    In skeletal muscle, sortilin plays a predominant role in the sorting of glucose transporter 4 (Glut4), thereby controlling glucose uptake. Moreover, our previous study suggested that the sortilin expression levels are also implicated in myogenesis. Despite the importance of sortilin in skeletal muscle, however, the regulation of sortilin expression has not been completely understood. In the present study, we analyzed if the sortilin expression is regulated by glucose in C2C12 myocytes and rat skeletal muscles in vivo. Sortilin protein expression was elevated upon C2C12 cell differentiation and was further enhanced in the presence of a high concentration of glucose. The gene expression and protein degradation of sortilin were not affected by glucose. On the other hand, rapamycin partially reduced sortilin induction by a high concentration of glucose, which suggested that sortilin translation could be regulated by glucose, at least in part. We also examined if the sortilin regulation by glucose was also observed in skeletal muscles that were obtained from fed or fasted rats. Sortilin expression in both gastrocnemius and extensor digitorum longus (EDL) muscle was significantly decreased by 17-18h of starvation. On the other hand, pathological levels of high blood glucose did not alter the sortilin expression in rat skeletal muscle. Overall, the present study suggests that sortilin protein levels are reduced under hypoglycemic conditions by post-transcriptional control in skeletal muscles.

  11. Skeletal Muscle Cell Induction from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yusaku Kodaka

    2017-01-01

    Full Text Available Embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD. Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.

  12. Turnover of carbon, nitrogen, and sulfur in bovine longissimus dorsi and psoas major muscles: Implications for isotopic authentication of meat.

    Science.gov (United States)

    Bahar, B; Moloney, A P; Monahan, F J; Harrison, S M; Zazzo, A; Scrimgeour, C M; Begley, I S; Schmidt, O

    2009-03-01

    Stable isotope ratio analysis of light elements (including C, N, and S) is a powerful tool for inferring the production and geographic origins of animals. The objectives of this research were to quantify experimentally the isotopic turnover of C, N, and S in bovine skeletal muscle (LM and psoas major) and to assess the implications of the turnover for meat authentication. The diets of groups (n = 10 each) of beef cattle were switched from a control diet containing barley and unlabelled urea to an experimental diet containing maize, (15)N-labeled urea, and seaweed for periods of up to 168 d preslaughter. The feeding of the experimental diet was clearly reflected by the delta(13)C, delta(15)N, and delta(34)S values of the LM and psoas major muscles, but isotopic equilibrium was not reached in either muscle for C, N, or S after 168 d of feeding the experimental diet. The slow turnover in skeletal muscle was reflected by the C and N half-lives of 151 and 157 d for LM and 134 and 145 d for psoas major, respectively, and by an S half-life of 219 d in LM. It is concluded that the turnover of light elements (C, N, and S) in bovine skeletal muscles is a slow process; therefore, skeletal muscles contain isotopic information on dietary inputs integrated over a long period of time (months to years).

  13. An In Vitro Model of Skeletal Muscle Volume Regulation

    OpenAIRE

    Anna Wibberley; Staunton, Caroline A; Feetham, Claire H.; Vereninov, Alexey A.; Richard Barrett-Jolley

    2015-01-01

    Introduction Hypertonic media causes cells to shrink due to water loss through aquaporin channels. After acute shrinkage, cells either regulate their volume or, alternatively, undergo a number of metabolic changes which ultimately lead to cell death. In many cell types, hypertonic shrinkage is followed by apoptosis. Due to the complex 3D morphology of skeletal muscle and the difficulty in obtaining isolated human tissue, we have begun skeletal muscle volume regulation studies using the human ...

  14. The effects of obesity on skeletal muscle regeneration

    Directory of Open Access Journals (Sweden)

    Dmitry eAkhmedov

    2013-12-01

    Full Text Available Obesity and metabolic disorders such as type 2 diabetes mellitus are accompanied by increased lipid deposition in adipose and non-adipose tissues including liver, pancreas, heart and skeletal muscle. Recent publications report impaired regenerative capacity of skeletal muscle following injury in obese mice. Although muscle regeneration has not been thoroughly studied in obese and type 2 diabetic humans and mechanisms leading to decreased muscle regeneration in obesity remain elusive, the initial findings point to the possibility that muscle satellite cell function is compromised under conditions of lipid overload. Elevated toxic lipid metabolites and increased proinflammatory cytokines as well as insulin and leptin resistance that occur in obese animals may contribute to decreased regenerative capacity of skeletal muscle. In addition, obesity-associated alterations in the metabolic state of skeletal muscle fibers and satellite cells may directly impair the potential for satellite cell-mediated repair. Here we discuss recent studies that expand our understanding of how obesity negatively impacts skeletal muscle maintenance and regeneration.

  15. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering.

    Science.gov (United States)

    Jana, Soumen; Levengood, Sheeny K Lan; Zhang, Miqin

    2016-12-01

    Repair of damaged skeletal-muscle tissue is limited by the regenerative capacity of the native tissue. Current clinical approaches are not optimal for the treatment of large volumetric skeletal-muscle loss. As an alternative, tissue engineering represents a promising approach for the functional restoration of damaged muscle tissue. A typical tissue-engineering process involves the design and fabrication of a scaffold that closely mimics the native skeletal-muscle extracellular matrix (ECM), allowing organization of cells into a physiologically relevant 3D architecture. In particular, anisotropic materials that mimic the morphology of the native skeletal-muscle ECM, can be fabricated using various biocompatible materials to guide cell alignment, elongation, proliferation, and differentiation into myotubes. Here, an overview of fundamental concepts associated with muscle-tissue engineering and the current status of muscle-tissue-engineering approaches is provided. Recent advances in the development of anisotropic scaffolds with micro- or nanoscale features are reviewed, and how scaffold topographical, mechanical, and biochemical cues correlate to observed cellular function and phenotype development is examined. Finally, some recent developments in both the design and utility of anisotropic materials in skeletal-muscle-tissue engineering are highlighted, along with their potential impact on future research and clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation......, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...

  17. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques

    Directory of Open Access Journals (Sweden)

    Ohlendieck Kay

    2011-02-01

    Full Text Available Abstract Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.

  18. Frailty and skeletal muscle in older adults with cancer.

    Science.gov (United States)

    Williams, Grant R; Deal, Allison M; Muss, Hyman B; Weinberg, Marc S; Sanoff, Hanna K; Guerard, Emily J; Nyrop, Kirsten A; Pergolotti, Mackenzi; Shachar, Shlomit Strulov

    2017-08-24

    Computerized tomography (CT) imaging is routine in oncologic care and can be used to measure muscle quantity and composition that may improve prognostic assessment of older patients. This study examines the association of single-slice CT-assessed muscle measurements with a frailty index in older adults with cancer. Using the Carolina Senior Registry, we identified patients with CT imaging within 60days ± of geriatric assessment (GA). A 36-item Carolina Frailty Index was calculated. Cross-sectional skeletal muscle area (SMA) and Skeletal Muscle Density (SMD) were analyzed from CT scan L3 lumbar segments. SMA and patient height (m(2)) were used to calculate skeletal muscle index (SMI). Skeletal Muscle Gauge (SMG) was calculated by multiplying SMI×SMD. Of the 162 patients, mean age 73, 53% were robust, 27% pre-frail, and 21% frail. Significant differences were found between robust and frail patients for SMD (29.4 vs 24.1 HU, pfrailty increased by 20% (PR=1.20 [1.09, 1.32]) while the prevalence of frailty did not differ based on SMI. Muscle mass (measured as SMI) was poorly associated with a GA-based frailty index. Muscle density, which reflects muscle lipid content, was more associated with frailty. Although frailty and loss of muscle mass are both age-related conditions that are predictive of adverse outcomes, our results suggest they are separate entities. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques

    LENUS (Irish Health Repository)

    Ohlendieck, Kay

    2011-02-01

    Abstract Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.

  20. Exercise and obesity-induced insulin resistance in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Hyo-Bum Kwak

    2013-12-01

    Full Text Available The skeletal muscle in our body is a major site for bioenergetics and metabolism during exercise. Carbohydrates and fats are the primary nutrients that provide the necessary energy required to maintain cellular activities during exercise. The metabolic responses to exercise in glucose and lipid regulation depend on the intensity and duration of exercise. Because of the increasing prevalence of obesity, recent studies have focused on the cellular and molecular mechanisms of obesity-induced insulin resistance in skeletal muscle. Accumulation of intramyocellular lipid may lead to insulin resistance in skeletal muscle. In addition, lipid intermediates (e.g., fatty acyl-coenzyme A, diacylglycerol, and ceramide impair insulin signaling in skeletal muscle. Recently, emerging evidence linking obesity-induced insulin resistance to excessive lipid oxidation, mitochondrial overload, and mitochondrial oxidative stress have been provided with mitochondrial function. This review will provide a brief comprehensive summary on exercise and skeletal muscle metabolism, and discuss the potential mechanisms of obesity-induced insulin resistance in skeletal muscle.

  1. The Impact of Shiftwork on Skeletal Muscle Health

    Directory of Open Access Journals (Sweden)

    Brad Aisbett

    2017-03-01

    Full Text Available (1 Background: About one in four workers undertake shift rosters that fall outside the traditional 7 a.m.–6 p.m. scheduling. Shiftwork alters workers’ exposure to natural and artificial light, sleep patterns, and feeding patterns. When compared to the rest of the working population, shiftworkers are at a greater risk of developing metabolic impairments over time. One fundamental component of metabolic health is skeletal muscle, the largest organ in the body. However, cause-and-effect relationships between shiftwork and skeletal muscle health have not been established; (2 Methods: A critical review of the literature was completed using online databases and reference lists; (3 Results: We propose a conceptual model drawing relationships between typical shiftwork consequences; altered light exposure, sleep patterns, and food and beverage consumption, and drivers of skeletal muscle health—protein intake, resistance training, and hormone release. At present, there is no study investigating the direct effect of shiftwork on skeletal muscle health. Instead, research findings showing that acute consequences of shiftwork negatively influence skeletal muscle homeostasis support the validity of our model; (4 Conclusion: Further research is required to test the potential relationships identified in our review, particularly in shiftwork populations. Part of this testing could include skeletal muscle specific interventions such as targeted protein intake and/or resistance-training.

  2. The Impact of Shiftwork on Skeletal Muscle Health.

    Science.gov (United States)

    Aisbett, Brad; Condo, Dominique; Zacharewicz, Evelyn; Lamon, Séverine

    2017-03-08

    (1) Background: About one in four workers undertake shift rosters that fall outside the traditional 7 a.m.-6 p.m. scheduling. Shiftwork alters workers' exposure to natural and artificial light, sleep patterns, and feeding patterns. When compared to the rest of the working population, shiftworkers are at a greater risk of developing metabolic impairments over time. One fundamental component of metabolic health is skeletal muscle, the largest organ in the body. However, cause-and-effect relationships between shiftwork and skeletal muscle health have not been established; (2) Methods: A critical review of the literature was completed using online databases and reference lists; (3) Results: We propose a conceptual model drawing relationships between typical shiftwork consequences; altered light exposure, sleep patterns, and food and beverage consumption, and drivers of skeletal muscle health-protein intake, resistance training, and hormone release. At present, there is no study investigating the direct effect of shiftwork on skeletal muscle health. Instead, research findings showing that acute consequences of shiftwork negatively influence skeletal muscle homeostasis support the validity of our model; (4) Conclusion: Further research is required to test the potential relationships identified in our review, particularly in shiftwork populations. Part of this testing could include skeletal muscle specific interventions such as targeted protein intake and/or resistance-training.

  3. Costameric proteins in human skeletal muscle during muscular inactivity.

    Science.gov (United States)

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Santoro, Giuseppe; Arco, Alba; Rizzo, Giuseppina; Bramanti, Placido; Rinaldi, Carmen; Sidoti, Antonina; Amato, Aldo; Favaloro, Angelo

    2008-09-01

    Costameres are regions that are associated with the sarcolemma of skeletal muscle fibres and comprise proteins of the dystrophin-glycoprotein complex and vinculin-talin-integrin system. Costameres play both a mechanical and a signalling role, transmitting force from the contractile apparatus to the extracellular matrix in order to stabilize skeletal muscle fibres during contraction and relaxation. Recently, it was shown that bidirectional signalling occurs between sarcoglycans and integrins, with muscle agrin potentially interacting with both types of protein to enable signal transmission. Although numerous studies have been carried out on skeletal muscle diseases, such as Duchenne muscular dystrophy, recessive autosomal muscular dystrophies and other skeletal myopathies, insufficient data exist on the relationship between costameres and the pathology of the second motor nerve and between costameric proteins and muscle agrin in other conditions in which skeletal muscle atrophy occurs. Previously, we carried out a preliminary study on skeletal muscle from patients with sensitive-motor polyneuropathy, in which we analysed the distribution of sarcoglycans, integrins and agrin by immunostaining only. In the present study, we have examined the skeletal muscle fibres of ten patients with sensitive-motor polyneuropathy. We used immunofluorescence and reverse transcriptase PCR to examine the distribution of vinculin, talin and dystrophin, in addition to that of those proteins previously studied. Our aim was to characterize in greater detail the distribution and expression of costameric proteins and muscle agrin during this disease. In addition, we used transmission electron microscopy to evaluate the structural damage of the muscle fibres. The results showed that immunostaining of alpha 7B-integrin, beta 1D-integrin and muscle agrin appeared to be severely reduced, or almost absent, in the muscle fibres of the diseased patients, whereas staining of alpha 7A

  4. Growth factor-dependent and independent regulation of skeletal muscle mass - Is IGF-1 necessary for skeletal muscle hypertrophy?

    National Research Council Canada - National Science Library

    Miyazaki, Mitsunori

    2013-01-01

    .... IGF-1 has been indicated as a very effective anabolic agent, and thus considered a critical regulator of skeletal muscle hypertrophy in response to increased workload such as resistance exercise...

  5. Skeletal muscle degeneration and regeneration in mice and flies.

    Science.gov (United States)

    Rai, Mamta; Nongthomba, Upendra; Grounds, Miranda D

    2014-01-01

    Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models. © 2014 Elsevier Inc. All rights reserved.

  6. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.

    Science.gov (United States)

    Musarò, Antonio; Carosio, Silvia

    2017-01-01

    Skeletal muscle tissue is characterized by a population of quiescent mononucleated myoblasts, localized between the basal lamina and sarcolemma of myofibers, known as satellite cells. Satellite cells play a pivotal role in muscle homeostasis and are the major source of myogenic precursors in mammalian muscle regeneration.This chapter describes protocols for isolation and culturing satellite cells isolated from mouse skeletal muscles. The classical procedure, which will be discussed extensively in this chapter, involves the enzymatic dissociation of skeletal muscles, while the alternative method involves isolation of satellite cells from isolated myofibers in which the satellite cells remain in their in situ position underneath the myofiber basal lamina.In particular, we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction and the culture conditions that optimize proliferation and myotube formation of mouse satellite cells.

  7. The Mitochondrial Calcium Uniporter controls skeletal muscle trophism in vivo

    Science.gov (United States)

    Mammucari, Cristina; Gherardi, Gaia; Zamparo, Ilaria; Raffaello, Anna; Boncompagni, Simona; Chemello, Francesco; Cagnin, Stefano; Braga, Alessandra; Zanin, Sofia; Pallafacchina, Giorgia; Zentilin, Lorena; Sandri, Marco; De Stefani, Diego; Protasi, Feliciano; Lanfranchi, Gerolamo; Rizzuto, Rosario

    2015-01-01

    Summary Muscle atrophy contributes to the poor prognosis of many pathophysiological conditions, but pharmacological therapies are still limited. Muscle activity leads to major swings in mitochondrial [Ca2+] which control aerobic metabolism, cell death and survival pathways. We have investigated in vivo the effects of mitochondrial Ca2+ homeostasis in skeletal muscle function and trophism, by overexpressing or silencing the Mitochondrial Calcium Uniporter (MCU). The results demonstrate that both in developing and in adult muscles MCU-dependent mitochondrial Ca2+ uptake has a marked trophic effect that does not depend on aerobic control, but impinges on two major hypertrophic pathways of skeletal muscle, PGC-1α4 and IGF1-AKT/PKB. In addition, MCU overexpression protects from denervation-induced atrophy. These data reveal a novel Ca2+-dependent organelle-to-nucleus signaling route, which links mitochondrial function to the control of muscle mass and may represent a possible pharmacological target in conditions of muscle loss. PMID:25732818

  8. Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness

    NARCIS (Netherlands)

    Hangelbroek, R.W.J.; Fazelzadeh, P.; Tieland, C.A.B.; Boekschoten, M.V.; Hooiveld, G.J.E.J.; Duynhoven, van J.P.M.; Timmons, James; Verdijk, L.; Groot, de C.P.G.M.; Loon, van L.J.C.; Müller, M.R.

    2016-01-01

    Background
    The skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre-)frail older adults. Additionally, we examine the effect of

  9. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    Science.gov (United States)

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  10. Biomimetic Scaffolds for Regeneration of Volumetric Muscle Loss in Skeletal Muscle Injuries

    Science.gov (United States)

    Grasman, Jonathan M.; Zayas, Michelle J.; Page, Ray; Pins, George D.

    2015-01-01

    Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. PMID:26219862

  11. Nutritional interventions to preserve skeletal muscle mass

    NARCIS (Netherlands)

    Backx, Evelien M.P.

    2016-01-01

    Muscle mass is the main predictor for muscle strength and physical function. The amount of muscle mass can decline rapidly during periods of reduced physical activity or during periods of energy intake restriction. For athletes, it is important to maintain muscle mass, since the loss of muscle is

  12. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  13. Three-dimensional ultrasound strain imaging of skeletal muscles

    NARCIS (Netherlands)

    Gijsbertse, K.; Sprengers, A. M. J.; Nillesen, M. M.; Hansen, Hendrik H.G.; Lopata, R.G.P.; Verdonschot, N.; de Korte, C. L.

    2016-01-01

    In this study, a multi-dimensional strain estimation method is presented to assess local relative deformation in three orthogonal directions in 3D space of skeletal muscles during voluntary contractions. A rigid translation and compressive deformation of a block phantom, that mimics muscle

  14. Ultrastructure of skeletal muscle capillaries under conditions of space mission.

    Science.gov (United States)

    Volodina, A V; Pozdnyakov, O M

    2006-06-01

    Capillaries of the rat forepaw skeletal muscles were examined on day 14 of space mission and on days 1 and 14 after landing. Ultrastructural studies revealed apoptosis caused by muscle fiber atrophy and necrobiotic changes eventuating in coagulation or monocellular necrosis of endothelial cells. Formation of capillaries was detected, which can be regarded as an adaptive reaction to injuries caused by space mission factors.

  15. Skeletal muscle lipid metabolism in exercise and insulin resistance

    DEFF Research Database (Denmark)

    Kiens, Bente

    2006-01-01

    Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids...... of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed....

  16. Skeletal muscle deiodinase type 2 regulation during illness in mice

    NARCIS (Netherlands)

    Kwakkel, J.; van Beeren, H. C.; Ackermans, M. T.; Platvoet-ter Schiphorst, M. C.; Fliers, E.; Wiersinga, W. M.; Boelen, A.

    2009-01-01

    We have previously shown that skeletal muscle deiodinase type 2 (D2) mRNA (listed as Dio2 in MGI Database) is up-regulated in an animal model of acute illness. However, human Studies on the expression Of muscle D2 during illness report conflicting data. Therefore, we evaluated the expression of

  17. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  18. Dystrophin muscle enhancer 1 is implicated in the activation of non-muscle isoforms in the skeletal muscle of patients with X-linked dilated cardiomyopathy

    NARCIS (Netherlands)

    Bastianutto, C.; Bestard, J. A.; Lahnakoski, K.; Broere, D.; de Visser, M.; Zaccolo, M.; Pozzan, T.; Ferlini, A.; Muntoni, F.; Patarnello, T.; Klamut, H. J.

    2001-01-01

    X-linked dilated cardiomyopathy (XLDC) is a dystrophinopathy characterized by severe cardiomyopathy with no skeletal muscle involvement. Several XLDC patients have been described with mutations that abolish dystrophin muscle (M) isoform expression. The absence of skeletal muscle degeneration

  19. Autophagy in Skeletal Muscle Homeostasis and in Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2012-07-01

    Full Text Available Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis of skeletal muscles during physiological situations and in response to stress. Defective as well as excessive autophagy is harmful for muscle health and has a pathogenic role in several forms of muscle diseases. This review will focus on the role of autophagy in muscle homeostasis and diseases.

  20. Mechanically induced alterations in cultured skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J.

    1991-01-01

    Model systems are available for mechanically stimulating cultured skeletal muscle cells by passive tensile forces which simulate those found in vivo. When applied to embryonic muscle cells in vitro these forces induce tissue organogenesis, metabolic adaptations, and muscle cell growth. The mechanical stimulation of muscle cell growth correlates with stretch-induced increases in the efflux of prostaglandins PGE2 and PGF2(alpha) in a time and frequency dependent manner. These prostaglandins act as mechanical 'second messengers' regulating skeletal muscle protein turnover rates. Since they also effect bone remodelling in response to tissue loading and unloading, secreted prostaglandins may serve as paracrine growth factors, coordinating the growth rates of muscle and bone in response to external mechanical forces. Cell culture model systems will supplement other models in understanding mechanical transduction processes at the molecular level.

  1. High skeletal muscle adenylate cyclase in malignant hyperthermia.

    OpenAIRE

    Willner, J H; Cerri, C G; Wood, D S

    1981-01-01

    Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explai...

  2. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Science.gov (United States)

    Porzionato, Andrea; Sfriso, Maria Martina; Pontini, Alex; Macchi, Veronica; Petrelli, Lucia; Pavan, Piero G.; Natali, Arturo N.; Bassetto, Franco; Vindigni, Vincenzo; De Caro, Raffaele

    2015-01-01

    Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits) and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation. PMID:26140375

  3. Functional classification of skeletal muscle networks. I. Normal physiology.

    Science.gov (United States)

    Wang, Yu; Winters, Jack; Subramaniam, Shankar

    2012-12-15

    Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca(2+) fluxes to bind Ca(2+) to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling.

  4. Changes in skeletal muscle gene expression following clenbuterol administration

    Directory of Open Access Journals (Sweden)

    McIntyre Lauren M

    2006-12-01

    Full Text Available Abstract Background Beta-adrenergic receptor agonists (BA induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P P Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the hypertrophic effect of BA on skeletal muscle.

  5. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  6. Muscle size explains low passive skeletal muscle force in heart failure patients

    OpenAIRE

    Panizzolo, FA; Maiorana, AJ; Naylor, LH; Dembo, LG; Lloyd, DG; Green, DJ; Rubenson, J

    2016-01-01

    BACKGROUND: Alterations in skeletal muscle function and architecture have been linked to the compromised exercise capacity characterizing chronic heart failure (CHF). However, how passive skeletal muscle force is affected in CHF is not clear. Understanding passive force characteristics in CHF can help further elucidate the extent to which altered contractile properties and/or architecture might affect muscle and locomotor function. Therefore, the aim of this study was to investigate passive f...

  7. Force Transmission between Synergistic Skeletal Muscles through Connective Tissue Linkages

    Directory of Open Access Journals (Sweden)

    Huub Maas

    2010-01-01

    Full Text Available The classic view of skeletal muscle is that force is generated within its muscle fibers and then directly transmitted in-series, usually via tendon, onto the skeleton. In contrast, recent results suggest that muscles are mechanically connected to surrounding structures and cannot be considered as independent actuators. This article will review experiments on mechanical interactions between muscles mediated by such epimuscular myofascial force transmission in physiological and pathological muscle conditions. In a reduced preparation, involving supraphysiological muscle conditions, it is shown that connective tissues surrounding muscles are capable of transmitting substantial force. In more physiologically relevant conditions of intact muscles, however, it appears that the role of this myofascial pathway is small. In addition, it is hypothesized that connective tissues can serve as a safety net for traumatic events in muscle or tendon. Future studies are needed to investigate the importance of intermuscular force transmission during movement in health and disease.

  8. Circadian clock regulation of skeletal muscle growth and repair.

    Science.gov (United States)

    Chatterjee, Somik; Ma, Ke

    2016-01-01

    Accumulating evidence indicates that the circadian clock, a transcriptional/translational feedback circuit that generates ~24-hour oscillations in behavior and physiology, is a key temporal regulatory mechanism involved in many important aspects of muscle physiology. Given the clock as an evolutionarily-conserved time-keeping mechanism that synchronizes internal physiology to environmental cues, locomotor activities initiated by skeletal muscle enable entrainment to the light-dark cycles on earth, thus ensuring organismal survival and fitness. Despite the current understanding of the role of molecular clock in preventing age-related sarcopenia, investigations into the underlying molecular pathways that transmit clock signals to the maintenance of skeletal muscle growth and function are only emerging. In the current review, the importance of the muscle clock in maintaining muscle mass during development, repair and aging, together with its contribution to muscle metabolism, will be discussed. Based on our current understandings of how tissue-intrinsic muscle clock functions in the key aspects muscle physiology, interventions targeting the myogenic-modulatory activities of the clock circuit may offer new avenues for prevention and treatment of muscular diseases. Studies of mechanisms underlying circadian clock function and regulation in skeletal muscle warrant continued efforts.

  9. File list: NoD.Myo.10.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.10.AllAg.Muscle,_Skeletal mm9 No description Muscle Muscle, Skeletal ERX161...919,ERX016334,ERX016328,ERX016330,ERX161925 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.10.AllAg.Muscle,_Skeletal.bed ...

  10. File list: His.Myo.10.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.10.AllAg.Muscle,_Skeletal mm9 Histone Muscle Muscle, Skeletal SRX286493,SRX...286492,SRX286496,SRX286488,SRX286489,SRX286497,SRX286490,SRX286494 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.10.AllAg.Muscle,_Skeletal.bed ...

  11. File list: InP.Myo.50.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.50.AllAg.Muscle,_Skeletal mm9 Input control Muscle Muscle, Skeletal SRX0291...49,SRX029150,SRX286495,SRX286498,SRX286491 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.50.AllAg.Muscle,_Skeletal.bed ...

  12. File list: Oth.Myo.10.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.10.AllAg.Muscle,_Skeletal mm9 TFs and others Muscle Muscle, Skeletal SRX029...146,SRX029145 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.10.AllAg.Muscle,_Skeletal.bed ...

  13. File list: His.Myo.20.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.20.AllAg.Muscle,_Skeletal mm9 Histone Muscle Muscle, Skeletal SRX286492,SRX...286488,SRX286496,SRX286493,SRX286489,SRX286490,SRX286497,SRX286494 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.20.AllAg.Muscle,_Skeletal.bed ...

  14. File list: DNS.Myo.10.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.10.AllAg.Muscle,_Skeletal mm9 DNase-seq Muscle Muscle, Skeletal SRX191047 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.10.AllAg.Muscle,_Skeletal.bed ...

  15. File list: His.Myo.05.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.05.AllAg.Muscle,_Skeletal mm9 Histone Muscle Muscle, Skeletal SRX286493,SRX...286488,SRX286496,SRX286492,SRX286490,SRX286494,SRX286489,SRX286497 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.05.AllAg.Muscle,_Skeletal.bed ...

  16. File list: Oth.Myo.05.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.05.AllAg.Muscle,_Skeletal mm9 TFs and others Muscle Muscle, Skeletal SRX029...146,SRX029145 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.05.AllAg.Muscle,_Skeletal.bed ...

  17. File list: NoD.Myo.20.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.20.AllAg.Muscle,_Skeletal mm9 No description Muscle Muscle, Skeletal ERX161...919,ERX016334,ERX016328,ERX016330,ERX161925 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.20.AllAg.Muscle,_Skeletal.bed ...

  18. File list: InP.Myo.10.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.10.AllAg.Muscle,_Skeletal mm9 Input control Muscle Muscle, Skeletal SRX0291...49,SRX029150,SRX286495,SRX286498,SRX286491 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.10.AllAg.Muscle,_Skeletal.bed ...

  19. File list: NoD.Myo.05.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.05.AllAg.Muscle,_Skeletal mm9 No description Muscle Muscle, Skeletal ERX161...919,ERX016334,ERX016330,ERX016328,ERX161925 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.05.AllAg.Muscle,_Skeletal.bed ...

  20. File list: InP.Myo.20.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.20.AllAg.Muscle,_Skeletal mm9 Input control Muscle Muscle, Skeletal SRX0291...49,SRX029150,SRX286495,SRX286498,SRX286491 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.20.AllAg.Muscle,_Skeletal.bed ...

  1. File list: DNS.Myo.50.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.50.AllAg.Muscle,_Skeletal mm9 DNase-seq Muscle Muscle, Skeletal SRX191047 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.50.AllAg.Muscle,_Skeletal.bed ...

  2. File list: His.Myo.50.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.50.AllAg.Muscle,_Skeletal mm9 Histone Muscle Muscle, Skeletal SRX286492,SRX...286496,SRX286488,SRX286493,SRX286497,SRX286489,SRX286490,SRX286494 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.50.AllAg.Muscle,_Skeletal.bed ...

  3. File list: Oth.Myo.50.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.50.AllAg.Muscle,_Skeletal mm9 TFs and others Muscle Muscle, Skeletal SRX029...146,SRX029145 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.50.AllAg.Muscle,_Skeletal.bed ...

  4. File list: DNS.Myo.05.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.05.AllAg.Muscle,_Skeletal mm9 DNase-seq Muscle Muscle, Skeletal SRX191047 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.05.AllAg.Muscle,_Skeletal.bed ...

  5. File list: NoD.Myo.50.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.50.AllAg.Muscle,_Skeletal mm9 No description Muscle Muscle, Skeletal ERX161...919,ERX016334,ERX016328,ERX016330,ERX161925 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.50.AllAg.Muscle,_Skeletal.bed ...

  6. File list: Oth.Myo.20.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.20.AllAg.Muscle,_Skeletal mm9 TFs and others Muscle Muscle, Skeletal SRX029...145,SRX029146 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.20.AllAg.Muscle,_Skeletal.bed ...

  7. File list: DNS.Myo.20.AllAg.Muscle,_Skeletal [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.20.AllAg.Muscle,_Skeletal mm9 DNase-seq Muscle Muscle, Skeletal SRX191047 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.20.AllAg.Muscle,_Skeletal.bed ...

  8. Myostatin in the Pathophysiology of Skeletal Muscle

    OpenAIRE

    Carnac, Gilles; Vernus, Barbara; Bonnieu, Anne

    2007-01-01

    Myostatin is an endogenous, negative regulator of muscle growth determining both muscle fiber number and size. The myostatin pathway is conserved across diverse species ranging from zebrafish to humans. Experimental models of muscle growth and regeneration have implicated myostatin as an important mediator of catabolic pathways in muscle cells. Inhibition of this pathway has emerged as a promising therapy for muscle wasting. Here we discuss the recent developments and the controversies in myo...

  9. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  10. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  11. Regulation of insulin-like growth factor-I in skeletal muscle and muscle cells.

    Science.gov (United States)

    Frost, R A; Lang, C H

    2003-03-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are potent regulators of muscle mass. Transgenic mice that over-express these proteins exhibit dramatically enlarged skeletal muscles. In contrast, malnutrition, critical illness, sepsis, and aging are all associated with a dramatic reduction in muscle mass and function. The circulating concentration of IGF-I and the expression of IGF-I in skeletal muscle are also reduced during catabolic states. Consequently, GH has been used clinically to increase lean body mass in patients with muscle wasting. Likewise, delivery of IGF-I specifically into muscle has been proposed as a genetic therapy for muscle disorders. A better understanding of the regulation of IGF-I expression in skeletal muscle and muscle cells is therefore of importance. Yet, our knowledge in this area has been limited by a lack of GH responsive muscle cells. In addition the IGF-I gene spans over 90 kb of genomic DNA and it exhibits a very complex regulatory pattern. This review will summarize our knowledge of the control of muscle mass by GH, IGF-I, anabolic steroids, exercise and other growth enhancing hormones. We will also highlight recent advances in the regulation of IGF-I and signal transducers and activators of transcription (Stats) by GH. A special emphasis will be placed on the interaction of IGF-I and proinflammatory cytokines in skeletal muscle and muscle cells.

  12. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  13. Relative appendicular skeletal muscle mass is associated with isokinetic muscle strength and balance in healthy collegiate men.

    Science.gov (United States)

    Kim, Sung-Eun; Hong, Ju; Cha, Jun-Youl; Park, Jung-Min; Eun, Denny; Yoo, Jaehyun; Jee, Yong-Seok

    2016-11-01

    There are few studies on the relationship between skeletal muscle mass and balance in the young ages. We investigated the relationship between appendicular skeletal muscle mass, isokinetic muscle strength of lower extremity, and balance among healthy young men using relative skeletal muscle index. Thirty men were grouped according to relative appendicular skeletal muscle mass index: higher skeletal muscle group (n = 15) and lower skeletal muscle group (n = 15). Static and dynamic balance abilities were measured using the following: a test where participants stood on one leg with eyes closed, a modified Clinical Test of Sensory Interaction on Balance (mCTSIB) with eyes open and eyes closed, a stability test, and limits of stability test. The muscle strength of lower extremities was measured with an isokinetic analyser in hip, knee, and ankle joints. Participants with higher appendicular skeletal muscle mass were significantly more stable in maintaining dynamic balance than those with lower appendicular skeletal muscle mass. Moreover, appendicular skeletal muscle mass index was positively correlated with dynamic balance ability. Participants with higher appendicular skeletal muscle mass had stronger strength in the lower extremity, and there were significant differences in the isokinetic torque ratios between groups. From these results, it can be inferred that higher appendicular skeletal muscle mass relates to muscle strength and the alteration in the peak torque ratio of the lower extremity, contributing to the maintenance of balance.

  14. Response and function of skeletal muscle heat shock protein 70.

    Science.gov (United States)

    Liu, Yuefei; Gampert, Larissa; Nething, Katja; Steinacker, Jürgen M

    2006-09-01

    In response to stress, cells produce a series of heat shock proteins (Hsps). One of the most prominent Hsps, is the 70 kDa Hsp (Hsp70). Hsp70 is a highly conserved and essential protein against stress. The skeletal muscle responds to a diverse group of stress signals namely, muscle contraction linked energy and milieu challenges, ischemia and exercise by producing Hsp70. The extent of this Hsp70 response in skeletal muscle depends on the type and intensity of the signal, and is characterized in a muscle fiber specific manner by a special time course. Hsp70 in the skeletal muscle is regulated at transcriptional, translational and posttranslational levels. Hsp70 serves as an indicator for cellular stress as a molecular chaperone, plays pivotal role in maintaining cellular homeostasis by preventing apoptosis, influences energy metabolism, facilitates cellular processes in terms of muscular adaptation and interacts with other signalling pathways. This review summarizes our current knowledge on the skeletal muscle Hsp70 response.

  15. Altered cross-bridge properties in skeletal muscle dystrophies

    Directory of Open Access Journals (Sweden)

    Aziz eGuellich

    2014-10-01

    Full Text Available Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal muscle dystrophies and discuss their ultimate impacts on striated muscle function.

  16. Skeletal muscle as a regulator of the longevity protein, Klotho

    Directory of Open Access Journals (Sweden)

    Keith G Avin

    2014-06-01

    Full Text Available Klotho is a powerful longevity protein that has been linked to the prevention of muscle atrophy, osteopenia, and cardiovascular disease. Similar anti-aging effects have also been ascribed to exercise and physical activity. While an association between muscle function and klotho expression has been previously suggested from longitudinal cohort studies, a direct relationship between circulating klotho and skeletal muscle has not been investigated. In this paper, we present a review of the literature and preliminary evidence that, together, suggests klotho expression may be modulated by skeletal muscle activity. Our pilot clinical findings performed in young and aged individuals suggest that circulating klotho levels are upregulated in response to an acute exercise bout, but that the response may be dependent on fitness level. A similar upregulation of circulating klotho is also observed in response to an acute exercise in young and old mice, suggesting this may be a good model for mechanistically probing the role of physical activity on klotho expression. Finally, we highlight overlapping signaling pathways that are modulated by both klotho and skeletal muscle and propose potential mechanisms for cross-talk between the two. It is hoped that this review will stimulate further consideration of the relationship between skeletal muscle activity and klotho expression, potentially leading to important insights into the well-documented systemic anti-aging effects of exercise.

  17. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation......In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... sympathetic vasoconstriction. ATP is released into plasma from erythrocytes and endothelial cells and the plasma concentration increases in both the feeding artery and the vein draining the contracting skeletal muscle. Adenosine also stimulates the formation of NO and prostaglandins, but the plasma adenosine...

  18. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  19. Changes in skeletal muscle gene expression following clenbuterol administration.

    Science.gov (United States)

    Spurlock, Diane M; McDaneld, Tara G; McIntyre, Lauren M

    2006-12-20

    Beta-adrenergic receptor agonists (BA) induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P clenbuterol treatment. A total of 22,605 probesets were evaluated with 52 probesets defined as differentially expressed based on a false discovery rate of 10%. Differential mRNA abundance of four of these genes was validated in an independent experiment by quantitative PCR. Functional characterization of differentially expressed genes revealed several categories that participate in biological processes important to skeletal muscle growth, including regulators of transcription and translation, mediators of cell-signalling pathways, and genes involved in polyamine metabolism. Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the

  20. Localisation of AMPK γ subunits in cardiac and skeletal muscles.

    Science.gov (United States)

    Pinter, Katalin; Grignani, Robert T; Watkins, Hugh; Redwood, Charles

    2013-12-01

    The trimeric protein AMP-activated protein kinase (AMPK) is an important sensor of energetic status and cellular stress, and mutations in genes encoding two of the regulatory γ subunits cause inherited disorders of either cardiac or skeletal muscle. AMPKγ2 mutations cause hypertrophic cardiomyopathy with glycogen deposition and conduction abnormalities; mutations in AMPKγ3 result in increased skeletal muscle glycogen. In order to gain further insight into the roles of the different γ subunits in muscle and into possible disease mechanisms, we localised the γ2 and γ3 subunits, along with the more abundant γ1 subunit, by immunofluorescence in cardiomyocytes and skeletal muscle fibres. The predominant cardiac γ2 variant, γ2-3B, gave a striated pattern in cardiomyocytes, aligning with the Z-disk but with punctate staining similar to T-tubule (L-type Ca(2+) channel) and sarcoplasmic reticulum (SERCA2) markers. In skeletal muscle fibres AMPKγ3 localises to the I band, presenting a uniform staining that flanks the Z-disk, also coinciding with the position of Ca(2+) influx in these muscles. The localisation of γ2-3B- and γ3-containing AMPK suggests that these trimers may have similar functions in the different muscles. AMPK containing γ2-3B was detected in oxidative skeletal muscles which had low expression of γ3, confirming that these two regulatory subunits may be co-ordinately regulated in response to metabolic requirements. Compartmentalisation of AMPK complexes is most likely dependent on the regulatory γ subunit and this differential localisation may direct substrate selection and specify particular functional roles.

  1. Muscle interleukin-6 and fasting-induced PDH regulation in mouse skeletal muscle.

    Science.gov (United States)

    Gudiksen, Anders; Bertholdt, Laerke; Vingborg, Mikkel Birkkjaer; Hansen, Henriette Watson; Ringholm, Stine; Pilegaard, Henriette

    2017-03-01

    Fasting prompts a metabolic shift in substrate utilization from carbohydrate to predominant fat oxidation in skeletal muscle, and pyruvate dehydrogenase (PDH) is seen as a controlling link between the competitive oxidation of carbohydrate and fat during metabolic challenges like fasting. Interleukin (IL)-6 has been proposed to be released from muscle with concomitant effects on both glucose and fat utilization. The aim was to test the hypothesis that muscle IL-6 has a regulatory impact on fasting-induced suppression of skeletal muscle PDH. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) were either fed or fasted for 6 or 18 h. Lack of muscle IL-6 elevated the respiratory exchange ratio in the fed and early fasting state, but not with prolonged fasting. Activity of PDH in the active form (PDHa) was higher in fed and fasted IL-6 MKO than in control mice at 18 h, but not at 6 h, whereas lack of muscle IL-6 did not prevent downregulation of PDHa activity in skeletal muscle or changes in plasma and muscle substrate levels in response to 18 h of fasting. Phosphorylation of three of four sites on PDH-E1α increased with 18 h of fasting, but was lower in IL-6 MKO mice than in control. In addition, both PDK4 mRNA and protein increased with 6 and 18 h of fasting in both genotypes, but PDK4 protein was lower in IL-6 MKO than in control. In conclusion, skeletal muscle IL-6 seems to regulate whole body substrate utilization in the fed, but not fasted, state and influence skeletal muscle PDHa activity in a circadian manner. However, skeletal muscle IL-6 is not required for maintaining metabolic flexibility in response to fasting. Copyright © 2017 the American Physiological Society.

  2. STRUCTURAL ALTERATIONS OF SKELETAL MUSCLE IN COPD

    Directory of Open Access Journals (Sweden)

    Sunita eMathur

    2014-03-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is a respiratory disease associated with a systemic inflammatory response. Peripheral muscle dysfunction has been well characterized in individuals with COPD and results from a complex interaction between systemic and local factors. Objective: In this narrative review, we will describe muscle wasting in people with COPD, the associated structural changes, muscle regenerative capacity and possible mechanisms for muscle wasting. We will also discuss how structural changes relate to impaired muscle function and mobility in people with COPD. Key Observations: Approximately 30-40% of individuals with COPD experience muscle mass depletion. Furthermore, muscle atrophy is a predictor of physical function and mortality in this population. Associated structural changes include a decreased proportion and size of type-I fibers, reduced oxidative capacity and mitochondrial density mainly in the quadriceps. Observations related to impaired muscle regenerative capacity in individuals with COPD include a lower proportion of central nuclei in the presence or absence of muscle atrophy and decreased maximal telomere length, which has been correlated with reduced muscle cross-sectional area. Potential mechanisms for muscle wasting in COPD may include excessive production of reactive oxygen species, altered amino acid metabolism and lower expression of peroxisome proliferator-activated receptors-gamma-coactivator 1-alpha mRNA. Despite a moderate relationship between muscle atrophy and function, impairments in oxidative metabolism only seems weakly related to muscle function. Conclusion: This review article demonstrates the cellular modifications in the peripheral muscle of people with COPD and describes the evidence of its relationship to muscle function. Future research will focus on rehabilitation strategies to improve muscle wasting and maximize function.

  3. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  4. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    Science.gov (United States)

    Ørngreen, Mette Cathrine

    2016-07-01

    The main purpose of the following studies was to investigate pathophysiological mechanisms in fat and carbohydrate metabolism and effect of nutritional interventions in patients with metabolic myopathies and in patients with severe muscle wasting. Yet there is no cure for patients with skeletal muscle disorders. The group of patients is heterozygous and this thesis is focused on patients with metabolic myopathies and low muscle mass due to severe muscle wasting. Disorders of fatty acid oxidation (FAO) are, along with myophosphorylase deficiency (McArdle disease), the most common inborn errors of metabolism leading to recurrent episodes of rhabdomyolysis in adults. Prolonged exercise, fasting, and fever are the main triggering factors for rhabdomyolysis in these conditions, and can be complicated by acute renal failure. Patients with low muscle mass are in risk of loosing their functional skills and depend on a wheel chair and respiratory support. We used nutritional interventions and metabolic studies with stable isotope technique and indirect calorimetry in patients with metabolic myopathies and patients with low muscle mass to get information of the metabolism of the investigated diseases, and to gain knowledge of the biochemical pathways of intermediary metabolism in human skeletal muscle. We have shown that patients with fat metabolism disorders in skeletal muscle affecting the transporting enzyme of fat into the mitochondria (carnitine palmitoyltransferase II deficiency) and affecting the enzyme responsible for breakdown of the long-chain fatty acids (very long chain acyl-CoA dehydrogenase deficiency) have a normal fatty acid oxidation at rest, but enzyme activity is too low to increase fatty acid oxidation during exercise. Furthermore, these patients benefit from a carbohydrate rich diet. Oppositely is exercise capacity worsened by a fat-rich diet in these patients. The patients also benefit from IV glucose, however, when glucose is given orally just before

  5. Skeletal Muscle Satellite Cell Activation Following Cutaneous Burn in Rats

    Science.gov (United States)

    2013-12-01

    cultures of SJL/J and BALB/C skeletal muscle. Exp Cell Res 1994;211(1):99–107. [37] Yablonka-Reuveni Z, Rivera AJ. Temporal expression of regulatory...precursor cells. Am J Physiol Cell Physiol 2004;287(6):C1753–62. [41] Yasuhara S, Perez ME, Kanakubo E, Yasuhara Y, Shin YS, Kaneki M, Fujita T, Martyn JA...Yasuhara S, Kanakubo E, Perez ME, Kaneki M, Fujita T, Okamoto T, Martyn JA. The 1999 Moyer award, Burn injury induces skeletal muscle apoptosis and

  6. Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features

    Directory of Open Access Journals (Sweden)

    Lorenzo Maggi

    2016-08-01

    Full Text Available LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases.

  7. Length dependence of active force production in skeletal muscle.

    Science.gov (United States)

    Rassier, D E; MacIntosh, B R; Herzog, W

    1999-05-01

    The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is diminished. The force-length relationship is a static property of skeletal muscle and, therefore, it does not predict the consequences of dynamic contractions. Changes in sarcomere length during muscle contraction result in modulation of the active force that is not necessarily predicted by the cross-bridge theory. The results of in vivo studies of the force-length relationship suggest that muscles that operate on the ascending limb of the force-length relationship typically function in stretch-shortening cycle contractions, and muscles that operate on the descending limb typically function in shorten-stretch cycle contractions. The joint moments produced by a muscle depend on the moment arm and the sarcomere length of the muscle. Moment arm magnitude also affects the excursion (length change) of a muscle for a given change in joint angle, and the number of sarcomeres arranged in series within a muscle fiber determines the sarcomere length change associated with a given excursion.

  8. Lactate and force production in skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Michael; Albertsen, Janni; Rentsch, Maria

    2005-01-01

    Lactic acid accumulation is generally believed to be involved in muscle fatigue. However, one study reported that in rat soleus muscle (in vitro), with force depressed by high external K+ concentrations a subsequent incubation with lactic acid restores force and thereby protects against fatigue...... muscle. Three incubation solutions were used: 20 mm Na-lactate (which acidifies internal pH), 12 mm Na-lactate +8 mm lactic acid (which mimics the pH changes during muscle activity), and 20 mm lactic acid (which acidifies external pH more than internal pH). All three solutions improved force in K+-depressed...... development in repetitively stimulated muscle (Na-lactate had a negative effect). It is concluded that although lactate/lactic acid incubation regains force in K+-depressed resting muscle, a similar incubation has no or a negative effect on force development in active muscle. It is suggested...

  9. Chiral Orientation of Skeletal Muscle Cells Requires Rigid Substrate

    Directory of Open Access Journals (Sweden)

    Ninghao Zhu

    2017-06-01

    Full Text Available Reconstitution of tissue morphology with inherent left–right (LR asymmetry is essential for tissue/organ functions. For skeletal muscle, the largest tissue in mammalian organisms, successful myogenesis requires the regulation of the LR asymmetry to form the appropriate muscle alignment. However, the key factor for reproducing the LR asymmetry of skeletal tissues in a controllable, engineering context remains largely unknown. Recent reports indicate that cell chirality may underlie the LR development in tissue morphogenesis. Here, we report that a rigid substrate is required for the chirality of skeletal muscle cells. By using alternating micropatterned cell-adherent and cell-repellent stripes on a rigid substrate, we found that C2C12 skeletal muscle myoblasts exhibited a unidirectional tilted orientation with respect to the stripe boundary. Importantly, such chiral orientation was reduced when soft substrates were used instead. In addition, we demonstrated the key role of actin stress fibers in the formation of the chiral orientation. This study reveals that a rigid substrate is required for the chiral pattern of myoblasts, paving the way for reconstructing damaged muscle tissue with inherent LR asymmetry in the future.

  10. Functional classification of skeletal muscle networks. II. Applications to pathophysiology.

    Science.gov (United States)

    Wang, Yu; Winters, Jack; Subramaniam, Shankar

    2012-12-15

    In our preceding companion paper (Wang Y, Winters J, Subramaniam S. J Appl Physiol. doi: 10.1152/japplphysiol.01514.2011), we used extensive expression profile data on normal human subjects, in combination with legacy knowledge to classify skeletal muscle function into four models, namely excitation-activation, mechanical, metabolic, and signaling-production model families. In this paper, we demonstrate how this classification can be applied to study two well-characterized myopathies: amyotrophic lateral sclerosis (ALS) and Duchenne muscular dystrophy (DMD). Using skeletal muscle profile data from ALS and DMD patients compared with that from normal subjects, normal young in the case of DMD, we delineate molecular mechanisms that are causative and consequential to skeletal muscle dysfunction. In ALS, our analysis establishes the metabolic role and specifically identifies the mechanisms of calcium dysregulation and defects in mitochondrial transport of materials as important for muscle dysfunction. In DMD, we illustrate how impaired mechanical function is strongly coordinated with other three functional networks, resulting in transformation of the skeletal muscle into hybrid forms as a compensatory mechanism. Our functional models also provide, in exquisite detail, the mechanistic role of myriad proteins in these four families in normal and disease function.

  11. Needle muscle biopsy: technique validation and histological and histochemical methods for evaluating canine skeletal muscles

    Directory of Open Access Journals (Sweden)

    Sérgio de Almeida Braga

    2017-05-01

    Full Text Available This study evaluated the needle muscle biopsy technique using a 6G Bergström percutaneous needle combined with histological and histochemical methods to analyze the skeletal muscle of dogs. There are few studies about canine skeletal muscles and a lack of reports in the literature about tissue collection and analysis for canine species. Evaluation of 32 German Shepherd samples collected from the gluteus medius, at a depth of 3 cm, was performed. The choice of gluteus medius and the 3-cm depth provided good quantity fragments with sufficient sizes (3–5 mm, which permitted optimal visualization of muscle fibers. Myosin ATPase, at pH 9.4, 4.6, and 4.3, and SDH reactions revealed that all muscle samples analyzed had fibers in the classic mosaic arrangement, enabling counting and typification. The mean percentages of fibers were 29.95% for type I and 70.05% for type II. On the basis of these results, we concluded that the percutaneous needle biopsy technique for canine skeletal muscles is a safe and easy procedure that obtains fragments of proper sizes, thereby enabling the study of muscle fibers. Standardization of the muscle of choice and the depth of muscle sample collection significantly contributed to this success. This is an important method to evaluate muscle fiber types of dogs and diagnose important diseases affecting the skeletal muscles.

  12. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Hellsten, Ylva; Jensen, Mie B. F.

    2008-01-01

    The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study...... the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects....... In conclusion, the Epo-R is present in the vasculature and myocytes in human skeletal muscle, suggesting a role in both cell types. In accordance, a single injection of Epo regulates myoglobin, MRF-4, and transferrin receptor mRNA levels. However, in contrast to our hypothesis, prolonged Epo administration had...

  13. Noncoding RNAs in the regulation of skeletal muscle biology in health and disease

    OpenAIRE

    Simionescu-Bankston, Adriana; Kumar, Ashok

    2016-01-01

    Skeletal muscle is composed of multinucleated myofibers that arise from the fusion of myoblasts during development. Skeletal muscle is essential for various body functions such as maintaining posture, locomotion, breathing, and metabolism. Skeletal muscle undergoes remarkable adaptations in response to environmental stimuli leading to atrophy or hypertrophy. Moreover, degeneration of skeletal muscle is a common feature in a number of muscular disorders including muscular dystrophy. Emerging e...

  14. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    Science.gov (United States)

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (Pglycogen was reduced (Pglycogen synthesis, and a reduction in free intracellular glucose levels (Pmetabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Pixel-based meshfree modelling of skeletal muscles

    OpenAIRE

    Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu

    2015-01-01

    This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A ...

  16. Statin Therapy Alters Lipid Storage in Diabetic Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Irena A Rebalka

    2016-07-01

    Full Text Available While statins significantly reduce cholesterol levels and thereby reduce the risk of cardiovascular disease, the development of myopathy with statin use is a significant clinical side-effect. Recent guidelines recommend increasing inclusion criteria for statin treatment in diabetic individuals; however, the impact of statins on skeletal muscle health in those with diabetes (who already suffer from impairments in muscle health is ill-defined. Here we investigate the effects of Fluvastatin treatment on muscle health in wild-type and streptozotocin (STZ-induced diabetic mice. Wild-type and STZ-diabetic mice received diet enriched with 600 mg/kg Fluvastatin or control chow for 24 days. Muscle morphology, intra and extracellular lipid levels, and lipid transporter content was investigated. Our findings indicate that short-term Fluvastatin administration induced a myopathy that was not exacerbated by the presence of STZ-induced diabetes. Fluvastatin significantly increased ectopic lipid deposition within the muscle of STZ-diabetic animals, findings that were not seen with diabetes or statin treatment alone. Consistent with this observation, only Fluvastatin-treated diabetic mice downregulated protein expression of lipid transporters FAT/CD36 and FABPpm in their skeletal muscle. No differences in FAT/CD36 or FABPpm mRNA content were observed. Altered lipid compartmentalization resultant of a downregulation in lipid transporter content in STZ-induced diabetic skeletal muscle was apparent in the current investigation. Given the association between ectopic lipid deposition in skeletal muscle and the development of insulin-resistance, our findings highlight the necessity for more thorough investigations into the impact of statins in humans with diabetes.

  17. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential

    OpenAIRE

    Murray, IR; Baily, JE; Chen, WCW; Dar, A; Gonzalez, ZN; Jensen, AR; Petrigliano, FA; Deb, A; Henderson, NC

    2017-01-01

    Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. I...

  18. A simplified immunohistochemical classification of skeletal muscle fibres in mouse

    OpenAIRE

    Kammoun, M.; Cassar-malek, I.; Meunier, B; Picard, B.

    2014-01-01

    The classification of muscle fibres is of particular interest for the study of the skeletal muscle properties in a wide range of scientific fields, especially animal phenotyping. It is therefore important to define a reliable method for classifying fibre types. The aim of this study was to establish a simplified method for the immunohistochemical classification of fibres in mouse. To carry it out, we first tested a combination of several anti myosin heavy chain (MyHC) antibodies in order to c...

  19. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging...... of the changes in skeletal muscle ECM with aging may be preventable with resistance or weight training, but it is clear that more human studies are needed on the topic........ Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross...

  20. Regenerated rat skeletal muscle after periodic contusions

    Directory of Open Access Journals (Sweden)

    V.B. Minamoto

    2001-11-01

    Full Text Available In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8 and four (N = 9 months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 ± 0.15 vs 0.91 ± 0.09 g, P = 0.03; four months: 0.79 ± 0.14 vs 1.02 ± 0.07 g, P = 0.0007, respectively and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 ± 2.1 vs 0.5 ± 0.3%, P = 0.006; four months: 2.3 ± 1.6 vs 0.3 ± 0.3%, P = 0.007, respectively. Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003. Thus, we conclude that: a muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.

  1. Impact of placental insufficiency on fetal skeletal muscle growth.

    Science.gov (United States)

    Brown, Laura D; Hay, William W

    2016-11-05

    Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal "catch-up" growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The effects of ectopic UCP1 expression on gene expression in skeletal muscle [Mus Musculus

    NARCIS (Netherlands)

    Schothorst, van E.M.

    2015-01-01

    This SuperSeries is composed of the following subset Series: GSE45991: Amino acid deprivation due to overexpression of UCP1 in skeletal muscle: signalling via FGF-21 GSE45992: Transgenic overexpression of UCP1 in skeletal muscle in mice fed a HFD: signalling via FGF-21 Skeletal muscle FGF21

  3. Regulation of skeletal muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Hargreaves, M; Richter, Erik

    1988-01-01

    Muscle-glycogen breakdown during exercise is influenced by both local and systemic factors. Contractions per se increase glycogenolysis via a calcium-induced, transient increase in the activity of phosphorylase a, and probably also via increased concentrations of Pi. In fast-twitch muscle......, increases in the AMP and IMP levels may increase phosphorylase activity. The rate of muscle-glycogen breakdown during exercise depends on the pre-exercise glycogen concentration and is also influenced by hormones. Insulin may inhibit glycogen breakdown, whereas epinephrine enhances the rate of glycogen use...... in contracting muscle by increasing the phosphorylase a activity via increased cyclic AMP production. The availability of blood-borne substrates may also influence muscle glycogenolysis and, therefore, exercise performance....

  4. Pyruvate carboxylase is expressed in human skeletal muscle

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2010-01-01

    Pyruvate carboxylase (PC) is a mitochondrial enzyme that catalyses the carboxylation of pyruvate to oxaloacetate thereby allowing supplementation of citric acid cycle intermediates. The presence of PC in skeletal muscle is controversial. We report here, that PC protein is easily detectable by str...

  5. Prospective heterotopic ossification progenitors in adult human skeletal muscle

    NARCIS (Netherlands)

    Downey, Jennifer; Lauzier, Dominique; Kloen, Peter; Klarskov, Klaus; Richter, Martin; Hamdy, Reggie; Faucheux, Nathalie; Scimè, Anthony; Balg, Frédéric; Grenier, Guillaume

    2015-01-01

    Skeletal muscle has strong regenerative capabilities. However, failed regeneration can lead to complications where aberrant tissue forms as is the case with heterotopic ossification (HO), in which chondrocytes, osteoblasts and white and brown adipocytes can arise following severe trauma. In humans,

  6. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T

    1990-01-01

    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph...

  7. Skeletal muscle mitochondrial respiration in AMPKa2 kinase dead mice

    DEFF Research Database (Denmark)

    Larsen, Steen; Kristensen, Jonas Møller; Stride, Nis

    2012-01-01

    AIM: To study if the phenotypical characteristics (exercise intolerance; reduced spontaneous activity) of the AMPKa2 kinase-dead (KD) mice can be explained by a reduced mitochondrial respiratory flux rates (JO(2) ) in skeletal muscle. Secondly, the effect of the maturation process on JO(2...

  8. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...

  9. Factors regulating fat oxidation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiens, Bente; Alsted, Thomas Junker; Jeppesen, Jacob

    2011-01-01

    In modern societies, oversupply of calories leads to obesity and chronic metabolic stress, which may lead to development of disease. Oversupply of calories is often associated with elevated plasma lipid concentrations and accumulation of lipids in skeletal muscle leading to decreased insulin sens...

  10. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  11. Exercise-induced AMPK activity in skeletal muscle

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Mortensen, Brynjulf; Pehmøller, Christian

    2013-01-01

    The energy/fuel sensor 5'-AMP-activated protein kinase (AMPK) is viewed as a master regulator of cellular energy balance due to its many roles in glucose, lipid, and protein metabolism. In this review we focus on the regulation of AMPK activity in skeletal muscle and its involvement in glucose...

  12. Heparan sulfates in skeletal muscle development and physiology.

    NARCIS (Netherlands)

    Jenniskens, G.J.; Veerkamp, J.H.; Kuppevelt, A.H.M.S.M. van

    2006-01-01

    Recent years have seen an emerging interest in the composition of the skeletal muscle extracellular matrix (ECM) and in the developmental and physiological roles of its constituents. Many cell surface-associated and ECM-embedded molecules occur in highly organized spatiotemporal patterns, suggesting

  13. Redox Signaling in Skeletal Muscle: Role of Aging and Exercise

    Science.gov (United States)

    Ji, Li Li

    2015-01-01

    Skeletal muscle contraction is associated with the production of ROS due to altered O[subscript 2] distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely…

  14. The impact of low skeletal muscle mass in abdominal surgery

    NARCIS (Netherlands)

    J.L.A. van Vugt (Jeroen)

    2017-01-01

    textabstractAlthough perioperative outcome in transplant and surgical oncology patients has greatly improved during the last decades, preoperative risk assessment remains of utmost importance to further improve outcomes and adapt patient-tailored treatment strategies. Low skeletal muscle mass is

  15. In utero undernutrition programs skeletal and cardiac muscle metabolism

    Directory of Open Access Journals (Sweden)

    Brittany eBeauchamp

    2016-01-01

    Full Text Available In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.

  16. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Shin Fujimaki

    2016-01-01

    Full Text Available Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.

  17. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice

    Science.gov (United States)

    Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghreli...

  18. Elevated nuclear Foxo1 suppresses excitability of skeletal muscle fibers

    Science.gov (United States)

    Hernández-Ochoa, Erick O.; Schachter, Tova Neustadt

    2013-01-01

    Forkhead box O 1 (Foxo1) controls the expression of proteins that carry out processes leading to skeletal muscle atrophy, making Foxo1 of therapeutic interest in conditions of muscle wasting. The transcription of Foxo1-regulated proteins is dependent on the translocation of Foxo1 to the nucleus, which can be repressed by insulin-like growth factor-1 (IGF-1) treatment. The role of Foxo1 in muscle atrophy has been explored at length, but whether Foxo1 nuclear activity affects skeletal muscle excitation-contraction (EC) coupling has not yet been examined. Here, we use cultured adult mouse skeletal muscle fibers to investigate the effects of Foxo1 overexpression on EC coupling. Fibers expressing Foxo1-green fluorescent protein (GFP) exhibit an inability to contract, impaired propagation of action potentials, and ablation of calcium transients in response to electrical stimulation compared with fibers expressing GFP alone. Evaluation of the transverse (T)-tubule system morphology, the membranous system involved in the radial propagation of the action potential, revealed an intact T-tubule network in fibers overexpressing Foxo1-GFP. Interestingly, long-term IGF-1 treatment of Foxo1-GFP fibers, which maintains Foxo1-GFP outside the nucleus, prevented the loss of normal calcium transients, indicating that Foxo1 translocation and the atrogenes it regulates affect the expression of proteins involved in the generation and/or propagation of action potentials. A reduction in the sodium channel Nav1.4 expression in fibers overexpressing Foxo1-GFP was also observed in the absence of IGF-1. We conclude that increased nuclear activity of Foxo1 prevents the normal muscle responses to electrical stimulation and that this indicates a novel capability of Foxo1 to disable the functional activity of skeletal muscle. PMID:23804205

  19. Genetic architecture of gene expression in ovine skeletal muscle

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Byrne, Keren; Vuocolo, Tony

    2011-01-01

    -based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle.Results: The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing...... architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value......, mitochondrial function and transcriptional regulation.Conclusions: This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and translation control, and protein...

  20. Regulation of PGC-1α and exercise training-induced metabolic adaptations in skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina

    -induced improvements in skeletal muscle metabolic capacity, but may contribute to the exercise training-induced maintenance of skeletal muscle mass. In addition, the results indicate an exercise intensity dependent regulation of autophagy in skeletal muscle and suggest that PGC-1 α regulates both acute and exercise...... and intracellular signalling in human skeletal muscle depend on adrenaline levels or metabolic stress. 2) PGC-1α mediated exercise and exercise training-induced adaptive metabolic responses in mouse skeletal muscle depend on exercise intensity. 3) β-adrenergic signalling contributes to exercise training......-induced metabolic adaptations in mouse skeletal muscle through PGC-1α . Paper I demonstrated that di erences in plasma adrenaline and muscle metabolic stress during exercise do not reinforce exercise-induced PGC-1 α mRNA response in human skeletal muscle. In addition, di erences in exercise-induced AMPK and p38...

  1. Anomalous ion diffusion within skeletal muscle transverse tubule networks

    Directory of Open Access Journals (Sweden)

    Soboleva Tanya K

    2007-05-01

    Full Text Available Abstract Background Skeletal muscle fibres contain transverse tubular (t-tubule networks that allow electrical signals to rapidly propagate into the fibre. These electrical signals are generated by the transport of ions across the t-tubule membranes and this can result in significant changes in ion concentrations within the t-tubules during muscle excitation. During periods of repeated high-frequency activation of skeletal muscle the t-tubule K+ concentration is believed to increase significantly and diffusive K+ transport from the t-tubules into the interstitial space provides a mechanism for alleviating muscle membrane depolarization. However, the tortuous nature of the highly branched space-filling t-tubule network impedes the diffusion of material through the network. The effective diffusion coefficient for ions in the t-tubules has been measured to be approximately five times lower than in free solution, which is significantly different from existing theoretical values of the effective diffusion coefficient that range from 2–3 times lower than in free solution. To resolve this discrepancy, in this paper we study the process of diffusion within electron microscope scanned sections of the skeletal muscle t-tubule network using mathematical modelling and computer simulation techniques. Our model includes t-tubule geometry, tautness, hydrodynamic and non-planar network factors. Results Using our model we found that the t-tubule network geometry reduced the K+ diffusion coefficient to 19–27% of its value in free solution, which is consistent with the experimentally observed value of 21% and is significantly smaller than existing theoretical values that range from 32–50%. We also found that diffusion in the t-tubules is anomalous for skeletal muscle fibres with a diameter of less than approximately 10–20 μm as a result of obstructed diffusion. We also observed that the [K+] within the interior of the t-tubule network during high

  2. Preservative solution for skeletal muscle biopsy samples

    Directory of Open Access Journals (Sweden)

    Yasemin Gulcan Kurt

    2015-01-01

    Full Text Available Context : Muscle biopsy samples must be frozen with liquid nitrogen immediately after excision and maintained at -80 o C until analysis. Because of this requirement for tissue processing, patients with neuromuscular diseases often have to travel to centers with on-site muscle pathology laboratories for muscle biopsy sample excision to ensure that samples are properly preserved. Aim: Here, we developed a preservative solution and examined its protectiveness on striated muscle tissues for a minimum of the length of time that would be required to reach a specific muscle pathology laboratory. Materials and Methods: A preservative solution called Kurt-Ozcan (KO solution was prepared. Eight healthy Sprague-Dawley rats were sacrificed; striated muscle tissue samples were collected and divided into six different groups. Muscle tissue samples were separated into groups for morphological, enzyme histochemical, molecular, and biochemical analysis. Statistical method used: Chi-square and Kruskal Wallis tests. Results: Samples kept in the KO and University of Wisconsin (UW solutions exhibited very good morphological scores at 3, 6, and 18 hours, but artificial changes were observed at 24 hours. Similar findings were observed for the evaluated enzyme activities. There were no differences between the control group and the samples kept in the KO or UW solution at 3, 6, and 18 hours for morphological, enzyme histochemical, and biochemical features. The messenger ribonucleic acid (mRNA of β-actin gene was protected up to 6 hours in the KO and UW solutions. Conclusion: The KO solution protects the morphological, enzyme histochemical, and biochemical features of striated muscle tissue of healthy rats for 18 hours and preserves the mRNA for 6 hours.

  3. Pixel-based meshfree modelling of skeletal muscles.

    Science.gov (United States)

    Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu

    2016-01-01

    This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A multiphase multichannel level set based segmentation framework is adopted for individual muscle segmentation using Magnetic Resonance Images (MRI) and DTI. The application of the proposed methods for modeling the human lower leg is demonstrated.

  4. Skeletal muscle substrate metabolism during exercise: methodological considerations

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; González-Alonso, J; Sacchetti, M

    1999-01-01

    The aim of the present article is to evaluate critically the various methods employed in studies designed to quantify precisely skeletal muscle substrate utilization during exercise. In general, the pattern of substrate utilization during exercise can be described well from O2 uptake measurements...... substrates. There are several methodological concerns to be aware of when studying the metabolic response to exercise in human subjects. These concerns include: (1) the muscle mass involved in the exercise is largely unknown (bicycle or treadmill). Moreover, whether the muscle sample obtained from a limb...

  5. Developing Cardiac and Skeletal Muscle Share Fast-Skeletal Myosin Heavy Chain and Cardiac Troponin-I Expression

    Science.gov (United States)

    Powell, Mary C.; Liu, Li J.; Huard, Johnny; Keller, Bradley B.; Tobita, Kimimasa

    2012-01-01

    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. PMID:22808244

  6. Skeletal muscle responses to lower limb suspension in humans

    Science.gov (United States)

    Hather, Bruce M.; Adams, Gregory R.; Tesch, Per A.; Dudley, Gary A.

    1992-01-01

    The morphological responses of human skeletal muscle to unweighting were assessed by analyzing multiple transaxial magnetic resonance (MR) images of both lower limbs and skeletal muscle biopsies of the unweighted lower limb before and after six weeks of unilaterial (left) lower limb suspension (ULLS). Results indicated that, as a results of 6 weeks of unweighting (by the subjects walking on crutches using only one limb), the cross sectional area (CSA) of the thigh muscle of the unweighted left limb decreased 12 percent, while the CSA of the right thigh muscle did not change. The decrease was due to a twofold greater response of the knee extensors than the knee flexors. The pre- and post-ULLS biopsies of the left vastus lateralis showed a 14 percent decrease in average fiber CSA due to unweighting. The number of capillaries surrounding the different fiber types was unchanged after ULLS. Results showed that the adaptive responses of human skeletal muscle to unweighting are qualitatively, but not quantitatively, similar to those of lower mammals and not necessarily dependent on the fiber-type composition.

  7. Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases

    Directory of Open Access Journals (Sweden)

    Mao Nie

    2015-01-01

    Full Text Available A healthy and independent life requires skeletal muscles to maintain optimal function throughout the lifespan, which is in turn dependent on efficient activation of processes that regulate muscle development, homeostasis, and metabolism. Thus, identifying mechanisms that modulate these processes is of crucial priority. Noncoding RNAs (ncRNAs, including microRNAs (miRNAs and long noncoding RNAs (lncRNAs, have emerged as a class of previously unrecognized transcripts whose importance in a wide range of biological processes and human disease is only starting to be appreciated. In this review, we summarize the roles of recently identified miRNAs and lncRNAs during skeletal muscle development and pathophysiology. We also discuss several molecular mechanisms of these noncoding RNAs. Undoubtedly, further systematic understanding of these noncoding RNAs’ functions and mechanisms will not only greatly expand our knowledge of basic skeletal muscle biology, but also significantly facilitate the development of therapies for various muscle diseases, such as muscular dystrophies, cachexia, and sarcopenia.

  8. Skeletal muscle mechanics: questions, problems and possible solutions.

    Science.gov (United States)

    Herzog, Walter

    2017-09-16

    Skeletal muscle mechanics have been studied ever since people have shown an interest in human movement. However, our understanding of muscle contraction and muscle mechanical properties has changed fundamentally with the discovery of the sliding filament theory in 1954 and associated cross-bridge theory in 1957. Nevertheless, experimental evidence suggests that our knowledge of the mechanisms of contraction is far from complete, and muscle properties and muscle function in human movement remain largely unknown.In this manuscript, I am trying to identify some of the crucial challenges we are faced with in muscle mechanics, offer possible solutions to questions, and identify problems that might be worthwhile exploring in the future. Since it is impossible to tackle all (worthwhile) problems in a single manuscript, I identified three problems that are controversial, important, and close to my heart. They may be identified as follows: (i) mechanisms of muscle contraction, (ii) in vivo whole muscle mechanics and properties, and (iii) force-sharing among synergistic muscles. These topics are fundamental to our understanding of human movement and movement control, and they contain a series of unknowns and challenges to be explored in the future.It is my hope that this paper may serve as an inspiration for some, may challenge current beliefs in selected areas, tackle important problems in the area of muscle mechanics, physiology and movement control, and may guide and focus some of the thinking of future muscle mechanics research.

  9. Exercise-induced phospho-proteins in skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A S; Hawley, J A; Zierath, J R

    2008-01-01

    Efforts to identify exercise-induced signaling events in skeletal muscle have been influenced by ground-breaking discoveries in the insulin action field. Initial discoveries demonstrating that exercise enhances insulin sensitivity raised the possibility that contraction directly modulates insulin...... receptor signaling events. Although the acute effects of exercise on glucose metabolism are clearly insulin-independent, the canonical insulin signaling cascade has been used as a framework by investigators in an attempt to resolve the mechanisms by which muscle contraction governs glucose metabolism....... This review focuses on recent advances in our understanding of exercise-induced signaling pathways governing glucose metabolism in skeletal muscle. Particular emphasis will be placed on the characterization of AS160, a novel Akt substrate that plays a role in the regulation of glucose transport....

  10. Molecular studies of exercise, skeletal muscle, and ageing.

    Science.gov (United States)

    Timmons, James A; Gallagher, Iain J

    2016-01-01

    The purpose of an F1000 review is to reflect on the bigger picture, exploring controversies and new concepts as well as providing opinion as to what is limiting progress in a particular field. We reviewed about 200 titles published in 2015 that included reference to 'skeletal muscle, exercise, and ageing' with the aim of identifying key articles that help progress our understanding or research capacity while identifying methodological issues which represent, in our opinion, major barriers to progress. Loss of neuromuscular function with chronological age impacts on both health and quality of life. We prioritised articles that studied human skeletal muscle within the context of age or exercise and identified new molecular observations that may explain how muscle responds to exercise or age. An important aspect of this short review is perspective: providing a view on the likely 'size effect' of a potential mechanism on physiological capacity or ageing.

  11. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  12. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved.......The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...

  13. Oxygen transport and intracellular bioenergetics on stimulated cat skeletal muscle.

    Science.gov (United States)

    Nioka, S; McCully, K; McClellan, G; Park, Jane; Chance, B

    2003-01-01

    A unique multiparameter recording of skeletal muscle bioenergetics, biochemistry and biomechanics has permitted determination of novel relationships among hemodynamics, cellular high-energy metabolites and mitochondrial bioenergetics in feline skeletal muscle. The study utilizes 31P NMR, NIR, and NADH fluorescence spectrophotometry, biochemical assays and muscle performance. Seven cats were anesthetized and mechanically ventilated. Calf muscles were stimulated through sciatic nerve electrical stimulation and tension was monitored by a strain gauge connected to the Achilles tendon. We stimulated the muscle to produce several workloads up to Vmax. We also changed FiO2 from normoxia to hypoxia for each %Vmax. From these results, the most sensitive indicators of cellular hypoxia leading to a reduction in muscle performance can be determined. Hemoglobin deoxygenation generally does not correlate with cellular hypoxia, although when the HbO2 drops below 30% saturation there is an increased incidence of cellular hypoxia. The [ADP], which is known to regulate mitochondrial function, has a close relation to the work, not to the hypoxia. On the other hand, the mitochondrial NADH does respond to cellular PO2. The degree of oxidation (NADH decrease) due to the ATP flux shifts with oxygen availability in mild to moderate hypoxia (at FiO2 down to 9%). As cellular hypoxia causes decreases in muscle performance (moderate to severe hypoxia), NADH is being reduced rather than oxidized with increasing workloads.

  14. Skeletal muscle progenitor cells and the role of Pax genes.

    Science.gov (United States)

    Buckingham, Margaret

    2007-01-01

    Satellite cells, which lie under the basal lamina of muscle fibres, are marked by the expression of Pax7, and in many muscles of Pax3 also. A pure population of satellite cells, isolated from a Pax3(GFP/+) mouse line by flow cytometry, contribute very efficiently to skeletal muscle regeneration and also self-renew, thus demonstrating their role as muscle stem cells. Pax3/7 regulates the entry of these cells into the myogenic programme via the activation of the myogenic determination gene, MyoD. Pax7 is also essential for the survival of satellite cells. This dual role underlines the importance of ensuring that a tissue stem cell that has lost its myogenic instruction should not be left to run amok, with the potential risk of tissue deregulation and cancer. A somite-derived population of Pax3/Pax7 positive cells is responsible for muscle growth during development and gives rise to the satellite cells of postnatal muscles. In the absence of both Pax3 and Pax7, these cells die or assume other cell fates. Pax3/7 lies genetically upstream of both MyoD and Myf5, which determine the skeletal muscle fate of these cells. To cite this article: M. Buckingham, C. R. Biologies 330 (2007).

  15. Muscle size explains low passive skeletal muscle force in heart failure patients.

    Science.gov (United States)

    Panizzolo, Fausto Antonio; Maiorana, Andrew J; Naylor, Louise H; Dembo, Lawrence G; Lloyd, David G; Green, Daniel J; Rubenson, Jonas

    2016-01-01

    Alterations in skeletal muscle function and architecture have been linked to the compromised exercise capacity characterizing chronic heart failure (CHF). However, how passive skeletal muscle force is affected in CHF is not clear. Understanding passive force characteristics in CHF can help further elucidate the extent to which altered contractile properties and/or architecture might affect muscle and locomotor function. Therefore, the aim of this study was to investigate passive force in a single muscle for which non-invasive measures of muscle size and estimates of fiber force are possible, the soleus (SOL), both in CHF patients and age- and physical activity-matched control participants. Passive SOL muscle force and size were obtained by means of a novel approach combining experimental data (dynamometry, electromyography, ultrasound imaging) with a musculoskeletal model. We found reduced passive SOL forces (∼30%) (at the same relative levels of muscle stretch) in CHF vs. healthy individuals. This difference was eliminated when force was normalized by physiological cross sectional area, indicating that reduced force output may be most strongly associated with muscle size. Nevertheless, passive force was significantly higher in CHF at a given absolute muscle length (non length-normalized) and likely explained by the shorter muscle slack lengths and optimal muscle lengths measured in CHF compared to the control participants. This later factor may lead to altered performance of the SOL in functional tasks such gait. These findings suggest introducing exercise rehabilitation targeting muscle hypertrophy and, specifically for the calf muscles, exercise that promotes muscle lengthening.

  16. Skeletal muscle volume following dehydration induced by exercise in heat.

    Science.gov (United States)

    Hackney, Kyle J; Cook, Summer B; Fairchild, Timothy J; Ploutz-Snyder, Lori L

    2012-09-04

    Intracellular skeletal muscle water is redistributed into the extracellular compartment during periods of dehydration, suggesting an associated decline in muscle volume. The purpose of this study was to evaluate skeletal muscle volume in active (knee extensors (KE)) and less active (biceps/triceps brachii, deltoid) musculature following dehydration induced by exercise in heat. Twelve participants (seven men, five women) cycled in the heat under two conditions: (1) dehydration (DHYD) resulting in 3% and 5% losses of estimated total body water (ETBW), which was assessed by changes in body mass, and (2) fluid replacement (FR) where 3% and 5% losses of ETBW were counteracted by intermittent (20 to 30 min) fluid ingestion via a carbohydrate-electrolyte beverage. During both conditions, serum osmolality and skeletal muscle volume (assessed by magnetic resonance imaging) were measured at baseline and at the 3% and 5% ETBW loss measurement points. In DHYD, serum osmolality increased at 3% (p = 0.005) and 5% (p FR decreased serum osmolality at the 5% loss of ETBW time point (p = 0.009). In DHYD, KE muscle volume declined from 1,464 ± 446 ml to 1,406 ± 425 ml (3.9%, p FR prevented the loss of KE muscle volume at 3% (1,430 ± 435 ml, p = 0.074) and 5% (1,431 ± 439 ml, p = 0.156) ETBW loss time points compared to baseline (1,445 ± 436 ml). Following exercise in the heat, the actively contracting muscles lost volume, while replacing lost fluids intermittently during exercise in heat prevented this decline. These results support the use of muscle volume as a marker of water loss.

  17. The Ca2+ influx through the mammalian skeletal muscle dihydropyridine receptor is irrelevant for muscle performance.

    Science.gov (United States)

    Dayal, Anamika; Schrötter, Kai; Pan, Yuan; Föhr, Karl; Melzer, Werner; Grabner, Manfred

    2017-09-07

    Skeletal muscle excitation-contraction (EC) coupling is initiated by sarcolemmal depolarization, which is translated into a conformational change of the dihydropyridine receptor (DHPR), which in turn activates sarcoplasmic reticulum (SR) Ca2+ release to trigger muscle contraction. During EC coupling, the mammalian DHPR embraces functional duality, as voltage sensor and L-type Ca2+ channel. Although its unique role as voltage sensor for conformational EC coupling is firmly established, the conventional function as Ca2+ channel is still enigmatic. Here we show that Ca2+ influx via DHPR is not necessary for muscle performance by generating a knock-in mouse where DHPR-mediated Ca2+ influx is eliminated. Homozygous knock-in mice display SR Ca2+ release, locomotor activity, motor coordination, muscle strength and susceptibility to fatigue comparable to wild-type controls, without any compensatory regulation of multiple key proteins of the EC coupling machinery and Ca2+ homeostasis. These findings support the hypothesis that the DHPR-mediated Ca2+ influx in mammalian skeletal muscle is an evolutionary remnant.In mammalian skeletal muscle, the DHPR functions as a voltage sensor to trigger muscle contraction and as a Ca2+ channel. Here the authors show that mice where Ca2+ influx through the DHPR is eliminated display no difference in skeletal muscle function, suggesting that the Ca2+ influx through this channel is vestigial.

  18. Skeletal muscle dysfunction in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Bozkanat Erkan

    2001-05-01

    Full Text Available Abstract It has become increasingly recognized that skeletal muscle dysfunction is common in patients with chronic obstructive pulmonary disease (COPD. Muscle strength and endurance are decreased, whereas muscle fatigability is increased. There is a reduced proportion of type I fibers and an increase in type II fibers. Muscle atrophy occurs with a reduction in fiber cross-sectional area. Oxidative enzyme activity is decreased, and measurement of muscle bioenergetics during exercise reveals a reduced aerobic capacity. Deconditioning is probably very important mechanistically. Other mechanisms that may be of varying importance in individual patients include chronic hypercapnia and/or hypoxia, nutritional depletion, steroid usage, and oxidative stress. Potential therapies include exercise training, oxygen supplementation, nutritional repletion, and administration of anabolic hormones.

  19. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle.

    Science.gov (United States)

    Yao, Li-Hua; Meng, Wei; Song, Rong-Feng; Xiong, Qiu-Ping; Sun, Wei; Luo, Zhi-Qiang; Yan, Wen-Wen; Li, Yu-Ping; Li, Xin-Ping; Li, Hai-Hang; Xiao, Peng

    2014-03-05

    Isolated toad gastrocnemius muscle is a typical skeletal muscle tissue that is frequently used to study the motor system because it is an important component of the motor system. This study investigates the effects of cordycepin on the skeletal muscle contractile function of isolated toad gastrocnemius muscles by electrical field stimulation. Results showed that cordycepin (20 mg/l to 100 mg/l) significantly decreased the contractile responses in a concentration-dependent manner. Cordycepin (50 mg/l) also produced a rightward shift of the contractile amplitude-stimulation intensity relationship, as indicated by the increases in the threshold stimulation intensity and the saturation stimulation intensity. However, the most notable result was that the maximum amplitude of the muscle contractile force was significantly increased under cordycepin application (122±3.4% of control). This result suggests that the skeletal muscle contractile function and muscle physical fitness to the external stimulation were improved by the decreased response sensitivity in the presence of cordycepin. Moreover, cordycepin also prevented the repetitive stimulation-induced decrease in muscle contractile force and increased the recovery amplitude and recovery ratio of muscle contraction. However, these anti-fatigue effects of cordycepin on muscle contraction during long-lasting muscle activity were absent in Ca2+-free medium or in the presence of all Ca2+ channels blocker (0.4 mM CdCl2). These results suggest that cordycepin can positively affect muscle performance and provide ergogenic and prophylactic benefits in decreasing skeletal muscle fatigue. The mechanisms involving excitation-coupled Ca2+ influxes are strongly recommended.

  20. Enhanced Myogenesis in adult skeletal muscle by transgenic expression of Myostatin Propeptide

    Science.gov (United States)

    Skeletal muscle growth and maintenance are essential for human health. One of the muscle regulatory genes, namely myostatin, a member of transforming growth factor-ß, plays a dominant role in the genetic control of muscle mass. Transgenic expression of myostatin propeptide in skeletal muscle showed ...

  1. Activity Dependent Signal Transduction in Skeletal Muscle

    Science.gov (United States)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  2. Pathology of skeletal muscle in fibromyalgia

    DEFF Research Database (Denmark)

    Drewes, A M; Andreasen, A; Schrøder, H D

    1993-01-01

    The value of muscle biopsy in fibromyalgia is still questioned. In this study we obtained 50 quadriceps biopsies from 20 patients and compared them blindly to 10 biopsies from five normal controls. Using light microscopy, histochemical and immunoenzymatic methods we found no definite evidence...

  3. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies......Skeletal muscle is well known to exhibit a high degree of plasticity depending on environmental changes, such as various oxygen concentrations. Studies of the oxygen-sensitive subunit alpha of hypoxia-inducible factor-1 (HIF-1) are difficult owing to the large variety of functionally diverse muscle......alpha mRNA and protein owing to their higher oxidative capacity. We have shown, in normoxic conditions, a higher HIF-1alpha protein expression in predominantly oxidative muscles than in predominantly glycolytic muscles. However, the HIF-1alpha mRNA expression pattern was not in agreement with the HIF-1...

  4. Bmal1 function in skeletal muscle regulates sleep.

    Science.gov (United States)

    Ehlen, J Christopher; Brager, Allison J; Baggs, Julie; Pinckney, Lennisha; Gray, Cloe L; DeBruyne, Jason P; Esser, Karyn A; Takahashi, Joseph S; Paul, Ketema N

    2017-07-20

    Sleep loss can severely impair the ability to perform, yet the ability to recover from sleep loss is not well understood. Sleep regulatory processes are assumed to lie exclusively within the brain mainly due to the strong behavioral manifestations of sleep. Whole-body knockout of the circadian clock gene Bmal1 in mice affects several aspects of sleep, however, the cells/tissues responsible are unknown. We found that restoring Bmal1 expression in the brains of Bmal1-knockout mice did not rescue Bmal1-dependent sleep phenotypes. Surprisingly, most sleep-amount, but not sleep-timing, phenotypes could be reproduced or rescued by knocking out or restoring BMAL1 exclusively in skeletal muscle, respectively. We also found that overexpression of skeletal-muscle Bmal1 reduced the recovery response to sleep loss. Together, these findings demonstrate that Bmal1 expression in skeletal muscle is both necessary and sufficient to regulate total sleep amount and reveal that critical components of normal sleep regulation occur in muscle.

  5. Skeletal muscle abnormalities and genetic factors related to vertical talus.

    Science.gov (United States)

    Merrill, Laura J; Gurnett, Christina A; Connolly, Anne M; Pestronk, Alan; Dobbs, Matthew B

    2011-04-01

    Congenital vertical talus is a fixed dorsal dislocation of the talonavicular joint and fixed equinus contracture of the hindfoot, causing a rigid deformity recognizable at birth. The etiology and epidemiology of this condition are largely unknown, but some evidence suggests it relates to aberrations of skeletal muscle. Identifying the tissue abnormalities and genetic causes responsible for vertical talus has the potential to lead to improved treatment and preventive strategies. We therefore (1) determined whether skeletal muscle abnormalities are present in patients with vertical talus and (2) identified associated congenital anomalies and genetic abnormalities in these patients. We identified associated congenital anomalies and genetic abnormalities present in 61 patients affected with vertical talus. We obtained abductor hallucis muscle biopsy specimens from the affected limbs of 11 of the 61 patients and compared the histopathologic characteristics with those of age-matched control subjects. All muscle biopsy specimens (n = 11) had abnormalities compared with those from control subjects including combinations of abnormal variation in muscle fiber size (n = 7), type I muscle fiber smallness (n = 6), and abnormal fiber type predominance (n = 5). Isolated vertical talus occurred in 23 of the 61 patients (38%), whereas the remaining 38 patients had associated nervous system, musculoskeletal system, and/or genetic and genomic abnormalities. Ten of the 61 patients (16%) had vertical talus in one foot and clubfoot in the other. Chromosomal abnormalities, all complete or partial trisomies, were identified in three patients with vertical talus who had additional congenital abnormalities. Vertical talus is a heterogeneous birth defect resulting from many diverse etiologies. Abnormal skeletal muscle biopsies are common in patients with vertical talus although it is unclear whether this is primary or secondary to the joint deformity. Associated anomalies are present in 62

  6. The creation of a measurable contusion injury in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Margaret N. Deane

    2014-02-01

    Full Text Available The effect that compressed air massage (CAM has on skeletal muscle has been ascertained by the morphological and morphometric evaluation of healthy vervet monkey and rabbit skeletal muscle. How CAM may influence the process of healing following a contusion injury is not known. To determine how CAM or other physiotherapeutic modalities may influence healing, it is necessary to create a minor injury that is both reproducible and quantifiable at the termination of a pre-determined healing period. An earlier study described changes in the morphology of skeletal muscle following a reproducible contusion injury. This study extended that work in that it attempted to quantify the ‘severity’ of such an injury. A 201 g, elongated oval-shaped weight was dropped seven times through a 1 m tube onto the left vastus lateralis muscle of four New Zealand white rabbits. Biopsies were obtained 6 days after injury from the left healing juxta-bone and sub-dermal muscle and uninjured (control right vastus lateralis of each animal. The tissue was fixed in formal saline, embedded in wax, cut and stained with haematoxylin and phosphotungstic haematoxylin. The muscle was examined by light microscopy and quantification of the severity of injury made using a modified, ‘in-house’ morphological index and by the comparative morphometric measurement of the cross-sectioned epimysium and myofibres in injured and control muscle. The results showed that a single contusion causes multiple, quantifiable degrees of injury from skin to bone – observations of particular importance to others wishing to investigate contusion injury in human or animal models.

  7. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    Science.gov (United States)

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  8. Imaging two-dimensional mechanical waves of skeletal muscle contraction.

    Science.gov (United States)

    Grönlund, Christer; Claesson, Kenji; Holtermann, Andreas

    2013-02-01

    Skeletal muscle contraction is related to rapid mechanical shortening and thickening. Recently, specialized ultrasound systems have been applied to demonstrate and quantify transient tissue velocities and one-dimensional (1-D) propagation of mechanical waves during muscle contraction. Such waves could potentially provide novel information on musculoskeletal characteristics, function and disorders. In this work, we demonstrate two-dimensional (2-D) mechanical wave imaging following the skeletal muscle contraction. B-mode image acquisition during multiple consecutive electrostimulations, speckle-tracking and a time-stamp sorting protocol were used to obtain 1.4 kHz frame rate 2-D tissue velocity imaging of the biceps brachii muscle contraction. The results present novel information on tissue velocity profiles and mechanical wave propagation. In particular, counter-propagating compressional and shear waves in the longitudinal direction were observed in the contracting tissue (speed 2.8-4.4 m/s) and a compressional wave in the transverse direction of the non-contracting muscle tissue (1.2-1.9 m/s). In conclusion, analysing transient 2-D tissue velocity allows simultaneous assessment of both active and passive muscle tissue properties. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction.

    Science.gov (United States)

    Moriondo, Andrea; Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela

    2015-02-01

    The mechanism through which the stresses developed in the diaphragmatic tissue during skeletal muscle contraction sustain local lymphatic function was studied in 10 deeply anesthetized, tracheotomized adult Wistar rats whose diaphragm was exposed after thoracotomy. To evaluate the direct effect of skeletal muscle contraction on the hydraulic intraluminal lymphatic pressures (Plymph) and lymphatic vessel geometry, the maximal contraction of diaphragmatic fibers adjacent to a lymphatic vessel was elicited by injection of 9.2 nl of 1 M KCl solution among diaphragmatic fibers while Plymph was recorded through micropuncture and vessel geometry via stereomicroscopy video recording. In lymphatics oriented perpendicularly to the longitudinal axis of muscle fibers and located at 900 μm from the vessel, Dmc enlarged to 131.1 ± 2.3% of Drest. In vessels parallel to muscle fibers, Dmc increased to 122.8 ± 2.9% of Drest. During contraction, Plymph decreased as much as 22.5 ± 2.6 cmH2O in all submesothelial superficial vessels, whereas it increased by 10.7 ± 5.1 cmH2O in deeper vessels running perpendicular to contracting muscle fibers. Hence, the three-dimensional arrangement of the diaphragmatic lymphatic network seems to be finalized to efficiently exploit the stresses exerted by muscle fibers during the contracting inspiratory phase to promote lymph formation in superficial submesothelial lymphatics and its further propulsion in deeper intramuscular vessels. Copyright © 2015 the American Physiological Society.

  10. Skeletal, cardiac, and smooth muscle failure in Duchenne muscular dystrophy.

    Science.gov (United States)

    Boland, B J; Silbert, P L; Groover, R V; Wollan, P C; Silverstein, M D

    1996-01-01

    The goals of this study were to describe the clinical course of skeletal, cardiac, and gastrointestinal muscle manifestations and trends in age at diagnosis and survival of Duchenne muscular dystrophy (DMD) patients. A retrospective cohort of 33 male patients with DMD, born between 1953 and 1983 and followed at the Mayo Clinic during their second decade of life, was studied. The mean age at DMD diagnosis was 4.6 years. Skeletal muscle weakness present in all patients at diagnosis progressed to wheelchair dependency in 32 patients (97%) by the age of 13 years (median age 10 years). Cardiac muscle failure developed in 5 patients (15%) (median age 21.5 years). Smooth muscle manifestations related to the digestive and urinary tracts occurred in 7 (21%) and 2 (6%) patients (median age 15 years), respectively. The gastrointestinal dilatations were primary in 2 patients or secondary to surgery or acute respiratory illness in 5 patients. By the end of the study period, 17 deaths had occurred (median age 17 years). Over time, there was a decrease in the time to DMD diagnosis (P = .05) but no significant change in survival (P = .44). Cardiac and smooth muscle manifestations occur late in the course of DMD. Clinical gastrointestinal symptoms related to smooth muscle function most often were secondary to surgery or a respiratory illness. In recent years, the diagnosis of DMD has been made at a younger age, but survival has not changed.

  11. Sarcocystis fayeri in skeletal muscle of horses with neuromuscular disease.

    Science.gov (United States)

    Aleman, Monica; Shapiro, Karen; Sisó, Silvia; Williams, Diane C; Rejmanek, Daniel; Aguilar, Beatriz; Conrad, Patricia A

    2016-01-01

    Recent reports of Sarcocystis fayeri-induced toxicity in people consuming horse meat warrant investigation on the prevalence and molecular characterization of Sarcocystis spp. infection in horses. Sarcocysts in skeletal muscle of horses have been commonly regarded as an incidental finding. In this study, we investigated the prevalence of sarcocysts in skeletal muscle of horses with neuromuscular disease. Our findings indicated that S. fayeri infection was common in young mature horses with neuromuscular disease and could be associated with myopathic and neurogenic processes. The number of infected muscles and number of sarcocysts per muscle were significantly higher in diseased than in control horses. S. fayeri was predominantly found in low oxidative highly glycolytic myofibers. This pathogen had a high glycolytic metabolism. Common clinical signs of disease included muscle atrophy, weakness with or without apparent muscle pain, gait deficits, and dysphagia in horses with involvement of the tongue and esophagus. Horses with myositis were lethargic, apparently painful, stiff, and reluctant to move. Similar to humans, sarcocystosis and cardiomyopathy can occur in horses. This study did not establish causality but supported a possible association (8.9% of cases) with disease. The assumption of Sarcocysts spp. being an incidental finding in every case might be inaccurate. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    M Carmen Valero

    Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.

  13. Leucine supplementation improves skeletal muscle regeneration after cryolesion in rats.

    Directory of Open Access Journals (Sweden)

    Marcelo G Pereira

    Full Text Available This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old rats were subjected or not to leucine supplementation (1.35 g/kg per day started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases.

  14. Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats

    Science.gov (United States)

    Pereira, Marcelo G.; Baptista, Igor L.; Carlassara, Eduardo O. C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.

    2014-01-01

    This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases. PMID:24416379

  15. Exercise, GLUT4, and skeletal muscle glucose uptake.

    Science.gov (United States)

    Richter, Erik A; Hargreaves, Mark

    2013-07-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.

  16. Sodium nitrate ingestion increases skeletal muscle nitrate content in humans.

    Science.gov (United States)

    Nyakayiru, Jean; Kouw, Imre W K; Cermak, Naomi M; Senden, Joan M; van Loon, Luc J C; Verdijk, Lex B

    2017-09-01

    Nitrate ([Formula: see text]) ingestion has been shown to have vasoactive and ergogenic effects that have been attributed to increased nitric oxide (NO) production. Recent observations in rodents suggest that skeletal muscle tissue serves as an endogenous [Formula: see text] "reservoir." The present study determined [Formula: see text] contents in human skeletal muscle tissue in a postabsorptive state and following ingestion of a sodium nitrate bolus (NaNO 3 ). Seventeen male, type 2 diabetes patients (age 72 ± 1 yr; body mass index 26.5 ± 0.5 kg/m 2 ; means ± SE) were randomized to ingest a dose of NaNO 3 (NIT; 9.3 mg [Formula: see text]/kg body wt) or placebo (PLA; 8.8 mg NaCl/kg body wt). Blood and muscle biopsy samples were taken before and up to 7 h following [Formula: see text] or placebo ingestion to assess [Formula: see text] [and plasma nitrite ([Formula: see text])] concentrations. Additionally, basal plasma and muscle [Formula: see text] concentrations were assessed in 10 healthy young (CON-Y; age 21 ± 1 yr) and 10 healthy older (CON-O; age 75 ± 1 yr) control subjects. In all groups, baseline [Formula: see text] concentrations were higher in muscle (NIT, 57 ± 7; PLA, 61 ± 7; CON-Y, 80 ± 10; CON-O, 54 ± 6 µmol/l) than in plasma (NIT, 35 ± 3; PLA, 32 ± 3; CON-Y, 38 ± 3; CON-O, 33 ± 3 µmol/l; P ≤ 0.011). Ingestion of NaNO 3 resulted in a sustained increase in plasma [Formula: see text], plasma [Formula: see text], and muscle [Formula: see text] concentrations (up to 185 ± 25 µmol/l) in the NIT group (time effect P nitrate ingestion is usually limited to the changes observed in plasma nitrate and nitrite concentrations. The present investigation assessed the skeletal muscle nitrate content in humans during the postabsorptive state, as well as following dietary nitrate ingestion. We show that basal nitrate content is higher in skeletal muscle tissue than in plasma and that ingestion of a dietary nitrate bolus strongly increases both plasma

  17. Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development

    Directory of Open Access Journals (Sweden)

    Hongjia Ouyang

    2017-05-01

    Full Text Available Embryonic growth and development of skeletal muscle is a major determinant of muscle mass, and has a significant effect on meat production in chicken. To assess the protein expression profiles during embryonic skeletal muscle development, we performed a proteomics analysis using isobaric tags for relative and absolute quantification (iTRAQ in leg muscle tissues of female Xinghua chicken at embryonic age (E 11, E16, and 1-day post hatch (D1. We identified 3,240 proteins in chicken embryonic muscle and 491 of them were differentially expressed (fold change ≥ 1.5 or ≤ 0.666 and p < 0.05. There were 19 up- and 32 down-regulated proteins in E11 vs. E16 group, 238 up- and 227 down-regulated proteins in E11 vs. D1 group, and 13 up- and 5 down-regulated proteins in E16 vs. D1 group. Protein interaction network analyses indicated that these differentially expressed proteins were mainly involved in the pathway of protein synthesis, muscle contraction, and oxidative phosphorylation. Integrative analysis of proteome and our previous transcriptome data found 189 differentially expressed proteins that correlated with their mRNA level. The interactions between these proteins were also involved in muscle contraction and oxidative phosphorylation pathways. The lncRNA-protein interaction network found four proteins DMD, MYL3, TNNI2, and TNNT3 that are all involved in muscle contraction and may be lncRNA regulated. These results provide several candidate genes for further investigation into the molecular mechanisms of chicken embryonic muscle development, and enable us to better understanding their regulation networks and biochemical pathways.

  18. PTRH2 gene mutation causes progressive congenital skeletal muscle pathology.

    Science.gov (United States)

    Doe, Jinger; Kaindl, Angela M; Jijiwa, Mayumi; de la Vega, Michelle; Hu, Hao; Griffiths, Genevieve S; Fontelonga, Tatiana M; Barraza, Pamela; Cruz, Vivian; Van Ry, Pam; Ramos, Joe W; Burkin, Dean J; Matter, Michelle L

    2017-04-15

    Peptidyl-tRNA hydrolase 2 (PTRH2) regulates integrin-mediated pro-survival and apoptotic signaling. PTRH2 is critical in muscle development and regulates myogenic differentiation. In humans a biallelic mutation in the PTRH2 gene causes infantile-onset multisystem disease with progressive muscle weakness. We report here that the Ptrh2 knockout mouse model recapitulates the progressive congenital muscle pathology observed in patients. Ptrh2 null mice demonstrate multiple degenerating and regenerating muscle fibers, increased central nuclei, elevated creatine kinase activity and endomysial fibrosis. This progressive muscle pathology resembles the muscular dystrophy phenotype in humans and mice lacking the α7 integrin. We demonstrate that in normal muscle Ptrh2 associates in a complex with the α7β1 integrin at the sarcolemma and Ptrh2 expression is decreased in α7 integrin null muscle. Furthermore, Ptrh2 expression is altered in skeletal muscle of classical congenital muscular dystrophy mouse models. Ptrh2 levels were up-regulated in dystrophin deficient mdx muscle, which correlates with the elevated levels of the α7β1 integrin observed in mdx muscle and Duchenne muscular dystrophy patients. Similar to the α7 integrin, Ptrh2 expression was decreased in laminin-α2 dyW null gastrocnemius muscle. Our data establishes a PTRH2 mutation as a novel driver of congenital muscle degeneration and identifies a potential novel target to treat muscle myopathies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Adaptations of mouse skeletal muscle to low intensity vibration training

    Science.gov (United States)

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  20. Skeletal muscle fiber characteristics and oxidative capacity in hemiparetic stroke survivors

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Dalgas, Ulrik; Overgaard, Kristian

    2016-01-01

    INTRODUCTION: Skeletal muscle is changed after stroke, but conflicting data exist concerning muscle morphology and oxidative enzymatic capacity. METHODS: In 36 chronic stroke patients bilateral muscle biopsies were analysed, and fiber type proportions and cross sectional areas were determined by ...

  1. Seven skeletal muscles rich in slow muscle fibers may function to sustain neutral position in the rodent hindlimb.

    Science.gov (United States)

    Hitomi, Yoshiaki; Kizaki, Takako; Watanabe, Sumiko; Matsumura, George; Fujioka, Yasunori; Haga, Shukoh; Izawa, Tetsuya; Taniguchi, Naoyuki; Ohno, Hideki

    2005-01-01

    Skeletal muscles consist of slow-twitch and fast-twitch muscle fibers, which have distinct physiological and biochemical properties. The muscle fiber composition determines the contractile velocity and fatigability of a particular skeletal muscle. We analyzed the systemic distribution of slow muscle fibers in all rodent skeletal muscles by myosin ATPase staining and found that only seven hindlimb skeletal muscles were extremely rich in slow muscle fibers. These included the mouse piriformis (56.5%), gluteus minimus (35.7%), vastus intermedius (24.7%), quadratus femoris (69.9%), adductor brevis (44.3%), gracilis (24.6%), and soleus muscles (35.1%). In mice, the relative proportion of slow muscle fibers did not exceed 15% in skeletal muscles in other regions. The distribution of slow muscle fibers was well conserved in rats and rabbits. The soleus muscle is an important antigravity muscle in both rodents and humans; therefore, these skeletal muscles rich in slow muscle fibers might play an important role in sustaining neutral alignment of the lower extremity.

  2. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    OpenAIRE

    Kunihiro Sakuma; Akihiko Yamaguchi

    2010-01-01

    Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, e...

  3. Sarcoglycans in human skeletal muscle and human cardiac muscle: a confocal laser scanning microscope study.

    Science.gov (United States)

    Anastasi, G; Cutroneo, G; Trimarchi, F; Rizzo, G; Bramanti, P; Bruschetta, D; Fugazzotto, D; Cinelli, M P; Soscia, A; Santoro, G; Favaloro, A

    2003-01-01

    Sarcoglycans are a subcomplex of transmembrane proteins which are part of the dystrophin-glycoprotein complex. They are expressed in the skeletal, cardiac and smooth muscle. Although numerous studies have been conducted on the sarcoglycan subcomplex in skeletal and cardiac muscle, the manner of the distribution and localization of these proteins along the nonjunctional sarcolemma is not clear. We therefore carried out an indirect immunofluorescence study on surgical biopsies of normal human skeletal muscle and of healthy human atrial myocardium biopsies of patients affected by valvulopathy. Our results indicate that, in skeletal muscle, sarcoglycans have a costameric distribution and all colocalize with each other. Only in a few cases did the alpha-sarcoglycan not colocalize with other sarcoglycans. In addition, these glycoproteins can be localized in different fibers either in the regions of the sarcolemma over band I or band A. In cardiac muscle, our results show a costameric distribution of all proteins examined and, unlike in skeletal muscle, they show a constant colocalization of all sarcoglycans with each other, along with a consistent localization of these proteins in the region of the sarcolemma over band I. In our opinion, this situation seems to confirm the hypothesis of a correlation between the region of the sarcolemma occupied by costameric proteins and the metabolic type, fast or slow, of the muscular fibers. These data, besides opening a new line of research in understanding interactions between the sarcoglycans and other transmembrane proteins, could also be extended to skeletal and cardiac muscles affected by neuromuscular and cardiovascular pathologies to understand possible structural alterations. Copyright 2003 S. Karger AG, Basel

  4. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  5. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  6. Insulin resistance and mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Dela, Flemming; Helge, Jørn Wulff

    2013-01-01

    are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin...... resistance. Complementary to this also specific defects of components in the respiratory chain in the mitochondria have been suggested to play a role in insulin resistance. A key element in these mechanistic suggestions is inability to handle substrate fluxes and subsequently an accumulation of ectopic...... intramyocellular lipids, interfering with insulin signaling. In this review we will present the prevailing view-points and argue for the unlikelihood of this scenario being instrumental in human insulin resistance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction....

  7. Skeletal Muscle Metastasis from a Cecal Mucinous Adenocarcinoma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hyun; Lee, Young Hwan; Jung, Kyung Jae [Catholic University, Daegu (Korea, Republic of); Park, Young Chan; Kim, Ho Kyun; Cho, Seung Hyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-11-15

    Skeletal muscle metastasis is a relatively rare finding in the setting of mucinous adenocarcinoma of the colon, and it typically exhibits nonspecific imaging findings. We report a case of a skeletal muscle metastasis originating from mucinous adenocarcinoma of the cecum. The skeletal lesion closely resembled intramuscular myxoma with regard to imaging findings, due to abundant mucin and internal calcification.

  8. Intense and exhaustive exercise induce oxidative stress in skeletal muscle

    Directory of Open Access Journals (Sweden)

    T Thirumalai

    2011-03-01

    Full Text Available Objective: To assess the oxidative stress and antioxidant defense system in the skeletal muscle of male albino rats subjected to strenuous exercise programme. Methods: Wistar strain albino rats were subjected to exhaustive swimming exercise programme daily for a period of five days. The thiobarbituric acid reactive substances (TBARS, conjugated dienes, superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase were measured in the gastrocnemius muscle of the exercised animals. Results: The elevated levels of TBARS and conjugated dienes indicated the oxidative stress in the gastrocemius muscle of the exercised animals. The depleted activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in the exercise animals indicated the increased oxidative stress and decreased antioxidative defense system in the muscle. Conclusions: The study suggests that prolonged strenuous exercise programme can induce oxidative stress and therefore an optimal level of exercise schedule should be advocated to obtain the maximum benefit of exercise programme.

  9. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review......Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase...

  10. Developmental programming of fetal skeletal muscle and adipose tissue development.

    Science.gov (United States)

    Yan, Xu; Zhu, Mei-Jun; Dodson, Michael V; Du, Min

    2013-01-01

    All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the proliferation of myogenic precursor cells and reduces the number of muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal stem cells, molecular events which regulate the commitment of stem cells to different lineages directly impact fetal muscle and adipose tissue development. Recent studies indicate that microRNA is intensively involved in myogenic and adipogenic differentiation from mesenchymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell lineage commitment during fetal muscle and adipose tissue development.

  11. Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism

    DEFF Research Database (Denmark)

    Li, Mengyao; Vienberg, Sara G; Bezy, Olivier

    2015-01-01

    metabolism by generating mice in which PKCδ was deleted specifically in muscle using Cre-lox recombination. Deletion of PKCδ in muscle improved insulin signaling in young mice, especially at low insulin doses; however, this did not change glucose tolerance or insulin tolerance tests done with pharmacological......-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ......Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose...

  12. Regulation of exercise-induced lipid metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Kiens, Bente

    2014-01-01

    Exercise increases the utilization of lipids in muscle. The sources of lipids are long-chain fatty acids taken up from the plasma and fatty acids released from stores of intramuscular triacylglycerol by the action of intramuscular lipases. In the present review, we focus on the role of fatty acid....../muscle contractions. This occurs independently of AMP-activated protein kinase, and data suggest that Ca(2+)-related signalling is responsible. The FAT/CD36 has an important role; long-chain fatty acid uptake is markedly decreased in FAT/CD36 knockout mice during contractions/exercise compared with wild-type control...... mice. In skeletal muscle, 98% of the lipase activity is accounted for by adipose triglyceride lipase and hormone-sensitive lipase. Give that inhibition or knockout of hormone-sensitive lipase does not impair lipolysis in muscle during contraction, the data point to an important role of adipose...

  13. Vitamin D and skeletal muscle function in athletes.

    Science.gov (United States)

    von Hurst, Pamela R; Beck, Kathryn L

    2014-11-01

    To highlight recently published data about the vitamin D status of athletes, and effect of vitamin D supplementation on muscle strength and performance in the athletic population.The vitamin D receptor exists in skeletal muscle, and muscle weakness has been reported in individuals who are severely deficient [25(OH)D athletic performance. Athletes appear to have the same risk of vitamin D deficiency and seasonal variance in status as nonathletic members of the same population, with the exception of athletes who train and compete indoors whose risk of deficiency is somewhat greater. Interventions with vitamin D supplements have had mixed results, with a positive effect on muscle function observed only in participants with insufficient status [25(OH)D supplementation in athletic populations who are vitamin D deficient, and none which have been able to establish the ideal 25(OH)D concentration for optimum performance.

  14. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    1. The present study tested the hypothesis that the level of xanthine oxidase is elevated in injured human skeletal muscle in association with inflammatory events. Seven male subjects performed five bouts of strenuous one-legged eccentric exercise. Muscle biopsies from both the exercised...... and the control leg, together with venous blood samples, were obtained prior to exercise and at 45 min, 24, 48 and 96 h after exercise. The time courses of xanthine oxidase immunoreactivity and indicators of muscle damage and inflammation were examined. 2. The number of xanthine oxidase structures observed...... by immunohistological methods in the exercised muscle was up to eightfold higher than control from day 1 to day 4 after exercise (P

  15. Exploring the whereabouts of GLUT4 in skeletal muscle (review)

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Ralston, Evelyn

    2002-01-01

    The glucose transporter GLUT4 is expressed in muscle, fat cells, brain and kidney. In contrast to other glucose transporters, GLUT4 in unstimulated cells is mostly intracellular. Stimuli such as insulin and muscle contractions then cause the translocation of GLUT4 to the cell surface. Questions...... related to GLUT4 storage compartments, trafficking to the surface membrane, and nature of the intracellular pools, have kept many groups busy for the past 20 years. Yet, one of the main questions in the field remains the universality of GLUT4 features. Can one extrapolate work done on fat cells to muscle...... or brain? Or vice-versa? Can one use cultures to predict GLUT4 behaviour in fully differentiated tissues? This review summarizes the authors' knowledge of GLUT4 biology in skeletal muscle, which is the predominant tissue for glucose homeostasis. The results are compared to those obtained with the fat cell...

  16. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...... in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise...... may represent a mechanism whereby contracting muscle fibres are protected against cellular stress and injury....

  17. Ultrasound guided needle biopsy of skeletal muscle in neuromuscular disease

    DEFF Research Database (Denmark)

    Lindequist, S; Schrøder, H D; Larsen, C

    1990-01-01

    Guided by ultrasonography percutaneous needle biopsy of skeletal muscle was performed in 24 patients, using the one hand held Biopty system and a 2 mm Tru-Cut needle. The specimens were graded with regard to diagnostic quality and utility and almost all specimens (96%) were of highest quality....... The use of ultrasonography was helpful in selecting a suitable area for the biopsy and vascular structures could be avoided. The procedure was well tolerated and easy to perform, and no complications were recorded....

  18. An in vitro model of skeletal muscle volume regulation.

    Directory of Open Access Journals (Sweden)

    Anna Wibberley

    Full Text Available Hypertonic media causes cells to shrink due to water loss through aquaporin channels. After acute shrinkage, cells either regulate their volume or, alternatively, undergo a number of metabolic changes which ultimately lead to cell death. In many cell types, hypertonic shrinkage is followed by apoptosis. Due to the complex 3D morphology of skeletal muscle and the difficulty in obtaining isolated human tissue, we have begun skeletal muscle volume regulation studies using the human skeletal muscle cell line TE671RD. In this study we investigated whether hypertonic challenge of the human skeletal muscle cell line TE671RD triggered cell death or evoked a cell volume recovery response.The cellular volume of TE671RD cells was calculated from the 2D surface area. Cell death was assessed by both the trypan blue live/dead assay and the TUNEL assay.Medium osmolality was increased by addition of up to 200 mM sucrose. Addition of 200 mM sucrose resulted in mean cell shrinkage of 44±1% after 30 mins. At later time points (2 and 4 hrs two separate cell subpopulations with differing mean cell volume became apparent. The first subpopulation (15±2% of the total cell number continued to shrink whereas the second subpopulation had an increased cell volume. Cell death was observed in a small proportion of cells (approximately 6-8%.We have established that a substantial proportion of TE671RD cells respond to hypertonic challenge with RVI, but that these cells are resistant to hypertonicity triggered cell death.

  19. An in vitro model of skeletal muscle volume regulation.

    Science.gov (United States)

    Wibberley, Anna; Staunton, Caroline A; Feetham, Claire H; Vereninov, Alexey A; Barrett-Jolley, Richard

    2015-01-01

    Hypertonic media causes cells to shrink due to water loss through aquaporin channels. After acute shrinkage, cells either regulate their volume or, alternatively, undergo a number of metabolic changes which ultimately lead to cell death. In many cell types, hypertonic shrinkage is followed by apoptosis. Due to the complex 3D morphology of skeletal muscle and the difficulty in obtaining isolated human tissue, we have begun skeletal muscle volume regulation studies using the human skeletal muscle cell line TE671RD. In this study we investigated whether hypertonic challenge of the human skeletal muscle cell line TE671RD triggered cell death or evoked a cell volume recovery response. The cellular volume of TE671RD cells was calculated from the 2D surface area. Cell death was assessed by both the trypan blue live/dead assay and the TUNEL assay. Medium osmolality was increased by addition of up to 200 mM sucrose. Addition of 200 mM sucrose resulted in mean cell shrinkage of 44±1% after 30 mins. At later time points (2 and 4 hrs) two separate cell subpopulations with differing mean cell volume became apparent. The first subpopulation (15±2% of the total cell number) continued to shrink whereas the second subpopulation had an increased cell volume. Cell death was observed in a small proportion of cells (approximately 6-8%). We have established that a substantial proportion of TE671RD cells respond to hypertonic challenge with RVI, but that these cells are resistant to hypertonicity triggered cell death.

  20. Computed tomography of skeletal muscles in neuromuscular disease

    Energy Technology Data Exchange (ETDEWEB)

    Rodiek, S.O.; Kuether, G.

    1985-06-01

    CT-documentation of skeletal muscular lesions caused by neuromuscular diseases implies an essential contribution to conventional techniques in the macroscopic field. Size, distribution and degree of lesions as well as compensatory mechanisms are proved thereby. We report about the different effects on muscle appearance referring to 106 patients of our own experience in amyotrophic lateral sclerosis, spinal muscular atrophy, poliomyelitis, polyradiculitis, polyneuropathy as well as peripheral traumatic nerve lesions.

  1. The Impact of Shiftwork on Skeletal Muscle Health

    OpenAIRE

    Brad Aisbett; Dominique Condo; Evelyn Zacharewicz; Séverine Lamon

    2017-01-01

    (1) Background: About one in four workers undertake shift rosters that fall outside the traditional 7 a.m.?6 p.m. scheduling. Shiftwork alters workers? exposure to natural and artificial light, sleep patterns, and feeding patterns. When compared to the rest of the working population, shiftworkers are at a greater risk of developing metabolic impairments over time. One fundamental component of metabolic health is skeletal muscle, the largest organ in the body. However, cause-and-effect relatio...

  2. Using exercise training to understand control of skeletal muscle metabolism.

    Science.gov (United States)

    Gibala, Martin J

    2017-01-01

    Bengt Saltin believed that exercise was the unsurpassed tool to study human integrative physiology. He demonstrated this over the course of his career by employing physical training as a model to advance our understanding of skeletal muscle metabolic control and the impact of physical activity on performance and health. Bengt was also a pioneer in advocating the concept of exercise is medicine. His scientific curiosity was perhaps exceeded only by his generosity.

  3. Prior knowledge, random walks and human skeletal muscle segmentation.

    Science.gov (United States)

    Baudin, P Y; Azzabou, N; Carlier, P G; Paragios, Nikos

    2012-01-01

    In this paper, we propose a novel approach for segmenting the skeletal muscles in MRI automatically. In order to deal with the absence of contrast between the different muscle classes, we proposed a principled mathematical formulation that integrates prior knowledge with a random walks graph-based formulation. Prior knowledge is represented using a statistical shape atlas that once coupled with the random walks segmentation leads to an efficient iterative linear optimization system. We reveal the potential of our approach on a challenging set of real clinical data.

  4. High triacylglycerol turnover rate in human skeletal muscle

    DEFF Research Database (Denmark)

    Sacchetti, Massimo; Saltin, Bengt; Olsen, David B

    2004-01-01

    could be due to the observed decline in plasma insulin concentration (-74%, P skeletal muscle in post-absorptive healthy individuals is esterified into IMTAG, due to its high turnover rate (29 h pool(-1)). An increase in FA level...... into IMTAG in vastus lateralis muscle was determined during two consecutive 4-h periods (2-6 h and 6-10 h). Fifty to sixty per cent of the FA taken up from the circulation were esterified into IMTAG, whereas 32 and 42% were oxidized between 2-6 and 6-10 h, respectively. IMTAG fractional synthesis rate was 3...

  5. Norepinephrine spillover from skeletal muscle during exercise in humans

    DEFF Research Database (Denmark)

    Savard, G K; Richter, Erik; Strange, S

    1989-01-01

    -legged knee extension either alone or in combination with the knee extensors of the other leg and/or with the arms. The range of work intensities varied between 24 and 71% (mean) of subjects' maximal aerobic capacity (% VO2max). Leg blood flow, measured in the femoral vein by thermodilution, was determined...... in sympathetic nervous activity to skeletal muscle, either resting or working at a constant load, is not associated with any significant neurogenic vasoconstriction and reduction in flow or conductance through the muscle vascular bed, during whole body exercise demanding up to 71% VO2max....

  6. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan

    2012-01-01

    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene...... methylation of PGC-1a, PDK4, and PPAR-d was markedly decreased in mouse soleus muscles 45 min after ex vivo contraction. In L6 myotubes, caffeine exposure induced gene hypomethylation in parallel with an increase in the respective mRNA content. Collectively, our results provide evidence that acute gene...

  7. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  8. Neurological and Motor Disorders: TRPC in the Skeletal Muscle.

    Science.gov (United States)

    Saüc, Sophie; Frieden, Maud

    2017-01-01

    Transient receptor potential canonical (TRPC) channels belong to the large family of TRPs that are mostly nonselective cation channels with a great variety of gating mechanisms. TRPC are composed of seven members that can all be activated downstream of agonist-induced phospholipase C stimulation, but some members are also stretch-activated and/or are part of the store-operated Ca(2+) entry (SOCE) pathway. Skeletal muscles generate contraction via an explosive increase of cytosolic Ca(2+) concentration resulting almost exclusively from sarcoplasmic reticulum Ca(2+) channel opening. Even if neglected for a long time, it is now commonly accepted that Ca(2+) entry via SOCE and other routes is essential to sustain contractions of the skeletal muscle. In addition, Ca(2+) influx is required during muscle regeneration, and alteration of the influx is associated with myopathies. In this chapter, we review the implication of TRPC channels at different stages of muscle regeneration, in adult muscle fibers, and discuss their implication in myopathies.

  9. Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction

    Science.gov (United States)

    Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.

    2017-02-01

    Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.

  10. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  11. Effect of microwave electromagnetic field on skeletal muscle fibre activity.

    Science.gov (United States)

    Radicheva, N; Mileva, K; Vukova, T; Georgieva, B; Kristev, I

    2002-07-01

    The aim of the present study was to investigate the influence of microwave irradiation on fatiguing activity of isolated frog skeletal muscle fibres. The changes in the electrical and mechanical activity were used as criteria for the exposure effects. Repetitive suprathreshold stimulation with interstimulus interval of 200 ms for 3 min was applied. Intracellular (ICAP) and extracellular (ECAP) action potentials and twitch contractions (Tw) of muscle fibres after 1 hour microwave exposure (2.45 GHz, 20 mW/cm( 2) power density) were compared with those recorded after one hour sham exposure (control). The duration of uninterrupted activity in the trial (endurance time; ET) was not significantly affected by microwave field exposure. After microwave irradiation, the ICAP amplitude was higher, the rising time was shorter, and the resting membrane potential was more negative compared to controls. There was a slower rate of parameters changes during ET in potentials obtained from irradiated fibres. Microwave exposure increased the propagation velocity of excitation, the ECAP and Tw amplitudes, as well as shortened their time parameters. We concluded that a 2.45 GHz microwave field possesses a stimulating effect on muscle fibre activity, which is in part due to its specific, non-thermal properties. The microwave induced-changes in muscle fibre activity may reduce development of skeletal muscle fatigue.

  12. Skeletal muscle molecular alterations precede whole-muscle dysfunction in NYHA Class II heart failure patients

    Directory of Open Access Journals (Sweden)

    Godard MP

    2012-11-01

    Full Text Available Michael P Godard,1 Samantha A Whitman,2 Yao-Hua Song,3 Patrice Delafontaine41Department of Nutrition and Kinesiology, University of Central Missouri, Warrensburg, MO, USA; 2Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ, USA; 3Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China; 4Tulane University School of Medicine, Section of Cardiology, New Orleans, LA, USABackground: Heart failure (HF, a debilitating disease in a growing number of adults, exerts structural and neurohormonal changes in both cardiac and skeletal muscles. However, these alterations and their affected molecular pathways remain uncharacterized. Disease progression is known to transform skeletal muscle fiber composition by unknown mechanisms. In addition, perturbation of specific hormonal pathways, including those involving skeletal muscle insulin-like growth factor-1 (IGF-1 and insulin-like growth factor-binding protein-5 (IGFB-5 appears to occur, likely affecting muscle metabolism and regeneration. We hypothesized that changes in IGF-1 and IGFB-5 mRNA levels correlate with the transformation of single–skeletal muscle fiber myosin heavy chain isoforms early in disease progression, making these molecules valuable markers of skeletal muscle changes in heart failure.Materials and methods: To investigate these molecules during “early” events in HF patients, we obtained skeletal muscle biopsies from New York Heart Association (NYHA Class II HF patients and controls for molecular analyses of single fibers, and we also quantified isometric strength and muscle size.Results: There were more (P < 0.05 single muscle fibers coexpressing two or more myosin heavy chains in the HF patients (30% ± 7% compared to the control subjects (13% ± 2%. IGF-1 and IGFBP-5 expression was fivefold and 15-fold lower in patients with in HF compared to control subjects (P < 0.05, respectively. Strikingly

  13. Skeletal Muscle Responses to Negative Energy Balance: Effects of Dietary Protein12

    Science.gov (United States)

    Carbone, John W.; McClung, James P.; Pasiakos, Stefan M.

    2012-01-01

    Sustained periods of negative energy balance decrease body mass due to losses of both fat and skeletal muscle mass. Decreases in skeletal muscle mass are associated with a myriad of negative consequences, including suppressed basal metabolic rate, decreased protein turnover, decreased physical performance, and increased risk of injury. Decreases in skeletal muscle mass in response to negative energy balance are due to imbalanced rates of muscle protein synthesis and degradation. However, the underlying physiological mechanisms contributing to the loss of skeletal muscle during energy deprivation are not well described. Recent studies have demonstrated that consuming dietary protein at levels above the current recommended dietary allowance (0.8 g·kg−1·d−1) may attenuate the loss of skeletal muscle mass by affecting the intracellular regulation of muscle anabolism and proteolysis. However, the specific mechanism by which increased dietary protein spares skeletal muscle through enhanced molecular control of muscle protein metabolism has not been elucidated. This article reviews the available literature related to the effects of negative energy balance on skeletal muscle mass, highlighting investigations that assessed the influence of varying levels of dietary protein on skeletal muscle protein metabolism. Further, the molecular mechanisms that may contribute to the regulation of skeletal muscle mass in response to negative energy balance and alterations in dietary protein level are described. PMID:22516719

  14. Methods for the Organogenesis of Skeletal Muscle in Tissue Culture

    Science.gov (United States)

    Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph

    1997-01-01

    Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.

  15. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type...... CSA increased exclusively with Whey-Conc (P hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P ...-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose...

  16. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  17. Skeletal muscle expression of the adhesion-GPCR CD97: CD97 deletion induces an abnormal structure of the sarcoplasmatic reticulum but does not impair skeletal muscle function

    NARCIS (Netherlands)

    Zyryanova, Tatiana; Schneider, Rick; Adams, Volker; Sittig, Doreen; Kerner, Christiane; Gebhardt, Claudia; Ruffert, Henrik; Glasmacher, Stefan; Hepp, Pierre; Punkt, Karla; Neuhaus, Jochen; Hamann, Jörg; Aust, Gabriela

    2014-01-01

    CD97 is a widely expressed adhesion class G-protein-coupled receptor (aGPCR). Here, we investigated the presence of CD97 in normal and malignant human skeletal muscle as well as the ultrastructural and functional consequences of CD97 deficiency in mice. In normal human skeletal muscle, CD97 was

  18. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    Science.gov (United States)

    Deane, Colleen S; Wilkinson, Daniel J; Phillips, Bethan E; Smith, Kenneth; Etheridge, Timothy; Atherton, Philip J

    2017-04-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1 ) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2 ) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. Copyright © 2017 the American Physiological Society.

  19. Signalling and the control of skeletal muscle size

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Anthony [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom); Patel, Ketan, E-mail: ketan.patel@reading.ac.uk [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom)

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  20. Skeletal Muscle Channelopathies: Rare Disorders with Common Pediatric Symptoms.

    Science.gov (United States)

    Matthews, Emma; Silwal, Arpana; Sud, Richa; Hanna, Michael G; Manzur, Adnan Y; Muntoni, Francesco; Munot, Pinki

    2017-09-01

    To ascertain the presenting symptoms of children with skeletal muscle channelopathies to promote early diagnosis and treatment. Retrospective case review of 38 children with a skeletal muscle channelopathy attending the specialist pediatric neuromuscular service at Great Ormond Street Hospital over a 15-year period. Gait disorder and leg cramps are a frequent presentation of myotonic disorders (19 of 29). Strabismus or extraocular myotonia (9 of 19) and respiratory and/or bulbar symptoms (11 of 19) are common among those with sodium channelopathy. Neonatal hypotonia was observed in periodic paralysis. Scoliosis and/or contractures were demonstrated in 6 of 38 children. School attendance or ability to engage fully in all activities was often limited (25 of 38). Children with skeletal muscle channelopathies frequently display symptoms that are uncommon in adult disease. Any child presenting with abnormal gait, leg cramps, or strabismus, especially if intermittent, should prompt examination for myotonia. Those with sodium channel disease should be monitored for respiratory or bulbar complications. Neonatal hypotonia can herald periodic paralysis. Early diagnosis is essential for children to reach their full educational potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pathological characteristics of glycogen storage disease III in skeletal muscle.

    Science.gov (United States)

    Gershen, Leah D; Prayson, Brigid E; Prayson, Richard A

    2015-10-01

    We report a 25-year-old man with glycogenosis III who presented with a progressive 2 year history of fatigue, hand stiffness and cramping. The glycogenoses are a group of rare metabolic disorders which develop as a result of deficiencies in various enzymes involved in the metabolism of glycogen. Some, but not all, glycogenoses, may result in skeletal muscle pathology. Among those that result in vacuolar myopathic changes, glycogen storage disease III or debrancher enzyme deficiency, an autosomal recessive condition, is less commonly encountered than acid maltase (Type II) and myophosphorylase (Type V) deficiencies. Many patients with debrancher enzyme deficiency also have liver involvement. The neurological examination of our patient showed mild proximal limb weakness and decreased reflexes. He had elevated creatine kinase and aldolase levels. He also demonstrated some elevations in his liver function tests, suggesting possible liver involvement. A skeletal muscle biopsy demonstrated vacuolar myopathic changes (acid phosphatase negative) accompanied by focal endomysial fibrosis and chronic inflammation. An ultrastructural examination showed that his vacuoles were filled with glycogen material. An enzyme assay of skeletal muscle tissue showed a significant decrease in debrancher enzyme activity (11% of normal). We review the typical clinical presentation of patients with glycogenosis III and discuss the differential diagnoses of glycogenosis III versus the other glycogenoses resulting in vacuolar myopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Calprotectin is released from human skeletal muscle tissue during exercise

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian

    2008-01-01

    at time points 0, 3 and 6 h in these individuals and in resting controls. Affymetrix microarray analysis of gene expression changes in skeletal muscle biopsies identified a small set of genes changed by IL-6 infusion. RT-PCR validation confirmed that S100A8 and S100A9 mRNA were up-regulated 3-fold...... in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known...... as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of approximately 50...

  3. Tackling proteome changes in the longissimus thoracis bovine muscle in response to pre-slaughter stress.

    Science.gov (United States)

    Franco, Daniel; Mato, Ariadna; Salgado, Francisco J; López-Pedrouso, María; Carrera, Mónica; Bravo, Susana; Parrado, María; Gallardo, José M; Zapata, Carlos

    2015-06-03

    Pre-slaughter stress has adverse effects on meat quality that can lead to the occurrence of Dark Firm Dry (DFD) meat in cattle. This study explores the previously uncharacterized proteome changes linked to pre-slaughter stress in the longissimus thoracis (LT) bovine muscle. Differential proteome profiles of DFD and normal (non-DFD) LT meat samples from male calves of the Rubia Gallega breed were assessed by 2-DE coupled to MS analysis (LC-MS/MS and MALDI TOF/TOF MS). A total of seven structural-contractile proteins (three different myosin light chain isoforms, two fast skeletal myosin light chain 2 isoforms, troponin C type 2 and cofilin-2) and three metabolism enzymes (triosephosphate isomerase, ATP synthase and beta-galactoside alpha-2,6-sialyltransferase) were found to have statistically significant differential abundance in sample groups. In addition, 2-DE in combination with the phosphoprotein-specific fluorescent dye Pro-Q DPS revealed that highly phosphorylated fast skeletal myosin regulatory light chain 2 isoforms underwent the most intense relative change in muscle conversion to DFD meat. Therefore, they appear to be the most sensitive biomarkers of stress just prior to slaughter in Rubia Gallega. Overall, these findings will facilitate a more integrative understanding of the biochemical processes associated with stress in cattle muscle and their effects in meat quality. Pre-slaughter stress is a crucial factor in meat production. Animals destined for slaughter are stressed by a variety of endogenous and exogenous factors that negatively affect the complex post-mortem biochemical events underlying the conversion of muscle into meat. The study of the muscle proteome has a great relevance for understanding the molecular mechanisms associated with stress. However, there is no information available on the molecular changes linked to pre-slaughter stress in cattle on the proteome scale. Our study led to the identification of a number of candidate proteins

  4. The role of hyperplasia on the increase of skeletal muscle

    Directory of Open Access Journals (Sweden)

    Victor Hugo Maciel Meloni

    2005-06-01

    Full Text Available Skeletal muscle hypertrophy is resulted from the individual increase of the fiber cross-sectional area. This adaptative phenomenon is normally observed in the muscle tissue submitted to a regimen of physical exercises, like strength training. The degree of muscular hypertrophy is directly related to the type of exercise and its intensity. Strength training normally produces a hypertrophy of greater magnitude when compared to other types of physical exercise. However, it is possible that there is another adaptive mechanism contributing for increasing skeletal muscle size. This mechanism is called hyperplasia, and can be defined as an increase in the cells, or fibers, number in the muscle. This brief review aims to verify the role of hyperplasia in the increase of skeletal muscle size. RESUMO A hipertrofia do músculo esquelético é resultado do aumento individual da área transversal da fibra. Este fenômeno adaptativo é comumente observado no tecido muscular submetido à um regime de exercícios físicos, como o treinamento de força. O grau de hipertrofia muscular está diretamente relacionado ao tipo de exercício e sua intensidade. O treinamento de força normalmente produz uma hipertrofia de maior magnitude, quando comparada aos outros tipos de exercício físico. Todavia, é provável que haja outro mecanismo adaptativo contribuindo para a hipertrofia do músculo esquelético. Este mecanismo chama-se hiperplasia, e pode ser traduzida por um aumento no número de células, ou fibras musculares em relação ao número original. Este breve resumo tem por objetivo verificar qual é o papel da hiperplasia na hipertrofia do músculo esquelético.

  5. Optical reflectance in fibrous tissues and skeletal muscles

    Science.gov (United States)

    Ranasinghesagara, Janaka C.

    We studied two biological tissues with optically anisotropic structures: high moisture soy protein extrudates and skeletal muscles. High moisture extrusion has been used to produce vegetable meat analogs that resemble real animal meat and have significant health benefits. Since visual and textural properties are key factors for consumer acceptance, assessing fiber formation in the extruded soy protein product is important for quality control purpose. A non-destructive method based on photon migration was developed to measure fiber formation in extruded soy proteins. The measured fiber formation index in intact samples showed good agreement with that obtained from image analysis on peeled samples. By implementing this new method in a fast laser scanning system, we have acquired two dimensional mappings of fiber formation and orientation in the entire sample in real time. In addition to fibrous structures, skeletal muscles have a unique periodic sarcomere structure which produces strong light diffractions. However, inconsistent experimental results have been reported in single fiber diffraction studies. By applying the three-dimensional coupled wave theory in a physical sarcomere model, we found that a variety of experimental observations can be explained if inhomogeneous muscle morphological profiles are considered. We also discovered that the sarcomere structure produced a unique optical reflectance pattern in whole muscle. None of the existing light propagation theories are able to describe this pattern. We developed a Monte Carlo model incorporating the sarcomere diffraction effect. The simulated results quantitatively resemble the unique patterns observed in experiments. We used a set of parameters to quantify the optical reflectance profiles produced by a point incident light in whole muscle. Two parameters, q and B, were obtained by numerically fitting the equi-intensity contours of the reflectance pattern. Two spatial gradients were calculated along the

  6. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Michela ePozzobon

    2014-08-01

    Full Text Available More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle specific stem cell, namely satellite cells. Muscle diseases, in particular chronic degenerative state of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continue cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is not a definitive cure in particular for genetic muscle disease. Taking this in mind, in this article we will give special consideration to muscle diseases and the use of fetal derived stem cells as new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immunemodulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.

  7. Design, evaluation, and application of engineered skeletal muscle.

    Science.gov (United States)

    Juhas, Mark; Ye, Jean; Bursac, Nenad

    2016-04-15

    For over two decades, research groups have been developing methods to engineer three-dimensional skeletal muscle tissues. These tissues hold great promise for use in disease modeling and pre-clinical drug development, and have potential to serve as therapeutic grafts for functional muscle repair. Recent advances in the field have resulted in the engineering of regenerative muscle constructs capable of survival, vascularization, and functional maturation in vivo as well as the first-time creation of functional human engineered muscles for screening of therapeutics in vitro. In this review, we will discuss the methodologies that have progressed work in the muscle tissue engineering field to its current state. The emphasis will be placed on the existing procedures to generate myogenic cell sources and form highly functional muscle tissues in vitro, techniques to monitor and evaluate muscle maturation and performance in vitro and in vivo, and surgical strategies to both create diseased environments and ensure implant survival and rapid integration into the host. Finally, we will suggest the most promising methodologies that will enable continued progress in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Reprimed charge movement in skeletal muscle fibres.

    Science.gov (United States)

    Rakowski, R F

    1978-08-01

    1. The three intracellular micro-electrode voltage-clamp technique was used to study the recovery of membrane charge movement in semitendinosus muscles of Rana pipiens. Muscles were placed in a hypertonic depolarizing solution to inactivate voltage dependent charge movement. Tetrodotoxin and tetraethylammonium ions (TEA+) were present to block voltage dependent ionic conductances. Rb+ and SO4(2-) were present to reduce inward rectification and leakage conductance. 2. The recovery ('repriming') of membrane charge movement was studied following hyperpolarizing pulses from a holding potential of -20 mV to membrane potentials from -30 to -140 mV for durations of 2--100 sec. The reprimed charge movement measured as the difference in membrane current required for identical voltage steps before and after long duration hyperpolarizing pulses was a linear function of membrane potential and symmetrical in shape. Reprimed charge is, therefore, simply the result of an increase in the linear capacitance of the fibre. 3. The mean value of the percent increase in capacitance for repriming at -100 mV was 12.3 +/- 1.7% (S.E. of mean) for 25 sec duration pulses and 27.8 +/- 2.9% for 100 sec duration pulses. If these data are corrected to the steady state and the surface contribution subtracted, the mean increase in 'volume' capacity is 40.3 +/- 3.6% (n = 21) for fibres with a mean diameter of 51 +/- 4 micron. 4. The increase in capacity can arise either by an increase in the transverse tubular length constant (lambdaT) or by gaining electrical access to additional linear capacitance within the fibre volume. If the capacitance arises solely from the transverse tubular system, the value of lambdaT before repriming can be no larger than 20 micron in order to explain the observed increase in volume capacity. A value of lambdaT as small as this seems unlikely. 5. The observation that reprimed charge is simply the result of an increase in linear capacitance is not consistent with the

  9. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles.

    Science.gov (United States)

    Banks, R W

    2006-06-01

    An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g(-1) of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg.

  10. Defective Homocysteine Metabolism: Potential Implications for Skeletal Muscle Malfunction

    Directory of Open Access Journals (Sweden)

    Suresh C. Tyagi

    2013-07-01

    Full Text Available Hyperhomocysteinemia (HHcy is a systemic medical condition and has been attributed to multi-organ pathologies. Genetic, nutritional, hormonal, age and gender differences are involved in abnormal homocysteine (Hcy metabolism that produces HHcy. Homocysteine is an intermediate for many key processes such as cellular methylation and cellular antioxidant potential and imbalances in Hcy production and/or catabolism impacts gene expression and cell signaling including GPCR signaling. Furthermore, HHcy might damage the vagus nerve and superior cervical ganglion and affects various GPCR functions; therefore it can impair both the parasympathetic and sympathetic regulation in the blood vessels of skeletal muscle and affect long-term muscle function. Understanding cellular targets of Hcy during HHcy in different contexts and its role either as a primary risk factor or as an aggravator of certain disease conditions would provide better interventions. In this review we have provided recent Hcy mediated mechanistic insights into different diseases and presented potential implications in the context of reduced muscle function and integrity. Overall, the impact of HHcy in various skeletal muscle malfunctions is underappreciated; future studies in this area will provide deeper insights and improve our understanding of the association between HHcy and diminished physical function.

  11. Modest hyperglycemia prevents interstitial dispersion of insulin in skeletal muscle.

    Science.gov (United States)

    Kolka, Cathryn M; Castro, Ana Valeria B; Kirkman, Erlinda L; Bergman, Richard N

    2015-02-01

    Insulin injected directly into skeletal muscle diffuses rapidly through the interstitial space to cause glucose uptake, but this is blocked in insulin resistance. As glucotoxicity is associated with endothelial dysfunction, the observed hyperglycemia in diet-induced obese dogs may inhibit insulin access to muscle cells, and exacerbate insulin resistance. Here we asked whether interstitial insulin diffusion is reduced in modest hyperglycemia, similar to that induced by a high fat diet. During normoglycemic (100 mg/dl) and moderately hyperglycemic (120 mg/dl) clamps in anesthetized canines, sequential doses of insulin were injected into the vastus medialis of one hindlimb; the contra-lateral limb served as a control. Plasma samples were collected and analyzed for insulin content. Lymph vessels of the hind leg were also catheterized, and lymph samples were analyzed as an indicator of interstitial insulin concentration. Insulin injection increased lymph insulin in normoglycemic animals, but not in hyperglycemic animals. Muscle glucose uptake was elevated in response to hyperglycemia, however the insulin-mediated glucose uptake in normoglycemic controls was not observed in hyperglycemia. Modest hyperglycemia prevented intra-muscularly injected insulin from diffusing through the interstitial space reduced insulin-mediated glucose uptake. Hyperglycemia prevents the appearance of injected insulin in the interstitial space, thus reducing insulin action on skeletal muscle cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Adipophilin distribution and colocalization with lipid droplets in skeletal muscle.

    LENUS (Irish Health Repository)

    Shaw, Christopher S

    2009-05-01

    Intramyocellular lipids (IMCL) are stored as discrete lipid droplets which are associated with a number of proteins. The lipid droplet-associated protein adipophilin (the human orthologue of adipose differentiation-related protein) is ubiquitously expressed and is one of the predominant lipid droplet-proteins in skeletal muscle. The aim of this study was to investigate the subcellular distribution of adipophilin in human muscle fibres and to measure the colocalization of adipophilin with IMCL. Muscle biopsies from six lean male cyclists (BMI 23.4 +\\/- 0.4, aged 31 +\\/- 2 years, W (max) 346 +\\/- 8) were stained for myosin heavy chain type 1, IMCL, adipophilin and mitochondria using immunofluorescence and viewed with widefield and confocal fluorescence microscopy. The present study shows that like IMCL, the adipophilin content is ~twofold greater in type I skeletal muscle fibres and is situated in the areas between the mitochondrial network. Colocalization analysis demonstrated that 61 +\\/- 2% of IMCL contain adipophilin. Although the majority of adipophilin is contained within IMCL, 36 +\\/- 4% of adipophilin is not associated with IMCL. In conclusion, this study indicates that the IMCL pool is heterogeneous, as the majority but not all IMCL contain adipophilin.

  13. Endurance training increases the efficiency of rat skeletal muscle mitochondria.

    Science.gov (United States)

    Zoladz, Jerzy A; Koziel, Agnieszka; Woyda-Ploszczyca, Andrzej; Celichowski, Jan; Jarmuszkiewicz, Wieslawa

    2016-10-01

    Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures.

  14. Extracellular matrix adaptation of tendon and skeletal muscle to exercise

    DEFF Research Database (Denmark)

    Kjaer, Michael; Magnusson, Peter; Krogsgaard, Michael

    2006-01-01

    The extracellular matrix (ECM) of connective tissues enables linking to other tissues, and plays a key role in force transmission and tissue structure maintenance in tendons, ligaments, bone and muscle. ECM turnover is influenced by physical activity, and both collagen synthesis and metalloprotea...... is supported by findings of gender-related differences in the activation of collagen synthesis with exercise. These findings may provide the basis for understanding tissue overloading and injury in both tendons and skeletal muscle.......The extracellular matrix (ECM) of connective tissues enables linking to other tissues, and plays a key role in force transmission and tissue structure maintenance in tendons, ligaments, bone and muscle. ECM turnover is influenced by physical activity, and both collagen synthesis and metalloprotease...... is regulated by cyclooxygenase-2 (COX-2)-mediated pathways, and glucose uptake is regulated by specific pathways in tendons that differ from those in skeletal muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as to some degree of net collagen synthesis...

  15. 2-Methoxyoestradiol inhibits glucose transport in rodent skeletal muscle.

    Science.gov (United States)

    Zhang, Shi-Jin; Sandström, Marie; Ahlsén, Maria; Ivarsson, Niklas; Zhu, Hua; Ma, Jianjie; Ren, Jian-Ming; Westerblad, Håkan; Katz, Abram

    2010-08-01

    2-Methoxyoestradiol (2-ME) is an oestrogen derivative that inhibits superoxide dismutase (which converts superoxide anions to H(2)O(2)). Since reactive oxygen species have been implicated in glucose transport, we determined the effect of 2-ME on glucose transport in skeletal muscle. Experiments were performed on isolated mouse extensor digitorum longus (EDL, glycolytic, fast-twitch) muscle. Glucose uptake was measured using 2-deoxy-d-[1,2-(3)H]glucose. 2-Methoxyoestradiol (50 microm) reduced glucose uptake induced by insulin, contraction and hypoxia by approximately 60%. Exogenous H(2)O(2) activated glucose uptake, and this effect was also blocked by 2-ME, demonstrating that 2-ME was exerting its inhibitory effect on glucose uptake at a site other than superoxide dismutase. When glucose uptake was stimulated by insulin, followed by addition of 2-ME, there was also an attenuation of the effect of insulin (approximately 60%). Moreover, basal glucose uptake was decreased by 2-ME (approximately 50%). In contrast, insulin-mediated translocation of glucose transporter type 4 protein to the plasma membrane was not affected by 2-ME. Similar results were obtained in soleus (oxidative, slow-twitch) muscle. In conclusion, 2-ME appears to decrease glucose transport in skeletal muscle by directly interfering with the function of glucose transport proteins in surface membranes.

  16. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    OpenAIRE

    Scheuer, T; Gilly, W F

    1986-01-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  17. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    Science.gov (United States)

    Scheuer, T; Gilly, W F

    1986-11-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  18. Physiological aspects of the subcellular localization of glycogen in skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Ørtenblad, Niels

    2013-01-01

    , topological, and dynamic organization of skeletal muscle fibers. In summary, the distribution of glycogen within skeletal muscle fibers has been shown to depend on the fiber phenotype, individual training status, short-term immobilization, and exercise and to influence both muscle contractility...

  19. What's So Special about FGF19-Unique Effects Reported on Skeletal Muscle Mass and Function.

    Science.gov (United States)

    Glass, David J

    2017-08-01

    In a recent study published in Nature Medicine, Benoit et al. (2017) reported unique effects of FGF19 on mouse skeletal muscle: FGF19 induced skeletal muscle hypertrophy and blocked muscle atrophy, acting via FGF receptors and ßKlotho, while a related FGF21 hormone was ineffective. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity

    DEFF Research Database (Denmark)

    Lantier, Louise; Fentz, Joachim; Mounier, Rémi

    2014-01-01

    AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle ...

  1. Myocardin is a bifunctional switch for smooth versus skeletal muscle differentiation

    NARCIS (Netherlands)

    Long, Xiaochun; Creemers, Esther E.; Wang, Da-Zhi; Olson, Eric N.; Miano, Joseph M.

    2007-01-01

    Skeletal and smooth muscle can mutually transdifferentiate, but little molecular insight exists as to how each muscle program may be subverted to the other. The myogenic basic helix-loop-helix transcription factors MyoD and myogenin (Myog) direct the development of skeletal muscle and are thought to

  2. Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle

    NARCIS (Netherlands)

    Chalil, S.; Pierre, N.; Bakker, A.D.; Manders, R.J.; Pletsers, A.; Francaux, M.; Klein-Nulend, J.; Jaspers, R.T.; Deldique, L.

    2015-01-01

    Anabolic resistance reflects the inability of skeletal muscle to maintain protein mass by appropriate stimulation of protein synthesis. We hypothesized that endoplasmic reticulum (ER) stress contributes to anabolic resistance in skeletal muscle with aging. Muscles were isolated from adult (8 mo) and

  3. The Molecular Basis for Load-Induced Skeletal Muscle Hypertrophy

    Science.gov (United States)

    Marcotte, George R.; West, Daniel W.D.; Baar, Keith

    2016-01-01

    In a mature (weight neutral) animal, an increase in muscle mass only occurs when the muscle is loaded sufficiently to cause an increase in myofibrillar protein balance. A tight relationship between muscle hypertrophy, acute increases in protein balance, and the activity of the mechanistic target of rapamycin complex 1 (mTORC1) was demonstrated 15 years ago. Since then, our understanding of the signals that regulate load-induced hypertrophy has evolved considerably. For example, we now know that mechanical load activates mTORC1 in the same way as growth factors, by moving TSC2 (a primary inhibitor of mTORC1) away from its target (the mTORC activator) Rheb. However, the kinase that phosphorylates and moves TSC2 is different in the two processes. Similarly, we have learned that a distinct pathway exists whereby amino acids activate mTORC1 by moving it to Rheb. While mTORC1 remains at the forefront of load-induced hypertrophy, the importance of other pathways that regulate muscle mass are becoming clearer. Myostatin, is best known for its control of developmental muscle size. However, new mechanisms to explain how loading regulates this process are suggesting that it could play an important role in hypertrophic muscle growth as well. Lastly, new mechanisms are highlighted for how β2 receptor agonists could be involved in load-induced muscle growth and why these agents are being developed as non-exercise-based therapies for muscle atrophy. Overall, the results highlight how studying the mechanism of load-induced skeletal muscle mass is leading the development of pharmaceutical interventions to promote muscle growth in those unwilling or unable to perform resistance exercise. PMID:25359125

  4. A simple and rapid method to characterize lipid fate in skeletal muscle.

    Science.gov (United States)

    Massart, Julie; Zierath, Juleen R; Chibalin, Alexander V

    2014-06-24

    Elevated fatty acids contribute to the development of type 2 diabetes and affect skeletal muscle insulin sensitivity. Since elevated intramuscular lipids and insulin resistance is strongly correlated, aberrant lipid storage or lipid intermediates may be involved in diabetes pathogenesis. The aim of this study was to develop a method to determine the dynamic metabolic fate of lipids in primary human skeletal muscle cells and in intact mouse skeletal muscle. We report a simple and fast method to characterize lipid profiles in skeletal muscle using thin layer chromatography. The described method was specifically developed to assess lipid utilization in cultured and intact skeletal muscle. We determined the effect of a pan-diacylglycerol kinase (DGK) class I inhibitor (R59949) on lipid metabolism to validate the method. In human skeletal muscle cells, DGK inhibition impaired diacylglycerol (DAG) conversion to phosphatidic acid and increased triglyceride synthesis. In intact glycolytic mouse skeletal muscle, DGK inhibition triggered the accumulation of DAG species. Conversely, the DGK inhibitor did not affect DAG content in oxidative muscle. This simple assay detects rapid changes in the lipid species composition of skeletal muscle with high sensitivity and specificity. Determination of lipid metabolism in skeletal muscle may further elucidate the mechanisms contributing to the pathogenesis of insulin resistance in type 2 diabetes or obesity.

  5. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds....... METHODS: Three groups of subjects were included: healthy active not engaged in any training programme (ACT, n = 12), resistance trained (RES, n = 6) and endurance trained (END, n = 8). Biopsies were obtained from vastus lateralis and immunohistochemistry was performed using monoclonal antibodies against...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...

  6. Skeletal muscle metabolism during prolonged exercise in Pompe disease

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Laforêt, Pascal; Madsen, Karen Lindhardt

    2017-01-01

    of exercise, it is important in Pompe disease to acquire more information about muscle substrate use during exercise. METHODS: Seven adults with Pompe disease were matched to a healthy control group (1:1). We determined (1) peak oxidative capacity (VO2peak) and (2) carbohydrate and fatty acid metabolism...... = 0.318) and mean difference 0.016 µmol/kg/min (CI: 1.287 to -1.255, P = 0.710), respectively). CONCLUSION: Reflecting muscle weakness and wasting, Pompe disease is associated with markedly reduced maximal exercise capacity. However, glycogenolysis is not impaired in exercise. Unlike in other...... metabolic myopathies, skeletal muscle substrate use during exercise is normal in Pompe disease rendering exercise less complicated for e.g. medical or recreational purposes....

  7. Oxidation of urate in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Tullson, P. C.; Richter, Erik

    1997-01-01

    exercise (p 3 min after exercise (p 2.6 mumol.liter-1 at rest and by 5 min.......084 +/- 0.016 mumol.g-1 w.w. (p exercise and then rapidly increased during recovery to reach the resting level within 3 min after exercise. The concentration of allantoin in the muscle increased from a resting value of 0.03 +/- 0.007 to 0.10 +/- 0.014 mumol.g-1 w.w. immediately after......The purpose of the present study was to investigate whether high metabolic stress to skeletal muscle, induced by intensive exercise, would lead to an oxidation of urate to allantoin in the exercised muscle. Seven healthy male subjects performed short term (4.39 +/- 0.04 [+/-SE] min) exhaustive...

  8. Biosynthesis of titin in cultured skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, W.B.; Kim, I.S.; Struve, A.; Fulton, A.B. (Univ. of Iowa, Iowa City (USA))

    1989-11-01

    Although significant progress has been made regarding the structure and function of titin, little data exist on the biosynthesis of this large protein in developing muscle. Using pulse-labeling with ({sup 35}S)methionine and immunoprecipitation with an anti-titin mAb, we have examined the biosynthesis of titin in synchronized cultures of skeletal muscle cells derived from day 12 chicken embryos. We find that: (a) titin synthesis increases greater than 4-fold during the first week in culture and during this same time period, synthesis of muscle-specific myosin heavy chain increases greater than 12-fold; (b) newly synthesized titin has a t1/2 of approximately 70 h; (c) titin is resistant to extraction with Triton X-100 both during and immediately after its synthesis. These observations suggest that newly synthesized titin molecules are stable proteins that rapidly associate with the cytoskeleton of developing myotubes.

  9. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration.

    Science.gov (United States)

    Paris, Nicole D; Soroka, Andrew; Klose, Alanna; Liu, Wenxuan; Chakkalakal, Joe V

    2016-11-18

    Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4, the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration.

  10. Muscle size explains low passive skeletal muscle force in heart failure patients

    Directory of Open Access Journals (Sweden)

    Fausto Antonio Panizzolo

    2016-09-01

    Full Text Available Background Alterations in skeletal muscle function and architecture have been linked to the compromised exercise capacity characterizing chronic heart failure (CHF. However, how passive skeletal muscle force is affected in CHF is not clear. Understanding passive force characteristics in CHF can help further elucidate the extent to which altered contractile properties and/or architecture might affect muscle and locomotor function. Therefore, the aim of this study was to investigate passive force in a single muscle for which non-invasive measures of muscle size and estimates of fiber force are possible, the soleus (SOL, both in CHF patients and age- and physical activity-matched control participants. Methods Passive SOL muscle force and size were obtained by means of a novel approach combining experimental data (dynamometry, electromyography, ultrasound imaging with a musculoskeletal model. Results We found reduced passive SOL forces (∼30% (at the same relative levels of muscle stretch in CHF vs. healthy individuals. This difference was eliminated when force was normalized by physiological cross sectional area, indicating that reduced force output may be most strongly associated with muscle size. Nevertheless, passive force was significantly higher in CHF at a given absolute muscle length (non length-normalized and likely explained by the shorter muscle slack lengths and optimal muscle lengths measured in CHF compared to the control participants. This later factor may lead to altered performance of the SOL in functional tasks such gait. Discussion These findings suggest introducing exercise rehabilitation targeting muscle hypertrophy and, specifically for the calf muscles, exercise that promotes muscle lengthening.

  11. Site-dependent pathological differences in smooth muscles and skeletal muscles of the adult mdx mouse.

    Science.gov (United States)

    Boland, B; Himpens, B; Denef, J F; Gillis, J M

    1995-06-01

    This study presents a survey of the morphometric characteristics, the regeneration rate, and the extent of muscle dystrophy in several smooth and skeletal muscles from adult mdx mice, an animal model of the Duchenne muscular dystrophy (DMD). Smooth muscles from adult mdx mice showed neither cell necrosis nor fibrosis. As compared to control C57 mice, the thickness of the mdx smooth muscle was normal in the vascular and urogenital layers but significantly reduced in the digestive layers, a finding relevant to clinical reports of gastrointestinal dilatation in DMD patients, and suggesting that gastrointestinal dysfunctions should be systemically searched for in DMD patients. Adult mdx skeletal muscles, however, presented different patterns of muscle suffering: either absent (esophagus); very mild (trunk and limb muscles); or severe (diaphragm). In these three conditions we studied the fiber diameters, the nuclei locations, and the regeneration rate. From this comparative study, it seems that severe dystrophy occurs in muscle tissues showing large fiber diameter and peripheral location of the nuclei. We showed that this combination occurs in the mouse diaphragm which is thus a realistic model for human DMD muscles.

  12. Trichinella spiralis infected skeletal muscle cells arrest in G2/M and cease muscle gene expression.

    Science.gov (United States)

    Jasmer, D P

    1993-05-01

    Infection by Trichinella spiralis causes a variety of changes in skeletal muscle cells including the hypertrophy of nuclei and decreased expression of muscle specific proteins. Potential cellular processes leading to these changes were investigated. In synchronized muscle infections, [3H]thymidine was incorporated into infected cell nuclei from 2-5 days post infection. Labeled nuclei were stably integrated into the infected cell up to 60 days post infection and appear to originate from differentiated skeletal muscle nuclei present at the time of infection. These nuclei were further shown to contain a mean DNA content of approximately 4N, indicating that the [3H]thymidine uptake reflects DNA synthesis and subsequent long-term suspension of the infected cell in the cell cycle at G2/M. Associated with these changes, muscle specific gene transcripts were reduced to < 1- < 0.1% in the infected cell compared to normal muscle. Transcript levels of the muscle transcriptional regulatory factors myogenin, MyoD1, and Id were reduced to < 10, < 1, and increased approximately 250%, respectively, in the infected cell compared to normal muscle, indicating transcriptional inactivation of muscle genes. DNA synthesis in the infected cell may represent the initiation event which leads to expression of this infected cell phenotype.

  13. Slow charge movement in mammalian skeletal muscle.

    Science.gov (United States)

    Simon, B J; Beam, K G

    1985-01-01

    Voltage-dependent charge movements were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Contraction was abolished with hypertonic sucrose. The standard (ON-OFF) protocol for eliciting charge movements was to depolarize the fiber from -90 mV to a variable test potential (V) and then repolarize the fiber to -90 mV. The quantity of charge moved saturated at test potentials of approximately 0 mV. The steady state dependence of the amount of charge that moves as a function of test potential could be well fitted by the Boltzmann relation: Q = Qmax/(1 + exp[-(V - V)/k]), where Qmax is the maximum charge that can be moved, V is the potential at which half the charge moves, and k is a constant. At 15 degrees C, these values were Qmax = 28.5 nC/microF, V = -34.2 mV, and k = 8.7 mV. Qmax, k, and V exhibited little temperature dependence over the range 7-25 degrees C. "Stepped OFF" charge movements were elicited by depolarizing the fiber from -90 mV to a fixed conditioning level that moved nearly all the mobile charge (0 mV), and then repolarizing the fiber to varying test potentials. The sum of the charge that moved when the fiber was depolarized directly from -90 mV to a given test potential and the stepped OFF charge that moved when the fiber was repolarized to the same test potential had at all test potentials a value close to Qmax for that fiber. In nearly all cases, the decay phase of ON, OFF, and stepped OFF charge movements could be well fitted with a single exponential. The time constant, tau decay, for an ON charge movement at a given test potential was comparable to tau decay for a stepped OFF charge movement at the same test potential. Tau decay had a bell-shaped dependence on membrane potential: it was slowest at a potential near V (the midpoint of the steady state charge distribution) and became symmetrically faster on either side of this potential. Raising the temperature from 7 to 15 degrees C caused tau decay to

  14. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    OpenAIRE

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle���s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the...

  15. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice

    Directory of Open Access Journals (Sweden)

    Katarina Marcinko

    2015-09-01

    Conclusions: Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity.

  16. A simple and rapid method to characterize lipid fate in skeletal muscle

    OpenAIRE

    Massart, Julie; Zierath, Juleen R; Chibalin, Alexander V

    2014-01-01

    Background Elevated fatty acids contribute to the development of type 2 diabetes and affect skeletal muscle insulin sensitivity. Since elevated intramuscular lipids and insulin resistance is strongly correlated, aberrant lipid storage or lipid intermediates may be involved in diabetes pathogenesis. The aim of this study was to develop a method to determine the dynamic metabolic fate of lipids in primary human skeletal muscle cells and in intact mouse skeletal muscle. We report a simple and fa...

  17. [Transdisciplinary Approach for Sarcopenia. The effects of exercise on skeletal muscle hypertrophy and satellite cells].

    Science.gov (United States)

    Fujimaki, Shin; Takemasa, Tohru; Kuwabara, Tomoko

    2014-10-01

    Skeletal muscle has a high degree of plasticity. The mass of skeletal muscle maintains owing to muscle protein synthesis and the regeneration by satellite cells. Skeletal muscle atrophy with aging (sarcopenia) is developed by decline of muscle protein synthesis and dysfunction of satellite cells. It is urgently necessary for today's highly aged society to elucidate the mechanism of sarcopenia and to establish prevention measure. This review shows that the positive effects of "exercise" on muscle protein synthesis and satellite cell function including their main molecular mechanism.

  18. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P muscle cells....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P cells in culture alone did not cause extracellular accumulation of adenosine. 4. Skeletal muscle cells were...

  19. Skeletal muscle CT of lower extremities in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Imai, Terukuni; Sadashima, Hiromichi; Matsumoto, Sadayuki; Yamamoto, Toru; Kusaka, Hirofumi; Yamasaki, Masahiro; Maya, Kiyomi; Tanabe, Masaya

    1988-02-01

    We evaluated the leg and thigh muscles of 4 control subjects and 10 patients with myotonic dystrophy using computed tomography. Taking previous reports about the skeletal muscle CT of myotonic dystrophy into account, we concluded that the following 5 features are characteristic of myotonic dystrophy: 1. The main change is the appearance of low-density areas in muscles; these areas reflect fat tissue. In addition, the muscle mass decreases in size. 2. The leg is more severely affected than the thigh. 3. In the thigh, although the m. quadriceps femoris, especially the vastus muscles, tends to be affected, the m. adductor longus and magnus tend to be preserved. 4. In the leg, although the m. tibialis anterior and m. triceps surae tend to be affected, the m. peroneus longus, brevis, and m. tibialis posterior tend to be preserved. 5. Compensatory hypertrophy is often observed in the m. rectus femoris, m. adductor longus, m. adductor magnus, m. peroneus longus, and m. peroneus brevis, accompanied by the involvement of their agonist muscles.

  20. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Rodrigues Alexandre

    2012-02-01

    Full Text Available Abstract Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms.

  1. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae.

    Science.gov (United States)

    Rodrigues, Alexandre Miguel Cavaco; Christen, Bea; Martí, Mercé; Izpisúa Belmonte, Juan Carlos

    2012-02-27

    Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms.

  2. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae

    Science.gov (United States)

    2012-01-01

    Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms. PMID:22369050

  3. The effect of the muscle environment on the regenerative capacity of human skeletal muscle stem cells.

    Science.gov (United States)

    Meng, Jinhong; Bencze, Maximilien; Asfahani, Rowan; Muntoni, Francesco; Morgan, Jennifer E

    2015-01-01

    Muscle stem cell transplantation is a possible treatment for muscular dystrophy. In addition to the intrinsic properties of the stem cells, the local and systemic environment plays an important role in determining the fate of the grafted cells. We therefore investigated the effect of modulating the host muscle environment in different ways (irradiation or cryoinjury or a combination of irradiation and cryoinjury) in two immunodeficient mouse strains (mdx nude and recombinase-activating gene (Rag)2-/γ chain-/C5-) on the regenerative capacity of two types of human skeletal muscle-derived stem cell (pericytes and CD133+ cells). Human skeletal muscle-derived pericytes or CD133+ cells were transplanted into muscles of either mdx nude or recombinase-activating gene (Rag)2-/γ chain-/C5- host mice. Host muscles were modulated prior to donor cell transplantation by either irradiation, or cryoinjury, or a combination of irradiation and cryoinjury. Muscles were analysed four weeks after transplantation, by staining transverse cryostat sections of grafted muscles with antibodies to human lamin A/C, human spectrin, laminin and Pax 7. The number of nuclei and muscle fibres of donor origin and the number of satellite cells of both host and donor origin were quantified. Within both host strains transplanted intra-muscularly with both donor cell types, there were significantly more nuclei and muscle fibres of donor origin in host muscles that had been modulated by cryoinjury, or irradiation+cryoinjury, than by irradiation alone. Irradiation has no additive effects in further enhancing the transplantation efficiency than cryodamage. Donor pericytes did not give rise to satellite cells. However, using CD133+ cells as donor cells, there were significantly more nuclei, muscle fibres, as well as satellite cells of donor origin in Rag2-/γ chain-/C5- mice than mdx nude mice, when the muscles were injured by either cryodamage or irradiation+cryodamage. Rag2-/γ chain-/C5- mice are a

  4. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    -specific phosphorylation sites were identified in tissue-specific enzymes such as those encoded by HMGCS2, BDH1, PCK2, CPS1, and OTC in liver mitochondria, and CKMT2 and CPT1B in heart and skeletal muscle. Kinase prediction showed an important role for PKA and PKC in all tissues but also for proline-directed kinases...

  5. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...

  6. Ca2+-Dependent Regulations and Signaling in Skeletal Muscle: From Electro-Mechanical Coupling to Adaptation

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    2015-01-01

    Full Text Available Calcium (Ca2+ plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca2+ is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca2+ regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca2+-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca2+ ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca2+ ions in adult muscle but also highlight recent findings of critical Ca2+-dependent mechanisms essential for skeletal muscle-regulation and maintenance.

  7. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle

    National Research Council Canada - National Science Library

    Talanian, Jason L; Holloway, Graham P; Snook, Laelie A; Heigenhauser, George J F; Bonen, Arend; Spriet, Lawrence L

    2010-01-01

    ... examined. Therefore, we determined whether high-intensity interval training (HIIT) increased total skeletal muscle, sarcolemmal, and mitochondrial membrane fatty acid transport protein contents...

  8. Noncoding RNAs in the regulation of skeletal muscle biology in health and disease.

    Science.gov (United States)

    Simionescu-Bankston, Adriana; Kumar, Ashok

    2016-08-01

    Skeletal muscle is composed of multinucleated myofibers that arise from the fusion of myoblasts during development. Skeletal muscle is essential for various body functions such as maintaining posture, locomotion, breathing, and metabolism. Skeletal muscle undergoes remarkable adaptations in response to environmental stimuli leading to atrophy or hypertrophy. Moreover, degeneration of skeletal muscle is a common feature in a number of muscular disorders including muscular dystrophy. Emerging evidence suggests that noncoding RNAs, such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are critical for skeletal muscle physiology. Several miRNAs and lncRNAs have now been found to control skeletal muscle development and regeneration. Noncoding RNAs also play an important role in the regulation of skeletal muscle mass in adults. Furthermore, aberrant expression of miRNAs and lncRNAs has been observed in several muscular disorders. In this article, we discuss the mechanisms of action of miRNAs and lncRNAs in skeletal muscle formation, growth, regeneration, and disease. We further highlight potential therapeutic strategies for utilizing noncoding RNAs to improve skeletal muscle function.

  9. Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance

    Directory of Open Access Journals (Sweden)

    Sheila R. Costford

    2018-01-01

    Conclusions: Our studies have unveiled a fascinating interaction between elevated NAMPT activity in skeletal muscle and voluntary exercise that was manifest as a striking improvement in exercise endurance.

  10. A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour.

    Science.gov (United States)

    Tang, C Y; Zhang, G; Tsui, C P

    2009-05-11

    This paper presents a three-dimensional finite element model of skeletal muscle which was developed to simulate active and passive non-linear mechanical behaviours of the muscle during lengthening or shortening under either quasi-static or dynamic condition. Constitutive relation of the muscle was determined by using a strain energy approach, while active contraction behaviour of the muscle fibre was simulated by establishing a numerical algorithm based on the concept of the Hill's three-element muscle model. The proposed numerical algorithm could be used to predict concentric, eccentric, isometric and isotonic contraction behaviours of the muscle. The proposed numerical algorithm and constitutive model for the muscle were derived and implemented into a non-linear large deformation finite element programme ABAQUS by using user-defined material subroutines. A number of scenarios have been used to demonstrate capability of the model for simulating both quasi-static and dynamic response of the muscle. Validation of the proposed model has been performed by comparing the simulated results with the experimental ones of frog gastrocenemius muscle deformation. The effects of the fusiform muscle geometry and fibre orientation on the stress and fibre stretch distributions of frog muscle during isotonic contraction have also been investigated by using the proposed model. The predictability of the present model for dynamic response of the muscle has been demonstrated by simulating the extension of a squid tentacle during a strike to catch prey.

  11. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  12. Therapeutic interventions against reperfusion injury in skeletal muscle.

    Science.gov (United States)

    Wang, Wei Z; Baynosa, Richard C; Zamboni, William A

    2011-11-01

    Ischemia/reperfusion (I/R) injury in the skeletal muscle is inevitable in many vascular and musculoskeletal traumas, diseases, free tissue transfers, and during time-consuming reconstructive and transplantation surgeries. Although skeletal muscle has a higher tolerance to ischemia than other organs, prolonged ischemia can still result in significant complications, including muscle necrosis and apoptosis. One of the major goals in the treatment of ischemia is early restoration of blood flow (reperfusion) to the area at risk. However, reperfusion has led to a new pathophysiologic condition called "reperfusion injury," a phenomenon which actually provokes a distinct degree of tissue injury. The purpose of this review is to examine the current state of understanding of I/R injury as well as to highlight recent developments on I/R interventions including our own experience in this particular field. We expect, as our acquired experience and the increased knowledge of underlying mechanisms of I/R injury, more effective interventions aimed to reduce I/R injury will be developed to interfere with or modulate this particular pathophysiologic processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Hoier, Birgitte

    2014-01-01

    In human skeletal muscle, the capillary net readily adapts according to the level of muscular activity to allow for optimal diffusion conditions for oxygen from the blood to the muscle. Animal studies have demonstrated that stimulation of capillary growth in skeletal muscle can occur either by me...... addresses physiological signals and angiogenic factors in skeletal muscle with a focus on human data.......In human skeletal muscle, the capillary net readily adapts according to the level of muscular activity to allow for optimal diffusion conditions for oxygen from the blood to the muscle. Animal studies have demonstrated that stimulation of capillary growth in skeletal muscle can occur either...... angiogenesis. A number of such regulatory proteins have been described in skeletal muscle in animal and cell models but also in human skeletal muscle. Important pro-angiogenic factors in skeletal muscle are vascular endothelial growth factor, endothelial nitric oxide synthase and angiopoietin 2, whereas...

  14. Genetic architecture of gene expression in ovine skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kogelman Lisette JA

    2011-12-01

    Full Text Available Abstract Background In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle. Results The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire. Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome, RNA processing, mitochondrial function and transcriptional regulation. Conclusions This study has revealed strong genetic structure in the gene expression program within

  15. Muscle biopsy and cell cultures: potential diagnostic tools in hereditary skeletal muscle channelopathies

    Directory of Open Access Journals (Sweden)

    G Meola

    2009-06-01

    Full Text Available Hereditary muscle channelopathies are caused by dominant mutations in the genes encoding for subunits of muscle voltage- gated ion channels. Point mutations on the human skeletal muscle Na+ channel (Nav1.4 give rise to hyperkalemic periodic paralysis, potassium aggravated myotonia, paramyotonia congenita and hypokalemic periodic paralysis type 2. Point mutations on the human skeletal muscle Ca2+ channel give rise to hypokalemic periodic paralysis and malignant hyperthermia. Point mutations in the human skeletal chloride channel ClC-1 give rise to myotonia congenita. Point mutations in the inwardly rectifying K+ channel Kir2.1 give rise to a syndrome characterized by periodic paralysis, severe cardiac arrhythmias and skeletal alterations (Andersen’s syndrome. Involvement of the same ion channel can thus give rise to different phenotypes. In addition, the same mutation can lead to different phenotypes or similar phenotypes can be caused by different mutations on the same or on different channel subtypes. Bearing in mind, the complexity of this field, the growing number of potential channelopathies (such as the myotonic dystrophies, and the time and cost of the genetic procedures, before a biomolecular approach is addressed, it is mandatory to apply strict diagnostic protocols to screen the patients. In this study we propose a protocol to be applied in the diagnosis of the hereditary muscle channelopathies and we demonstrate that muscle biopsy studies and muscle cell cultures may significantly contribute towards the correct diagnosis of the channel involved. DNAbased diagnosis is now a reality for many of the channelopathies. This has obvious genetic counselling, prognostic and therapeutic implications.

  16. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Mounier, Remi; Plomgaard, Peter

    2007-01-01

    lateralis quadriceps and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers (n = 14), because these muscles are characterized by having different fibre-type compositions. In addition, healthy, normally physically active male subjects (n = 8) not involved...... in any kind of resistance exercise underwent a heavy resistance exercise protocol that stimulated the vastus lateralis muscle and biopsies were obtained from this muscle pre-exercise as well as 6, 24 and 48 h post-exercise. IL-15 mRNA levels were twofold higher in the triceps (type 2 fibre dominance......The cytokine interleukin-15 (IL-15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL-15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL-15 expression in muscle. Triceps brachii, vastus...

  17. Passive heat acclimation improves skeletal muscle contractility in humans.

    Science.gov (United States)

    Racinais, S; Wilson, M G; Périard, J D

    2017-01-01

    The aim of this study was to investigate the effect of repeated passive heat exposure (i.e., acclimation) on muscle contractility in humans. Fourteen nonheat-acclimated males completed two trials including electrically evoked twitches and voluntary contractions in thermoneutral conditions [Cool: 24°C, 40% relative humidity (RH)] and hot ambient conditions in the hyperthermic state (Hot: 44-50°C, 50% RH) on consecutive days in a counterbalanced order. Rectal temperature was ~36.5°C in Cool and was maintained at ~39°C throughout Hot. Both trials were repeated after 11 days of passive heat acclimation (1 h per day, 48-50°C, 50% RH). Heat acclimation decreased core temperature in Cool (-0.2°C, P rate in Hot (+0.7 liter/h, P heat acclimation improved skeletal muscle contractility as evidenced by an increase in evoked peak twitch amplitude both in Cool (20.5 ± 3.6 vs. 22.0 ± 4.0 N·m) and Hot (20.5 ± 4.7 vs. 22.0 ± 4.0 N·m) (+9%, P heat acclimation improves skeletal muscle contractile function during electrically evoked and voluntary muscle contractions of different intensities both in Cool and Hot. These results suggest that repeated heat exposure may have important implications to passively maintain or even improve muscle function in a variety of performance and clinical settings. Copyright © 2017 the American Physiological Society.

  18. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    2011-01-01

    Glucose is stored as glycogen in skeletal muscle. The importance of glycogen as a fuel during exercise has been recognized since the 1960s; however, little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. We show that low muscle glycogen is associated...... with an impairment of muscle ability to release Ca(2+), which is an important signal in the muscle activation. Thus, depletion of glycogen during prolonged, exhausting exercise may contribute to muscle fatigue by causing decreased Ca(2+) release inside the muscle. These data provide indications of a signal...

  19. Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres

    Science.gov (United States)

    Zanou, Nadège; Mondin, Ludivine; Fuster, Clarisse; Seghers, François; Dufour, Inès; de Clippele, Marie; Schakman, Olivier; Tajeddine, Nicolas; Iwata, Yuko; Wakabayashi, Shigeo; Voets, Thomas; Allard, Bruno; Gailly, Philippe

    2015-01-01

    Abstract Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca2+ from intracellular pools. We observed that both hyperosmotic shock-induced Ca2+ transients and RVI were inhibited by Gd3+, ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca2+ induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca2+ from the sarcoplasmic reticulum by depolarizing TTs. RVI requires the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCC1, a Na+–K+–Cl− cotransporter, allowing ion entry and driving osmotic water flow. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca2+ transients were abolished by the Ca2+ chelator BAPTA, the level of P-SPAKSer373 in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca2+. We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1. Key points Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock

  20. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  1. File list: InP.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Input control Muscle Satellite Cells, Skeletal Muscle... SRX818834,SRX818832,SRX818833 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  2. File list: Unc.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Unclassified Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  3. File list: Oth.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 TFs and others Muscle Satellite Cells, Skeletal Muscle... SRX818829,SRX818828,SRX818830,SRX818831 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  4. File list: DNS.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 DNase-seq Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  5. File list: NoD.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 No description Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  6. File list: InP.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Input control Muscle Satellite Cells, Skeletal Muscle... SRX818832,SRX818833,SRX818834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  7. File list: Pol.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 RNA polymerase Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  8. File list: Pol.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 RNA polymerase Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  9. File list: ALL.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 All antigens Muscle Satellite Cells, Skeletal Muscle...18832,SRX818833 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  10. File list: Unc.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Unclassified Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  11. File list: DNS.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 DNase-seq Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  12. File list: Oth.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 TFs and others Muscle Satellite Cells, Skeletal Muscle... SRX818829,SRX818831,SRX818828,SRX818830 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  13. File list: DNS.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 DNase-seq Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  14. File list: InP.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Input control Muscle Satellite Cells, Skeletal Muscle... SRX818833,SRX818834,SRX818832 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  15. File list: DNS.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 DNase-seq Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  16. File list: Pol.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 RNA polymerase Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  17. File list: Oth.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 TFs and others Muscle Satellite Cells, Skeletal Muscle... SRX818829,SRX818828,SRX818830,SRX818831 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  18. File list: ALL.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 All antigens Muscle Satellite Cells, Skeletal Muscle...18834,SRX818832 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  19. File list: ALL.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 All antigens Muscle Satellite Cells, Skeletal Muscle...18833,SRX818834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  20. File list: NoD.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 No description Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  1. File list: His.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Histone Muscle Satellite Cells, Skeletal Muscle... SRX818827,SRX818826,SRX818825 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  2. File list: ALL.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 All antigens Muscle Satellite Cells, Skeletal Muscle...18830,SRX818832 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  3. File list: NoD.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 No description Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  4. File list: InP.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Input control Muscle Satellite Cells, Skeletal Muscle... SRX818833,SRX818834,SRX818832 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  5. File list: Oth.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 TFs and others Muscle Satellite Cells, Skeletal Muscle... SRX818831,SRX818829,SRX818828,SRX818830 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  6. File list: Unc.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Unclassified Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  7. File list: Unc.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Unclassified Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  8. File list: His.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Histone Muscle Satellite Cells, Skeletal... Muscle SRX818826,SRX818827,SRX818825 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  9. File list: His.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Histone Muscle Satellite Cells, Skeletal... Muscle SRX818827,SRX818825,SRX818826 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  10. File list: Pol.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 RNA polymerase Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  11. File list: His.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Histone Muscle Satellite Cells, Skeletal... Muscle SRX818827,SRX818825,SRX818826 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  12. File list: NoD.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 No description Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  13. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian

    2015-01-01

    INTRODUCTION: Members of the interleukin-6 (IL-6) family, IL-6 and ciliary neurotrophic factor (CNTF) have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well...... indicated that Mammalian Target of Rapamycin complex (mTORC) 2, but not mTORC1, also is required for LIF-stimulated glucose uptake. In contrast to CNTF, LIF-stimulation did not alter palmitate oxidation. LIF-stimulated glucose uptake was maintained in EDL from obese insulin resistant mice, whereas soleus...

  14. Influence of age on leptin induced skeletal muscle signaling

    DEFF Research Database (Denmark)

    Guadalupe Grau, Amelia; Larsen, Steen; Guerra, Borja

    2014-01-01

    Age associated fat mass accumulation could be due to dysregulation of leptin signaling in skeletal muscle. Thus, we investigated total protein expression and phosphorylation levels of the long isoform of the leptin receptor (OB-Rb), and leptin signaling through Janus Kinase 2 (JAK2)/signal...... transducer and activator of transcription 3 (STAT3), insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC), combined with the leptin signaling inhibitors suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in human...

  15. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Science.gov (United States)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  16. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats.

    Science.gov (United States)

    Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi

    2014-04-01

    Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.

  17. Procedures for rat in situ skeletal muscle contractile properties.

    Science.gov (United States)

    MacIntosh, Brian R; Esau, Shane P; Holash, R John; Fletcher, Jared R

    2011-10-15

    There are many circumstances where it is desirable to obtain the contractile response of skeletal muscle under physiological circumstances: normal circulation, intact whole muscle, at body temperature. This includes the study of contractile responses like posttetanic potentiation, staircase and fatigue. Furthermore, the consequences of disease, disuse, injury, training and drug treatment can be of interest. This video demonstrates appropriate procedures to set up and use this valuable muscle preparation. To set up this preparation, the animal must be anesthetized, and the medial gastrocnemius muscle is surgically isolated, with the origin intact. Care must be taken to maintain the blood and nerve supplies. A long section of the sciatic nerve is cleared of connective tissue, and severed proximally. All branches of the distal stump that do not innervate the medial gastrocnemius muscle are severed. The distal nerve stump is inserted into a cuff lined with stainless steel stimulating wires. The calcaneus is severed, leaving a small piece of bone still attached to the Achilles tendon. Sonometric crystals and/or electrodes for electromyography can be inserted. Immobilization by metal probes in the femur and tibia prevents movement of the muscle origin. The Achilles tendon is attached to the force transducer and the loosened skin is pulled up at the sides to form a container that is filled with warmed paraffin oil. The oil distributes heat evenly and minimizes evaporative heat loss. A heat lamp is directed on the muscle, and the muscle and rat are allowed to warm up to 37°C. While it is warming, maximal voltage and optimal length can be determined. These are important initial conditions for any experiment on intact whole muscle. The experiment may include determination of standard contractile properties, like the force-frequency relationship, force-length relationship, and force-velocity relationship. With care in surgical isolation, immobilization of the origin of the

  18. Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Bashir M Rezk

    Full Text Available Advanced congestive heart failure (CHF and chronic kidney disease (CKD are characterized by increased angiotensin II (Ang II levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1 and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase and of the satellite cell marker M-cadherin (59.2±22.2% increase. Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase, those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD.

  19. Inhibition of caspase mediated apoptosis restores muscle function after crush injury in rat skeletal muscle.

    Science.gov (United States)

    Stratos, Ioannis; Li, Zhengdong; Rotter, Robert; Herlyn, Philipp; Mittlmeier, Thomas; Vollmar, Brigitte

    2012-03-01

    Although muscle regeneration after injury is accompanied by apoptotic cell death, prolonged apoptosis inhibits muscle restoration. The goal of our study was to provide evidence that inhibition of apoptosis improves muscle function following blunt skeletal muscle injury. Therefore, 24 rats were used for induction of injury to the left soleus muscle using an instrumented clamp. All animals received either 3.3 mg/kg i.p. of the pan-caspase inhibitor Z-valinyl-alanyl-DL: -aspartyl-fluoromethylketone (z-VAD.fmk) (n = 12 animals) or equivalent volumes of the vehicle solution DMSO (n = 12 animals) at 0 and 48 h after trauma. After assessment of the fast twitch and tetanic contraction capacity of the muscle at days 4 and 14 post injury, sampling of muscle tissue served for analysis of cell apoptosis (cleaved caspase 3 immunohistochemistry), cell proliferation (BrdU immunohistochemistry) as well as of muscle tissue area and myofiber diameter (HE planimetric analysis). Muscle strength analysis after 14 days in the z-VAD.fmk treated group revealed a significant increase in relative muscle strength when compared to the DMSO treated group. In contrast to the DMSO treated injured muscle, showing a transient switch towards a fast-twitching muscle phenotype (significant increase of the twitch-to-tetanic force ratio), z-VAD.fmk treated animals showed an enhanced healing process with a faster restoration of the twitch-to-tetanic force ratio towards the physiological slow-twitching muscle phenotype. This enhancement of muscle function was accompanied by a significant decrease of cell apoptosis and cell proliferation at day 4 as well as by a significant increase of muscle tissue area at day 4. At day 14 after injury z-VAD.fmk treated animals presented with a significant increase of myofiber diameter compared to the DMSO treated animals. Thus, z-VAD.fmk could provide a promising option in the anti-apoptotic therapy of muscle injury.

  20. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    OpenAIRE

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista

    2013-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1...

  1. Improving the preservation of isolated rat skeletal muscles stored for 16 hours at 4 degrees C

    NARCIS (Netherlands)

    van der Heijden, E P; Kroese, A B; Werker, P M; de With, M C; de Smet, M; Kon, M; Bär, D P

    2000-01-01

    BACKGROUND: Limiting factors for long-term cold preservation of isolated skeletal muscles are increased intracellular calcium levels, the occurrence of hypercontraction, and the overproduction of oxygen free radicals. In the present study, we investigated whether muscle preservation during cold

  2. Skeletal Muscle Loss is Associated with TNF Mediated Insufficient Skeletal Myogenic Activation After Burn.

    Science.gov (United States)

    Song, Juquan; Saeman, Melody R; De Libero, Jana; Wolf, Steven E

    2015-11-01

    Muscle loss accompanies severe burn; in this hyper-catabolic state, muscle undergoes atrophy through protein degradation and disuse. Muscle volume is related to the relative rates of cellular degradation and myogenesis. We hypothesize that muscle atrophy after injury is in part because of insufficient myogenesis associated with the hyper-inflammatory response. The aim of this study was to investigate the role of skeletal myogenesis and muscle cell homeostasis in response to severe burn. Twenty-eight male C57BL6 mice received 25% TBSA scald. Gluteus muscle from these animals was analyzed at days 1, 3, 7, and 14 after injury. Six additional animals without burn served as controls. We showed muscle wet weight and protein content decreased at days 3 and 7 after burn, with elevated tumor necrosis factor (TNF) mRNA expression (P < 0.05). Increased cell death was observed through TUNEL staining, and cleaved caspase-3 levels reached a peak in muscle lysate at day 3 (P < 0.05). The cell proliferation marker proliferating cell nuclear antigen (PCNA) significantly increased after burn, associated with increased gene and protein expression of myogenesis markers Pax7 and myogenin. Desmin mRNA expression and the ratio of desmin to PCNA protein expression, however, significantly decreased at day 7 (P < 0.05). In vitro, the ratio of desmin to PCNA protein expression significantly decreased in C2C12 murine myoblasts after TNF-α stimulation for 24 h. We showed that severe burn induces both increased cell death and proliferation. Myogenesis, however, does not counterbalance increased cell death after burn. Data suggest insufficient myogenesis might be associated with pro-inflammatory mediator TNF activity.

  3. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy?

    Science.gov (United States)

    Schoenfeld, Brad J

    2012-05-01

    Exercise-induced muscle damage (EIMD) occurs primarily from the performance of unaccustomed exercise, and its severity is modulated by the type, intensity, and duration of training. Although concentric and isometric actions contribute to EIMD, the greatest damage to muscle tissue is seen with eccentric exercise, where muscles are forcibly lengthened. Damage can be specific to just a few macromolecules of tissue or result in large tears in the sarcolemma, basal lamina, and supportive connective tissue, and inducing injury to contractile elements and the cytoskeleton. Although EIMD can have detrimental short-term effects on markers of performance and pain, it has been hypothesized that the associated skeletal muscle inflammation and increased protein turnover are necessary for long-term hypertrophic adaptations. A theoretical basis for this belief has been proposed, whereby the structural changes associated with EIMD influence gene expression, resulting in a strengthening of the tissue and thus protection of the muscle against further injury. Other researchers, however, have questioned this hypothesis, noting that hypertrophy can occur in the relative absence of muscle damage. Therefore, the purpose of this article will be twofold: (a) to extensively review the literature and attempt to determine what, if any, role EIMD plays in promoting skeletal muscle hypertrophy and (b) to make applicable recommendations for resistance training program design.

  4. Effect of spaceflight on skeletal muscle: Mechanical properties and myosin isoform content of a slow muscle

    Science.gov (United States)

    Caiozzo, Vincent J.; Baker, Michael J.; Herrick, Robert E.; Tao, Ming; Baldwin, Kenneth M.

    1994-01-01

    This study examined changes in contractile, biochemical, and histochemical properties of slow antigravity skeletal muscle after a 6-day spaceflight mission. Twelve male Sprague-Dawley rats were randomly divided into two groups: flight and ground-based control. Approximately 3 h after the landing, in situ contractile measurements were made on the soleus muscles of the flight animals. The control animals were studied 24 h later. The contractile measurements included force-velocity relationship, force-frequency relationship, and fatigability. Biochemical measurements focused on the myosin heavy chain (MHC) and myosin light chain profiles. Adenosinetriphosphatase histochemistry was performed to identify cross-sectional area of slow and fast muscle fibers and to determine the percent fiber type distribution. The force-velocity relationships of the flight muscles were altered such that maximal isometric tension P(sub o) was decreased by 24% and maximal shortening velocity was increased by 14% (P less than 0.05). The force-frequency relationship of the flight muscles was shifted to the right of the control muscles. At the end of the 2-min fatigue test, the flight muscles generated only 34% of P(sub o), whereas the control muscles generated 64% of P(sub o). The flight muscles exhibited de novo expression of the type IIx MHC isoform as well as a slight decrease in the slow type I and fast type IIa MHC isoforms. Histochemical analyses of flight muscles demonstrated a small increase in the percentage of fast type II fibers and a greater atrophy of the slow type I fibers. The results demonstrate that contractile properties of slow antigravity skeletal muscle are sensitive to the microgravity environment and that changes begin to occur within the 1st wk. These changes were at least, in part, associated with changes in the amount and type of contractile protein expressed.

  5. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation

    DEFF Research Database (Denmark)

    Dzamko, Nicolas; Schertzer, Jonathan D.; Ryall, James G.

    2008-01-01

    The activation of AMP-activated protein kinase (AMPK) and phosphorylation/inhibition of acetyl-CoA carboxylase 2 (ACC2) is believed to be the principal pathway regulating fatty acid oxidation. However, during exercise AMPK activity and ACC Ser-221 phosphorylation does not always correlate...... with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase...... dead (KD) AMPK alpha2. In wild-type (WT) mice, AICAR and contraction increased AMPK alpha2 and alpha1 activities, the phosphorylation of ACC2 and rates of fatty acid oxidation while tending to reduce malonyl-CoA levels. Despite no activation of AMPK in KD mice, ACC2 phosphorylation was maintained...

  6. Skeletal Muscle Mitochondrial Function in Polycystic Ovarian Syndrome

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Svendsen, Pernille Maj; Skovbro, Mette

    2011-01-01

    Objective Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance, which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. Methods...... Hyperinsulinemic euglycemic clamps (40 mU/min/m2) and muscle biopsies were performed on 23 women with PCOS (9 lean (body mass index (BMI) 25 kg/m2)) and 17 age- and weight-matched controls (6 lean and 11 obese). Western blotting and high-resolution respirometry was used to determine mitochondrial function. Results...... Insulin sensitivity decreased with PCOS and increasing body weight. Mitochondrial respiration with substrates for complex I and complex I+II were similar in all groups, and PCOS was not associated with a decrease in mitochondrial content as measured by mtDNA/genomicDNA. We found no correlation between...

  7. Clearing skeletal muscle with CLARITY for light microscopy imaging.

    Science.gov (United States)

    Milgroom, Andrew; Ralston, Evelyn

    2016-04-01

    Viewing subcellular details over large tissue volumes is becoming an essential condition of the success of large-scale projects aimed at visualizing cell connections in whole organs or tissues. However, tissue opacity remains an obstacle to deep tissue imaging. This situation has brought renewed interest for techniques of tissue clearing; new protocols, such as CLARITY (Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/Immunostaining/In situ hybridization-compatible Tissue-hYdrogel), have recently been developed. So far, most of the tests of these techniques have been applied to brain or other soft tissues. Here we show that CLARITY clears mouse hindlimb skeletal muscles and maintains the basic structural features of muscle and its fibers. However, tagging with fluorescent markers was not successful. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. Exercise and training effects on ceramide metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Dobrzyn, Agnieszka; Saltin, Bengt

    2004-01-01

    In rat skeletal muscle prolonged exercise affects the content and composition of ceramides, but in human skeletal muscle no data are available on this compound. Our aim was to examine the content of ceramide- and sphingomyelin fatty acids and neutral, Mg(2+)-dependent sphingomyelinase activity...... in skeletal muscle in untrained and trained subjects before and after prolonged exercise. Healthy male subjects were recruited into an untrained (n = 8, VO2,max 3.8 +/- 0.2 1 min1) and a trained (n = 8, Vo2,max 5.1 +/- 0.1 1 min2) group. Before and after a 3-h exercise bout (58 +/- 1% VO2,max) a muscle biopsy......). In conclusion, we have reported, for the first time, the values for ceramide fatty acid content and neutral, Mg2(+)-dependent sphingomyelinase activity in human skeletal muscle. The results indicate that acute prolonged exercise affects ceramide metabolism in human skeletal muscle both in untrained...

  9. Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle

    Science.gov (United States)

    Adams, Gregory R.

    2002-01-01

    Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.

  10. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass

    OpenAIRE

    Goodman, Craig A.; Hornberger, Troy A.

    2014-01-01

    Skeletal muscle is essential for normal bodily function and the loss of skeletal muscle (i.e. muscle atrophy/wasting) can have a major impact on mobility, whole-body metabolism, disease resistance, and quality of life. Thus, there is a clear need for the development of therapies that can prevent the loss, or increase, of skeletal muscle mass. However, in order to develop such therapies, we will first have to develop a thorough understanding of the molecular mechanisms that regulate muscle mas...

  11. Skeletal muscle satellite cells cultured in simulated microgravity

    Science.gov (United States)

    Molnar, Greg; Hartzell, Charles R.; Schroedl, Nancy A.; Gonda, Steve R.

    1993-01-01

    Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and therefore provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (approximately 200 gm) were used for all studies and were composed of greater than 75 % satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D flat culture and 3-D HARV culture. Plating efficiency (cells attached - cells plated x 100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and non-satellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability since glucose levels in media from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARVS were joined together by cells into three-dimensional aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of

  12. Exercise Protects Skeletal Muscle during Chronic Doxorubicin Administration.

    Science.gov (United States)

    Dickinson, Jared M; D'Lugos, Andrew C; Mahmood, Tara N; Ormsby, Jordan C; Salvo, Lara; Dedmon, W Logan; Patel, Shivam H; Katsma, Mark S; Mookadam, Farouk; Gonzales, Rayna J; Hale, Taben M; Carroll, Chad C; Angadi, Siddhartha S

    2017-12-01

    This study aimed to assess the ability for exercise training performed before and during biweekly doxorubicin (DOX) administration to attenuate adverse effects of DOX on skeletal muscle. We hypothesized that DOX treatment would increase REDD1, impair mammalian target of rapamycin (mTOR) signaling, and reduce muscle fiber size, and that exercise training would attenuate these responses. Eight-week-old ovariectomized female Sprague-Dawley rats were randomized to one of four treatments: exercise + DOX (Ex-Dox), Ex + vehicle (Ex-Veh), sedentary + DOX (Sed-Dox), and Sed + Veh (Sed-Veh). DOX (4 mg·kg) or vehicle (saline) intraperitoneal injections were performed biweekly for a total of three injections (cumulative dose, 12 mg·kg). Ex animals performed interval exercise (4 × 4 min, 85%-90% V˙O2peak) 5 d·wk starting 1 wk before the first injection and continued throughout study duration. Animals were euthanized ~5 d after the last injection, during which the soleus muscle was dissected and prepared for immunoblot and immunohistochemical analyses. REDD1 mRNA and protein were increased only in Sed-Dox (P Sed-Dox versus Sed-Veh (P 0.05). LC3BI was higher, and the LC3BII/I ratio was lower in Sed-Dox versus Sed-Veh (P 0.05). These data suggest that DOX may inhibit mTORC1 activity and reduce MHCI and MHCIIa fiber size, potentially through elevated REDD1, and that exercise may provide a therapeutic strategy to preserve skeletal muscle size during chronic DOX treatment.

  13. Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering

    OpenAIRE

    Riboldi, SA; Sampaolesi, Maurilio; Neuenschwander, P; Cossu, G.; Mantero, S.

    2005-01-01

    Skeletal muscle tissue engineering represents an attractive approach to overcome problems associated with autologous transfer of muscle tissue and provides a valid alternative in muscle regeneration enhancement. The aim of this study was to investigate the suitability, as scaffold for skeletal muscle tissue engineering, of a known biodegradable block copolymer (DegraPol (R)) processed by electrospinning in the novel form of microfibrous membranes. Scaffolds were characterized with reference t...

  14. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro

    Science.gov (United States)

    Vanderburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1991-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  15. Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro

    Science.gov (United States)

    Vandenburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1990-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  16. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity

    OpenAIRE

    Kang, Chounghun; Lim, Wonchung

    2016-01-01

    Endurance exercise is securely linked to muscle metabolic adaptations including enhanced mitochondrial function (?Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle? [1], ?Effects of exercise on mitochondrial content and function in aging human skeletal muscle? [2]). However, the link between exercise intensity and mitochondrial function in aging muscle has not been fully investigated. In order to understand how strenuous exercise affects mit...

  17. Effects of Use and Disuse on Non-paralyzed and Paralyzed Skeletal Muscles

    OpenAIRE

    Dolbow, David R.; Gorgey, Ashraf S

    2016-01-01

    Skeletal muscle is an integral part of the somatic nervous system and plays a primary role in the performance of physical activities. Because physical activity is vital to countering the effects of aging and age related diseases and is a key component in the maintenance of healthy body composition it is important to understand the effects of use and disuse on skeletal muscle. While voluntary muscle activity provides optimal benefits to muscle and the maintenance of healthy body composition, n...

  18. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    Science.gov (United States)

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Mitochondrial redox signaling enables repair of injured skeletal muscle cells.

    Science.gov (United States)

    Horn, Adam; Van der Meulen, Jack H; Defour, Aurelia; Hogarth, Marshall; Sreetama, Sen Chandra; Reed, Aaron; Scheffer, Luana; Chandel, Navdeep S; Jaiswal, Jyoti K

    2017-09-05

    Strain and physical trauma to mechanically active cells, such as skeletal muscle myofibers, injures their plasma membranes, and mitochondrial function is required for their repair. We found that mitochondrial function was also needed for plasma membrane repair in myoblasts as well as nonmuscle cells, which depended on mitochondrial uptake of calcium through the mitochondrial calcium uniporter (MCU). Calcium uptake transiently increased the mitochondrial production of reactive oxygen species (ROS), which locally activated the guanosine triphosphatase (GTPase) RhoA, triggering F-actin accumulation at the site of injury and facilitating membrane repair. Blocking mitochondrial calcium uptake or ROS production prevented injury-triggered RhoA activation, actin polymerization, and plasma membrane repair. This repair mechanism was shared between myoblasts, nonmuscle cells, and mature skeletal myofibers. Quenching mitochondrial ROS in myofibers during eccentric exercise ex vivo caused increased damage to myofibers, resulting in a greater loss of muscle force. These results suggest a physiological role for mitochondria in plasma membrane repair in injured cells, a role that highlights a beneficial effect of ROS. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Module-based multiscale simulation of angiogenesis in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Mac Gabhann Feilim

    2011-04-01

    Full Text Available Abstract Background Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. Results We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation. Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. Conclusions This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions.

  1. Module-based multiscale simulation of angiogenesis in skeletal muscle.

    Science.gov (United States)

    Liu, Gang; Qutub, Amina A; Vempati, Prakash; Mac Gabhann, Feilim; Popel, Aleksander S

    2011-04-04

    Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions.

  2. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis.

    Directory of Open Access Journals (Sweden)

    Eun Ju Lee

    Full Text Available BACKGROUND: The expression of myogenic regulatory factors (MRFs consisting of MyoD, Myf5, myogenin (MyoG and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd in primary bovine muscle satellite cells (MSCs. RESULTS: About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS: This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L, Protein lyl-1 (LYL1, various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle

  3. Multistability inspired by the oblique, pennate architectures of skeletal muscle

    Science.gov (United States)

    Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.

    2017-04-01

    Skeletal muscle mechanics exhibit a range of noteworthy characteristics, providing great inspiration for the development of advanced structural and material systems. These characteristics arise from the synergies demonstrated between muscle's constituents across the various length scales. From the macroscale oblique orientation of muscle fibers to the microscale lattice spacing of sarcomeres, muscle takes advantage of geometries and multidimensionality for force generation or length change along a desired axis. Inspired by these behaviors, this research investigates how the incorporation of multidimensionality afforded by oblique, pennate architectures can uncover novel mechanics in structures exhibiting multistability. Experimental investigation of these mechanics is undertaken using specimens of molded silicone rubber with patterned voids, and results reveal tailorable mono-, bi-, and multi-stability under axial displacements by modulation of transverse confinement. If the specimen is considered as an architected material, these results show its ability to generate intriguing, non-monotonic shear stresses. The outcomes would foster the development of novel, advanced mechanical metamaterials that exploit pennation and multidimensionality.

  4. A simplified immunohistochemical classification of skeletal muscle fibres in mouse

    Directory of Open Access Journals (Sweden)

    M. Kammoun

    2014-06-01

    Full Text Available The classification of muscle fibres is of particular interest for the study of the skeletal muscle properties in a wide range of scientific fields, especially animal phenotyping. It is therefore important to define a reliable method for classifying fibre types. The aim of this study was to establish a simplified method for the immunohistochemical classification of fibres in mouse. To carry it out, we first tested a combination of several anti myosin heavy chain (MyHC antibodies in order to choose a minimum number of antibodies to implement a semi-automatic classification. Then, we compared the classification of fibres to the MyHC electrophoretic pattern on the same samples. Only two anti MyHC antibodies on serial sections with the fluorescent labeling of the Laminin were necessary to classify properly fibre types in Tibialis Anterior and Soleus mouse muscles in normal physiological conditions. This classification was virtually identical to the classification realized by the electrophoretic separation of MyHC. This immunohistochemical classification can be applied to the total area of Tibialis Anterior and Soleus mouse muscles. Thus, we provide here a useful, simple and time-efficient method for immunohistochemical classification of fibres, applicable for research in mouse

  5. A simplified immunohistochemical classification of skeletal muscle fibres in mouse.

    Science.gov (United States)

    Kammoun, M; Cassar-Malek, I; Meunier, B; Picard, B

    2014-06-24

    The classification of muscle fibres is of particular interest for the study of the skeletal muscle properties in a wide range of scientific fields, especially animal phenotyping. It is therefore important to define a reliable method for classifying fibre types. The aim of this study was to establish a simplified method for the immunohistochemical classification of fibres in mouse. To carry it out, we first tested a combination of several anti myosin heavy chain (MyHC) antibodies in order to choose a minimum number of antibodies to implement a semi-automatic classification. Then, we compared the classification of fibres to the MyHC electrophoretic pattern on the same samples. Only two anti MyHC antibodies on serial sections with the fluorescent labeling of the Laminin were necessary to classify properly fibre types in Tibialis Anterior and Soleus mouse muscles in normal physiological conditions. This classification was virtually identical to the classification realized by the electrophoretic separation of MyHC. This immunohistochemical classification can be applied to the total area of Tibialis Anterior and Soleus mouse muscles. Thus, we provide here a useful, simple and time-efficient method for immunohistochemical classification of fibres, applicable for research in mouse.

  6. [Current Conservative Treatment and Management Strategies of Skeletal Muscle Injuries].

    Science.gov (United States)

    Hotfiel, T; Carl, H-D; Swoboda, B; Heinrich, M; Heiß, R; Grim, C; Engelhardt, M

    2016-06-01

    Muscle injuries frequently occur during sport and are one of the commonest injuries. The diagnosis and treatment of muscle injuries impose high demands on medical treatment, in order to ensure successful regeneration and a rapid return to sport. Most of the injuries can be treated conservatively, as skeletal muscles have a high endogenous capacity for repair and regeneration. Conservative treatment includes initial on-field therapy. This is known as the "RICE" principle and is common and recommended for initial treatment for most sports injuries. The primary therapy target is to reduce pain, swelling and bleeding and thus to limit the initial inflammatory process and prevent further damage. During the first days after injury, brief immobilization helps to reduce the re-injury rate and accelerates the formation of granulation tissue. There are many possible additional treatments, including intramuscular injections, manipulation of the sacroiliac joint or rehabilitation programs, including stretching and strengthening. If the acute treatment phase is complete after 3 to 5 days, more active treatment, including trunk stabilisation, stretching and strengthening, can be started gradually. Despite their high prevalence, there have only been a few studies on the treatment and management of these injuries. The aim of this manuscript is to review the literature on the classification, pathobiology and treatment strategies for muscle injuries. Georg Thieme Verlag KG Stuttgart · New York.

  7. Can Cytoprotective Cobalt Protoporphyrin Protect Skeletal Muscle and Muscle-derived Stem Cells From Ischemic Injury?

    Science.gov (United States)

    Wilson, Heather-Marie P; Welikson, Robert E; Luo, Jun; Kean, Thomas J; Cao, Baohong; Dennis, James E; Allen, Margaret D

    2015-09-01

    Extremity trauma is the most common injury seen in combat hospitals as well as in civilian trauma centers. Major skeletal muscle injuries that are complicated by ischemia often result in substantial muscle loss, residual disability, or even amputation, yet few treatment options are available. A therapy that would increase skeletal muscle tolerance to hypoxic damage could reduce acute myocyte loss and enhance preservation of muscle mass in these situations. In these experiments, we investigated (1) whether cobalt protoporphyrin (CoPP), a pharmacologic inducer of cytoprotective heme oxygenase-1 (HO-1), would upregulate HO-1 expression and activity in skeletal muscle, tested in muscle-derived stem cells (MDSCs); and (2) whether CoPP exposure would protect MDSCs from cell death during in vitro hypoxia/reoxygenation. Then, using an in vivo mouse model of hindlimb ischemia/reperfusion injury, we examined (3) whether CoPP pharmacotherapy would reduce skeletal muscle damage when delivered after injury; and (4) whether it would alter the host inflammatory response to injury. MDSCs were exposed in vitro to a single dose of 25 μΜ CoPP and harvested over 24 to 96 hours, assessing HO-1 protein expression by Western blot densitometry and HO-1 enzyme activity by cGMP levels. To generate hypoxia/reoxygenation stress, MDSCs were treated in vitro with phosphate-buffered saline (vehicle), CoPP, or CoPP plus an HO-1 inhibitor, tin protoporphyrin (SnPP), and then subjected to 5 hours of hypoxia (muscles was determined by uptake of intraperitoneally delivered Evans blue dye (EBD), quantified by image analysis. On serial sections, inflammation was gauged by the mean myeloperoxidase staining intensity per unit area over the entirety of each muscle. In MDSCs, a single exposure to CoPP increased HO-1 protein expression and enzyme activity, both of which were sustained for 96 hours. CoPP treatment of MDSCs reduced apoptotic cell populations by 55% after in vitro hypoxia

  8. Niacin supplementation induces type II to type I muscle fiber transition in skeletal muscle of sheep

    Science.gov (United States)

    2013-01-01

    Background It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ (encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC-1β (encoded by PPARGC1B), leading to type II to type I fiber transition and upregulation of genes involved in oxidative metabolism. The aim of the present study was to investigate whether niacin administration also influences fiber distribution and the metabolic phenotype of different muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. semitendinosus (ST)] in sheep as a model for ruminants. For this purpose, 16 male, 11 wk old Rhoen sheep were randomly allocated to two groups of 8 sheep each administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk. Results After 4 wk, the percentage number of type I fibers in LD, SM and ST muscles was greater in the niacin group, whereas the percentage number of type II fibers was less in niacin group than in the control group (P niacin group than in the control group. Conclusions The study shows that niacin supplementation induces muscle fiber transition from type II to type I, and thereby an oxidative metabolic phenotype of skeletal muscle in sheep as a model for ruminants. The enhanced capacity of skeletal muscle to utilize fatty acids in ruminants might be particularly useful during metabolic states in which fatty acids are excessively mobilized from adipose tissue, such as during the early lactating period in high producing cows. PMID:24267720

  9. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs. Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM, which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential.We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers.These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment.

  10. Effects of the belt electrode skeletal muscle electrical stimulation system on lower extremity skeletal muscle activity: Evaluation using positron emission tomography.

    Science.gov (United States)

    Numata, Hitoaki; Nakase, Junsuke; Inaki, Anri; Mochizuki, Takafumi; Oshima, Takeshi; Takata, Yasushi; Kinuya, Seigo; Tsuchiya, Hiroyuki

    2016-01-01

    Lower-extremity muscle weakness in athletes after lower limb trauma or surgery can hinder their return to sports, and the associated muscle atrophy may lead to deterioration in performance after returning to sports. Recently, belt electrode skeletal muscle electrical stimulation (B-SES) which can contract all the lower limb skeletal muscles simultaneously was developed. However, no study has evaluated skeletal muscle activity with B-SES. Since only superficial muscles as well as a limited number of muscles can be investigated using electromyography, we investigated whether positron emission tomography (PET) can evaluate the activity of all the skeletal muscles in the body simultaneously. The purpose of this study was to evaluate the effectiveness of the B-SES system using PET. Twelve healthy males (mean age, 24.3 years) were divided into two groups. The subjects in the control group remained in a sitting position for 10 min, and [(18)F] fluorodeoxyglucose (FDG) was intravenously injected. In the exercise group, subjects exercised using the B-SES system for 20 min daily for three consecutive days as a pre-test exercise. On the measurement day, they exercised for 10 min, received an injection of FDG, and exercised for another 10 min. PET-computed tomography images were obtained in each group 60 min after the FDG injection. Regions of interest were drawn in each lower-extremity muscle. We compared each skeletal muscle metabolism using the standardized uptake value. In the exercise group, FDG accumulation in the gluteus maximus, gluteus medius, gluteus minimus, quadriceps femoris, sartorius, and hamstrings was significantly higher than the muscles in the control (P muscle activity of the gluteal muscles as well as the most lower-extremity muscles simultaneously. Copyright © 2015 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  11. The Pleckstrin homology like domain family member, TDAG51, is temporally regulated during skeletal muscle regeneration.

    Science.gov (United States)

    Coleman, Samantha K; Cao, Andrew W; Rebalka, Irena A; Gyulay, Gabriel; Chambers, Paige J; Tupling, A Russell; Austin, Richard C; Hawke, Thomas J

    2017-11-07

    The capacity for skeletal muscle to repair from daily insults as well as larger injuries is a vital component to maintaining muscle health over our lifetime. Given the importance of skeletal muscle for our physical and metabolic well-being, identifying novel factors mediating the growth and repair of skeletal muscle will thus build our foundational knowledge and help lead to potential therapeutic avenues for muscle wasting disorders. To that end, we investigated the expression of T-cell death associated gene 51 (TDAG51) during skeletal muscle repair and studied the response of TDAG51 deficient (TDAG51(-/-)) mice to chemically-induced muscle damage. TDAG51 mRNA and protein expression within uninjured skeletal muscle is almost undetectable but, in response to chemically-induced muscle damage, protein levels increase by 12 h post-injury and remain elevated for up to 10 days of regeneration. To determine the impact of TDAG51 deficiency on skeletal muscle form and function, we compared adult male TDAG51(-/-) mice with age-matched WT mice. Body and muscle mass were not different between the two groups, however, in situ muscle testing demonstrated that a significant reduction in force production both before and after fatiguing contractions in TDAG51(-/-) mice. During the early phases of the regenerative process (5 days post-injury), TDAG51(-/-) muscles display a significantly larger area of degenerating muscle tissue concomitant with significantly less regenerating area compared to wild-type (WT; as demonstrated by embryonic myosin heavy chain expression). Despite these early deficits in regeneration, TDAG51(-/-) muscles displayed no morphological deficits by 10 days post injury compared to WT mice. Taken together, the data presented herein demonstrate TDAG51 expression to be upregulated in damaged skeletal muscle and its absence attenuates the early phases of muscle regeneration. Copyright © 2017. Published by Elsevier Inc.

  12. MR imaging of the denervated skeletal muscles in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyung Guhn; Juhng, Seon Kwan; Lee, Sung Ah; Lee, Kang Mo; Kim, Seon Gu; Park, Dong Sik; Choi, See Sung; Roh, Byung Suk; Kim, Chang Guhn; Won, Jong Jin [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    1997-01-01

    To determine the time of magnetic resonance(MR) signal intensity changes in denervated skeletal muscle and to compare MR imaging with electromyography(EMG) in the evaluation of peripheral nerve injury. We evaluated MR imagings of denervated muscles after experimental transection of the sciatic nerve in five rabbits using 1.0T MR unit. MR imaging and EMG were performed 3 days and 1, 2 and 3 weeks after denervation T1-weighted images(T1-WI), T2-WI and Short Tau Inversion Recovery (STIR) images were obtained. The signal intensity (SI) of muscles in the denervated and normal sides were visually and quantitatively compared. After measuring the SI of the normal and abnormal areas, the time of SI change was determined when there was significant difference (P< 0.05) of SI between the normal and denervated sides. On STIR images, two of the five rabbits showed significant SI changes at the third day (P< 0.05) and all showed significant changes (P< 0.05) at the first week. On T2-WI, one rabbit showed significant SI changes at the third day, and all showed significant SI changes at the first week. On T1-WI, significant SI changes were seen in one rabbit at the second week and in one at the third. One week after denervation, all showed denervation potential on EMG. This study suggests that MR imaging using STIR images is a useful method in the evaluation of denervated muscle, and that MR signal changes of denervated muscle may precede EMG changes after denervation. To localize and to determine the severity of the peripheral nerve injury, future analysis of the distribution of abnormal MR SI in denervated muscles would be helpful.

  13. Time course of gene expression during mouse skeletal muscle hypertrophy

    Science.gov (United States)

    Lee, Jonah D.; England, Jonathan H.; Esser, Karyn A.; McCarthy, John J.

    2013-01-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy. PMID:23869057

  14. Bio-impedance analysis for appendicular skeletal muscle mass assessment in (pre-) frail elderly people

    NARCIS (Netherlands)

    Baar, van H.; Hulshof, P.J.M.; Tieland, C.A.B.; Groot, de C.P.G.M.

    2015-01-01

    Background & aims Screening populations for skeletal muscle mass (SMM) is important for early detection of sarcopenia. Our aim was to develop an age specific bio-impedance (BI) prediction equation for the assessment of appendicular skeletal muscle mass (ASMM) in (pre-) frail elderly people aged

  15. Lower physical activity is associated with fat infiltration within skeletal muscle in young girls

    Science.gov (United States)

    Fat infiltration within skeletal muscle is strongly associated with obesity, type 2 diabetes mellitus, and metabolic syndrome. Lower physical activity may be a risk factor for greater fat infiltration within skeletal muscle, although whether lower physical activity is associated with fat infiltrati...

  16. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Prats Gavalda, Clara; Qvortrup, Klaus

    2013-01-01

    The subcellular distribution and secretion of vascular endothelial growth factor (VEGF) was examined in skeletal muscle of healthy humans. Skeletal muscle biopsies were obtained from m.v. lateralis before and after a 2 h bout of cycling exercise. VEGF localization was conducted on preparations...

  17. PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity

    NARCIS (Netherlands)

    Jans, A.; Konings, E.; Goossens, G.H.; Bouwman, F.G.; Moors, C.C.; Boekschoten, M.V.; Afman, L.A.; Muller, M.R.; Mariman, E.C.; Blaak, E.E.

    2012-01-01

    Background: Dietary fat quality may influence skeletal muscle lipid processing and fat accumulation, thereby modulating insulin sensitivity. Objective: The objective was to examine the acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA processing and postprandial

  18. Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle

    Science.gov (United States)

    Stanford, Kristin I.; Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…

  19. Structure of skeletal muscles after hypokinesia and physical loading of middle aerobic power

    Directory of Open Access Journals (Sweden)

    Serg Popel’

    2014-11-01

    Full Text Available In the article is shown that determined degree of destructive changes in skeletal muscles is in direct dependence on the term of hypokinesiа limitation. Application of kinesiotherapy intensifies the repair processes and substantially reduces the terms of renewal of structurally-functional properties of skeletal muscles after hypokinesiа.

  20. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Sacchetti, M; Rådegran, G

    2002-01-01

    glycerol uptake was observed, which was substantially higher during exercise. Total body skeletal muscle FA and glycerol uptake/release was estimated to account for 18-25 % of whole body R(d) or R(a). In conclusion: (1) skeletal muscle FA and glycerol metabolism, using the leg arterial-venous difference...

  1. Responses of mouse skeletal muscle to endurance exercise. Functional, metabolic, and genomic adaptations

    NARCIS (Netherlands)

    de Snoo, M.W.

    2009-01-01

    Endurance exercise is commonly known to improve skeletal muscle performance with respect to fatigue resistance. The exact mechanisms, however, as to how skeletal muscle adapts to increased physical demand are still largely unknown, despite extensive research. These processes were originally studied

  2. Regulation of pH in human skeletal muscle: adaptations to physical activity

    DEFF Research Database (Denmark)

    Juel, C

    2008-01-01

    Regulation of pH in skeletal muscle is the sum of mechanisms involved in maintaining intracellular pH within the normal range. Aspects of pH regulation in human skeletal muscle have been studied with various techniques from analysis of membrane proteins, microdialysis, and the nuclear magnetic...

  3. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Petersson, Stine J; Sellathurai, Jeeva

    2009-01-01

    indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis...

  4. Skeletal muscle autophagy and mitophagy in response to high-fat feeding and endurance training

    OpenAIRE

    Tarpey, Michael

    2016-01-01

    Obesity is associated with reduced skeletal muscle insulin sensitivity, a major risk factor for development of type II diabetes. These metabolic diseases are commonly associated with an accumulation of mitochondrial dysfunction, which is speculated to contribute toward insulin resistance. High-fat diets reduce human skeletal muscle insulin sensitivity and mitochondrial function. Conversely, endurance training increases insulin sensitivity and enhances mitochondrial performance. Recent evidenc...

  5. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, T W; Kjaer, M; Mackey, A L

    2011-01-01

    in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some......The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging......-links and a buildup of advanced glycation end-product cross-links. Altered mechanotransduction, poorer activation of satellite cells, poorer chemotactic and delayed inflammatory responses, and a change in modulators of the ECM are important cellular changes. It is possible that the structural and biochemical changes...

  6. Greater lean tissue and skeletal muscle mass are associated with higher bone mineral content in children

    Directory of Open Access Journals (Sweden)

    Thornton John C

    2010-05-01

    Full Text Available Abstract Background To compare the relationship of skeletal muscle mass with bone mineral content in an ethnically diverse group of 6 to 18 year old boys and girls. Methods 175 healthy children (103 boys; 72 girls had assessments of body mass, height, and Tanner stage. Whole body bone mineral content, non-bone lean body mass (nbLBM, skeletal muscle mass, and fat mass were assessed using dual-energy X-ray absorptiometry (DXA. Muscle mass was estimated from an equation using appendicular lean soft tissue measured by DXA, weight and height. Estimates of skeletal muscle mass and adipose tissue were also assessed by whole body multi-slice magnetic resonance imaging (MRI. Linear regression was used to determine whether skeletal muscle mass assessed by DXA or by MRI were better predictors of bone mineral content compared with nbLBM after adjusting for sex, age, race or ethnicity, and Tanner stage. Results Greater skeletal muscle mass was associated with greater bone mineral content (p 2 statistic compared with assessment by DXA for predicting bone mineral content. The proportion of skeletal muscle mass in nbLBM was significantly associated with greater bone mineral content adjusted for total nbLBM. Conclusions This study is among the first to describe and compare the relationship of skeletal muscle to bone using both MRI and DXA estimates. The results demonstrate that the use of MRI provides a modestly better fitting model for the relationship of skeletal muscle to bone compared with DXA. Skeletal muscle had an impact on bone mineral content independent of total non-bone lean body mass. In addition, Hispanics had greater bone mineral content compared to other race and ethnic groups after adjusting for sex, age, adipose tissue, skeletal muscle mass, and height.

  7. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  8. Tissue-specific and substrate-specific mitochondrial bioenergetics in feline cardiac and skeletal muscles

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen

    2015-01-01

    fibers. Biopsies of left ventricular cardiac muscle and soleus muscle, a type I-rich oxidative skeletal muscle, were obtained from 15 healthy domestic cats. Enzymatic activity of citrate synthase (CS), a biomarker of mitochondrial content, was measured. Mitochondrial OXPHOS capacity with various kinds......-specific quantitative and qualitative differences in mitochondrial OXPHOS capacity between the different types of oxidative muscles from cats....

  9. Transgenic overexpression of miR-133a in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Chen Jian-Fu

    2011-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of non-coding regulatory RNAs of ~22 nucleotides in length. miRNAs regulate gene expression post-transcriptionally, primarily by associating with the 3' untranslated region (UTR of their regulatory target mRNAs. Recent work has begun to reveal roles for miRNAs in a wide range of biological processes, including cell proliferation, differentiation and apoptosis. Many miRNAs are expressed in cardiac and skeletal muscle, and dysregulated miRNA expression has been correlated with muscle-related disorders. We have previously reported that the expression of muscle-specific miR-1 and miR-133 is induced during skeletal muscle differentiation and miR-1 and miR-133 play central regulatory roles in myoblast proliferation and differentiation in vitro. Methods In this study, we measured the expression of miRNAs in the skeletal muscle of mdx mice, an animal model for human muscular dystrophy. We also generated transgenic mice to overexpress miR-133a in skeletal muscle. Results We examined the expression of miRNAs in the skeletal muscle of mdx mice. We found that the expression of muscle miRNAs, including miR-1a, miR-133a and miR-206, was up-regulated in the skeletal muscle of mdx mice. In order to further investigate the function of miR-133a in skeletal muscle in vivo, we have created several independent transgenic founder lines. Surprisingly, skeletal muscle development and function appear to be unaffected in miR-133a transgenic mice. Conclusions Our results indicate that miR-133a is dispensable for the normal development and function of skeletal muscle.

  10. Pharmacological inhibition of myostatin improves skeletal muscle mass and function in a mouse model of stroke.

    Science.gov (United States)

    Desgeorges, Marine Maud; Devillard, Xavier; Toutain, Jérome; Castells, Josiane; Divoux, Didier; Arnould, David Frédéric; Haqq, Christopher; Bernaudin, Myriam; Durieux, Anne-Cécile; Touzani, Omar; Freyssenet, Damien Gilles

    2017-10-25

    In stroke patients, loss of skeletal muscle mass leads to prolonged weakness and less efficient rehabilitation. We previously showed that expression of myostatin, a master negative regulator of skeletal muscle mass, was strongly increased in skeletal muscle in a mouse model of stroke. We therefore tested the hypothesis that myostatin inhibition would improve recovery of skeletal muscle mass and function after cerebral ischemia. Cerebral ischemia (45 minutes) was induced by intraluminal right middle cerebral artery occlusion (MCAO). Swiss male mice were randomly assigned to Sham-operated mice (n = 10), MCAO mice receiving the vehicle (n = 15) and MCAO mice receiving an anti-myostatin PINTA745 (n = 12; subcutaneous injection of 7.5 mg.kg(-1) PINTA745 immediately after surgery, 3, 7 and 10 days after MCAO). PINTA745 reduced body weight loss and improved body weight recovery after cerebral ischemia, as well as muscle strength and motor function. PINTA745 also increased muscle weight recovery 15 days after cerebral ischemia. Mechanistically, the better recovery of skeletal muscle mass in PINTA745-MCAO mice involved an increased expression of genes encoding myofibrillar proteins. Therefore, an anti-myostatin strategy can improve skeletal muscle recovery after cerebral ischemia and may thus represent an interesting strategy to combat skeletal muscle loss and weakness in stroke patients.

  11. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2017-10-01

    Full Text Available Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

  12. Proteomics for the detection of indirect markers of steroids treatment in bovine muscle.

    Science.gov (United States)

    Stella, Roberto; Biancotto, Giancarlo; Arrigoni, Giorgio; Barrucci, Federica; Angeletti, Roberto; James, Peter

    2015-07-01

    Despite the ban by the European Union, anabolic steroids might still be illicitly employed in bovine meat production. The surveillance of misuse of such potentially harmful molecules is necessary to guarantee consumers' health. Analytical methods for drug residue control are based on LC-MS/MS, but their efficacy can be hindered due to undetectable residual concentrations as a result of low-dosage treatments. Screening methods based on the recognition of indirect biological effects of growth promoters' administration, such as the alteration of protein expression, can improve the efficacy of surveillance. The present study was aimed at identifying modifications in the muscle protein expression pattern between bulls treated with an ear implant (Revalor-XS®) containing trenbolone acetate (200 mg) and estradiol (40 mg), and untreated animals. The analysis of skeletal muscle was carried out using a tandem mass tags shotgun proteomics approach. We defined 28 candidate protein markers with a significantly altered expression induced by steroids administration. A subset of 18 candidate markers was validated by SRM and allowed to build a predictive model based on partial least square discriminant analysis. Our findings confirm the effectiveness of the proteomics approach as potential tool to overcome analytical limitations of drug residue monitoring. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microcurrent Electrical Neuromuscular Stimulation Facilitates Regeneration of Injured Skeletal Muscle in Mice

    Directory of Open Access Journals (Sweden)

    Hiroto Fujiya, Yuji Ogura, Yoshitaka Ohno, Ayumi Goto, Ayane Nakamura, Kazuya Ohashi, Daiki Uematsu, Haruhito Aoki, Haruki Musha, Katsumasa Goto

    2015-06-01

    Full Text Available Conservative therapies, mainly resting care for the damaged muscle, are generally used as a treatment for skeletal muscle injuries (such as muscle fragmentation. Several past studies reported that microcurrent electrical neuromuscular stimulation (MENS facilitates a repair of injured soft tissues and shortens the recovery period. However, the effects of MENS on the regeneration in injured skeletal muscle are still unclear. The purpose of this study was to investigate the effect of MENS on the regenerative process of injured skeletal muscle and to elucidate whether satellite cells in injured skeletal muscle are activated by MENS by using animal models. Male C57BL/6J mice, aged 7 weeks old, were used (n = 30. Mice were randomly divided into two groups: (1 cardiotoxin (CTX-injected (CX, n = 15 and (2 CTX-injected with MENS treatment (MX, n=15 groups. CTX was injected into tibialis anterior muscle (TA of mice in CX and MX groups to initiate the necrosis-regeneration cycle of the muscle. TA was dissected 1, 2, and 3 weeks after the injection. Muscle weight, muscle protein content, the mean cross-sectional areas of muscle fibers, the relative percentage of fibers having central nuclei, and the number of muscle satellite cells were evaluated. MENS facilitated the recovery of the muscle dry weight and protein content relative to body weight, and the mean cross-sectional areas of muscle fibers in CTX-induced injured TA muscle. The number of Pax7-positive muscle satellite cells was increased by MENS during the regenerating period. Decrease in the percentages of fibers with central nuclei after CTX-injection was facilitated by MENS. MENS may facilitate the regeneration of injured skeletal muscles by activating the regenerative potential of skeletal muscles.

  14. State of Skeletal Muscle Tissue in Women in the Ukrainian Population

    Directory of Open Access Journals (Sweden)

    V.V. Povoroznyuk

    2016-02-01

    Full Text Available Today among geriatric syndromes, world scientists pay much attention to the study of sarcopenia. It was found that the evaluation of skeletal muscle strength has a significant correlation with the risk of falls, disability, deterioration in the quality of life, duration of hospitalization. It is proved that measurements of skeletal muscle strength, but not the determination of skeletal muscles mass, are strong and independent predictors of mortality in the elderly. Further researches are needed to study the characteristics of weight loss, strength and function of skeletal muscle with age in individuals of different sex and age. The objective of this study was to explore the features of strength and functionality of skeletal muscle tissue in women of all ages. The study involved 248 women, who were divided into groups by decades depending on age: 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89 years. Skeletal muscle strength was evaluated using spring carpal dynamometer. Functions of skeletal muscles and the risk of falls were assessed using special tests. Fat-free mass of the whole body, upper and lower extremities was evaluated by means of dual-energy X-ray absorptiometry (Prodigy, GEHC Lunar, Madison, WI, USA. The study found that maximal values of strength and functional capacity of skeletal muscles were observed in women in the age group of 20–29 years. The significant loss of skeletal muscle strength is being detected in individuals from the age group of 60–69 years and older. When determining the functional capacity of skeletal muscles and risk of falls, significantly worse performance was established in women older than 50 years compared to those in women in the age group of 20–29 years.

  15. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina

    2010-01-01

    Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...... lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min-1) by 17.4% (P ...% (P training. In resting biopsies, endurance training for 12 weeks decreased basal expression...

  16. Human skeletal muscle xenograft as a new preclinical model for muscle disorders.

    Science.gov (United States)

    Zhang, Yuanfan; King, Oliver D; Rahimov, Fedik; Jones, Takako I; Ward, Christopher W; Kerr, Jaclyn P; Liu, Naili; Emerson, Charles P; Kunkel, Louis M; Partridge, Terence A; Wagner, Kathryn R

    2014-06-15

    Development of novel therapeutics requires good animal models of disease. Disorders for which good animal models do not exist have very few drugs in development or clinical trial. Even where there are accepted, albeit imperfect models, the leap from promising preclinical drug results to positive clinical trials commonly fails, including in disorders of skeletal muscle. The main alternative model for early drug development, tissue culture, lacks both the architecture and, usually, the metabolic fidelity of the normal tissue in vivo. Herein, we demonstrate the feasibility and validity of human to mouse xenografts as a preclinical model of myopathy. Human skeletal muscle biopsies transplanted into the anterior tibial compartment of the hindlimbs of NOD-Rag1(null) IL2rγ(null) immunodeficient host mice regenerate new vascularized and innervated myofibers from human myogenic precursor cells. The grafts exhibit contractile and calcium release behavior, characteristic of functional muscle tissue. The validity of the human graft as a model of facioscapulohumeral muscular dystrophy is demonstrated in disease biomarker studies, showing that gene expression profiles of xenografts mirror those of the fresh donor biopsies. These findings illustrate the value of a new experimental model of muscle disease, the human muscle xenograft in mice, as a feasible and valid preclinical tool to better investigate the pathogenesis of human genetic myopathies and to more accurately predict their response to novel therapeutics. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Microcurrent electrical neuromuscular stimulation facilitates regeneration of injured skeletal muscle in mice.

    Science.gov (United States)

    Fujiya, Hiroto; Ogura, Yuji; Ohno, Yoshitaka; Goto, Ayumi; Nakamura, Ayane; Ohashi, Kazuya; Uematsu, Daiki; Aoki, Haruhito; Musha, Haruki; Goto, Katsumasa

    2015-06-01

    Conservative therapies, mainly resting care for the damaged muscle, are generally used as a treatment for skeletal muscle injuries (such as muscle fragmentation). Several past studies reported that microcurrent electrical neuromuscular stimulation (MENS) facilitates a repair of injured soft tissues and shortens the recovery period. However, the effects of MENS on the regeneration in injured skeletal muscle are still unclear. The purpose of this study was to investigate the effect of MENS on the regenerative process of injured skeletal muscle and to elucidate whether satellite cells in injured skeletal muscle are activated by MENS by using animal models. Male C57BL/6J mice, aged 7 weeks old, were used (n = 30). Mice were randomly divided into two groups: (1) cardiotoxin (CTX)-injected (CX, n = 15) and (2) CTX-injected with MENS treatment (MX, n=15) groups. CTX was injected into tibialis anterior muscle (TA) of mice in CX and MX groups to initiate the necrosis-regeneration cycle of the muscle. TA was dissected 1, 2, and 3 weeks after the injection. Muscle weight, muscle protein content, the mean cross-sectional areas of muscle fibers, the relative percentage of fibers having central nuclei, and the number of muscle satellite cells were evaluated. MENS facilitated the recovery of the muscle dry weight and protein content relative to body weight, and the mean cross-sectional areas of muscle fibers in CTX-induced injured TA muscle. The number of Pax7-positive muscle satellite cells was increased by MENS during the regenerating period. Decrease in the percentages of fibers with central nuclei after CTX-injection was facilitated by MENS. MENS may facilitate the regeneration of injured skeletal muscles by activating the regenerative potential of skeletal muscles. Key pointsMicrocurrent electrical neuromuscular stimulation (MENS) facilitated the recovery of the relative muscle dry weight, the relative muscle protein content, and the mean cross-sectional areas of muscle

  18. AMPKα is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice

    DEFF Research Database (Denmark)

    Fentz, Joachim; Kjøbsted, Rasmus; Birk, Jesper Bratz

    2015-01-01

    The importance of AMPK in regulation of fatty acid (FA) oxidation in skeletal muscle with contraction/exercise is unresolved. Using a mouse model lacking both AMPKα1 and -α2 in skeletal muscle specifically (mdKO), we hypothesized that FA utilization would be impaired in skeletal muscle. AMPKα mdK...

  19. A scientific background for skeletal muscle conditioning in equine practice.

    Science.gov (United States)

    Rivero, J-L L

    2007-08-01

    The main goal of any conditioning programme in athletic horses is to improve performance by inducing physiological changes within the animal's body. Equine skeletal muscles have a considerable potential to adapt during training and these adaptations have important physiological implications that influence stamina, strength and speed. Although there is an extensive specialized literature in this regard, scientific based muscle conditioning methods have not been introduced sufficiently in the equine sport practice. After a brief synopsis of both equine muscle exercise physiology and muscular adaptations to training, including their physiological significance, this review focuses on specific training programmes that induce muscular adaptations in athletic horses. The article addresses the following principal question: what kind of stimuli for what kind of muscular adaptations? The experimental data are discussed separately for racehorses (thoroughbreds, trotters and endurance horses) and sport horses (dressage, show jumpers and carriage). Finally, published results about the influence of relevant training parameters (such as intensity, duration and type of exercise) on muscular responses are discussed, as well as those concerning overtraining and detraining. The article closes with some concluding remarks on importance of their application in practice.

  20. Phosphorylation of titan and nebulin in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, L.L.

    1986-01-01

    The in vitro and in vivo phosphorylation of skeletal muscle titin and nebulin are examined. It has been proposed that these proteins are the fundamental components of an elastic cytoskeletal lattice within the sarcomere. Determinations of endogenous phosphate in titin and nebulin purified from rabbit back muscle revealed phosphate contents of 3.10 +/- 0.26 mol phosphate/mol titin and 4.63 +/- 0.43 mol phosphate/mol nebulin. Incubation of rabbit back muscle homogenate in the presence of gamma-/sup 32/P ATP resulted in the labeling of both titin and nebulin; labeling was enhanced by the addition of cAMP-dependent protein kinase. Similar results were obtained from the incubation of chemically skinned rabbit psoas fibers in the presence of labeled ATP. A time dependent increase in phosphate incorporation was observed. Purification of titin and nebulin from Xenopus laevis frog gastrocnemius revealed endogenous phosphate contents of 6.15 +/- 0.12 mol phosphate/mol titin and 9.67 +/- 1.5 mol phosphate/mol nebulin. Titin and nebulin labeling after in vivo injection of Xenopus laevis frogs with /sup 32/P-orthophosphate was demonstrated.