WorldWideScience

Sample records for bovine mitochondrial factor

  1. Crystal Structure of Bovine Mitochondrial Factor B at 0.96-Angstrom Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.K.; Belogrudov, G.I.; Stroud, R.M.

    2009-05-20

    Coupling factor B (FB) is a mitochondrial inner membrane polypeptide that facilitates the energy-driven catalysis of ATP synthesis in animal mitochondria by blocking a proton leak across the membrane. Here, we report the crystal structure of the bovine mitochondrial FB mutant with Gly-3-Glu substitution determined at a resolution of 0.96 {angstrom} and that of the WT polypeptide at a resolution of 2.9 {angstrom}. The structure reveals an oblong, oval-shaped molecule with a unique globular N-terminal domain that is proposed to be the membrane anchor domain and the capping region to the C-terminal leucine-rich repeats domain. A short N-terminal {alpha}-helix, which extends away from the molecule's body, is suggestive of functioning as an anchor for FB to the matrix side of the mitochondrial inner membrane. Identification of a bound Mg{sup 2+} ion reveals that FB is a metalloprotein. We also report the cocrystal structures of FB bound with phenylarsine oxide and Cd{sup 2+}, two known inhibitors of the FB coupling activity.

  2. Mitochondrial DNA dynamics during in vitro culture and pluripotency induction of a bovine Rho0 cell line.

    Science.gov (United States)

    Pessôa, L V F; Bressan, F F; Chiaratti, M R; Pires, P R L; Perecin, F; Smith, L C; Meirelles, F V

    2015-10-30

    Large number of cellular changes and diseases are related to mutations in the mitochondrial DNA copy number. Cell culture in the presence of ethidium bromide is a known way of depleting mitochondrial DNA and is a useful model for studying such conditions. Interestingly, the morphology of these depleted cells resembles that of pluripotent cells, as they present larger and fragmented mitochondria with poorly developed cristae. Herein, we aimed to study the mechanisms responsible for the control of mitochondrial DNA replication during mitochondrial DNA depletion mediated by ethidium bromide and during the in vitro induction of cellular pluripotency with exogenous transcription factor expression in a bovine model. This article reports the generation of a bovine Rho0 mesenchymal cell line and describes the analysis of mitochondrial DNA copy number in a time-dependent manner. The expression of apoptosis and mitochondrial-related genes in the cells during mitochondrial DNA repletion were also analyzed. The dynamics of mitochondrial DNA during both the depletion process and in vitro reprogramming are discussed. It was possible to obtain bovine mesenchymal cells almost completely depleted of their mitochondrial DNA content (over 90%). However, the production of induced pluripotent stem cells from the transduction of both control and Rho0 bovine mesenchymal cells with human reprograming factors was not successful.

  3. Presence of osteoinductive factors in bovine colostrum.

    Science.gov (United States)

    Mussano, Federico; Bartorelli Cusani, Alberto; Brossa, Alessia; Carossa, Stefano; Bussolati, Gianni; Bussolati, Benedetta

    2014-01-01

    New approaches in the treatment of skeletal defects may benefit from the use of soluble biological factors. We previously standardized a derivative of bovine colostrum (SBCD), deprived of casein and fat and rich in cytokines. In the present study, we tested its possible use as an adjuvant in bone healing. SBCD contained factors involved in stromal cell stimulation and differentiation and induced cytokine production from stimulated mesenchymal stem cells (MSCs). In vitro, SBCD promoted proliferation, migration and, in association with osteogenic factors, osteogenic differentiation of osteoblastic and MSCs. In in vivo experiments of subcutaneous Matrigel injection in mice, SBCD plus hydroxyapatite, but not hydroxyapatite nor SBCD alone, induced recruitment of macrophages and stromal cells. After 60 days, plugs containing SBCD and hydroxyapatite were densely calcified and diffusely positive for osteocalcin, supporting the occurrence of an early osteogenic process. These results indicate that SBCD is a rich source of factors with osteoinductive properties. PMID:25036965

  4. Association between mitochondrial DNA haplotype compatibility and increased efficiency of bovine intersubspecies cloning

    Institute of Scientific and Technical Information of China (English)

    Hao Yan; Zhonghai Yan; Qingwen Ma; Fei Jiao; Shuzhen Huang; Fanyi Zeng; Yitao Zeng

    2011-01-01

    Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer (SCNT) have poorer developmental potential than those from intrasubspecies SCNT. Based on our previous study that Holstein dairy bovine (HD) mitochondrial DNA (mtDNA) haplotype compatibility between donor karyoplast and recipient cytoplast is crucial for SCNT embryo development, we performed intersubspecies SCNT using HD as donor karyoplast and Luxi yellow heifer (LY) as recipient cytoplast according to mtDNA haplotypes determined by polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) analysis. The results demonstrated that intersubspecies mtDNA homotype SCNT embryos had higher pre- and post-implantation developmental competence than intrasubspecies mtDNA heterotype embryos as well as improved blastocyst reprogramming status, including normal H3K9 dimethylation pattern and promoter hypomethylation of pluripotent genes such as Oct4 and Sox2, suggesting that intersubspecies SCNT using LY oocytes maintains HD cloning efficiency and may reprogram HD nuclei to develop into a normal cloned animal ultimately. Our results indicated that karyoplast-cytoplast interactions and mtDNA haplotype compatibility may affect bovine intersubspecies SCNT efficiency. This study on bovine intersubspecies SCNT is valuable for understanding the mechanisms of mtDNA haplotype compatibility between karyoplast and cytoplast impacting the bovine SCNT efficiency, and provides an alternative and economic resource for HD cloning.

  5. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V;

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  6. Mitochondrial integrity in a neonatal bovine model of right ventricular dysfunction.

    Science.gov (United States)

    Bruns, Danielle R; Brown, R Dale; Stenmark, Kurt R; Buttrick, Peter M; Walker, Lori A

    2015-01-15

    Right ventricular (RV) function is a key determinant of survival in patients with both RV and left ventricular (LV) failure, yet the mechanisms of RV failure are poorly understood. Recent studies suggest cardiac metabolism is altered in RV failure in pulmonary hypertension (PH). Accordingly, we assessed mitochondrial content, dynamics, and function in hearts from neonatal calves exposed to hypobaric hypoxia (HH). This model develops severe PH with concomitant RV hypertrophy, dilation, and dysfunction. After 2 wk of HH, pieces of RV and LV were obtained along with samples from age-matched controls. Comparison with control assesses the effect of hypoxia, whereas comparison between the LV and RV in HH assesses the additional impact of RV overload. Mitochondrial DNA was unchanged in HH, as was mitochondrial content as assessed by electron microscopy. Immunoblotting for electron transport chain subunits revealed a small increase in mitochondrial content in HH in both ventricles. Mitochondrial dynamics were largely unchanged. Activity of individual respiratory chain complexes was reduced (complex I) or unchanged (complex V) in HH. Key enzymes in the glycolysis pathway were upregulated in both HH ventricles, alongside upregulation of hypoxia-inducible factor-1α protein. Importantly, none of the changes in expression or activity were different between ventricles, suggesting the changes are in response to HH and not RV overload. Upregulation of glycolytic modulators without chamber-specific mitochondrial dysfunction suggests that mitochondrial capacity and activity are maintained at the onset of PH, and the early RV dysfunction in this model results from mechanisms independent of the mitochondria.

  7. Mitochondrial transcription termination factor 2 binds to entire mitochondrial DNA and negatively regulates mitochondrial gene expression

    Institute of Scientific and Technical Information of China (English)

    Weiwei Huang; Min Yu; Yang Jiao; Jie Ma; Mingxing Ma; Zehua Wang; Hong Wu; Deyong Tan

    2011-01-01

    Mitochondrial transcription termination factor 2 (mTERF2) is a mitochondriai matrix protein that binds to the mitochondriai DNA.Previous studies have shown that overexpression of mTERF2 can inhibit cell proliferation, but the mechanism has not been well defined so far.This study aimed to present the binding pattern of mTERF2 to the mitochondrial DNA (mtDNA) in vivo, and investigated the biological function of mTERF2 on the replication of mtDNA, mRNA transcription, and protein translation.The mTERF2 binding to entire mtDNA was identified via the chromatin immunoprecipitation analysis.The mtDNA replication efficiency and expression levels of mitochondria genes were significantly inhibited when the mTERF2 was overexpressed in HeLa cells.The inhibition level of mtDNA content was the same with the decreased levels of mRNA and mitochondrial protein expression.Overall, the mTERF2 might be a cell growth inhibitor based on its negative effect on mtDNA replication, which eventually own-regulated all of the oxidative phosphorylation components in the mitochondria that were essential for the cell's energy metabolism.

  8. Exercise-induced mitochondrial biogenesis - with special reference to mitochondrial transcription factors and lipin-1

    OpenAIRE

    Wallman Appel, Susanna E

    2012-01-01

    Mitochondrial biogenesis is one prominent adaptation to endurance training in skeletal muscle tissue. An increased mitochondrial density of the muscle fibres contributes to an enhanced aerobic capacity and thereby to improved fatigueresistance. Multiple signalling pathways and transcriptional networks are involved in controlling mitochondrial biogenesis. The transcriptional co-regulator lipin-1 is one factor proposed to contribute, based on its ability to interact with PGC-1α a...

  9. Human mitochondrial transcription factor A reduction and mitochondrial dysfunction in Hashimoto's hypothyroid myopathy.

    OpenAIRE

    Siciliano, Gabriele; Monzani, Fabio; Manca, Maria Laura; Tessa, Alessandra; Caraccio, Nadia; Tozzi, Giulia; Piemonte, Fiorella; Mancuso, Michelangelo; Santorelli, Filippo Maria; Ferrannini, Eleuterio; Murri, Luigi

    2002-01-01

    BACKGROUND: Mitochondrial changes have been described in muscle tissue in acquired hypothyroidism. Among the molecular mechanisms by which thyroid hormones regulate expression of nuclear genes encoding for regulatory proteins of mitochondrial respiratory function, the mitochondrial transcription factor A (h-mtTFA) has been proposed to be a target of thyroid hormone action. The aim of this study has been to relate h-mtTFA levels in the skeletal muscle of patients affected by Hashimoto's hypoth...

  10. Analysis of mitochondrial transcription factor A SNPs in alcoholic cirrhosis

    OpenAIRE

    Tang, Chun; LIU, HONGMING; TANG, YONGLIANG; Guo, Yong; LIANG, XIANCHUN; GUO, LIPING; Pi, Ruxian; Yang, Juntao

    2013-01-01

    Genetic susceptibility to alcoholic cirrhosis (AC) exists. We previously demonstrated hepatic mitochondrial DNA (mtDNA) damage in patients with AC compared with chronic alcoholics without cirrhosis. Mitochondrial transcription factor A (mtTFA) is central to mtDNA expression regulation and repair; however, it is unclear whether there are specific mtTFA single nucleotide polymorphisms (SNPs) in patients with AC and whether they affect mtDNA repair. In the present study, we screened mtTFA SNPs i...

  11. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number.

    Science.gov (United States)

    Campbell, Christopher T; Kolesar, Jill E; Kaufman, Brett A

    2012-01-01

    Mitochondrial transcription factor A (mtTFA, mtTF1, TFAM) is an essential protein that binds mitochondrial DNA (mtDNA) with and without sequence specificity to regulate both mitochondrial transcription initiation and mtDNA copy number. The abundance of mtDNA generally reflects TFAM protein levels; however, the precise mechanism(s) by which this occurs remains a matter of debate. Data suggest that the usage of mitochondrial promoters is regulated by TFAM dosage, allowing TFAM to affect both gene expression and RNA priming for first strand mtDNA replication. Additionally, TFAM has a non-specific DNA binding activity that is both cooperative and high affinity. TFAM can compact plasmid DNA in vitro, suggesting a structural role for the non-specific DNA binding activity in genome packaging. This review summarizes TFAM-mtDNA interactions and describes an emerging view of TFAM as a multipurpose coordinator of mtDNA transactions, with direct consequences for the maintenance of gene expression and genome copy number. This article is part of a Special Issue entitled: Mitochondrial Gene Expression. PMID:22465614

  12. Antibody Tracing, Seroepidemiology and Risk Factors of Bovine Respiratory Syncytial Virus and Bovine Adenovirus-3 in Dairy Holstein Farms

    Directory of Open Access Journals (Sweden)

    Mahsa FARZINPOUR

    2016-01-01

    Full Text Available Antibody tracing, risk factors and seroepidemiology of bovine respiratory syncytial virus and bovine adenovirus-3 were investigated in 22 Industrial and Semi-Industrial dairy Holstein farms. Serum samples (n=736 from various ages of unvaccinated cows were collected from May to September 2012. Risk factors including age, past history of respiratory diseases, amount of milk production, husbandry type and herd size were considered. Data were analyzed by Chi-square and logistic regression. Results indicated that the infection with some of individual viruses was related to past history of respiratory disease and herd size. No specific pattern was seen on the effect of level of milk production on seropositivity of animals. The seroprevalence for BRSV and BAV-3 were 89.1% and 88%, respectively. The present study indicates that infections of bovine respiratory viruses frequently occur in cattle of Fars province and the main viral cause of primary occurrence of respiratory diseases may be due to aforementioned viruses.

  13. Drosophila nuclear factor DREF regulates the expression of the mitochondrial DNA helicase and mitochondrial transcription factor B2 but not the mitochondrial translation factor B1

    OpenAIRE

    Fernández-Moreno, Miguel A.; Hernández, Rosana; Adán, Cristina; Roberti, Marina; Bruni, Francesco; Polosa, Paola Loguercio; Cantatore, Palmiro; Matsushima, Yuichi; Kaguni, Laurie S.; Garesse, Rafael

    2013-01-01

    DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineri...

  14. A Human Mitochondrial Transcription Factor Is Related to RNA Adenine Methyltransferases and Binds S-Adenosylmethionine

    OpenAIRE

    McCulloch, Vicki; Seidel-Rogol, Bonnie L.; Shadel, Gerald S.

    2002-01-01

    A critical step toward understanding mitochondrial genetics and its impact on human disease is to identify and characterize the full complement of nucleus-encoded factors required for mitochondrial gene expression and mitochondrial DNA (mtDNA) replication. Two factors required for transcription initiation from a human mitochondrial promoter are h-mtRNA polymerase and the DNA binding transcription factor, h-mtTFA. However, based on studies in model systems, the existence of a second human mito...

  15. Mitochondrial transcription factor A regulation of mitochondrial degeneration in experimental diabetic neuropathy.

    Science.gov (United States)

    Chandrasekaran, Krish; Anjaneyulu, Muragundla; Inoue, Tatsuya; Choi, Joungil; Sagi, Avinash Rao; Chen, Chen; Ide, Tamomi; Russell, James W

    2015-07-15

    Oxidative stress-induced mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in peripheral neurons is considered to be important in the development of diabetic neuropathy. Mitochondrial transcription factor A (TFAM) wraps mtDNA and promotes mtDNA replication and transcription. We studied whether overexpression of TFAM reverses experimental peripheral diabetic neuropathy using TFAM transgenic mice (TFAM Tg) that express human TFAM (hTFAM). Levels of mouse mtDNA and the total TFAM (mouse TFAM + hTFAM) in the dorsal root ganglion (DRG) increased by approximately twofold in the TFAM Tg mice compared with control (WT) mice. WT and TFAM Tg mice were made diabetic by the administration of streptozotocin. Neuropathy end points were motor and sensory nerve conduction velocities, mechanical allodynia, thermal nociception, and intraepidermal nerve fiber density (IENFD). In the DRG neurons, mtDNA copy number and damage to mtDNA were quantified by qPCR, and TFAM levels were measured by Western blot. Mice with 16-wk duration of diabetes developed motor and sensory nerve conduction deficits, behavioral deficits, and intraepidermal nerve fiber loss. All of these changes were mostly prevented in diabetic TFAM Tg mice and were independent of changes in blood parameters. Mice with 16 wk of diabetes had a 40% decrease in mtDNA copy number compared with nondiabetic mice (P diabetic TFAM Tg mice reached the same level as that of WT nondiabetic mice. In comparison, there was upregulation of mtDNA and TFAM in 6-wk diabetic mice, suggesting that TFAM activation could be a therapeutic strategy to treat peripheral neuropathy.

  16. GABP Transcription Factor (Nuclear Respiratory Factor 2) Is Required for Mitochondrial Biogenesis

    OpenAIRE

    Yang, Zhong-Fa; Drumea, Karen; Mott, Stephanie; Wang, Junling; Rosmarin, Alan G.

    2014-01-01

    Mitochondria are membrane-bound cytoplasmic organelles that serve as the major source of ATP production in eukaryotic cells. GABP (also known as nuclear respiratory factor 2) is a nuclear E26 transformation-specific transcription factor (ETS) that binds and activates mitochondrial genes that are required for electron transport and oxidative phosphorylation. We conditionally deleted Gabpa, the DNA-binding component of this transcription factor complex, from mouse embryonic fibroblasts (MEFs) t...

  17. Seroprevalence and risk factors associated with bovine herpesvirus 1 and bovine viral diarrhea virus in North-Eastern Mexico.

    Science.gov (United States)

    Segura-Correa, J C; Zapata-Campos, C C; Jasso-Obregón, J O; Martinez-Burnes, J; López-Zavala, R

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and the principal exporter of calf and heifer to the United States. The objectives of this study were to estimate the seroprevalence of BoHV-1 and of BVDV, and to determine the effects of risk factors on these infections. Blood samples of cattle from 57 farms from rural districts of Tamaulipas were collected. The samples were tested for antibodies against BoHV-1 and BVDV using commercial ELISA kits. Data on potential risk factors were obtained using a questionnaire administered to the farmer at the time the blood samples were taken. The seroprevalences for BoHV-1 and BVDV were 64.4% and 47.8%, respectively. In the logistic regression analysis, the significant risk factors were rural district, herd size and cattle introduced to the farm. This study confirms the high seroprevalence of BoHV-1 and BVDV in unvaccinated cattle in Tamaulipas, Mexico. The results of this study could be used for the development of BoHV-1 and BVDV prevention and control program in North-Eastern, Mexico. PMID:27622156

  18. Seroprevalence and risk factors associated with bovine herpesvirus 1 and bovine viral diarrhea virus in North-Eastern Mexico

    Science.gov (United States)

    Segura-Correa, J.C.; Zapata-Campos, C.C.; Jasso-Obregón, J.O.; Martinez-Burnes, J.; López-Zavala, R.

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and the principal exporter of calf and heifer to the United States. The objectives of this study were to estimate the seroprevalence of BoHV-1 and of BVDV, and to determine the effects of risk factors on these infections. Blood samples of cattle from 57 farms from rural districts of Tamaulipas were collected. The samples were tested for antibodies against BoHV-1 and BVDV using commercial ELISA kits. Data on potential risk factors were obtained using a questionnaire administered to the farmer at the time the blood samples were taken. The seroprevalences for BoHV-1 and BVDV were 64.4% and 47.8%, respectively. In the logistic regression analysis, the significant risk factors were rural district, herd size and cattle introduced to the farm. This study confirms the high seroprevalence of BoHV-1 and BVDV in unvaccinated cattle in Tamaulipas, Mexico. The results of this study could be used for the development of BoHV-1 and BVDV prevention and control program in North-Eastern, Mexico. PMID:27622156

  19. Seroprevalence and risk factors associated with bovine herpesvirus 1 and bovine viral diarrhea virus in North-Eastern Mexico

    Science.gov (United States)

    Segura-Correa, J.C.; Zapata-Campos, C.C.; Jasso-Obregón, J.O.; Martinez-Burnes, J.; López-Zavala, R.

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and the principal exporter of calf and heifer to the United States. The objectives of this study were to estimate the seroprevalence of BoHV-1 and of BVDV, and to determine the effects of risk factors on these infections. Blood samples of cattle from 57 farms from rural districts of Tamaulipas were collected. The samples were tested for antibodies against BoHV-1 and BVDV using commercial ELISA kits. Data on potential risk factors were obtained using a questionnaire administered to the farmer at the time the blood samples were taken. The seroprevalences for BoHV-1 and BVDV were 64.4% and 47.8%, respectively. In the logistic regression analysis, the significant risk factors were rural district, herd size and cattle introduced to the farm. This study confirms the high seroprevalence of BoHV-1 and BVDV in unvaccinated cattle in Tamaulipas, Mexico. The results of this study could be used for the development of BoHV-1 and BVDV prevention and control program in North-Eastern, Mexico.

  20. The roles of mitochondrial transcription termination factors (MTERFs) in plants.

    Science.gov (United States)

    Quesada, Víctor

    2016-07-01

    Stress such as salinity, cold, heat or drought affect plant growth and development, and frequently result in diminished productivity. Unlike animals, plants are sedentary organisms that must withstand and cope with environmental stresses. During evolution, plants have developed strategies to successfully adapt to or tolerate such stresses, which might have led to the expansion and functional diversification of gene families. Some new genes may have acquired functions that could differ from those of their animal homologues, e.g. in response to abiotic stress. The mitochondrial transcription termination factor (MTERF) family could be a good example of this. Originally identified and characterized in metazoans, MTERFs regulate transcription, translation and DNA replication in vertebrate mitochondria. Plant genomes harbor a considerably larger number of MTERFs than animals. Nonetheless, only eight plant MTERFs have been characterized, which encode chloroplast or mitochondrial proteins. Mutations in MTERFs alter the expression of organelle genes and impair chloroplast or mitochondria development. This information is transmitted to the nucleus, probably through retrograde signaling, because mterf plants often exhibit changes in nuclear gene expression. This study summarizes the recent findings, mainly from the analysis of mterf mutants, which support an emerging role for plant MTERFs in response to abiotic stress.

  1. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1

    OpenAIRE

    Guja, Kip E.; Venkataraman, Krithika; Yakubovskaya, Elena; Hui SHI; Mejia, Edison; Hambardjieva, Elena; Karzai, A. Wali; Garcia-Diaz, Miguel

    2013-01-01

    Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and di...

  2. Herd-Level Risk Factors for Bovine Tuberculosis: A Literature Review

    Directory of Open Access Journals (Sweden)

    Robin A. Skuce

    2012-01-01

    Full Text Available Bovine tuberculosis (TB, caused by Mycobacterium bovis, is one of the most challenging endemic diseases currently facing government, the veterinary profession, and the farming industry in the United Kingdom and Ireland and in several other countries. The disease has a notoriously complex epidemiology; the scientific evidence supports both cattle-cattle and wildlife-cattle transmission routes. To produce more effective ways of reducing such transmission, it is important to understand those risk factors which influence the presence or absence of bovine TB in cattle herds. Here we review the literature on herd-level risk factor studies. Whilst risk factors operate at different scales and may vary across regions, epidemiological studies have identified a number of risk factors associated with bovine TB herd breakdowns, including the purchase of cattle, the occurrence of bovine TB in contiguous herds, and/or the surrounding area as well as herd size. Other factors identified in some studies include farm and herd management practices, such as, the spreading of slurry, the use of certain housing types, farms having multiple premises, and the use of silage clamps. In general, the most consistently identified risk factors are biologically plausible and consistent with known transmission routes involving cattle-cattle and wildlife-cattle pathways.

  3. Studies on prekallikrein of bovine plasma. II. Activation of prekallikrein with proteinases and properties of kallikrein activated by bovine Hageman factor.

    Science.gov (United States)

    Takahashi, H; Nagasawa, S; Suzuki, T

    1980-01-01

    Activation of bovine plasma prekallikrein was investigated with several proteinases. Highly purified bovine plasma prekallikrein was rapidly activated to kallikrein [EC 3.4.21.8] by bovine activated Hageman factor, trypsin [EC 3.4.21.4] and Pronase P (proteinases from Streptomyces griseus) and more gradually by papain [EC 3.4.22.2] and ficin [EC 3.4.22.3]. Activation of prekallikrein was also observed with bovine plasmin [EC 3.4.21.7], but not with bovine clotting factors Xa (Stuart factor) [EC 3.4.21.6] and IXa (Christmas factor) or thrombin [EC 3.4.21.5]. Urokinase [EC 3.4.99.26], Reptilase, collagenase [EC 3.4.24.3], elastase [EC 3.4.21.11], alpha-chymotrypsin [EC 3.4.21.1], Nagarse [EC 3.4.21.14], and stem bromelain [EC 3.4.22 4] did not convert prekallikrein to kallikrein. Plasma kallikrein activated to Hageman factor released kinin rapidly from bovine high molecular weight (HMW) kininogen. However, from bovine low molecular weight (LMW) kininogen, liberation of kinin was extremely slow. The kallikrein activity was inhibited by soybean trypsin inhibitor (SBTI), Trasylol, diisopropylfluorophosphate (DFP), and N-alpha-tosyl-L-lysine chloromethylketone (TLCK), but not by egg-white trypsin inhibitor (EWTI), lima bean trypsin inhibitor (LBTI), heparin or hexadimethrine bromide (Polybrene). The kallikrein formed an enzyme-inhibitor complex with SBTI and Trasylol, but not with LBTI. Prekallikrein did not react with SBTI. Prekallikrein consists of a single polypeptide chain of molecular weight about 90,000, as estimated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Activation of prekallikrein by Hageman factor was found to involve cleavage of the single peptide bond on the disulfide-bridged polypeptide chain, and no change of molecular weight was observed during the activation. The peptide bond cleaved in prekallikrein by the activation was an Arg-X peptide bond on a disulfide-bridged polypeptide chain.

  4. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.

    Science.gov (United States)

    Bai, Hanako; Sakurai, Toshihiro; Kim, Min-Su; Muroi, Yoshikage; Ideta, Atsushi; Aoyagi, Yoshito; Nakajima, Hiromi; Takahashi, Masashi; Nagaoka, Kentaro; Imakawa, Kazuhiko

    2009-12-01

    Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription. PMID:19598245

  5. Effects of Water Soluble Phosphotidylserine on Bovine Factor Xa: Functional and Structural Changes Plus Dimerization

    OpenAIRE

    Majumder, Rinku; Wang, Jianfang; Lentz, Barry R.

    2003-01-01

    Previous work has shown that two molecules of a soluble form of phosphatidylserine, C6PS, bind to human and bovine factor Xa. Activity measurements along with the fluorescence of active-site-labeled human factor Xa showed that two linked sites specifically regulate the active site conformation and proteolytic activity of the human enzyme. These results imply, but cannot demonstrate, a C6PS-induced factor Xa conformational change. The purpose of this paper is to extend these observations to bo...

  6. Purification and partial sequence analysis of insulin-like growth factor-1 from bovine colostrum.

    Science.gov (United States)

    Francis, G L; Read, L C; Ballard, F J; Bagley, C J; Upton, F M; Gravestock, P M; Wallace, J C

    1986-01-01

    Growth-promoting activity in bovine colostrum has been detected as the capacity to stimulate protein synthesis in L6 myoblasts. By using this assay as a measure of bioactivity, a growth factor has been purified to near homogeneity from centrifuged colostrum by a series of steps including acid extraction, chromatography on sulphopropyl-Sephadex, followed by adsorption to, and elution from, C18 columns using acetonitrile and propan-1-ol gradients. The purified growth factor has a low solubility at neutral and alkaline pH and has an Mr of 7800 by gel-permeation chromatography. Sequence analysis of the first 30 amino acids from the N-terminus indicated complete identity in this region with human insulin-like growth factor-1. Accordingly we conclude that the purified growth factor is bovine insulin-like growth factor-1. PMID:3954725

  7. Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A

    OpenAIRE

    Gangelhoff, Todd A.; Mungalachetty, Purnima S.; Nix, Jay C.; Mair E A Churchill

    2009-01-01

    The mitochondrial transcription factor A (mtTFA) is central to assembly and initiation of the mitochondrial transcription complex. Human mtTFA (h-mtTFA) is a dual high mobility group box (HMGB) protein that binds site-specifically to the mitochondrial genome and demarcates the promoters for recruitment of h-mtTFB1, h-mtTFB2 and the mitochondrial RNA polymerase. The stoichiometry of h-mtTFA was found to be a monomer in the absence of DNA, whereas it formed a dimer in the complex with the light...

  8. Expression and Purification of Mitochondrial RNA Polymerase and Transcription Factor A from Drosophila melanogaster.

    Science.gov (United States)

    Gajewski, John P; Arnold, Jamie J; Salminen, Tiina S; Kaguni, Laurie S; Cameron, Craig E

    2016-01-01

    Mitochondrial gene expression is essential in all organisms. Our understanding of mitochondrial transcription on a biochemical level has been limited by the inability to purify the individual protein components involved in mitochondrial gene expression. Recently, new systems have been identified that permit purification of these proteins from bacteria. However, the generalizability of these systems is not clear. Here, we have applied the technology from the Cameron lab to express and purify mitochondrial RNA polymerase and transcription factor A from Drosophila melanogaster. We show that the use of SUMO system to produce SUMO fusion proteins in bacteria is effective not only for the human and mouse proteins, but also for the fly proteins. The application of this system to produce the mitochondrial proteins from other organisms should permit detailed understanding of mitochondrial transcription from any organism.

  9. Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication

    NARCIS (Netherlands)

    Rajala, N.; Gerhold, J.M.; Martinsson, P.; Klymov, A.; Spelbrink, H.

    2014-01-01

    Mitochondrial DNA (mtDNA) is organized in discrete protein-DNA complexes, nucleoids, that are usually considered to be mitochondrial-inner-membrane associated. Here we addressed the association of replication factors with nucleoids and show that endogenous mtDNA helicase Twinkle and single-stranded

  10. ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones.

    Science.gov (United States)

    Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru

    2016-03-01

    Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.

  11. The role of myeloid differentiation factor 88 on mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis

    Science.gov (United States)

    Zou, Lin; Chen, Dunjin; Chao, Wei

    2016-01-01

    Objective To investigate the role of myeloid differentiation factor 88 (MyD88) on mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis. Material and methods Polymicrobial peritonitis, a clinically relevant mouse model of sepsis, was generated by cecum ligation and puncture (CLP) in both male C57BL/6J wild-type (WT) and MyD88 knockout (MyD88–/–) mice. Twenty-four hours after surgeries, peritoneal leukocytes were collected and four parameters of mitochondrial function, including total intracellular and mitochondrial ROS burst, mitochondrial membrane depolarization and ATP depletion, were measured by flow cytometry or ATP assay, and then compared. Results Polymicrobial sepsis led to a marked mitochondrial dysfunction of peritoneal leukocytes with total intracellular and mitochondrial ROS overproduction, decreased mitochondrial membrane potential and reduced intracellular ATP production. In comparison, there was no significant difference in the extent of mitochondrial dysfunction of peritoneal leukocytes between WT and MyD88–/– septic mice. Conclusions MyD88 may be not sufficient to regulate mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis. PMID:27536200

  12. A case-control study of risk factors for bovine cysticercosis in Danish cattle herds

    DEFF Research Database (Denmark)

    Calvo Artavia, Francisco Fernando; Nielsen, Liza Rosenbaum; Dahl, J.;

    2013-01-01

    Bovine cysticercosis (BC) is a zoonotic, parasitic infection in cattle. Under the current EU meat inspection regulation, every single carcass from all bovines above 6 weeks of age is examined for BC. This method is costly and makes more sense in countries with higher number of BC-infected animals...... than in countries with few lightly infected cases per year. The aim of the present case-control study was to quantify associations between potential herd-level risk factors and BC in Danish cattle herds. Risk factors can be used in the design of a risk-based meat inspection system targeted towards...... a questionnaire and register data from the Danish Cattle Database were grouped into meaningful variables and used to investigate the risk factors for BC using a multivariable logistic regression model. Case herds were almost three times more likely than control herds to let all or most animals out grazing. Case...

  13. Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development*

    OpenAIRE

    Adán, Cristina; Matsushima, Yuichi; Hernández-Sierra, Rosana; Marco-Ferreres, Raquel; Fernández-Moreno, Miguel Ángel; González-Vioque, Emiliano; Calleja, Manuel; Aragón, Juan J.; Kaguni, Laurie S.; Garesse, Rafael

    2008-01-01

    Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval deve...

  14. Oocyte-secreted factors in oocyte maturation media enhance subsequent development of bovine cloned embryos.

    Science.gov (United States)

    Su, Jianmin; Wang, Yongsheng; Zhang, Lei; Wang, Bo; Liu, Jun; Luo, Yan; Guo, Zekun; Quan, Fusheng; Zhang, Yong

    2014-04-01

    Successful in vitro maturation (IVM) and oocyte quality both affect the subsequent development of cloned embryos derived from somatic-cell nuclear transfer (SCNT). Developmental competence is usually lower in oocytes matured in vitro compared with those that matured in vivo, possibly due to insufficient levels of oocyte-secreted factors (OSFs) and disrupted oocyte-cumulus communication. This study investigated the effects of OSFs secreted by denuded oocytes (DOs) during IVM on the subsequent developmental competence of cloned bovine embryos. Cumulus-oocyte complexes (COCs) from antral follicles of slaughtered-cow ovaries collected from an abattoir were divided into four groups: COCs co-cultured with and without DOs in maturation media used for SCNT, as well as COCs co-cultured with and without DOs in maturation media used for in vitro fertilization (IVF). Based on the developmental competence and embryo quality of bovine embryos generated from these four groups, we found that co-culturing the COCs with DOs enhanced the in vitro development of IVF and cloned bovine embryos, and potentially generated more high-quality cloned blastocysts that possessed locus-specific histone modifications at levels similar to in vitro-fertilized embryos. These results strongly suggest that co-culturing COCs with DOs enhances subsequent developmental competence of cloned bovine embryo. PMID:24420374

  15. Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding.

    Science.gov (United States)

    Weyers, Amanda; Yang, Bo; Solakyildirim, Kemal; Yee, Vienna; Li, Lingyun; Zhang, Fuming; Linhardt, Robert J

    2013-05-01

    Keratan sulfate (KS) is an important glycosaminoglycan that is found in cartilage, reproductive tissues, and neural tissues. Corneal KS glycosaminoglycan is found N-linked to lumican, keratocan and mimecan proteoglycans, and has been widely studied by investigators interested in corneal development and diseases. Recently, the availability of corneal KS has become severely limited, owing to restrictions on the shipment of bovine central nervous system byproducts across international borders in an effort to prevent additional cases of mad cow disease. We report a simple method for the purification of multi-milligram quantities of bovine corneal KS, and characterize its structural properties. We also examined its protein-binding properties, and discovered that corneal KS bound with high affinity to fibroblast growth factor-2 and sonic hedgehog, a growth factor and a morphogen involved in corneal development and healing. PMID:23402351

  16. Cardioprotection by modulation of mitochondrial respiration during ischemia–reperfusion: Role of apoptosis-inducing factor

    International Nuclear Information System (INIS)

    Highlights: •Blockade of electron transport prevents the loss of AIF from mitochondria during IR. •Blockade of electron transport decreases caspase-independent cell death during IR. •Mitochondrial AIF content is down-regulated in Harlequin mice. •Blockade of electron transport protects Harlequin mouse hearts during IR. •Amobarbital protection is partially dependent on mitochondrial AIF content. -- Abstract: The transient, reversible blockade of electron transport (BET) during ischemia or at the onset of reperfusion protects mitochondria and decreases cardiac injury. Apoptosis inducing factor (AIF) is located within the mitochondrial intermembrane space. A release of AIF from mitochondria into cytosol and nucleus triggers caspase-independent cell death. We asked if BET prevents the loss of AIF from mitochondria as a mechanism of protection in the buffer perfused heart. BET during ischemia with amobarbital, a rapidly reversible inhibitor of mitochondrial complex I, attenuated a release of AIF from mitochondria into cytosol, in turn decreasing the formation of cleaved and activated PARP-1. These results suggest that BET-mediated protection may occur through prevention of the loss of AIF from mitochondria during ischemia–reperfusion. In order to further clarify the role of mitochondrial AIF in BET-mediated protection, Harlequin (Hq) mice, a genetic model with mitochondrial AIF deficiency, were used to test whether BET could still decrease cell injury in Hq mouse hearts during reperfusion. BET during ischemia protected Hq mouse hearts against ischemia–reperfusion injury and improved mitochondrial function in these hearts during reperfusion. Thus, cardiac injury can still be decreased in the presence of down-regulated mitochondrial AIF content. Taken together, BET during ischemia protects both hearts with normal mitochondrial AIF content and hearts with mitochondrial AIF deficiency. Although preservation of mitochondrial AIF content plays a key role in

  17. Cardioprotection by modulation of mitochondrial respiration during ischemia–reperfusion: Role of apoptosis-inducing factor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Aijun [Department of Internal Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298 (United States); Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Szczepanek, Karol; Hu, Ying [Department of Internal Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298 (United States); Lesnefsky, Edward J. [Department of Internal Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298 (United States); Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298 (United States); Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298 (United States); McGuire Department of Veterans Affairs Medical Center, Richmond, VA 23249 (United States); Chen, Qun, E-mail: qchen8@vcu.edu [Department of Internal Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298 (United States)

    2013-06-14

    Highlights: •Blockade of electron transport prevents the loss of AIF from mitochondria during IR. •Blockade of electron transport decreases caspase-independent cell death during IR. •Mitochondrial AIF content is down-regulated in Harlequin mice. •Blockade of electron transport protects Harlequin mouse hearts during IR. •Amobarbital protection is partially dependent on mitochondrial AIF content. -- Abstract: The transient, reversible blockade of electron transport (BET) during ischemia or at the onset of reperfusion protects mitochondria and decreases cardiac injury. Apoptosis inducing factor (AIF) is located within the mitochondrial intermembrane space. A release of AIF from mitochondria into cytosol and nucleus triggers caspase-independent cell death. We asked if BET prevents the loss of AIF from mitochondria as a mechanism of protection in the buffer perfused heart. BET during ischemia with amobarbital, a rapidly reversible inhibitor of mitochondrial complex I, attenuated a release of AIF from mitochondria into cytosol, in turn decreasing the formation of cleaved and activated PARP-1. These results suggest that BET-mediated protection may occur through prevention of the loss of AIF from mitochondria during ischemia–reperfusion. In order to further clarify the role of mitochondrial AIF in BET-mediated protection, Harlequin (Hq) mice, a genetic model with mitochondrial AIF deficiency, were used to test whether BET could still decrease cell injury in Hq mouse hearts during reperfusion. BET during ischemia protected Hq mouse hearts against ischemia–reperfusion injury and improved mitochondrial function in these hearts during reperfusion. Thus, cardiac injury can still be decreased in the presence of down-regulated mitochondrial AIF content. Taken together, BET during ischemia protects both hearts with normal mitochondrial AIF content and hearts with mitochondrial AIF deficiency. Although preservation of mitochondrial AIF content plays a key role in

  18. Prevalence and risk factors for bruises in Chilean bovine carcasses

    NARCIS (Netherlands)

    Strappini, A.C.; Frankena, K.; Metz, J.H.M.; Kemp, B.

    2010-01-01

    Records of cattle slaughtered at two Chilean slaughterhouses (SLH1 and SLH2) were used to determine prevalence and risk factors for carcasses with bruises. Bruise prevalence amounted to 12.3% but differed between slaughterhouses (20.8% for SLH1 and 8.6% for SLH2 respectively). Bruise severity grade

  19. Prevalence and risk factors of bovine tuberculosis in Nili Ravi buffaloes in the Punjab, Pakistan

    Directory of Open Access Journals (Sweden)

    A. Khan

    2010-02-01

    Full Text Available The present study was executed to determine the magnitude of bovine tuberculosis (BTB in buffaloes in native type of husbandry practices and impact of certain factors in the prevalence of bovine tuberculosis in buffaloes in the Punjab, Pakistan. Three year cross sectional study was carried out on female population of Nili Ravi buffaloes (n = 2526 maintained at 10 Government Livestock Experimental Stations, and peri urban areas of the three major cites i.e., Lahore, Faisalabad and Okara. These animals were screened with comparative intradermal tuberculin test (CIDT by using two types of tuberculins i.e., mammalian and avian. The reaction of tuberculins injected was interpreted after 72 hours post injection. The data were analyzed by Chi-square test and Pearson correlation. Relative risk and other associated factors were calculated to describe the association with prevalence of tuberculosis in buffaloes. The prevalence of bovine tuberculosis on the basis of CIDT was 12.72%. The BTB among different livestock farms varied significantly (P8 years old age, body weight >550 kg, 3-6 parity, pregnant animals, and animals with >7 liters milk yield. The husbandry factors which greatly influence the prevalence was poor feeding (RR=2.615, high fly density (RR= 1.3474, poor management (RR=1.315, contact with wildlife (RR=1.4507, poor farm conditions (RR=1.4708, quarantine measures (RR=1.1557 and poor sanitation of farm (RR= 1.3701.

  20. DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA

    Science.gov (United States)

    Roberti, Marina; Polosa, Paola Loguercio; Bruni, Francesco; Musicco, Clara; Gadaleta, Maria Nicola; Cantatore, Palmiro

    2003-01-01

    Using a combination of bioinformatic and molecular biology approaches a Drosophila melanogaster protein, DmTTF, has been identified, which exhibits sequence and structural similarity with two mitochondrial transcription termination factors, mTERF (human) and mtDBP (sea urchin). Import/processing assays indicate that DmTTF is synthesised as a precursor of 410 amino acids and is imported into mitochondria, giving rise to a mature product of 366 residues. Band-shift and DNase I protection experiments show that DmTTF binds two homologous, short, non-coding sequences of Drosophila mitochondrial DNA, located at the 3′ end of blocks of genes transcribed on opposite strands. The location of the target sequences coincides with that of two of the putative transcription termination sites previously hypothesised. These results indicate that DmTTF is the termination factor of mitochondrial transcription in Drosophila. The existence of two DmTTF binding sites might serve not only to stop transcription but also to control the overlapping of a large number of transcripts generated by the peculiar transcription mechanism operating in this organism. PMID:12626700

  1. Early Exercise Affects Mitochondrial Transcription Factors Expression after Cerebral Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    Yongshan Hu

    2012-02-01

    Full Text Available Increasing evidence shows that exercise training is neuroprotective after stroke, but the underlying mechanisms are unknown. To clarify this critical issue, the current study investigated the effects of early treadmill exercise on the expression of mitochondrial biogenesis factors. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Expression of two genes critical for transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1 and nuclear respiratory factor-1 (NRF-1, were examined by RT-PCR after five days of exercise starting at 24 h after ischemia. Mitochondrial protein cytochrome C oxidase subunit IV (COX IV was detected by Western blot. Neurological status and cerebral infarct volume were evaluated as indices of brain damage. Treadmill training increased levels of PGC-1 and NRF-1 mRNA, indicating that exercise promotes rehabilitation after ischemia via regulation of mitochondrial biogenesis.

  2. A case-control study of risk factors for bovine brucellosis seropositivity in Peninsular Malaysia.

    Science.gov (United States)

    Anka, Mukhtar Salihu; Hassan, Latiffah; Khairani-Bejo, Siti; Zainal, Mohamed Abidin; Mohamad, Ramlan Bin; Salleh, Annas; Adzhar, Azri

    2014-01-01

    Bovine brucellosis was first reported in Peninsular Malaysia in 1950. A subsequent survey conducted in the country revealed that the disease was widespread. Current knowledge on the potential risk factors for brucellosis occurrence on cattle farms in Malaysia is lacking. Therefore, we conducted a case-control study to identify the potential herd-level risk factors for bovine brucellosis occurrence in four states in the country, namely Kelantan, Pahang, Selangor and Negeri Sembilan. Thirty-five cases and 36 controls of herds were selected where data on farm management, biosecurity, medical history and public health were collected. Multivariable logistic regression identified that Brucella seropositive herds were more likely to; have some interaction with wildlife (OR 8.9, 95% CI = 1.59-50.05); originated from farms where multiple species such as buffalo/others (OR 41.8, 95% CI = 3.94-443.19) and goat/sheep (OR 8.9, 95%Cl = 1.10-71.83) were reared, practice extensive production system (OR 13.6, 95% CI 1.31-140.24) and have had episodes of abortion in the past (OR 51.8, 95% CI = 4.54-590.90) when compared to seronegative herds. Considering the lack of information on the epidemiology of bovine brucellosis in peninsular Malaysia and absence of information on preventing the inception or spread of the disease, this report could contribute to the on-going area-wise national brucellosis eradication program.

  3. Early Exercise Affects Mitochondrial Transcription Factors Expression after Cerebral Ischemia in Rats

    OpenAIRE

    Yongshan Hu; Jianhong Zhu; Pengyue Zhang; Jie Jia; Hongying Sha; Yi Wu; Qi Zhang

    2012-01-01

    Increasing evidence shows that exercise training is neuroprotective after stroke, but the underlying mechanisms are unknown. To clarify this critical issue, the current study investigated the effects of early treadmill exercise on the expression of mitochondrial biogenesis factors. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Expression of two genes critical for transcriptional regulation of mitochondrial biogenesis, peroxisome pro...

  4. Expression of mitochondrial transcription factor A in endometrial carcinomas: clinicopathologic correlations and prognostic significance

    OpenAIRE

    Toki, Naoyuki; Kagami, Seiji; Kurita, Tomoko; Kawagoe, Toshinori; Matsuura, Yusuke; Hachisuga, Toru; Matsuyama, Atsuji; Hashimoto, Hiroshi; Izumi, Hiroto; Kohno, Kimitoshi

    2010-01-01

    Mitochondrial transcription factor A (mtTFA) is necessary for both transcription and maintenance of mitochondrial DNA. This study was conducted to elucidate the clinicopathologic and prognostic significance of mtTFA in patients with endometrial carcinoma. This study investigated the relationship between the immunohistochemical expression of mtTFA and various clinicopathological variables in 276 endometrial carcinomas, including 245 endometrioid adenocarcinomas and 31 nonendometrioid carcinoma...

  5. The Adipocyte-Expressed Forkhead Transcription Factor Foxc2 Regulates Metabolism Through Altered Mitochondrial Function

    OpenAIRE

    Lidell, Martin E.; Seifert, Erin L.; Westergren, Rickard; Heglind, Mikael; Gowing, Adrienne; Sukonina, Valentina; Arani, Zahra; Itkonen, Paula; Wallin, Simonetta; Westberg, Fredrik; Fernandez-Rodriguez, Julia; Laakso, Markku; Nilsson, Tommy; Peng, Xiao-Rong; Harper, Mary-Ellen

    2011-01-01

    OBJECTIVE Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function. RESEARCH DESIGN AND METHODS The effects of Foxc2 on expression of genes involved in mitochondriogenesis and mitochondrial function were assessed by quantitati...

  6. Muscle-Specific Loss of Apoptosis-Inducing Factor Leads to Mitochondrial Dysfunction, Skeletal Muscle Atrophy, and Dilated Cardiomyopathy

    OpenAIRE

    Joza, Nicholas; Oudit, Gavin Y.; Brown, Doris; Bénit, Paule; Kassiri, Zamaneh; Vahsen, Nicola; Benoit, Loralyn; Patel, Mikin M.; Nowikovsky, Karin; Vassault, Anne; Backx, Peter H; Wada, Teiji; Kroemer, Guido; Rustin, Pierre; Penninger, Josef M.

    2005-01-01

    Cardiac and skeletal muscle critically depend on mitochondrial energy metabolism for their normal function. Recently, we showed that apoptosis-inducing factor (AIF), a mitochondrial protein implicated in programmed cell death, plays a role in mitochondrial respiration. However, the in vivo consequences of AIF-regulated mitochondrial respiration resulting from a loss-of-function mutation in Aif are not known. Here, we report tissue-specific deletion of Aif in the mouse. Mice in which Aif has b...

  7. In organello footprint analysis of human mitochondrial DNA: human mitochondrial transcription factor A interactions at the origin of replication.

    OpenAIRE

    Ghivizzani, S.C.; Madsen, C S; Nelen, M.R.; Ammini, C V; Hauswirth, W W

    1994-01-01

    Using in organello footprint analysis, we demonstrate that within human placental mitochondria there is a high level of protein-DNA binding at regularly phased intervals throughout a 500-bp region encompassing the D-loop DNA origins and two promoter regions. Comparison with in vitro DNase I protection studies indicates that this protein-DNA interaction is due to non-sequence-specific binding by human mitochondrial transcription factor A (h-mtTFA). Since h-mtTFA can bend and wrap DNA, like its...

  8. Organelle RNA recognition motif-containing (ORRM) proteins are plastid and mitochondrial editing factors in Arabidopsis.

    Science.gov (United States)

    Shi, Xiaowen; Bentolila, Stephane; Hanson, Maureen R

    2016-05-01

    Post-transcriptional C-to-U RNA editing occurs at specific sites in plastid and plant mitochondrial transcripts. Members of the Arabidopsis pentatricopeptide repeat (PPR) motif-containing protein family and RNA-editing factor Interacting Protein (RIP, also known as MORF) family have been characterized as essential components of the RNA editing apparatus. Recent studies reveal that several organelle-targeted RNA recognition motif (RRM)-containing proteins are involved in either plastid or mitochondrial RNA editing. ORRM1 (Organelle RRM protein 1) is essential for plastid editing, whereas ORRM2, ORRM3 and ORRM4 are involved in mitochondrial RNA editing. The RRM domain of ORRM1, ORRM3 and ORRM4 is required for editing activity, whereas the auxiliary RIP and Glycine-Rich (GR) domains mediate the ORRM proteins' interactions with other editing factors. The identification of the ORRM proteins as RNA editing factors further expands our knowledge of the composition of the editosome. PMID:27082488

  9. Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus

    Directory of Open Access Journals (Sweden)

    Brake Danett K

    2012-02-01

    differential up-regulation of CD86 in bovine macrophages activated by the TLR4-ligand, LPS. Up regulation of proinflammatory cytokines and IL-12, a Th1 promoting cytokine, were inhibited in a dose-dependent manner. The co-stimulatory molecules CD80, as well as the cell activation marker, CD69, were also suppressed in macrophages exposed to SGE. Continued investigation of the immunomodulatory factors will provide the knowledge base to research and develop therapeutic or prophylactic interventions targeting R. microplus-cattle interactions at the blood-feeding interface.

  10. Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA.

    OpenAIRE

    Antoshechkin, I; Bogenhagen, D F

    1995-01-01

    Transcription of Xenopus laevis mitochondrial DNA (xl-mtDNA) by the mitochondrial RNA polymerase requires a dissociable factor. This factor was purified to near homogeneity and identified as a 40-kDa protein. A second protein implicated in the transcription of mtDNA, the Xenopus homolog of the HMG box protein mtTFA, was also purified to homogeneity and partially sequenced. The sequence of a cDNA clone encoding xl-mtTFA revealed a high degree of sequence similarity to human and Saccharomyces c...

  11. Structure Identification of Euphorbia Factor L3 and Its Induction of Apoptosis through the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2011-04-01

    Full Text Available In this article, we have focused on the structure identification of Euphorbia factor L3 belonging to the lathyrane diterpenoids isolated from Caper Euphorbia Seed. Its anticancer activity in vitro against lung cancer A549 cells was also investigated and the IC50 values were 34.04 ± 3.99 μM. Furthermore, Euphorbia factor L3 could induce apoptosis in A549 cells via the mitochondrial pathway including loss of mitochondrial potential and release of cytochrome c.

  12. Mitochondrial protection by low doses of insulin-like growth factor- Ⅰ in experimental cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Raquel Pérez; María García-Fernández; Matías Díaz-Sánchez; Juan E Puche; Gloria Delgado; Marian Conchillo; Jordi Muntané; Inma Castilla-Cortázar

    2008-01-01

    AIM:To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor- I (IGF-I) therapy (4 wk) is able to in-duce beneficial effects on damaged mitochondria leading to cellular protection.METHODS:Wistar rats were divided into three groups:Control group,untreated cirrhotic rats and cirrhotic rats treated with IGF-I treatment (2 μg/100 g bw/d).Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria,caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three experimental groups.RESULTS:Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3);an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity.IGF-Ⅰ therapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production.Activity of the electron transport complexes Ⅰ and Ⅲ was increased in both cirrhotic groups.In addition,untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis.IGF- Ⅰ therapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis.CONCLUSION:These results show that IGF- Ⅰ exerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production.

  13. A case-control study of risk factors for bovine brucellosis seropositivity in Peninsular Malaysia.

    Directory of Open Access Journals (Sweden)

    Mukhtar Salihu Anka

    Full Text Available Bovine brucellosis was first reported in Peninsular Malaysia in 1950. A subsequent survey conducted in the country revealed that the disease was widespread. Current knowledge on the potential risk factors for brucellosis occurrence on cattle farms in Malaysia is lacking. Therefore, we conducted a case-control study to identify the potential herd-level risk factors for bovine brucellosis occurrence in four states in the country, namely Kelantan, Pahang, Selangor and Negeri Sembilan. Thirty-five cases and 36 controls of herds were selected where data on farm management, biosecurity, medical history and public health were collected. Multivariable logistic regression identified that Brucella seropositive herds were more likely to; have some interaction with wildlife (OR 8.9, 95% CI = 1.59-50.05; originated from farms where multiple species such as buffalo/others (OR 41.8, 95% CI = 3.94-443.19 and goat/sheep (OR 8.9, 95%Cl = 1.10-71.83 were reared, practice extensive production system (OR 13.6, 95% CI 1.31-140.24 and have had episodes of abortion in the past (OR 51.8, 95% CI = 4.54-590.90 when compared to seronegative herds. Considering the lack of information on the epidemiology of bovine brucellosis in peninsular Malaysia and absence of information on preventing the inception or spread of the disease, this report could contribute to the on-going area-wise national brucellosis eradication program.

  14. Some factors influencing the syneresis of bovine, ovine, and caprine milks.

    Science.gov (United States)

    Calvo, M M; Balcones, E

    2000-08-01

    The influence of the species, fat, curd incubation temperature (25, 30, and 35 degrees C), heat treatment of milk (70 degrees C for 5 or 30 min), and milk pH on the initial volume drained, syneresis rate, and the loss of proteins in drainage was studied. The volume drained as a function of the curd incubation time (up to 60 min) was adjusted to a first-order kinetic reaction. The k values (drained rate) and the initial volume obtained applying the equation were compared to establish the possible influence of the studied factors. In general, for all the factors studied, the syneresis rate of curd from caprine and ovine milk did not differ from those described previously in the literature for the curds from bovine milk. However, for each studied factor the pattern of syneresis rate was significantly different among the species in most of the experiments.

  15. Growth inhibitory factors in bovine faeces impairs detection of Salmonella Dublin by conventional culture procedure

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Nielsen, L.R.; Sørensen, Gitte;

    2007-01-01

    novobiocin, followed by combinations of culture media (three types) and selective media (two types). The sensitivity of each combination and sources of variation in detection were determined by a generalized linear mixed model using a split-plot design. Conclusions: Biological factors, such as faecal origin......Aims: To analyse the relative importance of different biological and technical factors on the analytical sensitivity of conventional culture methods for detection of Salmonella Dublin in cattle faeces. Methods and Results: Faeces samples collected from six adult bovines from different salmonella...... and S. Dublin strain influenced the sensitivity more than technical factors. Overall, the modified semisolid Rappaport Vassiliadis (MSRV)-culture medium had the most reliable detection capability, whereas detection with selenite cystine broth and Mueller Kauffman tetrathionate broth combinations varied...

  16. Genetic variation of the mitochondrial D-loop region containing mitochondrial transcription factor (TFAM) binding sites is not associated with marbling in Wagyu X Limousin F2 crosses

    OpenAIRE

    Michal, Jennifer J.; Kunej, Tanja; Dovč, Peter; Jiang, Zhihua

    2015-01-01

    Mitochondrial transcription factor A (TFAM) is a nucleus-encoded protein that is essential for initiation of transcription and replication of mitochondrial DNA (mtDNA). It has been shown that TFAM binds the entire length of the mtDNA,but with higher affinitz to sequences around both mitochondrial promoters located in 3' domain of the D-loop region. The objectives of this study were to detect genetic polymorphisms in the sequence flanking TFAM binding sites of the mtDNA D-loop region and inves...

  17. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding.

    Science.gov (United States)

    Velazquez, Gilberto; Sousa, Rui; Brieba, Luis G

    2015-01-01

    Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1.

  18. Interaction of human mitochondrial transcription factor A in mitochondria: its involvement in the dynamics of mitochondrial DNA nucleoids.

    Science.gov (United States)

    Kasashima, Katsumi; Endo, Hitoshi

    2015-12-01

    Mitochondrial transcription factor A (TFAM) is a key regulator of mitochondrial DNA (mtDNA). TFAM interacts with itself and forms dimers; however, the precise interaction domain in vivo has not yet been determined. We herein showed that human TFAM formed oligomers in mitochondria by in situ chemical cross-linking. We used the separated fluorescent protein, monomeric Kusabira-Green, as a reporter to monitor their self-association in mitochondria. This reporter successfully detected the TFAM-TFAM interaction in cells as fluorescent signals on mitochondria. We also found that the N-terminal high-mobility group box domain was sufficient for this interaction. The expression of the dimer-defective mutant induced enlarged mtDNA nucleoids, suggesting the importance of dimerization in the distribution of mtDNA. The reporter system also supported the association and mixture between independent nucleoids through TFAM by a cell fusion assay using hemagglutinating virus of Japan. We here, for the first time, visualized the interaction of TFAM molecules in mitochondria and proposed its implications for the dynamics of mtDNA nucleoids.

  19. MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics.

    Science.gov (United States)

    Tomar, Dhanendra; Dong, Zhiwei; Shanmughapriya, Santhanam; Koch, Diana A; Thomas, Toby; Hoffman, Nicholas E; Timbalia, Shrishiv A; Goldman, Samuel J; Breves, Sarah L; Corbally, Daniel P; Nemani, Neeharika; Fairweather, Joseph P; Cutri, Allison R; Zhang, Xueqian; Song, Jianliang; Jaña, Fabián; Huang, Jianhe; Barrero, Carlos; Rabinowitz, Joseph E; Luongo, Timothy S; Schumacher, Sarah M; Rockman, Michael E; Dietrich, Alexander; Merali, Salim; Caplan, Jeffrey; Stathopulos, Peter; Ahima, Rexford S; Cheung, Joseph Y; Houser, Steven R; Koch, Walter J; Patel, Vickas; Gohil, Vishal M; Elrod, John W; Rajan, Sudarsan; Madesh, Muniswamy

    2016-05-24

    Mitochondrial Ca(2+) Uniporter (MCU)-dependent mitochondrial Ca(2+) uptake is the primary mechanism for increasing matrix Ca(2+) in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1) have severely impaired [Ca(2+)]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca(2+)-dependent mitochondrial metabolism.

  20. MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics

    Directory of Open Access Journals (Sweden)

    Dhanendra Tomar

    2016-05-01

    Full Text Available Mitochondrial Ca2+ Uniporter (MCU-dependent mitochondrial Ca2+ uptake is the primary mechanism for increasing matrix Ca2+ in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1 have severely impaired [Ca2+]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca2+-dependent mitochondrial metabolism.

  1. Maternal and Other Risk Factors Including Bovine IgG in Developing Infantile Colic

    Directory of Open Access Journals (Sweden)

    Masoud Omidian

    2007-04-01

    Full Text Available Objective: Infantile colic is one of the most current problems in the first few months of life. It is suggested that organic or psychologic and behavioral factors can predispose to involve this disorder. Here, we have studied the role of some maternal risk factors including bovine IgG levels in breast milk for appearing the colic in young babies. Material & Methods: This retrospective study was performed on 50 infants as case group and 30 infants aged 3 weeks to 3 months who had normal growth and development as control group for one year in Mashad. Data was analyzed with Pearson Chi-Square and Fisher’s exact tests. Findings: Most colicky infants were male (62% vs 38% female. They were mainly symptomatic at neonatal period. In 64% of cases, it occurred in the first offspring. Infantile colic was more common in babies who delivered normally than by cesarean section and in mothers aged 20-30 years. According to our finding, there was no relationship between bovine IgG in breast milk and infantile colic. It revealed that anxious pregnant women had more colicky babies and paternal smoking seemed to develop colic in young infants. Conclusion: In order to reduce the occurrence of colic in infants, primigravid mothers aged 20-30 years should have a stressfree environment especially during pregnancy and no smoking exposure in this period.

  2. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1.

    Science.gov (United States)

    Guja, Kip E; Venkataraman, Krithika; Yakubovskaya, Elena; Shi, Hui; Mejia, Edison; Hambardjieva, Elena; Karzai, A Wali; Garcia-Diaz, Miguel

    2013-09-01

    Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and diabetes. Here, we present the first structural characterization of the mammalian TFB1 factor. We have solved two X-ray crystallographic structures of TFB1M with (2.1 Å) and without (2.0 Å) its cofactor S-adenosyl-L-methionine. These structures reveal that TFB1M shares a conserved methyltransferase core with other KsgA/Dim1 methyltransferases and shed light on the structural basis of S-adenosyl-L-methionine binding and methyltransferase activity. Together with mutagenesis studies, these data suggest a model for substrate binding and provide insight into the mechanism of methyl transfer, clarifying the role of this factor in an essential process for mitochondrial function. PMID:23804760

  3. Control of Mitochondrial Transcription Specificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1 and NRF-2) and PGC-1 Family Coactivators

    OpenAIRE

    Gleyzer, Natalie; Vercauteren, Kristel; Scarpulla, Richard C.

    2005-01-01

    In vertebrates, mitochondrial DNA (mtDNA) transcription is initiated bidirectionally from closely spaced promoters, HSP and LSP, within the D-loop regulatory region. Early studies demonstrated that mtDNA transcription requires mitochondrial RNA polymerase and Tfam, a DNA binding stimulatory factor that is required for mtDNA maintenance. Recently, mitochondrial transcription specificity factors (TFB1M and TFB2M), which markedly enhance mtDNA transcription in the presence of Tfam and mitochondr...

  4. Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription

    OpenAIRE

    Schubot, Florian D; Chen, Chun-Jung; Rose, John P.; Dailey, Tamara A.; Dailey, Harry A.; Wang, Bi-Cheng

    2001-01-01

    Although it is commonly accepted that binding of mitochondrial transcription factor sc-mtTFB to the mitochondrial RNA polymerase is required for specific transcription initiation in Saccharomyces cerevisiae, its precise role has remained undefined. In the present work, the crystal structure of sc-mtTFB has been determined to 2.6 Å resolution. The protein consists of two domains, an N-terminal α/β-domain and a smaller domain made up of four α-helices. Contrary to previous predictions, sc-mtTFB...

  5. PreImplantation Factor (PIF correlates with early mammalian embryo development-bovine and murine models

    Directory of Open Access Journals (Sweden)

    Coulam Carolyn B

    2011-05-01

    Full Text Available Abstract Background PreImplantation Factor (PIF, a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01. In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control (P = 0.01 and at day 7 were higher than day 3 (P = 0.03. In non-cleaving embryos culture medium was similar to medium alone (control. Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01 as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control. Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the

  6. Sero-epidemiological survey and risk factors associated with bovine brucellosis among slaughtered cattle in Nigeria

    Directory of Open Access Journals (Sweden)

    Victor O. Akinseye

    2016-03-01

    Full Text Available Bovine brucellosis is endemic in Nigeria; however, limited data exist on nationwide studies and risk factors associated with the disease. Using a cross-sectional sero-epidemiological survey, we determined the prevalence of and risk factors for brucellosis in slaughtered cattle in three geographical regions of Nigeria. Serum samples from randomly selected unvaccinated cattle slaughtered over a period of 3 years (between December 2010 and September 2013 from northern, southern and south-western Nigeria were tested for antibodies to Brucella abortus using the Rose Bengal test. Data associated with risk factors of brucellosis were analysed by Stata Version 12. In all, 8105 cattle were screened. An overall seroprevalence of 3.9% (315/8105 was recorded by the Rose Bengal test, with 3.8%, 3.4% and 4.0% from the northern, southern and south-western regions, respectively. Bivariate analysis showed that cattle screened in northern Nigeria were less likely to be seropositive for antibodies to Brucella spp. than those from south-western Nigeria (odds ratio = 0.94; 95% confidence interval: 0.73–1.22. However, logistic regression analysis revealed that breed ( p = 0.04 and sex ( p £ 0.0001 of cattle were statistically significant for seropositivity to Brucella spp. The study found that brucellosis was endemic at a low prevalence among slaughtered cattle in Nigeria, with sex and breed of cattle being significant risk factors. Considering the public health implications of brucellosis, we advocate coordinated surveillance for the disease among diverse cattle populations in Nigeria, as is carried out in most developed countries.Keywords: Bovine brucellosis, RBT, Epidemiology, Public Health, Nigeria

  7. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness

    OpenAIRE

    Cotney, Justin; McKay, Sharen E.; Shadel, Gerald S.

    2009-01-01

    Mitochondrial biogenesis is controlled by signaling networks that relay information to and from the organelles. However, key mitochondrial factors that mediate such pathways and how they contribute to human disease are not understood fully. Here we demonstrate that the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 are key downstream effectors of mitochondrial biogenesis that perform unique, yet cooperative functions. The primary function of h-mtTFB2 is mtD...

  8. Vascular endothelial growth factor A (VEGFA) modulates bovine placenta steroidogenesis in vitro.

    Science.gov (United States)

    Sousa, L M M C; Campos, D B; Fonseca, V U; Viau, P; Kfoury, J R; Oliveira, C A; Binelli, M; Buratini, J; Papa, P C

    2012-10-01

    Our objectives were to investigate the possible role of VEGFA in bovine placenta steroid synthesis and to determine whether cloned derived placental cells present similar responses as non-cloned ones. Placental cells from cloned (term) and non-cloned (days 90, 150, 210 and term) pregnancies were isolated and treated with VEGFA (50 ng/ml) for 24, 48 or 96 h. Progesterone (P(4)) and estrone sulfate (E(1)S) were assessed by RIA, while aromatase P450-positive cells were quantified using the point counting test. The percentages of steroidogenic and non-steroidogenic populations were determined by flow cytometry. VEGFA augmented or decreased P(4) and E(1)S concentrations as well as aromatase P450-positive cell density, depending on gestational age and time in culture. The percentage of steroidogenic cells was lower than that of non-steroidogenic ones for each culture time (P 0.05). VEGFA treatment altered P(4) and E(1)S levels in placental cells depending on type of gestation. These results suggest that VEGFA acts locally in the bovine placenta to modulate steroidogenesis during gestation, but in a different pattern between cloned and non-cloned derived placental cells at term. Therefore, this factor can be considered an important regulator of placental development and function.

  9. Impaired Transport of Mitochondrial Transcription Factor and the Metabolic Memory Phenomenon Associated with the Progression of Diabetic Retinopathy

    OpenAIRE

    Santos, Julia M.; Kowluru, Renu A.

    2013-01-01

    Diabetes damages retinal mitochondrial DNA (mtDNA), and compromises the mtDNA transcription. In the transcription and replication of mtDNA, nuclear-encoded transcription factor A (TFAM) is considered as a key activator, and we have shown that in diabetes while retinal TFAM gene expression is increased, its mitochondrial levels are decreased. This study investigates the role of mitochondrial outer and inner membrane transport systems in the transfer of TFAM into the mitochondria in diabetes, a...

  10. Genetic and non-genetic factors responsible for mitochondrial failure and Alzheimer’s disease

    OpenAIRE

    Gao Kuo; Niu Meiying; Zhai Xing; Huang Youliang; Tian Xin; Li Tiangang

    2014-01-01

    The objective of this review article is to explain the factors responsible for damaged mitochondria and its association with Alzheimer’s disease. Alzheimer’s disease (AD) is fairly produced by dysfunctional mitochondria that are alternatively caused by excessive reactive oxygen species and mitochondrial dynamic imbalance. In the pathogenesis of AD, there is important role of many factors including amyloid-beta peptide (A ), tau-proteins, and mutations in pr...

  11. A case-control study of risk factors for bovine cysticercosis in Danish cattle herds.

    Science.gov (United States)

    Calvo-Artavia, F F; Nielsen, L R; Dahl, J; Clausen, D M; Graumann, A M; Alban, L

    2013-06-01

    Bovine cysticercosis (BC) is a zoonotic, parasitic infection in cattle. Under the current EU meat inspection regulation, every single carcass from all bovines above 6 weeks of age is examined for BC. This method is costly and makes more sense in countries with higher number of BC-infected animals than in countries with few lightly infected cases per year. The aim of the present case-control study was to quantify associations between potential herd-level risk factors and BC in Danish cattle herds. Risk factors can be used in the design of a risk-based meat inspection system targeted towards the animals with the highest risk of BC. Cases (n = 77) included herds that hosted at least one animal diagnosed with BC at meat inspection, from 2006 to 2010. Control herds (n = 231) consisted of randomly selected herds that had not hosted any animals diagnosed with BC between 2004 and 2010. The answers from a questionnaire and register data from the Danish Cattle Database were grouped into meaningful variables and used to investigate the risk factors for BC using a multivariable logistic regression model. Case herds were almost three times more likely than control herds to let all or most animals out grazing. Case herds were more than five times more likely than control herds to allow their animals access to risky water sources with sewage treatment plant effluent in proximity. Case herds were also more likely to share machinery or hire contractors than control herds. The risk decreased with increasing herd size probably because the larger herds generally tend to keep cattle indoors in Denmark. The results are useful to guide future data recording that can be supplied by the farmer as food chain information and then be used for differentiated meat inspection in low- and high-risk groups, enabling development of risk-based meat inspection systems.

  12. A review of the factors affecting the costs of bovine mastitis : review article

    Directory of Open Access Journals (Sweden)

    K.R. Petrovski

    2006-06-01

    Full Text Available Mastitis is one of the most prevalent production diseases affecting the dairy cattle industry worldwide. Its occurrence is associated with direct and indirect losses and expenditures. When estimating the cost of mastitis to the dairy industry the cost of the control programmes must be added. The direct losses of mastitis are the only costs obvious to the farmer. The difference between the costs of mastitis on one side and the benefits of mastitis control on the other side will give us a picture of the economic efficacy of the mastitis control programme. Continuing education of the farmer is needed for better mastitis control programmes. This article is an attempt to review briefly all relevant factors included in the economics of bovine mastitis and to illustrate the authors' view of some of the costs.

  13. Immunohistochemical localization of basic fibroblast growth factor in bovine ovarian follicles.

    Science.gov (United States)

    van Wezel, I L; Umapathysivam, K; Tilley, W D; Rodgers, R J

    1995-12-29

    Basic fibroblast growth factor (bFGF, FGF2) controls cell proliferation and differentiation in many organs and tissues. In the ovary, cells proliferate and differentiate during folliculogenesis and during formation of the corpus luteum. While previous studies have inferred a role for bFGF in these processes, the precise contribution of bFGF to follicular activation or recruitment has not been established. For this reason, bFGF was immunolocalized in bovine follicles, using anti-bFGF immunoglobulin specific for the 1-24-amino acid terminus of the 18-kDa peptide. Basic FGF was immunolocalized to the cytoplasm of oocytes from bovine primordial and primary follicles. Strong immunostaining was also observed in corpora lutea, the ovarian surface epithelium, and smooth muscle cells surrounding blood vessels, while substantial levels of immunostaining were also present in cells of the theca interna. In most of the healthy antral follicles examined, the three or so layers of granulosa cells which were closest to the basement membrane were also stained, with greatest levels of staining at the most basal region of each cell. Atretic antral follicles had significant and uniform levels of immunostaining throughout the theca interna and the membrana granulosa. Immunostaining as described above was reduced to background levels when the primary specific immunoglobulin was preabsorbed with a 350 molar excess of peptide comprising the NH2-terminal 24 amino acids of bFGF. Based upon our previous observations and those reported here, we propose that basic fibroblast growth factor is synthesized by immature oocytes, especially those from primordial and primary follicles, and that bFGF has a potential role in activating follicle growth via stimulation of granulosa cell proliferation and follicular basement membrane synthesis. PMID:8824888

  14. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    International Nuclear Information System (INIS)

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  15. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    Energy Technology Data Exchange (ETDEWEB)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C. [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Wolburg, Hartwig [Institute of Pathology, University of Tuebingen, 72076 Tuebingen (Germany); Ziviani, Elena; Whitworth, Alexander J. [Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN (United Kingdom); Martins, L. Miguel [Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester LE1 9HN (United Kingdom); Kahle, Philipp J., E-mail: philipp.kahle@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Krueger, Rejko, E-mail: rejko.krueger@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany)

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  16. Bioactivity of ovulation inducing factor (or nerve growth factor) in bovine seminal plasma and its effects on ovarian function in cattle.

    Science.gov (United States)

    Tribulo, P; Bogle, O; Mapletoft, R J; Adams, G P

    2015-06-01

    To understand the role of ovulation-inducing factor (or nerve growth factor) (OIF [NGF]) in bovine seminal plasma, we (1) used an in vivo llama bioassay to test the hypothesis that bovine seminal plasma induces ovulation and CL development in llamas similar to that of llama seminal plasma when the dose of seminal plasma is adjusted to ovulation-inducing factor content (experiment 1) and (2) determined the effect of bovine seminal plasma on the interval to ovulation and luteal development in heifers (experiment 2). Within species, seminal plasma was pooled (n = 160 bulls, n = 4 llamas), and the volume of seminal plasma used for treatment was adjusted to a total dose of 250 μg of ovulation-inducing factor. In experiment 1, mature female llamas were assigned randomly to four groups and treated intramuscularly with either 10 mL of PBS (negative control, n = 5), 50-μg GnRH (positive control, n = 5), 6-mL of llama seminal plasma (n = 6), or 12 mL of bull seminal plasma (n = 6). Ovulation and CL development were monitored by transrectal ultrasonography. In experiment 2, beef heifers were given a luteolytic dose of prostaglandin followed by 25-mg porcine LH (pLH) 12 hours later to induce ovulation. Heifers were assigned randomly to three groups and given 12 mL bovine seminal plasma intramuscularly 12 hours after pLH treatment (n = 10), within 4 hours after ovulation (n = 9), or no treatment (control, n = 10). Ovulation was monitored by ultrasonography every 4 hours, and the CL development was monitored daily until the next ovulation. In experiment 1, ovulation was detected in 0/5, 4/5, 4/6, 4/6 llamas in the PBS, GnRH, llama seminal plasma, and bovine seminal plasma groups, respectively (P bovine and llama seminal plasma have similar ovulatory effects, using a llama bioassay. Treatment with bovine seminal plasma resulted in greater synchrony of ovulation in heifers pretreated with pLH. Plasma progesterone concentration tended to be higher in heifers given bovine seminal

  17. Mitochondrial structure and dynamics as critical factors in honey bee (Apis mellifera L.) caste development.

    Science.gov (United States)

    Santos, Douglas Elias; Alberici, Luciane Carla; Hartfelder, Klaus

    2016-06-01

    The relationship between nutrition and phenotype is an especially challenging question in cases of facultative polyphenism, like the castes of social insects. In the honey bee, Apis mellifera, unexpected modifications in conserved signaling pathways revealed the hypoxia response as a possible mechanism underlying the regulation of body size and organ growth. Hence, the current study was designed to investigate possible causes of why the three hypoxia core genes are overexpressed in worker larvae. Parting from the hypothesis that this has an endogenous cause and is not due to differences in external oxygen levels we investigated mitochondrial numbers and distribution, as well as mitochondrial oxygen consumption rates in fat body cells of queen and worker larvae during the caste fate-critical larval stages. By immunofluorescence and electron microscopy we found higher densities of mitochondria in queen larval fat body, a finding further confirmed by a citrate synthase assay quantifying mitochondrial functional units. Oxygen consumption measurements by high-resolution respirometry revealed that queen larvae have higher maximum capacities of ATP production at lower physiological demand. Finally, the expression analysis of mitogenesis-related factors showed that the honey bee TFB1 and TFB2 homologs, and a nutritional regulator, ERR, are overexpressed in queen larvae. These results are strong evidence that the differential nutrition of queen and worker larvae by nurse bees affects mitochondrial dynamics and functionality in the fat body of these larvae, hence explaining their differential hypoxia response. PMID:27058771

  18. The role of exercise and exercise-related factors in the control of mitochondrial oxidative function

    OpenAIRE

    Walsh, Brandon

    2002-01-01

    The effects of exercise and exercise-related factors on the control of mitochondrial oxidative function were investigated in human and rat skeletal muscle. Oxidative function was assessed through the measurement of oxygen consumption in chemically permeabilized (skinned) fibers. Mitochondria in skinned muscle fibers remain in their natural structural environment, permitting sophisticated mechanisms of respiratory control to be studied while allowing the surrounding milieu to...

  19. Factors that affect the reproductive efficiency of the recipient within a bovine embryo transfer program

    Directory of Open Access Journals (Sweden)

    Arturo Duica A.

    2007-12-01

    Full Text Available The embryo transfer is a biotechnological technique that allows increasing the descendant of animals with high genetic value. The positive results, represented in pregnancy after the application of this technique, are affected by some factors that are inherent to the donor, the embryo, the technique, and the recipients which receive a strange embryo in the uterus allowing pregnancy. This review describes some factors affecting the reproductive efficiency of the recipients of bovine embryos within a program of embryo transfer. Its important to evaluate the parameters in this kind of recipients, as race, age, physiological status, health status, weight, reproductive tract integrity and management, and also too monitoring the ovarian structures while the estrus synchronization, and within previous and posterior stages in embryo transfer procedure. Therefore an optimum follicular development will be determinant to corpus luteum formation which generates enough serum progesterone concentrations to offer a right uterine environment allowing the optimum embryo development. Controlling the factors that affect the efficiency of the embryo transfer, it will obtain an increasing of positive results represented in pregnancies and births of individuals come from animals with high genetic value.

  20. Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release

    Directory of Open Access Journals (Sweden)

    Seong‑Woon Yu

    2009-11-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  1. Expression of DNAJA1 in bovine muscles according to developmental age and management factors.

    Science.gov (United States)

    Cassar-Malek, I; Guillemin, N; Hocquette, J-F; Micol, D; Bauchart, D; Picard, B; Jurie, C

    2011-05-01

    We have recently shown that the expression of the DNAJA1 gene encoding a heat shock protein (Hsp40) is a negative marker of meat tenderness in Charolais bulls. To acquire knowledge on the regulation of DNAJA1 expression, we analysed the abundance of DNAJA1 transcripts and protein during development and according to management factors (e.g. feeding treatments, growth path and stress status) in different bovine muscles during postnatal life. We report here a developmental expression profile for DNAJA1 with decreased levels of transcript and protein during the progression of myogenesis. During postnatal life, we found the highest expression of DNAJA1 in the most oxidative muscles. No effect was detected for dietary treatment (pasture v. maize-based diet), growth path (compensatory growth after a restriction period) or pre-slaughter stress status. Therefore, the genetic background and muscle type could be considered as the main factors regarding the level of DNAJA1. Integration of the knowledge gained from this study should help to predict muscle metabolic properties and the ability of the live animals to give high sensory quality meat. PMID:22440026

  2. Epidermal growth factor receptor is required for estradiol-stimulated bovine satellite cell proliferation.

    Science.gov (United States)

    Reiter, B C; Kamanga-Sollo, E; Pampusch, M S; White, M E; Dayton, W R

    2014-07-01

    The objective of this study was to assess the role of the epidermal growth factor receptor (EGFR) in estradiol-17β (E2)-stimulated proliferation of cultured bovine satellite cells (BSCs). Treatment of BSC cultures with AG1478 (a specific inhibitor of EGFR tyrosine kinase activity) suppresses E2-stimulated BSC proliferation (P LR3-IGF-1 (an IGF1 analogue that binds normally to the insulin-like growth factor receptor (IGFR)-1 but has little or no affinity for IGF binding proteins) in cultured BSCs (P < 0.05). Even though EGFR siRNA treatment has no effect on IGFR-1β mRNA expression in cultured BSCs, IGFR-1β protein level is substantially reduced in BSCs treated with EGFR siRNA. These data suggest that EGFR silencing results in post-transcriptional modifications that result in decreased IGFR-1β protein levels. Although it is clear that functional EGFR is necessary for E2-stimulated proliferation of BSCs, the role of EGFR is not clear. Transactivation of EGFR may directly stimulate proliferation, or EGFR may function to maintain the level of IGFR-1β which is necessary for E2-stimulated proliferation. It also is possible that the role of EGFR in E2-stimulated BSC proliferation may involve both of these mechanisms. PMID:24906928

  3. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim, E-mail: ykpak@khu.ac.kr

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  4. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    International Nuclear Information System (INIS)

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations

  5. Interaction of mammalian mitochondrial elongation factor EF-Tu with guanine nucleotides.

    OpenAIRE

    Cai, Y. C.; Bullard, J. M.; Thompson, N L; Spremulli, L L

    2000-01-01

    Elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. During the elongation cycle, EF-Tu interacts with guanine nucleotides, aa-tRNA and its nucleotide exchange factor (EF-Ts). Quantitative determination of the equilibrium dissociation constants that govern the interactions of mammalian mitochondrial EF-Tu (EF-Tu(mt)) with guanine nucleotides was the focus of the work reported here. Equilibrium dialysis with [3H]GDP was used to mea...

  6. Herd-level risk factors for bovine tuberculosis in French cattle herds.

    Science.gov (United States)

    Marsot, Maud; Béral, Marina; Scoizec, Axelle; Mathevon, Yoann; Durand, Benoit; Courcoul, Aurélie

    2016-09-01

    Although officially free of bovine tuberculosis (bTB), France has been experiencing a slight increase in the incidence and geographical spread of the infection. Eradication of bTB requires determining the infection risk factors. Although several studies identifying bTB risk factors have been conducted in the United Kingdom and Spain, no information is currently available regarding bTB risk factors in French cattle. The objective of this work was thus to study the factors associated with the risk of bTB in cattle herds in three French administrative divisions (départements of Ardennes, Côte d'Or and Dordogne). A case-control study was conducted to compare herds having experienced a bTB outbreak between 2012 and early 2014 with randomly selected control herds of the three study départements. A questionnaire of farming practices, inter-herd contacts (e.g. at pasture or via vehicles or materials), and the presence of other domestic species was carried out in the selected herds. Data on other variables of interest included animal movements between farms and potential contacts between cattle and wildlife (e.g. badger and wild boar abundances) were also collected. Multivariable logistic regression and multimodel inference methods were used to assess risk factors related to bTB. A total of 216 herds (72 cases and 144 controls) were analyzed. The two main risk factors were the presence of a recent neighboring outbreak, being defined as a neighboring herd at pasture reported as infected in the past two years (odds ratio (OR)=3.6; population attributable fraction (PAF)=30.7%) and the presence of a farm building for cattle housing or for feed storage located at more than 300-m from inhabited areas (OR=2.3; PAF=27.6%). Another risk factor was related to sharing water points at pasture with a recent neighboring outbreak. Results illustrated the multifactorial nature of bTB dynamics. The risk factors related to recently infected neighboring herds could be attributable to

  7. Herd-level risk factors for bovine tuberculosis in French cattle herds.

    Science.gov (United States)

    Marsot, Maud; Béral, Marina; Scoizec, Axelle; Mathevon, Yoann; Durand, Benoit; Courcoul, Aurélie

    2016-09-01

    Although officially free of bovine tuberculosis (bTB), France has been experiencing a slight increase in the incidence and geographical spread of the infection. Eradication of bTB requires determining the infection risk factors. Although several studies identifying bTB risk factors have been conducted in the United Kingdom and Spain, no information is currently available regarding bTB risk factors in French cattle. The objective of this work was thus to study the factors associated with the risk of bTB in cattle herds in three French administrative divisions (départements of Ardennes, Côte d'Or and Dordogne). A case-control study was conducted to compare herds having experienced a bTB outbreak between 2012 and early 2014 with randomly selected control herds of the three study départements. A questionnaire of farming practices, inter-herd contacts (e.g. at pasture or via vehicles or materials), and the presence of other domestic species was carried out in the selected herds. Data on other variables of interest included animal movements between farms and potential contacts between cattle and wildlife (e.g. badger and wild boar abundances) were also collected. Multivariable logistic regression and multimodel inference methods were used to assess risk factors related to bTB. A total of 216 herds (72 cases and 144 controls) were analyzed. The two main risk factors were the presence of a recent neighboring outbreak, being defined as a neighboring herd at pasture reported as infected in the past two years (odds ratio (OR)=3.6; population attributable fraction (PAF)=30.7%) and the presence of a farm building for cattle housing or for feed storage located at more than 300-m from inhabited areas (OR=2.3; PAF=27.6%). Another risk factor was related to sharing water points at pasture with a recent neighboring outbreak. Results illustrated the multifactorial nature of bTB dynamics. The risk factors related to recently infected neighboring herds could be attributable to

  8. Sero-epidemiological survey and risk factors associated with bovine brucellosis among slaughtered cattle in Nigeria.

    Science.gov (United States)

    Akinseye, Victor O; Adesokan, Hezekiah K; Ogugua, Akwoba J; Adedoyin, Folashade J; Otu, Patricia I; Kwaghe, Ayi V; Kolawole, Noah O; Okoro, Oyinye J; Agada, Charity A; Tade, Adeniyi O; Faleke, Olufemi O; Okeke, Anyanwu L; Akanbi, Ibikunle M; Ibitoye, Mofoluwake M; Dipeolu, Morenike O; Dale, Emma J; Lorraine, Perrett; Taylor, Andrew V; Awosanya, Emmanuel A; Cadmus, Eniola O; Stack, Judy A; Cadmus, Simeon I

    2016-01-01

    Bovine brucellosis is endemic in Nigeria; however, limited data exist on nationwide studies and risk factors associated with the disease. Using a cross-sectional sero-epidemiological survey, we determined the prevalence of and risk factors for brucellosis in slaughtered cattle in three geographical regions of Nigeria. Serum samples from randomly selected unvaccinated cattle slaughtered over a period of 3 years (between December 2010 and September 2013) from northern, southern and south-western Nigeria were tested for antibodies to Brucella abortus using the Rose Bengal test. Data associated with risk factors of brucellosis were analysed by Stata Version 12. In all, 8105 cattle were screened. An overall seroprevalence of 3.9% (315/8105) was recorded by the Rose Bengal test, with 3.8%, 3.4% and 4.0% from the northern, southern and south-western regions, respectively. Bivariate analysis showed that cattle screened in northern Nigeria were less likely to be seropositive for antibodies to Brucella spp. than those from south-western Nigeria (odds ratio = 0.94; 95% confidence interval: 0.73-1.22). However, logistic regression analysis revealed that breed ( p = 0.04) and sex ( p £ 0.0001) of cattle were statistically significant for seropositivity to Brucella spp. The study found that brucellosis was endemic at a low prevalence among slaughtered cattle in Nigeria, with sex and breed of cattle being significant risk factors. Considering the public health implications of brucellosis, we advocate coordinated surveillance for the disease among diverse cattle populations in Nigeria, as is carried out in most developed countries.

  9. Associations between animal characteristic and environmental risk factors and bovine respiratory disease in Australian feedlot cattle.

    Science.gov (United States)

    Hay, K E; Morton, J M; Mahony, T J; Clements, A C A; Barnes, T S

    2016-03-01

    A prospective longitudinal study was conducted in a population of Australian feedlot cattle to assess associations between animal characteristic and environmental risk factors and risk of bovine respiratory disease (BRD). Animal characteristics were recorded at induction, when animals were individually identified and enrolled into study cohorts (comprising animals in a feedlot pen). Environmental risk factors included the year and season of induction, source region and feedlot region and summary variables describing weather during the first week of follow-up. In total, 35,131 animals inducted into 170 cohorts within 14 feedlots were included in statistical analyses. Causal diagrams were used to inform model building and multilevel mixed effects logistic regression models were fitted within the Bayesian framework. Breed, induction weight and season of induction were significantly and strongly associated with risk of BRD. Compared to Angus cattle, Herefords were at markedly increased risk (OR: 2.0, 95% credible interval: 1.5-2.6) and tropically adapted breeds and their crosses were at markedly reduced risk (OR: 0.5, 95% credible interval: 0.3-0.7) of developing BRD. Risk of BRD declined with increased induction weight, with cattle in the heaviest weight category (≥480kg) at moderately reduced risk compared to cattle weighing risk compared to animals inducted during spring. Knowledge of these risk factors may be useful in predicting BRD risk for incoming groups of cattle in Australian feedlots. This would then provide the opportunity for feedlot managers to tailor management strategies for specific subsets of animals according to predicted BRD risk.

  10. Tumor necrosis factor alpha inhibits in vitro bovine embryo development through a prostaglandin mediated mechanism

    Directory of Open Access Journals (Sweden)

    Jackson Lauren R

    2012-03-01

    Full Text Available Abstract Mastitis or other infectious diseases have been related to reduced fertility in cattle. Inflammatory cytokines such as tumor necrosis factor α (TNFα are released in response to infection and may have negative effects on embryo development. In the current study the effect of exposure to TNFα on the development of in vitro fertilized bovine embryos was examined. Indomethacin, a prostaglandin synthesis inhibitor, was used to determine if blockade of prostaglandin synthesis would alter the effects of TNFα. Ovaries were obtained from a local abattoir and immature COC were isolated from 2-10 mm follicles, in vitro matured and fertilized. After fertilization, groups of presumptive zygotes were randomly placed into either control development medium, medium containing 25 ng/mL TNFα or medium containing 25 ng/mL TNFα plus 1 μg/mL indomethacin. The proportion of blastocysts formed was assessed at day 7 of culture. Fewer embryos exposed to TNFα alone reached the blastocyst stage (17.5 ± 2.4%, P

  11. Cytokine regulation by virus infection: bovine viral diarrhea virus, a flavivirus, downregulates production of tumor necrosis factor alpha in macrophages in vitro.

    OpenAIRE

    Adler, H; Jungi, T. W.; Pfister, H; Strasser, M; Sileghem, M; Peterhans, E

    1996-01-01

    Bovine bone marrow-derived macrophages were infected in vitro with noncytopathic or cytopathic strains of bovine viral diarrhea virus. Infection with both biotypes resulted in a decreased production of tumor necrosis factor alpha upon stimulation with heat-inactivated Salmonella dublin or lipopolysaccharide. Other macrophage functions were not downregulated, indicating that the observed effect was not due to a loss in macrophage viability. The downregulated production of tumor necrosis factor...

  12. Posttranslational Modification of Mitochondrial Transcription Factor A in Impaired Mitochondria Biogenesis: Implications in Diabetic Retinopathy and Metabolic Memory Phenomenon

    OpenAIRE

    Santos, Julia M.; Mishra, Manish; Kowluru, Renu A.

    2014-01-01

    Mitochondrial transcription factor A (TFAM) is one of the key regulators of the transcription of mtDNA. In diabetes, despite increase in gene transcripts of TFAM, its protein levels in the mitochondria are decreased and mitochondria copy numbers become subnormal. The aim of this study is to investigate the mechanism(s) responsible for decreased mitochondrial TFAM in diabetes. Using retinal endothelial cells, we have investigated the effect of overexpression of cytosolic chaperone, Hsp70, and ...

  13. The HMG-box mitochondrial transcription factor xl-mtTFA binds DNA as a tetramer to activate bidirectional transcription.

    OpenAIRE

    Antoshechkin, I; Bogenhagen, D F; Mastrangelo, I A

    1997-01-01

    The mitochondrial HMG-box transcription factor xl-mtTFA activates bidirectional transcription by binding to a site separating two core promoters in Xenopus laevis mitochondrial DNA (mtDNA). Three independent approaches were used to study the higher order structure of xl-mtTFA binding to this site. First, co-immunoprecipitation of differentially tagged recombinant mtTFA derivatives established that the protein exists as a multimer. Second, in vitro chemical cross-linking experiments provided e...

  14. A Saccharomyces cerevisiae mitochondrial transcription factor, sc-mtTFB, shares features with sigma factors but is functionally distinct.

    OpenAIRE

    Shadel, G S; Clayton, D A

    1995-01-01

    In Saccharomyces cerevisiae mitochondria, sc-mtTFB is a 341-amino-acid transcription factor required for initiation of transcription from mitochondrial DNA promoters. Specific transcription in vitro requires only sc-mtTFB and the bacteriophage-related core sc-mtRNA polymerase. Mutational analysis of sc-mtTFB has defined two regions of the protein that are important for normal function both in vivo and in vitro. These regions overlap portions of the protein that exhibit similarity to conserved...

  15. Human mitochondrial transcription factor A functions in both nuclei and mitochondria and regulates cancer cell growth

    International Nuclear Information System (INIS)

    Highlights: → Mitochondrial transcription factor A (mtTFA) localizes in nuclei and binds tightly to the nuclear chromatin. → mtTFA contains two putative nuclear localization signals (NLS) in the HMG-boxes. → Overexpression of mtTFA enhances the growth of cancer cells, whereas downregulation of mtTFA inhibits their growth by regulating mtTFA target genes, such as baculoviral IAP repeat-containing 5 (BIRC5; also known as survivin). → Knockdown of mtTFA expression induces p21-dependent G1 cell cycle arrest. -- Abstract: Mitochondrial transcription factor A (mtTFA) is one of the high mobility group protein family and is required for both transcription from and maintenance of mitochondrial genomes. However, the roles of mtTFA have not been extensively studied in cancer cells. Here, we firstly reported the nuclear localization of mtTFA. The proportion of nuclear-localized mtTFA varied among different cancer cells. Some mtTFA binds tightly to the nuclear chromatin. DNA microarray and chromatin immunoprecipitation assays showed that mtTFA can regulate the expression of nuclear genes. Overexpression of mtTFA enhanced the growth of cancer cell lines, whereas downregulation of mtTFA inhibited their growth by regulating mtTFA target genes, such as baculoviral IAP repeat-containing 5 (BIRC5; also known as survivin). Knockdown of mtTFA expression induced p21-dependent G1 cell cycle arrest. These results imply that mtTFA functions in both nuclei and mitochondria to promote cell growth.

  16. Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer.

    Science.gov (United States)

    zur Hausen, Harald

    2012-06-01

    An increased risk for colorectal cancer has been consistently reported for long-time consumption of cooked and processed red meat. This has frequently been attributed to chemical carcinogens arising during the cooking process of meat. Long-time fish or poultry consumption apparently does not increase the risk, although similar or higher concentrations of chemical carcinogens were recorded in their preparation for consumption. The geographic epidemiology of colorectal cancer seems to correspond to regions with a high rate of beef consumption. Countries with a virtual absence of beef in the diet (India) or where preferably lamb or goat meat is consumed (several Arabic countries) reveal low rates of colorectal cancer. In China, pork consumption has a long tradition, with an intermediate colorectal cancer rate. In Japan and Korea, large scale beef and pork imports started after World War II or after the Korean War. A steep rise in colorectal cancer incidence was noted after 1970 in Japan and 1990 in Korea. The consumption of undercooked beef (e.g., shabu-shabu, Korean yukhoe and Japanese yukke) became very popular in both countries. The available data are compatible with the interpretation that a specific beef factor, suspected to be one or more thermoresistant potentially oncogenic bovine viruses (e.g., polyoma-, papilloma- or possibly single-stranded DNA viruses) may contaminate beef preparations and lead to latent infections in the colorectal tract. Preceding, concomitant or subsequent exposure to chemical carcinogens arising during cooking procedures should result in increased risk for colorectal cancer synergistic with these infections. PMID:22212999

  17. A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration.

    Science.gov (United States)

    Ban, Hyun Seung; Xu, Xuezhen; Jang, Kusik; Kim, Inhyub; Kim, Bo-Kyung; Lee, Kyeong; Won, Misun

    2016-01-01

    We previously reported that hypoxia-inducible factor (HIF)-1 inhibitor LW6, an aryloxyacetylamino benzoic acid derivative, inhibits malate dehydrogenase 2 (MDH2) activity during the mitochondrial tricarboxylic acid (TCA) cycle. In this study, we present a novel MDH2 inhibitor compound 7 containing benzohydrazide moiety, which was identified through structure-based virtual screening of chemical library. Similar to LW6, compound 7 inhibited MDH2 activity in a competitive fashion, thereby reducing NADH level. Consequently, compound 7 reduced oxygen consumption and ATP production during the mitochondrial respiration cycle, resulting in increased intracellular oxygen concentration. Therefore, compound 7 suppressed the accumulation of HIF-1α and expression of its target genes, vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1). Moreover, reduction in ATP content activated AMPK, thereby inactivating ACC and mTOR the downstream pathways. As expected, compound 7 exhibited significant growth inhibition of human colorectal cancer HCT116 cells. Compound 7 demonstrated substantial anti-tumor efficacy in an in vivo xenograft assay using HCT116 mouse model. Taken together, a novel MDH2 inhibitor, compound 7, suppressed HIF-1α accumulation via reduction of oxygen consumption and ATP production, integrating metabolism into anti-cancer efficacy in cancer cells. PMID:27611801

  18. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Kristin Kathleen; Uittenbogaard, Martine [Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC (United States); Chiaramello, Anne, E-mail: achiaram@gwu.edu [Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC (United States)

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  19. Analysis of mRNA associated factors during bovine oocyte maturation and early embryonic development.

    Science.gov (United States)

    Siemer, Corinna; Smiljakovic, Tatjana; Bhojwani, Monika; Leiding, Claus; Kanitz, Wilhelm; Kubelka, Michal; Tomek, Wolfgang

    2009-12-01

    Regulation of gene expression at the translational level is particularly essential during developmental periods, when transcription is impaired. According to the closed-loop model of translational initiation, we have analyzed components of the 5 -mRNA cap-binding complex eIF4F (eIF4E, eIF4G, eIF4A), the eIF4E repressor 4E-BP1, and 3 -mRNA poly-(A) tail-associated proteins (PABP1 and 3, PAIP1 and 2, CPEB1, Maskin) during in vitro maturation of bovine oocytes and early embryonic development up to the 16-cell stage. Furthermore, we have elucidated the activity of distinct kinases which are potentially involved in their phosphorylation. Major phosphorylation of specific target sequences of PKA, PKB, PKC, CDKs, ATM/ATR, and MAPK were observed in M II stage oocytes. Furthermore, main changes in the abundance and/or phosphorylation of distinct mRNA-binding factors occur at the transition from M II stage oocytes to 2-cell embryos. In conclusion, the results indicate that, at the transition from oocyte to embryonic development, translational initiation is regulated by striking differences in the abundance and/or phosphorylation of 5 -end and 3 -end mRNA associated factors, mainly the poly-(A) bindings proteins PABP1 and 3, their repressor PAIP2 and a Maskin-like protein with distinct eIF4E-binding properties which prevents eIF4E/cap binding and eIF4F formation in vitro. Nevertheless, from the M II stage to 16-cell embryos a substantial amount of eIF4E and, to a lesser extent, of eIF4G was precipitated by (7)m-GTP-Separose indicating eIF4F complex formation. Therefore, it is likely that in general the reduction in PABP1 and 3 abundance represses overall translation during early embryonic development.

  20. Genetic and environmental factors associated with incidence of infectious bovine keratoconjunctivitis in preweaned beef calves.

    Science.gov (United States)

    Snowder, G D; Van Vleck, L D; Cundiff, L V; Bennett, G L

    2005-03-01

    Infectious bovine keratoconjunctivitis (IBK) is one of the most economically important diseases in preweaned calves. This study examined the health records of 45,497 calves over a 20-yr period to determine environmental and genetic factors influencing the incidence of IBK. Three data sets were analyzed with an animal model. The first data set (n = 41,986) evaluated environmental factors and genetic differences among nine purebred (Angus, Braunvieh, Charolais, Gelbvieh, Hereford, Limousin, Pinzgauer, Red Poll, and Simmental) and three composite breeds (MARC I, MARC II, and MARC III). Weaning weights of calves diagnosed with IBK were 8.9 kg lighter (P < 0.05) than weights of healthy calves. Incidence of IBK was related to age of the calf and the seasonal life cycle of the face fly (Musca autumnalis). Incidence of IBK increased in the spring (June), peaked during the summer months (July to September), and then decreased in the fall. Herefords were the most susceptible breed (P < 0.05) compared with all other purebreds and composites. Estimates of direct heritability for the incidence of IBK were generally low and ranged from 0.00 to 0.28 by breed. The maternal permanent environmental and genetic effects of the dam on the incidence of IBK were not significant for most breeds. The second data set (n = 9,606) was used to estimate heterosis for the incidence of IBK from a Hereford and Angus diallel design. The heterosis effect for the incidence of IBK in reciprocal Hereford/Angus crossbred calves was slightly negative (P = 0.12) but not large. The higher incidence of IBK in Angus x Hereford calves compared with Hereford x Angus calves (13.3 vs. 8.9%) suggests a maternal effect related to the incidence of IBK. Incidence of IBK in crossbred calves sired by tropically adapted breeds (Brahma, Boran, Tuli) compared with purebred and crossbred Bos taurus types was investigated in the third data set (n = 2,622). Crossbred calves sired by tropically adapted breeds had a lower

  1. Effect of growth factors on oocyte maturation and allocations of inner cell mass and trophectoderm cells of cloned bovine embryos.

    Science.gov (United States)

    Arat, Sezen; Caputcu, Arzu Tas; Cevik, Mesut; Akkoc, Tolga; Cetinkaya, Gaye; Bagis, Haydar

    2016-08-01

    This study was conducted to determine the additive effects of exogenous growth factors during in vitro oocyte maturation (IVM) and the sequential culture of nuclear transfer (NT) embryos. Oocyte maturation and culture of reconstructed embryos derived from bovine granulosa cells were performed in culture medium supplemented with either epidermal growth factor (EGF) alone or a combination of EGF with insulin-like growth factor-I (IGF-I). The maturation rates of oocytes matured in the presence of EGF or the EGF + IGF-I combination were significantly higher than those of oocytes matured in the presence of only fetal calf serum (FCS) (P 0.05). IGF-I alone or in combination with EGF in sequential embryo culture medium significantly increased the ratio of inner cell mass (ICM) to total blastocyst cells (P media of cloned bovine embryos increased the ICM without changing the total cell number. These unknown and uncontrolled effects of growth factors can alter the allocation of ICM and trophectoderm cells (TE) in NT embryos. A decrease in TE cell numbers could be a reason for developmental abnormalities in embryos in the cloning system. PMID:26444069

  2. Bovine respiratory disease in feedlot cattle: environmental, genetic, and economic factors.

    Science.gov (United States)

    Snowder, G D; Van Vleck, L D; Cundiff, L V; Bennett, G L

    2006-08-01

    The objective of this study was to characterize genetic, environmental, and economic factors related to the incidence of bovine respiratory disease (BRD) in feedlot calves. Records from 18,112 calves representing 9 breeds (Angus, Braunvieh, Charolais, Gelbvieh, Hereford, Limousin, Pinzgauer, Red Poll, and Simmental) and 3 composite types (MARC I, MARC II, and MARC III) over a 15-yr period (1987 to 2001) were evaluated. Disease incidence was observed and recorded by station veterinary and technical staff. The incidence of BRD varied across years, with the annual observed incidence ranging from 5 to 44%. From 1987 to 1992, the annual average incidence generally exceeded 20%. However, in later years the annual incidence did not exceed 14%. The epidemiological pattern indicated that BRD infection increased dramatically after 5 d on feed and remained high until approximately 80 d on feed. Previous BRD infection during the preweaning period did not influence subsequent BRD infection in the feedlot. Steers were more likely to become sick with BRD than heifers; castration before entry in the feedlot may be a predisposing cause. Few significant differences among breeds were detected for BRD incidence. Adjusted solutions from mixed model analyses indicated that Herefords were generally more susceptible to BRD infection (P < 0.05) than MARC I and III composite types. Composite breed types had similar susceptibility compared with other purebred breeds. Mortality associated with BRD was greatest in Red Poll calves (9%) compared with the average over all breeds (4%). Estimates of heritability for resistance to BRD ranged from 0.04 to 0.08 +/- 0.01. When the observed heritability was transformed to an underlying continuous scale, the estimate increased to 0.18. Selection for resistance to BRD could be effective if phenotypes for BRD resistance were known. Thus, development of an inexpensive and humane method of challenging animals with BRD to determine resistance would be an

  3. Effect of insulin-like growth factor-1 during in vitro oocyte maturation and in vitro culture of bovine embryos

    OpenAIRE

    Quetglas M.D.; Coelho L.A.; Garcia J.M.; Oliveira Filho E.B.; Esper C.R.

    2001-01-01

    The effects of insulin-like growth factor-I (IGF-I) on in vitro maturation (IVM) (experiment I) and on in vitro embryo development (experiment II) of bovine oocytes fertilized in vitro, were evaluated in terms of cleavage (CR), blastocyst (BR) and hatching (HR) rates. For IVM, immature cumulus-oocyte complexes were cultured in TCM-199 medium supplemented with Hepes, sodium bicarbonate, sodium pyruvate, additives, fetal calf serum (B-199 medium) and gonadotropins (14 U/ml PMSG and 7 U/ml hCG)....

  4. Mitochondrial cytopathies.

    Science.gov (United States)

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-09-01

    Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise. PMID:26996063

  5. Early Stress History Alters Serum Insulin-Like Growth Factor-1 and Impairs Muscle Mitochondrial Function in Adult Male Rats.

    Science.gov (United States)

    Ghosh, S; Banerjee, K K; Vaidya, V A; Kolthur-Seetharam, U

    2016-09-01

    Early-life adversity is associated with an enhanced risk for adult psychopathology. Psychiatric disorders such as depression exhibit comorbidity for metabolic dysfunction, including obesity and diabetes. However, it is poorly understood whether, besides altering anxiety and depression-like behaviour, early stress also evokes dysregulation of metabolic pathways and enhances vulnerability for metabolic disorders. We used the rodent model of the early stress of maternal separation (ES) to examine the effects of early stress on serum metabolites, insulin-like growth factor (IGF)-1 signalling, and muscle mitochondrial content. Adult ES animals exhibited dyslipidaemia, decreased serum IGF1 levels, increased expression of liver IGF binding proteins, and a decline in the expression of specific metabolic genes in the liver and muscle, including Pck1, Lpl, Pdk4 and Hmox1. These changes occurred in the absence of alterations in body weight, food intake, glucose tolerance, insulin tolerance or insulin levels. ES animals also exhibited a decline in markers of muscle mitochondrial content, such as mitochondrial DNA levels and expression of TFAM (transcription factor A, mitochondrial). Furthermore, the expression of several genes involved in mitochondrial function, such as Ppargc1a, Nrf1, Tfam, Cat, Sesn3 and Ucp3, was reduced in skeletal muscle. Adult-onset chronic unpredictable stress resulted in overlapping and distinct consequences from ES, including increased circulating triglyceride levels, and a decline in the expression of specific metabolic genes in the liver and muscle, with no change in the expression of genes involved in muscle mitochondrial function. Taken together, our results indicate that a history of early adversity can evoke persistent changes in circulating IGF-1 and muscle mitochondrial function and content, which could serve to enhance predisposition for metabolic dysfunction in adulthood. PMID:27196416

  6. Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding

    OpenAIRE

    Weyers, Amanda; Yang, Bo; Solakyildirim, Kemal; Yee, Vienna; Li, Lingyun; Zhang, Fuming; Linhardt, Robert

    2013-01-01

    Keratan sulfate (KS) is an important glycosaminoglycan that is found in cartilage, reproductive, and neural tissues. Corneal KS glycosaminoglycan is found N-linked to lumican, keratocan, and mimecan proteoglycans and has been widely studied by investigators interested in corneal development and diseases. Recently, the availability of corneal KS has become severely limited due to restricted the shipment of bovine central nervous system by-products across international borders in efforts to pre...

  7. Risk factors for bovine tuberculosis in low incidence regions related to the movements of cattle

    OpenAIRE

    Gates, M Carolyn; Volkova, Victoriya V.; Woolhouse, Mark EJ

    2013-01-01

    BackgroundBovine tuberculosis (bTB) remains difficult to eradicate from low incidence regions partly due to the imperfect sensitivity and specificity of routine intradermal tuberculin testing. Herds with unconfirmed reactors that are incorrectly classified as bTB-negative may be at risk of spreading disease, while those that are incorrectly classified as bTB-positive may be subject to costly disease eradication measures. This analysis used data from Scotland in the period leading to Officiall...

  8. Risk factors for bovine tuberculosis in low incidence regions related to the movements of cattle

    OpenAIRE

    Gates, M Carolyn; Volkova, Victoriya V.; Woolhouse, Mark EJ

    2013-01-01

    Background Bovine tuberculosis (bTB) remains difficult to eradicate from low incidence regions partly due to the imperfect sensitivity and specificity of routine intradermal tuberculin testing. Herds with unconfirmed reactors that are incorrectly classified as bTB-negative may be at risk of spreading disease, while those that are incorrectly classified as bTB-positive may be subject to costly disease eradication measures. This analysis used data from Scotland in the period leading to Official...

  9. Finding biomarkers in non-model species: literature mining of transcription factors involved in bovine embryo development

    Directory of Open Access Journals (Sweden)

    Turenne Nicolas

    2012-08-01

    Full Text Available Abstract Background Since processes in well-known model organisms have specific features different from those in Bos taurus, the organism under study, a good way to describe gene regulation in ruminant embryos would be a species-specific consideration of closely related species to cattle, sheep and pig. However, as highlighted by a recent report, gene dictionaries in pig are smaller than in cattle, bringing a risk to reduce the gene resources to be mined (and so for sheep dictionaries. Bioinformatics approaches that allow an integration of available information on gene function in model organisms, taking into account their specificity, are thus needed. Besides these closely related and biologically relevant species, there is indeed much more knowledge of (i trophoblast proliferation and differentiation or (ii embryogenesis in human and mouse species, which provides opportunities for reconstructing proliferation and/or differentiation processes in other mammalian embryos, including ruminants. The necessary knowledge can be obtained partly from (i stem cell or cancer research to supply useful information on molecular agents or molecular interactions at work in cell proliferation and (ii mouse embryogenesis to supply useful information on embryo differentiation. However, the total number of publications for all these topics and species is great and their manual processing would be tedious and time consuming. This is why we used text mining for automated text analysis and automated knowledge extraction. To evaluate the quality of this “mining”, we took advantage of studies that reported gene expression profiles during the elongation of bovine embryos and defined a list of transcription factors (or TF, n = 64 that we used as biological “gold standard”. When successful, the “mining” approach would identify them all, as well as novel ones. Methods To gain knowledge on molecular-genetic regulations in a non model organism, we offer an

  10. Exenatide Reduces Tumor Necrosis Factor-α-induced Apoptosis in Cardiomyocytes by Alleviating Mitochondrial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Cao; Zhang-Wei Chen; Yan-Hua Gao; Xing-Xu Wang; Jian-Ying Ma; Shu-Fu Chang; Ju-Ying Qian

    2015-01-01

    Background: Tumor necrosis factor-α (TNF-α) plays an important role in progressive contractile dysfunction in several cardiac diseases.The cytotoxic effects of TNF-α are suggested to be partly mediated by reactive oxygen species (ROS)-and mitochondria-dependent apoptosis.Glucagon-like peptide-1 (GLP-1) or its analogue exhibits protective effects on the cardiovascular system.The objective of the study was to assess the effects of exenatide, a GLP-1 analogue, on oxidative stress, and apoptosis in TNF-c-treated cardiomyocytes in vitro.Methods: Isolated neonatal rat cardiomyocytes were divided into three groups: Control group, with cells cultured in normal conditions without intervention;TNF-α group, with cells incubated with TNF-c (40 ng/ml) for 6, 12, or 24 h without pretreatment with exenatide;and exenatide group, with cells pretreated with exenatide (100 nmol/L) 30 mins before TNF-α (40 ng/ml) stimulation.We evaluated apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry, measured ROS production and mitochondrial membrane potential (MMP) by specific the fluorescent probes, and assessed the levels of proteins by Western blotting for all the groups.Results: Exenatide pretreatment significantly reduced cardiomyocyte apoptosis as measured by flow cytometry and TUNEL assay at 12 h and 24 h.Also, exenatide inhibited excessive ROS production and maintained MMP.Furthermore, declined cytochrome-c release and cleaved caspase-3 expression and increased bcl-2 expression with concomitantly decreased Bax activation were observed in exenatide-pretreated cultures.Conclusion: These results suggested that exenatide exerts a protective effect on cardiomyocytes, preventing TNF-α-induced apoptosis;the anti-apoptotic effects may be associated with protection of mitochondrial function.

  11. Haplogroup T Is an Obesity Risk Factor: Mitochondrial DNA Haplotyping in a Morbid Obese Population from Southern Italy

    Directory of Open Access Journals (Sweden)

    Carmela Nardelli

    2013-01-01

    Full Text Available Mitochondrial DNA (mtDNA haplogroups have been associated with the expression of mitochondrial-related diseases and with metabolic alterations, but their role has not yet been investigated in morbid obese Caucasian subjects. Therefore, we investigated the association between mitochondrial haplogroups and morbid obesity in patients from southern Italy. The mtDNA D-loop of morbid obese patients (n=500; BMI > 40 kg/m2 and controls (n=216; BMI 45 kg/m2 and in fact together account for 8% of the BMI. In conclusion, our finding that haplogroup T increases the risk of obesity by about two-fold, suggests that, besides nuclear genome variations and environmental factors, the T haplogroup plays a role in morbid obesity in our study population from southern Italy.

  12. The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: II. Comparison of the proposed working hypothesis with literature data.

    NARCIS (Netherlands)

    S.P.J. Albracht

    2010-01-01

    The first purification of bovine NADH:ubiquinone oxidoreductase (Complex I) was reported nearly half a century ago (Hatefi et al. J Biol Chem 237:1676-1680, 1962). The pathway of electron-transfer through the enzyme is still under debate. A major obstacle is the assignment of EPR signals to the indi

  13. Rol de la mitocondria y el estrés oxidativo en el bloqueo del desarrollo de embriones bovinos producidos in vitro Mitochondrial rol and oxidative stress in the developmental blockade of in vitro produced bovine embryos

    Directory of Open Access Journals (Sweden)

    AM Tarazona

    2010-01-01

    Full Text Available Uno de los mayores obstáculos en la producción de embriones in vitro con fines de investigación básica, comerciales, o de conservación, es el detenimiento temprano del clivaje que ocurre de forma específica en una etapa del desarrollo. Para explicar este fenómeno se han postulado diferentes factores causales como: desórdenes en la cromatina, rearreglos del citoesqueleto, estrés oxidativo y daños mitocondriales. Esta última propuesta ha recibido gran atención, debido a que la mitocondria es fuente de especies reactivas de oxígeno (EROs y el estrés oxidativo es un mediador crítico de procesos fisiológicos y estados patológicos. Durante los últimos años se ha demostrado que el peróxido de hidrógeno (H2O2 es una molécula pivotante capaz de desencadenar muerte celular por diferentes mecanismos que pueden involucrar o no a los factores de transcripción: NFκB - p53, y es ejecutado por caspasas efectoras. Se cree que la mitocondria podría estar jugando un papel importante como productora o como blanco del H2O2, y como mediadora en la muerte por apoptosis de los embriones. El objetivo de esta revisión es mostrar el estado del arte en cuanto a la apoptosis desencadenada por estrés oxidativo y mediada por la mitocondria en los embriones bovinos producidos in vitro, como parte de la explicación del bloqueo del clivaje y la baja eficiencia que aún se tiene en este proceso.One of the biggest obstacles in the in vitro embryo production for basic research, commercial purposes, or conservation, is the blockade of the early cleavage, which occurs on a species-specific manner in a particular stage of development. To explain this phenomenon some causative factors have been postulated such as: disturbances in chromatin, cytoskeleton rearrangement, oxidative stress and mitochondrial damage. The latter has received considerable attention because mitochondrion is a source of reactive oxygen species (ROS, and oxidative stress is a critical

  14. Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management.

    Science.gov (United States)

    Kidd, Parris M

    2005-12-01

    Degenerative brain disorders (neurodegeneration) can be frustrating for both conventional and alternative practitioners. A more comprehensive, integrative approach is urgently needed. One emerging focus for intervention is brain energetics. Specifically, mitochondrial insufficiency contributes to the etiopathology of many such disorders. Electron leakages inherent to mitochondrial energetics generate reactive oxygen free radical species that may place the ultimate limit on lifespan. Exogenous toxins, such as mercury and other environmental contaminants, exacerbate mitochondrial electron leakage, hastening their demise and that of their host cells. Studies of the brain in Alzheimer's and other dementias, Down syndrome, stroke, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, Friedreich's ataxia, aging, and constitutive disorders demonstrate impairments of the mitochondrial citric acid cycle and oxidative phosphorylation (OXPHOS) enzymes. Imaging or metabolic assays frequently reveal energetic insufficiency and depleted energy reserve in brain tissue in situ. Orthomolecular nutrients involved in mitochondrial metabolism provide clinical benefit. Among these are the essential minerals and the B vitamin group; vitamins E and K; and the antioxidant and energetic cofactors alpha-lipoic acid (ALA), ubiquinone (coenzyme Q10; CoQ10), and nicotinamide adenine dinucleotide, reduced (NADH). Recent advances in the area of stem cells and growth factors encourage optimism regarding brain regeneration. The trophic nutrients acetyl L-carnitine (ALCAR), glycerophosphocholine (GPC), and phosphatidylserine (PS) provide mitochondrial support and conserve growth factor receptors; all three improved cognition in double-blind trials. The omega-3 fatty acid docosahexaenoic acid (DHA) is enzymatically combined with GPC and PS to form membrane phospholipids for nerve cell expansion. Practical recommendations are presented for integrating these

  15. Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis

    OpenAIRE

    Alper Ciftci; Arzu Findik; Ertan Emek Onuk; Serap Savasan

    2009-01-01

    This study aimed to detect methicillin resistant and slime producing Staphylococcus aureus in cases of bovine mastitis. A triplex PCR was optimized targetting 16S rRNA, nuc and mecA genes for detection of Staphylococcus species, S. aureus and methicillin resistance, respectively. Furthermore, for detection of slime producing strains, a PCR assay targetting icaA and icaD genes was performed. In this study, 59 strains were detected as S. aureus by both conventional tests and PCR, and 13 of them...

  16. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    Science.gov (United States)

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  17. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of); Hwang, Sung-Chul [Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Seong Hwang, Eun [Department of Life Science, University of Seoul, Seoul 130-743 (Korea, Republic of); Yoon, Gyesoon, E-mail: ypeace@ajou.ac.kr [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of)

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  18. Molecular epidemiology of bovine tuberculosis in wild animals in Spain: a first approach to risk factor analysis.

    Science.gov (United States)

    Parra, A; Larrasa, J; García, A; Alonso, J M; de Mendoza, J Hermoso

    2005-10-31

    In human tuberculosis (Mycobacterium tuberculosis), molecular epidemiology has accurately indicated the risk factors involved in active transmission of the disease, by comparing individuals whose isolates belong to a cluster with patients whose strains are considered unique. Nevertheless, this application has not been used in bovine tuberculosis (Mycobacterium bovis). Our study describes the integration of epidemiological data into molecular classification data on M. bovis isolates. These were isolated from wild ungulates in Extremadura (western Spain) with the objective of detecting the risk factors linked to the association of strains in clades, which are indicators of the active spread of the disease. The molecular markers used were spoligotyping + VNTR typing (loci: VNTR 2165, VNTR 2461, VNTR 0577, VNTR 0580, VNTR 3192 VNTR 2163a and VNTR 2163b) on a population of 59 M. bovis strains isolated from deer (Cervus elaphus), 112 from wild boar (Sus scrofa), six from bovines, 28 from pigs and 2 from goats (n=207). Epidemiological variables included the animal species from which the strain was isolated, pathological condition of the host (incipient lesion, early and late generalisation), date of sampling (during or after the reproductive period) and hunting season. Bivariant analysis was used to establish the risk factors connected to the association of strains and later, the variables were evaluated by means of logistic regression. Molecular typing grouped a total of 131 strains (64.21%) in 28 clusters and 76 isolates shows unique profiles. The association of strains was connected to the appearance of macroscopic lesions during the reproductive period (O.R. 4.80; 95% CI 1.09-22.99, PActive spread was not connected to any species in particular, or to any concrete pathological condition. PMID:16143470

  19. α-transforming growth factor secreted by untransformed bovine anterior pituitary cells in culture. I. Purification from conditioned medium

    International Nuclear Information System (INIS)

    A 6-kDa α-transforming growth factor (TGF) was purified 100,000-fold to homogeneity from the culture fluid conditioned by normal bovine anterior pituitary-derived cells. Initial purification of the acid-soluble TGF from concentrated conditioned medium was achieved by Bio-Gel P-60 gel filtration (apparent molecular mass of 9 kDa). After the Bio-Gel step, three different steps of reverse-phase fast-protein liquid chromatography on the same Pharmacia C18 column, using linear acetonitrile gradients, gave complete purification. The ion-pairing agents used in the three consecutive steps were: 0.1% trifluoroacetic acid, 0.13% heptafluorobutyric acid, and again, 0.1% trifluoroacetic acid at a shallower gradient. Homogeneity was confirmed by reverse-phase high performance liquid chromatography, and by polyacrylamide gel electrophoresis, where TGF visualization was facilitated by autoradiography of 125I-TGF. The 125I-TGF bound to epidermal growth factor (EGF) receptors and after elution ran identically to the starting material. The molecular mass of TGF is 6 kDa by polyacrylamide gel electrophoresis and 6.6 kDa by amino acid analysis. The amino acid composition of bovine TGF is similar to that of rat or human αTGF and distinct from epidermal growth factor. Colony-stimulating activity was lost after purification, but the TGF retained its ability to stimulate thymidine uptake by quiescent cells. This mitogenic activity could be blocked completely by anti-EGF-receptor monoclonal antibodies, indicating that the activity was mediated through the EGF-receptor

  20. A novel role for nuclear factor-erythroid 2 in erythroid maturation by modulation of mitochondrial autophagy.

    Science.gov (United States)

    Gothwal, Monika; Wehrle, Julius; Aumann, Konrad; Zimmermann, Vanessa; Gründer, Albert; Pahl, Heike L

    2016-09-01

    We have recently demonstrated that the transcription factor nuclear factor-erythroid 2, which is critical for erythroid maturation and globin gene expression, plays an important role in the pathophysiology of myeloproliferative neoplasms. Myeloproliferative neoplasm patients display elevated levels of nuclear factor-erythroid 2 and transgenic mice overexpressing the transcription factor develop myeloproliferative neoplasm, albeit, surprisingly without erythrocytosis. Nuclear factor-erythroid 2 transgenic mice show both a reticulocytosis and a concomitant increase in iron deposits in the spleen, suggesting both enhanced erythrocyte production and increased red blood cell destruction. We therefore hypothesized that elevated nuclear factor-erythroid 2 levels may lead to increased erythrocyte destruction by interfering with organelle clearance during erythroid maturation. We have previously shown that nuclear factor-erythroid 2 overexpression delays erythroid maturation of human hematopoietic stem cells. Here we report that increased nuclear factor-erythroid 2 levels also impede murine maturation by retarding mitochondrial depolarization and delaying mitochondrial elimination. In addition, ribosome autophagy is delayed in transgenics. We demonstrate that the autophagy genes NIX and ULK1 are direct novel nuclear factor-erythroid 2 target genes, as these loci are bound by nuclear factor-erythroid 2 in chromatin immunoprecipitation assays. Moreover, Nix and Ulk1 expression is increased in transgenic mice and in granulocytes from polycythemia vera patients. This is the first report implying a role for nuclear factor-erythroid 2 in erythroid maturation by affecting autophagy. PMID:27479815

  1. The neurogenic basic helix–loop–helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Kristin Kathleen Baxter

    2009-09-01

    Full Text Available Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.

  2. Occurrence and factors associated with bovine cysticercosis recorded in cattle at meat inspection in Denmark in 2004-2011.

    Science.gov (United States)

    Calvo-Artavia, F F; Nielsen, L R; Dahl, J; Clausen, D M; Alban, L

    2013-06-01

    Current EU regulation requires that every bovine carcass is examined for bovine cysticercosis (BC) at meat inspection. This is costly and might be superfluous at low BC prevalence. However, from a consumer view-point it may be important to identify and manage infected carcasses to avoid human infection. If relevant data could be effectively used to classify animals with respect to their risk of being infected, then the current meat inspection could be replaced by a more cost-effective system targeting high-risk animals. This study aimed to (1) describe the distribution of BC cases in the Danish cattle population, (2) estimate the animal level prevalence (3) provide descriptive statistics of potential risk factors for BC, and (4) determine attributable risks and fractions of selected risk factors potentially useful for a future risk-based meat inspection system. In total, 348 cases of BC were recorded among all cattle slaughtered (n=4,090,661) in Denmark between 2004 and 2011. The true animal level prevalence of BC was estimated to be 0.06%. The herd of origin of the cases were defined as the herd in which the animals spent most of their lifetimes. The detected cases were found to originate from 328 herds, with a maximum of two cases per herd indicating sporadic occurrence. Even though organic farming was associated with a higher risk (RR=1.9 in univariable analysis) of BC-positive animals being detected at slaughter, the population attributable fraction showed that only 5% of the animals with BC could be attributed to organic farming practices at the level of organic farming practiced in Denmark in the study period. Thus, organic farming status was not a suitable risk factor to use to target future risk-based meat inspection. However, 54% of the animals with BC in the cattle population were attributed to female gender. Increasing age at slaughter was also associated with high risk of BC. There may be overlaps between these effects in animals with multiple risk

  3. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    Science.gov (United States)

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. PMID:27339203

  4. The Transcription Factor E4F1 Coordinates CHK1-Dependent Checkpoint and Mitochondrial Functions

    Directory of Open Access Journals (Sweden)

    Geneviève Rodier

    2015-04-01

    Full Text Available Recent data support the notion that a group of key transcriptional regulators involved in tumorigenesis, including MYC, p53, E2F1, and BMI1, share an intriguing capacity to simultaneously regulate metabolism and cell cycle. Here, we show that another factor, the multifunctional protein E4F1, directly controls genes involved in mitochondria functions and cell-cycle checkpoints, including Chek1, a major component of the DNA damage response. Coordination of these cellular functions by E4F1 appears essential for the survival of p53-deficient transformed cells. Acute inactivation of E4F1 in these cells results in CHK1-dependent checkpoint deficiency and multiple mitochondrial dysfunctions that lead to increased ROS production, energy stress, and inhibition of de novo pyrimidine synthesis. This deadly cocktail leads to the accumulation of uncompensated oxidative damage to proteins and extensive DNA damage, ending in cell death. This supports the rationale of therapeutic strategies simultaneously targeting mitochondria and CHK1 for selective killing of p53-deficient cancer cells.

  5. The transcription factor E4F1 coordinates CHK1-dependent checkpoint and mitochondrial functions.

    Science.gov (United States)

    Rodier, Geneviève; Kirsh, Olivier; Baraibar, Martín; Houlès, Thibault; Lacroix, Matthieu; Delpech, Hélène; Hatchi, Elodie; Arnould, Stéphanie; Severac, Dany; Dubois, Emeric; Caramel, Julie; Julien, Eric; Friguet, Bertrand; Le Cam, Laurent; Sardet, Claude

    2015-04-14

    Recent data support the notion that a group of key transcriptional regulators involved in tumorigenesis, including MYC, p53, E2F1, and BMI1, share an intriguing capacity to simultaneously regulate metabolism and cell cycle. Here, we show that another factor, the multifunctional protein E4F1, directly controls genes involved in mitochondria functions and cell-cycle checkpoints, including Chek1, a major component of the DNA damage response. Coordination of these cellular functions by E4F1 appears essential for the survival of p53-deficient transformed cells. Acute inactivation of E4F1 in these cells results in CHK1-dependent checkpoint deficiency and multiple mitochondrial dysfunctions that lead to increased ROS production, energy stress, and inhibition of de novo pyrimidine synthesis. This deadly cocktail leads to the accumulation of uncompensated oxidative damage to proteins and extensive DNA damage, ending in cell death. This supports the rationale of therapeutic strategies simultaneously targeting mitochondria and CHK1 for selective killing of p53-deficient cancer cells.

  6. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014.

    Science.gov (United States)

    Ohno, Ayumu; Takeshima, Shin-nosuke; Matsumoto, Yuki; Aida, Yoko

    2015-12-01

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma. BLV has spread worldwide and causes serious problems. After infection, the BLV genome is integrated into the host DNA and can be amplified during periods of latency. We previously designed degenerate primers using the Coordination of Common Motifs (CoCoMo) algorithm to establish a new quantitative real-time PCR method (BLV-CoCoMo-qPCR-2) of measuring the proviral load of both known and novel BLV variants. Here, we aimed to examine the correlation between proviral load and risk factors for BLV infection, such as breeding systems, parousity, and colostrum feeding. Blood and serum samples were collected from 83 BLV-positive farms in 22 prefectures of Japan, and the BLV proviral load and anti-BLV antibody levels were measured. BLV was detected in 73.3% (1039/1,417) of cattle by BLV-CoCoMo-qPCR-2 and the provirus was detected in 93 of 1039 antibody-negative samples. The results showed that the proviral load increased with progression of lymphocytosis. Next, the risk factors associated with increasing BLV infection rate were examined along with any association with proviral load. The proviral load was higher in cattle with lymphocytosis than in healthy cattle, and higher in multiparous cows than in nulliparous cows. Finally, proviral loads were higher in contact breeding systems than in non-contact breeding systems. Taken together, these findings may help to formulate a plan for eliminating BLV from contaminated farms. This is the first nationwide study to estimate BLV proviral load in Japanese cattle.

  7. The human mitochondrial ribosome recycling factor is essential for cell viability.

    NARCIS (Netherlands)

    Rorbach, J.; Richter, R.; Wessels, H.J.; Wydro, M.; Pekalski, M.; Farhoud, M.; Kuhl, I.; Gaisne, M.; Bonnefoy, N.; Smeitink, J.A.M.; Lightowlers, R.N.; Chrzanowska-Lightowlers, Z.M.

    2008-01-01

    The molecular mechanism of human mitochondrial translation has yet to be fully described. We are particularly interested in understanding the process of translational termination and ribosome recycling in the mitochondrion. Several candidates have been implicated, for which subcellular localization

  8. Expression and Methylation of Mitochondrial Transcription Factor A in Chronic Obstructive Pulmonary Disease Patients with Lung Cancer

    OpenAIRE

    Hong Peng; Min Yang; Zhi-yong Chen; Ping Chen; Cha-xiang Guan; Xu-dong Xiang; Shan Cai; Yan Chen; Xiang Fang

    2013-01-01

    BACKGROUND: Apoptosis plays a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD), and this process can be regulated by mitochondrial transcription factor A (mtTFA). Epigenetics is involved in the regulation and modification of the genes involved in lung cancer and COPD. In this study, we determined the expression of mtTFA and its methylation levels in the COPD patients with lung cancer. METHODS: Twenty-one squamous cell lung cancer patients, 11 with COPD and 10 w...

  9. Additional cytosine inside mitochondrial C-tract D-loop as a progression risk factor in oral precancer cases

    Science.gov (United States)

    Pandey, Rahul; Mehrotra, Divya; Mahdi, Abbas Ali; Sarin, Rajiv; Kowtal, Pradnya

    2014-01-01

    Introduction Alterations inside Polycytosine tract (C-tract) of mitochondrial DNA (mtDNA) have been described in many different tumor types. The Poly-Cytosine region is located within the mtDNA D-loop region which acts as point of mitochondrial replication origin. A suggested pathogenesis is that it interferes with the replication process of mtDNA which in turn affects the mitochondrial functioning and generates disease. Methodology 100 premalignant cases (50 leukoplakia & 50 oral submucous fibrosis) were selected and the mitochondrial DNA were isolated from the lesion tissues and from the blood samples. Polycytosine tract in mtDNA was sequenced by direct capillary sequencing. Results 40 (25 leukoplakia & 15 oral submucous fibrosis) patients harbored lesions that displayed one additional cytosine after nucleotide thymidine (7CT6C) at nt position 316 in C-tract of mtDNA which were absent in corresponding mtDNA derived from blood samples. Conclusion Our results show an additional cytosine in the mtDNA at polycytosine site in oral precancer cases. It is postulated that any increase/decrease in the number of cytosine residues in the Poly-Cytosine region may affect the rate of mtDNA replication by impairing the binding of polymerase and other transacting factors. By promoting mitochondrial genomic instability, it may have a central role in the dysregulation of mtDNA functioning, for example alterations in energy metabolism that may promote tumor development. We, therefore, report and propose that this alteration may represent the early development of oral cancer. Further studies with large number of samples are needed in to confirm the role of such mutation in carcinogenesis. PMID:25737911

  10. Effects of green tea polyphenols, insulin-like growth factor I and glucose on developmental competence of bovine oocytes

    Directory of Open Access Journals (Sweden)

    Zhengguang Wang

    2012-12-01

    Full Text Available The present study examined the effects of green tea polyphenols (GTP, insulin-like growth factor-I (IGF-I and glucose on oocyte in vitro maturation, subsequent embryo development and blastocyst quality in bovine. Cumulus-oocyte complexes (COC were aspirated from the ovaries and cultured in synthetic oviduct fluid supplemented with MEM amino acids (SOFaa media supplemented with one of the following supplements: GTP (0, 10, 15 and 20 µM, IGF-I (0, 50, 100 and 150 ng/mL or glucose (0, 1.5, 5.6 and 20 mM for 24 h. The results showed that oocytes cultured in media supplemented with 15 µM GTP, 100 ng/mL IGF-I and 5.6 mM glucose, in separate experiments, have higher cleavage and blastocyst rates compared with oocytes cultured in media without or with other concentration of GTP, IGF-I and glucose. Then these three substances with the concentration above were added together into SOFaa media and constituted a modified medium (Modified SOFaa. The COC were cultured in control SOFaa media and modified SOFaa media, respectively. The results showed that modified SOFaa media increased the intracellular glutathione concentration of matured oocytes, blastocyst rates and total cell numbers and cell numbers of inner cell mass per blastocyst compared with the control. Supplementing of GTP, IGF-I and glucose synchronously to maturation media can increase the intracellular GSH concentration of oocytes after in vitro maturation, and improve the embryo development and blastocyst quality in bovine.

  11. Prevalence and risk factor's analysis of bovine brucellosis in peri-urban areas under intensive system of production in Gujarat, India

    Directory of Open Access Journals (Sweden)

    M. D. Patel

    2014-07-01

    Full Text Available Aim: A study on surveillance of bovine brucellosis in dairy herds of peri-urban areas under intensive system of production was carried out by milk-ELISA. Various risk factors were identified having significant association with occurrence of bovine brucellosis in dairy herds of peri-urban areas. Materials and Methods: Five randomly selected peri-uban areas of six cities of Gujarat were included in the present study. Five randomly selected dairy herds under intensive system of production from each selected peri-urban area were included for further investigation. In total, 199 bulk and 582 individual milk samples were screened by milk-ELISA. Forty three different risk factors were identified and grouped into four major categories as general characteristics of farms, introduction of infection to farms, management systems of farms and exposure of disease. Further, their distribution and association with prevalence of bovine brucellosis was studied. Results: The overall herd and animal prevalence in peri-urban areas was 33.70 and 11.90%, respectively. Out of 11 risk factors on general characteristics of dairy farms, only five (herd size, type of animals, type of breed, age of owner and knowledge gained by owners showed significant (p<0.05 association with occurrence of bovine brucellosis. None of risk factors on introduction of infection to farms (n=6 and management systems of farms (n=11 was found significantly associated with occurrence of brucellosis. Among risk factors on exposure of disease (n=15, history of abortion, retention of placenta, still birth and metritis/endometritis showed significant (p<0.05 association with prevalence of bovine brucellosis. Conclusion: It was concluded that prevalence of bovine brucellosis in dairy herds under intensive system of production in peri-urban areas of Gujarat was comparatively higher than reported overall prevalence of brucellosis. Risk factors like larger herd in close confinement without adequate sheds

  12. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    Science.gov (United States)

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  13. Risk factors for visible lesions or positive laboratory tests in bovine tuberculosis reactor cattle in Northern Ireland.

    Science.gov (United States)

    O'Hagan, M J H; Courcier, E A; Drewe, J A; Gordon, A W; McNair, J; Abernethy, D A

    2015-07-01

    An observational case-control study was conducted to investigate risk factors for confirmed bovine tuberculosis (bTB) infection in cattle reacting positively to the single intradermal comparative cervical test (SICCT) in Northern Ireland in the years 1998, 2002 and 2006. Macroscopic lesions were detected at slaughter (positive visible lesion (VL) status) in 43.0% of reactor cattle, whilst 45.3% of those sampled were confirmed as bTB positive due to the presence of lesions or positive histopathology/mycobacterial culture (positive bTB status). In 97.5% of the reactors, the VL status and bTB status were either both negative or both positive. Generalized linear mixed model analyses were conducted on data of 24,923 reactor cattle with the variables herd identifier, local veterinary office (DVO) and abattoir being used as random effects within all the models generated at univariable and multivariable level. The other variables within the dataset were used as fixed effects. Significant risk factors associated with VL status and bTB status at multivariable level (pinjection site, epidemiological status of skin test, total number of reactors at the disclosure test, mean herd size and prior response to the skin test. These risk factors are likely related to the time since infection, the strength of the challenge of infection and the susceptibility of the animal. These findings are important as the detection of visible lesions and the confirmation of bTB are an integral part of the overall bTB control programme in Northern Ireland and the veterinary meat inspection and hygiene programme. The visible lesion status and bTB status of an animal can affect the way in which bTB breakdowns are managed, since failure to detect visible lesions and recovery of Mycobacterium bovis can lead to a less stringent follow-up after other risk factors have been taken into account. PMID:25957973

  14. Risk factors for visible lesions or positive laboratory tests in bovine tuberculosis reactor cattle in Northern Ireland.

    Science.gov (United States)

    O'Hagan, M J H; Courcier, E A; Drewe, J A; Gordon, A W; McNair, J; Abernethy, D A

    2015-07-01

    An observational case-control study was conducted to investigate risk factors for confirmed bovine tuberculosis (bTB) infection in cattle reacting positively to the single intradermal comparative cervical test (SICCT) in Northern Ireland in the years 1998, 2002 and 2006. Macroscopic lesions were detected at slaughter (positive visible lesion (VL) status) in 43.0% of reactor cattle, whilst 45.3% of those sampled were confirmed as bTB positive due to the presence of lesions or positive histopathology/mycobacterial culture (positive bTB status). In 97.5% of the reactors, the VL status and bTB status were either both negative or both positive. Generalized linear mixed model analyses were conducted on data of 24,923 reactor cattle with the variables herd identifier, local veterinary office (DVO) and abattoir being used as random effects within all the models generated at univariable and multivariable level. The other variables within the dataset were used as fixed effects. Significant risk factors associated with VL status and bTB status at multivariable level (pbovine tuberculin injection site, epidemiological status of skin test, total number of reactors at the disclosure test, mean herd size and prior response to the skin test. These risk factors are likely related to the time since infection, the strength of the challenge of infection and the susceptibility of the animal. These findings are important as the detection of visible lesions and the confirmation of bTB are an integral part of the overall bTB control programme in Northern Ireland and the veterinary meat inspection and hygiene programme. The visible lesion status and bTB status of an animal can affect the way in which bTB breakdowns are managed, since failure to detect visible lesions and recovery of Mycobacterium bovis can lead to a less stringent follow-up after other risk factors have been taken into account.

  15. Sero-positivity and associated risk factors for contagious bovine pleuropneumonia under two cattle production systems in North Central Nigeria.

    Science.gov (United States)

    Alhaji, Nma Bida; Babalobi, Olutayo Olajide

    2016-02-01

    A cross-sectional survey of 765 cattle in 125 nomadic and 375 cattle in 125 sedentary herds was conducted to investigate prevalence and risk factors for contagious bovine pleuropneumonia (CBPP) in the two production systems of Niger State in North Central Nigeria, between January and August 2013. Data on herd characteristics were collected using structured questionnaires administered on herd owners. Serological analysis was conducted using competitive enzyme linked immunosorbent assay (c-ELISA) test. Descriptive, univariate, and multivariate statistical analyses were conducted with OpenEpi version 2.3.1 software. Statistical significance was held at P cattle was 16.2 % (confidence interval (CI) 13.7-19.0) and 9.6 % (CI 6.9-12.9) in sedentary cattle. The overall cattle-level sero-prevalence for two the cattle production systems was 14.0 % (CI 12.1-16.1). Age and agro-ecological zones were significantly (P cattle factors were detected in sedentary production. Factors significantly associated with CBPP occurrence at herd-level were contacts with other herds during grazing (P cattle into herd (P cattle gifts and dowry payment (P cattle and small ruminants together (P < 0.001), and long trekking during migrations (P = 0.0009). This study had shown the burden of CBPP in the two production systems. Sero-diagnosis and risk factor identification should be institutionalized as elements of epidemio-surveillance and control strategies for CBPP, especially in resource-poor pastoralists' settlements in Nigeria.

  16. Crystal Structure of the Bovine lactadherin C2 Domain, a Membrane Binding Motif, Shows Similarity of the C2 Domains of Factor V and Factor VIII

    Energy Technology Data Exchange (ETDEWEB)

    Lin,L.; Huai, Q.; Huang, M.; Furie, B.; Furie, B.

    2007-01-01

    Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 Angstroms. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C? atoms of 0.9 Angstroms and 1.2 Angstroms, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two ?-sheets of five and three antiparallel ?-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One ?-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain ?-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.

  17. Crystal Structure of the Bovine lactadherin C2 Domain, a Membrane Binding Motif, Shows Similarity to the C2 Domains of Factor V and Factor VIII

    Energy Technology Data Exchange (ETDEWEB)

    Lin,L.

    2007-01-01

    Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 {angstrom}. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C{sub {alpha}} atoms of 0.9 {angstrom} and 1.2 {angstrom}, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two {beta}-sheets of five and three antiparallel {beta}-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One {beta}-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain {beta}-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.

  18. α-transforming growth factor secreted by untransformed bovine anterior pituitary cells in culture. II. Identification using a sequence-specific monoclonal antibody

    International Nuclear Information System (INIS)

    Untransformed bovine anterior pituitary cells cultured in serum-free defined medium secrete an epidermal growth factor (EGF)-like peptide with an amino acid composition similar to rat or human α-transforming growth factor (αTGF). To further characterize the bovine pituitary αTGF, it was compared to a human αTGF partially purified from the conditioned medium of a human melanoma cell line. An anti-αTGF monoclonal antibody, MF9, was produced from hybridomas derived from mice immunized with a 17-residue synthetic peptide corresponding to the carboxyl-terminal sequence of rat αTGF. The hybridoma supernatants were initially screened for the ability to immunoprecipitate 125I-peptide and then tested for recognition of human αTGF. Only 2 of 36 antipeptide antibodies recognized the native αTGF. The binding of 125I-peptide to MF9 was displaced by human αTGF but not by EGF. Bovine pituitary αTGF also displaced the binding of 125I-peptide to MF9 in a similar manner to human αTGF. Both iodinated human and bovine pituitary αTGF were immunoprecipitated by MF9 whereas 125I-EGF was not. Tryptic digests of both 125I-αTGFs chromatographed to give a single, indistinguishable peak of iodinated material on a reverse-phase C18 high performance liquid chromatography column when eluted with two different solvent systems, suggesting the generation of a single and identical tyrosine-containing tryptic peptide from both αTGFs. The comparisons of the bovine pituitary and human melanoma αTGF using a sequence-specific monoclonal antibody and peptide mapping suggest that these αTGFs are related and that αTGF production is not limited to transformed or fetal sources

  19. Targeting and function of the mitochondrial fission factor GDAP1 are dependent on its tail-anchor.

    Directory of Open Access Journals (Sweden)

    Konstanze M Wagner

    Full Text Available Proteins controlling mitochondrial dynamics are often targeted to and anchored into the mitochondrial outer membrane (MOM by their carboxyl-terminal tail-anchor domain (TA. However, it is not known whether the TA modulates protein function. GDAP1 is a mitochondrial fission factor with two neighboring hydrophobic domains each flanked by basic amino acids (aa. Here we define GDAP1 as TA MOM protein. GDAP1 carries a single transmembrane domain (TMD that is, together with the adjacent basic aa, critical for MOM targeting. The flanking N-terminal region containing the other hydrophobic domain is located in the cytoplasm. TMD sequence, length, and high hydrophobicity do not influence GDAP1 fission function if MOM targeting is maintained. The basic aa bordering the TMD in the cytoplasm, however, are required for both targeting of GDAP1 as part of the TA and GDAP1-mediated fission. Thus, this GDAP1 region contains critical overlapping motifs defining intracellular targeting by the TA concomitant with functional aspects.

  20. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease.

  1. Mitochondrial-targeted antioxidant therapy decreases transforming growth factor-β-mediated collagen production in a murine asthma model.

    Science.gov (United States)

    Jaffer, Omar A; Carter, A Brent; Sanders, Philip N; Dibbern, Megan E; Winters, Christopher J; Murthy, Shubha; Ryan, Alan J; Rokita, Adam G; Prasad, Anand M; Zabner, Joseph; Kline, Joel N; Grumbach, Isabella M; Anderson, Mark E

    2015-01-01

    Asthma is a disease of acute and chronic inflammation in which cytokines play a critical role in orchestrating the allergic inflammatory response. IL-13 and transforming growth factor (TGF)-β promote fibrotic airway remodeling, a major contributor to disease severity. Improved understanding is needed, because current therapies are inadequate for suppressing development of airway fibrosis. IL-13 is known to stimulate respiratory epithelial cells to produce TGF-β, but the mechanism through which this occurs is unknown. Here, we tested the hypothesis that reactive oxygen species (ROS) are a critical signaling intermediary between IL-13 or allergen stimulation and TGF-β-dependent airway remodeling. We used cultured human bronchial epithelial cells and an in vivo mouse model of allergic asthma to map a pathway where allergens enhanced mitochondrial ROS, which is an essential upstream signal for TGF-β activation and enhanced collagen production and deposition in airway fibroblasts. We show that mitochondria in airway epithelium are an essential source of ROS that activate TGF-β expression and activity. TGF-β from airway epithelium stimulates collagen expression in fibroblasts, contributing to an early fibrotic response to allergen exposure in cultured human airway cells and in ovalbumin-challenged mice. Treatment with the mitochondrial-targeted antioxidant, (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mitoTEMPO), significantly attenuated mitochondrial ROS, TGF-β, and collagen deposition in OVA-challenged mice and in cultured human epithelial cells. Our findings suggest that mitochondria are a critical source of ROS for promoting TGF-β activity that contributes to airway remodeling in allergic asthma. Mitochondrial-targeted antioxidants may be a novel approach for future asthma therapies. PMID:24988374

  2. Udder quarter risk factors associated with prevalence of bovine clinical mastitis

    OpenAIRE

    Nakov Dimitar; Trajcev Metodija

    2012-01-01

    A cross sectional study was carried out to estimate prevalence of clinical mastitis on udder quarters level and to determinate the quarter risk factors associated with the development of clinical mastitis during lactation.The individual risk factors included assessments of parity, season of year when case of clinical mastitis was occurred, conformation characteristics of udder quarters and teats and distance from front and rear teat end to the floor. Cows with clinical mastitis were detected ...

  3. Risk factors for failure to detect bovine tuberculosis in cattle from infected herds across Northern Ireland (2004-2010).

    Science.gov (United States)

    Lahuerta-Marin, Angela; McNair, James; Skuce, Robin; McBride, Stewart; Allen, Michelle; Strain, Sam A J; Menzies, Fraser D; McDowell, Stanley J W; Byrne, Andrew W

    2016-08-01

    Correctly identifying animals that are truly infected with a pathogen using ante-mortem tests is the cornerstone of any disease eradication programme. Failure to identify all infected animals will impede the progress towards controlling and eradicating disease and may also have unforeseen consequences when specific prevention measures are in place to avoid animal-to-animal transmission. In the case of bovine tuberculosis (bTB), the screening ante-mortem test, the Single Comparative Intradermal Tuberculin Test (SCITT), can exhibit moderate sensitivity which can result in a "hidden burden" of infection residing within the population. Using an animal-level dataset relating to the disclosure of infected cattle with Mycobacterium bovis, the causative agent of bTB within infected herds in Northern Ireland, we investigated what factors influenced the probability of an animal being a false-negative when truly infected (using post-mortem (PM) microbiological culture confirmation results to assess infection status). We found that different risk factors affected the probability of a test-negative outcome on infected animals depending on the ante-mortem test or their combination (SICTT and/or interferon gamma (IFN-ɣ) testing). Using multivariable models, SCITT disclosure performance varied significantly by age, location (region), and production type. The IFN-ɣ tests were significantly affected by region or season, but these effects depended on the cut-off used during interpretation of the test which affected the tests characteristics. Parallel use of SCITT and IFN-ɣ tests resulted in the least number of false-negatives, and their disclosure was affected by season and age-class. Understanding the factors that lead to the non-disclosure of infected animals is essential to optimise large-scale bTB disease eradication programmes. PMID:27474001

  4. Insulin-like growth factor binding proteins in follicular fluid from morphologically distinct healthy and atretic bovine antral follicles.

    Science.gov (United States)

    Irving-Rodgers, H F; Catanzariti, K D; Master, M; Grant, P A; Owens, P C; Rodgers, R J

    2003-01-01

    In bovine follicles 2-5 mm in diameter, two morphologically distinct types of healthy follicles and two types of atretic follicles have been described recently. Healthy follicles either have columnar basal granulosa cells with follicular basal lamina composed of many layers or 'loops' or they have rounded basal cells with a conventional single-layered, aligned follicular basal lamina. In atretic follicles, cell death either commences at the basal layer and progresses to the antrum (basal atresia) with macrophage penetration of the membrana granulosa or death progresses from the antrum in a basal direction (antral atresia). Little is known about how these different phenotypes develop. To determine whether insulin-like growth factor binding protein (IGFBP) levels in follicular fluid differ between these different types of follicles, we measured IGFBP levels in fluids from these follicles. A total of 61 follicles were assessed by light microscopy and characterized by morphological analysis as either healthy, with columnar or rounded basal granulosa cells, or as undergoing antral or basal atresia. The IGFBP concentration in the follicular fluid of individual follicles from the four groups (n = 12-20 per group) was identified by Western ligand blots using (125)I-insulin-like growth factor (IGF)-II as a probe. Insulin-like growth factor binding proteins 2, 3 (44 and 40 kDa), 4 (glycosylated and non-glycosylated) and 5 were observed. The levels (per volume of fluid) of IGFBPs 2, 4 and 5 were greater in atretic follicles than in healthy follicles. However, there were no statistical differences in levels of each IGFBP between either the two types of healthy follicle or between the two types of atretic follicles. Thus, IGFBP levels are not related to the different types of healthy or atretic follicles. PMID:12921699

  5. Increased pulmonary secretion of tumor necrosis factor-alpha in calves experimentally infected with bovine respiratory syncytial virus

    DEFF Research Database (Denmark)

    Rontved, C. M.; Tjørnehøj, Kirsten; Viuff, B.;

    2000-01-01

    -alpha in the BAL fluid of calves killed post inoculation day (PID) 2 and 4 was at the same very low level as in the uninfected control animals. Large amounts of TNF-alpha were detected on PID 6, maximum levels of TNF-alpha were reached on PID 7, and smaller amounts of TNF-alpha were seen on PID 8. The high levels......Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease among calves in the Danish cattle industry. An experimental BRSV infection model was used to study the pathogenesis of the disease in calves. Broncho alveolar lung lavage (BAL) was performed on 28 Jersey calves......, of which 23 were experimentally infected with BRSV and five were given a mock inoculum. The presence of the cytokine tumor necrosis factor alpha (TNF-alpha) in the BAL fluids was detected and quantified by a capture ELISA. TNF-alpha was detected in 21 of the infected animals. The amount of TNF...

  6. Impact of exercise on mitochondrial transcription factor expression and damage in the striatum of a chronic mouse model of Parkinson’s disease

    OpenAIRE

    Patki, Gaurav; Lau, Yuen-Sum

    2011-01-01

    The etiology of neurodegenerative disorders like Parkinson’s disease remains unknown, although many genetic and environmental factors are suggested as likely causes. Neuronal oxidative stress and mitochondrial dysfunction have been implicated as possible triggers for the onset and progression of Parkinson’s neurodegeneration. We have recently shown that long-term treadmill exercise prevented neurological, mitochondrial and locomotor deficits in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropy...

  7. Investigation of risk factors of bovine mastitis in Ethiopia; Isolation of mastitis causing agents and determination of the content of somatic cells in milk

    OpenAIRE

    Frese, Mathias Lutz

    2010-01-01

    In this thesis, the risk factors of bovine mastitis in different milk production systems in Ethiopia were investigated. Furthermore, mastitis causing agents were isolated after California Mastitis Test (CMT) was used as the field test. Somatic cells were counted and compared with the CMT. Low milk production and low quality of milk are apparently related to a lack of proper hygienic measures throughout the farm clusters.

  8. Variation in macrophage migration inhibitory factor [MIF] immunoreactivity during bovine gestation

    DEFF Research Database (Denmark)

    Paulesu, L.; Pfarrer, C.; Romagnoli, R.;

    2012-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in several aspects of the immune response. MIF appears to play important roles in materno-fetal immuno-tolerance during placental establishment, modulation and growth as studied in epitheliochorial porcine...

  9. Compound C prevents Hypoxia-Inducible Factor-1α protein stabilization by regulating the cellular oxygen availability via interaction with Mitochondrial Complex I

    Directory of Open Access Journals (Sweden)

    Hagen Thilo

    2011-04-01

    Full Text Available Abstract The transcription factor Hypoxia-Inducible Factor-1α is a master regulator of the cellular response to low oxygen concentration. Compound C, an inhibitor of AMP-activated kinase, has been reported to inhibit hypoxia dependent Hypoxia-Inducible Factor-1α activation via a mechanism that is independent of AMP-activated kinase but dependent on its interaction with the mitochondrial electron transport chain. The objective of this study is to characterize the interaction of Compound C with the mitochondrial electron transport chain and to determine the mechanism through which the drug influences the stability of the Hypoxia-Inducible Factor-1α protein. We found that Compound C functions as an inhibitor of complex I of the mitochondrial electron transport chain as demonstrated by its effect on mitochondrial respiration. It also prevents hypoxia-induced Hypoxia-Inducible Factor-1α stabilization in a dose dependent manner. In addition, Compound C does not have significant effects on reactive oxygen species production from complex I via both forward and reverse electron flux. This study provides evidence that similar to other mitochondrial electron transport chain inhibitors, Compound C regulates Hypoxia-Inducible Factor-1α stability by controlling the cellular oxygen concentration.

  10. Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging

    OpenAIRE

    Atamna, Hani; Killilea, David W.; Killilea, Alison Nisbet; Bruce N. Ames

    2002-01-01

    Heme, a major functional form of iron in the cell, is synthesized in the mitochondria by ferrochelatase inserting ferrous iron into protoporphyrin IX. Heme deficiency was induced with N-methylprotoporphyrin IX, a selective inhibitor of ferrochelatase, in two human brain cell lines, SHSY5Y (neuroblastoma) and U373 (astrocytoma), as well as in rat primary hippocampal neurons. Heme deficiency in brain cells decreases mitochondrial complex IV, activates nitric oxide synthase, alters amyloid precu...

  11. Risk factors for bovine mastitis in the Central Province of Sri Lanka.

    Science.gov (United States)

    Gunawardana, Suraj; Thilakarathne, Dulari; Abegunawardana, Indra S; Abeynayake, Preeni; Robertson, Colin; Stephen, Craig

    2014-10-01

    A study of the risk factors associated with mastitis in Sri Lankan dairy cattle was conducted to inform risk reduction activities to improve the quality and quantity of milk production and dairy farmer income. A cross-sectional survey of randomly selected dairy farms was undertaken to investigate 12 cow and 39 herd level and management risk factors in the Central Province. The farm level prevalence of mastitis (clinical and subclinical) was 48 %, similar to what has been found elsewhere in South and Southeast Asia. Five cow level variables, three herd level variables, and eight management variables remained significant (p management techniques, but implementation of mastitis control programs as a technical approach is likely to be insufficient to achieve sustainable disease control without consideration of the social and political realities of smallholder farmers, who are often impoverished. PMID:24894437

  12. Bovine mastitis prevalence and associated risk factors in dairy cows in Nyagatare District, Rwanda

    OpenAIRE

    Blaise Iraguha; Humphrey Hamudikuwanda; Borden Mushonga

    2015-01-01

    In response to farmer requests after milk from their herds was rejected by processors due to poor quality, a study was carried out from April to October 2011 to determine the prevalence of sub clinical mastitis, associated risk factors and causative micro-organisms. Samples were collected from 195 dairy cows on 23 randomly selected dairy farms delivering milk to Isangano, Kirebe and Nyagatare milk collection centres in Nyagatare District, Rwanda. The Draminski® Mastitis Detector was used to d...

  13. Study on Clinical Bovine Dermatophilosis and its Potential Risk Factors in North Western Ethiopia

    Directory of Open Access Journals (Sweden)

    Meseret Admassu and Sefinew Alemu

    2011-02-01

    Full Text Available A cross-sectional study of dermatophilosis was undertaken from October 2008 to March 2009 on 3456 cattle (3181 indigenous zebu and 275 Holestien-zebu cross with the aim of determining prevalence and associated risk factors in urban and periurban areas of Bahir Dar, north western Ethiopia. Culturing of Dermatiphilus congolensis and Giemsa staining were the techniques used. Thirty six of 3456 examined animals (1.04% had clinical dermatophilosis. Prevalence was higher in cross bred (5.5% than in indigenous zebu (0.7% cattle, in male cattle (1.7% than in female (0.8% , in adults (1.2% than in young (0.8% age groups, in wet (1.6% than in dry season (0.5%, and in cattle infested with tick (2.7% than cattle with no tick infestation (0.4%. Statistically significant difference (p# 0.05 was observed in the prevalence between breeds of cattle, between age groups, between wet and dry seasons, and between cattle with and without tick infestation. Amblyoma variegatum was identified. The study indicated dermatophilosis is a potential determinant factor for the dairy development strategy started through cross breeding in the study area. Tick control especially on crossbred cattle is suggested to reduce the risk of dermatophilosis.

  14. Calf-Level Factors Associated with Bovine Neonatal Pancytopenia – A Multi-Country Case-Control Study

    Science.gov (United States)

    Jones, Bryony A.; Sauter-Louis, Carola; Henning, Joerg; Stoll, Alexander; Nielen, Mirjam; Van Schaik, Gerdien; Smolenaars, Anja; Schouten, Matthijs; den Uijl, Ingrid; Fourichon, Christine; Guatteo, Raphael; Madouasse, Aurélien; Nusinovici, Simon; Deprez, Piet; De Vliegher, Sarne; Laureyns, Jozef; Booth, Richard; Cardwell, Jackie M.; Pfeiffer, Dirk U.

    2013-01-01

    Bovine neonatal pancytopenia (BNP), a high fatality condition causing haemorrhages in calves aged less than 4 weeks, was first reported in 2007 in Germany and subsequently observed at low incidence in other European countries and New Zealand. A multi-country matched case-control study was conducted in 2011 to identify calf-level risk factors for BNP. 405 BNP cases were recruited from 330 farms in Belgium, France, Germany and the Netherlands by laboratory confirmation of farmer-reported cases. Up to four calves of similar age from the same farm were selected as controls (1154 calves). Risk factor data were collected by questionnaire. Multivariable modelling using conditional logistic regression indicated that PregSure®BVD (PregSure, Pfizer Animal Health) vaccination of the dam was strongly associated with BNP cases (adjusted matched Odds Ratio - amOR 17.8 first lactation dams; 95% confidence interval – ci 2.4, 134.4; p = 0.005), and second or more lactation PregSure-vaccinated dams were more likely to have a case than first lactation vaccinated dams (amOR 2.2 second lactation; ci 1.1, 4.3; p = 0.024; amOR 5.3 third or more lactation; ci 2.9, 9.8; p = <0.001). Feeding colostrum from other cows was strongly associated with BNP if the dam was not PregSure-vaccinated (amOR 30.5; ci 2.1, 440.5; p = 0.012), but the effect was less if the dam was PregSure-vaccinated (amOR 2.1; ci 1.1, 4.0; p = 0.024). Feeding exclusively dam’s milk was a higher risk than other types of milk (amOR 3.4; ci 1.6, 7.5; p = 0.002). The population attributable fractions were 0.84 (ci 0.68, 0.92) for PregSure vaccination, 0.13 (ci 0.06, 0.19) for feeding other cows’ colostrum, and 0.15 (ci 0.08, 0.22) for feeding dam’s milk. No other calf-level factors were identified, suggesting that there are other important factors that are outside the scope of this study, such as genetics, which explain why BNP develops in some PregSure-colostrum-exposed calves but not in

  15. Calf-level factors associated with bovine neonatal pancytopenia--a multi-country case-control study.

    Directory of Open Access Journals (Sweden)

    Bryony A Jones

    Full Text Available Bovine neonatal pancytopenia (BNP, a high fatality condition causing haemorrhages in calves aged less than 4 weeks, was first reported in 2007 in Germany and subsequently observed at low incidence in other European countries and New Zealand. A multi-country matched case-control study was conducted in 2011 to identify calf-level risk factors for BNP. 405 BNP cases were recruited from 330 farms in Belgium, France, Germany and the Netherlands by laboratory confirmation of farmer-reported cases. Up to four calves of similar age from the same farm were selected as controls (1154 calves. Risk factor data were collected by questionnaire. Multivariable modelling using conditional logistic regression indicated that PregSure®BVD (PregSure, Pfizer Animal Health vaccination of the dam was strongly associated with BNP cases (adjusted matched Odds Ratio - amOR 17.8 first lactation dams; 95% confidence interval - ci 2.4, 134.4; p = 0.005, and second or more lactation PregSure-vaccinated dams were more likely to have a case than first lactation vaccinated dams (amOR 2.2 second lactation; ci 1.1, 4.3; p = 0.024; amOR 5.3 third or more lactation; ci 2.9, 9.8; p = <0.001. Feeding colostrum from other cows was strongly associated with BNP if the dam was not PregSure-vaccinated (amOR 30.5; ci 2.1, 440.5; p = 0.012, but the effect was less if the dam was PregSure-vaccinated (amOR 2.1; ci 1.1, 4.0; p = 0.024. Feeding exclusively dam's milk was a higher risk than other types of milk (amOR 3.4; ci 1.6, 7.5; p = 0.002. The population attributable fractions were 0.84 (ci 0.68, 0.92 for PregSure vaccination, 0.13 (ci 0.06, 0.19 for feeding other cows' colostrum, and 0.15 (ci 0.08, 0.22 for feeding dam's milk. No other calf-level factors were identified, suggesting that there are other important factors that are outside the scope of this study, such as genetics, which explain why BNP develops in some PregSure-colostrum-exposed calves but not in

  16. Localization of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2 in bovine placentomes from implantation until term

    DEFF Research Database (Denmark)

    Pfarrer, C.D.; Ruziwa, S.D.; Winther, H.;

    2006-01-01

    Interactions of vascular endothelial growth factor (VEGF) with its receptors VEGFR-1 and VEGFR-2 promoting angiogenesis have been described in placentation of human, mink and pig. The bovine placenta is multiplex, villous and synepitheliochorial due to migratory trophoblast giant cells (TGC...... term were evaluated by immunohistochemistry. VEGF immunoreactivity was detected in fetal and maternal blood vessel tissues during implantation and throughout gestation, and in preimplantatory trophoblast cells and uterine epithelium. After implantation the immunoreaction was confined to TGC and uterine...... epithelium. An antibody against bovine VEGF revealed a strong reactivity in the stroma of maternal caruncular septa in early and mid-gestation, which distinctly decreased near term. In interplacentomal areas, VEGF was found in luminal and glandular epithelia as well as in trophoblast, with distinctly higher...

  17. Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2011-07-25

    Abstract Introduction To examine the effects of tumour necrosis factor (TNF) blocking therapy on the levels of early mitochondrial genome alterations and oxidative stress. Methods Eighteen inflammatory arthritis patients underwent synovial tissue oxygen (tpO2) measurements and clinical assessment of disease activity (DAS28-CRP) at baseline (T0) and three months (T3) after starting biologic therapy. Synovial tissue lipid peroxidation (4-HNE), T and B cell specific markers and synovial vascular endothelial growth factor (VEGF) were quantified by immunohistochemistry. Synovial levels of random mitochondrial DNA (mtDNA) mutations were assessed using Random Mutation Capture (RMC) assay. Results 4-HNE levels pre\\/post anti TNF-α therapy were inversely correlated with in vivo tpO2 (P < 0.008; r = -0.60). Biologic therapy responders showed a significantly reduced 4-HNE expression (P < 0.05). High 4-HNE expression correlated with high DAS28-CRP (P = 0.02; r = 0.53), tender joint count for 28 joints (TJC-28) (P = 0.03; r = 0.49), swollen joint count for 28 joints (SJC-28) (P = 0.03; r = 0.50) and visual analogue scale (VAS) (P = 0.04; r = 0.48). Strong positive association was found between the number of 4-HNE positive cells and CD4+ cells (P = 0.04; r = 0.60), CD8+ cells (P = 0.001; r = 0.70), CD20+ cells (P = 0.04; r = 0.68), CD68+ cells (P = 0.04; r = 0.47) and synovial VEGF expression (P = 0.01; r = 063). In patients whose in vivo tpO2 levels improved post treatment, significant reduction in mtDNA mutations and DAS28-CRP was observed (P < 0.05). In contrast in those patients whose tpO2 levels remained the same or reduced at T3, no significant changes for mtDNA mutations and DAS28-CRP were found. Conclusions High levels of synovial oxidative stress and mitochondrial mutation burden are strongly associated with low in vivo oxygen tension and synovial inflammation. Furthermore these significant mitochondrial genome alterations are rescued following successful anti TNF

  18. Risk factors associated with the antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Daniele C. Beuron

    2014-10-01

    Full Text Available The objective of this study was to evaluate herd management practices and mastitis treatment procedures as risk factors associated with Staphylococcus aureus antimicrobial resistance. For this study, 13 herds were selected to participate in the study to evaluate the association between their management practices and mastitis treatment procedures and in vitro antimicrobial susceptibility. A total of 1069 composite milk samples were collected aseptically from the selected cows in four different periods over two years. The samples were used for microbiological culturing of S. aureus isolates and evaluation of their antimicrobial susceptibility. A total of 756 samples (70.7% were culture-positive, and S. aureus comprised 27.77% (n=210 of the isolates. The S. aureus isolates were tested using the disk-diffusion susceptibility assay with the following antimicrobials: ampicillin 10mg; clindamycin 2μg; penicillin 1mg; ceftiofur 30μg; gentamicin 10mg; sulfa-trimethoprim 25μg; enrofloxacin 5μg; sulfonamide 300μg; tetracycline 30μg; oxacillin 1mg; cephalothin 30μg and erythromycin 5μg. The variables that were significantly associated with S. aureus resistance were as follows: the treatment of clinical mastitis for ampicillin (OR=2.18, dry cow treatment for enrofloxacin (OR=2.11 and not sending milk samples for microbiological culture and susceptibility tests, for ampicillin (OR=2.57 and penicillin (OR=4.69. In conclusion, the identification of risk factors for S. aureus resistance against various mastitis antimicrobials is an important information that may help in practical recommendations for prudent use of antimicrobial in milk production.

  19. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    Science.gov (United States)

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-01

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA. PMID:27311715

  20. Bovine cysticercosis in slaughtered cattle as an indicator of Good Agricultural Practices (GAP) and epidemiological risk factors.

    Science.gov (United States)

    Rossi, Gabriel Augusto Marques; Hoppe, Estevam Guilherme Lux; Mathias, Luis Antonio; Martins, Ana Maria Centola Vidal; Mussi, Leila Aparecida; Prata, Luiz Francisco

    2015-03-01

    This study focused on estimating the economic losses resulting from cysticercosis at beef cattle farms that supply an export slaughterhouse located in the state of São Paulo, Brazil, and to identify the epidemiological risks factors involved in the disease to ascertain if these farms adopt Good Agricultural Practices (GAP). To this, we used data recorded in 2012 by Brazil's Federal Inspection Service (SIF) on the daily occurrence of the disease, according to the farm from which the animals originated. In addition, the associated risk factors were determined based on a case-control study at 48 farms. Cysticercosis was detected in 2.26% (95% CI 2.2-2.33) of the 190,903 bovines supplied by 556 farms in the following four states: 2.92% (95% CI 2.83-3.03) in São Paulo, 1.81% (95% CI 1.71-1.93) in Minas Gerais, 0.71% (95% CI 0.6-0.82) in Goiás and 1.11% (95% CI 0.79-1.57) in Mato Grosso do Sul, with significant differences in the epidemiological indices of these states. Cysticercosis was detected at 58.45% (95% CI 54.36-62.55) of the farms of this study, representing estimated economic losses of US$312,194.52 for the farmers. Lower prevalence of this disease were found at the farms qualified for exports to the European Union, indicating a statistically significant difference from those not qualified to export to Europe. The access of cattle to non-controlled water sources, as well as sport fishing activities near the farms, was identified as risk factors. Cysticercosis causes considerable losses in Brazil's beef supply chain, with lower prevalence appearing only at farms qualified to export to the European Union. As for the access of cattle to non-controlled water sources, this is an indication that GAP are not implemented by some farms, demonstrating the violation of international agreements by the industry and the farms. PMID:25631403

  1. Both viral E2 protein and the cellular factor PEBP2 regulate transcription via E2 consensus sites within the bovine papillomavirus type 4 long control region.

    OpenAIRE

    Jackson, M E; Campo, M. S.

    1995-01-01

    The bovine papillomavirus type 4 (BPV4) long control region (LCR) contains three consensus binding sites, E2(1), E2(2), and E2(3) (ACCN6GGT), for the viral E2 transcription factor and a fourth degenerate site, dE2 (ATCN6GGT), which lies 3 bp upstream of E2(3). The E2(2) site was found to bind the cellular transcription factor PEBP2, and mutations at this site reduced basal promoter activity by as much as 60%, indicating an important role for PEBP2 in LCR function. Mutation of the E2(3) or dE2...

  2. Decreased levels of proapoptotic factors and increased key regulators of mitochondrial biogenesis constitute new potential beneficial features of long-lived growth hormone receptor gene-disrupted mice.

    Science.gov (United States)

    Gesing, Adam; Masternak, Michal M; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J; Bartke, Andrzej

    2013-06-01

    Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results suggest new features of GHRKO mice that may positively affect longevity-decreased levels of proapoptotic factors and increased levels of key regulators of mitochondrial biogenesis. The alterations in levels of the proapoptotic factors and key regulators of mitochondrial biogenesis were not further improved by two other potential life-extending interventions-calorie restriction and visceral fat removal. This may attribute the primary role to GH resistance in the regulation of apoptosis and mitochondrial biogenesis in GHRKO mice in terms of increased life span. PMID:23197187

  3. Macrophages infected with cytopathic bovine viral diarrhea virus release a factor(s) capable of priming uninfected macrophages for activation-induced apoptosis.

    OpenAIRE

    Adler, B; Adler, H; Pfister, H; Jungi, T. W.; Peterhans, E

    1997-01-01

    Bovine bone marrow-derived macrophages infected with the cytopathic biotype of bovine viral diarrhea virus released an antiviral activity into the supernatant which was tentatively characterized as type I interferon because of its physicochemical properties. Such supernatants primed both infected and uninfected macrophages for decreased nitric oxide production and apoptosis in response to lipopolysaccharide. This finding strongly suggests a role of this pathway in the pathogenesis of mucosal ...

  4. Human Mitochondrial Transcription Factor B1 Interacts with the C-Terminal Activation Region of h-mtTFA and Stimulates Transcription Independently of Its RNA Methyltransferase Activity

    OpenAIRE

    McCulloch, Vicki; Shadel, Gerald S.

    2003-01-01

    A significant advancement in understanding mitochondrial gene expression is the recent identification of two new human mitochondrial transcription factors, h-mtTFB1 and h-mtTFB2. Both proteins stimulate transcription in collaboration with the high-mobility group box transcription factor, h-mtTFA, and are homologous to rRNA methyltransferases. In fact, the dual-function nature of h-mtTFB1 was recently demonstrated by its ability to methylate a conserved rRNA substrate. Here, we demonstrate tha...

  5. Insulin-like growth factors 1 and 2 in bovine colostrum. Sequences and biological activities compared with those of a potent truncated form.

    Science.gov (United States)

    Francis, G L; Upton, F M; Ballard, F J; McNeil, K A; Wallace, J C

    1988-01-01

    1. Insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) together with a truncated form of IGF-1 were purified to homogeneity from bovine colostrum. 2. Two forms of IGF-1 were totally resolved from IGF-2 in the purification by h.p.l.c. involving cation-exchange and reverse-phase columns. 3. The complete amino acid sequences for all three forms of IGF were determined. The sequence of bovine IGF-1 was found to be identical with that of human IGF-1, and that of the variant lacked the N-terminal tripeptide Gly-Pro-Glu (-3N:IGF-1). Bovine IGF-2 was found to differ in three residues of the C-domain compared with human IGF-2, with serine, isoleucine and asparagine substituted for alanine, valine and serine respectively at positions 32, 35 and 36. 4. Protein synthesis in L6 rat myoblasts was stimulated and protein degradation inhibited in a co-ordinate response with all three IGFs. The relative potency in both processes was -3N:IGF-1 greater than IGF-1 greater than IGF-2. A similar order of potency was obtained for the stimulation of DNA synthesis by -3N:IGF-1 and IGF-1. The approximately 10-fold effect on biological activity of removing the N-terminal tripeptide is unexpected in view of current information on IGF-1 structure and function. PMID:3390164

  6. Fever and acute phase response induced in dwarf goats by endotoxin and bovine and human recombinant tumour necrosis factor alpha.

    Science.gov (United States)

    van Miert, A S; van Duin, C T; Wensing, T

    1992-12-01

    Tumour necrosis factor (TNF), a polypeptide produced by mononuclear phagocytes, has been implicated as an important mediator of inflammatory processes and of clinical manifestations in acute infectious diseases. To study further the potential role of TNF in infectious diseases, recombinant Escherichia coli (E. coli) derived human (r.HuTNF-alpha) and bovine TNF (r.BoTNF-alpha) were intravenously (i.v.) administered in dwarf goats. Rectal temperature, heart rate, rumen motility, plasma zinc and iron concentrations, and certain other blood biochemical and haematological values were studied and compared with the changes seen after E. coli endotoxin (LPS) was administered (dose: 0.1 microgram/kg i.v.). Following a single injection of 4 micrograms/kg of r.BoTNF-alpha, shivering and biphasic febrile response were observed, accompanied by tachycardia, inhibition of rumen contractions, drop in plasma zinc and iron concentrations, lymphopenia, and neutropenia followed by neutrophilia. The i.v. administration of a single injection of 4 micrograms/kg r.HuTNF-alpha induced shivering and biphasic febrile responses, accompanied by anorexia and a similar drop in plasma trace metal concentrations when compared with r.BoTNF-alpha-treated goats. The TNF-alpha-induced symptoms were essentially the same as those that occurred after LPS administration. However, the time of onset of these changes after the injection of TNF-alpha was significantly shorter than after LPS. Moreover, the r.BoTNF-alpha induced a longer lasting neutrophilic leucopenia, less neutrophilia, and a more persistent lymphopenia than after LPS injection. Neither r.BoTNF-alpha nor LPS caused severe haemo-concentration. Furthermore, no cross-tolerance between r.BoTNF-alpha and LPS could be demonstrated. We conclude that both r.BoTNF-alpha and r.HuTNF-alpha induce many of the physiologic, haematologic and metabolic changes that characterize the acute phase response to LPS. The overlapping biological activities of r

  7. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of {sup 125}I-IGF-I was specific for IGF-I with anIC{sub 50} of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, {sup 125}I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy.

  8. Mitochondrial Dynamics in Diabetes

    OpenAIRE

    Yoon, Yisang; Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emergin...

  9. Competitive binding of viral E2 protein and mammalian core-binding factor to transcriptional control sequences of human papillomavirus type 8 and bovine papillomavirus type 1.

    OpenAIRE

    Schmidt, H. M.; Steger, G; Pfister, H

    1997-01-01

    The promoter P7535 of human papillomavirus type 8 and the promoter P7185 of bovine papillomavirus type 1 are negatively regulated by viral E2 proteins via the promoter proximal binding sites P2 and BS1, respectively. Mutations of these E2 binding sites can reduce basal promoter activity. This suggests binding of a transcription-stimulating factor and may indicate that repression by E2 is due to competitive binding of viral and cellular proteins. A computer search revealed putative binding sit...

  10. An 8-year longitudinal sero-epidemiological study of bovine leukaemia virus (BLV) infection in dairy cattle in Turkey and analysis of risk factors associated with BLV seropositivity.

    Science.gov (United States)

    Şevik, Murat; Avcı, Oğuzhan; İnce, Ömer Barış

    2015-04-01

    Enzootic bovine leukosis (EBL) which is caused by bovine leukaemia virus (BLV) has an important economic impact on dairy herds due to reduced milk production and restrictions on livestock exports. This study was conducted to determine the BLV infection status in Central Anatolia Region of Turkey, an important milk production centre, and to examine the risk factors such as purchasing cattle, increasing cattle age, cattle breed and herd size associated with transmission of BLV infection. To estimate the rate of BLV infection, a survey for specific antibodies in 28,982 serum samples from animals belonging to 1116 different herds situated in Central Anatolia Region of Turkey were tested from January 2006 to December 2013. A generalized mixed linear model was used to evaluate the risk factors that influenced BLV seroprevalence. Antibodies against BLV were detected in 431 (2.28 %) of 18,822 Holstein and 29 (0.28 %) of 10,160 Brown Swiss cows. Among 1116 herds, 132 herds (11.82 %) had one or more positive animals. Also results of our study show that the prevalence of BLV infection increased from 2006 to 2011, and it tends to reduce with BLV control programme. Furthermore, we found positive associations between percentage of seropositive animal and increasing cattle age, herd size, cattle breed and purchased cattle. Age-specific prevalence showed that BLV prevalence increased with age. These factors should be taken into consideration for control of BLV infection.

  11. Risk factors associated with negative in-vivo diagnostic results in bovine tuberculosis-infected cattle in Spain

    OpenAIRE

    Álvarez, Julio; Perez, Andrés; Marqués, Sergio; Bezos, Javier; Grau, Anna; de la Cruz, Maria Luisa; Romero, Beatriz; Saez, Jose Luis; del Rosario Esquivel, Maria; del Carmen Martínez, Maria; Mínguez, Olga; de Juan, Lucía; Domínguez, Lucas

    2014-01-01

    Background Despite great effort and investment incurred over decades to control bovine tuberculosis (bTB), it is still one of the most important zoonotic diseases in many areas of the world. Test-and-slaughter strategies, the basis of most bTB eradication programs carried out worldwide, have demonstrated its usefulness in the control of the disease. However, in certain countries, eradication has not been achieved due in part to limitations of currently available diagnostic tests. In this stud...

  12. Mitochondrial Transcription Factors TFA, TFB1 and TFB2: A Search for DNA Variants/Haplotypes and the Risk of Cardiac Hypertrophy

    OpenAIRE

    Cristina Alonso-Montes; Castro, Mónica G.; Julián R. Reguero; Andreas Perrot; Cemil Özcelik; Christian Geier; Posch, Maximilian G.; César Morís; Victoria Alvarez; Marta Ruiz-Ortega; Eliecer Coto

    2008-01-01

    Mitochondrial transcription factors mtTFA, mtTFB1 and mtTFB2 are required for the replication of mitochondrial DNA (mtDNA), regulating the number of mtDNA copies. Mice with a mtTFA deletion showed a reduced number of mtDNA copies, a reduction in respiratory chain activity, and a characteristic dilated cardiomyopathy. DNA variants in these genes could be involved in the risk for cardiac hypertrophy (HCM). We determined the variation in the TFAM, TFB1M, and TFB2M genes (using SSCA, DHPLC, and d...

  13. On the activation of bovine plasma factor XIII. Amino acid sequence of the peptide released by thrombin and the terminal residues of the subunit polypeptides.

    Science.gov (United States)

    Nakamura, S; Iwanaga, S; Suzuki, T

    1975-12-01

    A blood coagulation factor, Factor XIII, was highly purified from bovine fresh plasma by a method similar to those used for human plasma Factor XIII. The isolated Factor XIII consisted of two subunit polypeptides, a and b chains, with molecular weights of 79,000 +/- 2,000 and 75,000 +/- 2,000, respectively. In the conversion of Factor XIII to the active enzyme, Factor XIIIa, by bovine thrombin [EC 3.4.21.5], a peptide was liberated. This peptide, designated tentatively as "activation peptide," was isolated by gel-filtration on a Sephadex G-75 column. It contained a total of 37 amino acid residues with a masked N-terminal residue and C-terminal arginine. The whole amino acid sequence of "Activation peptide" was established by the dansyl-Edman method and standard enzymatic techniques, and the masked N-terminal residue was identified as N-acetylserine by using a rat liver acylamino acid-releasing enzyme. This enzyme specifically cleaved the N-acetylserylglutamyl peptide bond serine and the remaining peptide, which was now reactive to 1-dimethylamino-naphthalene-5-sulfonyl chloride. A comparison of the sequences of human and bovine "Activation peptide" revealed five amino acids replacements, Ser-3 to Thr; Gly-5 to Arg; Ile-14 to Val; Thr-18 to Asn, and Pro-26 to Leu. Another difference was the deletion of Leu-34 in the human peptide. Adsorption chromatography on a hydroxylapatite column in the presence of 0.1% sodium dodecyl sulfate was developed as a preparative procedure for the resolution of the two subunit polypeptides, a or a' chain and b chain, constituting the protein molecule of Factor XIII or Factor XIIIa. End group analyses on the isolated pure chains revealed that the structural change of Factor XIII during activation with thrombin occurs only in the N-terminal portion of the a chain, not in the N-terminal end of the b chain or in the C-terminal ends of the a and b chains. From these results, it was concluded that the activation of bovine plasma Factor XIII

  14. Serological survey of bovine brucellosis in Fulani nomadic cattle breeds (Bos indicus) of North-central Nigeria: Potential risk factors and zoonotic implications.

    Science.gov (United States)

    Alhaji, N B; Wungak, Y S; Bertu, W J

    2016-01-01

    A cross sectional study was conducted to investigate seroprevalence and associated risk factors of bovine brucellosis in Fulani nomadic herds in the 3 agro-ecological zones of Niger State, North-central Nigeria between January and August 2013. A total of 672 cattle in 113 herds were screened for Brucella antibodies using Rose Bengal Plate Test (RBPT) and confirmed by Lateral flow Assay (LFA). Data on herd characteristics and zoonotic factors were collected using structured questionnaire administered on Fulani herd owners. Factors associated with Brucella infection were tested using Chi-square test and multivariable logistic model. The overall cattle-level seroprevalence was 1.9% (95% CI: 1.1-3.2) with highest in agro-zone C (3.2%). Herd-level seroprevalence was 9.7% (95% CI: 5.23-16.29) and highest in agro-zone C (13.5%). Sex and agro-ecological zones were significantly (Ppractices were significantly associated with brucellosis occurrence. Inhalation of droplets from milk of infected cows, and drinking raw milk were less likely [OR 0.27; 95% CI: 0.09-0.82 and OR 0.27; 95% CI: 0.08-0.99, respectively] not to predisposed to brucellosis in humans. Eating infected raw meat, and contact with infected placenta were more likely [OR 7.49; 95% CI: 2.06-28.32 and OR 5.74; 95% CI: 1.78-18.47, respectively] to be risks for the disease in humans. These results highlighted the important risk factors for bovine brucellosis in Fulani herds. Thus, brucellosis control programs which take these factors into consideration will be beneficial. PMID:26464048

  15. Serological survey of bovine brucellosis in Fulani nomadic cattle breeds (Bos indicus) of North-central Nigeria: Potential risk factors and zoonotic implications.

    Science.gov (United States)

    Alhaji, N B; Wungak, Y S; Bertu, W J

    2016-01-01

    A cross sectional study was conducted to investigate seroprevalence and associated risk factors of bovine brucellosis in Fulani nomadic herds in the 3 agro-ecological zones of Niger State, North-central Nigeria between January and August 2013. A total of 672 cattle in 113 herds were screened for Brucella antibodies using Rose Bengal Plate Test (RBPT) and confirmed by Lateral flow Assay (LFA). Data on herd characteristics and zoonotic factors were collected using structured questionnaire administered on Fulani herd owners. Factors associated with Brucella infection were tested using Chi-square test and multivariable logistic model. The overall cattle-level seroprevalence was 1.9% (95% CI: 1.1-3.2) with highest in agro-zone C (3.2%). Herd-level seroprevalence was 9.7% (95% CI: 5.23-16.29) and highest in agro-zone C (13.5%). Sex and agro-ecological zones were significantly (Pbrucellosis occurrence. Inhalation of droplets from milk of infected cows, and drinking raw milk were less likely [OR 0.27; 95% CI: 0.09-0.82 and OR 0.27; 95% CI: 0.08-0.99, respectively] not to predisposed to brucellosis in humans. Eating infected raw meat, and contact with infected placenta were more likely [OR 7.49; 95% CI: 2.06-28.32 and OR 5.74; 95% CI: 1.78-18.47, respectively] to be risks for the disease in humans. These results highlighted the important risk factors for bovine brucellosis in Fulani herds. Thus, brucellosis control programs which take these factors into consideration will be beneficial.

  16. Genetic risk factors affecting mitochondrial function are associated with kidney disease in people with Type 1 diabetes

    DEFF Research Database (Denmark)

    Swan, E J; Salem, R M; Sandholm, N;

    2015-01-01

    AIM: To evaluate the association with diabetic kidney disease of single nucleotide polymorphisms (SNPs) that may contribute to mitochondrial dysfunction. METHODS: The mitochondrial genome and 1039 nuclear genes that are integral to mitochondrial function were investigated using a case (n = 823...... phenotypes to those of the discovery collection. Association analyses were performed using the plink genetic analysis toolset, with adjustment for relevant covariates. RESULTS: A total of 25 SNPs were evaluated in the mitochondrial genome, but none were significantly associated with diabetic kidney disease...... or end-stage renal disease. A total of 38 SNPs in nuclear genes influencing mitochondrial function were nominally associated with diabetic kidney disease and 16 SNPS were associated with end-stage renal disease, secondary to diabetic kidney disease, with meta-analyses confirming the same direction of...

  17. Bovine papillomavirus type 1 E2 transcriptional regulators directly bind two cellular transcription factors, TFIID and TFIIB.

    OpenAIRE

    Rank, N M; Lambert, P F

    1995-01-01

    The bovine papillomavirus type 1 (BPV-1) E2 translational open reading frame encodes three proteins that regulate viral transcription and DNA replication: the E2 transcriptional activator (E2TA), the E2 transcriptional repressor (E2TR) and the E8/E2 transcriptional repressor (E8/E2TR). E2TA is a strong activator of papillomaviral promoters and is required for viral DNA replication. E2TR and E8/E2TR inhibit the activities of E2TA but also possess weak transactivational properties of their own....

  18. Endogenous and exogenous factors influencing the concentrations of adiponectin in body fluids and tissues in the bovine.

    Science.gov (United States)

    Sauerwein, Helga; Häußler, Susanne

    2016-07-01

    Adiponectin, one of the messenger molecules secreted from adipose tissue that are collectively termed adipokines, has been demonstrated to play a central role in lipid and glucose metabolism in humans and laboratory rodents; it improves insulin sensitivity and exerts antidiabetic and antiinflammatory actions. Adiponectin is synthesized as a 28 kDa monomer but is not secreted as such; instead, it is glycosylated and undergoes multimerization to form different molecular weight multimers before secretion. Adiponectin is one of the most abundant adipokines (μg/mL range) in the circulation. The concentrations are negatively correlated with adipose depot size, in particular with visceral fat mass in humans. Adiponectin exerts its effects by activating a range of different signaling molecules via binding to 2 transmembrane receptors, adiponectin receptor 1 and adiponectin receptor 2. The adiponectin receptor 1 is expressed primarily in the skeletal muscle, whereas adiponectin receptor 2 is predominantly expressed in the liver. Many of the functions of adiponectin are relevant to growth, lactation, and health and are thus of interest in both beef and dairy production systems. Studies on the role of the adiponectin protein in cattle have been impeded by the lack of reliable assays for bovine adiponectin. Although there are species-specific bovine adiponectin assays commercially available, they suffer from a lack of scientific peer-review of validity. Quantitative data about the adiponectin protein in cattle available in the literature emerged only during the last 3 yr and were largely based on Western blotting using either antibodies against human adiponectin or partial peptides from the bovine sequence. Using native bovine high-molecular-weight adiponectin purified from serum, we were able to generate a polyclonal antiserum that can be used for Western blot but also in an ELISA system, which was recently validated. The objective of this review is to provide an overview

  19. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G;

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  20. Mitochondrial Diseases

    Science.gov (United States)

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  1. Mitochondrial role of Apoptosis-Inducing Factor (AIF): Oxidative Phosphorylation and Reactive Oxygen Species.

    OpenAIRE

    Apostolova, Nadezda

    2008-01-01

    The apoptotic function of Apoptosis-inducing factor (AIF) is well documented in the literature, but its physiological role in the mitochondrion is less certain. Using a small interfering RNA (siRNA) strategy, we studied whether modulation of AIF expression in cultured cells influenced the production of reactive oxygen species (ROS). We found that siAIF-transfected cells had reduced AIF protein levels and this was paralleled by a significant increase in ROS. We tested the genera...

  2. ERas protein is overexpressed and binds to the activated platelet-derived growth factor β receptor in bovine urothelial tumour cells associated with papillomavirus infection.

    Science.gov (United States)

    Russo, Valeria; Roperto, Franco; Esposito, Iolanda; Ceccarelli, Dora Maria; Zizzo, Nicola; Leonardi, Leonardo; Capparelli, Rosanna; Borzacchiello, Giuseppe; Roperto, Sante

    2016-06-01

    Embryonic stem cell-expressed Ras (ERas) encodes a constitutively active form of guanosine triphosphatase (GTPase) that binds to and activates phosphatidylinositol 3 kinase (PI3K), which in turn phosphorylates and activates downstream targets such as Akt. The current study evaluated ERas regulation and expression in papillomavirus-associated urothelial tumours in cattle grazing on lands rich in bracken fern. ERas was found upregulated and overexpressed by PCR, real time PCR and Western blot. Furthermore, protein overexpression was also confirmed by immunohistochemistry. ERas was found to interact physically and colocalise with the activated platelet derived growth factor β receptor (PDGFβR) by coimmunoprecipitation and laser scanning confocal investigations. Phosphorylation of Akt, a downstream effector both of ERas and PDGFβR, appeared to be increased in urothelial tumour cells. Altogether, these data indicate that ERas/PDGFβR complex could play a role in the pathogenesis of bovine papillomavirus-associated bladder neoplasia. PMID:27256024

  3. Genetic risk factors affecting mitochondrial function are associated with kidney disease in people with Type 1 diabetes

    Science.gov (United States)

    Swan, E J; Salem, R M; Sandholm, N; Tarnow, L; Rossing, P; Lajer, M; Groop, P H; Maxwell, A P; McKnight, A J

    2015-01-01

    Aim To evaluate the association with diabetic kidney disease of single nucleotide polymorphisms (SNPs) that may contribute to mitochondrial dysfunction. Methods The mitochondrial genome and 1039 nuclear genes that are integral to mitochondrial function were investigated using a case (n = 823 individuals with diabetic kidney disease) vs. control (n = 903 individuals with diabetes and no renal disease) approach. All people included in the analysis were of white European origin and were diagnosed with Type 1 diabetes before the age of 31 years. Replication was conducted in 5093 people with similar phenotypes to those of the discovery collection. Association analyses were performed using the plink genetic analysis toolset, with adjustment for relevant covariates. Results A total of 25 SNPs were evaluated in the mitochondrial genome, but none were significantly associated with diabetic kidney disease or end-stage renal disease. A total of 38 SNPs in nuclear genes influencing mitochondrial function were nominally associated with diabetic kidney disease and 16 SNPS were associated with end-stage renal disease, secondary to diabetic kidney disease, with meta-analyses confirming the same direction of effect. Three independent signals (seven SNPs) were common to the replication data for both phenotypes with Type 1 diabetes and persistent proteinuria or end-stage renal disease. Conclusions Our results suggest that SNPs in nuclear genes that influence mitochondrial function are significantly associated with diabetic kidney disease in a white European population. What’s new? Mitochondrial dysfunction has been identified in diabetic kidney disease, but relatively large-scale genetic and epigenetic studies focused on mitochondria have not yet been described. We report a novel case–control analysis, with independent replication, of genetic variation focused on the mitochondrial genome and 1039 nuclear genes that are important for mitochondrial function. Single nucleotide

  4. The pro-inflammatory cytokine tumor necrosis factor α stimulates expression of the carnitine transporter OCTN2 (novel organic cation transporter 2) and carnitine uptake via nuclear factor-κB in Madin-Darby bovine kidney cells.

    Science.gov (United States)

    Zhou, X; Ringseis, R; Wen, G; Eder, K

    2015-06-01

    Carnitine uptake into tissues is mediated mainly by the novel organic cation transporter 2 (OCTN2), whose expression is upregulated in the liver of early-lactating dairy cows. It has been shown recently that pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), stimulate OCTN2 expression and carnitine uptake in intestinal cells and inflamed intestinal mucosa. Given that many early-lactating dairy cows show typical signs of hepatic and systemic inflammation, such as elevated concentrations of circulating TNFα and activation of the key regulator of inflammation, nuclear factor κB (NF-κB), in tissues, it is possible that upregulation of OCTN2 and increase of carnitine uptake by TNFα is mediated by NF-κB, a mechanism that might contribute to the upregulation of OCNT2 in the liver of early-lactating dairy cows. Thus, in the present study, we tested the hypothesis that TNFα stimulates OCTN2 gene expression and carnitine uptake via NF-κB in the bovine Madin-Darby bovine kidney (MDBK) cell line. Treatment with TNFα caused activation of NF-κB, increased the mRNA and protein concentration of OCTN2, and stimulated the uptake of carnitine in MDBK cells. In contrast, combined treatment of MDBK cells with TNFα and the NF-κB inhibitor BAY 11-7085 completely blocked the effect of TNFα on OCTN2 mRNA and protein concentration and uptake of carnitine. These findings suggest that the bovine OCTN2 gene and carnitine uptake are regulated by NF-κB. Future studies are required to show the in vivo relevance of this regulatory mechanism in cattle.

  5. The Contribution of Infections with Bovine Viral Diarrhea Viruses to Bovine Respiratory Disease

    Science.gov (United States)

    The contribution of bovine viral diarrhea viruses (BVDV) to the development of bovine respiratory disease is the sum of a number of different factors. These factors include the contribution of acute uncomplicated BVDV infections, the high incidence of respiratory disease in animals persistently inf...

  6. Antiviral effects of bovine interferons on bovine respiratory tract viruses.

    OpenAIRE

    Fulton, R W; Downing, M M; Cummins, J M

    1984-01-01

    The antiviral effects of bovine interferons on the replication of bovine respiratory tract viruses were studied. Bovine turbinate monolayer cultures were treated with bovine interferons and challenged with several bovine herpesvirus 1 strains, bovine viral diarrhea virus, parainfluenza type 3 virus, goat respiratory syncytial virus, bovine respiratory syncytial virus, bovine adenovirus type 7, or vesicular stomatitis virus. Treatment with bovine interferons reduced viral yield for each of the...

  7. Molecular Regulation of the Mitochondrial F1Fo-ATPsynthase: Physiological and Pathological Significance of the Inhibitory Factor 1 (IF 1

    Directory of Open Access Journals (Sweden)

    Danilo Faccenda

    2012-01-01

    Full Text Available In mammals, the mitochondrial F1Fo-ATPsynthase sets out the energy homeostasis by producing the bulk of cellular ATP. As for every enzyme, the laws of thermodynamics command it; however, it is privileged to have a dedicated molecular regulator that controls its rotation. This is the so-called ATPase Inhibitory Factor 1 (IF1 that blocks its reversal to avoid the consumption of cellular ATP when the enzyme acts as an ATP hydrolase. Recent evidence has also demonstrated that IF1 may control the alignment of the enzyme along the mitochondrial inner membrane, thus increasing the interest for the molecule. We conceived this review to outline the fundamental knowledge of the F1Fo-ATPsynthase and link it to the molecular mechanisms by which IF1 regulates its way of function, with the ultimate goal to highlight this as an important and possibly unique means to control this indispensable enzyme in both physiological and pathological settings.

  8. Regulation of pluripotency of inner cell mass and growth and differentiation of trophectoderm of the bovine embryo by colony stimulating factor 2.

    Science.gov (United States)

    Dobbs, Kyle B; Khan, Firdous A; Sakatani, Miki; Moss, James I; Ozawa, Manabu; Ealy, Alan D; Hansen, Peter J

    2013-12-01

    Colony-stimulating factor 2 (CSF2) enhances competence of the bovine embryo to establish and maintain pregnancy after the embryo is transferred into a recipient. Mechanisms involved could include regulation of lineage commitment, growth, or differentiation of the inner cell mass (ICM) and trophectoderm (TE). Experiments were conducted to evaluate regulation by CSF2 of pluripotency of the ICM and differentiation and growth of the TE. Embryos were cultured with 10 ng/ml recombinant bovine CSF2 or a vehicle control from Days 5 to 7 or 6 to 8 postinsemination. CSF2 increased the number of putative zygotes that developed to blastocysts when the percent of embryos becoming blastocysts in the control group was low but decreased blastocyst yield when blastocyst development in controls was high. ICM isolated from blastocysts by lysing the trophectoderm using antibody and complement via immunosurgery were more likely to survive passage when cultured on mitomycin C-treated fetal fibroblasts if derived from blastocysts treated with CSF2 than if from control blastocysts. There was little effect of CSF2 on characteristics of TE outgrowths from blastocysts. The exception was a decrease in outgrowth size for embryos treated with CSF2 from Days 5 to 7 and an increase in expression of CDX2 when treatment was from Days 6 to 8. Expression of the receptor subunit gene CSF2RA increased from the zygote stage to the 9-16 cell stage before decreasing to the blastocyst stage. In contrast, CSF2RB was undetectable at all stages. In conclusion, CSF2 improves competence of the ICM to survive in a pluripotent state and alters TE outgrowths. Actions of CSF2 occur through a signaling pathway that is likely to be independent of CSF2RB.

  9. Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial

    Directory of Open Access Journals (Sweden)

    O Trubiani

    2010-07-01

    Full Text Available The basic aspects of bone tissue engineering include chemical composition and geometry of the scaffold design, because it is very important to improve not only cell attachment and growth but especially osteodifferentiation, bone tissue formation, and vascularization. Geistlich Bio-Oss® (GBO is a xenograft consisting of deproteinized, sterilized bovine bone, chemically and physically identical to the mineral phase of human bone.In this study, we investigated the growth behaviour and the ability to form focal adhesions on the substrate, using vinculin, a cytoskeletal protein, as a marker. Moreover, the expression of bone specific proteins and growth factors such as type I collagen, osteopontin, bone sialoprotein, bone morphogenetic protein-2 (BMP-2, BMP-7 and de novo synthesis of osteocalcin in normal human osteoblasts (NHOst seeded on xenogenic GBO were evaluated. Our observations suggest that after four weeks of culture in differentiation medium, the NHOst showed a high affinity for the three dimensional biomaterial; in fact, cellular proliferation, migration and colonization were clearly evident. The osteogenic differentiation process, as demonstrated by morphological, histochemical, energy dispersive X-ray microanalysis and biochemical analysis was mostly obvious in the NHOst grown on three-dimensional inorganic bovine bone biomaterial. Functional studies displayed a clear and significant response to calcitonin when the cells were differentiated. In addition, the presence of the biomaterial improved the response, suggesting that it could drive the differentiation of these cells towards a more differentiated osteogenic phenotype. These results encourage us to consider GBO an adequate biocompatible three-dimensional biomaterial, indicating its potential use for the development of tissue-engineering techniques.

  10. Genetic variation of the mitochondrial D-loop region containing mitochondrial transcription factor (TFAM) binding sites is not associated with marbling in Wagyu X Limousin F2 crosses: Genetska raznolikost mitohondrijske D-loop regije, ki vsebuje vezavno mesto za mitohondrijski transkripcijski faktor A (TFAM), ni povezana z marmoriranostjo pri F2 Wagyu X limousin križancih:

    OpenAIRE

    Dovč, Peter; Jiang, Zhihua; Kunej, Tanja; Michal, Jennifer J.

    2005-01-01

    Mitochondrial transcription factor A (TFAM) is a nucleus-encoded protein that is essential for initiation of transcription and replication of mitochondrial DNA (mtDNA). It has been shown that TFAM binds the entire length of the mtDNA,but with higher affinitz to sequences around both mitochondrial promoters located in 3' domain of the D-loop region. The objectives of this study were to detect genetic polymorphisms in the sequence flanking TFAM binding sites of the mtDNA D-loop region and inves...

  11. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Debets, Alfons J M; Slakhorst, S Marijke; Hoekstra, Rolf F

    2008-01-01

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with t

  12. Etiology, antimicrobial susceptibility profile of Staphylococcus spp. and risk factors associated with bovine mastitis in the states of Bahia and Pernambuco

    Directory of Open Access Journals (Sweden)

    Carina C. Krewer

    2013-05-01

    Full Text Available The purpose of this paper was to study the etiology of mastitis, determine the antimicrobial susceptibility profile of Staphylococcus spp. and to identify the risk factors associated with infection in dairy cows in the states of Bahia and Pernambuco, Brazil. From the 2,064 milk samples analyzed, 2.6% were associated with cases of clinical mastitis and 28.2% with subclinical mastitis. In the microbiological culture, Staphylococcus spp. (49.1% and Corynebacterium spp. (35.3% were the main agents found, followed by Prototheca spp. (4.6% and Gram negative bacilli (3.6%. In the antimicrobial susceptibility testing, all 218 Staphylococcus spp. were susceptible to rifampicin and the least effective drug was amoxicillin (32.6%. Multidrug resistance to three or more drugs was observed in 65.6% of Staphylococcus spp. The risk factors identified for mastitis were the extensive production system, not providing feed supplements, teat drying process, not disinfecting the teats before and after milking, and inadequate hygiene habits of the milking workers. The presence of multiresistant isolates in bovine milk demonstrates the importance of the choice and appropriate use of antimicrobial agents. Prophylactic and control measures, including teat antisepsis and best practices for achieving hygienic milking should be established in order to prevent new cases of the disease in herds.

  13. Mitochondrial Myopathy

    Science.gov (United States)

    ... NINDS supports research focused on effective treatments and cures for mitochondrial myopathies and other mitochondrial diseases. Scientists are investigating the possible benefits of exercise programs and nutritional supplements, primarily natural and synthetic versions of CoQ10. While CoQ10 has ...

  14. Differentiation inducing factor 3 mediates its anti-leukemic effect through ROS-dependent DRP1-mediated mitochondrial fission and induction of caspase-independent cell death.

    Science.gov (United States)

    Dubois, Alix; Ginet, Clemence; Furstoss, Nathan; Belaid, Amine; Hamouda, Mohamed Amine; El Manaa, Wedjene; Cluzeau, Thomas; Marchetti, Sandrine; Ricci, Jean Ehrland; Jacquel, Arnaud; Luciano, Frederic; Driowya, Mohsine; Benhida, Rachid; Auberger, Patrick; Robert, Guillaume

    2016-05-01

    Differentiation-inducing factor (DIF) defines a group of chlorinated hexaphenones that orchestrate stalk-cell differentiation in the slime mold Dictyostelium discoideum (DD). DIF-1 and 3 have also been reported to have tumor inhibiting properties; however, the mechanisms that underlie the effects of these compounds remain poorly defined. Herein, we show that DIF-3 rapidly triggers Ca2+ release and a loss of mitochondrial membrane potential (MMP) in the absence of cytochrome c and Smac release and without caspase activation. Consistently with these findings, we also detected no evidence of apoptosis in cells treated with DIF-3 but instead found that this compound induced autophagy. In addition, DIF-3 promoted mitochondrial fission in K562 and HeLa cells, as assessed by electron and confocal microscopy analysis. Importantly, DIF-3 mediated the phosphorylation and redistribution of dynamin-related protein 1 (DRP1) from the cytoplasmic to the microsomal fraction of K562 cells. Pharmacological inhibition or siRNA silencing of DRP1 not only inhibited mitochondrial fission but also protected K562 cells from DIF-3-mediated cell death. Furthermore, DIF-3 potently inhibited the growth of imatinib-sensitive and imatinib-resistant K562 cells. It also inhibited tumor formation in athymic mice engrafted with an imatinib-resistant CML cell line. Finally, DIF-3 exhibited a clear selectivity toward CD34+ leukemic cells from CML patients, compared with CD34- cells. In conclusion, we show that the potent anti-leukemic effect of DIF-3 is mediated through the induction of mitochondrial fission and caspase-independent cell death. Our findings may have important therapeutic implications, especially in the treatment of tumors that exhibit defects in apoptosis regulation. PMID:27027430

  15. Qualitative and quantitative impacts assessment of contagious bovine pleuropneumonia in Fulani pastoral herds of North-central Nigeria: The associated socio-cultural factors.

    Science.gov (United States)

    Alhaji, N B; Babalobi, O O

    2016-06-01

    Contagious bovine pleuropneumonia is one of the most important trans-boundary disease affecting Fulani cattle herds of Nigeria and whose control is urgently needed. A Participatory Epidemiology approach and cross-sectional study were concurrently conducted to investigate qualitative and quantitative impacts of CBPP, respectively and associated socio-cultural factors that influenced exposure of Fulani nomadic pastoral communities to its risk in Niger State, North-central Nigeria between January and December 2013. A total of nine pastoral communities were purposively selected for qualitative impact assessment using Participatory Rural Appraisal tools, while 765 cattle randomly sampled from 125 purposively selected nomadic herds were analyzed using c-ELISA. Data on socio-cultural characteristics were collected using structured questionnaires administered on nomadic herd owners of the 125 selected herds. Kendall's Coefficient of Concordance W statistics and OpenEpi 2.3 were used for statistical analyses. Pastoralists' dependent factors associated with their socio-cultural activities were tested using Chisquare tests and likelihood backward logistic regressions. The mean proportional piles (relative qualitative impact) of CBPP was 12.6%, and nomads agreement on this impact was strong (W=0.6855) and statistically significant (Psharing a water source that caused concentration of stocks in one point was fifty three times more likely (OR 53.08; 95% CI: 14.91, 189.00) to be satisfactory practice that influenced occurrence of the disease in herds. This study highlighted the critical gap that exists in terms of significant influence of socio-cultural factors on CBPP occurrence in pastoral herds in Nigeria. Thus, CBPP surveillance, control and prevention programs that take these factors into consideration will be beneficial to the livestock industry in Nigeria, and indeed Africa.

  16. Qualitative and quantitative impacts assessment of contagious bovine pleuropneumonia in Fulani pastoral herds of North-central Nigeria: The associated socio-cultural factors.

    Science.gov (United States)

    Alhaji, N B; Babalobi, O O

    2016-06-01

    Contagious bovine pleuropneumonia is one of the most important trans-boundary disease affecting Fulani cattle herds of Nigeria and whose control is urgently needed. A Participatory Epidemiology approach and cross-sectional study were concurrently conducted to investigate qualitative and quantitative impacts of CBPP, respectively and associated socio-cultural factors that influenced exposure of Fulani nomadic pastoral communities to its risk in Niger State, North-central Nigeria between January and December 2013. A total of nine pastoral communities were purposively selected for qualitative impact assessment using Participatory Rural Appraisal tools, while 765 cattle randomly sampled from 125 purposively selected nomadic herds were analyzed using c-ELISA. Data on socio-cultural characteristics were collected using structured questionnaires administered on nomadic herd owners of the 125 selected herds. Kendall's Coefficient of Concordance W statistics and OpenEpi 2.3 were used for statistical analyses. Pastoralists' dependent factors associated with their socio-cultural activities were tested using Chisquare tests and likelihood backward logistic regressions. The mean proportional piles (relative qualitative impact) of CBPP was 12.6%, and nomads agreement on this impact was strong (W=0.6855) and statistically significant (Psource that caused concentration of stocks in one point was fifty three times more likely (OR 53.08; 95% CI: 14.91, 189.00) to be satisfactory practice that influenced occurrence of the disease in herds. This study highlighted the critical gap that exists in terms of significant influence of socio-cultural factors on CBPP occurrence in pastoral herds in Nigeria. Thus, CBPP surveillance, control and prevention programs that take these factors into consideration will be beneficial to the livestock industry in Nigeria, and indeed Africa. PMID:27237398

  17. Models of bovine babesiosis including juvenile cattle.

    Science.gov (United States)

    Saad-Roy, C M; Shuai, Zhisheng; van den Driessche, P

    2015-03-01

    Bovine Babesiosis in cattle is caused by the transmission of protozoa of Babesia spp. by ticks as vectors. Juvenile cattle (resistance to Bovine Babesiosis, rarely show symptoms, and acquire immunity upon recovery. Susceptibility to the disease varies between breeds of cattle. Models of the dynamics of Bovine Babesiosis transmitted by the cattle tick that include these factors are formulated as systems of ordinary differential equations. Basic reproduction numbers are calculated, and it is proved that if these numbers are below the threshold value of one, then Bovine Babesiosis dies out. However, above the threshold number of one, the disease may approach an endemic state. In this case, control measures are suggested by determining target reproduction numbers. The percentage of a particular population (for example, the adult bovine population) needed to be controlled to eradicate the disease is evaluated numerically using Columbia data from the literature. PMID:25715822

  18. Clinical applications of bovine colostrum therapy

    DEFF Research Database (Denmark)

    Rathe, Mathias; Müller, Klaus; Sangild, Per Torp;

    2014-01-01

    Bovine colostrum, the first milk that cows produce after parturition, contains high levels of growth factors and immunomodulatory components. Some healthy and diseased individuals may gain health benefits by consuming bovine colostrum as a food supplement. This review provides a systematic...... to populations, outcomes, and methodological quality, as judged by the Jadad assessment tool. Many studies used surrogate markers to study the effects of bovine colostrum. Studies suggesting clinical benefits of colostrum supplementation were generally of poor methodological quality, and results could...... not be confirmed by other investigators. Bovine colostrum may provide gastrointestinal and immunological benefits, but further studies are required before recommendations can be made for clinical application. Animal models may help researchers to better understand the mechanisms of bovine colostrum supplementation...

  19. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice

    DEFF Research Database (Denmark)

    Brooks, Nicole E; Hjortebjerg, Rikke; Henry, Brooke E;

    2016-01-01

    of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. RESULTS: As expected, bGH mice had increased body weight (p=3.70E(-8)) but decreased percent fat mass (p=4.87E(-4)). Likewise, GHR-/- mice had decreased body weight (p...... was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. DESIGN: Seven......-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression...

  20. Mycobacterium avium Subspecies paratuberculosis and Bovine Leukemia Virus Seroprevalence and Associated Risk Factors in Commercial Dairy and Beef Cattle in Northern and Northeastern China.

    Science.gov (United States)

    Sun, Wu-Wen; Lv, Wen-Fa; Cong, Wei; Meng, Qing-Feng; Wang, Chun-Feng; Shan, Xiao-Feng; Qian, Ai-Dong

    2015-01-01

    Mycobacterium avium subspecies paratuberculosis (MAP) and bovine leukemia virus (BLV) are important pathogens, commonly responsible for economical loss to cattle farms all over the world, yet their epidemiology in commercial dairy and beef cattle in China is still unknown. Thus, from September 2013 to December 2014, a large-scale seroprevalence study was conducted to determine the seroprevalence and identify herd-level risk factors associated with MAP and BLV infection. The source sample was 3674 cattle from 113 herds in northern and northeastern China. Antibodies against MAP and BLV were detected using ELISA tests. At animal-level, the seroprevalence of antibodies against MAP and BLV was 11.79% (433/3674) and 18.29% (672/3674), respectively. At herd-level, the seroprevalence of antibodies against MAP and BLV was 20.35% and 21.24% (24/113), respectively. Herd size was identified to be associated with MAP infection while herd size and presence of cattle introduced from other farms were significantly associated with BLV infection. Further research is needed to confirm these findings and improve the knowledge of the epidemiology of these two pathogens in these regions and elsewhere in China.

  1. Effect of recombinant bovine somatotropin on plasma concentrations of insulin-like growth factor I, insulin and membrane integrity of bull spermatozoa.

    Science.gov (United States)

    Vieira, M B; Bianchi, I; Madeira, E M; Roll, V F B; Oliveira, C A; Viau, P; Pivato, I; Severo, N C; Del Pino, F A B; Schneider, A; Corrêa, M N

    2010-12-01

    This study aimed to evaluate the effect of the exogenous recombinant bovine somatotropin (rbST) on plasma concentrations of insulin-like growth factor I (IGF-I), insulin and semen quality of bulls. Twenty bulls (Aberdeen Angus and Brangus) were divided by breed into two groups. Placebo group was injected with NaCl 0.9% (s.c.) and treatment group with rbST (s.c., 500 mg) at days 0 and 14 of the experiment. Immediately after semen collection, blood samples were taken on days 0, 14, 28, 42 and 56 of the experiment. Semen was also collected on day 70 of the experiment. Evaluation of sperm motility was performed at pre-freezing and post-thawing stage, whereas assessment of sperm membrane integrity was performed after freezing and thawing. Analysis of data revealed that the effect of treatment and treatment-by-collection day on plasma concentrations of IGF-I and insulin was not significant. However, mean plasma concentrations of IGF-I and insulin were affected (p  0.05) at pre-freezing and post-thawing stage. Intactness of plasmalemma and tail membrane of spermatozoa at post-thawing stage was higher (p < 0.05) in rbST-treated group than in control. In conclusion, rbST did not affect plasma concentrations of IGF-I and insulin, however, it did improve post-thaw sperm membrane integrity. PMID:19663813

  2. Fatores de risco hospitalar para implante de bioprótese valvar de pericárdio bovino Hospital risk factors for bovine pericardial bioprosthesis valve implantation

    Directory of Open Access Journals (Sweden)

    Mateus W. De Bacco

    2007-08-01

    Full Text Available FUNDAMENTO: Identificação de fatores de risco pré-operatórios na cirurgia cardíaca valvar visa melhor resultado cirúrgico pela possível neutralização de condições relacionadas com morbi-mortalidade aumentada. OBJETIVO: Este estudo objetiva identificar fatores de risco hospitalar em pacientes submetidos a implante de bioprótese de pericárdio bovino. MÉTODOS: Estudo retrospectivo incluindo 703 pacientes consecutivos submetidos a implante de pelo menos uma bioprótese de pericárdio bovino St. Jude Medical-Biocor® de setembro de 1991 a dezembro de 2005 no Instituto de Cardiologia do RS, sendo 392 aórticos, 250 mitrais e 61 mitro-aórticos. Analisadas as características sexo, idade, índice de massa corporal, classe funcional (New York Heart Association - NYHA, fração de ejeção, lesão valvar, hipertensão arterial sistêmica, diabete melito, função renal, arritmias cardíacas, cirurgia cardíaca prévia, revascularização miocárdica, plastia tricúspide e caráter eletivo, de urgência ou de emergência da cirurgia. Desfecho primordial foi mortalidade hospitalar. Utilizou-se regressão logística para examinar relação entre fatores de risco e mortalidade hospitalar. RESULTADOS: Ocorreram 101 (14,3% óbitos hospitalares. Características significativamente relacionadas à mortalidade aumentada foram sexo feminino (p 2,4mg/dl (p=0,004, classe funcional IV (pBACKGROUND: Identification of preoperative heart valve surgery risk factors aim to improve surgical outcomes with the possibility to offset conditions related to increased morbidity and mortality. OBJECTIVE: Intent of this study is to identify hospital risk factors in patients undergoing bovine pericardial bioprosthesis implantation. METHODS: Retrospective study including 703 consecutive patients who underwent implantation of at least one St. Jude Medical-Biocor™ bovine pericardial bioprosthesis between September 1991 and December 2005 at the Rio Grande do Sul

  3. Insulin-like Growth Factor-I (IGF-I) in Reproduction System of Female Bovine

    Institute of Scientific and Technical Information of China (English)

    QI Meiyu; ZviRoth; LIU Di

    2011-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in female reproduction, because it has the effect of anti-apoptosis improving cell proliferation, transformation and differentiation. This paper reviewed the effects of IGF-I on ovary, follicle growth, acquisition of oocyte competence and preimplantation embryo viability, and then summarized different points about IGF-1 for reproduction system

  4. Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary gland fibroblasts.

    Science.gov (United States)

    Wu, Jianmei; Ding, Yulin; Bi, Yannan; Wang, Yi; Zhi, Yu; Wang, Jinling; Wang, Fenglong

    2016-06-01

    Staphylococcus aureus is a common Gram-positive pathogen that causes bovine mastitis, a persistent infection of the bovine mammary gland. To better understand the importance of bovine mammary fibroblasts (BMFBs) and the roles of the TLR-NF-κB and TLR-AP-1 signaling pathways in the regulation of S. aureus-associated mastitis and mammary fibosis, BMFBs cultured in vitro were stimulated with different concentrations of heat-inactivated S. aureus to analyze the gene and protein expression of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), transforming growth factor beta 1 (TGF-β1), basic fibroblast growth factor (bFGF) as well as the protein expression of nuclear factor-kappa B (NF-κB) and activation protein-1 (AP-1) by means of quantitative polymerase chain reaction (qPCR) and western blotting, respectively. Specific NF-κB and AP-1 inhibitors were also used to investigate their effects on the regulation of TGF-β1 and bFGF expression. The results indicated that, in addition to increasing mRNA and protein expression of TLR2 and TLR4, S. aureus could also upregulate TGF-β1 and bFGF mRNA expression and secretion through the activation of NF-κB and AP-1. The increase in TGF-β1 and bFGF expression was shown to be inhibited by AP-1- and NF-κB-specific inhibitors. Taken together, S. aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB in BMFBs. This information offers new potential targets for the treatment of bovine mammary fibrosis. PMID:26948281

  5. Bovine mastitis and its association with selected risk factors in smallholder dairy farms in and around Bahir Dar, Ethiopia.

    Science.gov (United States)

    Almaw, G; Zerihun, A; Asfaw, Y

    2008-08-01

    Three hundred fifty one (195 local zebu and 156 Holstein x local zebu crosses) lactating cows of smallholder farms in Bahir Dar 'milk shed' were examined from September 2003 to March 2004 to determine mastitis prevalence, isolate pathogens and identify the role of some potential risk factors. Clinical prevalence was determined through examination of abnormalities of milk, udder or cow. California mastitis test (CMT) was used for determination of subclinical mastitis prevalence. Clinical prevalence at cow level was 3.9% in crossbreds and none in local zebu breeds. Subclinical mastitis at cow level based on CMT was high (34.4%) in crossbreds compared to indigenous zebu (17.9%) (p CMT was 17.9% and 4.9% in crossbreds and local zebu, respectively. The pathogens isolated from mastitic milk (CMT positive milk) were coagulase negative staphylococci (CNS), S. aureus, Str. agalactiae, Str. dysgalactiae, Str. uberis, Micrococcus species, C. bovis, A. pyogens, B. cereus, and S. intermedius. Among these, the most frequent isolates were CNS (50%), S. aureus (19%), Str. agalactiae (8%) and Str. dysgalactiae (7%). Among potential risk factors considered, stage of lactation, parity and breed were found to affect the occurrence of mastitis significantly (p < 0.05). PMID:18575970

  6. Identification of sequence polymorphisms in the D-loop region of mitochondrial DNA as a risk factor for lung cancer.

    Science.gov (United States)

    Ding, Cuimin; Li, Ruijuan; Wang, Ping; Jin, Pule; Li, Shengmian; Guo, Zhanjun

    2012-08-01

    Accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) may be associated with an increased cancer risk. We investigated the lung cancer risk profile of D-loop SNPs in a case-controlled study. The minor alleles of nucleotides 235A/G and 324A/G were associated with an increased risk for lung cancer patients. The minor alleles of the nucleotides 151C/T, 200A/G, 524C/CA, and 16274G/A were specifically associated with the cancer risk of squamous cell carcinoma, whereas the minor allele of nucleotide 16298T/C was specifically associated with the risk of small cell lung cancer. In conclusion, SNPs in mtDNA are potential modifiers of lung cancer risk. The analysis of genetic polymorphisms in the mitochondrial D-loop can help identify subgroups of patients who are at a high risk of developing lung cancer.

  7. Genotypes, Virulence Factors and Antimicrobial Resistance Genes of Staphylococcus aureus Isolated in Bovine Subclinical Mastitis from Eastern China

    Directory of Open Access Journals (Sweden)

    Javed Memon§, Yongchun Yang§, Jam Kashifa, Muhammad Yaqoob, Rehana Buriroa, Jamila Soomroa, Wang Liping and Fan Hongjie*

    2013-11-01

    Full Text Available This study was carried out to determine the genotypes, virulence factors and antimicrobial resistance traits of 34 Staphylococcus aureus isolated from subclinical mastitis in Eastern China. Minimal inhibitory concentration (MIC results showed resistance to erythromycin in all isolates. A high frequency of Methicillin resistant S. aureus (MRSA; 29% was observed and these isolates were also highly resistant to penicillin, oxacillin, oxytetracycline and chloramphenicol than methicillin sensitive S. aureus (MSSA isolates. Thirteen pathogenic factors and seven resistance genes including mecA and blaZ gene were checked through PCR. The spaX gene was found in all isolates, whereas cna, spaIg, nuc, clfA, fnbpB, hlA, hlB and seA were present in 35, 79, 85, 59, 35, 85, 71 and 38% isolates, respectively. Nine isolates carried a group of 8 different virulence genes. Moreover, macrolide resistance genes ermB and ermC were present in all isolates. High resistance rate against methicillin was found but no isolate was positive for mecA gene, whereas blaZ and tetK were detected in 82 and 56% isolates, respectively. Genes; fnbpA, seB, seC, seD, dfrK and tetM were not found in any isolate. The statistical association between phenotypic resistance and virulence genes showed, clfA, fnbpB, hlB and seA, were potentially associated with penicillin G, ciprofloxacin, methicillin, chloramphenicol, trimethoprim and oxytetracycline resistance (P≤0.05. REP-PCR based genotyping showed seven distinct genotypes (A-G prevalent in this region. This study reports the presence of multidrug resistant S. aureus in sub-clinical mastitis which were also highly virulent that could be a major obstacle in the treatment of mastitis in this region of China.

  8. Fatores de risco associados à mastite bovina causada por Prototheca zopfii Risk factors associated with bovine mastitis caused by Prototheca zopfii

    Directory of Open Access Journals (Sweden)

    Aline Artioli Machado Yamamura

    2008-06-01

    Full Text Available Este trabalho teve como objetivo o estudo de fatores de risco associados à mastite bovina causada por Prototheca zopfii. Foram analisadas 13 propriedades leiteiras dos Estados do Paraná e de São Paulo, segundo os seguintes critérios de seleção: confirmação prévia de casos de mastite por Prototheca spp., triagem pela pesquisa de Prototheca spp. em tanques de expansão e latões e rebanhos com contagem de células somáticas acima de 5x105cel mL-1. As amostras coletadas consistiram de: leite, água, solo, fezes e swab de teteiras. Prototheca spp. foi isolada de amostras de leite dos quartos mamários com mastite clínica ou subclínica em uma propriedade e de amostras de leite e do ambiente em quatro propriedades, nas quais foi isolada em amostras de: água de bebedouro, abastecimento, esgoto, empoçada no piso de estábulo e sala de ordenha, solo de piquete e pasto, teteiras, fezes de bezerros e suínos. Do total de 383 vacas examinadas, Prototheca spp. foi isolada em 20 (5,2% vacas, sendo caracterizada como P. zopfii em 18. Os fatores de risco associados à mastite causada por P. zopfii foram: criação das vacas a pasto, alimentação dos animais com pasto e silagem, realização de ordenha mecânica em estábulo, permanência das vacas após ordenha em piquete sem alimento, criação de suínos próxima às instalações dos bovinos, existência de cães, gatos e roedores, falta de higienização dos tetos com água, pré-imersão dos tetos em aplicador com retorno e sem a troca do anti-séptico, alimentação dos bezerros com leite de vacas com mastite clínica e serem as vacas da raça holandesa.This research had as objective the study of risk factors associated with bovine mastitis caused by Prototheca zopfii. Thirteen dairy herds in Paraná and São Paulo states were analyzed and selected according to the following criteria: previous confirmation of Prototheca spp. mastitis cases, screening of Prototheca spp. in bulk tanks and

  9. The Arabidopsis thaliana RNA Editing FactorSLO2, which Affects the Mitochondrial ElectronTransport Chain, Participates in Multiple Stressand Hormone Resoonses

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrialelectron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show thatmutation in SL02 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses.Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plantsshow increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection.An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes ofcomplex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABAtreatment. In addition, H202 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude thatSLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editingfactors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link betweenmitochondrial RNA editing events and stress response.

  10. Herd-level prevalence and risk factors for bovine viral diarrhea virus infection in cattle in the State of Paraíba, Northeastern Brazil.

    Science.gov (United States)

    Fernandes, Leise Gomes; Nogueira, Adriana Hellmeister de Campos; De Stefano, Eliana; Pituco, Edviges Maristela; Ribeiro, Cláudia Pestana; Alves, Clebert José; Oliveira, Tainara Sombra; Clementino, Inácio José; de Azevedo, Sérgio Santos

    2016-01-01

    Serological surveys based on a planned sampling on bovine viral diarrhea virus (BVDV) infection in Brazilian cattle herds are scarce. A cross-sectional study was carried out to determine herd- and animal-level seroprevalences and to identify risk factors associated with herd-level seroprevalence for BVDV infection in the State of Paraíba, Northeastern Brazil, from September 2012 to January 2013. The state was divided into three sampling strata, and for each stratum, the prevalence of herds infected with BVDV and the prevalence of seropositive animals was estimated by a two-stage sampling survey. In total, 2443 animals were sampled from 478 herds. A virus-neutralization test was used for BVDV antibody detection. A herd was considered positive when at least one seropositive animal was detected. The herd- and animal-level prevalences in the State of Paraíba were 65.5% (95% confidence interval (CI) = 61.1-69.7%) and 39.1% (95% CI = 33.1-45.6%), respectively. The frequency of seropositive animals per herd ranged from 10 to 100% (median of 50%). The risk factors identified were as follows: more than six calves aged ≤12 months (odds ratio (OR) = 3.72; 95% CI = 2.08-6.66), animal purchasing (OR = 1.66; 95% CI = 1.08-2.55), pasture rental (OR = 2.15; 95% CI = 1.35-3.55), and presence of veterinary assistance (OR = 2.04; 95% CI = 1.10-3.79). Our findings suggest that the implementation of control and prevention measures among farmers, with the aim of preventing dissemination of the agent in the herds, is necessary. Special attention should be given to addressing the identified risk factors, such as sanitary control prior to animal purchasing and to discourage the pasture rental, as well as to encourage the vaccination in the herds.

  11. Herd-level prevalence and risk factors for bovine viral diarrhea virus infection in cattle in the State of Paraíba, Northeastern Brazil.

    Science.gov (United States)

    Fernandes, Leise Gomes; Nogueira, Adriana Hellmeister de Campos; De Stefano, Eliana; Pituco, Edviges Maristela; Ribeiro, Cláudia Pestana; Alves, Clebert José; Oliveira, Tainara Sombra; Clementino, Inácio José; de Azevedo, Sérgio Santos

    2016-01-01

    Serological surveys based on a planned sampling on bovine viral diarrhea virus (BVDV) infection in Brazilian cattle herds are scarce. A cross-sectional study was carried out to determine herd- and animal-level seroprevalences and to identify risk factors associated with herd-level seroprevalence for BVDV infection in the State of Paraíba, Northeastern Brazil, from September 2012 to January 2013. The state was divided into three sampling strata, and for each stratum, the prevalence of herds infected with BVDV and the prevalence of seropositive animals was estimated by a two-stage sampling survey. In total, 2443 animals were sampled from 478 herds. A virus-neutralization test was used for BVDV antibody detection. A herd was considered positive when at least one seropositive animal was detected. The herd- and animal-level prevalences in the State of Paraíba were 65.5% (95% confidence interval (CI) = 61.1-69.7%) and 39.1% (95% CI = 33.1-45.6%), respectively. The frequency of seropositive animals per herd ranged from 10 to 100% (median of 50%). The risk factors identified were as follows: more than six calves aged ≤12 months (odds ratio (OR) = 3.72; 95% CI = 2.08-6.66), animal purchasing (OR = 1.66; 95% CI = 1.08-2.55), pasture rental (OR = 2.15; 95% CI = 1.35-3.55), and presence of veterinary assistance (OR = 2.04; 95% CI = 1.10-3.79). Our findings suggest that the implementation of control and prevention measures among farmers, with the aim of preventing dissemination of the agent in the herds, is necessary. Special attention should be given to addressing the identified risk factors, such as sanitary control prior to animal purchasing and to discourage the pasture rental, as well as to encourage the vaccination in the herds. PMID:26498460

  12. Characterization of Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) interaction with the Bovine Aortic Endothelial (BAE) cell surface : Examination of the Role of Heparan Sulfate Proteoglycans (HSPG).

    OpenAIRE

    Parghi, Nirav

    1998-01-01

    Insulin-like growth factor binding proteins (IGFBPs) are known to be important modulators of the insulin-like growth factor (IGF-I). However, their precise role is as yet unclear. Further, recent studies have indicated that IGFBP-3 has a receptor mediated growth inhibitory response of its own. In the present study, we quantified the binding characteristics of IGFBP-3 to bovine aortic endothelial (BAE) cells. Binding studies at 4 oC were conducted and a specific binding curve for IGFB...

  13. Prevalence of bovine tuberculosis and risk factor assessment in cattle in rural livestock areas of Govuro District in the Southeast of Mozambique.

    Directory of Open Access Journals (Sweden)

    Ivânia Moiane

    Full Text Available BACKGROUND: Bovine tuberculosis (bTB, caused by Mycobacterium bovis, is an infectious disease of cattle that also affects other domestic animals, free-ranging and farmed wildlife, and also humans. In Mozambique, scattered surveys have reported a wide variation of bTB prevalence rates in cattle from different regions. Due to direct economic repercussions on livestock and indirect consequences for human health and wildlife, knowing the prevalence rates of the disease is essential to define an effective control strategy. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional study was conducted in Govuro district to determine bTB prevalence in cattle and identify associated risk factors. A representative sample of the cattle population was defined, stratified by livestock areas (n = 14. A total of 1136 cattle from 289 farmers were tested using the single comparative intradermal tuberculin test. The overall apparent prevalence was estimated at 39.6% (95% CI 36.8-42.5 using a diagnostic threshold cut-off according to the World Organization for Animal Health. bTB reactors were found in 13 livestock areas, with prevalence rates ranging from 8.1 to 65.8%. Age was the main risk factor; animals older than 4 years were more likely to be positive reactors (OR = 3.2, 95% CI: 2.2-4.7. Landim local breed showed a lower prevalence than crossbred animals (Landim × Brahman (OR = 0.6, 95% CI: 0.4-0.8. CONCLUSIONS/SIGNIFICANCE: The findings reveal an urgent need for intervention with effective, area-based, control measures in order to reduce bTB prevalence and prevent its spread to the human population. In addition to the high prevalence, population habits in Govuro, particularly the consumption of raw milk, clearly may potentiate the transmission to humans. Thus, further studies on human tuberculosis and the molecular characterization of the predominant strain lineages that cause bTB in cattle and humans are urgently required to evaluate the impact on human health in

  14. Mitochondrial APE1/Ref-1 suppressed protein kinase C-induced mitochondrial dysfunction in mouse endothelial cells.

    Science.gov (United States)

    Joo, Hee Kyoung; Lee, Yu Ran; Park, Myoung Soo; Choi, Sunga; Park, Kyoungsook; Lee, Sang Ki; Kim, Cuk-Seong; Park, Jin Bong; Jeon, Byeong Hwa

    2014-07-01

    Protein kinase C (PKC) induces mitochondrial dysfunction, which is an important pathological factor in cardiovascular diseases. The role of apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) on PKC-induced mitochondrial dysfunction has not been variously investigated. In this study, phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, induced mitochondrial hyperpolarization and reactive oxygen species generation and also increased mitochondrial translocation of APE1/Ref-1. APE1/Ref-1 overexpression suppressed PMA-induced mitochondrial dysfunction. In contrast, gene silencing of APE1/Ref-1 increased the sensitivity of mitochondrial dysfunction. Moreover, mitochondrial targeting sequence (MTS)-fused APE1/Ref-1 more effectively suppressed PMA-induced mitochondrial dysfunctions. These results suggest that mitochondrial APE1/Ref-1 is contributed to the protective role to protein kinase C-induced mitochondrial dysfunction in endothelial cells.

  15. Identification of Factors Interacting with hMSH2 and hMLH1 in the Fetal Liver and Investigations of how Mitochondrial Dysfunction Creates a Mutator Phenotype

    DEFF Research Database (Denmark)

    Rasmussen, Anne Karin

    mutations. Mutations in MMR genes cause hereditary non-polyposis colon cancer. In an effort to identify unidentified genes involved in MMR and tissue-specific MMRassociated factors, we employed the yeast two-hybrid system, using the human hMSH2 as bait and a human fetal liver cDNA library as prey. We...... demonstrated that hMSH2 interacts with a human 5’ → 3’ exonuclease 1 (hEXO1). Data presented in this thesis also support the conclusion that mitochondrial dysfunction leads to spontaneous nuclear DNA damage. We employed the yeast Saccharomyces cerevisiae as a model system to investigate a potential link...... very limited. We decided to investigate O6-methylguanine- DNA methyltransferase (MGMT) because of the fact that its sub-cellular localization has not been determined. We determined that it was localized to nucleus but not to mitochondria in HeLa and breast epithelial cells....

  16. Identification of Factors Interacting with hMSH2 and hMLH1 in the Fetal Liver and Investigations of how Mitochondrial Dysfunction Creates a Mutator Phenotype

    DEFF Research Database (Denmark)

    Rasmussen, Anne Karin

    mutations. Mutations in MMR genes cause hereditary non-polyposis colon cancer. In an effort to identify unidentified genes involved in MMR and tissue-specific MMRassociated factors, we employed the yeast two-hybrid system, using the human hMSH2 as bait and a human fetal liver cDNA library as prey. We...... demonstrated that hMSH2 interacts with a human 5’ → 3’ exonuclease 1 (hEXO1). Data presented in this thesis also support the conclusion that mitochondrial dysfunction leads to spontaneous nuclear DNA damage. We employed the yeast Saccharomyces cerevisiae as a model system to investigate a potential link...... decided to investigate O6-methylguanine- DNA methyltransferase (MGMT) because of the fact that its sub-cellular localization has not been determined. We determined that it was localized to nucleus but not to mitochondria in HeLa and breast epithelial cells....

  17. Pathogenic mutations of nuclear genes associated with mitochondrial disorders

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Zhu; Xuerui Peng; Min-Xin Guan; Qingfeng Yan

    2009-01-01

    Mitochondrial disorders are clinical phenotypes associated with mitochondrial dysfunction, which can be caused by mutations in mitochondrial DNA (mtDNA) or nuclear genes. In this review, we summarized the pathogenic mutations of nuclear genes associated with mitochondrial disorders. These nuclear genes encode, components of mitochondrial translational machinery and structural subunits and assembly factors of the oxidative phosphorylation, that complex. The molecular mechanisms, that nuclear modifier genes modulate the phenotypic expression of mtDNA mutations, are discussed in detail.

  18. 78 FR 72979 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2013-12-04

    ... risks of other livestock diseases, such as bovine viral diarrhea, foot-and-mouth disease, infectious... Products Derived from Bovines,'' published in the Federal Register on September 18, 2007 (72 FR 53314-53379... 92, 93, 94, et al. Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine...

  19. ß-catenin, a transcription factor activated by canonical Wnt signaling, is expressed in sensory neurons of calves latently infected with bovine herpesvirus 1

    Science.gov (United States)

    Like many a-herpesvirinae subfamily members, bovine herpes virus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons: the latency-related (LR) RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch mediate...

  20. Effect of diet on ability of Vascular Endothelial Growth Factor A (VEGFA) isoforms to alter follicular progression in bovine ovarian cortical cultures

    Science.gov (United States)

    The objective of this study was to determine the effect of changes in diet on ability of VEGFA isoforms to alter follicle progression in bovine ovarian cortex cultures. Our hypothesis was that diet would affect the magnitude of VEGFA isoform actions on follicular development. Heifers (n = 30) receiv...

  1. Camel and bovine chymosin

    DEFF Research Database (Denmark)

    Jensen, Jesper Langholm; Mølgaard, Anne; Poulsen, Jens-Christian Navarro;

    2013-01-01

    Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite...... having 85% sequence identity, camel chymosin shows a 70% higher milk-clotting activity than bovine chymosin towards bovine milk. The activities, structures, thermal stabilities and glycosylation patterns of bovine and camel chymosin obtained by fermentation in Aspergillus niger have been examined...... differential scanning calorimetry revealed a slightly higher thermal stability of camel chymosin compared with bovine chymosin. The crystal structure of a doubly glycosylated variant of camel chymosin was determined at a resolution of 1.6 Å and the crystal structure of unglycosylated bovine chymosin...

  2. The increasing of fibroblast growth factor 2, osteocalcin, and osteoblast due to the induction of the combination of Aloe vera and 2% xenograft concelous bovine

    Directory of Open Access Journals (Sweden)

    Utari Kresnoadi

    2012-12-01

    Full Text Available Background: To make a successfull denture prominent ridge is needed, preservation on tooth extraction socket is needed in order to prevent alveol bone resorption caused by revocation trauma. An innovative modification of the material empirically suspected to be able reduce inflammation caused by the revocation trauma is a combination of Aloe vera and xenograft concelous bovine (XCB and Aloe vera is a biogenic stimulator and accelerating the growth of alveolar ridge bone after tooth extraction. Purpose: The research was aimed to determine of the increasing alveol bone formation by inducing the combination of Aloe vera and 2% xenograft concelous bovine. Methods: To address the problems, the combination of Aloe vera and xenograft concelous bovine was induced into the tooth extraction sockets of Cavia cabayas which devided on 8 groups. Groups control, filled with XCB, Aloe vera and Aloe vera and XCB combination, at 7 days and 30 days after extraction. Afterwards, immunohistochemical examination was conducted to examine the expressions of FGF-2 and osteocalcin, as the product of the growth of osteoblasts. Results: There were significantly increases expression of FGF-2 and osteocalcyn on group which filled with XCB, Aloe vera and combined Aloe vera and XCB. Conclusion: It may be concluded that the induction of the combination of Aloe vera and xenograft concelous bovine into the tooth sockets can enhance the growth expressions of FGF-2 and osteocalcin as the product of osteoblasts, thus, the growth of alveolar bone was increased.Latar belakang: Untuk keberhasilan pembuatan gigitiruan diperlukan ridge yang prominent, maka diperlukan suatu preservasi soket pencabutan gigi untuk mencegah terjadinya resopsi tulang alveolar akibat trauma pencabutan. Suatu inovasi modifikasi bahan yang diduga secara empiris dapat mengurangi keradangan karena trauma pencabutan adalah berupa kombinasi Aloe vera dan xenograft concelous bovine (XCB. Aloe vera yang merupakan

  3. Mitochondrial Dysfunction in Neurodegenerative Diseases

    OpenAIRE

    Johri, Ashu; Beal, M. Flint

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyo...

  4. Tumor Necrosis Factor-α and Apoptosis Signal-Regulating Kinase 1 Control Reactive Oxygen Species Release, Mitochondrial Autophagy and C-Jun N-Terminal Kinase/P38 Phosphorylation During Necrotizing Enterocolitis

    Directory of Open Access Journals (Sweden)

    Naira Baregamian

    2009-01-01

    Full Text Available Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC. Tumor necrosis factor (TNFα is thought to generate reactive oxygen species (ROS and activate the apoptosis signal-regulating kinase 1 (ASK1-c-Jun N-terminal kinase (JNK/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.

  5. 78 FR 73993 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2013-12-10

    ... Health Inspection Service 9 CFR Parts 92, 93, 94, 95, 96, and 98 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Corrections In rule document 2013-28228 appearing...

  6. 77 FR 20319 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-04-04

    ...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 9 CFR Part 93 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Correction In proposed rule...

  7. ATP Depletion Via Mitochondrial F1F0 Complex by Lethal Factor is an Early Event in B. Anthracis-Induced Sudden Cell Death

    Directory of Open Access Journals (Sweden)

    Mitchell W. Woodberry

    2009-08-01

    Full Text Available Bacillus anthracis’ primary virulence factor is a tripartite anthrax toxin consisting of edema factor (EF, lethal factor (LF and protective antigen (PA. In complex with PA, EF and LF are internalized via receptor-mediated endocytosis. EF is a calmodulin- dependent adenylate cyclase that induces tissue edema. LF is a zinc-metalloprotease that cleaves members of mitogen-activated protein kinase kinases. Lethal toxin (LT: PA plus LF-induced death of macrophages is primarily attributed to expression of the sensitive Nalp1b allele, inflammasome formation and activation of caspase-1, but early events that initiate these processes are unknown. Here we provide evidence that an early essential event in pyroptosis of alveolar macrophages is LF-mediated depletion of cellular ATP. The underlying mechanism involves interaction of LF with F1F0-complex gamma and beta subunits leading to increased ATPase activity in mitochondria. In support, mitochondrial DNA-depleted MH-S cells have decreased F1F0 ATPase activity due to the lack of F06 and F08 polypeptides and show increased resistance to LT. We conclude that ATP depletion is an important early event in LT-induced sudden cell death and its prevention increases survival of toxin-sensitive cells.

  8. Mitochondrial dysfunction in Parkinson's disease.

    Science.gov (United States)

    Hu, Qingsong; Wang, Guanghui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta and the formation of Lewy bodies and Lewy neurites in surviving DA neurons in most cases. Although the cause of PD is still unclear, the remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. Numerous studies showed that dysfunction of mitochondria may play key roles in DA neuronal loss. Both genetic and environmental factors that are associated with PD contribute to mitochondrial dysfunction and PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provides direct evidence linking mitochondrial dysfunction to PD. Decrease of mitochondrial complex I activity is present in PD brain and in neurotoxin- or genetic factor-induced PD cellular and animal models. Moreover, PINK1 and parkin, two autosomal recessive PD gene products, have important roles in mitophagy, a cellular process to clear damaged mitochondria. PINK1 activates parkin to ubiquitinate outer mitochondrial membrane proteins to induce a selective degradation of damaged mitochondria by autophagy. In this review, we summarize the factors associated with PD and recent advances in understanding mitochondrial dysfunction in PD. PMID:27453777

  9. Mitochondrial dysfunction in heart failure.

    Science.gov (United States)

    Rosca, Mariana G; Hoppel, Charles L

    2013-09-01

    Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.

  10. Unlocking the bovine genome

    Science.gov (United States)

    The draft genome sequence of cattle (Bos taurus) has now been analyzed by the Bovine Genome Sequencing and Analysis Consortium and the Bovine HapMap Consortium, which together represent an extensive collaboration involving more than 300 scientists from 25 different countries. ...

  11. Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial

    OpenAIRE

    O Trubiani; Fulle, S.; T Traini; M Paludi; La Rovere, R.; M Orciani; S. Caputi; Piattelli, A.

    2010-01-01

    The basic aspects of bone tissue engineering include chemical composition and geometry of the scaffold design, because it is very important to improve not only cell attachment and growth but especially osteodifferentiation, bone tissue formation, and vascularization. Geistlich Bio-Oss® (GBO) is a xenograft consisting of deproteinized, sterilized bovine bone, chemically and physically identical to the mineral phase of human bone.In this study, we investigated the growth behaviour and the abili...

  12. Activation of bovine neutrophils by Brucella spp.

    Science.gov (United States)

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. PMID:27436438

  13. Transcription-independent role for human mitochondrial RNA polymerase in mitochondrial ribosome biogenesis

    OpenAIRE

    Surovtseva, Yulia V; Shadel, Gerald S.

    2013-01-01

    Human mitochondrial RNA polymerase, POLRMT, is required for mitochondrial DNA (mtDNA) transcription and forms initiation complexes with human mitochondrial transcription factor B2 (h-mtTFB2). However, POLRMT also interacts with the paralogue of h-mtTFB2, h-mtTFB1, which is a 12S ribosomal RNA methyltransferase required for small (28S) mitochondrial ribosome subunit assembly. Herein, we show that POLRMT associates with h-mtTFB1 in 28S mitochondrial ribosome complexes that are stable in the abs...

  14. Fatores de virulência em linhagens de Escherichia coli isoladas de mastite bovina Virulence factors in Escherichia coli strains isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    M.G. Ribeiro

    2006-10-01

    Full Text Available Avaliou-se a ocorrência de fatores de virulência e do sorotipo O157:H7 em 120 linhagens de Escherichia coli, isoladas de 80 casos de mastite clínica bovina e 40 de mastite subclínica. Verificou-se alfa-hemolisina em oito (6,7% linhagens, isoladas de cinco casos de mastite clínica e três de mastite subclínica e em nenhuma das estirpes detectou-se enteroemolisina. A presença de sideróforos foi encontrada em 11 (9,2% linhagens, sete de mastite clínica e quatro de subclínica. Em duas (1,7% estirpes isoladas de mastite subclínica, identificou-se enterotoxina STa. Observou-se efeito citopático em células vero compatível com a produção de verotoxina-VT em cinco (4,2% linhagens, duas de mastite clínica e três subclínicas. Em uma (0,8% linhagem isolada de mastite clínica, detectou-se efeito citopático compatível com o fator necrosante citotóxico. Nenhuma estirpe apresentou-se sorbitol-negativa no MacConkey-sorbitol, tampouco aglutinou com o sorotipo O157:H7. Os antimicrobianos mais efetivos foram polimixina B (97,5% e norfloxacina (95,8%. Observou-se multi-resistência a dois ou mais antimicrobianos em 24 (20% estirpes, principalmente com o uso de ampicilina e ceftiofur.The occurrence of different virulence factors and O157:H7 serotype investigation in 120 Escherichia coli strains isolated from clinical (80 cases and subclinical (40 cases bovine mastitis was evaluated. Alpha-haemolysin was detected in 8 (6.7% strains (5 clinical and 3 subclinical cases. None strain showed enterohaemolysin production. E. coli growth under iron restriction conditions (siderophores production was observed in 11 (9.2% strains (7 clinical and 4 subclinical cases. STa enterotoxin was detected in 2 (1.7% strains from subclinical cases. Cytotoxic effect in vero cells compatible with verotoxin-VT production was observed in 5 (4.2% strains (2 clinical and 3 subclinical cases. One strain (0.8% isolated from clinical mastitis showed cytophatic effect in vero

  15. Genetic counseling in mitochondrial disease.

    Science.gov (United States)

    Vento, Jodie M; Pappa, Belen

    2013-04-01

    Mitochondrial diseases are a genetically and clinically diverse group of disorders that arise as a result of dysfunction of the mitochondria. Mitochondrial disorders can be caused by alterations in nuclear DNA and/or mitochondrial DNA. Although some mitochondrial syndromes have been described clearly in the literature many others present as challenging clinical cases with multisystemic involvement at variable ages of onset. Given the clinical variability and genetic heterogeneity of these conditions, patients and their families often experience a lengthy and complicated diagnostic process. The diagnostic journey may be characterized by heightened levels of uncertainty due to the delayed diagnosis and the absence of a clear prognosis, among other factors. Uncertainty surrounding issues of family planning and genetic testing may also affect the patient. The role of the genetic counselor is particularly important to help explain these complexities and support the patient and family's ability to achieve effective coping strategies in dealing with increased levels of uncertainty.

  16. Mitochondrial reactive oxygen species mediates nicotine-induced hypoxia-inducible factor-1α expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Guo, Lili; Li, Lin; Wang, Weiqiang; Pan, Zhenhua; Zhou, Qinghua; Wu, Zhihao

    2012-06-01

    Cigarette smoking is not only a documented risk for lung carcinogenesis but also promotes lung cancer development. Nicotine, a major component of cigarette smoke but not a carcinogen by itself, has been found to induce proliferation, invasion and metastasis of non-small cell lung cancer (NSCLC). Here we reported that proinvasive effect of nicotine is analogous to that of hypoxia and involves stabilization and activation of hypoxia-inducible factor (HIF)-1α, a key factor in determining the presence of HIF-1 and expression of its downstream metastasis-associated genes. Furthermore, nicotine-induced upregulation of HIF-1α was dependent on mitochondria-derived reactive oxygen species (ROS). Ecotopic expression of mitochondrial targeted catalase effectively prevented nicotine-induced accumulation of HIF-1α protein. In addition, we demonstrated that the effect of nicotine in upregulation of HIF-1α was mediated by Dihydro-β-erythroidine (DhβE)-sensitive nicotine acetylcholine receptors (nAChRs) and required synergistic cooperation of Akt and mitogen-activated protein kinase (MAPK) pathways. These results suggest that exposure to nicotine could mimic effects of hypoxia to stimulate HIF-1α accumulation and activity that might underlie the high metastatic potential of lung cancer. PMID:22349311

  17. Mitochondrial Epigenetics and Environmental Exposure.

    Science.gov (United States)

    Lambertini, Luca; Byun, Hyang-Min

    2016-09-01

    The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration. PMID:27344144

  18. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  19. Expression of Bovine Leukemia Virus Genome is Blocked by a Nonimmunoglobulin Protein in Plasma from Infected Cattle

    Science.gov (United States)

    Gupta, P.; Ferrer, J. F.

    1982-01-01

    Plasma of cattle infected with bovine leukemia virus contains a soluble factor that blocks the expression of the viral genome in cultured lymphocytes. The blocking factor is not present in plasma of bovine leukemia virus-free cattle or of cattle infected with common bovine viruses. Blocking of bovine leukemia virus expression by the plasma factor is reversible, and seems to be mediated by a nonimmunoglobulin protein molecule.

  20. Bovine Herpesvirus 4 infections and bovine mastitis

    NARCIS (Netherlands)

    Wellenberg, Gerardus Johannus

    2002-01-01

    Mastitis is an often occurring disease in dairy cattle with an enormous economic impact for milk producers worldwide. Despite intensive research, which is historically based on the detection of bacterial udder pathogens, still around 20-35% of clinical cases of bovine mastitis have an unknown aetiol

  1. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika;

    2012-01-01

    in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial...... reserve capacity after lentiviral knockdown of RECQL4 in two different primary cell lines. Additionally, biochemical assays with RECQL4, mitochondrial transcription factor A, and mitochondrial DNA polymerase ¿ showed that the polymerase inhibited RECQL4's helicase activity. RECQL4 is the first 3'-5' Rec...

  2. Mitochondrial transcription: How does it end

    Energy Technology Data Exchange (ETDEWEB)

    J Byrnes; M Garcia-Diaz

    2011-12-31

    The structure of the mitochondrial transcription termination factor (MTERF1) provides novel insight into the mechanism of binding, recognition of the termination sequence and the conformational changes involved in mediating termination. Besides its functional implications, this structure provides a framework to understand the consequences of numerous diseases associated with mitochondrial DNA mutations.

  3. Mitochondrial transcription: how does it end?

    Science.gov (United States)

    Byrnes, James; Garcia-Diaz, Miguel

    2011-01-01

    The structure of the mitochondrial transcription termination factor (MTERF1) provides novel insight into the mechanism of binding, recognition of the termination sequence and the conformational changes involved in mediating termination. Besides its functional implications, this structure provides a framework to understand the consequences of numerous diseases associated with mitochondrial DNA mutations.

  4. Caspase-independent apoptosis in Friend's erythroleukemia cells: role of mitochondrial ATP synthesis impairment in relocation of apoptosis-inducing factor and endonuclease G.

    Science.gov (United States)

    Comelli, Marina; Genero, Nadia; Mavelli, Irene

    2009-02-01

    Mitochondria have emerged as the central components of both caspase-dependent and independent apoptosis signalling pathways through release of different apoptogenic proteins. We previously documented that parental and differentiated Friend's erythroleukemia cells were induced to apoptosis by oligomycin and H(2)O(2) exposure, showing that the energy impairment occurring in both cases as a consequence of a severe mitochondrial F(0)F(1)ATPsynthase inactivation was a common early feature. Here we provide evidence for AIF and Endo G mitochondrio-nuclear relocation in both cases, as a component of caspase-independent apoptosis pathways. No detectable change in mitochondrial transmembrane potential and no variation in mitochondrial levels of Bcl-2 and Bax are observed. These results point to the osmotic rupture of the mitochondrial outer membrane as occurring in response to cell exposure to the two energy-impairing treatments under conditions preserving the mitochondrial inner membrane. A critical role of the mitochondrial F(0)F(1)ATP synthase inhibition in this process is also suggested.

  5. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus;

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  6. Rol de la mitocondria y el estrés oxidativo en el bloqueo del desarrollo de embriones bovinos producidos in vitro Mitochondrial rol and oxidative stress in the developmental blockade of in vitro produced bovine embryos

    OpenAIRE

    AM Tarazona; M Olivera-Angel; YY Lenis

    2010-01-01

    Uno de los mayores obstáculos en la producción de embriones in vitro con fines de investigación básica, comerciales, o de conservación, es el detenimiento temprano del clivaje que ocurre de forma específica en una etapa del desarrollo. Para explicar este fenómeno se han postulado diferentes factores causales como: desórdenes en la cromatina, rearreglos del citoesqueleto, estrés oxidativo y daños mitocondriales. Esta última propuesta ha recibido gran atención, debido a que la mitocondria es fu...

  7. Mitochondrial Dysregulation in the Pathogenesis of Diabetes: Potential for Mitochondrial Biogenesis-Mediated Interventions

    OpenAIRE

    Anna-Maria Joseph; Joanisse, Denis R.; Baillot, Richard G.; Hood, David A.

    2012-01-01

    Muscle mitochondrial metabolism is a tightly controlled process that involves the coordination of signaling pathways and factors from both the nuclear and mitochondrial genomes. Perhaps the most important pathway regulating metabolism in muscle is mitochondrial biogenesis. In response to physiological stimuli such as exercise, retrograde signaling pathways are activated that allow crosstalk between the nucleus and mitochondria, upregulating hundreds of genes and leading to higher mitochondria...

  8. Sealing the mitochondrial respirasome.

    Science.gov (United States)

    Winge, Dennis R

    2012-07-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our understanding of the structures of supercomplexes and the factors that mediate their stability.

  9. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells.

    Directory of Open Access Journals (Sweden)

    Ding Zhang

    Full Text Available Cadmium ions (Cd2+ have been reported to accumulate in bovine tissues, although Cd2+ cytotoxicity has not been investigated thoroughly in this species. Zinc ions (Zn2+ have been shown to antagonize the toxic effects of heavy metals such as Cd2+ in some systems. The present study investigated Cd2+ cytotoxicity in Madin-Darby bovine kidney (MDBK epithelial cells, and explored whether this was modified by Zn2+. Exposure to Cd2+ led to a dose- and time-dependent increase in apoptotic cell death, with increased intracellular levels of reactive oxygen species and mitochondrial damage. Zn2+ supplementation alleviated Cd2+-induced cytotoxicity and this protective effect was more obvious when cells were exposed to a lower concentration of Cd2+ (10 μM, as compared to 50 μM Cd2+. This indicated that high levels of Cd2+ accumulation might induce irreversible damage in bovine kidney cells. Metallothioneins (MTs are metal-binding proteins that play an essential role in heavy metal ion detoxification. We found that co-exposure to Zn2+ and Cd2+ synergistically enhanced RNA and protein expression of MT-1, MT-2, and the metal-regulatory transcription factor 1 in MDBK cells. Notably, addition of Zn2+ reduced the amounts of cytosolic Cd2+ detected following MDBK exposure to 10 μM Cd2+. These findings revealed a protective role of Zn2+ in counteracting Cd2+ uptake and toxicity in MDBK cells, indicating that this approach may provide a means to protect livestock from excessive Cd2+ accumulation.

  10. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells.

    Science.gov (United States)

    Zhang, Ding; Liu, Jingying; Gao, Jianfeng; Shahzad, Muhammad; Han, Zhaoqing; Wang, Zhi; Li, Jiakui; Sjölinder, Hong

    2014-01-01

    Cadmium ions (Cd2+) have been reported to accumulate in bovine tissues, although Cd2+ cytotoxicity has not been investigated thoroughly in this species. Zinc ions (Zn2+) have been shown to antagonize the toxic effects of heavy metals such as Cd2+ in some systems. The present study investigated Cd2+ cytotoxicity in Madin-Darby bovine kidney (MDBK) epithelial cells, and explored whether this was modified by Zn2+. Exposure to Cd2+ led to a dose- and time-dependent increase in apoptotic cell death, with increased intracellular levels of reactive oxygen species and mitochondrial damage. Zn2+ supplementation alleviated Cd2+-induced cytotoxicity and this protective effect was more obvious when cells were exposed to a lower concentration of Cd2+ (10 μM), as compared to 50 μM Cd2+. This indicated that high levels of Cd2+ accumulation might induce irreversible damage in bovine kidney cells. Metallothioneins (MTs) are metal-binding proteins that play an essential role in heavy metal ion detoxification. We found that co-exposure to Zn2+ and Cd2+ synergistically enhanced RNA and protein expression of MT-1, MT-2, and the metal-regulatory transcription factor 1 in MDBK cells. Notably, addition of Zn2+ reduced the amounts of cytosolic Cd2+ detected following MDBK exposure to 10 μM Cd2+. These findings revealed a protective role of Zn2+ in counteracting Cd2+ uptake and toxicity in MDBK cells, indicating that this approach may provide a means to protect livestock from excessive Cd2+ accumulation.

  11. Cartilage (Bovine and Shark) (PDQ)

    Science.gov (United States)

    ... Ask about Your Treatment Research Cartilage (Bovine and Shark) (PDQ®)–Patient Version Overview Go to Health Professional ... 8 ). Questions and Answers About Cartilage (Bovine and Shark) What is cartilage? Cartilage is a type of ...

  12. Factors influencing the immune response. II. Effects of the physical state of the antigen and of lymphoreticular cell proliferation on the response to intraperitoneal injection of bovine serum albumin in rabbits

    Science.gov (United States)

    Pinckard, R. N.; Weir, D. M.; McBride, W. H.

    1967-01-01

    The injection of Corynebacterium parvum at the same time as centrifuged bovine albumin has been shown not to have the adjuvant effect found when C. parvum is injected 6 days before. The implication of this is discussed and related to mechanisms of antibody synthesis. Whereas particulate alum-precipitated centrifuged bovine albumin was shown to be more effective than centrifuged bovine albumin in inducing primary antibody stimulation, the reverse was true for secondary stimulation by the intraperitoneal route. PMID:6035197

  13. Dynamic changes in the expression of relaxin-like factor (INSL3), cholesterol side-chain cleavage cytochrome p450, and 3beta-hydroxysteroid dehydrogenase in bovine ovarian follicles during growth and atresia.

    Science.gov (United States)

    Irving-Rodgers, Helen F; Bathgate, Ross A D; Ivell, Richard; Domagalski, Roger; Rodgers, Raymond J

    2002-04-01

    Relaxin-like factor (RLF) is a new member of the insulin-relaxin gene family known to be expressed in the ovarian follicular thecal cells of ruminants. To investigate the pattern of RLF expression in development and atresia of bovine follicles, antisera were raised in rats and rabbits to recombinantly expressed bovine pro-RLF and to chemically synthesized ovine RLF B chain, respectively. On dot blotting analysis, the rat antiserum bound to pro-RLF and less strongly to a synthetic mature ovine RLF lacking the C-domain, whereas the rabbit antiserum bound the mature form of ovine RLF. These antisera were used to immunostain bovine ovarian follicles of differing sizes and stages of health and atresia. 3beta-Hydroxysteroid dehydrogenase was colocalized with pro-RLF (n = 86 follicles), and cholesterol side-chain cleavage cytochrome P450 was localized in another section of many of the same follicles (n = 66). Not all follicles expressed pro-RLF in the theca interna, so the results are presented as the proportion of follicles expressing pro-RLF. Both mature and pro-RLF were immunolocalized to steroidogenic thecal cells of healthy follicles. As follicles enlarged to >5 mm, the proportion expressing pro-RLF declined (19/19 for 6 mm). Atresia was divided into antral (antral granulosa cells dying first) or basal (basal cells dying first) and further divided into early, middle, and late. For antral atresia of small follicles (2-5 mm), no decline in the proportion expressing pro-RLF was observed (early 6/6, middle 2/2) until the late stages (1/4). For basal atresia, which only occurs in small follicles (2-5 mm), the proportion expressing pro-RLF declined in the middle (2/5) and late (0/8) stages. In larger follicles (>6 to membrana granulosa was observed. We conclude that the expression of pro-RLF in the theca interna is switched off as follicles enlarge or enter atresia, whereas the expression of steroidogenic enzymes is maintained in the theca interna. PMID:11906911

  14. Comparison of tulathromycin and tilmicosin on the prevalence and severity of bovine respiratory disease in feedlot cattle in association with feedlot performance, carcass characteristics, and economic factors.

    Science.gov (United States)

    Tennant, T C; Ives, S E; Harper, L B; Renter, D G; Lawrence, T E

    2014-11-01

    The objectives of this study were to 1) quantify effects of metaphylactic treatment for bovine respiratory disease (BRD) on growth performance, carcass characteristics, and lung lesion prevalence and severity; 2) evaluate the association of lung lesion prevalence and severity with carcass characteristics; and 3) evaluate effects of therapeutic treatment on carcass characteristics and lung lesion prevalence and severity. The study was conducted at a commercial feedlot in the Texas Panhandle in which steers (n = 2,336) initially weighing 312.1 ± 9.6 kg were sourced from auction markets and allocated in a randomized complete block design to 1 of 3 treatments (no metaphylactic [no antimicrobial drug {ND}] treatment, tilmicosin at 10 mg/kg BW [TIL], and tulathromycin at 2.5 mg/kg BW [TUL]). Lungs of all steers were evaluated during harvest to assess presence and severity of pneumonic lesions in the anteroventral lobes and the presence and severity of pleural adherences. Compared to the ND treatment, steers treated via metaphylactic therapy had greater (P cattle, cumulatively resulting in greater financial returns. Lung lesions were present in 64.3% of lungs and were distributed similarly between metaphylactic treatments (63.9%) and ND (65.1%) cattle. Steers with advanced lung lesions present at harvest were associated with reduced (P cattle improved financial returns primarily driven by reductions in cost of death loss and railers.

  15. 77 FR 15847 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-03-16

    ..., ``Analysis of Bovine Spongiform Encephalopathy (BSE) Risk to the U.S. Cattle Population from Importation of... final rule did not limit the importation of bovine-derived meat from Canada to that derived from cattle... meat from bovines 30 months of age or older while continuing to prohibit the importation of live...

  16. BOVINE VIRAL DIARRHEA VIRUSES

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an umbrella term for two species of viruses, BVDV1 and BVDV2, within the Pestivirus genus of the Flavivirus family. BVDV viruses are further subclassified as cytopathic and noncytopathic based on their activity in cultured epithelial cells. Noncytopathic BVDV p...

  17. Bovine Spongiform Encephalopathy

    Science.gov (United States)

    Bovine spongiform encephalopathy (BSE), also referred to as “mad cow disease” is a chronic, non-febrile, neuro-degenerative disease affecting the central nervous system. The transmissible spongiform encephalopathies (TSEs) of domestic animals, of which BSE is a member includes scrapie of sheep...

  18. Bovine milk exosome proteome

    Science.gov (United States)

    Exosomes are 40-100 nm membrane vesicles of endocytic origin and are found in blood, urine, amniotic fluid, bronchoalveolar lavage (BAL) fluid, as well as human and bovine milk. Exosomes are extracellular organelles important in intracellular communication/signaling, immune function, and biomarkers ...

  19. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    Science.gov (United States)

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  20. Epidemiology of Bovine Mastitis in Cows of Dharwad District

    OpenAIRE

    Mahantesh M. Kurjogi; Kaliwal, Basappa B

    2014-01-01

    Bovine mastitis is very common in cows of both developed and developing countries. The prevalence of clinical and subclinical mastitis (SCM) varies from region to region. Hence, the present study was carried out to determine the prevalence of mastitis using three diagnostic tests by considering different risk factors like age, lactation, breed, season, quarters, and herd. The results showed that surf field mastitis test (SFMT) is the most sensitive test for diagnosis of bovine mastitis, the o...

  1. Melatonin in Mitochondrial Dysfunction and Related Disorders

    Directory of Open Access Journals (Sweden)

    Venkatramanujam Srinivasan

    2011-01-01

    Full Text Available Mitochondrial dysfunction is considered one of the major causative factors in the aging process, ischemia/reperfusion (I/R, septic shock, and neurodegenerative disorders like Parkinson's disease (PD, Alzheimer's disease (AD, and Huntington's disease (HD. Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO synthase activity, enhanced NO production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pore all have been suggested as factors responsible for impaired mitochondrial function. Melatonin, the major hormone of the pineal gland, also acts as an antioxidant and as a regulator of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective for preventing oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. In addition, melatonin is known to retard aging and to inhibit the lethal effects of septic shock or I/R lesions by maintaining respiratory complex activities, electron transport chain, and ATP production in mitochondria. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other antioxidants. Melatonin has thus emerged as a major potential therapeutic tool for treating neurodegenerative disorders such as PD or AD, and for preventing the lethal effects of septic shock or I/R.

  2. DETECTION OF THE BOVINE VIRAL DIARRHEA ANTIBODIES

    Directory of Open Access Journals (Sweden)

    I. V. Goraichuk

    2013-06-01

    Full Text Available Bovine viral diarrhea is a widespread infection of cattle that has a wide range of clinical symptoms in domestic and wild ruminants. It is a major problem in cattle and causes significant economic losses in the cattle industry. The virus infects bovines of all ages and causes both immunosuppression and reproductive, respiratory and digestive disorders. Persistently infected cattle are the main factor in transmission of the disease between and among herds. Comparative results of antibodies presence received by two methods of enzymoimmunoassay and virus neutralization test are given in the paper. During the work, 1010 samples of blood serum of cattle from three farms in the Kharkiv region were selected and analyzed. Bovine viral diarrhea virus concerning antibodies were found by enzymoimmunoassay in 704 samples (69.7% using commercial kit and in 690 samples (68.3% using in house method. After results clarification by virus neutralization test, bovine viral diarrhea antibodies were found in 712 samples (70.5%. Immunoenzyme analysis is recommended for mass screening of cattle for viral diarrhea occurrence. The results confirm that the sensitivity immunoenzyme analysis satisfies the requirements of the diagnostic methods. Using the neutralization reaction of viruses as the «gold standard» of serological methods, it is appropriate to clarify the results of immunoenzyme analysis. Since the results contain a signi ficant number of false positive results, it is necessary to carry out comprehensive studies using both serological and molecular genetics methods.

  3. Strokes in mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    N V Pizova

    2012-01-01

    Full Text Available It is suggested that mitochondrial diseases might be identified in 22—33% of cryptogenic stroke cases in young subjects. The incidence of mitochondrial disorders in patients with stroke is unknown; it is 0.8 to 7.2% according to the data of some authors. The paper gives data on the prevalence, pathogenesis, and clinical manifestations of mitochondrial diseases, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome (MELAS and insulin-like episodes; myoclonic epilepsy and ragged-red fibers (MERRF syndrome, and Kearns-Sayre syndrome (sporadic multisystem mitochondrial pathology.

  4. Recombinant human growth hormone and insulin-like growth factor-1 do not affect mitochondrial derived highly reactive oxygen species production in peripheral blood mononuclear cells under conditions of substrate saturation in-vitro

    OpenAIRE

    Keane, James; Tajouri, Lotti; Gray, Bon

    2016-01-01

    Background The purpose of this study was to investigate the mitochondrial effects exerted by physiological and supra-physiological concentrations of recombinant human growth hormone (rhGH) and recombinant insulin-like growth factor-1 (rIGF-1) under conditions of substrate saturation in peripheral blood mononuclear cells (PBMCs). Methods PBMCs from healthy male subjects were treated with either rhGH, at concentrations of 0.5, 5 and 50 μg/L, or rIGF-1 at concentrations of 100, 300 and 500 μg/L ...

  5. Immunoprophylaxis of bovine respiratory syndrome

    Directory of Open Access Journals (Sweden)

    Rogan Dragan

    2010-01-01

    Full Text Available Bovine Respiratory Syndrome (BRS is a multifactorial disease caused by the interaction of infective agents, the environment and the individual immunological response of animals in the herd. Despite five decades of research on BRS, no clear understanding of how environmental factors influence pathogenic outcomes of the disease has been defined. As such, the development of immunoprophylaxis and vaccine programmes to prevent outbreaks of BRS in cattle has not been successful. The current paper discusses vaccination programmes for all categories of cattle and presents a review of existing vaccines being used for immunoprophylaxis of respiratory syndrome in cattle and discusses the advantages and disadvantages of the currently used vaccines and vaccination programmes. Lastly, a discussion detailing the design of future perfect vaccines is presented.

  6. Identification of sequence polymorphisms in the D-loop region of mitochondrial DNA as a risk factor for non-Hodgkin lymphoma.

    Science.gov (United States)

    Gao, Yuhuan; Zhao, Guimin; Diao, Lanping; Guo, Zhanjun

    2014-06-01

    Accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) may be associated with an increased cancer risk. We investigated the non-Hodgkin lymphoma (NHL) risk profile of D-loop SNPs in a case-control study. The minor alleles of nucleotides 73A/G, 263A/G, 315C/C insert were associated with a decreased risk for NHL. The minor alleles of the nucleotides 200G/A were specifically associated with the risk of diffuse large B-cell lymphoma, whereas the minor allele of nucleotides 16362C/T and 249Del/A was specifically associated with the decreased risk of T-cell lymphoma. In conclusion, SNPs in mtDNA are potential modifiers of NHL risk. The analysis of genetic polymorphisms in the mitochondrial D-loop can help identify subgroups of patients who are at a high risk of developing NHL.

  7. Identification of sequence polymorphism in the D-Loop region of mitochondrial DNA as a risk factor for hepatocellular carcinoma with distinct etiology

    Directory of Open Access Journals (Sweden)

    Zhang Ruixing

    2010-09-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is frequently preceded by hepatitis virus infection or alcohol abuse. Genetic backgrounds may increase susceptibility to HCC from these exposures. Methods Mitochondrial DNA (mtDNA of peripheral blood, tumor, and/or adjacent non-tumor tissue from 49 hepatitis B virus-related and 11 alcohol-related HCC patients, and from 38 controls without HCC were examined for single nucleotide polymorphisms (SNPs and mutations in the D-Loop region. Results Single nucleotide polymorphisms (SNPs in the D-loop region of mt DNA were examined in HCC patients. Individual SNPs, namely the 16266C/T, 16293A/G, 16299A/G, 16303G/A, 242C/T, 368A/G, and 462C/T minor alleles, were associated with increased risk for alcohol- HCC, and the 523A/del was associated with increased risks of both HCC types. The mitochondrial haplotypes under the M haplogroup with a defining 489C polymorphism were detected in 27 (55.1% of HBV-HCCand 8 (72.7% of alcohol- HCC patients, and in 15 (39.5% of controls. Frequencies of the 489T/152T, 489T/523A, and 489T/525C haplotypes were significantly reduced in HBV-HCC patients compared with controls. In contrast, the haplotypes of 489C with 152T, 249A, 309C, 523Del, or 525Del associated significantly with increase of alcohol-HCC risk. Mutations in the D-Loop region were detected in 5 adjacent non-tumor tissues and increased in cancer stage (21 of 49 HBV-HCC and 4 of 11 alcohol- HCC, p Conclusions In sum, mitochondrial haplotypes may differentially predispose patients to HBV-HCC and alcohol-HCC. Mutations of the mitochondrial D-Loop sequence may relate to HCC development.

  8. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M;

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  9. Mitochondrial Deficiency Is Associated With Insulin Resistance

    OpenAIRE

    Goodpaster, Bret H.

    2013-01-01

    The specific cellular underpinnings or mechanisms of insulin resistance (IR) are not clear. Here I present evidence to support a causal association between mitochondrial energetics and IR. A large body of literature indicates that mitochondrial capacity for oxidative metabolism is lower in human obesity and type 2 diabetes. Whether or not mitochondria play a causal role in IR is hotly debated. First, IR can be caused by many factors, many of which may or may not involve mitochondria. These in...

  10. Natural Compounds Modulating Mitochondrial Functions

    Directory of Open Access Journals (Sweden)

    Lara Gibellini

    2015-01-01

    Full Text Available Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS. In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu, resveratrol (RSV, and curcumin (Cur being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation, by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications.

  11. Meta-Analysis of mitochondrial DNA reveals several population bottlenecks during worldwide migrations of cattle

    NARCIS (Netherlands)

    Lenstra, Johannes A.; Ajmone-Marsan, Paolo; Beja-Pereira, Albano; Bollongino, Ruth; Bradley, Daniel G.; Colli, Licia; De Gaetano, Anna; Edwards, Ceiridwen J.; Felius, Marleen; Ferretti, Luca; Ginja, Catarina; Hristov, Peter; Kantanen, Juha; Lirón, Juan Pedro; Magee, David A.; Negrini, Riccardo; Radoslavov, Georgi A.

    2014-01-01

    Several studies have investigated the differentiation of mitochondrial DNA in Eurasian, African and American cattle as well as archaeological bovine material. A global survey of these studies shows that haplogroup distributions are more stable in time than in space. All major migrations of cattle ha

  12. Life without mitochondrial DNA : studies of transgenic mice

    OpenAIRE

    Wang, Jianming

    2000-01-01

    Mitochondrial DNA (mtDNA) is a closed circular DNA genome that resides in the mitochondrial network. Mutations of mtDNA cause spontaneous and hereditary disorders known as mitochondrial diseases. Mitochondrial transcription factor A (Tfam) is a key factor for transcription of mtDNA in vitro. We disrupted the mouse Tfam gene by using the cre-loxP recombination system to study the in vivo roles of Tfam. This thesis focuses on the analyses of germline knockout mice and the c...

  13. Unravelling the mechanisms regulating muscle mitochondrial biogenesis.

    Science.gov (United States)

    Hood, David A; Tryon, Liam D; Carter, Heather N; Kim, Yuho; Chen, Chris C W

    2016-08-01

    Skeletal muscle is a tissue with a low mitochondrial content under basal conditions, but it is responsive to acute increases in contractile activity patterns (i.e. exercise) which initiate the signalling of a compensatory response, leading to the biogenesis of mitochondria and improved organelle function. Exercise also promotes the degradation of poorly functioning mitochondria (i.e. mitophagy), thereby accelerating mitochondrial turnover, and preserving a pool of healthy organelles. In contrast, muscle disuse, as well as the aging process, are associated with reduced mitochondrial quality and quantity in muscle. This has strong negative implications for whole-body metabolic health and the preservation of muscle mass. A number of traditional, as well as novel regulatory pathways exist in muscle that control both biogenesis and mitophagy. Interestingly, although the ablation of single regulatory transcription factors within these pathways often leads to a reduction in the basal mitochondrial content of muscle, this can invariably be overcome with exercise, signifying that exercise activates a multitude of pathways which can respond to restore mitochondrial health. This knowledge, along with growing realization that pharmacological agents can also promote mitochondrial health independently of exercise, leads to an optimistic outlook in which the maintenance of mitochondrial and whole-body metabolic health can be achieved by taking advantage of the broad benefits of exercise, along with the potential specificity of drug action. PMID:27470593

  14. Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis

    DEFF Research Database (Denmark)

    Sjövall, Fredrik; Morota, Saori; Hansson, Magnus J;

    2010-01-01

    Mitochondrial dysfunction has been suggested as a contributing factor to the pathogenesis of sepsis-induced multiple organ failure. Also, restoration of mitochondrial function, known as mitochondrial biogenesis, has been implicated as a key factor for the recovery of organ function in patients...

  15. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Science.gov (United States)

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  16. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Directory of Open Access Journals (Sweden)

    Stéphane Demine

    2014-09-01

    Full Text Available Mitochondrial dysfunction(s (MDs can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy in the obesity and insulin resistance thematic.

  17. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization.

    Science.gov (United States)

    Zhou, Qinghua; Li, Haimin; Li, Hanzeng; Nakagawa, Akihisa; Lin, Jason L J; Lee, Eui-Seung; Harry, Brian L; Skeen-Gaar, Riley Robert; Suehiro, Yuji; William, Donna; Mitani, Shohei; Yuan, Hanna S; Kang, Byung-Ho; Xue, Ding

    2016-07-22

    Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.

  18. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E. (Georgetown Univ. School of Medicine, Washington, DC (USA))

    1989-12-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4{prime}-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit {sup 3}H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations.

  19. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    International Nuclear Information System (INIS)

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4'-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit 3H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations

  20. Scoliosis in Mitochondrial Myopathy

    OpenAIRE

    Li, Zheng; Shen, Jianxiong; Liang, Jinqian

    2015-01-01

    Abstract The mitochondrial myopathies include a diverse group of disorders characterized by morphological abnormalities of muscle mitochondria. Little is reported about spinal deformity associated with this syndrome. This study presents a case of scoliosis occurring in the setting of mitochondrial myopathies and explores the possible mechanisms between the 2 diseases. A previously unreported scoliosis in mitochondrial myopathies is described. The patient was a 16-year-old Chinese adolescent b...

  1. Altered Mitochondrial Dynamics and TBI Pathophysiology.

    Science.gov (United States)

    Fischer, Tara D; Hylin, Michael J; Zhao, Jing; Moore, Anthony N; Waxham, M Neal; Dash, Pramod K

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  2. The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells

    OpenAIRE

    Gaspari, Martina; Falkenberg, Maria; Larsson, Nils-Göran; Gustafsson, Claes M.

    2004-01-01

    Initiation of transcription in mammalian mitochondria depends on three proteins: mitochondrial RNA polymerase (POLRMT), mitochondrial transcription factor A (TFAM) and mitochondrial transcription factor B2 (TFB2M). We show here that the recombinant mouse and human transcription machineries are unable to initiate transcription in vitro from the heterologous light-strand promoter (LSP) of mitochondrial DNA. This species specificity is dependent on the interaction of TFAM and POLRMT with specifi...

  3. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    Science.gov (United States)

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( BSC cultures treated with 10 n TBA exhibit increased ( BSC cultures.

  4. Risk factors for bovine respiratory disease in Australian feedlot cattle: use of a causal diagram-informed approach to estimate effects of animal mixing and movements before feedlot entry.

    Science.gov (United States)

    Hay, K E; Barnes, T S; Morton, J M; Clements, A C A; Mahony, T J

    2014-11-01

    A nationwide longitudinal study was conducted to investigate risk factors for bovine respiratory disease (BRD) in cattle in Australian feedlots. After induction (processing), cattle were placed in feedlot pens (cohorts) and monitored for occurrence of BRD over the first 50 days on feed. Data from a national cattle movement database were used to derive variables describing mixing of animals with cattle from other farms, numbers of animals in groups before arrival at the feedlot, exposure of animals to saleyards before arrival at the feedlot, and the timing and duration of the animal's move to the vicinity of the feedlot. Total and direct effects for each risk factor were estimated using a causal diagram-informed process to determine covariates to include in four-level Bayesian logistic regression models. Mixing, group size and timing of the animal's move to the feedlot were important predictors of BRD. Animals not mixed with cattle from other farms prior to 12 days before induction and then exposed to a high level of mixing (≥4 groups of animals mixed) had the highest risk of developing BRD (OR 3.7) compared to animals mixed at least 4 weeks before induction with less than 4 groups forming the cohort. Animals in groups formed at least 13 days before induction comprising 100 or more (OR 0.5) or 50-99 (OR 0.8) were at reduced risk compared to those in groups of less than 50 cattle. Animals moved to the vicinity of the feedlot at least 27 days before induction were at reduced risk (OR 0.4) compared to cattle undergoing short-haul transportation (cattle.

  5. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells.

    Science.gov (United States)

    Wang, Jingjing; Guo, Changming; Wei, Zhengkai; He, Xuexiu; Kou, Jinhua; Zhou, Ershun; Yang, Zhengtao; Fu, Yunhe

    2016-04-01

    Morin, a flavonoid isolated from Chinese herbs of the Moraceae family, has been reported to possess antiinflammatory activity. However, the effects of morin on mastitis have not been investigated. The present study was conducted to elucidate the antiinflammatory properties of morin on lipopolysaccharide (LPS)-stimulated primary bovine mammary epithelial cells (bMEC). The viability of bMEC was analyzed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium] assay. Subsequently, bMEC were stimulated with LPS in the presence or absence of morin. Gene expression of proinflammatory cytokines was determined by quantitative real-time PCR (qRT-PCR). Nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα) protein, extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) were detected by Western blotting. The results showed that cell viability was not affected by morin. Moreover, morin inhibited the gene expression of tumor necrosis factor-α (TNF-α), IL-6, and IL-1β in LPS-stimulated bMEC in a dose-dependent manner. Western blot analysis showed that morin suppressed the phosphorylation of IκBα, NF-κB unit p65, ERK, p38, and JNK in LPS-stimulated bMEC. In conclusion, the protective effects of morin on LPS-induced inflammatory response in bMEC may be due to its ability to suppress NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. These findings suggest that morin may be used as antiinflammatory drug for mastitis.

  6. Parkinson's disease and mitochondrial gene variations

    DEFF Research Database (Denmark)

    Andalib, Sasan; Vafaee, Manouchehr Seyedi; Gjedde, Albert

    2014-01-01

    Parkinson's disease (PD) is a common disorder of the central nervous system in the elderly. The pathogenesis of PD is a complex process, with genetics as an important contributing factor. This factor may stem from mitochondrial gene variations and mutations as well as from nuclear gene variations...

  7. Comparison of the prevalence and incidence of infection with bovine virus diarrhoea virus (BVDV) in Denmark and Michigan and association with possible risk factors

    DEFF Research Database (Denmark)

    Houe, H.; Baker, J.C.; Maes, R.K.;

    1995-01-01

    summarized and it was investigated if any of these risk factors had significant effect on the presence of animals persistently infected (PI) with BVDV in the dairy herds. Information on the cattle population density in the 2 areas was obtained from statistical yearbooks. Further information...... for the individual farms on age distribution, housing of animals, herd size, pasturing and purchasing policy was gathered. The prevalence of PI animals was more than 10 times higher in Denmark as compared to Michigan. In herds without PI animals, the annual incidence of seroconversion as calculated from the age...... specific prevalence of antibody carriers varied in most age groups between 20-25% in Denmark and between 5-10% in Michigan. All investigated risk factors except for herd size were in favour of a lower prevalence of infection in Michigan. The use of having animals on pasture and at the same time having...

  8. Herd prevalence of bovine brucellosis and analysis of risk factors in cattle in urban and peri-urban areas of the Kampala economic zone, Uganda

    Directory of Open Access Journals (Sweden)

    Eisler Mark C

    2011-10-01

    Full Text Available Abstract Background Human brucellosis has been found to be prevalent in the urban areas of Kampala, the capital city of Uganda. A cross-sectional study was designed to generate precise information on the prevalence of brucellosis in cattle and risk factors for the disease in its urban and peri-urban dairy farming systems. Results The adjusted herd prevalence of brucellosis was 6.5% (11/177, 95% CI: 3.6%-10.0% and the adjusted individual animal prevalence was 5.0% (21/423, 95% CI: 2.7% - 9.3% based on diagnosis using commercial kits of the competitive enzyme-linked immunosorbent assay (CELISA for Brucella abortus antibodies. Mean within-herd prevalence was found to be 25.9% (95% CI: 9.7% - 53.1% and brucellosis prevalence in an infected herd ranged from 9.1% to 50%. A risk factor could not be identified at the animal level but two risk factors were identified at the herd level: large herd size and history of abortion. The mean number of milking cows in a free-grazing herd (5.0 was significantly larger than a herd with a movement restricted (1.7, p Conclusions Vaccination should be targeted at commercial large-scale farms with free-grazing farming to control brucellosis in cattle in and around Kampala city.

  9. Bovine coronavirus hemagglutinin protein.

    Science.gov (United States)

    King, B; Potts, B J; Brian, D A

    1985-02-01

    Treatment of purified bovine coronavirus (Mebus strain) with pronase destroyed the integrity of virion surface glycoproteins gp140, gp120, gp100, reduced the amount of gp26 and destroyed the hemagglutinating activity of the virus. Bromelain, on the other hand, destroyed the integrity of gp120, gp100 and gp26 but failed to remove gp140 and failed to destroy viral hemagglutinating activity. These experiments suggest that gp140 is the virion hemagglutinin. Immunoblotting studies using monospecific antiserum demonstrate that gp140 is a disulfide-linked dimeric structure reducible to monomers of 65 kDa.

  10. Camel and bovine chymosin

    DEFF Research Database (Denmark)

    Jensen, Jesper Langholm; Mølgaard, Anne; Poulsen, Jens-Christian Navarro;

    2013-01-01

    Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite...... chymosin. Both enzymes possess local positively charged patches on their surface that can play a role in interactions with the overall negatively charged C-terminus of κ-casein. Camel chymosin contains two additional positive patches that favour interaction with the substrate. The improved electrostatic...

  11. Bovine Virus Diarrhea (BVD)

    OpenAIRE

    Hoar, Bruce R.

    2004-01-01

    Bovine virus diarrhea (BVD) is a complicated disease to discuss as it can result in a wide variety of disease problems from very mild to very severe. BVD can be one of the most devastating diseases cattle encounter and one of the hardest to get rid of when it attacks a herd. The viruses that cause BVD have been grouped into two genotypes, Type I and Type II. The disease syndrome caused by the two genotypes is basically the same, however disease caused by Type II infection is often more severe...

  12. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  13. Proteomic Analysis of Bovine Nucleolus

    Institute of Scientific and Technical Information of China (English)

    Amrutlal K.Patel; Doug Olson; Suresh K. Tikoo

    2010-01-01

    Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eu-karyotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells,we analyzed the proteomie composition of the bovine nueleoli. The nucleoli were isolated from Madin Darby bo-vine kidney cells and subjected to proteomie analysis by LC-MS/MS after fractionation by SDS-PAGE and strongcation exchange chromatography. Analysis of the data using the Mascot database search and the GPM databasesearch identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in theproteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggestedthat the bovine nueleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional,translational and post-translational regulation, transport, and structural organization.

  14. Mitochondrial DNA mutations provoke dominant inhibition of mitochondrial inner membrane fusion.

    Directory of Open Access Journals (Sweden)

    Cécile Sauvanet

    Full Text Available Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA. We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP or to maternally inherited Leigh Syndrome (MILS in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from

  15. Viral infections and bovine mastitis: a review

    NARCIS (Netherlands)

    Wellenberg, G.J.; Poel, van der W.H.M.; Oirschot, van J.T.

    2002-01-01

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or para

  16. Mitochondrial Gene Therapy Augments Mitochondrial Physiology in a Parkinson's Disease Cell Model

    OpenAIRE

    Keeney, Paula M; Quigley, Caitlin K.; Dunham, Lisa D.; Papageorge, Christina M.; Iyer, Shilpa; Thomas, Ravindar R.; Schwarz, Kathleen M.; Trimmer, Patricia A; Khan, Shaharyar M.; Portell, Francisco R.; Bergquist, Kristen E.; Bennett, James P.

    2009-01-01

    Neurodegeneration in Parkinson's disease (PD) affects mainly dopaminergic neurons in the substantia nigra, where age-related, increasing percentages of cells lose detectable respiratory activity associated with depletion of intact mitochondrial DNA (mtDNA). Replenishment of mtDNA might improve neuronal bioenergetic function and prevent further cell death. We developed a technology (“ProtoFection”) that uses recombinant human mitochondrial transcription factor A (TFAM) engineered with an N-ter...

  17. Mitochondrial DNA mutations and male infertility

    Directory of Open Access Journals (Sweden)

    Kumar D

    2009-01-01

    Full Text Available Infertility can be defined as difficulty in conceiving a child after 1 year of unprotected intercourse. Infertility can arise either because of the male factor or female factor or both. According to the current estimates, 15% of couples attempting their first pregnancy could not succeed. Infertility is either primary or secondary. Mitochondria have profound effect on all biochemical pathways, including the one that drivessperm motility. Sperm motility is heavily dependent on the ATP generated by oxidative phosphorylation in the mitochondrial sheath. In this review, the very positive role of mitochondrial genome′s association with infertility is discussed

  18. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  19. Unsolved issues related to human mitochondrial diseases.

    Science.gov (United States)

    Lombès, Anne; Auré, Karine; Bellanné-Chantelot, Christine; Gilleron, Mylène; Jardel, Claude

    2014-05-01

    Human mitochondrial diseases, defined as the diseases due to a mitochondrial oxidative phosphorylation defect, represent a large group of very diverse diseases with respect to phenotype and genetic causes. They present with many unsolved issues, the comprehensive analysis of which is beyond the scope of this review. We here essentially focus on the mechanisms underlying the diversity of targeted tissues, which is an important component of the large panel of these diseases phenotypic expression. The reproducibility of genotype/phenotype expression, the presence of modifying factors, and the potential causes for the restricted pattern of tissular expression are reviewed. Special emphasis is made on heteroplasmy, a specific feature of mitochondrial diseases, defined as the coexistence within the cell of mutant and wild type mitochondrial DNA molecules. Its existence permits unequal segregation during mitoses of the mitochondrial DNA populations and consequently heterogeneous tissue distribution of the mutation load. The observed tissue distributions of recurrent human mitochondrial DNA deleterious mutations are diverse but reproducible for a given mutation demonstrating that the segregation is not a random process. Its extent and mechanisms remain essentially unknown despite recent advances obtained in animal models.

  20. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins

    DEFF Research Database (Denmark)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra;

    2015-01-01

    STUDY OBJECTIVES: Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins...

  1. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  2. Nonviral Gene Delivery of Growth and Differentiation Factor 5 to Human Mesenchymal Stem Cells Injected into a 3D Bovine Intervertebral Disc Organ Culture System

    Directory of Open Access Journals (Sweden)

    Christian Bucher

    2013-01-01

    Full Text Available Intervertebral disc (IVD cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5 by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.

  3. Epidemiology of Bovine Mastitis in Cows of Dharwad District

    Science.gov (United States)

    Kurjogi, Mahantesh M.; Kaliwal, Basappa B.

    2014-01-01

    Bovine mastitis is very common in cows of both developed and developing countries. The prevalence of clinical and subclinical mastitis (SCM) varies from region to region. Hence, the present study was carried out to determine the prevalence of mastitis using three diagnostic tests by considering different risk factors like age, lactation, breed, season, quarters, and herd. The results showed that surf field mastitis test (SFMT) is the most sensitive test for diagnosis of bovine mastitis, the older age and cows with later part of lactation period were more prone to bovine mastitis, and exotic breeds like Holstein freshen (HF) were more susceptible to bovine mastitis. The highest incidence of mastitis was recorded in monsoon season. The prevalence of subclinical and clinical mastitis was more in single and two quarters, respectively, and the rate of bovine mastitis was more in unorganized herds. The study concluded that SCM is directly associated with age, lactation period, and environmental factors of the cow and clinical mastitis is more associated with breed of the cow and environmental conditions.

  4. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes

    Directory of Open Access Journals (Sweden)

    Ya-Wen eLu

    2015-02-01

    Full Text Available The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step towards delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: 1 oxidative phosphorylation (subunits and assembly factors; 2 mitochondrial DNA maintenance and expression; 3 mitochondrial protein import and assembly; 4 mitochondrial quality control (chaperones and proteases; 5 iron-sulfur cluster homeostasis; and 6 mitochondrial dynamics (fission and fusion. Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.

  5. Modifier factors influencing the phenotypic manifestation of the deafness-associated mitochondrial DNA mutations%修饰因子对线粒体DNA突变致聋的影响

    Institute of Scientific and Technical Information of China (English)

    杨爱芬; 郑静; 吕建新; 管敏鑫

    2011-01-01

    Mutations in the mitochondrial DNA have been found to be one of the most important causes of sensorineural hearing loss. In particular, these mutations often occur in the mitochondrial 12S rRNA and tRNA genes. Of these, the homoplasmic A1555G and C1494T mutations in the 12S rRNA have been associated with both aminoglycoside induced and nonsyndromic hearing impairment in many families worldwide. Children carrying the A1555G or C1494T mutation are susceptible to the exposure of ototoxic drugs, thereby inducing or worsening hearing loss. Individuals harboring A1555G or C1494T mutation can also develop hearing loss even in the absence of aminoglycoside exposure. However, matrilineal relatives of intra-families or inter-families carrying the A1555G or C1494T mutation exhibit a wide range of severity,age-at-onset, and audiometric configuration of hearing impairment. These indicate that the A1555G or C1494T mutation is a primary factor underlying the development of deafness but insufficient to produce the clinical phenotype. Thus, other modifier factors, such as aminoglycoside (s), mitochondrial DNA haplotype(s) or nuclear modifier gene(s), play a role in the phenotypic expression of the deafness-associated mitochondrial 12S rRNA A1555G or C1494T mutation. In this review, we summarize the modifier factors for the phenotypic expression of deafness-associated 12S rRNA A1555G and C1494T mutations and propose the molecular pathogenetic mechanism of maternally inherited deafness.%线粒体DNA突变是引起感音神经性耳聋的重要原因之一,这些突变主要位于线粒体12SrRNA和tRNA基因上.其中12S rRNA基因上的同质性A1555G和C1494T突变与氨基糖甙类抗生素造成的耳聋相关.携带这两个突变的个体对耳毒性药物高度敏感,导致临床上常见的"一针致聋"现象.但携带A1555G或C1494T突变的个体在没用药的情况下也能产生非综合征型耳聋,而且同一家系内和不同家系间的母系成员在听力损失

  6. Bovine colostrum: an emerging nutraceutical.

    Science.gov (United States)

    Bagwe, Siddhi; Tharappel, Leo J P; Kaur, Ginpreet; Buttar, Harpal S

    2015-09-01

    Nutraceutical, a term combining the words "nutrition" and "pharmaceuticals", is a food or food product that provides health benefits as an adjuvant or alternative therapy, including the treatment and prevention of infectious diseases in children and adults. There is emerging evidence that bovine colostrum (BC) may be one of the promising nutraceuticals which can prevent or mitigate various diseases in newborns and adults. Immunity-related disorders are one of the leading causes of mortality in the world. BC is rich in immunity, growth and antimicrobial factors, which promote tissue growth and the maturation of digestive tract and immune function in neonatal animals and humans. The immunoglobulins and lactoferrin present in colostrum are known to build natural immunity in newborns which helps to reduce the mortality rate in this population. Also, the side-effect profile of colostrum proteins and possible lactose intolerance is relatively less in comparison with milk. In general, BC is considered safe and well tolerated. Since colostrum has several important nutritional constituents, well-designed, double-blind, placebo-controlled studies with colostrum products should be conducted to widen its therapeutic use. The objectives of this review are to create awareness about the nutraceutical properties of colostrum and to discuss the various ongoing alternative treatments of colostrum and its active ingredients as well as to address colostrum's future nutraceutical and therapeutic implications in humans. PMID:25781716

  7. Mitochondrial functions on oocytes and preimplantation embryos

    Institute of Scientific and Technical Information of China (English)

    Li-ya WANG; Da-hui WANG; Xiang-yang ZOU; Chen-ming XU

    2009-01-01

    Oocyte quality has long been considered as a main limiting factor for in vitro fertilization (IVF). In the past decade,extensive observations demonstrated that the mitochondrion plays a vital role in the oocyte cytoplasm, for it can provide adenosine triphosphate (ATP) for fertilization and preimplantation embryo development and also act as stores of intracellular calcium and proapoptotic factors. During the oocyte maturation, mitochondria are characterized by distinct changes of their distribution pattern from being homogeneous to heterogeneous, which is correlated with the cumulus apoptosis. Oocyte quality decreases with the increasing maternal age. Recent studies have shown that low quality oocytes have some age-related dysfunctions, which include the decrease in mitochondrial membrane potential, increase of mitochondrial DNA (mtDNA) damages, chromosomal aneuploidies,the incidence of apoptosis, and changes in mitochondrial gene expression. All these dysfunctions may cause a high level of developmental retardation and arrest of preimplantation embryos. It has been suggested that these mitochondrial changes may arise from excessive reactive oxygen species (ROS) that is closely associated with the oxidative energy production or calcium overload,which may trigger permeability transition pore opening and subsequent apoptosis. Therefore, mitochondria can be seen as signs for oocyte quality evaluation, and it is possible that the oocyte quality can be improved by enhancing the physical function of mitochondria. Here we reviewed recent advances in mitochondrial functions on oocytes.

  8. The Novel Tail-anchored Membrane Protein Mff Controls Mitochondrial and Peroxisomal Fission in Mammalian Cells

    OpenAIRE

    Gandre-Babbe, Shilpa; van der Bliek, Alexander M.

    2008-01-01

    Few components of the mitochondrial fission machinery are known, even though mitochondrial fission is a complex process of vital importance for cell growth and survival. Here, we describe a novel protein that controls mitochondrial fission. This protein was identified in a small interfering RNA (siRNA) screen using Drosophila cells. The human homologue of this protein was named Mitochondrial fission factor (Mff). Mitochondria of cells transfected with Mff siRNA form a closed network similar t...

  9. Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment.

    Science.gov (United States)

    Niyazov, Dmitriy M; Kahler, Stephan G; Frye, Richard E

    2016-07-01

    Mitochondrial disease refers to a heterogeneous group of disorders resulting in defective cellular energy production due to abnormal oxidative phosphorylation (oxphos). Primary mitochondrial disease (PMD) is diagnosed clinically and ideally, but not always, confirmed by a known or indisputably pathogenic mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) mutation. The PMD genes either encode oxphos proteins directly or they affect oxphos function by impacting production of the complex machinery needed to run the oxphos process. However, many disorders have the 'mitochondrial' phenotype without an identifiable mtDNA or nDNA mutation or they have a variant of unknown clinical significance. Secondary mitochondrial dysfunction (SMD) can be caused by genes encoding neither function nor production of the oxphos proteins and accompanies many hereditary non-mitochondrial diseases. SMD may also be due to nongenetic causes such as environmental factors. In our practice, we see many patients with clinical signs of mitochondrial dysfunction based on phenotype, biomarkers, imaging, muscle biopsy, or negative/equivocal mtDNA or nDNA test results. In these cases, it is often tempting to assign a patient's phenotype to 'mitochondrial disease', but SMD is often challenging to distinguish from PMD. Fortunately, rapid advances in molecular testing, made possible by next generation sequencing, have been effective at least in some cases in establishing accurate diagnoses to distinguish between PMD and SMD. This is important, since their treatments and prognoses can be quite different. However, even in the absence of the ability to distinguish between PMD and SMD, treating SMD with standard treatments for PMD can be effective. We review the latest findings regarding mitochondrial disease/dysfunction and give representative examples in which differentiation between PMD and SMD has been crucial for diagnosis and treatment. PMID:27587988

  10. Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division.

    Science.gov (United States)

    Jokinen, Riikka; Marttinen, Paula; Stewart, James B; Neil Dear, T; Battersby, Brendan J

    2016-02-15

    Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome. PMID:26681804

  11. Mitochondrial biogenesis: pharmacological approaches.

    Science.gov (United States)

    Valero, Teresa

    2014-01-01

    Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS

  12. United Mitochondrial Disease Foundation

    Science.gov (United States)

    ... to Mitochondrial Disease FAQ's MitoFirst Handbook More Information Mito 101 Symposium Archives Get Connected Find an Event Adult Advisory Council Team Ask The Mito Doc Grand Rounds Kids & Teens Medical Child Abuse ...

  13. Theileria parva infection induces autocrine growth of bovine lymphocytes.

    OpenAIRE

    Dobbelaere, D A; Coquerelle, T M; Roditi, I J; Eichhorn, M; Williams, R O

    1988-01-01

    Bovine lymphocytes infected with the parasite Theileria parva continuously secrete a growth factor that is essential for their proliferation in vitro and also constitutively express interleukin 2 receptors on their surface. Dilution of the secreted growth factor, caused by culturing cells at low density, results in retardation of culture growth. Human recombinant interleukin 2, however, effectively substitutes for the diluted growth factor by restoring normal growth rates and also allows Thei...

  14. Morphological and biological characterization of cell line developed from bovine Echinococcus granulosus.

    Science.gov (United States)

    Echeverría, Claudia I; Isolabella, Dora M; Prieto Gonzalez, Elio A; Leonardelli, Araceli; Prada, Laura; Perrone, Alina; Fuchs, Alicia G

    2010-10-01

    The taeniid tapeworm Echinococcus granulosus is the causative agent of echinococcal disease, a major zoonosis with worldwide distribution. Several efforts to establish an in vitro model of E. granulosus have been undertaken; however, many of them have been designed for Echinococcus multilocularis. In the present study, we have described and characterized a stable cell line obtained from E. granulosus bovine protoscoleces maintained 3 yr in vitro. Growth characterization, morphology by light, fluorescent and electronic microscopy, and karyotyping were carried out. Cell culture origin was confirmed by immunofluorescent detection of AgB4 antigen and by PCR for the mitochondrial cytochrome c-oxidase subunit 1 (DCO1) gene. Cells seeded in agarose biphasic culture resembled a cystic structure, similar to the one formed in secondary hosts. This cell line could be a useful tool to research equinococcal behavior, allowing additional physiological and pharmacological studies, such as the effect of growth factors, nutrients, and antiparasitic drugs on cell viability and growth and on cyst formation.

  15. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.;

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  16. Mitochondrial metabolism and diabetes

    OpenAIRE

    Kwak, Soo Heon; Park, Kyong Soo; Lee, Ki‐Up; Lee, Hong Kyu

    2010-01-01

    Abstract The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose‐stimulated insulin...

  17. Mitochondrial dynamics and apoptosis

    OpenAIRE

    Suen, Der-Fen; Norris, Kristi L.; Youle, Richard J.

    2008-01-01

    In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondri...

  18. A quantitative risk assessment for bovine spongiform encephalopathy in Japan

    NARCIS (Netherlands)

    Kadohira, M.; Stevenson, M.A.; Hogasen, H.R.; Koeijer, de A.A.

    2012-01-01

    A predictive case-cohort model was applied to Japanese data to analyze the interaction between challenge and stability factors for bovine spongiform encephalopathy (BSE) for the period 1985–2020. BSE risk in cattle was estimated as the expected number of detectable cases per year. The model was comp

  19. Propagation of bovine spermatogonial stem cells in vitro

    NARCIS (Netherlands)

    Aponte, P.M.; Soda, T.; Teerds, K.J.; Mizrak, S.C.; Kant, van de H.J.; Rooij, de D.G.

    2008-01-01

    The access to sufficient numbers of spermatogonial stem cells (SSC) is a prerequisite for the study of their regulation and further biomanipulation. A specialized medium and several growth factors were tested to study the in vitro behaviour of bovine type A spermatogonia, a cell population that incl

  20. Bovine Viral Diarrhea Virus-Associated Disease in Feedlot Cattle.

    Science.gov (United States)

    Larson, Robert L

    2015-11-01

    Bovine viral diarrhea virus (BVDv) is associated with bovine respiratory disease complex and other diseases of feedlot cattle. Although occasionally a primary pathogen, BVDv's impact on cattle health is through the immunosuppressive effects of the virus and its synergism with other pathogens. The simple presence or absence of BVDv does not result in consistent health outcomes because BVDv is only one of many risk factors that contribute to disease syndromes. Current interventions have limitations and the optimum strategy for their uses to limit the health, production, and economic costs associated with BVDv have to be carefully considered for optimum cost-effectiveness.

  1. Keshan disease and mitochondrial cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    YANG; Fuyu

    2006-01-01

    Keshan disease (KD) is a potentially fatal form of cardiomyopathy (disease of the heart muscle) endemic in certain areas of China. From 1984 to 1986, a national comprehensive scientific investigation on KD in Chuxiong region of Yunnan Province in the southwest China was conducted. The investigation team was composed of epidemiologists, clinic doctors, pathologists, biochemists, biophysicists and specialists in ecological environment. Results of pathological, biochemical and biophysical as well as clinical studies showed: an obvious increase of enlarged and swollen mitochondria with distended crista membranes in myocardium from patients with KD; significant reductions in the activity of oxidative phosphorylation (succinate dehydrogenase, cytochrome oxidase, succinate oxidase, H+-ATPase) of affected mitochondria; decrease in CoQ, cardiolipin, Se and GSHPx activity, while obvious increase in the Ca2+ content. So, it was suggested that mitochondria are the predominant target of the pathogenic factors of KD. Before Chuxiong KD survey only a few cases of mitochondrial cardiomyopathy were studied. During the multidisciplinary scientific investigation on KD in Chuxiong a large amount of samples from KD cases and the positive controls were examined. On the basis of the results obtained it was suggested that KD might be classified as a "Mitochondrial Cardiomyopathy" endemic in China. This is one of the achievements in the three years' survey in Chuxiong and is valuable not only to the deeper understanding of pathogenic mechanism of KD but also to the study of mitochondrial cardiomyopathy in general.Keshan disease is not a genetic disease, but is closely related to the malnutrition (especially microelement Se deficiency). KD occurs along a low Se belt, and Se supplementation has been effective in prevention of such disease. The incidence of KD has sharply decreased along with the steady raise of living standard and realization of preventive measures. At present, patients of

  2. Clinical applications of bovine colostrum therapy: a systematic review.

    Science.gov (United States)

    Rathe, Mathias; Müller, Klaus; Sangild, Per Torp; Husby, Steffen

    2014-04-01

    Bovine colostrum, the first milk that cows produce after parturition, contains high levels of growth factors and immunomodulatory components. Some healthy and diseased individuals may gain health benefits by consuming bovine colostrum as a food supplement. This review provides a systematic, critical evaluation of the current state of knowledge in this area. Fifty-one eligible studies were identified from the following databases: Medline, Embase, Global Health, the Cochrane Library, and the Cumulative Index to Nursing and Allied Health Literature. Studies were heterogeneous with regard to populations, outcomes, and methodological quality, as judged by the Jadad assessment tool. Many studies used surrogate markers to study the effects of bovine colostrum. Studies suggesting clinical benefits of colostrum supplementation were generally of poor methodological quality, and results could not be confirmed by other investigators. Bovine colostrum may provide gastrointestinal and immunological benefits, but further studies are required before recommendations can be made for clinical application. Animal models may help researchers to better understand the mechanisms of bovine colostrum supplementation, the dosage regimens required to obtain clinical benefits, and the optimal methods for testing these effects in humans. PMID:24571383

  3. Effects of mitochondrial dysfunction on the immunological properties of microglia

    Directory of Open Access Journals (Sweden)

    Ferger Annette I

    2010-08-01

    Full Text Available Abstract Background Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells. Methods We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP or rotenone. These mitochondrial toxins are known to induce neurodegeneration in humans and in experimental animals. We characterized lipopolysaccharide- (LPS- induced microglial activation and the alternative, interleukin-4- (IL-4- induced microglial activation in these mitochondrial toxin-treated microglial cells. Results We found that, while mitochondrial toxins did not affect LPS-induced activation, as measured by release of tumor necrosis factor α (TNF-α, interleukin-6 (IL-6 and interleukin-1β (IL-1β, they did inhibit part of the IL-4-induced alternative activation, as measured by arginase activity and expression, induction of insulin-like growth factor 1 (IGF-1 and the counteraction of the LPS induced cytokine release. Conclusions Mitochondrial dysfunction in microglial cells inhibits part of the IL-4-induced alternative response. Because this alternative activation is considered to be associated with wound healing and an attenuation of inflammation, mitochondrial dysfunction in microglial cells might contribute to the detrimental effects of neuroinflammation seen in neurodegenerative diseases.

  4. [Understanding mitochondrial genome fragmentation in parasitic lice (Insecta: Phthiraptera)].

    Science.gov (United States)

    Dong, Wen-Ge; Guo, Xian-Guo; Jin, Dao-Chao; Xue, Shi-Peng; Qin, Feng; Simon, Song; Stephen, C Barker; Renfu, Shao

    2013-07-01

    Lice are obligate ectoparasites of mammals and birds. Extensive fragmentation of mitochondrial genomes has been found in some louse species in the families Pediculidae, Pthiridae, Philopteridae and Trichodectidae. For example, the mt genomes of human body louse (Pediculus humanus), head louse (Pediculus capitis), and public louse (Pthirus pubis) have 20, 20 and 14 mini-chromosomes, respectively. These mini-chromosomes might be the results of deletion and recombination of mt genes. The factors and mechanisms of mitochondrial genome fragmentation are currently unknown. The fragmentation might be the results of evolutionary selection or random genetic drift or it is probably related to the lack of mtSSB (mitochondrial single-strand DNA binding protein). Understanding the fragmentation of mitochondrial genomes is of significance for understanding the origin and evolution of mitochondria. This paper reviews the recent advances in the studies of mito-chondrial genome fragmentation in lice, including the phenomena of mitochondrial genome fragmentation, characteristics of fragmented mitochondrial genomes, and some factors and mechanisms possibly leading to the mitochondrial genome fragmentation of lice. Perspectives for future studies on fragmented mt genomes are also discussed. PMID:23853355

  5. Prevalência e fatores de risco para a leptospirose em bovinos de Mato Grosso do Sul Prevalence and risk factors for bovine leptospirosis in Mato Grosso do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Aline de O. Figueiredo

    2009-05-01

    Full Text Available Foi investigada a prevalência de anticorpos antileptospira em fêmeas bovinas com idade igual ou superior a 24 meses, provenientes de 178 rebanhos de 22 municípios do estado de Mato Grosso do Sul, bem como identificados fatores de risco associados à infecção. Foram analisadas 2.573 amostras de soro sangüíneo por meio do teste de soroaglutinação microscópica perante 10 sorovares de leptospira. Títulos iguais ou superiores a 100 para um ou mais sorovares foram detectados em 1.801 fêmeas (98,8% de 161 (96,5% rebanhos. O sorovar Hardjo (65,6% foi apontado como o mais provável, seguido do sorovar Wolffi (12,3%. Os resultados demonstram que a leptospirose bovina se encontra presente em todos os municípios estudados, com alta prevalência, tanto em animais como em rebanhos. Os fatores de risco identificados neste estudo e associados à infecção por bactérias do gênero lepstopira foram o tipo de exploração pecuária de corte e a raça Zebu.The prevalence of anti-Leptospira spp. antibodies was estimated for female cattle aged 24 months or older. The sample comprised 178 herds from 22 counties in the state of Mato Grosso do Sul, Brazil. The risk factors associated with the presence of infeccion were investigated. A total of 2,573 blood serum samples were tested against 10 leptospira serovars using the microagglutination test (MAT. Titers of 100 or higher for one or more serovars were detected in 1,801 females (98.8% from 161 herds (96.5%. Serovar Hardjo (65.6% was the most frequent, followed by serovar Wolffi (12.3%. These results suggest that bovine leptospirosis is widespread in all the counties under study, with a high prevalence both at the animal and the herd level. Beef farms and the Zebu breed were associated to the higher risk of herd infection by leptospiras.

  6. Bovine Tuberculosis, A Zoonotic Disease

    Directory of Open Access Journals (Sweden)

    Tarmudji

    2008-12-01

    Full Text Available Bovine tuberculosis is caused by the infection of Mycobacterium tuberculosis var. bovis (M. bovis. This species is one of Mycobacterium tuberculosis complex, can infect wide range of hosts: cattle and other domesticated animals, wild mammals and humans (zoonotic. M. bovis bacterium from infected hosts can be transmitted to other susceptible animals and humans through respiratory excretes and secretion materials. Humans can be infected with M. bovis by ingested M. bovis contaminated animal products, unpasteurised milk from tuberculosis cows or through respiratory route of contaminated aerosol. Bovine tuberculosis at the first stage does not show any clinical sign but as the disease progress in the next stage which may take several months or years, clinical signs may arise, suh as: fluctuative body temperature, anorexia, lost body weight, coughing, oedema of lymph nodes, increased respiratory frequencies. Pathological lesion of bovine tuberculosis is characterised by the formation of granulomas (tubercles, in which bacterial cells have been localised, most in lymph nodes and pulmonum, but can occur in other organs. The granulomas usually arise in small nodules or tubercles appear yellowish either caseus, caseo-calcareus or calcified. In Indonesia, bovine tuberculosis occurred in dairy cattle since 1905 through the imported dairy cows from Holland and Australian. It was unfortunate that until recently, there were not many research and surveilances of bovine tuberculosis conducted in this country, so the distribution of bovine tuberculosis is unknown. Early serological diagnosis can be done on live cattle by means of tuberculin tests under field conditions. Confirmation can be done by isolation and identification of excreted and secreted samples from the slaughter house. Antibiotic treatment and vaccination were uneffective, therefore the effective control of bovine tuberculosis is suggested by tuberculin tests and by slaughtering the selected

  7. Effect of insulin-like growth factor-1 during in vitro oocyte maturation and in vitro culture of bovine embryos Efeito do fator de crescimento semelhante à insulina-1 durante a maturação in vitro dos oócitos e cultivo in vitro de embriões bovinos

    OpenAIRE

    M.D. Quetglas; L.A Coelho; Garcia, J M; E.B. Oliveira Filho; C.R. Esper

    2001-01-01

    The effects of insulin-like growth factor-I (IGF-I) on in vitro maturation (IVM) (experiment I) and on in vitro embryo development (experiment II) of bovine oocytes fertilized in vitro, were evaluated in terms of cleavage (CR), blastocyst (BR) and hatching (HR) rates. For IVM, immature cumulus-oocyte complexes were cultured in TCM-199 medium supplemented with Hepes, sodium bicarbonate, sodium pyruvate, additives, fetal calf serum (B-199 medium) and gonadotropins (14 U/ml PMSG and 7 U/ml hCG)....

  8. Deceleration of fusion-fission cycles improves mitochondrial quality control during aging.

    Directory of Open Access Journals (Sweden)

    Marc Thilo Figge

    Full Text Available Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the 'mitochondrial infectious damage adaptation' (MIDA model according to which a deceleration of fusion-fission cycles reflects a systemic adaptation increasing life span.

  9. Control mechanisms in mitochondrial oxidative phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Jana Hroudová; Zdeněk Fi(s)ar

    2013-01-01

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  10. Exercise induces mitochondrial biogenesis after brain ischemia in rats.

    Science.gov (United States)

    Zhang, Q; Wu, Y; Zhang, P; Sha, H; Jia, J; Hu, Y; Zhu, J

    2012-03-15

    Stroke is a major cause of death worldwide. Previous studies have suggested both exercise and mitochondrial biogenesis contribute to improved post-ischemic recovery of brain function. However, the exact mechanism underlying this effect is unclear. On the other hand, the benefit of exercise-induced mitochondrial biogenesis in brain has been confirmed. In this study, we attempted to determine whether treadmill exercise induces functional improvement through regulation of mitochondrial biogenesis after brain ischemia. We subjected adult male rats to ischemia, followed by either treadmill exercise or non-exercise and analyzed the effect of exercise on the amount of mitochondrial DNA (mtDNA), expression of mitochondrial biogenesis factors, and mitochondrial protein. In the ischemia-exercise group, only peroxisome proliferator activated receptor coactivator-1 (PGC-1) expression was increased significantly after 3 days of treadmill training. However, after 7 days of training, the levels of mtDNA, nuclear respiratory factor 1, NRF-1, mitochondrial transcription factor A, TFAM, and the mitochondrial protein cytochrome C oxidase subunit IV (COXIV) and heat shock protein-60 (HSP60) also increased above levels observed in non-exercised ischemic animals. These changes followed with significant changes in behavioral scores and cerebral infarct volume. The results indicate that exercise can promote mitochondrial biogenesis after ischemic injury, which may serve as a novel component of exercise-induced repair mechanisms of the brain. Understanding the molecular basis for exercise-induced neuroprotection may be beneficial in the development of therapeutic approaches for brain recovery from the ischemic injury. Based upon our findings, stimulation or enhancement of mitochondrial biogenesis may prove a novel neuroprotective strategy in the future. PMID:22266265

  11. Yeast PPR proteins, watchdogs of mitochondrial gene expression

    OpenAIRE

    Herbert, Christopher J.; Golik, Pawel; Bonnefoy, Nathalie

    2013-01-01

    PPR proteins are a family of ubiquitous RNA-binding factors, found in all the Eukaryotic lineages, and are particularly numerous in higher plants. According to recent bioinformatic analyses, yeast genomes encode from 10 (in S. pombe) to 15 (in S. cerevisiae) PPR proteins. All of these proteins are mitochondrial and very often interact with the mitochondrial membrane. Apart from the general factors, RNA polymerase and RNase P, most yeast PPR proteins are involved in the stability and/or transl...

  12. Curcumin Attenuates Gentamicin-Induced Kidney Mitochondrial Alterations: Possible Role of a Mitochondrial Biogenesis Mechanism

    Directory of Open Access Journals (Sweden)

    Mario Negrette-Guzmán

    2015-01-01

    Full Text Available It has been shown that curcumin (CUR, a polyphenol derived from Curcuma longa, exerts a protective effect against gentamicin- (GM- induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2-related factor 2 (Nrf2 nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α cell expression attenuating GM-induced losses in these proteins. In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2.

  13. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy.

    Science.gov (United States)

    Vincent, Amy E; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M; McFarland, Robert; Gorman, Grainne S; Taylor, Robert W; Turnbull, Doug M; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  14. Insulin-like growth factor-1 protects against prion peptide-induced cell death in neuronal cells via inhibition of Bax translocation.

    Science.gov (United States)

    Park, Yang-Gyu; Jeong, Jae-Kyo; Moon, Myung-Hee; Lee, Ju-Hee; Lee, You-Jin; Seol, Jae-Won; Kim, Shang-Jin; Kang, Seog-Jin; Park, Sang-Youel

    2012-11-01

    Insulin-like growth factor-1 (IGF-1) is one of the most important components of bovine colostrum. It exhibits antiapoptotic and antioxidative activities. Prion diseases are neurodegenerative disorders caused by cell death through mitochondrial dysfunction and increasing generation of reactive oxygen species (ROS). This study examined the protective effect of IGF-1 on residues 106-126 of the cellular prion protein [PrP (106-126)]-mediated mitochondrial neurotoxicity and oxidative stress. In SH-SY5Y human neuronal cells, treatment with PrP (106-126) decreased the cell viability and IGF-1 pretreatment markedly blocked the PrP (106-126)-induced neuronal cell death. IGF-1 inhibited PrP (106-126)-induced intracellular ROS generation and mitochondrial oxidative stress. In addition, IGF-1 blocked the translocation of the Bax protein to the mitochondria induced by PrP (106-126). These results demonstrate that IGF-1 protects neuronal cells against PrP (106-126)-mediated neurotoxicity through an antioxidative effect and blockage of mitochondrial Bax translocation. The results also suggest that regulation of IGF-1 secretion may have a therapeutic potential in the management of mitochondrial dysfunction and oxidative stress-induced neurodegeneration. PMID:22895829

  15. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    Science.gov (United States)

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  16. Neurological mitochondrial cytopathies.

    Directory of Open Access Journals (Sweden)

    Mehndiratta M

    2002-04-01

    Full Text Available The mitochondrial cytopathies are genetically and phenotypically heterogeneous group of disorders caused by structural and functional abnormalities in mitochondria. To the best of our knowledge, there are very few studies published from India till date. Selected and confirmed fourteen cases of neurological mitochondrial cytopathies with different clinical syndromes admitted between 1997 and 2000 are being reported. There were 8 male and 6 female patients. The mean age was 24.42+/-11.18 years (range 4-40 years. Twelve patients could be categorized into well-defined syndromes, while two belonged to undefined group. In the defined syndrome categories, three patients had MELAS (mitochondrial encephalopathy, lactic acidosis and stroke like episodes, three had MERRF (myoclonic epilepsy and ragged red fibre myopathy, three cases had KSS (Kearns-Sayre Syndrome and three were diagnosed to be suffering from mitochondrial myopathy. In the uncategorized group, one case presented with paroxysmal kinesogenic dystonia and the other manifested with generalized chorea alone. Serum lactic acid level was significantly increased in all the patients (fasting 28.96+/-4.59 mg%, post exercise 41.02+/-4.93 mg%. Muscle biopsy was done in all cases. Succinic dehydrogenase staining of muscle tissue showed subsarcolemmal accumulation of mitochondria in 12 cases. Mitochondrial DNA study could be performed in one case only and it did not reveal any mutation at nucleotides 3243 and 8344. MRI brain showed multiple infarcts in MELAS, hyperintensities in putaminal areas in chorea and bilateral cerebellar atrophy in MERRF.

  17. LHON and other optic nerve atrophies: the mitochondrial connection.

    Science.gov (United States)

    Howell, Neil

    2003-01-01

    The clinical, biochemical and genetic features of Leber's hereditary optic neuropathy (LHON) are reviewed. The etiology of LHON is complex, but the primary risk factor is a mutation in one of the seven mitochondrial genes that encode subunits of respiratory chain complex I. The pathogenesis of LHON is not yet understood, but one plausible model is that increased or altered mitochondrial ROS production renders the retinal ganglion cells vulnerable to apoptotic cell death. In addition to LHON, there are a large number of other optic nerve degenerative disorders including autosomal dominant optic atrophy, the toxic/nutritional optic neuropathies and glaucoma. A review of the recent scientific literature suggests that these disorders also involve mitochondrial dysfunction or altered mitochondrial signaling pathways in their pathogenesis. This mitochondrial link provides new avenues of experimental investigation to these major causes of loss of vision.

  18. Exercise-induced mitochondrial dysfunction: a myth or reality?

    Science.gov (United States)

    Ostojic, Sergej M

    2016-08-01

    Beneficial effects of physical activity on mitochondrial health are well substantiated in the scientific literature, with regular exercise improving mitochondrial quality and quantity in normal healthy population, and in cardiometabolic and neurodegenerative disorders and aging. However, several recent studies questioned this paradigm, suggesting that extremely heavy or exhaustive exercise fosters mitochondrial disturbances that could permanently damage its function in health and disease. Exercise-induced mitochondrial dysfunction (EIMD) might be a key proxy for negative outcomes of exhaustive exercise, being a pathophysiological substrate of heart abnormalities, chronic fatigue syndrome (CFS) or muscle degeneration. Here, we overview possible factors that mediate negative effects of exhaustive exercise on mitochondrial function and structure, and put forward alternative solutions for the management of EIMD. PMID:27389587

  19. Vimar Is a Novel Regulator of Mitochondrial Fission through Miro

    Science.gov (United States)

    Ding, Lianggong; Han, Yanping; Li, Yuhong; Ji, Xunming; Liu, Lei

    2016-01-01

    As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF). However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF) vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF) Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro’s effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson’s disease (PD), caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional. PMID:27716788

  20. Mitochondrial fusion and inheritance of the mitochondrial genome.

    Science.gov (United States)

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion. PMID:20196232

  1. Adult-onset mitochondrial myopathy.

    Science.gov (United States)

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  2. Association of Bovine Viral Diarrhea Virus with Multiple Viral Infections in Bovine Respiratory Disease Outbreaks

    OpenAIRE

    Richer, Lisette; Marois, Paul; Lamontagne, Lucie

    1988-01-01

    We investigated eleven outbreaks of naturally occurring bovine respiratory diseases in calves and adult animals in the St-Hyacinthe area of Quebec. Specific antibodies to bovine herpesvirus-1, bovine viral diarrhea virus, respiratory syncytial virus, parainfluenza type 3 virus, reovirus type 3, and serotypes 1 to 7 of bovine adenovirus were found in paired sera from diseased animals. Several bovine viruses with respiratory tropism were involved concomitantly in herds during an outbreak of bov...

  3. Cancer: Mitochondrial Origins.

    Science.gov (United States)

    Stefano, George B; Kream, Richard M

    2015-12-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was "sidelined" with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial

  4. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  5. Mitochondrial Dysfunction and Psychiatric Disorders

    OpenAIRE

    Shaw-Hwa Jou; Nan-Yin Chiu; Chin-San Liu

    2009-01-01

    Mitochondria are intracellular organelles crucial in the production of cellular energy.Mitochondrial diseases may result from malfunctions in this biochemical cascade. Severalinvestigators have proposed that mitochondrial dysfunction is related to the pathophysiologyof bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia (SZ). Theauthors reviewed recent study findings and tried to delineate the current understanding of thecorrelation between mitochondrial dysfunction and p...

  6. Material Properties of Inorganic Bovine Cancellous Bovine: Nukbone

    Science.gov (United States)

    Piña, Cristina; Palma, Benito; Munguía, Nadia

    2006-09-01

    In this work, inorganic cancellous bovine bone implants prepared in the Instituto de Investigaciones en Materiales — UNAM were characterized. Elementary chemical analysis was made, toxic elements concentration were measured and the content of organic matter also. These implants fulfill all the requirements of the ASTM standards, and therefore it is possible their use in medical applications.

  7. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai

    2009-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.

  8. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU.

    Science.gov (United States)

    Shanmughapriya, Santhanam; Rajan, Sudarsan; Hoffman, Nicholas E; Zhang, Xueqian; Guo, Shuchi; Kolesar, Jill E; Hines, Kevin J; Ragheb, Jonathan; Jog, Neelakshi R; Caricchio, Roberto; Baba, Yoshihiro; Zhou, Yandong; Kaufman, Brett A; Cheung, Joseph Y; Kurosaki, Tomohiro; Gill, Donald L; Madesh, Muniswamy

    2015-03-03

    Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.

  9. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes.

    Science.gov (United States)

    Gutnisky, Cynthia; Dalvit, Gabriel C; Thompson, Jeremy G; Cetica, Pablo D

    2014-08-01

    The relationship between pentose phosphate pathway (PPP) activity in cumulus-oocyte complexes (COCs) and oxidative and mitochondrial activity in bovine oocytes was evaluated with the aim of analysing the impact of two inhibitors (NADPH and 6-aminonicotinamide (6-AN)) and a stimulator (NADP) of the key enzymes of the PPP on the maturation rate, oxidative and mitochondrial activity and the mitochondrial distribution in oocytes. The proportion of COCs with measurable PPP activity (assessed using brilliant cresyl blue staining), glucose uptake, lactate production and meiotic maturation rate diminished when 6-AN (0.1, 1, 5 and 10mM for 22h) was added to the maturation medium (P<0.05). The addition of NADPH did not modify glucose uptake or lactate production, but reduced PPP activity in COCs and meiotic maturation rates (P<0.05). The presence of NADP (0.0125, 0.125, 1.25 and 12.5mM for 22h of culture) in the maturation medium had no effect on PPP activity in COCs, glucose uptake, lactate production and meiotic maturation rate. However, in the absence of gonadotropin supplementation, NADP stimulated both glucose uptake and lactate production at 12.5mM (the highest concentration tested; P<0.05). NADP did not modify cleavage rate, but decreased blastocyst production (P<0.05). During IVM, oocyte oxidative and mitochondrial activity was observed to increase at 15 and 22h maturation, which was also related to progressive mitochondrial migration. Inhibiting the PPP with 6-AN or NADPH led to reduced oxidative and mitochondrial activity compared with the respective control groups and inhibition of mitochondrial migration (P<0.05). Stimulation of the PPP with NADP increased oxidative and mitochondrial activity at 9h maturation (P<0.05) and delayed mitochondrial migration. The present study shows the significance of altering PPP activity during bovine oocyte IVM, revealing that there is a link between the activity of the PPP and the oxidative status of the oocyte.

  10. LHON: Mitochondrial Mutations and More.

    Science.gov (United States)

    Kirches, E

    2011-03-01

    Leber's hereditary optic neuropathy (LHON) is a mitochondrial disorder leading to severe visual impairment or even blindness by death of retinal ganglion cells (RGCs). The primary cause of the disease is usually a mutation of the mitochondrial genome (mtDNA) causing a single amino acid exchange in one of the mtDNA-encoded subunits of NADH:ubiquinone oxidoreductase, the first complex of the electron transport chain. It was thus obvious to accuse neuronal energy depletion as the most probable mediator of neuronal death. The group of Valerio Carelli and other authors have nicely shown that energy depletion shapes the cell fate in a LHON cybrid cell model. However, the cybrids used were osteosarcoma cells, which do not fully model neuronal energy metabolism. Although complex I mutations may cause oxidative stress, a potential pathogenetic role of the latter was less taken into focus. The hypothesis of bioenergetic failure does not provide a simple explanation for the relatively late disease onset and for the incomplete penetrance, which differs remarkably between genders. It is assumed that other genetic and environmental factors are needed in addition to the 'primary LHON mutations' to elicit RGC death. Relevant nuclear modifier genes have not been identified so far. The review discusses the unresolved problems of a pathogenetic hypothesis based on ATP decline and/or ROS-induced apoptosis in RGCs.

  11. Decreased Levels of Proapoptotic Factors and Increased Key Regulators of Mitochondrial Biogenesis Constitute New Potential Beneficial Features of Long-lived Growth Hormone Receptor Gene–Disrupted Mice

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J.; Bartke, Andrzej

    2012-01-01

    Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results sugges...

  12. Mitochondrial Dysfunction in Cancer

    Directory of Open Access Journals (Sweden)

    Michelle L Boland

    2013-12-01

    Full Text Available A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability and other more conventional aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the sigificance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis and spatial dynamics and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knockon effects for cell proliferation and growth. Scientifically, there is also scope for defining what mitochondria dysfunction is and here we address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.

  13. Mitochondrial Ion Channels

    Science.gov (United States)

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  14. Searching for the elusive mitochondrial longevity signal in C. elegans.

    Science.gov (United States)

    Bennett, Christopher F; Choi, Haeri; Kaeberlein, Matt

    2014-01-01

    There is a growing list of examples where perturbed mitochondrial function is associated with increased longevity, yet the exact mechanisms have remained elusive. This phenomenon was first documented, and has been studied most extensively, in C. elegans. One prominent model proposed that lifespan extension resulting from electron transport chain inhibition is due to induction of the mitochondrial unfolded protein response. This model requires revision in light of recent data showing that the mitochondrial unfolded protein response, as defined by the field, is neither necessary nor sufficient for lifespan extension in C. elegans. Several additional factors have been proposed to underlie this lifespan extension, which is likely to be multifactorial and complex.

  15. trans activation by the full-length E2 proteins of human papillomavirus type 16 and bovine papillomavirus type 1 in vitro and in vivo: cooperation with activation domains of cellular transcription factors.

    OpenAIRE

    Ushikai, M; Lace, M J; Yamakawa, Y.; Kono, M; Anson, J; Ishiji, T; Parkkinen, S; Wicker, N.; Valentine, M E; Davidson, I

    1994-01-01

    Papillomaviral E2 genes encode proteins that regulate viral transcription. While the full-length bovine papillomavirus type 1 (BPV-1) E2 peptide is a strong trans activator, the homologous full-length E2 product of human papillomavirus type 16 (HPV-16) appeared to vary in function in previous studies. Here we show that when expressed from comparable constructs, the full-length E2 products of HPV-16 and BPV-1 trans activate a simple E2- and Sp1-dependent promoter up to approximately 100-fold i...

  16. Propionate induces the bovine cytosolic phosphoenolpyruvate carboxykinase promoter activity.

    Science.gov (United States)

    Zhang, Qian; Koser, Stephanie L; Donkin, Shawn S

    2016-08-01

    Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a critical enzyme within the metabolic networks for gluconeogenesis, hepatic energy metabolism, and tricarboxylic acid cycle function, and is controlled by several transcription factors including hepatic nuclear factor 4α (HNF4α). The primary objective of the present study was to determine whether propionate regulates bovine PCK1 transcription. The second objective was to determine the action of cyclic AMP (cAMP), glucocorticoids, and insulin, hormonal cues known to modulate glucose metabolism, on bovine PCK1 transcriptional activity. The proximal promoter of the bovine PCK1 gene was ligated to a Firefly luciferase reporter and transfected into H4IIE hepatoma cells. Cells were exposed to treatments for 23 h and luciferase activity was determined in cell lysates. Activity of the PCK1 promoter was linearly induced by propionate, and maximally increased 7-fold with 2.5 mM propionate, which was not muted by 100 nM insulin. Activity of the PCK1 promoter was increased 1-fold by either 1.0 mM cAMP or 5.0µM dexamethasone, and 2.2-fold by their combination. Induction by cAMP and dexamethasone was repressed 50% by 100 nM insulin. Propionate, cAMP, and dexamethasone acted synergistically to induce the PCK1 promoter activity. Propionate-responsive regions, identified by 5' deletion analysis, were located between -1,238 and -409 bp and between -85 and +221 bp. Deletions of the core sequences of the 2 putative HNF4α sites decreased the responsiveness to propionate by approximately 40%. These data indicate that propionate regulates its own metabolism through transcriptional stimulation of the bovine PCK1 gene. This induction is mediated, in part, by the 2 putative HNF4α binding sites in the bovine PCK1 promoter. PMID:27289145

  17. L-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis.

    Science.gov (United States)

    Schimmeyer, Joram; Bock, Ralph; Meyer, Etienne H

    2016-01-01

    L-Galactono-1,4-lactone dehydrogenase (GLDH) catalyses the last enzymatic step of the ascorbate biosynthetic pathway in plants. GLDH is localised to mitochondria and several reports have shown that GLDH is associated with complex I of the respiratory chain. In a gldh knock-out mutant, complex I is not detectable, suggesting that GLDH is essential for complex I assembly or stability. GLDH has not been identified as a genuine complex I subunit, instead, it is present in a smaller, lowly abundant version of complex I called complex I*. In addition, GLDH activity has also been detected in smaller protein complexes within mitochondria membranes. Here, we investigated the role of GLDH during complex I assembly. We identified GLDH in complexes co-localising with some complex I assembly intermediates. Using a mutant that accumulates complex I assembly intermediates, we confirmed that GLDH is associated with the complex I assembly intermediates of 400 and 450 kDa. In addition, we detected accumulation of the 200 kDa complex I assembly intermediate in the gldh mutant. Taken together, our data suggest that GLDH is an assembly factor of the membrane arm of complex I. This function appears to be independent of the role of GLDH in ascorbate synthesis, as evidenced by the ascorbate-deficient mutant vtc2-1 accumulating wild-type levels of complex I. Therefore, we propose that GLDH is a dual-function protein that has a second, non-enzymatic function in complex I assembly as a plant-specific assembly factor. We propose an updated model for complex I assembly that includes complex I* as an assembly intermediate.

  18. Mitochondrial Dysfunctions in Neurodegenerative Diseases: Relevance to Alzheimer's Disease

    OpenAIRE

    Jana Hroudová; Namrata Singh; Zdeněk Fišar

    2014-01-01

    Mitochondrial dysfunctions are supposed to be responsible for many neurodegenerative diseases dominating in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). A growing body of evidence suggests that defects in mitochondrial metabolism and particularly of electron transport chain may play a role in pathogenesis of AD. Structurally and functionally damaged mitochondria do not produce sufficient ATP and are more prominent in producing proapoptotic factors and rea...

  19. Muscle mitochondrial changes with aging and exercise1234

    OpenAIRE

    Lanza, Ian R.; Nair, K. Sreekumaran

    2008-01-01

    Aging has been reported to be accompanied by reduced mitochondrial function and insulin sensitivity. Whether these deleterious effects result from chronological age or lifestyle-related factors such as adiposity and physical inactivity remains debatable. The beneficial effects of exercise on mitochondrial function and insulin sensitivity are well documented; however, it is unclear whether exercise can effectively prevent, reverse, or delay the onset of these age-related dysfunctions. Other in...

  20. Organization of the human mitochondrial transcription initiation complex

    OpenAIRE

    Yakubovskaya, Elena; Guja, Kip E.; Eng, Edward T.; Choi, Woo Suk; Mejia, Edison; Beglov, Dmitri; Lukin, Mark; Kozakov, Dima; Garcia-Diaz, Miguel

    2014-01-01

    Initiation of transcription in human mitochondria involves two factors, TFAM and TFB2M, in addition to the mitochondrial RNA polymerase, POLRMT. We have investigated the organization of the human mitochondrial transcription initiation complex on the light-strand promoter (LSP) through solution X-ray scattering, electron microscopy (EM) and biochemical studies. Our EM results demonstrate a compact organization of the initiation complex, suggesting that protein–protein interactions might help m...

  1. Pneumolysin causes neuronal cell death through mitochondrial damage

    OpenAIRE

    Braun, Johann S.; Hoffmann, Olaf; Schickhaus, Miriam; Freyer, Dorette; Dagand, Emilie; Bermpohl, Daniela; Mitchell, Tim J.; Bechmann, Ingo; Weber, Joerg R.

    2007-01-01

    Bacterial toxins such as pneumolysin are key mediators of cytotoxicity in infections. Pneumolysin is a pore-forming toxin released by Streptococcus pneumoniae, the major cause of bacterial meningitis. We found that pneumolysin is the pneumococcal factor that accounts for the cell death pathways induced by live bacteria in primary neurons. The pore-forming activity of pneumolysin is essential for the induction of mitochondrial damage and apoptosis. Pneumolysin colocalized with mitochondrial me...

  2. Bovine colostrum in oral treatment of enterogenic endotoxaemia in rats

    Science.gov (United States)

    Döhler, J Rüdiger; Nebermann, Lars

    2002-01-01

    Introduction Under conditions of shock, bacteria and endotoxins in the intestines can traverse the mucosal barrier by translocation and enter the blood and lymphatic system. Immunoglobulins and lactoferrin have been reported to neutralize endotoxins and bacteria. We studied the essential therapeutic factors of colostrum products in an animal experiment. Method We simulated endotoxaemia by per-oral administration of a suspension of Escherichia coli and antibiotics into the duodenum of anaesthetized rats after giving intraperitoneal carrageenan. At the same time, pure bovine colostrum or lactoferrin-enriched bovine colostrum was given. Therapeutic effects were studied by examining plasma endotoxin activity and bacterial contamination of mesenterial lymph nodes and peritoneal lavages. Albumin was used in a control group. Results The most effective bovine colostrum was able to reduce the maximum plasma endotoxin value by 67% as compared with the albumin group. The combination of this colostrum with lactoferrin brought about a reduction by 80%. The reduction in bacterial contamination of lymph nodes and peritoneal lavages was also evident. Conclusion Both gammaglobulin and lactoferrin may help to eliminate endotoxins when bovine colostrum is administered into the gut in conditions of septic shock. PMID:12493077

  3. A new bovine conjunctiva model shows that Listeria monocytogenes invasion is associated with lysozyme resistance.

    Science.gov (United States)

    Warren, Jessica; Owen, A Rhys; Glanvill, Amy; Francis, Asher; Maboni, Grazieli; Nova, Rodrigo J; Wapenaar, Wendela; Rees, Catherine; Tötemeyer, Sabine

    2015-08-31

    Listerial keratoconjunctivitis ('silage eye') is a wide spread problem in ruminants causing economic losses to farmers and impacts negatively on animal welfare. It results from direct entry of Listeria monocytogenes into the eye, often following consumption of contaminated silage. An isolation protocol for bovine conjunctival swabbing was developed and used to sample both infected and healthy eyes bovine eyes (n=46). L. monocytogenes was only isolated from one healthy eye sample, and suggests that this organism can be present without causing disease. To initiate a study of this disease, an infection model was developed using isolated conjunctiva explants obtained from cattle eyes post slaughter. Conjunctiva were cultured and infected for 20 h with a range of L. monocytogenes isolates (n=11), including the healthy bovine eye isolate and also strains isolated from other bovine sources, such as milk or clinical infections. Two L. monocytogenes isolates (one from a healthy eye and one from a cattle abortion) were markedly less able to invade conjunctiva explants, but one of those was able to efficiently infect Caco2 cells indicating that it was fully virulent. These two isolates were also significantly more sensitive to lysozyme compared to most other isolates tested, suggesting that lysozyme resistance is an important factor when infecting bovine conjunctiva. In conclusion, we present the first bovine conjunctiva explant model for infection studies and demonstrate that clinical L. monocytogenes isolates from cases of bovine keratoconjunctivitis are able to infect these tissues. PMID:25778543

  4. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Philippe A Parone

    Full Text Available Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS. At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.

  5. Biological components in a standardized derivative of bovine colostrum.

    Science.gov (United States)

    Sacerdote, P; Mussano, F; Franchi, S; Panerai, A E; Bussolati, G; Carossa, S; Bartorelli, A; Bussolati, B

    2013-03-01

    Products of different origin, time of collection, and activities fall under the general term of colostrum and, therefore, great variability in composition as well as in the concentration of its components has been reported in the literature. In the present study, we describe the standardization of a bovine colostrum derivative and the characterization of its bioactive components. Evaluation of the most representative agents (lactoferrin, transferrin, IL-2, IFN-γ, tumor necrosis factor, IgG, and IgA) showed that a marked decrease in active components occurs after the first few hours. Bovine colostrum was, therefore, collected up to the fifth hour after delivery from Holstein cows, in the presence of preservatives, and immediately frozen. A protocol of centrifugation, filtration, and lyophilization was then applied to pools of colostrum from at least 30 cows to obtain a stable, sterile, standardized product. Preservatives were removed by dialysis. Evaluation of the active biological components of colostrum showed that the final product of colostrums contained significant and reproducible amounts of bioactive factors, including cytokines, immunomodulating factors, growth factors, and immunoglobulins. The final product appeared, therefore, as a sterile, pyrogen-free, standardized derivative of bovine colostrum with a high concentration of bioactive components. PMID:23332842

  6. HUMAN MITOCHONDRIAL tRNA MUTATIONS IN MATERNALLY INHERITED DEAFNESS

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jing; GONG Sha-sha; TANG Xiao-wen; ZHU Yi; GUAN Min-xin

    2013-01-01

    Mutations in mitochondrial tRNA genes have been shown to be associated with maternally inherited syn-dromic and non-syndromic deafness. Among those, mutations such as tRNALeu(UUR) 3243A>G associated with syndromic deafness are often present in heteroplasmy, and the non-syndromic deafness-associated tRNA mu-tations including tRNASer(UCN) 7445A>G are often in homoplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary factors underlying the development of hearing loss. However, other tRNA mutations such as tRNAThr 15927G>A and tRNASer(UCN) 7444G>A are insufficient to produce a deafness phe-notype, but always act in synergy with the primary mitochondrial DNA mutations, and can modulate their phenotypic manifestation. These tRNA mutations may alter the structure and function of the corresponding mitochondrial tRNAs and cause failures in tRNAs metabolism. Thereby, the impairment of mitochondrial protein synthesis and subsequent defects in respiration caused by these tRNA mutations, results in mitochon-drial dysfunctions and eventually leads to the development of hearing loss. Here, we summarized the deaf-ness-associated mitochondrial tRNA mutations and discussed the pathophysiology of these mitochondrial tRNA mutations, and we hope these data will provide a foundation for the early diagnosis, management, and treatment of maternally inherited deafness.

  7. Evidence of Mitochondrial Dysfunction in Autism and Implications for Treatment

    Directory of Open Access Journals (Sweden)

    Daniel A. Rossignol

    2008-01-01

    Full Text Available Classical mitochondrial diseases occur in a subset of individuals with autism and are usually caused by genetic anomalies or mitochondrial respiratory pathway deficits. However, in many cases of autism, there is evidence of mitochondrial dysfunction (MtD without the classic features associated with mitochondrial disease. MtD appears to be more common in autism and presents with less severe signs and symptoms. It is not associated with discernable mitochondrial pathology in muscle biopsy specimens despite objective evidence of lowered mitochondrial functioning. Exposure to environ-mental toxins is the likely etiology for MtD in autism. This dysfunction then contributes to a number of diagnostic symptoms and comorbidities observed in autism including: cognitive impairment, language deficits, abnormal energy metabolism, chronic gastrointestinal problems, abnormalities in fatty acid oxidation, and increased oxidative stress. MtD and oxidative stress may also explain the high male to female ratio found in autism due to increased male vulnerability to these dysfunctions. Biomarkers for mitochondrial dysfunction have been identified, but seem widely under-utilized despite available therapeutic interventions. Nutritional supplementation to decrease oxidative stress along with factors to improve reduced glutathione, as well as hyperbaric oxygen therapy (HBOT represent supported and rationale approaches. The underlying pathophysiology and autistic symptoms of affected individuals would be expected to either improve or cease worsening once effective treatment for MtD is implemented.

  8. Audiological evaluation in Chinese patients with mitochondrial encephalomyopathies

    Institute of Scientific and Technical Information of China (English)

    Liu Yuhe; Xue Junfang; Zhao Danhua; Chen Li; Yuan Yun; Wang Zhaoxia

    2014-01-01

    Background Hearing impairment has been reported to be common in patients with mitochondrial disorders,a group of diseases characterized by pleiomorphic clinical manifestations due to defects in oxidative phosphorylation of mitochondria.This study aimed to investigate the audiological characteristics in a large cohort of patients with mitochondrial disease.Methods Comprehensive audiological evaluations,including pure tone audiometry,tympanometry,speech audiometry,otoacoustic emissions,electrocochleography and auditory brainstem evoked potentials,were performed in 73 Chinese patients with mitochondrial encephalomyopathy and with confirmed mitochondrial DNA (mtDNA) defects.Results Among the patients,71% had hearing impairment.However,the incidence rate and severity of hearing impairment were much less in the chronic progressive external ophthalmoplegia (CPEO) subtype than in the mitochondrial encephalomyopathy,lactic acidosis,and stroke-like episodes (MELAS),myoclonic epilepsy with ragged red fibers (MERRF) and Kearns-Sayre syndrome (KSS) subtypes.While most of our patients had a predominantly cochlea origin for the hearing deficit,five patients had an auditory neuropathy spectrum disorder and three patients had impairment of both cochlea and auditory codex.Conclusions Various portions of the auditory system could be involved in patients with mitochondrial diseases,including cochlea,auditory nerve,auditory pathway and cortex.Hearing loss was more associated with multisystem involvement.Genotype,mutant load of mtDNA and other unknown factors could contribute to heterogeneity of hearing impairment in mitochondrial disease.

  9. Identification of a mammalian mitochondrial homolog of ribosomal protein S7.

    Science.gov (United States)

    Cavdar Koc, E; Blackburn, K; Burkhart, W; Spremulli, L L

    1999-12-01

    Bovine mitochondrial small subunit ribosomal proteins were separated by two-dimensional electrophoresis. The region containing the most basic protein(s) was excised and the protein(s) present subjected to in-gel digestion with trypsin. Electrospray tandem mass spectrometry was used to provide sequence information on some of the peptide products. Searches of the human EST database using the sequence of the longest peptide analyzed indicated that this peptide was from the mammalian mitochondrial homolog of prokaryotic ribosomal protein S7 (MRP S7(human)). MRP S7(human) is a 28-kDa protein with a pI of 10. Significant homology to bacterial S7 is observed especially in the C-terminal half of the protein. Surprisingly, MRP S7(human) shows less homology to the corresponding mitochondrial proteins from plants and fungi than to bacterial S7.

  10. A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity.

    Directory of Open Access Journals (Sweden)

    Janet H C Yeo

    Full Text Available We identified Mrpl44 in a search for mammalian proteins that contain RNase III domains. This protein was previously found in association with the mitochondrial ribosome of bovine liver extracts. However, the precise Mrpl44 localization had been unclear. Here, we show by immunofluorescence microscopy and subcellular fractionation that Mrpl44 is localized to the matrix of the mitochondria. We found that it can form multimers, and confirm that it is part of the large subunit of the mitochondrial ribosome. By manipulating its expression, we show that Mrpl44 may be important for regulating the expression of mtDNA-encoded genes. This was at the level of RNA expression and protein translation. This ultimately impacted ATP synthesis capability and respiratory capacity of cells. These findings indicate that Mrpl44 plays an important role in the regulation of the mitochondrial OXPHOS capacity.

  11. Sealing the Mitochondrial Respirasome

    OpenAIRE

    Winge, Dennis R.

    2012-01-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our underst...

  12. Pathological studies on bovine viral diarrhea

    International Nuclear Information System (INIS)

    Bovine viral diarrhea virus (BVDV) is classified as an RNA virus in the family flavin viride and is a member of the genus pest virus (Collet et al 1989). BVDV has a worldwide distribution and infections in cattle populations (Kahrs et al 1970). It was recognized since 50 years ago, the initial description of an acute enteric disease of cattle in North America, which was characterized by outbreaks of diarrhea and erosive of digestive tract (Olafsonp et al 1946). The disease and causative agent were named bovine viral diarrhea (B V D ) and (B V DV), respectively. This virus was subsequently associated with a sporadically occurring and highly fatal enteric disease that was termed mucosal disease (M D), (Ramsey and Chivers 1953). The initial isolate of BVDV did not produce cytopathic effect in cell culture, whereas an isolate from MD did produce cytopathic effects (Lee et al 1957). In vitro characteristic of non cytopathic or sytopathic effects of BVDV is referred to as the biotype of the virus. It has now been established that MD occurs only when xattle that are born immuno tolerant to and persistently infected with a noncyropathic BVDV become super infected with a cytopathic BVDV. The knowledge of the molecular biology. Pathogenesis and epidemiology of BVDV has greatly evolved in the past 10-15 years and has provided a better understanding of this complex infectious agent. Infection with BVDV can result in a wide spectrum of diseases ranging from subclinical infection s to a highly fatal from known as mucosal disease (ND). The clinical response to infection depends on multiple interactive factors. Host factors that influence the clinical outcome of BVDV infection include whether the host is immunocompetent or immuno tolerant to BVDV, pregnancy status, gestational age of the fetus, immune status (passively derived or actively derived from previous infection or vaccination) and concurrent level of environmental stress

  13. Characterization of bovine A20 gene: Expression mediated by NF-κB pathway in MDBK cells infected with bovine viral diarrhea virus-1.

    Science.gov (United States)

    Fredericksen, Fernanda; Villalba, Melina; Olavarría, Víctor H

    2016-05-01

    Cytokine production for immunological process is tightly regulated at the transcriptional and posttranscriptional levels. The NF-κB signaling pathway maintains immune homeostasis in the cell through the participation of molecules such as A20 (TNFAIP3), which is a key regulatory factor in the immune response, hematopoietic differentiation, and immunomodulation. Although A20 has been identified in mammals, and despite recent efforts to identify A20 members in other higher vertebrates, relatively little is known about the composition of this regulator in other classes of vertebrates, particularly for bovines. In this study, the genetic context of bovine A20 was explored and compared against homologous genes in the human, mouse, chicken, dog, and zebrafish chromosomes. Through in silico analysis, several regions of interest were found conserved between even phylogenetically distant species. Additionally, a protein-deduced sequence of bovine A20 evidenced many conserved domains in humans and mice. Furthermore, all potential amino acid residues implicated in the active site of A20 were conserved. Finally, bovine A20 mRNA expression as mediated by the bovine viral diarrhea virus and poly (I:C) was evaluated. These analyses evidenced a strong fold increase in A20 expression following virus exposure, a phenomenon blocked by a pharmacological NF-κB inhibitor (BAY 117085). Interestingly, A20 mRNA had a half-life of only 32min, likely due to adenylate- and uridylate-rich elements in the 3'-untranslated region. Collectively, these data identify bovine A20 as a regulator of immune marker expression. Finally, this is the first report to find the bovine viral diarrhea virus modulating bovine A20 activation through the NF-κB pathway. PMID:26809100

  14. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  15. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells--The potential of JNX1001 as a therapeutic agent.

    Science.gov (United States)

    Kim, Helena K; Mendonça, Karina M; Howson, Patrick A; Brotchie, Jonathan M; Andreazza, Ana C

    2015-10-01

    Mitochondrial complex I, which is the first member of the electron transport chain responsible for producing ATP, can produce reactive oxygen species and oxidative stress when it becomes dysfunctional. Complex I dysfunction and oxidative stress are strongly implicated in bipolar disorder (BD), a debilitating psychiatric disease, as is decreased levels of brain derived neurotrophic factor (BDNF) found in patients with BD, which is related to complex I activity. JNX1001, a clinical trial ready brain penetrant sapogenin, increases BDNF levels in animal models. Hence, we aimed to examine if JNX1001 can prevent complex I dysfunction-induced alterations produced by rotenone treatment in human neuroblastoma cells (SH-SY5Y). Complex I dysfunction decreased cell viability and increased protein carbonylation and nitration, confirming previous findings. Complex I dysfunction also decreased intracellular and extracellular BDNF levels. JNX1001 pre-treatment prevented complex I dysfunction-induced protein carbonylation and nitration and improved cell viability at concentrations of 30 nM and 300 nM, but more robustly at 300 nM. JNX1001 was also able to prevent decreased intracellular and extracellular BDNF levels, where it produced a ten-fold increase in intracellular BDNF levels at a concentration of 300 nM. While further studies are required to examine the neuroprotective ability of JNX1001 against alterations produced by complex I defect in more complex systems, such as in animal models, the findings of this study demonstrate the potential of JNX1001 to be used as a therapeutic agent to protect against complex I dysfunction-induced alterations that may be highly relevant to BD. PMID:26164791

  16. Mitochondrial biogenesis of astrocytes is increased under experimental septic conditions

    Institute of Scientific and Technical Information of China (English)

    Wang Yang; Chen Zhijiang; Zhang Yu; Fang Suzhen; Zeng Qiyi

    2014-01-01

    Background Mitochondrial dysfunction has been reported to be one of the contributing factors of sepsis-associated encephalopathy (SAE).Mitochondrial biogenesis controls mitochondrial homeostasis and responds to changes in cellular energy demand.In addition,it is enhanced or decreased due to mitochondrial dysfunction during SAE.The aim of this study was to explore the changes of mitochondrial biogenesis of astrocytes under septic conditions.Methods Lipopolysaccharide (LPS; 50 ng/ml) and interferon-γ (IFN-γ; 200 U/ml) were incubated with astrocytes to model the effects of a septic insult on astrocytes in vitro.The mitochondrial ultrastructure and volume density were evaluated by transmission electron microscopy.Intracellular adenosine triphosphate (ATP) levels were detected by the firefly luciferase system.The expression of protein markers of mitochondrial biogenesis and the binding ability of mitochondrial transcription factor A (TFAM) were determined by western blot and electrophoretic mobility shift assays,respectively.The mitochondrial DNA (mtDNA) content was detected by real-time polymerase chain reaction.Results The number of mildly damaged mitochondria was found to be significantly greater after treatment for 6 hours,as compared with at 0 hour (P<0.05).The mitochondrial volume density was significantly elevated at 24 hours,as compared with at 0 hour (P<0.05).The ATP levels at 6 hours,12 hours,and 24 hours were significantly greater than those at 0 hour (P<0.05).The protein markers of mitochondrial biogenesis were significantly increased at 6 hours and 12 hours,as compared with at 0 hour (P<0.05).The TFAM binding activity was not significantly changed among the four time points analyzed.The mtDNA contents were significantly increased at 12 hours and 24 hours,as compared with at 0 hour (P<0.05).Conclusions Under septic conditions,mitochonddal biogenesis of astrocytes increased to meet the high-energy demand and to promote mitochondrial recovery

  17. p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity

    Institute of Scientific and Technical Information of China (English)

    Sonja Wolff; Susan Erster; Gustavo Palacios; Ute M Moll

    2008-01-01

    p53's apoptotic program consists of transcription-dependent and transcription-independent pathways. In the latter, physical interactions between mitochondrial p53 and anti-and pro-apoptotic members of the Bcl2 family of mitochondrial permeability regulators are central. Using isogenic cell systems with defined deficiencies, we characterize in detail how mitochondrial p53 contributes to mitochondrial permeabilization, to what extent its action depends on other key Bcl2 family members and define its release activity. We show that mitochondrial p53 is highly efficient in inducing the release of soluble and insoluble apoptogenic factors by severely disrupting outer and inner mitochondrial membrane integrity. This action is associated with wild-type p53-induced oligomerization of Bax, Bak and VDAC and the formation of a stress-induced endogenous complex between p53 and cyclophilin D, normally located at the inner membrane. Tumor-derived p53 mutants are deficient in activating the Bax/Bak lipid pore. These actions are independent of Puma and Bax. Importantly, the latter distinguishes the mitochondrial from the cytosolic p53 death pathway.

  18. Mitochondrial Energy-Deficient Endophenotype in Autism

    Directory of Open Access Journals (Sweden)

    J. J. Gargus

    2008-01-01

    Full Text Available While evidence points to a multigenic etiology of most autism, the pathophysiology of the disorder has yet to be defined and the underlying genes and biochemical pathways they subserve remain unknown. Autism is considered to be influenced by a combination of various genetic, environmental and immunological factors; more recently, evidence has suggested that increased vulnerability to oxidative stress may be involved in the etiology of this multifactorial disorder. Furthermore, recent studies have pointed to a subset of autism associated with the biochemical endophenotype of mitochondrial energy deficiency, identified as a subtle impairment in fat and carbohydrate oxidation. This phenotype is similar, but more subtle than those seen in classic mitochondrial defects. In some cases the beginnings of the genetic underpinnings of these mitochondrial defects are emerging, such as mild mitochondrial dysfunction and secondary carnitine deficiency observed in the subset of autistic patients with an inverted duplication of chromosome 15q11-q13. In addition, rare cases of familial autism associated with sudden infant death syndrome (SIDS or associated with abnormalities in cellular calcium homeostasis, such as malignant hyperthermia or cardiac arrhythmia, are beginning to emerge. Such special cases suggest that the pathophysiology of autism may comprise pathways that are directly or indirectly involved in mitochondrial energy production and to further probe this connection three new avenues seem worthy of exploration: 1 metabolomic clinical studies provoking controlled aerobic exercise stress to expand the biochemical phenotype, 2 high-throughput expression arrays to directly survey activity of the genes underlying these biochemical pathways and 3 model systems, either based upon neuronal stem cells or model genetic organisms, to discover novel genetic and environmental inputs into these pathways.

  19. Effect of mitochondrial calcium uniporter blocking on human spermatozoa.

    Science.gov (United States)

    Bravo, A; Treulen, F; Uribe, P; Boguen, R; Felmer, R; Villegas, J V

    2015-08-01

    Calcium (Ca(2+) ) regulates a number of essential processes in spermatozoa. Ca(2+) is taken up by mitochondria via the mitochondrial calcium uniporter (mCU). Oxygen-bridged dinuclear ruthenium amine complex (Ru360) has been used to study mCU because it is a potent and specific inhibitor of this channel. In bovine spermatozoa, it has been demonstrated that mitochondrial calcium uptake inhibition adversely affects the capacitation process. It has been demonstrated in human spermatozoa that mCU blocking, through Ru360, prevents apoptosis; however, the contribution of the mCU to normal human sperm function has not been studied. Therefore, the aim of this study was to evaluate the effect of mCU blocking on human sperm function. Spermatozoa obtained from apparently healthy donors were incubated with 5 and 10 μm Ru360 for 4 h at 37 °C. Viability was assessed using propidium iodide staining; motility was determined by computer-aided sperm analysis, adenosine triphosphate (ATP) levels using a luminescence-based method, mitochondrial membrane potential (ΔΨm) using JC-1 staining and reactive oxygen species (ROS) production using dihydroethidium dye. Our results show that mCU blocking significantly reduced total sperm motility and ATP levels without affecting sperm viability, ΔΨm and ROS production. In conclusion, mCU contributes to the maintenance of sperm motility and ATP levels in human spermatozoa.

  20. Detection of a Novel Bovine Lymphotropic Herpesvirus

    OpenAIRE

    Rovnak, Joel; Quackenbush, Sandra L.; Reyes, Richard A.; Baines, Joel D.; Parrish, Colin R.; Casey, James W.

    1998-01-01

    Degenerate PCR primers which amplify a conserved region of the DNA polymerase genes of the herpesvirus family were used to provide sequence evidence for a new bovine herpesvirus in bovine B-lymphoma cells and peripheral blood mononuclear cells (PBMC). The sequence of the resultant amplicon was found to be distinct from those of known herpesvirus isolates. Alignment of amino acid sequences demonstrated 70% identity with ovine herpesvirus 2, 69% with alcelaphine herpesvirus 1, 65% with bovine h...

  1. Bovine Chymosin: A Computational Study of Recognition and Binding of Bovine κ-Casein

    DEFF Research Database (Denmark)

    Palmer, David S.; Christensen, Anders Uhrenholt; Sørensen, Jesper;

    2010-01-01

    Bovine chymosin is an aspartic protease that selectively cleaves the milk protein κ-casein. The enzyme is widely used to promote milk clotting in cheese manufacturing. We have developed models of residues 97-112 of bovine κ-casein complexed with bovine chymosin, using ligand docking, conformation...

  2. Nanotechnology inspired tools for mitochondrial dysfunction related diseases.

    Science.gov (United States)

    Wen, Ru; Banik, Bhabatosh; Pathak, Rakesh K; Kumar, Anil; Kolishetti, Nagesh; Dhar, Shanta

    2016-04-01

    Mitochondrial dysfunctions are recognized as major factors for various diseases including cancer, cardiovascular diseases, diabetes, neurological disorders, and a group of diseases so called "mitochondrial dysfunction related diseases". One of the major hurdles to gain therapeutic efficiency in diseases where the targets are located in the mitochondria is the accessibility of the targets in this compartmentalized organelle that imposes barriers toward internalization of ions and molecules. Over the time, different tools and techniques were developed to improve therapeutic index for mitochondria acting drugs. Nanotechnology has unfolded as one of the logical and encouraging tools for delivery of therapeutics in controlled and targeted manner simultaneously reducing side effects from drug overdose. Tailor-made nanomedicine based therapeutics can be an excellent tool in the toolbox for diseases associated with mitochondrial dysfunctions. In this review, we present an extensive coverage of possible therapeutic targets in different compartments of mitochondria for cancer, cardiovascular, and mitochondrial dysfunction related diseases. PMID:26776231

  3. Mycobacterium bovis (Bovine Tuberculosis) in Humans

    Science.gov (United States)

    Mycobacterium bovis (Bovine Tuberculosis) in Humans What is Mycobacterium bovis ? In the United States, the majority of tuberculosis (TB) cases in people are caused by Mycobacterium tuberculosis ( ...

  4. Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle

    OpenAIRE

    Marzetti, Emanuele; Wohlgemuth, Stephanie Eva; Lees, Hazel Anne; Chung, Hae-young; Giovannini, Silvia; Leeuwenburgh, Christiaan

    2008-01-01

    Mitochondria-mediated apoptosis represents a central process driving age-related muscle loss. However, the temporal relation between mitochondrial apoptotic signaling and sarcopenia as well as the regulation of release of pro-apoptotic factors from the mitochondria has not been elucidated. In this study, we investigated mitochondrial apoptotic signaling in skeletal muscle of rats across a wide age range. We also investigated whether mitochondrial-driven apoptosis was accompanied by changes in...

  5. Roles for Nox4 in the contractile response of bovine pulmonary arteries to hypoxia

    OpenAIRE

    Ahmad, Mansoor; Kelly, Melissa R.; Zhao, Xiangmin; Kandhi, Sharath; Wolin, Michael S.

    2010-01-01

    Hypoxia appears to promote contraction [hypoxic pulmonary vasoconstriction (HPV)] of bovine pulmonary arteries (BPA) through removal of a peroxide-mediated relaxation. This study examines the roles of BPA Nox oxidases and mitochondria in the HPV response. Inhibitors of Nox2 (0.1 mM apocynin and 50 μM gp91-dstat) and mitochondrial electron transport (10 μM antimycin and rotenone) decreased superoxide generation in BPA without affecting contraction to 25 mM KCl or the HPV response. Transfection...

  6. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst, E-mail: e.wolvetang@uq.edu.au

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  7. Mitochondrial dysfunction in metabolic syndrome and asthma.

    Science.gov (United States)

    Mabalirajan, Ulaganathan; Ghosh, Balaram

    2013-01-01

    Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma. PMID:23840225

  8. Mitochondrial Dysfunction in Metabolic Syndrome and Asthma

    Directory of Open Access Journals (Sweden)

    Ulaganathan Mabalirajan

    2013-01-01

    Full Text Available Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma.

  9. Chronic Arsenic Exposure-Induced Oxidative Stress is Mediated by Decreased Mitochondrial Biogenesis in Rat Liver.

    Science.gov (United States)

    Prakash, Chandra; Kumar, Vijay

    2016-09-01

    The present study was executed to study the effect of chronic arsenic exposure on generation of mitochondrial oxidative stress and biogenesis in rat liver. Chronic sodium arsenite treatment (25 ppm for 12 weeks) decreased mitochondrial complexes activity in rat liver. There was a decrease in mitochondrial superoxide dismutase (MnSOD) activity in arsenic-treated rats that might be responsible for increased protein and lipid oxidation as observed in our study. The messenger RNA (mRNA) expression of mitochondrial and nuclear-encoded subunits of complexes I (ND1 and ND2) and IV (COX I and COX IV) was downregulated in arsenic-treated rats only. The protein and mRNA expression of MnSOD was reduced suggesting increased mitochondrial oxidative damage after arsenic treatment. There was activation of Bax and caspase-3 followed by release of cytochrome c from mitochondria suggesting induction of apoptotic pathway under oxidative stress. The entire phenomenon was associated with decrease in mitochondrial biogenesis as evident by decreased protein and mRNA expression of nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2), peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), and mitochondrial transcription factor A (Tfam) in arsenic-treated rat liver. The results of the present study indicate that arsenic-induced mitochondrial oxidative stress is associated with decreased mitochondrial biogenesis in rat liver that may present one of the mechanisms for arsenic-induced hepatotoxicity. PMID:26767369

  10. Newcomers in the process of mitochondrial permeabilization.

    Science.gov (United States)

    Lucken-Ardjomande, Safa; Martinou, Jean-Claude

    2005-02-01

    Under stress conditions, apoptogenic factors normally sequestered in the mitochondrial intermembrane space are released into the cytosol, caspases are activated and cells die by apoptosis. Although the precise mechanism that leads to the permeabilization of mitochondria is still unclear, the activation of multidomain pro-apoptotic proteins of the Bcl-2 family, such as Bax and Bak, is evidently crucial. Regulation of Bax and Bak by other members of the family has been known for a long time, but recent evidence suggests that additional unrelated proteins participate in the process, both as inhibitors and activators. The important rearrangements mitochondrial lipids undergo during apoptosis play a role in the permeabilization process and this role is probably more central than first envisioned.

  11. Transcriptomic and genomic evidence for Streptococcus agalactiae adaptation to the bovine environment

    Science.gov (United States)

    2013-01-01

    Background Streptococcus agalactiae is a major cause of bovine mastitis, which is the dominant health disorder affecting milk production within the dairy industry and is responsible for substantial financial losses to the industry worldwide. However, there is considerable evidence for host adaptation (ecotypes) within S. agalactiae, with both bovine and human sourced isolates showing a high degree of distinctiveness, suggesting differing ability to cause mastitis. Here, we (i) generate RNAseq data from three S. agalactiae isolates (two putative bovine adapted and one human) and (ii) compare publicly available whole genome shotgun sequence data from an additional 202 isolates, obtained from six host species, to elucidate possible genetic factors/adaptations likely important for S. agalactiae growth and survival in the bovine mammary gland. Results Tests for differential expression showed distinct expression profiles for the three isolates when grown in bovine milk. A key finding for the two putatively bovine adapted isolates was the up regulation of a lactose metabolism operon (Lac.2) that was strongly correlated with the bovine environment (all 36 bovine sourced isolates on GenBank possessed the operon, in contrast to only 8/151 human sourced isolates). Multi locus sequence typing of all genome sequences and phylogenetic analysis using conserved operon genes from 44 S. agalactiae isolates and 16 additional Streptococcus species provided strong evidence for acquisition of the operon via multiple lateral gene transfer events, with all Streptococcus species known to be major causes of mastitis, identified as possible donors. Furthermore, lactose fermentation tests were only positive for isolates possessing Lac.2. Combined, these findings suggest that lactose metabolism is likely an important adaptation to the bovine environment. Additional up regulation in the bovine adapted isolates included genes involved in copper homeostasis, metabolism of purine, pyrimidine

  12. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae

    Directory of Open Access Journals (Sweden)

    Shirk Andrew J

    2005-12-01

    history. Conclusion The existence of major, mitochondrial-specific changes in rates of synonymous substitutions in the Geraniaceae implies major and reversible underlying changes in the mitochondrial mutation rate in this family. Together with the recent report of a similar pattern of rate heterogeneity in Plantago, these findings indicate that the mitochondrial mutation rate is a more plastic character in plants than previously realized. Many molecular factors could be responsible for these dramatic changes in the mitochondrial mutation rate, including nuclear gene mutations affecting the fidelity and efficacy of mitochondrial DNA replication and/or repair and – consistent with the lack of RNA editing – exceptionally high levels of "mutagenic" retroprocessing. That the mitochondrial mutation rate has returned to normally low levels in many Geraniaceae raises the possibility that, akin to the ephemerality of mutator strains in bacteria, selection favors a low mutation rate in plant mitochondria.

  13. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  14. 运动诱导骨骼肌线粒体生成中沉默信息调节因子1的作用**☆%Silent information regulator factor-1 regulates exercise-induced mitochondrial biogenesis in the skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    张国华

    2013-01-01

    BACKGROUND:Silent information regulator factor-1 is an energy metabolism regulator newly received attention in sports science, which playing roles in skeletal exercise-induced muscle mitochondrial biogenesis with other regulatory factors. OBJECTIVE: To review the effect and mechanism of silent information regulator factor-1 on skeletal muscle mitochondrial biogenesis in exercise. METHODS:The PubMed database and Highwire database were retrieved with computer for the articles on exercise, silent information regulator factor-1 and skeletal muscle mitochondrial biogenesis from January 2000 to January 2013 with the key words of“SIRT1, AMPK, PGC-1α, mitochondrial biogenesis, skeletal muscle, exercise”in English. After primary search, the articles about the association between silent information regulator factor-1 and skeletal muscle mitochondrial biogenesis in exercise were selected. Articles on repeated experiment were excluded. RESULTS AND CONCLUSION:Total y 165 relevant articles were selected, and articles on repetitive research were excluded, so finaly 62 articles were included. As a NAD+-depended deacetylase, silent information regulator factor-1 induced skeletal muscle mitochondrial biogenesis by up-regulated peroxisome proliferator-activated receptor coactivator after activated during exercise. The molecular mechanism involved adenosine monophosphate-activated protein kinase and hypoxia-inducible factor 2α. In recent years, the effect of silent information regulator factor-1 on skeletal muscle mitochondrial biogenesis was doubt, the researchers though that silent information regulator factor-1 was not required for exercise-induced muscle mitochondrial biogenesis. Silent information regulator factor-1 plays an important role in exercise-induced muscle mitochondrial biogenesis. But protein and activity detection methods are different in experimental results.%  背景:沉默信息调节因子1是新近受到体育科学领域关注的能量代谢调节

  15. Factoring

    OpenAIRE

    Lenstra, Arjen K.

    1994-01-01

    Factoring, finding a non-trivial factorization of a composite positive integer, is believed to be a hard problem. How hard we think it is, however, changes almost on a daily basis. Predicting how hard factoring will be in the future, an important issue for cryptographic applications of composite numbers, is therefore a challenging task. The author presents a brief survey of general purpose integer factoring algorithms and their implementations

  16. Biochemical diagnosis of mitochondrial disorders

    NARCIS (Netherlands)

    Rodenburg, R.J.T.

    2011-01-01

    Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of patie

  17. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D;

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...

  18. NDE1 and GSK3β Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking.

    Science.gov (United States)

    Ogawa, Fumiaki; Murphy, Laura C; Malavasi, Elise L V; O'Sullivan, Shane T; Torrance, Helen S; Porteous, David J; Millar, J Kirsty

    2016-05-18

    Mitochondria are essential for neuronal function, providing the energy required to power neurotransmission, and fulfilling many important additional roles. In neurons, mitochondria must be efficiently transported to sites, including synapses, where their functions are required. Neurons, with their highly elongated morphology, are consequently extremely sensitive to defective mitochondrial trafficking which can lead to neuronal ill-health/death. We recently demonstrated that DISC1 associates with mitochondrial trafficking complexes where it associates with the core kinesin and dynein adaptor molecule TRAK1. We now show that the DISC1 interactors NDE1 and GSK3β also associate robustly with TRAK1 and demonstrate that NDE1 promotes retrograde axonal mitochondrial movement. GSK3β is known to modulate axonal mitochondrial motility, although reports of its actual effect are conflicting. We show that, in our system, GSK3β promotes anterograde mitochondrial transport. Finally, we investigated the influence of cAMP elevation upon mitochondrial motility, and found a striking increase in mitochondrial motility and retrograde movement. DISC1, NDE1, and GSK3β are implicated as risk factors for major mental illness. Our demonstration that they function together within mitochondrial trafficking complexes suggests that defective mitochondrial transport may be a contributory disease mechanism in some cases of psychiatric disorder. PMID:26815013

  19. Reduced calcium-dependent mitochondrial damage underlies the reduced vulnerability of excitotoxicity-tolerant hippocampal neurons.

    Science.gov (United States)

    Pivovarova, Natalia B; Stanika, Ruslan I; Watts, Charlotte A; Brantner, Christine A; Smith, Carolyn L; Andrews, S Brian

    2008-03-01

    In central neurons, over-stimulation of NMDA receptors leads to excessive mitochondrial calcium accumulation and damage, which is a critical step in excitotoxic death. This raises the possibility that low susceptibility to calcium overload-induced mitochondrial damage might characterize excitotoxicity-resistant neurons. In this study, we have exploited two complementary models of preconditioning-induced excitotoxicity resistance to demonstrate reduced calcium-dependent mitochondrial damage in NMDA-tolerant hippocampal neurons. We have further identified adaptations in mitochondrial calcium handling that account for enhanced mitochondrial integrity. In both models, enhanced tolerance was associated with improved preservation of mitochondrial membrane potential and structure. In the first model, which exhibited modest neuroprotection, mitochondria-dependent calcium deregulation was delayed, even though cytosolic and mitochondrial calcium loads were quantitatively unchanged, indicating that enhanced mitochondrial calcium capacity accounts for reduced injury. In contrast, the second model, which exhibited strong neuroprotection, displayed further delayed calcium deregulation and reduced mitochondrial damage because downregulation of NMDA receptor surface expression depressed calcium loading. Reducing calcium entry also modified the chemical composition of the calcium-buffering precipitates that form in calcium-loaded mitochondria. It thus appears that reduced mitochondrial calcium loading is a major factor underlying the robust neuroprotection seen in highly tolerant cells. PMID:18036152

  20. Bovine Necrotic Vulvovaginitis Associated with Porphyromonas levii

    OpenAIRE

    Elad, Daniel; Friedgut, Orly; Alpert, Nir; Stram, Yehuda; Lahav, Dan; Tiomkin, Doron; Avramson, Miriam; Grinberg, Kalia; Bernstein, Michael

    2004-01-01

    An outbreak of bovine necrotic vulvovaginitis associated with Porphyromonas levii, an emerging animal and human pathogen, affected 32 cows on a dairy farm in the northeast of Israel. Five animals had to be culled. This report appears to be the first that associates P. levii with bovine necrotic vulvovagnitis.

  1. In vitro production of bovine embryos

    DEFF Research Database (Denmark)

    Stroebech, L.; Mazzoni, Gianluca; Pedersen, Hanne Skovsgaard;

    2015-01-01

    In vitro production (IVP) of bovine embryos has become a widespread technology implemented in cattle breeding and production. The implementation of genomic selection and systems biology adds great dimensions to the impact of bovine IVP. The physical procedures included in the IVP process can still...

  2. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle.

    Science.gov (United States)

    Drake, Joshua C; Wilson, Rebecca J; Yan, Zhen

    2016-01-01

    Exercise training enhances physical performance and confers health benefits, largely through adaptations in skeletal muscle. Mitochondrial adaptation, encompassing coordinated improvements in quantity (content) and quality (structure and function), is increasingly recognized as a key factor in the beneficial outcomes of exercise training. Exercise training has long been known to promote mitochondrial biogenesis, but recent work has demonstrated that it has a profound impact on mitochondrial dynamics (fusion and fission) and clearance (mitophagy), as well. In this review, we discuss the various mechanisms through which exercise training promotes mitochondrial quantity and quality in skeletal muscle.

  3. Scientific Opinion on bovine lactoferrin

    OpenAIRE

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)

    2012-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to carry out the additional assessment for ‘lactoferrin’ as a food ingredient in the context of Regulation (EC) No 258/97 taking into account the comments and objections of a scientific nature raised by Member States. Bovine lactoferrin (bLF) is a protein that occurs naturally in cow’s milk. The applicant intends to market bLF that is isolated from cheese whe...

  4. Identification of bovine material in porcine spray-dried blood derivatives using the Polymerase Chain Reaction technique

    Directory of Open Access Journals (Sweden)

    Sánchez A.

    2004-01-01

    Full Text Available Due to the widely supported theory of bovine spongiform encephalopathy (BSE spread in cattle by contaminated animal feeds, screening of feed products has become essential. For many years, manufacturers have used blood and plasma proteins as high quality ingredients of foods for both pets and farm animals. However, in Europe, the Commission Regulation 1234/2003/EC temporally bans the use of processed animal proteins, including blood-derivative products, in feedstuffs for all farm animals which are fattened or bred for the production of food. This regulation has some exceptions, such as the use of non ruminant blood products into the feed of farm fish. Authorization of the re-introduction of these proteins into animal feed formulations, especially non ruminant proteins into the feed for non ruminant farm animals, is expected when adequate control methods to discriminate ruminant proteins exist. Currently, the number of validated methods to differentiate the species of origin for most of the animal by-products is limited. Here we report the development of a rapid and sensitive polymerase chain reaction (PCR-based assay, which allows detection of bovine or porcine specific mitochondrial DNAfrom spray-dried blood derivate products (plasma, whole blood and red cells, as a marker for bovine contamination in porcine products. Sample extracts, suitable for PCR, were easily and quickly obtained with the commercial PrepManTM Ultra reagent (Applied Biosystems. To confirm the porcine origin of the samples, primers targeting a specific region of 134 bp of the porcine cytochrome b coding sequence were designed (cytbporc1-F and cytbporc2-R. Previously published PCR primers (L8129 and H8357, specific for a 271 bp fragment of the bovine mitochondrial ATPase 8-ATPase 6 genes, were chosen to accomplish amplification of bovine DNA. The limit of detection (LOD of the bovine PCR assay was at least of 0.05% (v/v of bovine inclusion in spray-dried porcine plasma or red

  5. Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder.

    Science.gov (United States)

    Machado, Alencar Kolinski; Pan, Alexander Yongshuai; da Silva, Tatiane Morgana; Duong, Angela; Andreazza, Ana Cristina

    2016-08-01

    Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca(2+) homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca(2+) homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics. PMID:27310240

  6. Mitochondrial gene mutations and type 2 diabetes in Chinese families

    Institute of Scientific and Technical Information of China (English)

    LI Ming-zhen; YU De-min; YU Pei; LIU De-min; WANG Kun; TANG Xin-zhi

    2008-01-01

    Background Numerous mitochondrial DNA mutations are significantly correlated with development of diabetes. This study investigated mitochondrial gene, point mutations in patients with type 2 diabetes and their families. Methods Unrelated patients with type 2 diabetes(n=826)were randomly recruited; unrelated and nondiabetic subjects (n=637)served as controls. The clinical and biochemical data of the participants were collected. Total genome was extracted from peripheral leucocytes. Polymerase chain reaction, restriction fragment length polymorphism (PCR-RFLP)and clonig techniques were used to screen mitochondrial genes including np3316,np3394 and np3426 in the ND1 region and np3243 in the tRNALeu (UUR). Results In 39 diabetics with one or more mitochondrial gene point mutations, the prevalence(4.7%,39/826)of mtDNA mutations was higher than that(0.7%,5/637)in the controls. The identical mutation was found in 23 of 43 tested members from three pedigrees. Affected family members presented with variable clinical features ranging from normal glucose tolerance to impaired glucose tolerance (IGT)(n=2),impaired fasting glucose(IFG)(n=1)to type 2 diabetes (n=13)with 3 family members suffering from hearing loss. Conclusions Type 2 diabetes in China is associated with several mitochondrial gene mutations. Aged patients with diabetic family history had a higher prevalence of mutation and various clinical pictures. Mitochondrial gene mutation might be one of the genetic factors contributing to diabetic familial clustering.

  7. Mitochondrial DNA T4216C and A4917G variations in multiple sclerosis

    DEFF Research Database (Denmark)

    Andalib, Sasan; Talebi, Mahnaz; Sakhinia, Ebrahim;

    2015-01-01

    focuses on the neurogenetics of the complex pathogenesis of MS in relation to factors such as mitochondrial DNA (mtDNA) variations. T4216C and A4917G are common mitochondrial gene variations associated with MS. The present study tested whether mtDNA T4216C variation in the NADH Dehydrogenase 1 (ND1) mt...

  8. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    NARCIS (Netherlands)

    Hoeks, J.; Herpen, N.A.; Mensink, M.R.; Moonen-Kornips, E.; Beurden, van D.; Hesselink, M.K.C.; Schrauwen, P.

    2010-01-01

    OBJECTIVE-Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we em

  9. Mitochondrial dynamics and cell death in heart failure.

    Science.gov (United States)

    Marín-García, José; Akhmedov, Alexander T

    2016-03-01

    The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment. PMID:26872674

  10. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition.

    Science.gov (United States)

    Ju, Jeong-Sun; Jeon, Sei-Il; Park, Je-Young; Lee, Jong-Young; Lee, Seong-Cheol; Cho, Ki-Jung; Jeong, Jong-Moon

    2016-09-01

    Mitochondrial homeostasis is tightly regulated by two major processes: mitochondrial biogenesis and mitochondrial degradation by autophagy (mitophagy). Research in mitochondrial biogenesis in skeletal muscle in response to endurance exercise training has been well established, while the mechanisms regulating mitophagy and the interplay between mitochondrial biogenesis and degradation following endurance exercise training are not yet well defined. The purpose of this study was to examine the effects of a short-term inhibition of autophagy in response to acute endurance exercise on skeletal muscle mitochondrial biogenesis and dynamics in an exercise-trained condition. Male wild-type C57BL/6 mice performed five daily bouts of 1-h swimming per week for 8 weeks. In order to measure autophagy flux in mouse skeletal muscle, mice were treated with or without 2 days of 0.4 mg/kg/day intraperitoneal colchicine (blocking the degradation of autophagosomes) following swimming exercise training. The autophagic flux assay demonstrated that swimming training resulted in an increase in the autophagic flux (~100 % increase in LC3-II) in mouse skeletal muscle. Mitochondrial fusion proteins, Opa1 and MFN2, were significantly elevated, and mitochondrial fission protein, Drp1, was also increased in trained mouse skeletal muscle, suggesting that endurance exercise training promotes both mitochondrial fusion and fission processes. A mitochondrial receptor, Bnip3, was further increased in exercised muscle when treated with colchicine while Pink/Parkin protein levels were unchanged. The endurance exercise training induced increases in mitochondrial biogenesis marker proteins, SDH, COX IV, and a mitochondrial biogenesis promoting factor, PGC-1α but this effect was abolished in colchicine-treated mouse skeletal muscle. This suggests that autophagy plays an important role in mitochondrial biogenesis and this coordination between these opposing processes is involved in the cellular

  11. Mitochondrial uncoupling proteins and energy metabolism

    Directory of Open Access Journals (Sweden)

    Rosa Anna Busiello

    2015-02-01

    Full Text Available Understanding the metabolic factors that contribute to energy metabolism (EM is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1, which was the first in this family to be discovered, the reactions catalyzed by its homologue UCP3 and the physiological role remain under debate.This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.

  12. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius).

    LENUS (Irish Health Repository)

    Edwards, Ceiridwen J

    2010-01-01

    BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+\\/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified

  13. Updating of the bovine neosporosis

    Directory of Open Access Journals (Sweden)

    Alexander Martínez Contreras

    2012-06-01

    Full Text Available In the fields of Medicine and bovine production, there is a wide variety of diseases affecting reproduction, in relation to the number of live births, the interval between births and open days, among others. Some of these diseases produce abortions and embryonic death, which explain the alteration of reproductive parameters. Many of these diseases have an infectious origin, such as parasites, bacteria, viruses and fungi, which are transmitted among animals. Besides, some of them have zoonotic features that generate problems to human health. Among these agents, the Neospora caninum, protozoan stands out. Its life cycle is fulfilled in several species of animals like the dog and the coyote. These two act as its definitive hosts and the cattle as its intermediary host. The Neospora caninum causes in the infected animals, reproductive disorders, clinical manifestations and decreased production which affects productivity of small, medium and large producers. Because of this, diagnostic techniques that allow understanding the epidemiological behavior of this disease have been developed. However in spite of being a major agent in the bovine reproductive health, few studies have been undertaken to determine the prevalence of this agent around the world. Therefore, the objective of this review was to collect updated information on the behavior of this parasite, targeting its epidemiology, its symptoms, its impact on production and the methods of its control and prevention.

  14. Adipogenesis of bovine perimuscular preadipocytes

    International Nuclear Information System (INIS)

    In this study, non-transformed progeny adipofibroblasts, derived from mature adipocyte dedifferentiation, was used as a novel in vitro model to study adipogenic gene expression in cattle. Adipofibroblasts from dedifferentiated mature perimuscular fat (PMF) tissue were cultured with differentiation stimulants until the cells exhibited morphological differentiation. Treated cells were harvested from day 2 to 16 for RNA extraction, whereas control cells were cultured without addition of stimulants. Results from time course gene expression assays by quantitative real-time PCR revealed that peroxisome proliferator-activated receptor gamma (PPAR-γ), sterol regulatory element binding protein 1 (SREBP-1) and their six down-stream genes were co-expressed at day 2 post-differentiation induction. When compared to other adipogenesis culture systems, the adipogenic gene expression of bovine PMF adipofibroblasts culture was different, especially to the rodent model. Collectively, these results demonstrated PPAR-γ and SREBP-1 cooperatively play a key role to regulate the re-differentiation of bovine adipofibroblasts, during early conversion stages in vitro

  15. Human and bovine viruses in the Milwaukee River Watershed: hydrologically relevant representation and relations with environmental variables

    Science.gov (United States)

    Corsi, Steven R.; Borchardt, M. A.; Spencer, S. K.; Hughes, Peter E.; Baldwin, Austin K.

    2014-01-01

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  16. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy

    Science.gov (United States)

    Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio

    2016-01-01

    IMPORTANCE The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca’ Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES Respiratory chain activity and mitochondrial content. RESULTS Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator–activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets

  17. The mitochondrial genome in embryo technologies.

    Science.gov (United States)

    Hiendleder, S; Wolf, E

    2003-08-01

    The mammalian mitochondrial genome encodes for 37 genes which are involved in a broad range of cellular functions. The mitochondrial DNA (mtDNA) molecule is commonly assumed to be inherited through oocyte cytoplasm in a clonal manner, and apparently species-specific mechanisms have evolved to eliminate the contribution of sperm mitochondria after natural fertilization. However, recent evidence for paternal mtDNA inheritance in embryos and offspring questions the general validity of this model, particularly in the context of assisted reproduction and embryo biotechnology. In addition to normal mt DNA haplotype variation, oocytes and spermatozoa show remarkable differences in mtDNA content and may be affected by inherited or acquired mtDNA aberrations. All these parameters have been correlated with gamete quality and reproductive success rates. Nuclear transfer (NT) technology provides experimental models for studying interactions between nuclear and mitochondrial genomes. Recent studies demonstrated (i) a significant effect of mtDNA haplotype or other maternal cytoplasmic factors on the efficiency of NT; (ii) phenotypic differences between transmitochondrial clones pointing to functionally relevant nuclear-cytoplasmic interactions; and (iii) neutral or non-neutral selection of mtDNA haplotypes in heteroplasmic conditions. Mitochondria form a dynamic reticulum, enabling complementation of mitochondrial components and possibly mixing of different mtDNA populations in heteroplasmic individuals. Future directions of research on mtDNA in the context of reproductive biotechnology range from the elimination of adverse effects of artificial heteroplasmy, e.g. created by ooplasm transfer, to engineering of optimized constellations of nuclear and cytoplasmic genes for the production of superior livestock. PMID:12887568

  18. Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension.

    Science.gov (United States)

    Itani, Hana A; Dikalova, Anna E; McMaster, William G; Nazarewicz, Rafal R; Bikineyeva, Alfiya T; Harrison, David G; Dikalov, Sergey I

    2016-06-01

    Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension. PMID:27067720

  19. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  20. Respiratory active mitochondrial supercomplexes.

    Science.gov (United States)

    Acín-Pérez, Rebeca; Fernández-Silva, Patricio; Peleato, Maria Luisa; Pérez-Martos, Acisclo; Enriquez, Jose Antonio

    2008-11-21

    The structural organization of the mitochondrial respiratory complexes as four big independently moving entities connected by the mobile carriers CoQ and cytochrome c has been challenged recently. Blue native gel electrophoresis reveals the presence of high-molecular-weight bands containing several respiratory complexes and suggesting an in vivo assembly status of these structures (respirasomes). However, no functional evidence of the activity of supercomplexes as true respirasomes has been provided yet. We have observed that (1) supercomplexes are not formed when one of their component complexes is absent; (2) there is a temporal gap between the formation of the individual complexes and that of the supercomplexes; (3) some putative respirasomes contain CoQ and cytochrome c; (4) isolated respirasomes can transfer electrons from NADH to O(2), that is, they respire. Therefore, we have demonstrated the existence of a functional respirasome and propose a structural organization model that accommodates these findings.

  1. Development and evaluation of immunoassay for zeranol in bovine urine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A high affinity polyclonal antibody-based enzyme linked immunosorbent assay (ELISA) was developed for the quantification of zeranol in bovine urine. On the basis of urine matrix studies, the optimized dilution factors producing insignificant matrix interference were selected as 1:5 in pretreatment. In the improved ELISA, the linear response range was between 0.02 and 1 μg/ml, and the detection limit was 0.02 μg/ml for the assay. The overall recoveries and the coefficients of variation (CVs) were in the range of 82% ~127% and 3.5%~8.8%, respectively. Thirty-six bovine urine samples spiked with zeranol (ranging from 0.2 to 10 μg/ml) were detected by the ELISA and liquid chromatography (LC) method, and good correlations were obtained between the two methods (R2=0.9643). We conclude that this improved ELISA is suitable tool for a mass zeranol screening and can be an alternative for the conventional LC method for zeranol in bovine urine.

  2. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper;

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  3. Mitochondrial Stress: A Bridge between Mitochondrial Dysfunction and Metabolic Diseases?

    OpenAIRE

    Hu, Fang; Liu, Feng

    2011-01-01

    Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective a...

  4. Role of mitochondrial damage during cardiac apoptosis in septic rats

    Institute of Scientific and Technical Information of China (English)

    LI Li; HU Bang-chuan; CHEN Chang-qin; GONG Shi-jin; YU Yi-hua; DAI Hai-wen; YAN Jing

    2013-01-01

    Background Myocardial apoptosis is involved in the pathogenesis of sepsis-related myocardial depression.However,the underlying mechanism remains unknown.This study investigated the role of mitochondrial damage and mitochondria-induced oxidative stress during cardiac apoptosis in septic rats.Methods Seventy-two Sprague-Dawley rats were randomly divided into a control group and septic group receiving lipopolysaccharide injection.Heart tissue was removed and changes in cardiac morphology were observed by light microscopy and scanning electron microscopy.In situ apoptosis was examined using terminal transferase-mediated dUTP nick end-labeling assay and nuclear factor-kappa B activation in myocardium by Western blotting to estimate myocardial apoptosis.Appearance of mitochondrial cristae and activation of cytochrome C oxidase were used to evaluate mitochondrial damage.Oxidative stress was assessed by mitochondrial lipid and protein oxidation,and antioxidant defense was assessed by mitochondrial superoxide dismutase and glutathione peroxidase activity.Results Sepsis-induced inflammatory cell infiltration,myocardium degeneration and dropsy were time-dependent.Expanded capillaries were observed in the hearts of infected rats 24 hours post-challenge.Compared with sham-treated rats,the percentage of cell apoptosis increased in a time-dependent manner in hearts from septic rats at 6 hours,12 hours and 24 hours post-injection (P < 0.05).The expression of nuclear factor-kappa B p65 decreased gradually in the cytosol and increased in the nucleus during sepsis,indicating that septic challenge provoked the progressive activation of nuclear factor-kappa B.Mitochondrial cristae and activation of cytochrome C oxidase increased in a time-dependent manner.Both superoxide dismutase and glutathione peroxidase activities decreased,while mitochondrial lipid and protein oxidation increased between 6 and 24 hours after lipopolysaccharide challenge.Conclusions Septic challenge induced

  5. Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies

    Directory of Open Access Journals (Sweden)

    Kirsten Kehrein

    2015-02-01

    Full Text Available Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle.

  6. Modulation of the kinetics of cholesterol side-chain cleavage by an activator and by an inhibitor isolated from the cytosol of the cortex of bovine adrenals.

    OpenAIRE

    Warne, P A; Greenfield, N J; Lieberman, S.

    1983-01-01

    Two modulators of sterol side-chain cleavage activity have been detected in the cytosol from the cortex of bovine adrenals. One is an inhibitor of side-chain cleavage which increases the Km of a purified and reconstituted mitochondrial side-chain cleavage system for both cholesterol and cholesterol sulfate. It also lowers the Vmax of cleavage when cholesterol sulfate is the substrate. The other modulator is a low molecular weight protein which in the reconstituted system increases the Vmax of...

  7. Structure of human mitochondrial RNA polymerase

    OpenAIRE

    Ringel, Rieke; Sologub, Marina; Morozov, Yaroslav I.; Litonin, Dmitry; Cramer, Patrick; Temiakov, Dmitry

    2011-01-01

    Transcription of the mitochondrial genome is performed by a single-subunit RNA polymerase (mtRNAP) that is distantly related to the RNAP of bacteriophage T7, the pol I family of DNA polymerases, and single-subunit RNAPs from chloroplasts1, 2, 3, 4. Whereas T7 RNAP can initiate transcription by itself, mtRNAP requires the factors TFAM and TFB2M for binding and melting promoter DNA5, 6, 7. TFAM is an abundant protein that binds and bends promoter DNA 15–40 base pairs upstream of the transcripti...

  8. Bayesian Space-Time Patterns and Climatic Determinants of Bovine Anaplasmosis.

    Science.gov (United States)

    Hanzlicek, Gregg A; Raghavan, Ram K; Ganta, Roman R; Anderson, Gary A

    2016-01-01

    The space-time pattern and environmental drivers (land cover, climate) of bovine anaplasmosis in the Midwestern state of Kansas was retrospectively evaluated using Bayesian hierarchical spatio-temporal models and publicly available, remotely-sensed environmental covariate information. Cases of bovine anaplasmosis positively diagnosed at Kansas State Veterinary Diagnostic Laboratory (n = 478) between years 2005-2013 were used to construct the models, which included random effects for space, time and space-time interaction effects with defined priors, and fixed-effect covariates selected a priori using an univariate screening procedure. The Bayesian posterior median and 95% credible intervals for the space-time interaction term in the best-fitting covariate model indicated a steady progression of bovine anaplasmosis over time and geographic area in the state. Posterior median estimates and 95% credible intervals derived for covariates in the final covariate model indicated land surface temperature (minimum), relative humidity and diurnal temperature range to be important risk factors for bovine anaplasmosis in the study. The model performance measured using the Area Under the Curve (AUC) value indicated a good performance for the covariate model (> 0.7). The relevance of climatological factors for bovine anaplasmosis is discussed. PMID:27003596

  9. Bioenergetic roles of mitochondrial fusion.

    Science.gov (United States)

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  10. The assembly of mitochondrial complex I : a product of nuclear-mitochondrial synergy

    NARCIS (Netherlands)

    Vogel, Rutger Oscar

    2007-01-01

    Mitochondria are essential to cellular energy production. Embedded in the mitochondrial inner membrane, the engine of the mitochondrial powerhouse is formed by the five enzymatic complexes of the oxidative phosphorylation (OXPHOS) system. Dysfunction of this system results in mitochondrial disease,

  11. Mitochondrial ribosome assembly in health and disease.

    Science.gov (United States)

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.

  12. Triad of Risk for Late Onset Alzheimer’s: Mitochondrial Haplotype, APOE Genotype and Chromosomal Sex

    Science.gov (United States)

    Wang, Yiwei; Brinton, Roberta D.

    2016-01-01

    Brain is the most energetically demanding organ of the body, and is thus vulnerable to even modest decline in ATP generation. Multiple neurodegenerative diseases are associated with decline in mitochondrial function, e.g., Alzheimer’s, Parkinson’s, multiple sclerosis and multiple neuropathies. Genetic variances in the mitochondrial genome can modify bioenergetic and respiratory phenotypes, at both the cellular and system biology levels. Mitochondrial haplotype can be a key driver of mitochondrial efficiency. Herein, we focus on the association between mitochondrial haplotype and risk of late onset Alzheimer’s disease (LOAD). Evidence for the association of mitochondrial genetic variances/haplotypes and the risk of developing LOAD are explored and discussed. Further, we provide a conceptual framework that suggests an interaction between mitochondrial haplotypes and two demonstrated risk factors for Alzheimer’s disease (AD), apolipoprotein E (APOE) genotype and chromosomal sex. We posit herein that mitochondrial haplotype, and hence respiratory capacity, plays a key role in determining risk of LOAD and other age-associated neurodegenerative diseases. Further, therapeutic design and targeting that involve mitochondrial haplotype would advance precision medicine for AD and other age related neurodegenerative diseases.

  13. 重组牛碱性成纤维细胞生长因子联合康复新液治疗新生儿尿布皮炎的效果观察%Effect of recombinant bovine basic fibroblast growth factors combined with new rehabilitative liquid on neonatal diaper dermatitis

    Institute of Scientific and Technical Information of China (English)

    王卓; 胡楠

    2015-01-01

    Objective To investigate the effects of recombinant bovine basic fibroblast growth factors combined with new rehabilitative liquid on neonatal diaper dermatitis. Methods One hundred and twenty neotates with neonatal diaper dermatitis from August 2013 to July 2014 were randomly divided into the control group and experiment group, 60 cases in each group. The control group was treated with conventional care, while the observation group with recombinant bovine basic fibroblast growth factors combined with new rehabilitative liquid. The total effective rate and the treatment time were compared between the two groups. Result The total effective rate of the observation group was significantly higher than that of the control group (P<0.05) and the treatment time of the observation group was statistically significantly shorter than that of the control group (P<0.05). Conclusion Recombinant bovine basic fibroblast growth factors combined with new rehabilitative liquid is effective in the treatment of neonatal diaper dermatitis and it is worth promoting and using clinically.%目的:探讨重组牛碱性成纤维细胞生长因子联合康复新液治疗新生儿尿布皮炎的效果。方法选择2013年8月~2014年7月本院儿科住院的新生儿尿布皮炎患儿120例,采用随机数字表法分为对照组和观察组,每组各60例,对照组患儿采用常规护理,观察组患儿使用重组牛碱性成纤维细胞生长因子联合康复新液护理。比较两组患儿的治疗总有效率和愈合时间。结果观察组患儿治疗总有效率为95.00%,对照组患儿治疗总有效率为70.00%,两组比较,差异有统计学意义(P<0.05)。观察组患儿愈合时间(4.00±0.82)d,对照组患儿愈合时间(6.00±1.64)d,两组比较,差异有统计学意义(P<0.05)。结论重组牛碱性成纤维细胞生长因子联合康复新液治疗新生儿尿布皮炎疗效显著,减少愈合时间,值得在临床推广和应用。

  14. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  15. Mitochondrial transplantation for therapeutic use

    OpenAIRE

    McCully, James Donald; Levitsky, Sidney; del Nido, Pedro J.; Cowan, Douglas Burr

    2016-01-01

    Mitochondria play a key role in the homeostasis of the vast majority of the body’s cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium i...

  16. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  17. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    Energy Technology Data Exchange (ETDEWEB)

    Whatcott, Clifford J. [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States); Meyer-Ficca, Mirella L.; Meyer, Ralph G. [Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, NBC Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, Kennett Square, PA 19348 (United States); Jacobson, Myron K., E-mail: mjacobson@pharmacy.arizona.edu [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States)

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  18. Search for the genome of bovine herpesvirus types 1, 4 and 5 in bovine semen

    OpenAIRE

    P.E. Morán; Favier, P.A.; Lomónaco, M.; Catena, M.C.; M.L. Chiapparrone; Odeón, A.C.; Verna, A.E.; S.E. Pérez

    2013-01-01

    Bovine herpesvirus type 1 (BoHV-1) causes respiratory and reproductive disorders in cattle. Recently, bovine herpesvirus type 5 (BoHV-5) and bovine herpesvirus type 4 (BoHV-4) have been identified to be associated with genital disease. In this study, the presence of the genome of BoHV-1, BoHV-4 and BoHV-5 in bovine semen of Argentinean and international origin was analyzed by PCR assays. The most important finding of this study is the detection of the genome of BoHV-1 and BoHV-4 in semen of b...

  19. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  20. Mitochondrial efficiency and insulin resistance.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    Insulin resistance, "a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues," has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PMID:25601841

  1. Mitochondrial Metabolism in Aging Heart.

    Science.gov (United States)

    Lesnefsky, Edward J; Chen, Qun; Hoppel, Charles L

    2016-05-13

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  2. CFTR activity and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  3. MOLECULAR NEUROGENETICS OF MITOCHONDRIAL DISEASES

    Directory of Open Access Journals (Sweden)

    E. Cardaioli

    2012-01-01

    Full Text Available Mitochondrial diseases are an expanding group of clinically heterogeneous disorders associated with mitochondrial DNA (mtDNA mutations or nuclear gene defects. Whatever the mechanism, the final common step in mitochondrial disorders is a defect of energy production resulting from respiratory chain impairment. The complexity of the biochemical and genetic features of the respiratory chain accounts for the extraordinarily wide range of clinical presentations of mitochondrial disorders. In general, organs with high aerobic demand, such as skeletal muscle, brain and heart, are the most affected. However, virtually any organ or tissue in the body may be affected and the disorders can be multisystemic (mitochondrial encephalomyopathiesor confined to a single tissue. Moreover, mitochondrial diseases can be sporadic or transmitted by mendelian (nuclear genes or maternal inheritance (mutations in mtDNA. Precise diagnosis is often a challenge; we go through the traditional steps of the diagnostic process, starting with study of inheritance in the family, clinical manifestations in the individual,electrophysiology and imaging techniques at organ level, down to biochemistry, pathology and molecular genetics at tissue, cell and DNA level, respectively. In fact the ultimate goal is to reach, whenever possible, a definitive molecular diagnosis, which can permit rational therapeutic approach and a genetic counseling.

  4. Private mitochondrial DNA variants in danish patients with hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Havndrup, Ole;

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease primarily caused by mutations in genes coding for sarcomeric proteins. A molecular-genetic etiology can be established in ~60% of cases. Evolutionarily conserved mitochondrial DNA (mtDNA) haplogroups are susceptibility factors for HCM...

  5. PARK2 patient neuroprogenitors show increased mitochondrial sensitivity to copper.

    Science.gov (United States)

    Aboud, Asad A; Tidball, Andrew M; Kumar, Kevin K; Neely, M Diana; Han, Bingying; Ess, Kevin C; Hong, Charles C; Erikson, Keith M; Hedera, Peter; Bowman, Aaron B

    2015-01-01

    Poorly-defined interactions between environmental and genetic risk factors underlie Parkinson's disease (PD) etiology. Here we tested the hypothesis that human stem cell derived forebrain neuroprogenitors from patients with known familial risk for early onset PD will exhibit enhanced sensitivity to PD environmental risk factors compared to healthy control subjects without a family history of PD. Two male siblings (SM and PM) with biallelic loss-of-function mutations in PARK2 were identified. Human induced pluripotent stem cells (hiPSCs) from SM, PM, and four control subjects with no known family histories of PD or related neurodegenerative diseases were utilized. We tested the hypothesis that hiPSC-derived neuroprogenitors from patients with PARK2 mutations would show heightened cell death, mitochondrial dysfunction, and reactive oxygen species generation compared to control cells as a result of exposure to heavy metals (PD environmental risk factors). We report that PARK2 mutant neuroprogenitors showed increased cytotoxicity with copper (Cu) and cadmium (Cd) exposure but not manganese (Mn) or methyl mercury (MeHg) relative to control neuroprogenitors. PARK2 mutant neuroprogenitors also showed a substantial increase in mitochondrial fragmentation, initial ROS generation, and loss of mitochondrial membrane potential following Cu exposure. Our data substantiate Cu exposure as an environmental risk factor for PD. Furthermore, we report a shift in the lowest observable effect level (LOEL) for greater sensitivity to Cu-dependent mitochondrial dysfunction in patients SM and PM relative to controls, correlating with their increased genetic risk for PD. PMID:25315681

  6. Bovine Model of Doxorubicin-Induced Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Carlo R. Bartoli

    2011-01-01

    Full Text Available Left ventricular assist devices (LVADs constitute a recent advance in heart failure (HF therapeutics. As the rigorous experimental assessment of LVADs in HF requires large animal models, our objective was to develop a bovine model of cardiomyopathy. Male calves (n=8 were used. Four animals received 1.2 mg/kg intravenous doxorubicin weekly for seven weeks and four separate animals were studied as controls. Doxorubicin-treated animals were followed with weekly echocardiography. Target LV dysfunction was defined as an ejection fraction ≤35%. Sixty days after initiating doxorubicin, a terminal study was performed to determine hemodynamic, histological, biochemical, and molecular parameters. All four doxorubicin-treated animals exhibited significant (P<0.05 contractile dysfunction, with target LV dysfunction achieved in three animals. Doxorubicin-treated hearts exhibited significantly reduced coronary blood flow and interstitial fibrosis and significantly increased apoptosis and myocyte size. Gene expression of atrial natriuretic factor increased more than 3-fold. Plasma norepinephrine and epinephrine levels were significantly increased early and late during the development of cardiomyopathy, respectively. We conclude that sequential administration of intravenous doxorubicin in calves induces a cardiomyopathy with many phenotypic hallmarks of the failing human heart. This clinically-relevant model may be useful for testing pathophysiologic responses to LVADs in the context of HF.

  7. Paternal inheritance of mitochondrial DNA in the sheep (Ovine aries)

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Xingbo

    2001-01-01

    [1]Albuquerque, L. G., Keown, J. F., Van Vleck, L. D., Variances of direct genetic effects, maternal genetic effects, and cyto-plasmic inheritance effects for milk yield, fat yield, and fat percentage, J. Dairy Sci., 1998, 81(2): 544-549.[2]Wallace, D. C., Mitochondrial diseases in man and mouse, Science, 1999, 283: 1482-1488.[3]Gray, M. W., Burger, G., Lang, B. F., Mitochondrial evolution, Science, 1999, 283: 1476-1481.[4]Sutovsky, P., Schatten, G., Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Int. Rev. Cytol., 2000, 195: 1-65.[5]Hutchison, C. A., Newbold, J. E., Potter, S. S. et al., Maternal inheritance of mammalian mitochondrial DNA, Nature, 1974, 251: 536-538.[6]Kondo, R., Matsuura, E. T., Chigusa, S. I., Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method, Genet. Res., 1992, 59(2):81-84.[7]Danan, C., Sternberg, D., Van Steirteghem, A. et al., Evaluation of parental mitochondrial inheritance in neonates born af-ter intracytoplasmic sperm injection, Am. J. Hum. Genet., 1999, 65(2): 463-473.[8]Gyllensten, U., Wharton, D., Josefsson, A. et al., Paternal inheritance of mitochondrial DNA in mice, Nature, 1991, 352(6332): 255-257.[9]Shitara, H., Hayashi, J. I., Takahama, S. et al., Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage, Genetics, 1998, 148(2): 851-857.[10]Steinborn, R., Zakhartchenko, V., Jelyazkkov, J. et al., Composition of parental mitochondrial DNA in cloned bovine em-bryos, FEBS Lett., 1998, 426(3): 352-356.[11]Lansman, R. A., Avise, J. C., Huettel, M. D. et al., Critical experimental test of the possibility of "paternal leakage" of mitochondrial DNA, Proc. Natl. Acad. Sci. USA, 1983, 80(7): 1969-1971.[12]Meusel, M. S., Moritz, R. F., Transfer of paternal mitochondrial DNA during

  8. Factores de riesgo del síndrome respiratorio bovino en terneros lactantes de Argentina

    OpenAIRE

    García-Bocanegra, Ignacio; Arenas-Montes, Antonio José; Perea-Remujo, J.A.; Arenas-Casas, Antonio; Torralbo, A.; Borge-Rodríguez, Carmen; Carbonero-Martínez, Alfonso; Maldonado García, Alfonso

    2011-01-01

    An observacional cross-sectional study was performed to determine the risk factors associated to the main viral agents of the bovine respiratory disease: bovine herpesvirus type 1 (HVB1), bovine viral diarrhoea virus (VDVB), bovine respiratory syncytial virus (VRSB) and parainfluenza 3 virus (VPI3). Blood samples from dairy calves in the provinces of Cordova and Santa Fe (Argentina) were obtained, and an epidemiological ques-tionnaire was filled. Antibodies against studied viruses were detect...

  9. Mitochondrial Genetic Variation in Iranian Infertile Men with Varicocele

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Heidari

    2016-09-01

    Full Text Available Background: Several recent studies have shown that mitochondrial DNA mutations lead to major disabilities and premature death in carriers. More than 150 mutations in human mitochondrial DNA (mtDNA genes have been associated with a wide spectrum of disorders. Varicocele, one of the causes of infertility in men wherein abnormal inflexion and distension of veins of the pampiniform plexus is observed within spermatic cord, can increase reactive oxygen species (ROS production in semen and cause oxidative stress and sperm dysfunction in patients. Given that mitochondria are the source of ROS production in cells, the aim of this study was to scan nine mitochondrial genes (MT-COX2, MT-tRNALys, MT-ATP8, MT-ATP6, MT-COX3, MT-tRNAGly, MT-ND3, MT-tRNAArg and MT-ND4L for mutations in infertile patients with varicocele. Materials and Methods: In this cross-sectional study, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP and DNA sequencing were used to detect and identify point mutations respectively in 9 mitochondrial genes in 72 infertile men with varicocele and 159 fertile men. In brief, the samples showing altered electrophoretic patterns of DNA in the SSCP gel were sent for DNA sequencing to identify the exact nucleotide variation. Results: Ten type nucleotide variants were detected exclusively in mitochondrial DNA of infertile men. These include six novel nucleotide changes and four variants previously reported for other disorders. Conclusion: Mutations in mitochondrial genes may affect respiratory complexes in combination with environmental risk factors. Therefore these nucleotide variants probably lead to impaired ATP synthesis and mitochondrial function ultimately interfering with sperm motility and infertility.

  10. Interfacial behaviour of bovine testis hyaluronidase

    OpenAIRE

    Belem-Gonçalves, Silvia; Tsan, Pascale; Lancelin, Jean-Marc; Alves, Tito L. M.; Salim, Vera M.; Besson, Françoise

    2006-01-01

    Abstract The interfacial properties of bovine testicular hyaluronidase were suggested by demonstrating the association of hyaluronidase activity with membranes prepared from bovine testis. Protein adsorption to the air/water interface was investigated using surface pressure-area isotherms. Whatever the way to obtain interfacial films (protein injection or deposition), the hyaluronidase exhibited a significant affinity for the air/water interface. The isotherm obtained 180 min after...

  11. Bovine viral diarrhea virus: biotypes and disease.

    OpenAIRE

    Deregt, D; Loewen, K G

    1995-01-01

    Bovine viral diarrhea virus continues to produce significant economic losses for the cattle industry and challenges investigators with the complexity of diseases it produces and the mechanisms by which it causes disease. This paper updates and attempts to clarify information regarding the roles of noncytopathic and cytopathic bovine viral diarrhea viruses in persistent infections and mucosal disease. It also covers, in brief, what is known of the new diseases: thrombocytopenia and hemorrhagic...

  12. Drosophila Erect wing (Ewg) controls mitochondrial fusion during muscle growth and maintenance by regulation of the Opa1-like gene.

    Science.gov (United States)

    Rai, Mamta; Katti, Prasanna; Nongthomba, Upendra

    2014-01-01

    Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.

  13. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene

    Science.gov (United States)

    Li, Anning; Zhang, Yaran; Zhao, Zhidong; Wang, Mingming; Zan, Linsen

    2016-01-01

    The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5’-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5’-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5’-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle. PMID:27379520

  14. Bovine endometrial stromal cells display osteogenic properties

    Directory of Open Access Journals (Sweden)

    Cavirani Sandro

    2008-12-01

    Full Text Available Abstract The endometrium is central to mammalian fertility. The endometrial stromal cells are very dynamic, growing and differentiating throughout the estrous cycle and pregnancy. In humans, stromal cells appear to have progenitor or stem cell capabilities and the cells can even differentiate into bone. It is not clear whether bovine endometrial stromal cells exhibit a similar phenotypic plasticity. So, the present study tested the hypothesis that bovine endometrial stromal cells could be differentiated along an osteogenic lineage. Pure populations of bovine stromal cells were isolated from the endometrium. The endometrial stromal cell phenotype was confirmed by morphology, prostaglandin secretion, and susceptibility to viral infection. However, cultivation of the cells in standard endometrial cell culture medium lead to a mesenchymal phenotype similar to that of bovine bone marrow cells. Furthermore, the endometrial stromal cells developed signs of osteogenesis, such as alizarin positive nodules. When the stromal cells were cultured in a specific osteogenic medium the cells rapidly developed the characteristics of mineralized bone. In conclusion, the present study has identified that stromal cells from the bovine endometrium show a capability for phenotype plasticity similar to mesenchymal progenitor cells. These observations pave the way for further investigation of the mechanisms of stroma cell differentiation in the bovine reproductive tract.

  15. Mitochondrial regulation of epigenetics and its role in human diseases

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Tollefsbol, Trygve O; Singh, Keshav K

    2012-01-01

    as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction....... In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead...... to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role....

  16. Mitochondrial DNA haplogroups may influence Fabry disease phenotype.

    Science.gov (United States)

    Simoncini, C; Chico, L; Concolino, D; Sestito, S; Fancellu, L; Boadu, W; Sechi, G P; Feliciani, C; Gnarra, M; Zampetti, A; Salviati, A; Scarpelli, M; Orsucci, D; Bonuccelli, U; Siciliano, G; Mancuso, M

    2016-08-26

    While the genetic origin of Fabry disease (FD) is well known, it is still unclear why the disease presents a wide heterogeneity of clinical presentation and progression, even within the same family. Emerging observations reveal that mitochondrial impairment and oxidative stress may be implicated in the pathogenesis of FD. To investigate if specific genetic polymorphisms within the mitochondrial genome (mtDNA) could act as susceptibility factors and contribute to the clinical expression of FD, we have genotyped European mtDNA haplogroups in 77 Italian FD patients and 151 healthy controls. Haplogroups H and I, and haplogroup cluster HV were significantly more frequent in patients than controls. However, no correlation with gender, age of onset, organ involvement was observed. Our study seems to provide some evidence of a contribution of mitochondrial variation in FD pathogenesis, at least in Italy. PMID:27365132

  17. Mitochondrial DNA deletions in patients with chronic suppurative otitis media.

    Science.gov (United States)

    Tatar, Arzu; Tasdemir, Sener; Sahin, Ibrahim; Bozoglu, Ceyda; Erdem, Haktan Bagis; Yoruk, Ozgur; Tatar, Abdulgani

    2016-09-01

    The aim of this study was to investigate the 4977 and 7400 bp deletions of mitochondrial DNA in patients with chronic suppurative otitis media and to indicate the possible association of mitochondrial DNA deletions with chronic suppurative otitis media. Thirty-six patients with chronic suppurative otitis media were randomly selected to assess the mitochondrial DNA deletions. Tympanomastoidectomy was applied for the treatment of chronic suppurative otitis media, and the curettage materials including middle ear tissues were collected. The 4977 and 7400 bp deletion regions and two control regions of mitochondrial DNA were assessed by using the four pair primers. DNA was extracted from middle ear tissues and peripheral blood samples of the patients, and then polymerase chain reactions (PCRs) were performed. PCR products were separated in 2 % agarose gel. Seventeen of 36 patients had the heterozygote 4977 bp deletion in the middle ear tissue but not in peripheral blood. There wasn't any patient who had the 7400 bp deletion in mtDNA of their middle ear tissue or peripheral blood tissue. The patients with the 4977 bp deletion had a longer duration of chronic suppurative otitis media and a higher level of hearing loss than the others (p media and the reactive oxygen species can cause the mitochondrial DNA deletions and this may be a predisposing factor to sensorineural hearing loss in chronic suppurative otitis media. An antioxidant drug as a scavenger agent may be used in long-term chronic suppurative otitis media.

  18. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression.

    Science.gov (United States)

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J L; Bal, Amanjit; Gill, Kiran Dip

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits-NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases.

  19. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells.

    Science.gov (United States)

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo

    2012-01-01

    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (p<0.05). Statistically significant differences (p<0.05) were observed between the membranes and the control in the experimental period, although there was a significant reduction in viability over time (p<0.01). At 4 and 12 h, the porcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (p<0.01), and this difference was maintained at 24 h (p<0.05). This in vitro study showed that the porcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time. PMID:22460313

  20. Mitochondrial Oxidative Phosphorylation Reserve Is Required for Hormone- and PPARγ Agonist-Induced Adipogenesis

    OpenAIRE

    Ryu, Min Jeong; Kim, Soung Jung; Choi, Min Jeong; Kim, Yong Kyung; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Kim, Koon Soon; Jo, Young Suk; Kweon, Gi Ryang; Lee, Chul-Ho; Shong, Minho

    2013-01-01

    Adipocyte differentiation requires the coordinated activities of several nuclear transcription factors. Recently, mitochondria biogenesis was reported to occur during adipocyte differentiation and following treatment with thiazolidinediones in vitro and in vivo. Crif1 is a translational factor for mitochondrial DNA (mtDNA) and is important for transcription of the mitochondrial oxidative phosphorylation (OXPHOS) complex. To investigate the role of OXPHOS in adipogenesis, we analyzed adipocyte...

  1. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response.

    Science.gov (United States)

    Michel, Sebastien; Canonne, Morgane; Arnould, Thierry; Renard, Patricia

    2015-03-01

    Mitochondria-to-nucleus communication, known as retrograde signaling, is important to adjust the nuclear gene expression in response to organelle dysfunction. Among the transcription factors described to respond to mitochondrial stress, CHOP-10 is activated by respiratory chain inhibition, mitochondrial accumulation of unfolded proteins and mtDNA mutations. In this study, we show that altered/impaired expression of mtDNA induces CHOP-10 expression in a signaling pathway that depends on the eIF2α/ATF4 axis of the integrated stress response rather than on the mitochondrial unfolded protein response.

  2. Genetic diversity and frequency of bovine viral diarrhea virus (BVDV) detected in cattle in Turkey

    Science.gov (United States)

    Rapid detection and culling of persistently infected animals and efficacious vaccination are key factors to control bovine viral diarrhea virus (BVDV) infections in cattle. The aim of this study was to investigate frequency of detection of persistently infected cattle and examine the diversity of bo...

  3. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs

    Science.gov (United States)

    Only few hours of formula feeding may induce proinflammatory responses and predispose to necrotizing enterocolitis (NEC) in preterm pigs. We hypothesized that bovine colostrum, rich in bioactive factors, would improve intestinal function in preterm pigs following an initial exposure to formula feedi...

  4. X-ray structure of bovine pancreatic phospholipase A(2) at atomic resolution

    NARCIS (Netherlands)

    Steiner, RA; Rozeboom, HJ; Kalk, KH; Murshudov, GN; Wilson, KS; Dijkstra, BW

    2001-01-01

    Using synchrotron radiation and a CCD camera, X-ray data have been collected from wild-type bovine pancreatic phospholipase A(2) at 100 K to 0.97 Angstrom resolution allowing full anisotropic refinement. The final model has a conventional R factor of 9.44% for all reflections, with a mean standard u

  5. Mitochondrial drug targets in neurodegenerative diseases.

    Science.gov (United States)

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  6. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  7. Scandinavian bovine practitioners' attitudes to the use of analgesics in cattle

    DEFF Research Database (Denmark)

    Thomsen, Peter; Gidekull, M; Herskin, Mette S;

    2010-01-01

    implementation of new knowledge regarding pain in dairy cattle, it is important to understand the attitudes of bovine practitioners and their perceived limiting factors. This short communication presents the results of a questionnaire survey focusing on the use of analgesics in cows and calves among bovine......In recent years, pain in cattle (Stafford and Mellor 2007) and the welfare of diseased animals (Broom 2006) have received increased scientific attention. New knowledge has emerged regarding the pain that may be associated with typical production diseases (Todd and others 2007) and routine...

  8. A mechanistic view of mitochondrial death decision pores

    Directory of Open Access Journals (Sweden)

    J.E. Belizário

    2007-08-01

    Full Text Available Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.

  9. Frequently Asked Questions on BSE (Bovine Spongiform Encephalopathy or Mad Cow Disease)

    Science.gov (United States)

    ... BSE / FAQ on BSE (Bovine Spongiform Encephalopathy or Mad Cow Disease) Programs Beginning Farmer and Rancher Development Farm Storage ... Asked Questions on BSE (Bovine Spongiform Encephalopathy or Mad Cow Disease) Q. What is Bovine Spongiform Encephalopathy? A. Bovine ...

  10. Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis Detecção de resistência a meticilina e produção do fator slime por Staphylococcus aureus em mastite bovina

    Directory of Open Access Journals (Sweden)

    Alper Ciftci

    2009-06-01

    Full Text Available This study aimed to detect methicillin resistant and slime producing Staphylococcus aureus in cases of bovine mastitis. A triplex PCR was optimized targetting 16S rRNA, nuc and mecA genes for detection of Staphylococcus species, S. aureus and methicillin resistance, respectively. Furthermore, for detection of slime producing strains, a PCR assay targetting icaA and icaD genes was performed. In this study, 59 strains were detected as S. aureus by both conventional tests and PCR, and 13 of them were found to be methicillin resistant and 4 (30.7% were positive for mecA gene. Although 22 of 59 (37.2% S. aureus isolates were slime-producing in Congo Red Agar, in PCR analysis only 15 were positive for both icaA and icaD genes. Sixteen and 38 out of 59 strains were positive for icaA and icaD gene, respectively. Only 2 of 59 strains were positive for both methicillin resistance and slime producing, phenotypically, suggesting lack of correlation between methicillin resistance and slime production in these isolates. In conclusion, the optimized triplex PCR in this study was useful for rapid and reliable detection of methicillin resistant S. aureus. Furthermore, only PCR targetting icaA and icaD may not sufficient to detect slime production and further studies targetting other ica genes should be conducted for accurate evaluation of slime production characters of S. aureus strains.Este estudo objetivou a detecção de Staphylococcus aureus resistente a meticilina e produtor do fator slime em casos de mastite bovina. Um PCR triplex foi otimizado, com alvo no genes 16SrRNA, nuc e mecA para detecção de Staphylococcus spp, S. aureus e resistencia a meticilina, respectivamente. Para detecção das cepas produtoras do fator slime, empregou-se um PCR com alvo nos genes icaA e icaD. No estudo, 59 cepas foram identificadas como S. aureus por testes convencionais e PCR, sendo 13 resistentes a meticilina e quatro positivas para o gene mecA. Embora 22 das 59 cepas

  11. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J.L. [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012 (India); Bal, Amanjit [Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Gill, Kiran Dip, E-mail: kdgill2002@yahoo.co.in [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012 (India)

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10 mg/kg b.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. - Highlights: • Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded

  12. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus

    OpenAIRE

    Nasiri, Khadijeh; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza; Zibaee, Saeed

    2016-01-01

    Purpose: Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response.

  13. Bovine viral diarrhea virus: involvement in bovine respiratory disease and diagnostic challenges

    Science.gov (United States)

    This paper reviews the contribution of bovine viral diarrhea viruses (BVDV) to the development of Bovine Respiratory Disease (BRD). Veterinarians and producers generally consider BRD as one of the most significant diseases affecting production in the cattle industry. BRD can affect the performance (...

  14. Complete Genome Sequence of a Bovine Viral Diarrhea Virus 2 from Commercial Fetal Bovine Serum

    OpenAIRE

    Liu, Hua; Li, Yan; Gao, Mingchun; Wen, Kai; Jia, Ying; Liu, Xiaomei; Zhang, Wenlong; Ma, Bo; Wang, Junwei

    2012-01-01

    We isolated a bovine viral diarrhea virus (BVDV) from commercial fetal bovine serum and designated it HLJ-10. The complete genome is 12,284 nucleotides (nt); the open reading frame is 11,694 nt, coding 3,898 amino acids. Phylogenetic analysis indicated that this strain belongs to BVDV group 2.

  15. Pembelian Ternak dan Kelembaban Tinggi Merupakan Faktor Risiko Leptospirosis pada Sapi di Girimulyo, Kulon Progo, Jogjakarta (PURCHASE OF CATTLE AND HIGH HUMIDITY WERE RISK FACTORS OF BOVINE LEPTOSPIROSIS IN GIRIMULYO, KULON PROGO DISTRICT

    Directory of Open Access Journals (Sweden)

    Guntari Titik Mulyani

    2014-08-01

    Full Text Available Leptospirosis is an acute infectious disease could to attack humans and animals such as dogs, cats,cows, pigs, and wild animals such as rats, weasels and squirrels. The death rate of human leptospirosis inIndonesia reached 2.5 to 16.5%. Leptospirosis attacked approximately 274 residents, 18 fatalities atKulonprogo disctrict, and designated as Extraordinary Events in 2011. The purpose of this reasearch is todetermine risk factors affecting the prevalence of leptospirosis in cattle in the area of human leptospirosisin Girimulyo, Kulon Progo. This study used 132 samples of cattle blood. Methods of examination withMicro Aglutination Test (MAT conducted at the Center for Veterinary Research, Bogor. Micro AglutinationTest is done by creating a serum dilution with PBS in stages then added antigen in the form of various cultures leptospira serovar. Subsequently incubated at 28-30 ° C for 2 hours, and was reading the resultsunder a microscope dark field / phase contrast. Endpoint reading was 50% agglutination, highest finalserum dilution in serum-antigen mixtures that showed 50% agglutination is called the titer. Serum witha titer of 1:100 or more against one or more tested positive for serovar. Micro Aglutination Test result wasthe dependent variable (Y, while the independent variables (X were factors of farmers, animal factors,enclosure factors, and feed factors. Univariate analysis was done to see descriptively each variable studied.Association between the prevalence of leptospirosis and risk factors was analyzed by Chi Square.Multivariate Logistic Regression Analysis was used to build models of leptospirosis disease to investigatethe risk factors associated with leptospirosis. Variables that influence the prevalence of leptospirosiswere measured magnitude of association by Odd Ratio. The results of study that the prevalence of bovineleptospirosis in Girimulyo subdistrict, Kulonprogo district was 7.6%. Risk factors for the prevalence ofleptospirosis

  16. Bovine colostrum as a natural growth promoter for newly weaned piglets: a review

    Directory of Open Access Journals (Sweden)

    Buldgen A.

    2008-01-01

    Full Text Available The aim of this review is to present the potential of bovine colostrum as growth promoter in piglet-weaner diet. The consequences of weaning on the growth performance, on the gastro-intestinal tract and on the metabolic and endocrine systems of the piglet are described in the first part of this review. The second part is dedicated to bovine colostrum, with a description of the actions due to its main growth promoters and antimicrobial factors. Finally, the reported effects of colostrum specific components or colostrum fractions on the growth performance and on the structure and function of the gastro-intestinal tract of piglets in the early postweaning period are presented. They show clearly the potential of bovine colostrum to reduce the growth-check related to the weaning of the piglet.

  17. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-(/sup 14/C) palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C) acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO/sup 2/ was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation.

  18. Overview of mitochondrial bioenergetics.

    Science.gov (United States)

    Madeira, Vitor M C

    2012-01-01

    Bioenergetic Science started in seventh century with the pioneer works by Joseph Priestley and Antoine Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in 1860s with the description of fermentations associated to microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in 1940s with the contributions of Embden, Meyeroff, Parnas, Warburg, among others. Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s. Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lenhinger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent "chemical coupling hypothesis" of energy conservation in oxidative phosphorylation was challenged and replaced by the "chemiosmotic hypothesis" originally formulated in 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps. After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e.g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water splitting center, and energy collecting antennæ of several photosynthetic systems. Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials. In spite of significant development and

  19. Hsp90 inhibition decreases mitochondrial protein turnover.

    Directory of Open Access Journals (Sweden)

    Daciana H Margineantu

    Full Text Available BACKGROUND: Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis. FINDINGS: We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP. CONCLUSIONS: Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors.

  20. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction.

    Science.gov (United States)

    Mohammad, Ghulam; Kowluru, Renu A

    2010-09-01

    In the pathogenesis of diabetic retinopathy, retinal mitochondria become dysfunctional resulting in accelerated apoptosis of its capillary cells. Matrix metalloproteinase-2 (MMP2) is considered critical in cell integrity and cell survival, and diabetes activates MMP2 in the retina and its capillary cells. This study aims at elucidating the mechanism by which MMP2 contributes to the development of diabetic retinopathy. Using isolated bovine retinal endothelial cells, the effect of regulation of MMP2 (by its siRNA and pharmacological inhibitor) on superoxide accumulation and mitochondrial dysfunction was evaluated. The effect of inhibiting diabetes-induced retinal superoxide accumulation on MMP2 and its regulators was investigated in diabetic mice overexpressing mitochondrial superoxide dismutase (MnSOD). Inhibition of MMP2 ameliorated glucose-induced increase in mitochondrial superoxide and membrane permeability, prevented cytochrome c leakage from the mitochondria, and inhibited capillary cell apoptosis. Overexpression of MnSOD protected the retina from diabetes-induced increase in MMP2 and its membrane activator (MT1-MMP), and decrease in its tissue inhibitor (TIMP-2). These results implicate that, in diabetes, MMP2 activates apoptosis of retinal capillary cells by mitochondrial dysfunction increasing their membrane permeability. Understanding the role of MMP2 in the pathogenesis of diabetic retinopathy should help lay ground for MMP2-targeted therapy to retard the development of retinopathy in diabetic patients.

  1. Kajian Fisiologis Penggunaan Bovine Somatotropin (bST Pada Sapi Pra Afkir

    Directory of Open Access Journals (Sweden)

    Dzarnisa Araby

    2009-10-01

    Full Text Available Studies of physiological bovine somatotropin (bST on post lactating dairy ABSTRACT. To increase of milk production nationally with used in dairy cattle business can assist to increase milk production, eighteen post lactating dairy cows in the highland Cipelang Bogor, were used to study the effect used of bovine somatotropin and lactating time. The experimental cows were assigned into a Randomized Block Design with a 3x2 factorial arrangement. The first factor was using of somatotropin (bSTwith three levels (non bST injection, biweekly injection and three weekly injection. The second factor was lactating time with two levels (4th lactating time and 6 th lactating time Parameters measured were heart rate, respiration frequency, rectal temperature, milk production efficiency, milk production, 4% FCM (fat corrected milk., Milk composition, weigh gain, milk quality consist of protein, fat, pH. Bovine somatotropin significantly increased heart rate and respiration rate. Also bovine somatotropin injection at 4th lactating time significantly increased milk production. There were an interaction between bST dan lactating time on milk production and weight gain. Bovine somatotropin injection biweekly in cows on 4th lactating time ration increased milk production by 16-26 %, but injection in cows 6th lactating time increased milk production by 8-18 % combination with somatotropin doze 250/ml/14 days. Somatothropine supplementation was injection biweekly and three weekly did significantly affect to milk production, body temperature, heart rate, and respiration rate however in normal physiology . Bovine somatotropine can increase post lactating dairy production interval 14 days better than 21 days.

  2. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells.

    Science.gov (United States)

    Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo

    2015-11-15

    Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion.

  3. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  4. Nanodelivery System for Mitochondrial Targeting

    Science.gov (United States)

    Yoong, Sia Lee; Pastorin, Giorgia

    2014-02-01

    Mitochondria are indispensable in cellular functions such as energy production and death execution. They are emerging as intriguing therapeutic target as their dysregulation was found to be monumental in diseases such as neurodegenerative disease, obesity, and cancer etc. Despite tremendous interest being focused on therapeutically intervening mitochondrial function, few mito-active drugs were successfully developed, particularly due to challenges in delivering active compound to this organelle. In this review, effort in utilizing nanotechnology for targeted mitochondrial delivery of compound is expounded based on the nature of the nanomaterial used. The advantage and potential offered are discussed alongside the limitation. Finally the review is concluded with perspectives of the application of nanocarrier in mitochondrial medicine, given the unresolved concern on potential complications.

  5. Horizontal gene transfers link a human MRSA pathogen to contagious bovine mastitis bacteria.

    Directory of Open Access Journals (Sweden)

    Thomas Brody

    Full Text Available BACKGROUND: Acquisition of virulence factors and antibiotic resistance by many clinically important bacteria can be traced to horizontal gene transfer (HGT between related or evolutionarily distant microflora. Comparative genomic analysis has become an important tool for identifying HGT DNA in emerging pathogens. We have adapted the multi-genome alignment tool EvoPrinter to facilitate discovery of HGT DNA sequences within bacterial genomes and within their mobile genetic elements. PRINCIPAL FINDINGS: EvoPrinter analysis of 13 different Staphylococcus aureus genomes revealed that one of the human isolates, the hospital epidemic methicillin-resistant MRSA252 strain, uniquely shares multiple putative HGT DNA sequences with different causative agents of bovine mastitis that are not found in the other human S. aureus isolates. MRSA252 shares over 14 different DNA sequence blocks with the bovine mastitis ET3 S. aureus strain RF122, and many of the HGT DNAs encode virulence factors. EvoPrinter analysis of the MRSA252 chromosome also uncovered virulence-factor encoding HGT events with the genome of Listeria monocytogenes and a Staphylococcus saprophyticus associated plasmid. Both bacteria are also causal agents of contagious bovine mastitis. CONCLUSIONS: EvoPrinter analysis reveals that the human MRSA252 strain uniquely shares multiple DNA sequence blocks with different causative agents of bovine mastitis, suggesting that HGT events may be occurring between these pathogens. These findings have important implications with regard to animal husbandry practices that inadvertently enhance the contact of human and livestock bacterial pathogens.

  6. Histopathological and molecular study of Neospora caninum infection in bovine aborted fetuses

    Institute of Scientific and Technical Information of China (English)

    Amir Kamali; HesamAdin Seifi; Ahmad Reza Movassaghi; Gholam Reza Razmi; Zahra Naseri

    2014-01-01

    To estimate the extent to which abortion in dairy cows was associated with of Neospora caninum (N. caninum) and to determine the risk factors of neosporosis in dairy farms from 9 provinces in Iran. Methods: Polymerase chain reaction (PCR) test was used to detect Neospora infection in the brain of 395 bovine aborted fetuses from 9 provinces of Iran. In addition, the brains of aborted fetuses were taken for histopathological examination. To identify the risk factors associated with neosporosis, data analysis was performed by SAS. Results: N. caninum was detected in 179 (45%) out of 395 fetal brain samples of bovine aborted fetuses using PCR. Among the PCR-positive brain samples, only 56 samples were suited for histopathological examination. The characteristic lesions of Neospora infection including non-suppurative encephalitis were found in 16 (28%) of PCR-positive samples. The risk factors including season, parity of dam, history of bovine virus diarrhea and infectious bovine rhinotracheitis infection in herd, cow’s milk production, herd size and fetal appearance did not show association with the infection. This study showed that Neospora caused abortion was significantly more in the second trimester of pregnancy than other periods. In addition, a significant association was observed between Neospora infection and stillbirth. Conclusions: The results showed N. caninum infection was detected in high percentage of aborted fetuses. In addition, at least one fourth of abortions caused by Neospora infection. These results indicate increasing number of abortions associated with the protozoa more than reported before in Iran.

  7. Catecholamine metabolism drives generation of mitochondrial DNA deletions in dopaminergic neurons.

    Science.gov (United States)

    Neuhaus, Johannes F G; Baris, Olivier R; Hess, Simon; Moser, Natasha; Schröder, Hannsjörg; Chinta, Shankar J; Andersen, Julie K; Kloppenburg, Peter; Wiesner, Rudolf J

    2014-02-01

    Accumulation of mitochondrial DNA deletions is observed especially in dopaminergic neurons of the substantia nigra during ageing and even more in Parkinson's disease. The resulting mitochondrial dysfunction is suspected to play an important role in neurodegeneration. However, the molecular mechanisms involved in the preferential generation of mitochondrial DNA deletions in dopaminergic neurons are still unknown. To study this phenomenon, we developed novel polymerase chain reaction strategies to detect distinct mitochondrial DNA deletions and monitor their accumulation patterns. Applying these approaches in in vitro and in vivo models, we show that catecholamine metabolism drives the generation and accumulation of these mitochondrial DNA mutations. As in humans, age-related accumulation of mitochondrial DNA deletions is most prominent in dopaminergic areas of mouse brain and even higher in the catecholaminergic adrenal medulla. Dopamine treatment of terminally differentiated neuroblastoma cells, as well as stimulation of dopamine turnover in mice over-expressing monoamine oxidase B both induce multiple mitochondrial DNA deletions. Our results thus identify catecholamine metabolism as the driving force behind mitochondrial DNA deletions, probably being an important factor in the ageing-associated degeneration of dopaminergic neurons.

  8. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle.

    Science.gov (United States)

    Fajardo, Val Andrew; McMeekin, Lauren; Saint, Caitlin; LeBlanc, Paul J

    2015-04-01

    Cardiolipin (CL) is an inner-mitochondrial membrane phospholipid that is important for optimal mitochondrial function. Specifically, CL and CL linoleic (18:2ω6) content are known to be positively associated with cytochrome c oxidase (COX) activity. However, this association has not been examined in skeletal muscle. In this study, rats were fed high-fat diets with a naturally occurring gradient in linoleic acid (coconut oil [CO], 5.8%; flaxseed oil [FO], 13.2%; safflower oil [SO], 75.1%) in an attempt to alter both mitochondrial CL fatty acyl composition and COX activity in rat mixed hind-limb muscle. In general, mitochondrial membrane lipid composition was fairly resistant to dietary treatments as only modest changes in fatty acyl composition were detected in CL and other major mitochondrial phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). As a result of this resistance, CL 18:2ω6 content was not different between the dietary groups. Consistent with the lack of changes in CL 18:2ω6 content, mitochondrial COX activity was also not different between the dietary groups. However, correlational analysis using data obtained from rats across the dietary groups showed a significant relationship (p = 0.009, R(2) = 0.21). Specifically, our results suggest that CL 18:2ω6 content may positively influence mitochondrial COX activity thereby making this lipid molecule a potential factor related to mitochondrial health and function in skeletal muscle.

  9. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease

    Science.gov (United States)

    Stanzione, Rosita; Volpe, Massimo

    2016-01-01

    Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension. PMID:27594970

  10. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease.

    Science.gov (United States)

    Rubattu, Speranza; Stanzione, Rosita; Volpe, Massimo

    2016-01-01

    Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension. PMID:27594970

  11. Unexplained gastrointestinal symptoms: Think mitochondrial disease

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic.We describe the clinical, histopathol...

  12. Unexplained gastrointestinal symptoms: think mitochondrial disease.

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic. We describe the clinical, histopatho...

  13. Platelet mitochondrial membrane potential in Parkinson's disease

    OpenAIRE

    Antony, P.M.; Boyd, O.; Trefois, C.; Ammerlaan, W; Ostaszewski, M.; Baumuratov, A.S.; Longhino, L.; Antunes, L; Koopman, W.J.H.; Balling, R; Diederich, N.J.

    2014-01-01

    OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial function at the level of selected enzymatic activities in peripheral tissues have produced conflicting data. We considered the electron transport chain as a complex system with mitochondrial membrane potential as an integrative indicator for mitochondrial fitness. METHODS: Twenty-five IPD pati...

  14. Unexplained gastrointestinal symptoms: think mitochondrial disease.

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic.We describe the clinical, histopathol...

  15. Ethics of mitochondrial therapy for deafness.

    Science.gov (United States)

    Legge, Michael; Fitzgerald, Ruth P

    2014-11-07

    Mitochondrial therapy may provide the relief to many families with inherited mitochondrial diseases. However, it also has the potential for use in non-fatal disorders such as inherited mitochondrial deafness, providing an option for correction of the deafness using assisted reproductive technology. In this paper we discuss the potential for use in correcting mitochondrial deafness and consider some of the issues for the deaf community.

  16. Mitochondrial Cardiomyopathy: Pathophysiology, Diagnosis, and Management

    OpenAIRE

    Meyers, Deborah E.; Basha, Haseeb Ilias; Koenig, Mary Kay

    2013-01-01

    Mitochondrial disease is a heterogeneous group of multisystemic diseases that develop consequent to mutations in nuclear or mitochondrial DNA. The prevalence of inherited mitochondrial disease has been estimated to be greater than 1 in 5,000 births; however, the diagnosis and treatment of this disease are not taught in most adult-cardiology curricula. Because mitochondrial diseases often occur as a syndrome with resultant multiorgan dysfunction, they might not immediately appear to be specifi...

  17. Mitochondrial myopathy and myoclonic epilepsy

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1990-03-01

    Full Text Available The authors describe a family (mother, son and two daughters with mitochondrial myopathy. The mother was asymptomatic. Two daughters had lactic acidosis and myoclonic epilepsy, mild dementia, ataxia, weakness and sensory neuropathy. The son suffered one acute hemiplegic episode due to an ischemic infarct in the right temporal region. All the patients studied had hypertension. EEG disclosed photomyoclonic response in the proband patient. Muscle biopsy disclosed ragged-red fibers and abnormal mitochondria by electron microscopy. Biochemical analysis showed a defect of cytochrome C oxidase in mitochondria isolated from skeletal muscle. Several clinical and genetic aspects of the mitochondrial encephalomyopathies are discussed.

  18. Recent Progress in Cryopreservation of Bovine Oocytes

    Directory of Open Access Journals (Sweden)

    In-Sul Hwang

    2014-01-01

    Full Text Available Principle of oocyte cryoinjury is first overviewed and then research history of cryopreservation using bovine oocytes is summarized for the last two decades with a few special references to recent progresses. Various types of cryodevices have been developed to accelerate the cooling rate and applied to the oocytes from large domestic species enriched with cytoplasmic lipid droplets. Two recent approaches include the qualitative improvement of IVM oocytes prior to the vitrification and the short-term recovery culture of vitrified-warmed oocytes prior to the subsequent IVF. Supplementation of L-carnitine to IVM medium of bovine oocytes has been reported to reduce the amount of cytoplasmic lipid droplets and improve the cryotolerance of the oocytes, but it is still controversial whether the positive effect of L-carnitine is reproducible. Incidence of multiple aster formation, a possible cause for low developmental potential of vitrified-warmed bovine oocytes, was inhibited by a short-term culture of the postwarm oocytes in the presence of Rho-associated coiled-coil kinase (ROCK inhibitor. Use of an antioxidant α-tocopherol, instead of the ROCK inhibitor, also supported the revivability of the postwarm bovine oocytes. Further improvements of the vitrification procedure, combined with pre- and postvitrification chemical treatment, would overcome the high sensitivity of bovine oocytes to cryopreservation.

  19. Shortwave UV-induced damage as part of the solar damage spectrum is not a major contributor to mitochondrial dysfunction.

    Science.gov (United States)

    Gebhard, Daniel; Matt, Katja; Burger, Katharina; Bergemann, Jörg

    2014-06-01

    Because of the absence of a nucleotide excision repair in mitochondria, ultraviolet (UV)-induced bulky mitochondrial DNA (mtDNA) lesions persist for several days before they would eventually be removed by mitophagy. Long persistence of this damage might disturb mitochondrial functions, thereby contributing to skin ageing. In this study, we examined the influence of shortwave UV-induced damage on mitochondrial parameters in normal human skin fibroblasts. We irradiated cells with either sun-simulating light (SSL) or with ultraviolet C to generate bulky DNA lesions. At equivalent antiproliferative doses, both irradiation regimes induced gene expression of mitochondrial transcription factor A (TFAM) and matrix metallopeptidase 1 (MMP-1). Only irradiation with SSL, however, caused significant changes in mtDNA copy number and a decrease in mitochondrial respiration. Our results indicate that shortwave UV-induced damage as part of the solar spectrum is not a major contributor to mitochondrial dysfunction.

  20. Disrupted Renal Mitochondrial Homeostasis after Liver Transplantation in Rats.

    Directory of Open Access Journals (Sweden)

    Qinlong Liu

    Full Text Available Suppressed mitochondrial biogenesis (MB contributes to acute kidney injury (AKI after many insults. AKI occurs frequently after liver transplantation (LT and increases mortality. This study investigated whether disrupted mitochondrial homeostasis plays a role in AKI after LT.Livers were explanted from Lewis rats and implanted after 18 h cold storage. Kidney and blood were collected 18 h after LT.In the kidney, oxidative phosphorylation (OXPHOS proteins ATP synthase-β and NADH dehydrogenase-3 decreased 44% and 81%, respectively, with marked reduction in associated mRNAs. Renal PGC-1α, the major regulator of MB, decreased 57% with lower mRNA and increased acetylation, indicating inhibited synthesis and suppressed activation. Mitochondrial transcription factor-A, which controls mtDNA replication and transcription, protein and mRNA decreased 66% and 68%, respectively, which was associated with 64% decreases in mtDNA. Mitochondrial fission proteins Drp-1 and Fis-1 and mitochondrial fusion protein mitofusin-1 all decreased markedly. In contrast, PTEN-induced putative kinase 1 and microtubule-associated protein 1A/1B-light chain 3 increased markedly after LT, indicating enhanced mitophagy. Concurrently, 18- and 13-fold increases in neutrophil gelatinase-associated lipocalin and cleaved caspase-3 occurred in renal tissue. Both serum creatinine and blood urea nitrogen increased >2 fold. Mild to moderate histological changes were observed in the kidney, including loss of brush border, vacuolization of tubular cells in the cortex, cast formation and necrosis in some proximal tubular cells. Finally, myeloperoxidase and ED-1 also increased, indicating inflammation.Suppression of MB, inhibition of mitochondrial fission/fusion and enhancement of mitophagy occur in the kidneys of recipients of liver grafts after long cold storage, which may contribute to the occurrence of AKI and increased mortality after LT.