WorldWideScience

Sample records for bovine mitochondrial factor

  1. Synergistic action of heparin and serum on basic fibroblast growth factor-modulated DNA synthesis and mitochondrial activity of cultured bovine corneal endothelial cells

    NARCIS (Netherlands)

    Hoppenreijs, V. P.; Pels, E.; Felten, P. C.; Ruijter, J. M.; Vrensen, G. F.; Treffers, W. F.

    1996-01-01

    Basic fibroblast growth factor (bFGF) is a major mitogen and chemoattractant for many cell types. The synergistic role of fetal bovine serum (FBS) and heparin on the modulation of tissue-cultured bovine corneal endothelial cells by bFGF was studied. Cell modulation was assessed by DNA synthesis

  2. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    , and the probable mechanism. Methods: After ... Keywords: Mitochondrial transcription factor A, NF-κB, Hypoxia, Human retinal endothelial cell,. Diabetic retinopathy ..... choice for diabetic retinopathy therapy, as TFAM activity clearly affects the ...

  3. Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes.

    Science.gov (United States)

    Celeghini, E C C; de Arruda, R P; de Andrade, A F C; Nascimento, J; Raphael, C F

    2007-10-01

    This experiment was performed to develop and validate practical techniques for simultaneous evaluation of the integrity of plasma and acrosomal membranes, as well as mitochondrial function in bovine spermatozoa using associations of fluorescent probes. Four protocols of fluorescent probes association were defined: protocol 1: propidium iodide (PI), fluorescein isothiocyanate-conjugated Pisum sativum agglutinin (FITC-PSA) and rhodamine 123; protocol 2: PI, FITC-PSA and MitoTracker Green FM (MITO); protocol 3: PI, Hoechst 33342 (H342), FITC-PSA and CMXRos; and protocol 4: PI, H342, FITC-PSA and JC-1. Three ejaculates from each of the four bulls (n = 12) were utilized, showing sperm motility >/=80% and abnormal morphology mitochondrial function (R(2) = 0.84, 0.93 and R(2) = 0.93, respectively). These techniques are efficient for the simultaneous integrity evaluation of plasma and acrosomal membranes and mitochondrial function in bovine spermatozoa. However, JC-1 has an advantage over MITO and CMXRos, as it separates two cell populations with high and low mitochondrial membrane potential.

  4. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  5. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  6. Prevalence and Risk factors of Bovine Tuberculosis in smallholder ...

    African Journals Online (AJOL)

    A cross-sectional study was conducted between December 2013 and January 2014 to determine the prevalence and risk factors of bovine tuberculosis (BTB) in smallholder dairy farms in Babati town council. Sixty three smallholder dairy farmers were administered with questionnaires to collect information on risk factors for ...

  7. Prevalence and risk factors of bovine and ovine fasciolosis, and ...

    African Journals Online (AJOL)

    A cross-sectional study was conducted from November, 2010 to March, 2011 to estimate the prevalence of bovine and ovine fasciolosis, to assess risk factors and to estimate direct financial loss due to liver condemnation on cattle and sheep slaughtered at Bahir Dar municipal abattoir. Additionally, the sensitivity of direct ...

  8. Study on Seroprevalence and Risk Factors Contagious Bovine ...

    African Journals Online (AJOL)

    Study on Seroprevalence and Risk Factors Contagious Bovine Pleuropneumonia in Southern Nationand Nationality People of Ethiopia Regional State in Amaro Special ... This warrants the need to institute for appropriate preventive and control measures to stop further spread of this economically devastating disease.

  9. Nocardia cyriacigeogica from Bovine Mastitis Induced In vitro Apoptosis of Bovine Mammary Epithelial Cells via Activation of Mitochondrial-Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-05-01

    Full Text Available Nocardia is one of the causing agents of bovine mastitis and increasing prevalence of nocardial mastitis in shape of serious outbreaks has been reported from many countries. However, the mechanisms by which this pathogen damages the bovine mammary epithelial cells (bMECs is not yet studied. Therefore, this study was designed with the aim to evaluate the apoptotic effects elicited by Nocardia and to investigate the pathway by which the Nocardia induce apoptosis in bMECs. Clinical Nocardia cyriacigeorgica strain from bovine mastitis was used to infect the bMECs for different time intervals, viz. 1, 3, 6, 12, and 18 h, and then the induced effects on bMECs were studied using adhesion and invasion assays, release of lactate dehydrogenase (LDH, apoptosis analysis by annexin V and propidium iodide (PI double staining, morphological, and ultrastructural observations under scanning electron microscope (SEM and transmission electron microscope (TEM, mitochondrial transmembrane potential (ΔΨm assay using flow cytometry, and the protein quantification of mitochondrial cytochrome c and caspase-9 and caspase-3 by western blotting. The results of this study showed that N. cyriacigeorgica possessed the abilities of adhesion and invasion to bMECs. N. cyriacigeorgica was found to collapse mitochondrial transmembrane potential, significantly (p < 0.05 release mitochondrial cytochrome c and ultimately induce cell apoptosis. Additionally, it promoted casepase-9 (p < 0.01 and casepase-3 (p < 0.05 levels, significantly (p < 0.01 increased the release of LDH and promoted DNA fragmentation which further confirmed the apoptosis. Furthermore, N. cyriacigeorgica induced apoptosis/necrosis manifested specific ultrastructure features under TEM, such as swollen endoplasmic reticulum, cristae degeneration, and swelling of mitochondria, vesicle formation on the cell surface, rupturing of cell membrane and nuclear membrane, clumping, fragmentation, and margination of

  10. Nocardia cyriacigeogica from Bovine Mastitis Induced In vitro Apoptosis of Bovine Mammary Epithelial Cells via Activation of Mitochondrial-Caspase Pathway

    Science.gov (United States)

    Chen, Wei; Liu, Yongxia; Zhang, Limei; Gu, Xiaolong; Liu, Gang; Shahid, Muhammad; Gao, Jian; Ali, Tariq; Han, Bo

    2017-01-01

    Nocardia is one of the causing agents of bovine mastitis and increasing prevalence of nocardial mastitis in shape of serious outbreaks has been reported from many countries. However, the mechanisms by which this pathogen damages the bovine mammary epithelial cells (bMECs) is not yet studied. Therefore, this study was designed with the aim to evaluate the apoptotic effects elicited by Nocardia and to investigate the pathway by which the Nocardia induce apoptosis in bMECs. Clinical Nocardia cyriacigeorgica strain from bovine mastitis was used to infect the bMECs for different time intervals, viz. 1, 3, 6, 12, and 18 h, and then the induced effects on bMECs were studied using adhesion and invasion assays, release of lactate dehydrogenase (LDH), apoptosis analysis by annexin V and propidium iodide (PI) double staining, morphological, and ultrastructural observations under scanning electron microscope (SEM) and transmission electron microscope (TEM), mitochondrial transmembrane potential (ΔΨm) assay using flow cytometry, and the protein quantification of mitochondrial cytochrome c and caspase-9 and caspase-3 by western blotting. The results of this study showed that N. cyriacigeorgica possessed the abilities of adhesion and invasion to bMECs. N. cyriacigeorgica was found to collapse mitochondrial transmembrane potential, significantly (p < 0.05) release mitochondrial cytochrome c and ultimately induce cell apoptosis. Additionally, it promoted casepase-9 (p < 0.01) and casepase-3 (p < 0.05) levels, significantly (p < 0.01) increased the release of LDH and promoted DNA fragmentation which further confirmed the apoptosis. Furthermore, N. cyriacigeorgica induced apoptosis/necrosis manifested specific ultrastructure features under TEM, such as swollen endoplasmic reticulum, cristae degeneration, and swelling of mitochondria, vesicle formation on the cell surface, rupturing of cell membrane and nuclear membrane, clumping, fragmentation, and margination of chromatin. The

  11. bovine

    African Journals Online (AJOL)

    of various breeds under local conditions of management. (Hale, 1974b). AdditionaIly, this procedure has been used to assess the production of LH by the bovine anterior pituitary in vitro and to study the relationships between this production and the activity of the pineal- hypothalamic axis (Hayes, Knight & Symington, 1974;.

  12. Simultaneous evaluation of plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential in bovine spermatozoa by flow cytometry.

    Science.gov (United States)

    Kanno, Chihiro; Kang, Sung-Sik; Kitade, Yasuyuki; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Nagano, Masashi

    2016-08-01

    The present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen-thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE-PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE-PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE-PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE-PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously.

  13. Seroprevalence and risk factors associated with bovine herpesvirus ...

    African Journals Online (AJOL)

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and ...

  14. Mapping and fine-mapping of genetic factors affecting bovine milk composition

    NARCIS (Netherlands)

    Duchemin, S.I.

    2016-01-01

    Duchemin, S.I. (2016). Mapping and fine-mapping of genetic factors affecting bovine milk composition. Joint PhD thesis, between Swedish University of Agricultural Sciences, Sweden and Wageningen University, the Netherlands Bovine milk is an important source of nutrients in Western diets. Unraveling

  15. Short communication Prevalence and risk factors of bovine mastitis ...

    African Journals Online (AJOL)

    were selected from all volunteer dairy farms in Ambo town of West Shewa Zone of ... economic implication of bovine mastitis derives from the high costs of treat- ... wot et al., 2013) and 95% statistical confidence level at 5% absolute precision.

  16. Factors affecting insulin-like growth factor-I concentration in bovine milk.

    Science.gov (United States)

    Collier, R J; Miller, M A; Hildebrandt, J R; Torkelson, A R; White, T C; Madsen, K S; Vicini, J L; Eppard, P J; Lanza, G M

    1991-09-01

    To establish the naturally occurring range of insulin-like growth factor-I concentrations in bovine milk, samples from individual cows (n = 409) managed on five Missouri dairy herds were assayed. Parity, stage of lactation, and farm affected milk insulin-like growth factor-I concentration. Milk insulin-like growth factor-I concentration was higher in early lactation than mid and late lactation with concentrations in multiparous cows exceeding those in primiparous cows. Insulin-like growth factor-I concentration was negatively correlated to milk production the day of sample collection (r = -.15) and not correlated to predicted 305-d milk yields. Unprocessed bulk tank milk samples (n = 100) from a commercial processing plant had a mean concentration of insulin-like growth factor-I in milk of 4.32 ng/ml with a range of 1.27 to 8.10 ng/ml. This distribution was similar to the range detected in samples from individual cows, but values were lower than those reported for human milk. Concentration of insulin-like growth factor-I in milk was not altered by pasteurization (at 79 degrees C for 45 s). However, insulin-like growth factor-I was undetectable in milk heated to temperatures (121 degrees C for 5 min) required for infant formula preparation or in commercially available infant formula. These data indicated that insulin-like growth factor-I is a normal but quantitatively variable component of bovine milk that is not destroyed by pasteurization but is undetectable in infant formula. Concentration of insulin-like growth factor-I in bovine milk is lower than concentrations reported for human milk yet similar to those reported for human saliva.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Activated macrophages control human adipocyte mitochondrial bioenergetics via secreted factors.

    Science.gov (United States)

    Keuper, Michaela; Sachs, Stephan; Walheim, Ellen; Berti, Lucia; Raedle, Bernhard; Tews, Daniel; Fischer-Posovszky, Pamela; Wabitsch, Martin; Hrabě de Angelis, Martin; Kastenmüller, Gabi; Tschöp, Matthias H; Jastroch, Martin; Staiger, Harald; Hofmann, Susanna M

    2017-10-01

    Obesity-associated WAT inflammation is characterized by the accumulation and local activation of macrophages (MΦs), and recent data from mouse studies suggest that macrophages are modifiers of adipocyte energy metabolism and mitochondrial function. As mitochondrial dysfunction has been associated with obesity and the metabolic syndrome in humans, herein we aimed to delineate how human macrophages may affect energy metabolism of white adipocytes. Human adipose tissue gene expression analysis for markers of macrophage activation and tissue inflammation (CD11c, CD40, CD163, CD206, CD80, MCP1, TNFα) in relationship to mitochondrial complex I (NDUFB8) and complex III (UQCRC2) was performed on subcutaneous WAT of 24 women (BMI 20-61 kg/m 2 ). Guided by these results, the impact of secreted factors of LPS/IFNγ- and IL10/TGFβ-activated human macrophages (THP1, primary blood-derived) on mitochondrial function in human subcutaneous white adipocytes (SGBS, primary) was determined by extracellular flux analysis (Seahorse technology) and gene/protein expression. Stepwise regression analysis of human WAT gene expression data revealed that a linear combination of CD40 and CD163 was the strongest predictor for mitochondrial complex I (NDUFB8) and complex III (UQCRC2) levels, independent of BMI. IL10/TGFβ-activated MΦs displayed high CD163 and low CD40 expression and secreted factors that decreased UQCRC2 gene/protein expression and ATP-linked respiration in human white adipocytes. In contrast, LPS/IFNγ-activated MΦs showed high CD40 and low CD163 expression and secreted factors that enhanced adipocyte mitochondrial activity resulting in a total difference of 37% in ATP-linked respiration of white adipocytes (p = 0.0024) when comparing the effect of LPS/IFNγ- vs IL10/TGFβ-activated MΦs. Our data demonstrate that macrophages modulate human adipocyte energy metabolism via an activation-dependent paracrine mechanism. Copyright © 2017 The Authors. Published by Elsevier

  18. CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death.

    Science.gov (United States)

    Abdulhasan, M K; Li, Q; Dai, J; Abu-Soud, H M; Puscheck, E E; Rappolee, D A

    2017-09-12

    We tested whether mitochondrial electron transport chain electron carrier coenzyme Q10 (CoQ10) increases ATP during bovine IVM and increases %M2 oocytes, mitochondrial polarization/mass, and Oct4, and decreases pAMPK and oocyte death. Bovine oocytes were aspirated from ovaries and cultured in IVM media for 24 h with 0, 20, 40, or 60 μM CoQ10. Oocytes were assayed for ATP by luciferase-based luminescence. Oocyte micrographs were quantitated for Oct4, pAMPK (i.e., activity), polarization by JC1 staining, and mitochondrial mass by MitoTracker Green staining. CoQ10 at 40 μM was optimal. Oocytes at 40 μM enabled 1.9-fold more ATP than 0 μM CoQ10. There was 4.3-fold less oocyte death, 1.7-fold more mitochondrial charge polarization, and 3.1-fold more mitochondrial mass at 40 μM than at 0 μM CoQ10. Increased ATP was associated with 2.2-fold lower AMPK thr172P activation and 2.1-fold higher nuclear Oct4 stemness/potency protein at 40 μM than at 0 μM CoQ10. CoQ10 is hydrophobic, and at all doses, 50% was lost from media into oil by ~ 12 h. Replenishing CoQ10 at 12 h did not significantly diminish dead oocytes. The data suggest that CoQ10 improves mitochondrial function in IVM where unwanted stress, higher AMPK activity, and Oct4 potency loss are induced.

  19. Fateful triad of reactive oxygen species, mitochondrial dysfunction and lipid accumulation is associated with expression outline of the AMP-activated protein kinase pathway in bovine blastocysts.

    Science.gov (United States)

    Prastowo, S; Amin, A; Rings, F; Held, E; Wondim, D Salilew; Gad, A; Neuhoff, C; Tholen, E; Looft, C; Schellander, K; Tesfaye, D; Hoelker, M

    2016-02-24

    Low cryotolerance is considered as the major drawback of in vitro-produced bovine embryos and is frequently associated with a triad encompassing increased cytoplasmic lipid accumulation, enhanced levels of reactive oxygen species (ROS) and mitochondrial dysfunction. The aim of the present study was to explore the role of the AMP-activated protein kinase (AMPK) pathway in the process resulting such phenotypes. Comparative analysis under different environmental conditions revealed downregulation of AMP-activated protein kinase cytalytic subunit 1alpha (AMPKA1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1A) and carnitine palmitoyltransferase 1 (CPT1) genes and upregulation of acetyl-CoA carboxylase α (ACC). In contrast, the presence of fatty acids within the culture medium resulted in a distinct molecular profile in the embryo associated with enhanced levels of ROS, mitochondrial dysfunction and elevated lipid accumulation in bovine embryos. Because AMPKA1 regulates PGC1A, CPT1 and ACC, the results of the present study reveal that AMPK in active its form is the key enzyme promoting lipolysis. Because AMPK1 activity is, in turn, controlled by the AMP : ATP ratio, it is possible to speculate that excessive uptake of exogenous free fatty acids could increase cellular ATP levels as a result of the disturbed β-oxidation of these external fatty acids and could therefore bypass that molecular feedback mechanism. Subsequently, this condition would cause enhanced generation of ROS, which negatively affect mitochondrial activity. Both enhanced generation of ROS and low mitochondrial activity are suggested to enhance the accumulation of lipids in bovine embryos.

  20. Chemical labeling studies on isolated and vesicular bovine heart mitochondrial cytochrome c oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Venzke, K.S.; Reynolds, K.A.; Prochaska, L.J.

    1987-05-01

    Bovine heart cytochrome c oxidase dispersed in Triton X-100, Tween 80, or dodecyl maltoside was reacted with the water-soluble reagents (/sup 35/S)-diazonium benzene sulfonate (DABS) (10-100 ..mu..M) or (/sup 125/I)-iodo-DABS (34-55 nM) to map the surface topography of the enzyme in different protein aggregation states. Both reagents gave similar labeling profiles of the enzyme under all conditions. Subunits II, III, and VII were extensively labeled by DABS, while subunits I and VI were unreactive with DABS in each detergent. Subunit V exhibited an increase in DABS labeling when the enzyme was reacted in Tween 80 as compared to the enzyme in Triton X-100 or dodecyl maltoside. Also, components b and c showed an increase in DABS reactivity when the enzyme was modified in dodecyl maltoside. In general, the labeling profile of the enzyme in dodecyl maltoside resembled that of the enzyme in Triton X-100, emphasizing that the mechanism of dispersal of the enzyme by both detergents is similar. Cytochrome c oxidase incorporated into phosphatidylglycerol:phosphatidylcholine(1:20)(w:w) phospholipid vesicles (COV) by cholate dialysis was reacted with DABS and subunits II and III were significantly labeled. Approximately 65-70% of the enzyme in COV was oriented with the cytochrome c binding domain facing the extravesicular medium, as determined by comparison of the DABS labeling in subunit IV in detergent-lysed and intact COV.

  1. Risk factors analysis and implications for public health of bovine ...

    African Journals Online (AJOL)

    Bovine tuberculosis (TB) is a neglected zoonosis of cattle that is prevalent but under-investigated in Cameroon. Based on epidemiological data of the disease, this study was designed to assess the risks and public health implications for zoonotic M. bovis infection in cattle and humans in the highlands of Cameroon.

  2. Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae.

    Science.gov (United States)

    Atkinson, Gemma C; Kuzmenko, Anton; Kamenski, Piotr; Vysokikh, Mikhail Y; Lakunina, Valentina; Tankov, Stoyan; Smirnova, Ekaterina; Soosaar, Aksel; Tenson, Tanel; Hauryliuk, Vasili

    2012-07-01

    Mitochondrial translation is essentially bacteria-like, reflecting the bacterial endosymbiotic ancestry of the eukaryotic organelle. However, unlike the translation system of its bacterial ancestors, mitochondrial translation is limited to just a few mRNAs, mainly coding for components of the respiratory complex. The classical bacterial initiation factors (IFs) IF1, IF2 and IF3 are universal in bacteria, but only IF2 is universal in mitochondria (mIF2). We analyse the distribution of mitochondrial translation initiation factors and their sequence features, given two well-propagated claims: first, a sequence insertion in mitochondrial IF2 (mIF2) compensates for the universal lack of IF1 in mitochondria, and secondly, no homologue of mitochondrial IF3 (mIF3) is identifiable in Saccharomyces cerevisiae. Our comparative sequence analysis shows that, in fact, the mIF2 insertion is highly variable and restricted in length and primary sequence conservation to vertebrates, while phylogenetic and in vivo complementation analyses reveal that an uncharacterized S. cerevisiae mitochondrial protein currently named Aim23p is a bona fide evolutionary and functional orthologue of mIF3. Our results highlight the lineage-specific nature of mitochondrial translation and emphasise that comparative analyses among diverse taxa are essential for understanding whether generalizations from model organisms can be made across eukaryotes.

  3. Nucleotide and aminoacyl-tRNA specificity of the mammalian mitochondrial elongation factor EF-Tu.Ts complex.

    Science.gov (United States)

    Woriax, V L; Spremulli, G H; Spremulli, L L

    1996-06-03

    The bovine mitochondrial elongation factor Tu.Ts complex (EF-Tu.Tsmt) promotes the binding of aminoacyl-tRNA to ribosomes. In the presence of GTP, this complex functions catalytically. Both dGTP and ddGTP can replace GTP although about 4-fold higher concentrations are required. ATP, CTP and UTP are not active. ITP can replace GTP when used at 10- to 20-fold higher concentrations. The catalytic use of EF-Tu.Tsmt is inhibited by GDP but not by GMP. XDP also inhibits although about 20-fold higher concentrations are required. EF-Tu.Tsmt will promote the binding of Phe-tRNA to either Escherichia coli or mitochondrial ribosomes. Unlike E. coli EF-Tu, EF-Tu.Tsmt will promote the binding of AcPhe-tRNA to ribosomes about 25% as efficiently as Phe-tRNA. EF-Tu.Tsmt is active in catalyzing the binding of E. coli Met-tRNAmmet to ribosomes. EF-Tu.Tsmt has about 30% as much activity with E. coli Met-tRNAimet but has essentially no activity with E. coli fMet-tRNAimet. Neither yeast Met-tRNAimet nor fMet-tRNAimet is recognized by bovine EF-Tu.Tsmt.

  4. Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos.

    Science.gov (United States)

    Takeo, Shun; Goto, Hiroya; Kuwayama, Takehito; Monji, Yasunori; Iwata, Hisataka

    2013-01-01

    Age-associated deterioration in both the quality and quantity of mitochondria occurs in older women. The main aim of this study was to examine the effect of age on mitochondrial DNA copy number (mtDNA number) in early developmental stage bovine embryos as well as the dynamics of mtDNA number during early embryo development. Real-time PCR was used to determine mtDNA number. In vitro-produced embryos 48 h after insemination derived from Japanese black cows, ranging in age from 25 to 209 months were categorized based on their cleavage status. There was an overall negative relationship between the age of the cow and cleavage status, to the extent that the ratio of embryos cleaved over the 4-cell stage was greater in younger cows. The mtDNA number did not differ among the cleaved status of embryos. In the next experiment, oocytes collected from each donor cow were divided into 2 groups containing 10 oocytes each, in order to compare the mtDNA number of mature oocytes and early developmental stage embryos within individuals. Upon comparing the mtDNA number between oocytes at the M2 stage and early developmental stage 48 h post insemination, mtDNA number was found to decrease in most cows, but was found to increase in some cows. In conclusion, age affects the cleaving ability of oocytes, and very old cows (> 180 months) tend to have lower mtDNA numbers in their oocytes. The change in mtDNA number during early development varied among individual cows, although overall, it showed a tendency to decrease.

  5. Epoxycyclohexenedione-type Compounds are a New Class of Inhibitors of the Bovine Mitochondrial ADP/ATP Carrier.

    Science.gov (United States)

    Aoyama, Ayaki; Murai, Masatoshi; Ichimaru, Naoya; Aburaya, Shunsuke; Aoki, Wataru; Miyoshi, Hideto

    2018-01-09

    Through the extensive screening of our chemical library, we found epoxycyclohexenedione (ECHD)-type compounds (AMM-59 and -120) as unique inhibitors of the bovine heart mitochondrial ADP/ATP carrier (AAC). The present study investigated the mechanism of the inhibition of AAC by ECHDs using submitochondrial particles (SMPs). Proteomic analyses of ECHD-bound AAC as well as biochemical characterization using different SH-reagents showed that ECHDs inhibit the function of AAC by covalently binding primarily to Cys57 and secondarily to Cys160. Interestingly, AAC remarkably aggregated in SMPs when incubated with high concentrations of ECHDs for a long period of time. This aggregation was observed under both oxidative and reductive conditions of the SDS-PAGE analysis of SMP proteins, indicating that aggregation is not caused by intermolecular S-S linkages. ECHDs are the first chemicals, to the best of our knowledge, to induce prominent structural alteration of AAC without forming intermolecular S-S linkages. When all solvent accessible cysteines (Cys57, Cys160, and Cys257) were previously modified by N-ethylmaleimide, the aggregation of AAC was completely suppressed. In contrast, when Cys57 or Cys160 is selectively modified by a SH-reagent, the covalent binding of ECHDs to a residual free residue of the two cysteines is sufficient to induce aggregation. The aggregation-inducing ability of another ECHD analogue (AMM-124), which has a shorter alkyl chain than AMM-59 and -120, was significantly less efficient than that of the two compounds. Based on these results, the mechanism underlying the aggregation of AAC induced by ECHDs was discussed.

  6. Herd-Level Risk Factors for Bovine Tuberculosis: A Literature Review

    Directory of Open Access Journals (Sweden)

    Robin A. Skuce

    2012-01-01

    Full Text Available Bovine tuberculosis (TB, caused by Mycobacterium bovis, is one of the most challenging endemic diseases currently facing government, the veterinary profession, and the farming industry in the United Kingdom and Ireland and in several other countries. The disease has a notoriously complex epidemiology; the scientific evidence supports both cattle-cattle and wildlife-cattle transmission routes. To produce more effective ways of reducing such transmission, it is important to understand those risk factors which influence the presence or absence of bovine TB in cattle herds. Here we review the literature on herd-level risk factor studies. Whilst risk factors operate at different scales and may vary across regions, epidemiological studies have identified a number of risk factors associated with bovine TB herd breakdowns, including the purchase of cattle, the occurrence of bovine TB in contiguous herds, and/or the surrounding area as well as herd size. Other factors identified in some studies include farm and herd management practices, such as, the spreading of slurry, the use of certain housing types, farms having multiple premises, and the use of silage clamps. In general, the most consistently identified risk factors are biologically plausible and consistent with known transmission routes involving cattle-cattle and wildlife-cattle pathways.

  7. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt

    Science.gov (United States)

    Nargund, Amrita M.; Fiorese, Christopher J.; Pellegrino, Mark W.; Deng, Pan; Haynes, Cole M.

    2015-01-01

    Summary Mitochondrial diseases and aging are associated with defects in the oxidative phosphorylation machinery (OXPHOS), which are the only complexes composed of proteins encoded by separate genomes. To better understand genome coordination and OXPHOS recovery during mitochondrial dysfunction, we examined ATFS-1, a transcription factor that regulates mitochondria-to-nuclear communication during the mitochondrial UPR, via ChIP-sequencing. Surprisingly, in addition to regulating mitochondrial chaperone, OXPHOS complex assembly factor, and glycolysis genes, ATFS-1 bound directly to OXPHOS gene promoters in both the nuclear and mitochondrial genomes. Interestingly, atfs-1 was required to limit the accumulation of OXPHOS transcripts during mitochondrial stress, which required accumulation of ATFS-1 in the nucleus and mitochondria. Because balanced ATFS-1 accumulation promoted OXPHOS complex assembly and function, our data suggest that ATFS-1 stimulates respiratory recovery by fine-tuning OXPHOS expression to match the capacity of the suboptimal protein-folding environment in stressed mitochondria, while simultaneously increasing proteostasis capacity. PMID:25773600

  8. Bovine tuberculosis and its risk factors among dairy cattle herds in ...

    African Journals Online (AJOL)

    A cross-sectional study focusing on the prevalence and assessment of the associated risk factors of bovine tuberculosis (BTB) among dairy cattle herds was conducted from 2012 to 2014 in Bahir Dar City and the surrounding districts. Comparative intradermal tuberculin test (CIDT) and interviewer administer questionnaire ...

  9. Bovine mastitis and its associated risk factors in lactating cows in ...

    African Journals Online (AJOL)

    A cross-sectional study of bovine mastitis was conducted on 275 lactating cows from November 2007 to April 2008 to estimate the prevalence of mastitis and to determine the pathogens causing mastitis with the associated risk factors. Diagnosis was based on clinical examination of the udder and milk and the use of White ...

  10. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway.

    Directory of Open Access Journals (Sweden)

    Angela C Poole

    2010-04-01

    Full Text Available Loss-of-function mutations in the PINK1 or parkin genes result in recessive heritable forms of parkinsonism. Genetic studies of Drosophila orthologs of PINK1 and parkin indicate that PINK1, a mitochondrially targeted serine/threonine kinase, acts upstream of Parkin, a cytosolic ubiquitin-protein ligase, to promote mitochondrial fragmentation, although the molecular mechanisms by which the PINK1/Parkin pathway promotes mitochondrial fragmentation are unknown. We tested the hypothesis that PINK1 and Parkin promote mitochondrial fragmentation by targeting core components of the mitochondrial morphogenesis machinery for ubiquitination. We report that the steady-state abundance of the mitochondrial fusion-promoting factor Mitofusin (dMfn is inversely correlated with the activity of PINK1 and Parkin in Drosophila. We further report that dMfn is ubiquitinated in a PINK1- and Parkin-dependent fashion and that dMfn co-immunoprecipitates with Parkin. By contrast, perturbations of PINK1 or Parkin did not influence the steady-state abundance of the mitochondrial fission-promoting factor Drp1 or the mitochondrial fusion-promoting factor Opa1, or the subcellular distribution of Drp1. Our findings suggest that dMfn is a direct substrate of the PINK1/Parkin pathway and that the mitochondrial morphological alterations and tissue degeneration phenotypes that derive from mutations in PINK1 and parkin result at least in part from reduced ubiquitin-mediated turnover of dMfn.

  11. Influence of selected factors on bovine spermatozoa cold shock resistance

    Directory of Open Access Journals (Sweden)

    Luděk Stádník

    2015-01-01

    Full Text Available The objectives of this study were to determine the effects of sire, extender, and addition of Low Density Lipoprotein (LDL to extenders used on the percentage rate of spermatozoa survival after cold shock. Two groups of extenders were compared: without LDL addition (control variants and LDL enriched (experimental variants. Three extenders were used: AndroMed®, Bioxcell®, and Triladyl®. Experimental variants included 4–8% LDL addition into the AndroMed® and Bioxcell® extenders, and 6–10% LDL addition into the Triladyl® extender. In total, 12 samples of fresh semen were collected from 4 bulls during a period of 8 weeks. Bovine spermatozoa cold shock resistance (1 ± 1 °C, 10 min was evaluated by the percentage rate of live sperm using eosin-nigrosine staining immediately and after heat incubation (37 ± 1 °C, 120 min. The results showed the effect of sire as important and individual differences between selected sires in their sperm resistance against cold shock were confirmed. AndroMed® and Bioxcell® were found to be providing better protection of bull semen to cold shock compared to Triladyl® due to lower decline of live sperm proportion. Our results detected a positive effect of LDL addition on sperm resistance against cold shock, especially on lower decrease of live sperm percentage rate after 120 min of the heat test (P < 0.05. Further studies are needed to assess the optimal concentration of LDL in various kinds of extenders as well to state ideal time and temperature conditions for ensuring LDL reaction with sperm.

  12. The emerging role of cardiovascular risk factor-induced mitochondrial dysfunction in atherogenesis

    Directory of Open Access Journals (Sweden)

    De Pascalis Susanna

    2009-12-01

    Full Text Available Abstract An important role in atherogenesis is played by oxidative stress, which may be induced by common risk factors. Mitochondria are both sources and targets of reactive oxygen species, and there is growing evidence that mitochondrial dysfunction may be a relevant intermediate mechanism by which cardiovascular risk factors lead to the formation of vascular lesions. Mitochondrial DNA is probably the most sensitive cellular target of reactive oxygen species. Damage to mitochondrial DNA correlates with the extent of atherosclerosis. Several cardiovascular risk factors are demonstrated causes of mitochondrial damage. Oxidized low density lipoprotein and hyperglycemia may induce the production of reactive oxygen species in mitochondria of macrophages and endothelial cells. Conversely, reactive oxygen species may favor the development of type 2 diabetes mellitus, mainly through the induction of insulin resistance. Similarly - in addition to being a cause of endothelial dysfunction, reactive oxygen species and subsequent mitochondrial dysfunction - hypertension may develop in the presence of mitochondrial DNA mutations. Finally, other risk factors, such as aging, hyperhomocysteinemia and cigarette smoking, are also associated with mitochondrial damage and an increased production of free radicals. So far clinical studies have been unable to demonstrate that antioxidants have any effect on human atherogenesis. Mitochondrial targeted antioxidants might provide more significant results.

  13. Risk factors for bovine tuberculosis (bTB) in cattle in Ethiopia

    OpenAIRE

    Dejene, Sintayehu W.; Heitkonig, Ignas; Herbert H. T. Prins; Fitsum A Lemma; Mekonnen, Daniel A.; Alemu, Zelalem E.; Kelkay, Tessema Z.; de Boer,

    2016-01-01

    Bovine tuberculosis (bTB) infection is generally correlated with individual cattle's age, sex, body condition, and with husbandry practices such as herd composition, cattle movement, herd size, production system and proximity to wildlife - including bTB maintenance hosts. We tested the correlation between those factors and the prevalence of bTB, which is endemic in Ethiopia's highland cattle, in the Afar Region and Awash National Park between November 2013 and April 2015. A total of 2550 catt...

  14. Prevalence and associated risk factors of bovine mastitis in local ...

    African Journals Online (AJOL)

    A cross sectional study was conducted on local and cross bred dairy cows in Jimma town and its surroundings to determine the prevalence of mastitis and potential risk factors. Simple random sampling of dairy herds, clinical examination of udder and milk and udder test card were used. Of the total dairy cows examined ...

  15. Short communication Prevalence and risk factors of bovine mastitis ...

    African Journals Online (AJOL)

    A cross-sectional study was conducted to estimate the prevalence and associated risk factors of mastitis in dairy cows from November, 2012 to July, 2013 in Ambo town of West Shewa Zone, Oromia Regional State. Thorough clinical examination was made on all lactating cows for evidence of signs of clinical mastitis ...

  16. Characterization of transforming growth factor beta superfamily, growth factors, transcriptional factors, and lipopolysaccharide in bovine cystic ovarian follicles.

    Science.gov (United States)

    Polat, I M; Alçiğir, E; Pekcan, M; Vural, S A; Özenç, E; Canatan, H E; Küplülü, Ş; Dal, G E; Yazlik, M O; Baklaci, C; Vural, M R

    2015-10-01

    The process of transformation of growing bovine follicles into cysts is still a mystery. Local expression of proteins or factors, including transforming growth factor β, growth factors, and transcription factors, plays a central role in mammals. Therefore, in abattoir-derived cystic ovarian follicles and follicular fluid, the role of some transforming growth factor β superfamily proteins, insulinlike growth factor-1 (IGF-1) and GATA-4 and GATA-6, were investigated. The relationship between intrafollicular lipopolysaccharide (LPS) and etiopathogenesis of ovarian cysts was also assessed. Data on the preovulatory follicle and the largest follicle (F1) were compared. The number of intrafollicular LPS-positive samples and LPS concentrations were higher in cysts. Immunohistochemical staining was mildly positive for IGF-1, inhibin alpha, and GATA-4 in thecal cells. Staining for anti-Müllerian hormone (AMH), growth differentiation factor-9, bone morphogenetic protein-6 (BMP-6), and GATA-6 was insufficient for their quantitation, and oocytes could not be stained for any of the proteins tested in the cystic follicles. Expression of BMP-6, inhibin alpha, and IGF-1 was moderately higher in granulosa cells of F1 follicles, and all the proteins were moderately expressed in granulosa cells in preovulatory follicles. However, loss of GATA-6 staining was significant in F1 follicles. Intrafollicular progesterone, IGF-1, and AMH concentrations in cysts and F1 follicles were significantly higher than those in preovulatory follicles. Western blot analyses revealed that follicular fluid inhibin-α was strongly expressed, whereas expression of growth differentiation factor-9, BMP-6, GATA-4 and GATA-6 was lower in cysts than in preovulatory follicles. Also, high intrafollicular AMH concentration and low BMP-6 expression were closely associated with cystic degeneration and atresia. In conclusion, immunohistochemical loss of BMP-6 and GATA-6 in the granulosa cells together with high

  17. Prevalence of Bovine Viral Diarrhoea Virus (BVDV), Bovine Herpes Virus 1 (BHV 1), Leptospirosis and Neosporosis, and associated risk factors in 161 Irish beef herds.

    Science.gov (United States)

    Barrett, Damien; Parr, Mervyn; Fagan, John; Johnson, Alan; Tratalos, Jamie; Lively, Francis; Diskin, Michael; Kenny, David

    2018-01-06

    There are limited data available, in Ireland or elsewhere, to determine the extent of exposure to various endemic diseases among beef cows and factors associated with exposure to causative pathogens. The objectives of this study were to determine the herd and within herd prevalence of Bovine Viral Diarrhoea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Leptospirosis and Neosporosis in a large scale study of commercial beef herds on the island of Ireland, and to examine herd level factors associated with exposure to these pathogens in these herds. The average number of cows tested per herd was 35.5 (median 30). Herd level seroprevalence to Bovine Herpesvirus-1(BHV-1), Bovine Viral-Diarrhoea Virus (BVDV), Leptospirosis and Neosporosis was 90%, 100%, 91% and 67%, respectively, while the mean within herd prevalence for the these pathogens was 40%, 77.7%, 65.7% and 5.7%, respectively. The study confirms that the level of seroconversion for the four pathogens of interest increases with herd size. There was also evidence that exposure to one pathogen may increase the risk of exposure to another pathogen. Herd level seroprevalences were in excess of 90% for BVDV, BHV-1 and Leptosporosis. Larger herds were subject to increased exposure to disease pathogens. This study suggests that exposure to several pathogens may be associated with the further exposure to other pathogens.

  18. A case-control study of risk factors for bovine brucellosis seropositivity in Peninsular Malaysia.

    Science.gov (United States)

    Anka, Mukhtar Salihu; Hassan, Latiffah; Khairani-Bejo, Siti; Zainal, Mohamed Abidin; Mohamad, Ramlan Bin; Salleh, Annas; Adzhar, Azri

    2014-01-01

    Bovine brucellosis was first reported in Peninsular Malaysia in 1950. A subsequent survey conducted in the country revealed that the disease was widespread. Current knowledge on the potential risk factors for brucellosis occurrence on cattle farms in Malaysia is lacking. Therefore, we conducted a case-control study to identify the potential herd-level risk factors for bovine brucellosis occurrence in four states in the country, namely Kelantan, Pahang, Selangor and Negeri Sembilan. Thirty-five cases and 36 controls of herds were selected where data on farm management, biosecurity, medical history and public health were collected. Multivariable logistic regression identified that Brucella seropositive herds were more likely to; have some interaction with wildlife (OR 8.9, 95% CI = 1.59-50.05); originated from farms where multiple species such as buffalo/others (OR 41.8, 95% CI = 3.94-443.19) and goat/sheep (OR 8.9, 95%Cl = 1.10-71.83) were reared, practice extensive production system (OR 13.6, 95% CI 1.31-140.24) and have had episodes of abortion in the past (OR 51.8, 95% CI = 4.54-590.90) when compared to seronegative herds. Considering the lack of information on the epidemiology of bovine brucellosis in peninsular Malaysia and absence of information on preventing the inception or spread of the disease, this report could contribute to the on-going area-wise national brucellosis eradication program.

  19. Early Exercise Affects Mitochondrial Transcription Factors Expression after Cerebral Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    Yongshan Hu

    2012-02-01

    Full Text Available Increasing evidence shows that exercise training is neuroprotective after stroke, but the underlying mechanisms are unknown. To clarify this critical issue, the current study investigated the effects of early treadmill exercise on the expression of mitochondrial biogenesis factors. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Expression of two genes critical for transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1 and nuclear respiratory factor-1 (NRF-1, were examined by RT-PCR after five days of exercise starting at 24 h after ischemia. Mitochondrial protein cytochrome C oxidase subunit IV (COX IV was detected by Western blot. Neurological status and cerebral infarct volume were evaluated as indices of brain damage. Treadmill training increased levels of PGC-1 and NRF-1 mRNA, indicating that exercise promotes rehabilitation after ischemia via regulation of mitochondrial biogenesis.

  20. Seroprevalence and risk factors associated with bovine brucellosis in the Potohar Plateau, Pakistan.

    Science.gov (United States)

    Ali, Shahzad; Akhter, Shamim; Neubauer, Heinrich; Melzer, Falk; Khan, Iahtasham; Abatih, Emmanuel Nji; El-Adawy, Hosny; Irfan, Muhammad; Muhammad, Ali; Akbar, Muhammad Waqas; Umar, Sajid; Ali, Qurban; Iqbal, Muhammad Naeem; Mahmood, Abid; Ahmed, Haroon

    2017-01-28

    The seroprevalence and risk factors of bovine brucellosis were studied at animal and herd level using a combination of culture, serological and molecular methods. The study was conducted in 253 randomly selected cattle herds of the Potohar plateau, Pakistan from which a total of 2709 serum (1462 cattle and 1247 buffaloes) and 2330 milk (1168 cattle and 1162 buffaloes) samples were collected. Data on risk factors associated with seroprevalence of brucellosis were collected through interviews using questionnaires. Univariable and multivariable random effects logistic regression models were used for identifying important risk factors at animal and herd levels. One hundred and seventy (6.3%) samples and 47 (18.6%) herds were seropositive for brucellosis by Rose Bengal Plate test. Variations in seroprevalence were observed across the different sampling sites. At animal level, sex, species and stock replacement were found to be potential risk factors for brucellosis. At herd level, herd size (≥9 animals) and insemination method used were important risk factors. The presence of Brucella DNA was confirmed with a real-time polymerase chain reaction assay (qRT-PCR) in 52.4% out of 170 serological positive samples. In total, 156 (6.7%) milk samples were positive by milk ring test. B. abortus biovar 1 was cultured from 5 positive milk samples. This study shows that the seroprevalence of bovine brucellosis is high in some regions in Pakistan. Prevalence was associated with herd size, abortion history, insemination methods used, age, sex and stock replacement methods. The infected animal may act as source of infection for other animals and for humans. The development of control strategies for bovine brucellosis through implementation of continuous surveillance and education programs in Pakistan is warranted.

  1. Leucemia inhibitory factor; investigating the time-dependent effect on viability of vitrified bovine embryos.

    Science.gov (United States)

    Kocyigit, A; Cevik, M

    2017-12-01

    Leucemia inhibitory factor (LIF) is involved in various reproductive processes, including sperm development, regulation of ovulation, as well as blastocyst formation, hatching and implantation in embryos. Moreover, LIF has also been shown significantly to enhance the blastocyst formation rates of bovine embryos, a finding that remains controversial. Our purpose was to investigate time-dependent effect of LIF on bovine embryo culture, especially in terms of addition timing. Presumptive zygotes were cultured in five different groups. In this study, 100 ng/ml LIF was added to the culture medium were as follows; control: SOF alone, group A: at day 0 (fertilization day), group B: at day 4 post-insemination (p.i.), group C: at day 4 to 7 (p.i. before vitrification) and group D: at day 8 (p.i. after thawing). Addition of LIF to the culture medium at day 4 significantly increased the percentage of blastocyst rate when compared day 0, day 4 at 6/7 and control group (41.8% versus 24.3%, 19.7%, 34.6%). In conclusion, the addition of LIF only on day 4 (p.i.) to the culture medium was found to be beneficial for bovine embryonic development based on several measures, including blastocysts rate, re-expansion rate and cellular cryotolerance after vitrification. © 2017 Blackwell Verlag GmbH.

  2. Accelerated dentinogenesis by inhibiting the mitochondrial fission factor, dynamin related protein 1.

    Science.gov (United States)

    Matsuishi, Yumiko I; Kato, Hiroki; Masuda, Keiji; Yamaza, Haruyoshi; Hirofuji, Yuta; Sato, Hiroshi; Wada, Hiroko; Kiyoshima, Tamotsu; Nonaka, Kazuaki

    2018-01-08

    Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Bovine Lhx8, a Germ Cell-Specific Nuclear Factor, Interacts with Figla.

    Directory of Open Access Journals (Sweden)

    Liyuan Fu

    Full Text Available LIM homeobox 8 (Lhx8 is a germ cell-specific transcription factor essential for the development of oocytes during early oogenesis. In mice, Lhx8 deficiency causes postnatal oocyte loss and affects the expression of many oocyte-specific genes. The aims of this study were to characterize the bovine Lhx8 gene, determine its mRNA expression during oocyte development and early embryogenesis, and evaluate its interactions with other oocyte-specific transcription factors. The bovine Lhx8 gene encodes a protein of 377 amino acids. A splice variant of Lhx8 (Lhx8_v1 was also identified. The predicted bovine Lhx8 protein contains two LIM domains and one homeobox domain. However, one of the LIM domains in Lhx8_v1 is incomplete due to deletion of 83 amino acids near the N terminus. Both Lhx8 and Lhx8_v1 transcripts were only detected in the gonads but none of the somatic tissues examined. The expression of Lhx8 and Lhx8_v1 appears to be restricted to oocytes as none of the transcripts was detectable in granulosa or theca cells. The maternal Lhx8 transcript is abundant in GV and MII stage oocytes as well as in early embryos but disappear by morula stage. A nuclear localization signal that is required for the import of Lhx8 into nucleus was identified, and Lhx8 is predominantly localized in the nucleus when ectopically expressed in mammalian cells. Finally, a novel interaction between Lhx8 and Figla, another transcription factor essential for oogenesis, was detected. The results provide new information for studying the mechanisms of action for Lhx8 in oocyte development and early embryogenesis.

  4. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Yamauchi, Akane, E-mail: ainoyama@research.twmu.ac.jp [Department of Pathology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Oda, Hideaki [Department of Pathology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer DRP1 is required for mitochondrial fission in colon cancer cells. Black-Right-Pointing-Pointer DRP1 participates in inhibition of colon cancer cell apoptosis. Black-Right-Pointing-Pointer DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116 and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.

  5. Risk Factors for Bovine Tuberculosis (bTB) in Cattle in Ethiopia

    OpenAIRE

    Dejene, Sintayehu W.; Heitk?nig, Ignas M. A.; Herbert H. T. Prins; Fitsum A Lemma; Mekonnen, Daniel A.; Alemu, Zelalem E.; Kelkay, Tessema Z.; Willem F. de Boer

    2016-01-01

    Bovine tuberculosis (bTB) infection is generally correlated with individual cattle?s age, sex, body condition, and with husbandry practices such as herd composition, cattle movement, herd size, production system and proximity to wildlife?including bTB maintenance hosts. We tested the correlation between those factors and the prevalence of bTB, which is endemic in Ethiopia?s highland cattle, in the Afar Region and Awash National Park between November 2013 and April 2015. A total of 2550 cattle...

  6. A case-control study of risk factors for bovine brucellosis seropositivity in Peninsular Malaysia.

    Directory of Open Access Journals (Sweden)

    Mukhtar Salihu Anka

    Full Text Available Bovine brucellosis was first reported in Peninsular Malaysia in 1950. A subsequent survey conducted in the country revealed that the disease was widespread. Current knowledge on the potential risk factors for brucellosis occurrence on cattle farms in Malaysia is lacking. Therefore, we conducted a case-control study to identify the potential herd-level risk factors for bovine brucellosis occurrence in four states in the country, namely Kelantan, Pahang, Selangor and Negeri Sembilan. Thirty-five cases and 36 controls of herds were selected where data on farm management, biosecurity, medical history and public health were collected. Multivariable logistic regression identified that Brucella seropositive herds were more likely to; have some interaction with wildlife (OR 8.9, 95% CI = 1.59-50.05; originated from farms where multiple species such as buffalo/others (OR 41.8, 95% CI = 3.94-443.19 and goat/sheep (OR 8.9, 95%Cl = 1.10-71.83 were reared, practice extensive production system (OR 13.6, 95% CI 1.31-140.24 and have had episodes of abortion in the past (OR 51.8, 95% CI = 4.54-590.90 when compared to seronegative herds. Considering the lack of information on the epidemiology of bovine brucellosis in peninsular Malaysia and absence of information on preventing the inception or spread of the disease, this report could contribute to the on-going area-wise national brucellosis eradication program.

  7. A Case-Control Study of Risk Factors for Bovine Brucellosis Seropositivity in Peninsular Malaysia

    Science.gov (United States)

    Anka, Mukhtar Salihu; Hassan, Latiffah; Khairani-Bejo, Siti; Zainal, Mohamed Abidin; Mohamad, Ramlan bin; Salleh, Annas; Adzhar, Azri

    2014-01-01

    Bovine brucellosis was first reported in Peninsular Malaysia in 1950. A subsequent survey conducted in the country revealed that the disease was widespread. Current knowledge on the potential risk factors for brucellosis occurrence on cattle farms in Malaysia is lacking. Therefore, we conducted a case-control study to identify the potential herd-level risk factors for bovine brucellosis occurrence in four states in the country, namely Kelantan, Pahang, Selangor and Negeri Sembilan. Thirty-five cases and 36 controls of herds were selected where data on farm management, biosecurity, medical history and public health were collected. Multivariable logistic regression identified that Brucella seropositive herds were more likely to; have some interaction with wildlife (OR 8.9, 95% CI = 1.59–50.05); originated from farms where multiple species such as buffalo/others (OR 41.8, 95% CI = 3.94–443.19) and goat/sheep (OR 8.9, 95%Cl = 1.10–71.83) were reared, practice extensive production system (OR 13.6, 95% CI 1.31–140.24) and have had episodes of abortion in the past (OR 51.8, 95% CI = 4.54–590.90) when compared to seronegative herds. Considering the lack of information on the epidemiology of bovine brucellosis in peninsular Malaysia and absence of information on preventing the inception or spread of the disease, this report could contribute to the on-going area-wise national brucellosis eradication program. PMID:25265020

  8. Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors.

    Science.gov (United States)

    Maruotti, Julien; Muñoz, Marta; Degrelle, Severine A; Gómez, Enrique; Louet, Claire; Díez, Carmen; Monforte, Carmen Díez; de Longchamp, Priscille Huot; Brochard, Vincent; Hue, Isabelle; Caamaño, José Nestor; Jouneau, Alice

    2012-07-01

    Pluripotency can be captured in vitro, providing that the culture environment meets the requirements that avoid differentiation while stimulating self-renewal. From studies in the mouse embryo, two kinds of pluripotent stem cells have been obtained from the early and late epiblast, embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs), representing the naive and primed states, respectively. All attempts to derive convincing ESCs in ungulates have been unsuccessful, although all attempts were based on the assumption that the conditions used to derive mouse ESCs or human ESC could be applied in other species. Pluripotent cells derived in primates, rabbit, and pig strongly indicate that the state of pluripotency of these cells is, in fact, closer to EpiSCs than to ESCs, and thus depend on fibroblast growth factor (FGF) and Activin signaling pathways. Based on this observation, we have tried to derive EpiSC from the epiblast of bovine elongated embryos as well as ESCs from Day-8 blastocysts. We here show that the core transcription factors Oct4/Sox2/Nanog can be used as markers of pluripotency in the bovine since their expression was restricted to the developing epiblast after Day 8, and disappeared following differentiation of both the ESC-like and EpiSC-like cultures. Although FGF and Activin pathways are indeed present and active in the bovine, it is not sufficient/enough to maintain a long-term pluripotency ex vivo, as was reported for mouse and pig EpiSCs. Copyright © 2012 Wiley Periodicals, Inc.

  9. Organelle RNA recognition motif-containing (ORRM) proteins are plastid and mitochondrial editing factors in Arabidopsis.

    Science.gov (United States)

    Shi, Xiaowen; Bentolila, Stephane; Hanson, Maureen R

    2016-05-03

    Post-transcriptional C-to-U RNA editing occurs at specific sites in plastid and plant mitochondrial transcripts. Members of the Arabidopsis pentatricopeptide repeat (PPR) motif-containing protein family and RNA-editing factor Interacting Protein (RIP, also known as MORF) family have been characterized as essential components of the RNA editing apparatus. Recent studies reveal that several organelle-targeted RNA recognition motif (RRM)-containing proteins are involved in either plastid or mitochondrial RNA editing. ORRM1 (Organelle RRM protein 1) is essential for plastid editing, whereas ORRM2, ORRM3 and ORRM4 are involved in mitochondrial RNA editing. The RRM domain of ORRM1, ORRM3 and ORRM4 is required for editing activity, whereas the auxiliary RIP and Glycine-Rich (GR) domains mediate the ORRM proteins' interactions with other editing factors. The identification of the ORRM proteins as RNA editing factors further expands our knowledge of the composition of the editosome.

  10. Specific Methylation of Asp160 (49 kDa subunit) Located inside the Quinone Binding Cavity of Bovine Mitochondrial Complex I.

    Science.gov (United States)

    Murai, Masatoshi; Inaoka, Hiroyuki; Masuya, Takahiro; Aburaya, Shunsuke; Aoki, Wataru; Miyoshi, Hideto

    2016-06-14

    Asp160 in the 49 kDa subunit of bovine mitochondrial complex I, which is located in the inner part of the quinone binding cavity, is considered to be an essential residue for energy conversion of the enzyme. To elucidate the catalytic function of this residue, we attempted to specifically methylate 49 kDa Asp160 [Asp(COO)-CH3] through a ligand-directed tosyl (LDT) chemistry technique with an acetogenin derivative (ALM) as a high-affinity ligand. We confirmed the specific methylation of 49 kDa Asp160 through liquid chromatography-tandem mass spectrometry analysis of the tryptic digests of the 49 kDa subunit. The binding affinity of a quinazoline-type inhibitor ([(125)I]AzQ) occupying the quinone binding cavity was not affected by methylation, indicating that this chemical modification does not induce significant structural changes inside the quinone binding cavity. The methylation of 49 kDa Asp160 did not lead to the complete loss of catalytic activity; the modified enzyme retained partial electron transfer and proton translocation activities. These results along with the fact that 49 kDa Asp160 elicits a very strong nucleophilicity against various LDT reagents in the local protein environment strongly suggest that this residue is free from strict interactions (such as electrostatic interaction) arising from nearby residue(s) and is functionally important but not essential for the energy conversion of complex I.

  11. Growth inhibitory factors in bovine faeces impairs detection of Salmonella Dublin by conventional culture procedure

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Nielsen, L.R.; Sørensen, Gitte

    2007-01-01

    Aims: To analyse the relative importance of different biological and technical factors on the analytical sensitivity of conventional culture methods for detection of Salmonella Dublin in cattle faeces. Methods and Results: Faeces samples collected from six adult bovines from different salmonella...... novobiocin, followed by combinations of culture media (three types) and selective media (two types). The sensitivity of each combination and sources of variation in detection were determined by a generalized linear mixed model using a split-plot design. Conclusions: Biological factors, such as faecal origin...... and S. Dublin strain influenced the sensitivity more than technical factors. Overall, the modified semisolid Rappaport Vassiliadis (MSRV)-culture medium had the most reliable detection capability, whereas detection with selenite cystine broth and Mueller Kauffman tetrathionate broth combinations varied...

  12. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding

    Science.gov (United States)

    Velazquez, Gilberto; Sousa, Rui; Brieba, Luis G

    2015-01-01

    Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1. PMID:25654332

  13. Interaction of human mitochondrial transcription factor A in mitochondria: its involvement in the dynamics of mitochondrial DNA nucleoids.

    Science.gov (United States)

    Kasashima, Katsumi; Endo, Hitoshi

    2015-12-01

    Mitochondrial transcription factor A (TFAM) is a key regulator of mitochondrial DNA (mtDNA). TFAM interacts with itself and forms dimers; however, the precise interaction domain in vivo has not yet been determined. We herein showed that human TFAM formed oligomers in mitochondria by in situ chemical cross-linking. We used the separated fluorescent protein, monomeric Kusabira-Green, as a reporter to monitor their self-association in mitochondria. This reporter successfully detected the TFAM-TFAM interaction in cells as fluorescent signals on mitochondria. We also found that the N-terminal high-mobility group box domain was sufficient for this interaction. The expression of the dimer-defective mutant induced enlarged mtDNA nucleoids, suggesting the importance of dimerization in the distribution of mtDNA. The reporter system also supported the association and mixture between independent nucleoids through TFAM by a cell fusion assay using hemagglutinating virus of Japan. We here, for the first time, visualized the interaction of TFAM molecules in mitochondria and proposed its implications for the dynamics of mtDNA nucleoids. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  14. MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics

    Directory of Open Access Journals (Sweden)

    Dhanendra Tomar

    2016-05-01

    Full Text Available Mitochondrial Ca2+ Uniporter (MCU-dependent mitochondrial Ca2+ uptake is the primary mechanism for increasing matrix Ca2+ in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1 have severely impaired [Ca2+]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca2+-dependent mitochondrial metabolism.

  15. PreImplantation Factor (PIF correlates with early mammalian embryo development-bovine and murine models

    Directory of Open Access Journals (Sweden)

    Coulam Carolyn B

    2011-05-01

    Full Text Available Abstract Background PreImplantation Factor (PIF, a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01. In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control (P = 0.01 and at day 7 were higher than day 3 (P = 0.03. In non-cleaving embryos culture medium was similar to medium alone (control. Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01 as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control. Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the

  16. Prevalence and herd-level risk factors of bovine tuberculosis in the State of Santa Catarina

    Directory of Open Access Journals (Sweden)

    Flávio Pereira Veloso

    2016-11-01

    Full Text Available With the aim of supporting the strategic planning of the National Program for Control and Eradication of Brucellosis and Tuberculosis, different Brazilian states have been conducting cross-sectional studies, coordinated by the Ministry of Agriculture, Livestock, and Supply and with scientific support from the University of São Paulo and the University of Brasilia. In Santa Catarina, the State Animal Health Agency (CIDASC conducted a study on bovine tuberculosis (TB prevalence and assessment of risk factors in 2012. The state was divided into five regions and, in each region, independent sampling was performed in two steps: (i cattle herds with reproductive activity were randomly selected; and (ii in each herd, a sample of females aged 24 months or older underwent the intradermal comparative tuberculin test. A questionnaire was used to collect data on production characteristics and management practices that could be associated with the tuberculosis infection. Herd prevalence of bovine TB was 0.50% (95% confidence interval [CI]: 0.074–0.93% while the prevalence of TB in adult females was 0.06% (95% CI: 0–0.12%. No significant difference in the prevalence of infected herds and of positive females was observed among the five regions. The logistic regression model revealed that herds with 19 or more females showed an odds ratio (OR of 7.68 (95% CI: 1.22–48.39 compared to smaller herds, while dairy herds presented an OR of 10.43 (95% CI: 2.00–54.25 relative to beef or dual-purpose herds. The results suggest that dairy herds, in which animals are kept in partial or total confinement, and larger herds, which tend to acquire animals more often, are at a higher risk of bovine TB. Given the low prevalence and the type of higher-risk properties, a bovine TB surveillance system should be targeted at the state’s dairy basins, particularly the western region that accounts for the major industries and more intensive dairy farms.

  17. Sero-epidemiological survey and risk factors associated with bovine brucellosis among slaughtered cattle in Nigeria

    Directory of Open Access Journals (Sweden)

    Victor O. Akinseye

    2016-03-01

    Full Text Available Bovine brucellosis is endemic in Nigeria; however, limited data exist on nationwide studies and risk factors associated with the disease. Using a cross-sectional sero-epidemiological survey, we determined the prevalence of and risk factors for brucellosis in slaughtered cattle in three geographical regions of Nigeria. Serum samples from randomly selected unvaccinated cattle slaughtered over a period of 3 years (between December 2010 and September 2013 from northern, southern and south-western Nigeria were tested for antibodies to Brucella abortus using the Rose Bengal test. Data associated with risk factors of brucellosis were analysed by Stata Version 12. In all, 8105 cattle were screened. An overall seroprevalence of 3.9% (315/8105 was recorded by the Rose Bengal test, with 3.8%, 3.4% and 4.0% from the northern, southern and south-western regions, respectively. Bivariate analysis showed that cattle screened in northern Nigeria were less likely to be seropositive for antibodies to Brucella spp. than those from south-western Nigeria (odds ratio = 0.94; 95% confidence interval: 0.73–1.22. However, logistic regression analysis revealed that breed ( p = 0.04 and sex ( p £ 0.0001 of cattle were statistically significant for seropositivity to Brucella spp. The study found that brucellosis was endemic at a low prevalence among slaughtered cattle in Nigeria, with sex and breed of cattle being significant risk factors. Considering the public health implications of brucellosis, we advocate coordinated surveillance for the disease among diverse cattle populations in Nigeria, as is carried out in most developed countries.Keywords: Bovine brucellosis, RBT, Epidemiology, Public Health, Nigeria

  18. Kinetic activity, membrane mitochondrial potential, lipid peroxidation, intracellular pH and calcium of frozen/thawed bovine spermatozoa treated with metabolic enhancers.

    Science.gov (United States)

    Boni, R; Gallo, A; Cecchini, S

    2017-01-01

    Owing to the progressive decline of sperm motility during storage there is a need to find substances capable of enhancing sperm energy metabolism and motility and/or preserving it from oxidative damage. The aim of this study was to evaluate in frozen/thawed bovine spermatozoa the effect of several compounds, such as myo-inositol, pentoxifylline, penicillamine + hypotaurine + epinephrine mixture (PHE), caffeine and coenzyme Q10+ zinc + d-aspartate mixture (CZA), on either kinetic or metabolic parameters. Sperm kinetics was evaluated by Sperm Class Analyser whereas specific fluorochromes were used to evaluated mitochondrial membrane potential (MMP), intracellular pH, intracellular calcium concentration and lipid peroxidation. Lipid peroxidation was also evaluated by TBARS analysis. Treatments significantly affected total and progressive motility with different dynamics in relation to the incubation time. After the first hour of incubation, CZA treatment produced the best performance in total and progressive sperm motility as well as in curvilinear velocity, average path velocity and amplitude of head displacement, whereas pentoxifylline stimulated the highest straight-line velocity. MMP showed higher values (p lipid peroxidation were significantly (p < 0.05) affected by the incubation time rather than the treatments. Intracellular pH varied significantly (p < 0.01) in relation to either the incubation time or treatments. In particular, it showed a progressive increase throughout incubation with values in control group significantly higher than in myo-inositol, PHE, caffeine, pentoxifylline and CZA groups (7.37 ± 0.03 vs. 7.29 ± 0.03, 7.28 ± 0.03, 7.26 ± 0.03, 7.22 ± 0.03 and 7.00 ± 0.03, respectively; p < 0.01).; however, among treatments, CZA displayed the lowest values. Significant correlations were found between sperm kinetic and metabolic parameters. These findings provide new comparative information on the effects of putative metabolic

  19. Population-level effects of risk factors for bovine respiratory disease in Australian feedlot cattle.

    Science.gov (United States)

    Hay, K E; Morton, J M; Clements, A C A; Mahony, T J; Barnes, T S

    2017-05-01

    Results obtained from a nationwide longitudinal study were extended to estimate the population-level effects of selected risk factors on the incidence of bovine respiratory disease (BRD) during the first 50days at risk in medium-sized to large Australian feedlots. Population attributable fractions (PAF) and population attributable risks (PAR) were used to rank selected risk factors in order of importance from the perspective of the Australian feedlot industry within two mutually exclusive categories: 'intervention' risk factors had practical strategies that feedlot managers could implement to avoid exposure of cattle to adverse levels of the risk factor and a precise estimate of the population-level effect while 'others' did not. An alternative method was also used to quantify the expected effects of simultaneously preventing exposure to multiple management-related factors whilst not changing exposure to factors that were more difficult to modify. The most important 'intervention' risk factors were shared pen water (PAF: 0.70, 95% credible interval: 0.45-0.83), breed (PAF: 0.67, 95% credible interval: 0.54-0.77), the animal's prior lifetime history of mixing with cattle from other herds (PAF: 0.53, 95% credible interval: 0.30-0.69), timing of the animal's move to the vicinity of the feedlot (PAF: 0.45, 95% credible interval: 0.17-0.68), the presence of Bovine viral diarrhoea virus 1 (BVDV-1) in the animal's cohort (PAF: 0.30, 95% credible interval: 0.04-0.50), the number of study animals in the animal's group 13days before induction (PAF: 0.30, 95% credible interval: 0.10-0.44) and induction weight (PAF: 0.16, 95% credible interval: 0.09-0.23). Other important risk factors identified and prioritised for further research were feedlot region, season of induction and cohort formation patterns. An estimated 82% of BRD incidence was attributable to management-related risk factors, whereby the lowest risk category of a composite management-related variable comprised

  20. Characterization of specific receptors for atrial natriuretic factor in bovine adrenal zona glomerulosa.

    Science.gov (United States)

    De Léan, A; Gutkowska, J; McNicoll, N; Schiller, P W; Cantin, M; Genest, J

    1984-12-03

    We have recently shown that synthetic rat atrial natriuretic factor (ANF) directly inhibits mineralocorticoid and glucocorticoid secretion in cultured bovine adrenal cells with a potency of 100 pM. [125I]iodo-ANF was used in the present study to characterize potential receptor sites in bovine zona glomerulosa membranes. ANF binds to a class of high affinity binding sites with a pK of 10.2 and a density of 1.3 pmol/mg protein. Detailed competition curves with ANF document a class of high affinity sites with a pK of 10.2 and also a second class of lower affinity sites with a pK of 8.5. Nonspecific binding amounts to less than 10% of [125I]iodo-ANF binding at concentrations less than 100 pM. High affinity binding of [125I]iodo-ANF is reversible with a half-time of association of 15 minutes at 25 pM and a half-time of dissociation of 140 minutes. Monovalent cations Na, Li and K equipotently enhance [125I]iodo-ANF specific binding. Divalent cations Mg, Ca and Mn also increase [125I]iodo-ANF specific binding, with Mn being the most active cation. No effect of guanine nucleotide could be detected on ANF binding. The binding of [125I]iodo-ANF is very specific and is not inhibited by 1 microM angiotensin II, ACTH, VIP, somatostatin, Leu-enkephalin, dynorphin or by the N-terminal of POMC. The N-terminal fragment ANF-(1-16) is also completely inactive. Reduction of the disulfide bridge of ANF inactivates the peptide. This enabled the development of a highly specific radio-receptor assay for ANF with a minimum detectable dose of 2 femtomoles. The results document the specific receptor involved in the potent inhibitory effect of ANF on adrenal steroidogenesis and indicate that bovine adrenal zonal glomerulosa provide a highly sensitive system for studying the recently discovered atrial natriuretic factor.

  1. Seroprevalence and risk factors for bovine brucellosis in Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Luciana Faria de Oliveira

    2016-11-01

    Full Text Available This cross-sectional study was conducted in the state of Minas Gerais, Brazil in 2011 to estimate the seroprevalence of bovine brucellosis (Brucella abortus in properties and cattle, and to identify potential infection risk factors for herds with cows of reproductive age. The state was divided into seven regions: 1. Noroeste, Norte and Nordeste; 2. Leste; 3. Central; 4. Zona da Mata; 5. Sul and Sudoeste; 6. Alto Paranaíba; and 7. Triângulo Mineiro. Random, two-stage sampling was performed of both properties and cattle from each property. Blood samples were collected from 18,990 cows of reproductive age from 2,185 properties. The serologic tests used for the detection of anti-B. abortus antibodies included the buffered, acidified plate antigen test, as a screening test, with the 2-mercaptoethanol reduction, test as a confirmatory test, as recommended by the Programa Nacional de Controle e Erradicação da Brucelose e Tuberculose Animal - PNCEBT (National Program for the Control and Eradication of Animal Brucellosis and Tuberculosis. The seroprevalence of bovine brucellosis on the surveyed properties and in cattle were 3.59% (95% confidence interval [CI]: 2.76 4.42% and 0.81% (95% CI: 0.05-1.10%, respectively. Multiple logistic regression analysis identified the total number of cows in the property as a risk factor for the presence of anti-B. abortus antibodies, with an odds ratio (OR of 1.93 (95% CI: 1.12 - 3.34 for herds with 30 to 210 cows and 7.81 (95% CI: 3.72-16.38 for those with more than 210 cows, relative to the risk in herds with less than 30 cows, the base category. While these results demonstrate a significant reduction in the prevalence of properties with bovine brucellosis, the disease is still present in Minas Gerais, with properties with higher numbers of cows at higher risk for infection.

  2. Environmental risk factors associated with bovine tuberculosis among cattle in high-risk areas.

    Science.gov (United States)

    Winkler, B; Mathews, F

    2015-11-01

    Our research shows that environmental features are important predictors of bovine tuberculosis (bTB) in British cattle herds in high-prevalence regions. Data from 503 case and 808 control farms included in the randomized badger culling trial (RBCT) were analysed. bTB risk increased in larger herds and on farms with greater areas of maize, deciduous woodland and marsh, whereas a higher percentage of boundaries composed of hedgerows decreased the risk. The model was tested on another case-control study outside RBCT areas, and here it had a much smaller predictive power. This suggests that different infection dynamics operate outside high-risk areas, although it is possible that unknown confounding factors may also have played a role. © 2015 The Author(s).

  3. Prevalence and associated risk factors for bovine brucellosis in the State of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Erivânia Camelo de Almeida

    2016-11-01

    Full Text Available This study was conducted to characterize the epidemiology of bovine brucellosis in the state of Pernambuco, Brazil. The state was divided into three regions, and in each region, approximately 300 properties were randomly sampled. From these selected properties, a pre-established number of animals were randomly selected and blood serum samples were obtained. A total of 3,901 animals were selected from 900 properties. For each selected property, an epidemiological questionnaire was administered to assess the type of farming, the animal husbandry practices and the sanitary practices that could be associated with the presence of brucellosis infection. The testing protocol consisted of screening the samples with a buffered acidified plate antigen test and retesting the positive samples with a complement fixation test (CF. One positive animal was enough to define an infected herd. The prevalence rates of infected herds and animals in the state were 4.5% [3.2; 6.4%] and 1.4% [0.7; 2.7%], respectively. By region, the prevalence rates of infected herds and animals, respectively, were as follows: Zona da Mata, 3.3% [1.8; 6.1%] and 1.7% [0.5; 3.0%]; Agreste, 7.4% [4.9; 10.9%] and 1.9% [0.8; 3.0%]; and Sertão, 1.3% [0.5; 3.5%] and 0.7% [0.0; 1.6%]. Flooded pastures (OR = 2.86 [1.37; 6.42] and the presence of 13 or more females in the herd (3rd quartile (OR = 2.65 [1.19; 5.89] were identified as risk factors. The existence of veterinary care emerged as a protective factor against bovine brucellosis in the state of Pernambuco (OR = 0.24 [0.10; 0.58].

  4. Effects on productivity and risk factors of Bovine respiratory disease in dairy heifers : a review for the Netherlands

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Martin, S.W.; Nielen, M.; Huirne, R.B.M.

    2002-01-01

    This paper presents a literature review about the impact of Bovine Respiratory Disease (BRD) on the productivity of dairy heifers and about risk factors for the disease, as far as these are relevant to commercial dairy farming in the Netherlands. The review includes peerreviewed publications over

  5. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    Energy Technology Data Exchange (ETDEWEB)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C. [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Wolburg, Hartwig [Institute of Pathology, University of Tuebingen, 72076 Tuebingen (Germany); Ziviani, Elena; Whitworth, Alexander J. [Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN (United Kingdom); Martins, L. Miguel [Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester LE1 9HN (United Kingdom); Kahle, Philipp J., E-mail: philipp.kahle@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Krueger, Rejko, E-mail: rejko.krueger@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany)

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  6. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Factors influencing bovine intramuscular adipose tissue development and cellularity.

    Science.gov (United States)

    Albrecht, E; Schering, L; Liu, Y; Komolka, K; Kühn, C; Wimmers, K; Gotoh, T; Maak, S

    2017-05-01

    Appearance, distribution, and amount of intramuscular fat (IMF), often referred to as marbling, are highly variable and depend on environmental and genetic factors. On the molecular level, the concerted action of several drivers, including hormones, receptors, transcription factors, etc., determines where clusters of adipocytes arise. Therefore, the aim of future studies remains to identify such factors as biological markers of IMF to increase the ability to identify animals that deposit IMF early in age to increase efficiency of high-quality meat production. In an attempt to unravel the cellular development of marbling, we investigated the abundance of markers for adipogenic differentiation during fattening of cattle and the transcriptome of muscle and dissected IMF. Markers of different stages of adipogenic differentiation are well known from cell culture experiments. They are usually transiently expressed, such as delta-like homolog 1 (DLK1) that is abundant in preadipocytes and absent during differentiation to mature adipocytes. It is even a greater challenge to detect those markers in live animals. Within skeletal muscles, hyperplasia and hypertrophy of adipocytes can be observed throughout life. Therefore, development of marbling requires, on the cellular level, recruitment, proliferation, and differentiation of adipogenic cells to store excess energy in the form of lipids in new cells. In a recent study, we investigated the localization and abundance of early markers of adipogenic differentiation, such as DLK1, in bovine muscle tissue. An inverse relationship between IMF content and number of DLK1-positive cells in bovine muscle was demonstrated. Considering the cellular environment of differentiating adipocytes in muscle and the secretory action of adipocytes and myocytes, it becomes obvious that cross talk between cells via adipokines and myokines may be important for IMF development. Secreted proteins can act on other cells, inhibiting or stimulating

  7. Factors that affect the reproductive efficiency of the recipient within a bovine embryo transfer program

    Directory of Open Access Journals (Sweden)

    Arturo Duica A.

    2007-12-01

    Full Text Available The embryo transfer is a biotechnological technique that allows increasing the descendant of animals with high genetic value. The positive results, represented in pregnancy after the application of this technique, are affected by some factors that are inherent to the donor, the embryo, the technique, and the recipients which receive a strange embryo in the uterus allowing pregnancy. This review describes some factors affecting the reproductive efficiency of the recipients of bovine embryos within a program of embryo transfer. Its important to evaluate the parameters in this kind of recipients, as race, age, physiological status, health status, weight, reproductive tract integrity and management, and also too monitoring the ovarian structures while the estrus synchronization, and within previous and posterior stages in embryo transfer procedure. Therefore an optimum follicular development will be determinant to corpus luteum formation which generates enough serum progesterone concentrations to offer a right uterine environment allowing the optimum embryo development. Controlling the factors that affect the efficiency of the embryo transfer, it will obtain an increasing of positive results represented in pregnancies and births of individuals come from animals with high genetic value.

  8. Farm-level risk factors associated with bovine tuberculosis in the dairy sector in Eritrea.

    Science.gov (United States)

    Ghebremariam, M K; Michel, A L; Nielen, M; Vernooij, J C M; Rutten, V P M G

    2017-03-22

    The aim of our study was to determine the association of selected potential risk factors with the presence of bovine tuberculosis (BTB) in dairy herds in Eritrea. A case-control study was conducted in the three major milk-producing regions of the country by stratified random sampling of 61 case and 65 control herds combined with completion of a standardized pretested questionnaire pertaining 36 relevant risk factors (variables). The variables were divided into two clusters, based on potential association with either "introduction" or "establishment" of BTB on the farms to elucidate association with incident or prevalent cases separately. Subsequent to univariable analysis of the 36 risk factors at herd level, 14 of these were offered to multivariable logistic regression models. Farms with higher numbers of cows, and those with concrete floors, were 3.6, and 7.5 times more at risk for presence of BTB, respectively, compared with their references. These findings will be useful as entry points for future informed decision-making towards BTB control and eradication programme in the country. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  9. Bovine leptospirosis: Prevalence, associated risk factors for infection and their cause-effect relation.

    Science.gov (United States)

    Fávero, Juscivete F; de Araújo, Hugo L; Lilenbaum, Walter; Machado, Gustavo; Tonin, Alexandre A; Baldissera, Matheus D; Stefani, Lenita M; Da Silva, Aleksandro S

    2017-06-01

    Leptospirosis is a cosmopolitan infectious disease that causes severe reproductive disorders in cattle, especially those related to abortion. This disease has rodents as main reservoirs; however, cattle are responsible for maintenance of the disease. Thus, the aim of this study was to identify the factors associated with infection and cause-effect relation of leptospirosis in dairy herds from Southern of Brazil. Serum samples of 1242 cows were collected from herds classified as of medium and high density, and tested by microscopic agglutination test (MAT). These farms were located in the West part of Santa Catarina State (Brazil). A total of 80 cows (6.44%) were considered positives for the infection with titration of 1:100. Using a multivariate analysis, we identified two factors associated to bovine leptospirosis: dog access to pastures (p leptospirosis. Thus, we conclude that leptospirosis is prevalent in dairy cattle in the west part of Santa Catarina state, as well as the access of dogs to pastures and contact of rodents with feed increase the chance of cattle infection by Leptospira spp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Outer Mitochondrial Membrane Localization of Apoptosis-Inducing Factor: Mechanistic Implications for Release

    Directory of Open Access Journals (Sweden)

    Seong-Woon Yu

    2009-10-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  11. Identification and characterization of a mitochondrial unfolded protein response transcription factor ATFS-1 in Litopenaeus vannamei.

    Science.gov (United States)

    Chen, Yong-Gui; Yue, Hai-Tao; Zhang, Ze-Zhi; Yuan, Feng-Hua; Bi, Hai-Tao; Yuan, Kai; Weng, Shao-Ping; He, Jian-Guo; Chen, Yi-Hong

    2016-07-01

    A mitochondrial specific stress response termed mitochondrial unfolded protein response (UPR(mt)) is activated in responding to disturbance of protein homeostasis in mitochondria. The activating transcription factor associated with stress-1 (designated as ATFS-1) is the key regulator of UPR(mt). To investigating the roles of ATFS-1 (LvATFS-1) in Litopenaeus vannamei mitochondrial stress remission and immunity, it's full length cDNA was cloned. The open reading frame of LvATFS-1 was 1, 557 bp in length, deducing to a 268 amino acids protein. LvATFS-1 was highly expressed in muscle, hemocytes and eyestalk. Subcellular location assays showed that N-terminal of LvATFS-1 contained a mitochondrial targeting sequence, which could directed the fused EGFP located to mitochondria. And the C-terminal of LvATFS-1, which had a nuclear localization signal, expressed in nucleus. The in vitro experiments verified that LvATFS-1 could reduced the level of intracellular reactive oxygen species (ROS). And results of real-time RT-PCR indicated that LvATFS-1 might scavenge excess ROS via ROS-eliminating genes regulation. Reporter gene assays showed that LvATFS-1 could upregulated the expression of the antimicrobial peptide genes in Drosophila Schneider 2 cells. Results of real-time RT-PCR showed that Vibrio alginolyticus or white spot syndrome virus (WSSV) infection induced the expression of LvATFS-1. And knocked-down LvATFS-1 by RNAi resulted in a higher cumulative mortality of L. vannamei upon V. alginolyticus or WSSV infection. These results suggested that LvATFS-1 not only rolled in mitochondrial specific stress responding, but also important for L. vannamei immunologic defence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Risk factors for bovine Tuberculosis at the national level in Great Britain

    Directory of Open Access Journals (Sweden)

    Bessell Paul R

    2012-05-01

    Full Text Available Abstract Background The continuing expansion of high incidence areas of bovine Tuberculosis (bTB in Great Britain (GB raises a number of questions concerning the determinants of infection at the herd level that are driving spread of the disease. Here, we develop risk factor models to quantify the importance of herd sizes, cattle imports from Ireland, history of bTB, badgers and cattle restocking in determining bTB incidence. We compare the significance of these different risk factors in high and low incidence areas (as determined by parish testing intervals. Results Large herds and fattening herds are more likely to breakdown in all areas. In areas with lower perceived risk (longer testing intervals, the risk of breaking down is largely determined by the number of animals that a herd buys in from high incidence areas. In contrast, in higher perceived risk areas (shorter testing intervals, the risk of breakdown is defined by the history of disease and the probability of badger occurrence. Despite differences in the management of bTB across different countries of GB (England, Wales and Scotland, we found no significant differences in bTB risk at the national level after these other factors had been taken into account. Conclusions This paper demonstrates that different types of farm are at risk of breakdown and that the most important risk factors vary according to bTB incidence in an area. The results suggest that significant gains in bTB control could be made by targeting herds in low incidence areas that import the greatest number of cattle from high incidence areas.

  13. Insulin-like growth factor 1 synergizes with bone morphogenetic protein 7-mediated anabolism in bovine intervertebral disc cells.

    Science.gov (United States)

    Kim, Jae-Sung; Ellman, Michael B; An, Howard S; van Wijnen, Andre J; Borgia, Jeffrey A; Im, Hee-Jeong

    2010-12-01

    We undertook this study to assess the therapeutic benefits of intervertebral disc matrix repair and regeneration by evaluating the potential synergistic effect of insulin-like growth factor 1 (IGF-1) and bone morphogenetic protein 7 (BMP-7) on bovine spine discs and by elucidating the relevant molecular/cellular mechanisms. Bovine nucleus pulposus (NP) cells were treated with BMP-7 and IGF-1. The subsequent anabolic effects driven by NP cells were assessed for proteoglycan (PG) synthesis by (35) S-sulfate incorporation and for PG accumulation by dimethylmethylene blue assays. Matrix formation was visualized by particle exclusion assay. Key matrix components and transcription factors were analyzed by real-time reverse transcription-polymerase chain reaction to determine the signaling pathways by which IGF-1 suppresses noggin, a potent inhibitor of BMP-7. Western blotting and nuclear translocation experiments were performed to assess the activation of Smad proteins. Stimulation of bovine NP cells by both IGF-1 and BMP-7 greatly potentiated anabolism through complementary and synergistic mechanisms on matrix formation compared with treatment with either growth factor alone. The exogenously added decoy ligand, noggin, attenuated the anabolic effects of BMP-7, and noggin was substantially increased by BMP-7, suggesting a negative feedback regulatory mechanism. In contrast, IGF-1 significantly suppressed noggin expression via the phosphatidylinositol 3-kinase/Akt pathway and thus potentiated BMP-7 signaling in bovine NP cells. Upon combination treatment, IGF-1 activated Smad2, while BMP-7 activated Smad1/5/8 and Smad3, thus inducing all Smad signaling pathways and mimicking the effects of the combination of transforming growth factor β and BMP-7 Combination growth factor therapy using BMP-7 and IGF-1 may have considerable promise in the treatment of spine disc degeneration. Copyright © 2010 by the American College of Rheumatology.

  14. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim, E-mail: ykpak@khu.ac.kr

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  15. Individual factors associated with L- and H-type Bovine Spongiform Encephalopathy in France

    Directory of Open Access Journals (Sweden)

    Sala Carole

    2012-05-01

    Full Text Available Abstract Background Cattle with L-type (L-BSE and H-type (H-BSE atypical Bovine Spongiform encephalopathy (BSE were identified in 2003 in Italy and France respectively before being identified in other countries worldwide. As of December 2011, around 60 atypical BSE cases have currently been reported in 13 countries, with over one third in France. While the epidemiology of classical BSE (C-BSE has been widely described, atypical BSEs are still poorly documented, but appear to differ from C-BSE. We analysed the epidemiological characteristics of the 12 cases of L-BSE and 11 cases of H-BSE detected in France from January 2001 to late 2009 and looked for individual risk factors. As L-BSE cases did not appear to be homogeneously distributed throughout the country, two complementary methods were used: spatial analysis and regression modelling. L-BSE and H-BSE were studied separately as both the biochemical properties of their pathological prion protein and their features differ in animal models. Results The median age at detection for L-BSE and H-BSE cases was 12.4 (range 8.4-18.7 and 12.5 (8.3-18.2 years respectively, with no significant difference between the two distributions. However, this median age differed significantly from that of classical BSE (7.0 (range 3.5-15.4 years. A significant geographical cluster was detected for L-BSE. Among animals over eight years of age, we showed that the risk of being detected as a L-BSE case increased with age at death. This was not the case for H-BSE. Conclusion To the best of our knowledge this is the first study to describe the epidemiology of the two types of atypical BSE. The geographical cluster detected for L-BSE could be partly due to the age structure of the background-tested bovine population. Our regression analyses, which adjusted for the effect of age and birth cohort showed an age effect for L-BSE and the descriptive analysis showed a particular age structure in the area where the cluster was

  16. Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells.

    Science.gov (United States)

    Lyons, Amy; Coleman, Michael; Riis, Sarah; Favre, Cedric; O'Flanagan, Ciara H; Zhdanov, Alexander V; Papkovsky, Dmitri B; Hursting, Stephen D; O'Connor, Rosemary

    2017-10-13

    Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) and PGC-1α-related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Prevalence and herd-level risk factors for bovine tuberculosis in the State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Pessôa Silva

    2016-11-01

    Full Text Available Bovine tuberculosis is a zoonosis with worldwide distribution. Its control has a direct impact on public health and livestock production. This study estimated the prevalence of infected herds and adult bovines and evaluated risk factors associated with the presence of tuberculosis within herds in the state of Paraná. The state was divided in seven livestock regions and independent sampling was performed. A total of 1,419 farms were sampled and 16,045 animals were tested using the intradermal comparative cervical tuberculin diagnostic test. The apparent and estimated prevalence rates in farms and adult bovine animals were 2.15% (95% CI: 1.31-3.00 and 0.42% (95% CI: 0.04-0.81, respectively. It was not possible to state with 95% confidence that the disease prevalence in any region was significantly different from that in other regions. There were no positive animals in the western region, and the prevalence of positive herds and animals in the other regions ranged from 1.03% to 3.89% and 0.17% to 1.08%, respectively. The logistic regression model identified larger herd size (OR = 2.4 and mechanical cmilking (OR = 5.18 as risk factors associated with the presence of bovine tuberculosis. The combination of low prevalence with risk factors associated to larger herds and more intensive dairy farming, renders the state of Paraná a good candidate for the implementation of industry-based free-herd accreditation schemes and makes a case for planning risk-based surveillance targeted at major dairy basins.

  18. Risk Factors for Bovine Tuberculosis (bTB) in Cattle in Ethiopia.

    Science.gov (United States)

    Dejene, Sintayehu W; Heitkönig, Ignas M A; Prins, Herbert H T; Lemma, Fitsum A; Mekonnen, Daniel A; Alemu, Zelalem E; Kelkay, Tessema Z; de Boer, Willem F

    2016-01-01

    Bovine tuberculosis (bTB) infection is generally correlated with individual cattle's age, sex, body condition, and with husbandry practices such as herd composition, cattle movement, herd size, production system and proximity to wildlife-including bTB maintenance hosts. We tested the correlation between those factors and the prevalence of bTB, which is endemic in Ethiopia's highland cattle, in the Afar Region and Awash National Park between November 2013 and April 2015. A total of 2550 cattle from 102 herds were tested for bTB presence using the comparative intradermal tuberculin test (CITT). Data on herd structure, herd movement, management and production system, livestock transfer, and contact with wildlife were collected using semi-structured interviews with cattle herders and herd owners. The individual overall prevalence of cattle bTB was 5.5%, with a herd prevalence of 46%. Generalized Linear Mixed Models with a random herd-effect were used to analyse risk factors of cattle reactors within each herd. The older the age of the cattle and the lower the body condition the higher the chance of a positive bTB test result, but sex, lactation status and reproductive status were not correlated with bTB status. At herd level, General Linear Models showed that pastoral production systems with transhumant herds had a higher bTB prevalence than sedentary herds. A model averaging analysis identified herd size, contact with wildlife, and the interaction of herd size and contact with wildlife as significant risk factors for bTB prevalence in cattle. A subsequent Structural Equation Model showed that the probability of contact with wildlife was influenced by herd size, through herd movement. Larger herds moved more and grazed in larger areas, hence the probability of grazing in an area with wildlife and contact with either infected cattle or infected wildlife hosts increased, enhancing the chances for bTB infection. Therefore, future bTB control strategies in cattle in

  19. Risk Factors for Bovine Tuberculosis (bTB in Cattle in Ethiopia.

    Directory of Open Access Journals (Sweden)

    Sintayehu W Dejene

    Full Text Available Bovine tuberculosis (bTB infection is generally correlated with individual cattle's age, sex, body condition, and with husbandry practices such as herd composition, cattle movement, herd size, production system and proximity to wildlife-including bTB maintenance hosts. We tested the correlation between those factors and the prevalence of bTB, which is endemic in Ethiopia's highland cattle, in the Afar Region and Awash National Park between November 2013 and April 2015. A total of 2550 cattle from 102 herds were tested for bTB presence using the comparative intradermal tuberculin test (CITT. Data on herd structure, herd movement, management and production system, livestock transfer, and contact with wildlife were collected using semi-structured interviews with cattle herders and herd owners. The individual overall prevalence of cattle bTB was 5.5%, with a herd prevalence of 46%. Generalized Linear Mixed Models with a random herd-effect were used to analyse risk factors of cattle reactors within each herd. The older the age of the cattle and the lower the body condition the higher the chance of a positive bTB test result, but sex, lactation status and reproductive status were not correlated with bTB status. At herd level, General Linear Models showed that pastoral production systems with transhumant herds had a higher bTB prevalence than sedentary herds. A model averaging analysis identified herd size, contact with wildlife, and the interaction of herd size and contact with wildlife as significant risk factors for bTB prevalence in cattle. A subsequent Structural Equation Model showed that the probability of contact with wildlife was influenced by herd size, through herd movement. Larger herds moved more and grazed in larger areas, hence the probability of grazing in an area with wildlife and contact with either infected cattle or infected wildlife hosts increased, enhancing the chances for bTB infection. Therefore, future bTB control strategies

  20. Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer.

    Science.gov (United States)

    zur Hausen, Harald

    2012-06-01

    An increased risk for colorectal cancer has been consistently reported for long-time consumption of cooked and processed red meat. This has frequently been attributed to chemical carcinogens arising during the cooking process of meat. Long-time fish or poultry consumption apparently does not increase the risk, although similar or higher concentrations of chemical carcinogens were recorded in their preparation for consumption. The geographic epidemiology of colorectal cancer seems to correspond to regions with a high rate of beef consumption. Countries with a virtual absence of beef in the diet (India) or where preferably lamb or goat meat is consumed (several Arabic countries) reveal low rates of colorectal cancer. In China, pork consumption has a long tradition, with an intermediate colorectal cancer rate. In Japan and Korea, large scale beef and pork imports started after World War II or after the Korean War. A steep rise in colorectal cancer incidence was noted after 1970 in Japan and 1990 in Korea. The consumption of undercooked beef (e.g., shabu-shabu, Korean yukhoe and Japanese yukke) became very popular in both countries. The available data are compatible with the interpretation that a specific beef factor, suspected to be one or more thermoresistant potentially oncogenic bovine viruses (e.g., polyoma-, papilloma- or possibly single-stranded DNA viruses) may contaminate beef preparations and lead to latent infections in the colorectal tract. Preceding, concomitant or subsequent exposure to chemical carcinogens arising during cooking procedures should result in increased risk for colorectal cancer synergistic with these infections. Copyright © 2011 UICC.

  1. Effects of leukemia inhibitory factor and insulin-like growth factor-I on the cell allocation and cryotolerance of bovine blastocysts.

    Science.gov (United States)

    Kocyigit, Alper; Cevik, Mesut

    2015-08-01

    The present study examined the developmental capacity and cryotolerance of cultured bovine embryos in defined media (synthetic oviduct fluid, SOF) supplemented with insulin-like growth factor I (IGF-I) and leukemia inhibitor factor (LIF). The objectives of the present study were: (1) to examine the effects IGF-I and LIF on bovine embryo development potential and (2) to investigate the cryotolerance and survivability of vitrified blastocysts obtained from embryos cultured in a defined media. We studied the development of bovine embryos produced in vitro and cultured (in four different treatments) until Day 7 after fertilization. In Experiment 1, zygotes were cultured to the blastocyst stage and differentially stained for determine the count of cells. In Experiment 2, zygotes were vitrified before staining. LIF alone or combined with IGF-I was significantly effective on in vitro bovine embryo development especially ratio to reach blastocyst. The cells for both ICM and TE decreased by the effect of freezing in all treatment groups in the Experiment 2 compared with Experiment 1. Interestingly, the LIF treatment showed fewest variations. In addition to this, for average number of ICM and TE cells, LIF treatment showed fewest variation compared with other treatments (ICM: 23.5 vs 19.5, TE: 53.6 vs 51). These results are the first to demonstrate that the addition of IGF-I along with LIF to the culture medium was found to be beneficial for bovine embryonic development based on cellular cryotolerance after vitrification. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.

    Science.gov (United States)

    Thomas, Joanna L; Pham, Hai; Li, Ying; Hall, Elanore; Perkins, Guy A; Ali, Sameh S; Patel, Hemal H; Singh, Prabhleen

    2017-08-01

    The pathophysiology of chronic kidney disease (CKD) is driven by alterations in surviving nephrons to sustain renal function with ongoing nephron loss. Oxygen supply-demand mismatch, due to hemodynamic adaptations, with resultant hypoxia, plays an important role in the pathophysiology in early CKD. We sought to investigate the underlying mechanisms of this mismatch. We utilized the subtotal nephrectomy (STN) model of CKD to investigate the alterations in renal oxygenation linked to sodium (Na) transport and mitochondrial function in the surviving nephrons. Oxygen delivery was significantly reduced in STN kidneys because of lower renal blood flow. Fractional oxygen extraction was significantly higher in STN. Tubular Na reabsorption was significantly lower per mole of oxygen consumed in STN. We hypothesized that decreased mitochondrial bioenergetic capacity may account for this and uncovered significant mitochondrial dysfunction in the early STN kidney: higher oxidative metabolism without an attendant increase in ATP levels, elevated superoxide levels, and alterations in mitochondrial morphology. We further investigated the effect of activation of hypoxia-inducible factor-1α (HIF-1α), a master regulator of cellular hypoxia response. We observed significant improvement in renal blood flow, glomerular filtration rate, and tubular Na reabsorption per mole of oxygen consumed with HIF-1α activation. Importantly, HIF-1α activation significantly lowered mitochondrial oxygen consumption and superoxide production and increased mitochondrial volume density. In conclusion, we report significant impairment of renal oxygenation and mitochondrial function at the early stages of CKD and demonstrate the beneficial role of HIF-1α activation on renal function and metabolism.

  3. Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus

    Science.gov (United States)

    The southern cattle fever tick, Rhipicephalus (Boophilus) microplus, is a vector of the apicomplexan protozoa Babesia bovis and B. bigemina, which cause the often fatal disease bovine babesiosis, also known as cattle fever. Although the Cattle Fever Tick Eradication Program (CFTEP) succeeded in elim...

  4. Bovine tuberculosis and its risk factors among dairy cattle herds in ...

    African Journals Online (AJOL)

    the Republic of Ireland. Prev. Vet. Med, 17, 145-160. Gumi, B., Schelling, E., Firdessa, R., Aseffa, A., Tschopp, R., Yamuah, L. et al., 2011. Prevalence of bovine tuberculosis in pastoral cattle herds in the Oromia region, southern Ethiopia. Trap Anim Hlth Prod, 43(6), 1081-1087. Gumi, B., Schelling, E., Firdessa, R., Erenso, G., ...

  5. Risk factors for bovine tuberculosis (bTB) in cattle in Ethiopia

    NARCIS (Netherlands)

    Dejene, Sintayehu W.; Heitkonig, Ignas; Prins, Herbert H.T.; Lemma, Fitsum A.; Mekonnen, Daniel A.; Alemu, Zelalem E.; Kelkay, Tessema Z.; Boer, de Fred

    2016-01-01

    Bovine tuberculosis (bTB) infection is generally correlated with individual cattle's age, sex, body condition, and with husbandry practices such as herd composition, cattle movement, herd size, production system and proximity to wildlife - including bTB maintenance hosts. We tested the

  6. Revisiting an old disease? Risk factors for bovine enzootic haematuria in the Kingdom of Bhutan.

    Science.gov (United States)

    Hidano, Arata; Sharma, Basant; Rinzin, Karma; Dahal, Narapati; Dukpa, Kinzang; Stevenson, Mark A

    2017-05-01

    Bovine enzootic haematuria (BEH) is a debilitating disease of cattle caused by chronic ingestion of bracken fern. Control of BEH is difficult when bracken fern is abundant and fodder resources are limited. To fill a significant knowledge gap on modifiable risk factors for BEH, we conducted a case-control study to identify cattle management practices associated with BEH in the Bhutanese cattle population. A case-control study involving 16 of the 20 districts of Bhutan was carried out between March 2012 and June 2014. In Bhutan sodium acid phosphate and hexamine (SAP&H) is used to treat BEH-affected cattle. All cattle greater than three years of age and treated with SAP&H in 2011 were identified from treatment records held by animal health offices. Households with at least one SAP&H-treated cattle were defined as probable cases. Probable case households were visited and re-classified as confirmed case households if the BEH status of cattle was confirmed following clinical examination and urinalysis. Two control households were selected from the same village as the case household. Households were eligible to be controls if: (1) householders reported that none of their cattle had shown red urine during the previous five years, and (2) haematuria was absent in a randomly selected animal from the herd following clinical examination. Details of cattle management practices were elicited from case and control householders using a questionnaire. A conditional logistic regression model was used to quantify the association between exposures of interest and household BEH status. A total of 183 cases and 345 controls were eligible for analysis. After adjusting for known confounders, the odds of free-grazing for two and three months in the spring were 3.81 (95% CI 1.27-11.7) and 2.28 (95% CI 1.15-4.53) times greater, respectively, in case households compared to controls. The odds of using fresh fern and dry fern as bedding in the warmer months were 2.05 (95% CI 1.03-4.10) and 2

  7. Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Hyakukoku, M.; Houštěk, Josef; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Mikšík, Ivan; Mothejzíková-Dudová, Kristýna; Pecina, Petr; Vrbacký, Marek; Drahota, Zdeněk; Vojtíšková, Alena; Mráček, Tomáš; Kazdová, L.; Oliyarnyk, O.; Wang, Ji.; Ho, Ch.; Qi, N.; Sugimoto, K.; Kurtz, T.

    2007-01-01

    Roč. 17, č. 9 (2007), s. 1319-1326 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA301/06/0028; GA ČR GA303/07/0781 Grant - others:GA UK(CZ) 24/2005; GA UK(CZ) 26/2005; National Institutes of Health(US) HL35018; National Institutes of Health(US) HL56028; National Institutes of Health(US) HL63709; EURATOOLS(XE) LSHG-CT-2005-019015 Institutional research plan: CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK Keywords : mitochondrial genome * conplastic strains * risk factors for type 2 diabetes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  8. Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds.

    Science.gov (United States)

    Denzer, Isabel; Münch, Gerald; Friedland, Kristina

    2016-01-01

    Oxidative stress and mitochondrial dysfunction are early events in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Mitochondria are important key players in cellular function based on mitochondrial energy production and their major role in cell physiology. Since neurons are highly depending on mitochondrial energy production due to their high energy demand and their reduced glycolytic capacity mitochondrial dysfunction has fatal consequences for neuronal function and survival. The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) is the major regulator of cellular response to oxidative stress. Activation of Nrf2 induces the transcriptional regulation of antioxidant response element (ARE)-dependent expression of a battery of cytoprotective and antioxidant enzymes and proteins. Moreover, activation of Nrf2 protects mitochondria from dysfunction and promotes mitochondrial biogenesis. Therefore, the Nrf2/ARE pathway has become an attractive target for the prevention and treatment of oxidative stress-related neurodegenerative diseases. Small food-derived inducers of the Nrf2/ARE pathway including l-sulforaphane from broccoli and isoliquiritigenin from licorice displayed promising protection of mitochondrial function in models of oxidative stress and neurodegenerative diseases and represent a novel approach to prevent and treat aging-associated neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control

    Science.gov (United States)

    Guaraldo, Michela; Santambrogio, Paolo; Rovelli, Elisabetta; di Savino, Augusta; Saglio, Giuseppe; Cittaro, Davide; Roetto, Antonella; Levi, Sonia

    2016-09-01

    Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human gene (FTMT) is intronless and its promoter region has not been described yet. To analyze the regulatory mechanisms controlling FTMT expression, we characterized the 5‧ flanking region upstream the transcriptional starting site of FTMT by in silico enquiry of sequences conservation, DNA deletion analysis, and ChIP assay. The data revealed a minimal promoter region and identified the presence of SP1, CREB and YY1 as positive regulators, and GATA2, FoxA1 and C/EBPβ as inhibitors of the transcriptional regulation. Furthermore, the FTMT transcription is increased by acetylating and de-methylating agent treatments in K562 and HeLa cells. These treatments up-regulate FtMt expression even in fibroblasts derived from a Friedreich ataxia patient, where it might exert a beneficial effect against mitochondrial oxidative damage. The expression of FTMT appears regulated by a complex mechanism involving epigenetic events and interplay between transcription factors.

  10. Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: implications in diabetic retinopathy and metabolic memory phenomenon.

    Science.gov (United States)

    Santos, Julia M; Mishra, Manish; Kowluru, Renu A

    2014-04-01

    Mitochondrial transcription factor A (TFAM) is one of the key regulators of the transcription of mtDNA. In diabetes, despite increase in gene transcripts of TFAM, its protein levels in the mitochondria are decreased and mitochondria copy numbers become subnormal. The aim of this study is to investigate the mechanism(s) responsible for decreased mitochondrial TFAM in diabetes. Using retinal endothelial cells, we have investigated the effect of overexpression of cytosolic chaperone, Hsp70, and TFAM on glucose-induced decrease in mitochondrial TFAM levels, and the transcription of mtDNA-encoded genes, NADH dehydrogenase subunit 6 (ND6) and cytochrome b (Cytb). To investigate the role of posttranslational modifications in subnormal mitochondrial TFAM, ubiquitination of TFAM was assessed, and the results were confirmed in the retina from streptozotocin-induced diabetic rats. While overexpression of Hsp70 failed to prevent glucose-induced decrease in mitochondrial TFAM and transcripts of ND6 and Cytb, overexpression of TFAM ameliorated decrease in its mitochondrial protein levels and transcriptional activity. TFAM was ubiquitinated by high glucose, and PYR-41, an inhibitor of ubiquitination, prevented TFAM ubiquitination and restored the transcriptional activity. Similarly, TFAM was ubiquitinated in the retina from diabetic rats, and it continued to be modified after reinstitution of normal glycemia. Our results clearly imply that the ubiquitination of TFAM impedes its transport to the mitochondria resulting in subnormal mtDNA transcription and mitochondria dysfunction, and inhibition of ubiquitination restores mitochondrial homeostasis. Reversal of hyperglycemia does not provide any benefit to TFAM ubiquitination. Thus, strategies targeting posttranslational modification could provide an avenue to preserve mitochondrial homeostasis, and inhibit the development/progression of diabetic retinopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Evaluation of different factors affecting the efficiency of oocytes cryopreservation in the bovine model

    OpenAIRE

    De Blasi, Marina

    2011-01-01

    Interest in oocyte cryopreservation has recently increased. Cattle oocytes are sensitive to low temperatures, and despite the efforts of numerous research groups cryopreservation of oocytes remains a difficult task. This problem may be in part due to the large size of bovine oocytes, which consequently have a low surface to volume ratio, making it more difficult for water and cryoprotectants (CP) to move across the cell plasma membranes. Several attempts to improve the survival rate of oocy...

  12. Inhibitory effect of trichothecene mycotoxins on bovine platelets stimulated by platelet activating factor.

    OpenAIRE

    Gentry, P A; Ross, M L; Bondy, G S

    1987-01-01

    Several species of fungi, which infect cereals and grains, can produce a class of compounds, known as trichothecene mycotoxins, which is characterized by a substituted epoxy-trichothecene ring structure. Cattle are susceptible to intoxication from feeds contaminated with T-2 toxin, one of the more potent trichothecene mycotoxins, while swine refuse to ingest feed contaminated with T-2 toxin. The bovine platelet has been used as a model cell system to evaluate the effects of T-2 toxin and its ...

  13. Study of a Two-Step Centrifugation Protocol for Concentrating Cells and Growth Factors in Bovine Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Claudia M. Gutiérrez

    2017-01-01

    Full Text Available There is a lack of information about the methods used for bovine platelet-rich plasma (PRP/platelet-rich gel (PRG procurement, including information on platelet (PLT, white blood cell (WBC in PRP, and growth factor release from PRG supernatants. The aims of this study were to compare and to correlate the PLT, WBC, transforming growth factor beta-1 (TGF-β1, and platelet-derived growth factor BB (PDGF-BB concentrations in bovine whole blood, plasma, and four PRP layers and their respective PRG supernatants: A and B (obtained by a single centrifugation tube method at 720g/5 min and C and D (obtained by a double centrifugation tube method, by using two centrifugation episodes at 720g/5 min. PLT and WBC counts were significantly higher in PRP-C, followed by whole blood, PRP-A, PRP-B, and PRP-D. TGF-β1 concentrations were significantly higher in PRG-B supernatants and its correspondent PRP-B lysate when compared to the other PRG supernatants and plasma. Supernatants from PRG-A, PRG-B, and PRG-D had equivalent TGF-β1 concentrations. PDGF-BB concentrations were not statistically different between the hemoderivatives. Significant Pearson correlations were noted between PLT counts and WBC counts (0.8 and between PLT counts and PLT distribution width (0.6. Further studies should be performed to assess the potential clinical applications of these PRPs.

  14. Bovine and murine models highlight novel roles for SLC25A46 in mitochondrial dynamics and metabolism, with implications for human and animal health.

    Directory of Open Access Journals (Sweden)

    Amandine Duchesne

    2017-04-01

    Full Text Available Neuropathies are neurodegenerative diseases affecting humans and other mammals. Many genetic causes have been identified so far, including mutations of genes encoding proteins involved in mitochondrial dynamics. Recently, the "Turning calves syndrome", a novel sensorimotor polyneuropathy was described in the French Rouge-des-Prés cattle breed. In the present study, we determined that this hereditary disease resulted from a single nucleotide substitution in SLC25A46, a gene encoding a protein of the mitochondrial carrier family. This mutation caused an apparent damaging amino-acid substitution. To better understand the function of this protein, we knocked out the Slc25a46 gene in a mouse model. This alteration affected not only the nervous system but also altered general metabolism, resulting in premature mortality. Based on optic microscopy examination, electron microscopy and on biochemical, metabolic and proteomic analyses, we showed that the Slc25a46 disruption caused a fusion/fission imbalance and an abnormal mitochondrial architecture that disturbed mitochondrial metabolism. These data extended the range of phenotypes associated with Slc25a46 dysfunction. Moreover, this Slc25a46 knock-out mouse model should be useful to further elucidate the role of SLC25A46 in mitochondrial dynamics.

  15. Increased mitochondrial mass in cells with functionally compromised mitochondria after exposure to both direct gamma radiation and bystander factors.

    LENUS (Irish Health Repository)

    Nugent, Sharon M E

    2007-07-01

    The bystander effect describes radiation-like damage in unirradiated cells either in the vicinity of irradiated cells or exposed to medium from irradiated cells. This study aimed to further characterize the poorly understood mitochondrial response to both direct irradiation and bystander factor(s) in human keratinocytes (HPV-G) and Chinese hamster ovarian cells (CHO-K1). Oxygen consumption rates were determined during periods of state 4, state 3 and uncoupled respiration. Mitochondrial mass was determined using MitoTracker FM. CHO-K1 cells showed significantly reduced oxygen consumption rates 4 h after exposure to 5 Gy direct radiation and irradiated cell conditioned medium (ICCM) and an apparent recovery 12-24 h later. The apparent recovery was likely due to the substantial increase in mitochondrial mass observed in these cells as soon as 4 h after exposure. HPV-G cells, on the other hand, showed a sustained increase in oxygen consumption rates after ICCM exposure and a transient increase 4 h after exposure to 5 Gy direct radiation. A significant increase in mitochondrial mass per HPV-G cell was observed after exposure to both direct radiation and ICCM. These findings are indicative of a stress response to mitochondrial dysfunction that increases the number of mitochondria per cell.

  16. Finding biomarkers in non-model species: literature mining of transcription factors involved in bovine embryo development.

    Science.gov (United States)

    Turenne, Nicolas; Tiys, Evgeniy; Ivanisenko, Vladimir; Yudin, Nikolay; Ignatieva, Elena; Valour, Damien; Degrelle, Séverine A; Hue, Isabelle

    2012-08-29

    Since processes in well-known model organisms have specific features different from those in Bos taurus, the organism under study, a good way to describe gene regulation in ruminant embryos would be a species-specific consideration of closely related species to cattle, sheep and pig. However, as highlighted by a recent report, gene dictionaries in pig are smaller than in cattle, bringing a risk to reduce the gene resources to be mined (and so for sheep dictionaries). Bioinformatics approaches that allow an integration of available information on gene function in model organisms, taking into account their specificity, are thus needed. Besides these closely related and biologically relevant species, there is indeed much more knowledge of (i) trophoblast proliferation and differentiation or (ii) embryogenesis in human and mouse species, which provides opportunities for reconstructing proliferation and/or differentiation processes in other mammalian embryos, including ruminants. The necessary knowledge can be obtained partly from (i) stem cell or cancer research to supply useful information on molecular agents or molecular interactions at work in cell proliferation and (ii) mouse embryogenesis to supply useful information on embryo differentiation. However, the total number of publications for all these topics and species is great and their manual processing would be tedious and time consuming. This is why we used text mining for automated text analysis and automated knowledge extraction. To evaluate the quality of this "mining", we took advantage of studies that reported gene expression profiles during the elongation of bovine embryos and defined a list of transcription factors (or TF, n = 64) that we used as biological "gold standard". When successful, the "mining" approach would identify them all, as well as novel ones. To gain knowledge on molecular-genetic regulations in a non model organism, we offer an approach based on literature-mining and score

  17. Finding biomarkers in non-model species: literature mining of transcription factors involved in bovine embryo development

    Directory of Open Access Journals (Sweden)

    Turenne Nicolas

    2012-08-01

    Full Text Available Abstract Background Since processes in well-known model organisms have specific features different from those in Bos taurus, the organism under study, a good way to describe gene regulation in ruminant embryos would be a species-specific consideration of closely related species to cattle, sheep and pig. However, as highlighted by a recent report, gene dictionaries in pig are smaller than in cattle, bringing a risk to reduce the gene resources to be mined (and so for sheep dictionaries. Bioinformatics approaches that allow an integration of available information on gene function in model organisms, taking into account their specificity, are thus needed. Besides these closely related and biologically relevant species, there is indeed much more knowledge of (i trophoblast proliferation and differentiation or (ii embryogenesis in human and mouse species, which provides opportunities for reconstructing proliferation and/or differentiation processes in other mammalian embryos, including ruminants. The necessary knowledge can be obtained partly from (i stem cell or cancer research to supply useful information on molecular agents or molecular interactions at work in cell proliferation and (ii mouse embryogenesis to supply useful information on embryo differentiation. However, the total number of publications for all these topics and species is great and their manual processing would be tedious and time consuming. This is why we used text mining for automated text analysis and automated knowledge extraction. To evaluate the quality of this “mining”, we took advantage of studies that reported gene expression profiles during the elongation of bovine embryos and defined a list of transcription factors (or TF, n = 64 that we used as biological “gold standard”. When successful, the “mining” approach would identify them all, as well as novel ones. Methods To gain knowledge on molecular-genetic regulations in a non model organism, we offer an

  18. Physicochemical factors differentially affect the biomass and bacteriocin production by bovine Enterococcus mundtii CRL1656.

    Science.gov (United States)

    Espeche, M Carolina; Juárez Tomás, M Silvina; Wiese, Birgitt; Bru, Elena; Nader-Macías, M E Fátima

    2014-02-01

    Bovine Enterococcus mundtii CRL1656 (Centro de Referencia para Lactobacilos Culture Collection) produces an anti-Listeria and anti-Streptococcus dysgalactiae bacteriocin identified as mundticin CRL1656. The strain and its bacteriocin are candidates to be included in a beneficial product to prevent bovine mastitis as an alternative to antimicrobial agents. To optimize the production of biomass and mundticin CRL1656 by E. mundtii CRL1656, a complete 3 × 2(4) factorial design was applied. The effect of culture medium, initial pH, inoculum size, incubation temperature, and agitation conditions on biomass and bacteriocin production was evaluated simultaneously. Growth parameters were determined using the modified Gompertz model. A nonlinear model was used to estimate the effects of the variables on growth parameters. Bacteriocin production was analyzed using a linear mixed model. Optimal biomass and mundticin CRL1656 production by E. mundtii CRL1656 were obtained in different conditions. Maximal growth was recorded in autolyzed yeast, peptone, tryptone, Tween 80, and glucose or M17 broths, pH 6.5, 5.0% inoculum, 30 °C, with agitation. However, bacteriocin titers were higher in autolyzed yeast, peptone, tryptone, Tween 80, and glucose or de Man-Rogosa-Sharpe (MRS) broths, pH 6.5, 30°C, both with or without agitation. Knowledge of the optimum conditions for growth and bacteriocin production of E. mundtii CRL1656 will allow the obtainment of high levels of biomass and mundticin CRL1656 as bioingredients of potential products to prevent bovine mastitis. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo.

    Science.gov (United States)

    Kannampuzha-Francis, Jasmine; Tribulo, Paula; Hansen, Peter J

    2017-07-01

    The reproductive tract secretes bioactive molecules collectively known as embryokines that can regulate embryonic growth and development. In the present study we tested four growth factors expressed in the endometrium for their ability to modify the development of the bovine embryo to the blastocyst stage and alter the expression of genes found to be upregulated (bone morphogenetic protein 15 (BMP15) and keratin 8, type II (KRT8)) or downregulated (NADH dehydrogenase 1 (ND1) and S100 calcium binding protein A10 (S100A10)) in embryos competent to develop to term. Zygotes were treated at Day 5 with 0.01, 0.1 or 1.0nM growth factor. The highest concentration of activin A increased the percentage of putative zygotes that developed to the blastocyst stage. Connective tissue growth factor (CTGF) increased the number of cells in the inner cell mass (ICM), decreased the trophectoderm:ICM ratio and increased blastocyst expression of KRT8 and ND1. The lowest concentration of hepatocyte growth factor (HGF) reduced the percentage of putative zygotes becoming blastocysts. Teratocarcinoma-derived growth factor 1 increased total cell number at 0.01nM and expression of S100A10 at 1.0nM, but otherwise had no effects. Results confirm the prodevelopmental actions of activin A and indicate that CTGF may also function as an embryokine by regulating the number of ICM cells in the blastocyst and altering gene expression. Low concentrations of HGF were inhibitory to development.

  20. Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Avignat S Patel

    Full Text Available Epithelial cell death is a major contributor to fibrogenesis in the lung. In this study, we sought to determine the function of mitochondria and their clearance (mitophagy in alveolar epithelial cell death and fibrosis.We studied markers of mitochondrial injury and the mitophagy marker, PTEN-induced putative kinase 1 (PINK1, in IPF lung tissues by Western blotting, transmission electron microscopy (TEM, and immunofluorescence. In vitro experiments were carried out in lung epithelial cells stimulated with transforming growth factor-β1 (TGF-β1. Changes in cell function were measured by Western blotting, flow cytometry and immunofluorescence. In vivo experiments were performed using the murine bleomycin model of lung fibrosis.Evaluation of IPF lung tissue demonstrated increased PINK1 expression by Western blotting and immunofluorescence and increased numbers of damaged mitochondria by TEM. In lung epithelial cells, TGF-β1 induced mitochondrial depolarization, mitochondrial ROS, and PINK1 expression; all were abrogated by mitochondrial ROS scavenging. Finally, Pink1-/- mice were more susceptible than control mice to bleomycin induced lung fibrosis.TGF-β1 induces lung epithelial cell mitochondrial ROS and depolarization and stabilizes the key mitophagy initiating protein, PINK1. PINK1 ameliorates epithelial cell death and may be necessary to limit fibrogenesis.

  1. Haplogroup T Is an Obesity Risk Factor: Mitochondrial DNA Haplotyping in a Morbid Obese Population from Southern Italy

    Directory of Open Access Journals (Sweden)

    Carmela Nardelli

    2013-01-01

    Full Text Available Mitochondrial DNA (mtDNA haplogroups have been associated with the expression of mitochondrial-related diseases and with metabolic alterations, but their role has not yet been investigated in morbid obese Caucasian subjects. Therefore, we investigated the association between mitochondrial haplogroups and morbid obesity in patients from southern Italy. The mtDNA D-loop of morbid obese patients (n=500; BMI > 40 kg/m2 and controls (n=216; BMI 45 kg/m2 and in fact together account for 8% of the BMI. In conclusion, our finding that haplogroup T increases the risk of obesity by about two-fold, suggests that, besides nuclear genome variations and environmental factors, the T haplogroup plays a role in morbid obesity in our study population from southern Italy.

  2. Distribution of bovine fasciolosis and associated factors in south Espírito Santo, Brazil: an update

    Directory of Open Access Journals (Sweden)

    Isabella Vilhena Freire Martins

    Full Text Available The geographical distribution and factors associated with bovine fasciolosis in the south of Espírito Santo were updated and the prevalences of this disease and of snails of the genus Lymnaea in the municipality of Jerônimo Monteiro were calculated. In the first stage, fecal samples were collected from 10% of the herds of 115 farms in 23 municipalities and interviews were conducted with owners. Generalized linear mixed models were used. In the second stage, in Jerônimo Monteiro municipality, feces and mollusks were collected from all farms registered in the milk cooperatives in the region. The mollusks were identified and examined for infection by Fasciola hepatica. Fasciolosis was diagnosed in 18 (78% of the 23 municipalities. Of the 1157 fecal samples examined, 19.01% were positive for eggs of F. hepatica. The final model shows statistical evidence of associations between positive farms and previous cases of fasciolosis and concomitant grazing of cattle with other definitive hosts. In the evaluated farms from the studied municipality the prevalence of fasciolosis and Lymnaea was of 66.7% and 23.8%, respectively. Mollusks were found in flooded areas and the animals' drinking water troughs. The wide geographical distribution of bovine fasciolosis in the south of Espírito Santo requires control measures to prevent its expansion towards the north of this state and other places characterized as F. hepatica free-infection.

  3. Yeast DEAD Box Protein Mss116p Is a Transcription Elongation Factor That Modulates the Activity of Mitochondrial RNA Polymerase

    Science.gov (United States)

    Wojtas, Ireneusz D.; Tessitore, Kassandra; Henderson, Simmone; McAllister, William T.

    2014-01-01

    DEAD box proteins have been widely implicated in regulation of gene expression. Here, we show that the yeast Saccharomyces cerevisiae DEAD box protein Mss116p, previously known as a mitochondrial splicing factor, also acts as a transcription factor that modulates the activity of the single-subunit mitochondrial RNA polymerase encoded by RPO41. Binding of Mss116p stabilizes paused mitochondrial RNA polymerase elongation complexes in vitro and favors the posttranslocated state of the enzyme, resulting in a lower concentration of nucleotide substrate required to escape the pause; this mechanism of action is similar to that of elongation factors that enhance the processivity of multisubunit RNA polymerases. In a yeast strain in which the RNA splicing-related functions of Mss116p are dispensable, overexpression of RPO41 or MSS116 increases cell survival from colonies that were exposed to low temperature, suggesting a role for Mss116p in enhancing the efficiency of mitochondrial transcription under stress conditions. PMID:24732805

  4. Mitochondrial Ca2+ remodeling is a prime factor in oncogenic behavior

    Directory of Open Access Journals (Sweden)

    Alessandro eRimessi

    2015-06-01

    Full Text Available Cancer is sustained by defects in the mechanisms underlying cell proliferation, mitochondrial metabolism and cell death. Mitochondrial Ca2+ ions are central to all these processes, serving as signaling molecules with specific spatial localization, magnitude and temporal characteristics. Mutations in mtDNA, aberrant expression and/or regulation of Ca2+-handling/transport proteins, and abnormal Ca2+-dependent relationships among the cytosol, endoplasmic reticulum and mitochondria can cause the deregulation of mitochondrial Ca2+-dependent pathways that are related to these processes, thus determining oncogenic behavior. In this review, we propose that mitochondrial Ca2+ remodeling plays a pivotal role in shaping the oncogenic signaling cascade, which is a required step for cancer formation and maintenance. We will describe recent studies that highlight the importance of mitochondria in inducing pivotal cancer hallmarks and discuss possible tools to manipulate mitochondrial Ca2+ to modulate cancer survival.

  5. Variation in macrophage migration inhibitory factor [MIF] immunoreactivity during bovine gestation

    DEFF Research Database (Denmark)

    Paulesu, L.; Pfarrer, C.; Romagnoli, R.

    2012-01-01

    reestablishment of vascularisation, the vasculature in the caruncular area showed MIF reactivity. While supporting involvement of MIF in different placental types, the spatio-temporal variation in the bovine placenta suggests a regulatory role for MIF mainly in the interhemal barrier and during vascular......, the caruncular epithelium during pregnancy showed stronger staining for MIF. The intercaruncular epithelium in non-pregnant endometrium showed some reaction apically with increasing intensity at uterine gland openings; in contrast, at day 18 of gestation this staining was markedly increased. During gestation...... both caruncular and trophoblast epithelium of the placentomes were positive with different intensity in relation to the gestational stage. In the uterine glands, some strongly stained cells were present. The mature binucleated trophoblast giant cells were negative throughout pregnancy. During...

  6. Mitochondrial fusion, fission, and mitochondrial toxicity.

    Science.gov (United States)

    Meyer, Joel N; Leuthner, Tess C; Luz, Anthony L

    2017-08-05

    Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of); Hwang, Sung-Chul [Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Seong Hwang, Eun [Department of Life Science, University of Seoul, Seoul 130-743 (Korea, Republic of); Yoon, Gyesoon, E-mail: ypeace@ajou.ac.kr [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of)

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  8. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled

    Energy Technology Data Exchange (ETDEWEB)

    De Nucci, G.; Gryglewski, R.J.; Warner, T.D.; Vane, J.R. (William Harvey Research Institute, London (England))

    1988-04-01

    Bovine aortic endothelial cells were grown on microcarrier beads and were perfused with Krebs-Ringer solution. Endothelium-derived relaxing factor (EDRF) was bioassayed on a cascade of four strips of rabbit aorta, and prostacyclin was analyzed by RIA of 6-oxo-prostaglandin F{sub 1{alpha}}. The endothelial cells released EDRF and prostacyclin when stimulated with bradykinin and its analogues, or with ADP, ATP, arachidonic acid, and phospholipase C. The detection of EDRF was potentiated by superoxide dismutase, and the relaxation of rabbit aortic strips induced by EDRF was antagonized by methylene blue. The release of EDRF and prostacyclin was inhibited by phorbol myristate acetate, R59022 (a diacylglycerol kinase inhibitor), and gentamycin. The authors suggest that the release of EDRF and prostacyclin is coupled and the initial common step is activation of a phospholipase C.

  9. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014.

    Science.gov (United States)

    Ohno, Ayumu; Takeshima, Shin-nosuke; Matsumoto, Yuki; Aida, Yoko

    2015-12-02

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma. BLV has spread worldwide and causes serious problems. After infection, the BLV genome is integrated into the host DNA and can be amplified during periods of latency. We previously designed degenerate primers using the Coordination of Common Motifs (CoCoMo) algorithm to establish a new quantitative real-time PCR method (BLV-CoCoMo-qPCR-2) of measuring the proviral load of both known and novel BLV variants. Here, we aimed to examine the correlation between proviral load and risk factors for BLV infection, such as breeding systems, parousity, and colostrum feeding. Blood and serum samples were collected from 83 BLV-positive farms in 22 prefectures of Japan, and the BLV proviral load and anti-BLV antibody levels were measured. BLV was detected in 73.3% (1039/1,417) of cattle by BLV-CoCoMo-qPCR-2 and the provirus was detected in 93 of 1039 antibody-negative samples. The results showed that the proviral load increased with progression of lymphocytosis. Next, the risk factors associated with increasing BLV infection rate were examined along with any association with proviral load. The proviral load was higher in cattle with lymphocytosis than in healthy cattle, and higher in multiparous cows than in nulliparous cows. Finally, proviral loads were higher in contact breeding systems than in non-contact breeding systems. Taken together, these findings may help to formulate a plan for eliminating BLV from contaminated farms. This is the first nationwide study to estimate BLV proviral load in Japanese cattle. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Specific receptor-mediated inhibition by synthetic atrial natriuretic factor of hormone-stimulated steroidogenesis in cultured bovine adrenal cells.

    Science.gov (United States)

    De Léan, A; Racz, K; Gutkowska, J; Nguyen, T T; Cantin, M; Genest, J

    1984-10-01

    The effect of synthetic atrial natriuretic factor (ANF) on adrenal steroidogenesis has been studied in primary culture of bovine adrenal cells. ANF-(8-33) produced a potent 40-70% inhibition of angiotensin II-, ACTH-, PGE1-, and forskolin-stimulated secretion of aldosterone production from zona glomerulosa cells with an ED50 of 120 pM. An equipotent inhibitory effect of the natriuretic factor on cortisol production was also observed in cultured zona fasciculata cells. Nicotine-stimulated secretion of catecholamines from medullary cells was only slightly inhibited by the factor at doses above 10 nM. [125I]iodo-ANF-(8-33) binding to glomerulosa membranes displayed an apparent affinity of 100-150 pM for specific receptor sites and was not inhibited by angiotensin II or ACTH. Conversely, the natriuretic factor had no affinity for angiotensin II receptor sites. The results demonstrate that part of the natriuretic effect of this new factor might be due to inhibition of adrenal steroidogenesis by action through a distinct receptor.

  11. The Neurogenic Basic Helix-Loop-Helix Transcription Factor NeuroD6 Concomitantly Increases Mitochondrial mass and Regulates Cytoskeletal Organization in the Early Stages of Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Kristin Kathleen Baxter

    2009-08-01

    Full Text Available Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.

  12. Age, Segment, and Horn Disease Affect Expression of Cytokines, Growth Factors and Receptors in the Epidermis and Dermis of the Bovine Claw

    Science.gov (United States)

    The aim of this study was to examine changes in amounts of RNA expression for growth factors, cytokines and receptors in epidermal-dermal tissues of the bovine claw relative to host age, claw region and disease state of the horn. Epidermal-dermal tissues were collected from the coronette, wall, sole...

  13. The Transcription Factor E4F1 Coordinates CHK1-Dependent Checkpoint and Mitochondrial Functions

    Directory of Open Access Journals (Sweden)

    Geneviève Rodier

    2015-04-01

    Full Text Available Recent data support the notion that a group of key transcriptional regulators involved in tumorigenesis, including MYC, p53, E2F1, and BMI1, share an intriguing capacity to simultaneously regulate metabolism and cell cycle. Here, we show that another factor, the multifunctional protein E4F1, directly controls genes involved in mitochondria functions and cell-cycle checkpoints, including Chek1, a major component of the DNA damage response. Coordination of these cellular functions by E4F1 appears essential for the survival of p53-deficient transformed cells. Acute inactivation of E4F1 in these cells results in CHK1-dependent checkpoint deficiency and multiple mitochondrial dysfunctions that lead to increased ROS production, energy stress, and inhibition of de novo pyrimidine synthesis. This deadly cocktail leads to the accumulation of uncompensated oxidative damage to proteins and extensive DNA damage, ending in cell death. This supports the rationale of therapeutic strategies simultaneously targeting mitochondria and CHK1 for selective killing of p53-deficient cancer cells.

  14. Evaluation of potassium ion as the endothelium-derived hyperpolarizing factor (EDHF) in the bovine coronary artery.

    Science.gov (United States)

    Nelli, Silvia; Wilson, William S; Laidlaw, Hilary; Llano, Andrea; Middleton, Susan; Price, Andrew G; Martin, William

    2003-07-01

    1. This study explored the role of the potassium ion in endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine coronary artery. 2. Bradykinin-induced, EDHF-mediated vasodilatation was blocked by the Na(+)-K(+) ATPase inhibitor, ouabain (1 micro M), in a time-dependent manner, with maximal blockade seen after 90 min. In contrast, the K(IR) channel inhibitor, Ba(2+) (30 micro M), had no effect. 3. When the potassium content of the bathing solution was increased in a single step from 5.9 to 7-19 mM, powerful vasodilatation (max. 75.9+/-3.6%) was observed. Vasodilatation was transient and, consequently, cumulative addition of potassium produced little vasodilatation, with vasoconstriction predominating at the higher concentrations. 4. The magnitude of potassium-induced vasodilatation was similar in endothelium-containing and endothelium-denuded rings, and was unaffected by Ba(2+) (30 micro M), but abolished by ouabain (1 micro M). 5. Ouabain (1 micro M, 90 min) powerfully blocked bradykinin-induced, nitric oxide-mediated vasodilatation as well as that induced by the nitrovasodilator, glyceryl trinitrate, but that induced by the K(ATP) channel opener, levcromakalim, was hardly affected. 6. Thus, activation of Na(+)-K(+) ATPase is likely to be involved in the vasodilator responses of the bovine coronary artery to both nitric oxide and EDHF. These findings, together with the ability of potassium to induce powerful, ouabain- but not Ba(2+)-sensitive, endothelium-independent vasodilatation, are consistent with this ion contributing to the EDHF response in this tissue.

  15. Effects of green tea polyphenols, insulin-like growth factor I and glucose on developmental competence of bovine oocytes

    Directory of Open Access Journals (Sweden)

    Zhengguang Wang

    2012-12-01

    Full Text Available The present study examined the effects of green tea polyphenols (GTP, insulin-like growth factor-I (IGF-I and glucose on oocyte in vitro maturation, subsequent embryo development and blastocyst quality in bovine. Cumulus-oocyte complexes (COC were aspirated from the ovaries and cultured in synthetic oviduct fluid supplemented with MEM amino acids (SOFaa media supplemented with one of the following supplements: GTP (0, 10, 15 and 20 µM, IGF-I (0, 50, 100 and 150 ng/mL or glucose (0, 1.5, 5.6 and 20 mM for 24 h. The results showed that oocytes cultured in media supplemented with 15 µM GTP, 100 ng/mL IGF-I and 5.6 mM glucose, in separate experiments, have higher cleavage and blastocyst rates compared with oocytes cultured in media without or with other concentration of GTP, IGF-I and glucose. Then these three substances with the concentration above were added together into SOFaa media and constituted a modified medium (Modified SOFaa. The COC were cultured in control SOFaa media and modified SOFaa media, respectively. The results showed that modified SOFaa media increased the intracellular glutathione concentration of matured oocytes, blastocyst rates and total cell numbers and cell numbers of inner cell mass per blastocyst compared with the control. Supplementing of GTP, IGF-I and glucose synchronously to maturation media can increase the intracellular GSH concentration of oocytes after in vitro maturation, and improve the embryo development and blastocyst quality in bovine.

  16. High Mitochondrial DNA Copy Number Is a Protective Factor From Vision Loss in Heteroplasmic Leber's Hereditary Optic Neuropathy (LHON).

    Science.gov (United States)

    Bianco, Angelica; Bisceglia, Luigi; Russo, Luciana; Palese, Luigi L; D'Agruma, Leonardo; Emperador, Sonia; Montoya, Julio; Guerriero, Silvana; Petruzzella, Vittoria

    2017-04-01

    Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease that typically causes bilateral blindness in young men. It is characterized by as yet undisclosed genetic and environmental factors affecting the incomplete penetrance. We identified 27 LHON subjects who possess heteroplasmic primary LHON mutations. Mitochondrial DNA (mtDNA) copy number was evaluated. The presence of centrocecal scotoma, an edematous, hyperemic optic nerve head, and vascular tortuosity, as well as telangiectasia was recognized in affected subjects. We found higher cellular mtDNA content in peripheral blood cells of unaffected heteroplasmic mutation carriers with respect to the affected. The increase of cellular mtDNA content prevents complete loss of vision despite the presence of a heteroplasmic state of LHON primary mutation, suggesting that it is a key factor responsible for penetrance of LHON.

  17. Study of modifiers factors associated to mitochondrial mutations in individuals with hearing impairment.

    Science.gov (United States)

    de Moraes, Vanessa Cristine Sousa; Alexandrino, Fabiana; Andrade, Paula Baloni; Câmara, Marília Fontenele; Sartorato, Edi Lúcia

    2009-04-03

    Hearing impairment is the most prevalent sensorial deficit in the general population. Congenital deafness occurs in about 1 in 1000 live births, of which approximately 50% has hereditary cause in development countries. Non-syndromic deafness can be caused by mutations in both nuclear and mitochondrial genes. Mutations in mtDNA have been associated with aminoglycoside-induced and non-syndromic deafness in many families worldwide. However, the nuclear background influences the phenotypic expression of these pathogenic mutations. Indeed, it has been proposed that nuclear modifier genes modulate the phenotypic manifestation of the mitochondrial A1555G mutation in the MTRNR1 gene. The both putative nuclear modifiers genes TRMU and MTO1 encoding a highly conserved mitochondrial related to tRNA modification. It has been hypothesizes that human TRMU and also MTO1 nuclear genes may modulate the phenotypic manifestation of deafness-associated mitochondrial mutations. The aim of this work was to elucidate the contribution of mitochondrial mutations, nuclear modifier genes mutations and aminoglycoside exposure in the deafness phenotype. Our findings suggest that the genetic background of individuals may play an important role in the pathogenesis of deafness-associated with mitochondrial mutation and aminoglycoside-induced.

  18. Seroprevalence and risk factors of bovine viral diarrhoea virus (BVDV) infection in yaks (Bos grunniens) in northwest China.

    Science.gov (United States)

    Ma, Jian-Gang; Cong, Wei; Zhang, Fu-Heng; Feng, Sheng-Yong; Zhou, Dong-Hui; Wang, Yi-Ming; Zhu, Xing-Quan; Yin, Hong; Hu, Gui-Xue

    2016-12-01

    Bovine viral diarrhoea virus (BVDV), a member of the Pestivirus genus, is an important pathogen of cattle worldwide, causing reproductive disorders in adult cattle and mucosal disease in calves. However, limited information about BVDV infection in yaks (Bos grunniens) in China is available, especially in white yaks which is a unique yak breed that only lives in Tianzhu Tibetan Autonomous County (TTAC), Gansu Province, northwest China. Therefore, we conducted a cross-sectional study to estimate the seroprevalence and risk factors associated with BVDV infection in 1584 yaks in Gansu province, northwest China, between April 2013 and March 2014 using an indirect ELISA test. The overall seroprevalence of BVDV in yaks was 37.56 % (595/1584), with 45.08 % (275/610) in black yaks and 32.85 % (320/974) in white yaks. Moreover, positive yaks were found in all four regions, varied from 33.22 to 40.31 %. Male yaks had a similar seroprevalence (37.84 %) with that of the female yaks (37.11 %). Season, species and geographical origins of yaks were considered as risk factors analyzed by logistic regression model. To our knowledge, this is the first report of seroprevalence and risk factors associated with BVDV infection in white yaks in China.

  19. Evaluation of epididymis storage temperature and cryopreservation conditions for improved mitochondrial membrane potential, membrane integrity, sperm motility and in vitro fertilization in bovine epididymal sperm.

    Science.gov (United States)

    Nichi, M; Rijsselaere, T; Losano, Jda; Angrimani, Dsr; Kawai, Gkv; Goovaerts, Igf; Van Soom, A; Barnabe, V H; De Clercq, Jbp; Bols, Pej

    2017-04-01

    The maintaining of the epididymis at lower temperatures during storage and transport improves sperm quality. Our study aimed to test whether epididymis storage temperature (post-mortem) and sperm cryopreservation affect sperm kinetics, membrane integrity, mitochondrial potential and fertility capacity. Thirty-six epididymides were collected from 18 bulls after slaughter and divided into two groups: at 4 or 34°C for 2-3 hr. The sperm was collected from the epididymis cauda. The evaluation consisted of computer-assisted sperm analysis (CASA), SYBR14/PI/JC1 to evaluate membrane integrity, mitochondrial membrane potential (MMP) and measurement of lipid peroxidation (TBARS). The sperm was then frozen using an automatic device. After thawing, sperm samples were evaluated by the same variables and further in vitro fertilization rates. Cryopreservation negatively affected sperm motility in samples stored at 4 and 34°C. Nevertheless, the 4°C samples yielded higher rates of blastocyst formation. Pre-freeze sperm motility, progressive motility and velocity were higher in sperm from epididymis stored at 4°C while post-thaw sperm motility, progressive motility and velocity remained the same among samples from epididymis stored at 4 or 34°C. However, with regard to the kinetic patterns, samples collected from epididymis stored at 34°C had lower values when compared to those stored at 4°C prior the cryopreservation process. Our results indicate that epididymis handling conditions after cryopreservation may affect sperm quality after thawing, especially due to compromised MMP in sperm collected from epididymis stored at higher temperatures. © 2016 Blackwell Verlag GmbH.

  20. Prevalence and risk factors of bovine tuberculosis in dairy cattle in Eritrea.

    Science.gov (United States)

    Ghebremariam, Michael K; Rutten, V P M G; Vernooij, J C M; Uqbazghi, K; Tesfaalem, T; Butsuamlak, T; Idris, A M; Nielen, M; Michel, A L

    2016-05-25

    The prevalence of bovine tuberculosis (BTB) in dairy cattle in the three major milk producing regions of Eritrea was assessed by subjecting 15,354 dairy cattle, 50 % of Eritrea's dairy cattle population, to the single intradermal comparative tuberculin test (SICTT). Skin test results were interpreted according to guidelines of the World Organization for Animal Health (OIE) with >4 mm as cutoff in skin thickness increase. In addition, we studied the relation between 'physiological' variables related to pregnancy and lactation, and the variable 'region' on the probability to be skin test positive. The BTB prevalences at animal and herd levels were: 21.5% and 40.9% in Maekel, 7.3% and 10% in Debub, and 0.2% and 1.6% in the Anseba region, respectively. Overall, in the regions included, prevalence was 11.3% (confidence interval (CI) 95% CI, 11.29 - 11.31%) and 17.3% (95% CI, 17.27-17.33%), at animal and herd level, respectively. Considering positive herds only, the animal BTB prevalence was 36.8%, 30.1%, and 1.8%, in Maekel, Debub and Anseba, respectively, and the overall animal prevalence within these herds was 32%. In adult dairy cattle the probability of positive reactivity in the SICTT test was highest in pregnant animals as compared to the other categories. This study reports persistent prevalence of BTB as defined by positive SICTT in the dairy sector of Eritrea, especially in the regions of Maekel and Debub that are located in the central highlands of the country. To our understanding this is the first report that has encompassed all the major dairy farms in Eritrea and it will be instrumental in advocating future BTB control programs in the dairy sector.

  1. Risk factors for bovine tuberculosis in low incidence regions related to the movements of cattle

    Science.gov (United States)

    2013-01-01

    Background Bovine tuberculosis (bTB) remains difficult to eradicate from low incidence regions partly due to the imperfect sensitivity and specificity of routine intradermal tuberculin testing. Herds with unconfirmed reactors that are incorrectly classified as bTB-negative may be at risk of spreading disease, while those that are incorrectly classified as bTB-positive may be subject to costly disease eradication measures. This analysis used data from Scotland in the period leading to Officially Tuberculosis Free recognition (1) to investigate the risks associated with the movements of cattle from herds with different bTB risk classifications and (2) to identify herd demographic characteristics that may aid in the interpretation of tuberculin testing results. Results From 2002 to 2009, for every herd with confirmed bTB positive cattle identified through routine herd testing, there was an average of 2.8 herds with at least one unconfirmed positive reactor and 18.9 herds with unconfirmed inconclusive reactors. Approximately 75% of confirmed bTB positive herds were detected through cattle with no known movements outside Scotland. At the animal level, cattle that were purchased from Scottish herds with unconfirmed positive reactors and a recent history importing cattle from endemic bTB regions were significantly more likely to react positively on routine intradermal tuberculin tests, while cattle purchased from Scottish herds with unconfirmed inconclusive reactors were significantly more likely to react inconclusively. Case-case comparisons revealed few demographic differences between herds with confirmed positive, unconfirmed positive, and unconfirmed inconclusive reactors, which highlights the difficulty in determining the true disease status of herds with unconfirmed tuberculin reactors. Overall, the risk of identifying reactors through routine surveillance decreased significantly over time, which may be partly attributable to changes in movement testing regulations

  2. Risk factors for bovine tuberculosis in low incidence regions related to the movements of cattle.

    Science.gov (United States)

    Gates, M Carolyn; Volkova, Victoriya V; Woolhouse, Mark E J

    2013-11-09

    Bovine tuberculosis (bTB) remains difficult to eradicate from low incidence regions partly due to the imperfect sensitivity and specificity of routine intradermal tuberculin testing. Herds with unconfirmed reactors that are incorrectly classified as bTB-negative may be at risk of spreading disease, while those that are incorrectly classified as bTB-positive may be subject to costly disease eradication measures. This analysis used data from Scotland in the period leading to Officially Tuberculosis Free recognition (1) to investigate the risks associated with the movements of cattle from herds with different bTB risk classifications and (2) to identify herd demographic characteristics that may aid in the interpretation of tuberculin testing results. From 2002 to 2009, for every herd with confirmed bTB positive cattle identified through routine herd testing, there was an average of 2.8 herds with at least one unconfirmed positive reactor and 18.9 herds with unconfirmed inconclusive reactors. Approximately 75% of confirmed bTB positive herds were detected through cattle with no known movements outside Scotland. At the animal level, cattle that were purchased from Scottish herds with unconfirmed positive reactors and a recent history importing cattle from endemic bTB regions were significantly more likely to react positively on routine intradermal tuberculin tests, while cattle purchased from Scottish herds with unconfirmed inconclusive reactors were significantly more likely to react inconclusively. Case-case comparisons revealed few demographic differences between herds with confirmed positive, unconfirmed positive, and unconfirmed inconclusive reactors, which highlights the difficulty in determining the true disease status of herds with unconfirmed tuberculin reactors. Overall, the risk of identifying reactors through routine surveillance decreased significantly over time, which may be partly attributable to changes in movement testing regulations and the volume of

  3. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ray K. Boyapati

    2017-02-01

    Full Text Available Mitochondrial DNA (mtDNA has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities.

  4. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    Science.gov (United States)

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  5. Virulence factors analysis of Staphylococcus aureus isolated from bovine mastitis in México

    Directory of Open Access Journals (Sweden)

    Julio C. Franco G.

    2008-01-01

    Full Text Available Un total de 117 aislados bacterianos obtenidos de casos de mastitis bovina positivos a las pruebas de catalasa, coagulasa, termonucleasa, manitol y PCR fueron analizados para determinar la producción de los siguientes factores de virulencia: hemolisisnas (alfa y beta, factor de agregación y cápsula. Adicionalmente fue también evaluada la sensibilidad a oxitetraciclina, penicilina, oxacilina y estreptomicina. La producción de hemolisinas y el factor de agregación fueron los 2 factores de virulencia expresados en la mayoría de los aislados (78% y (83% respectivamente, mientras que la formación de cápsula se detectó en 31% de los aislados bovinos. Una fuerte correlación entre ausencia de cápsula y producción de hemolisinas fue observado, ya que 72 de un total de 92 cepas hemolíticas no mostraron cápsula. La ausencia de cápsula fue asociada a la producción del factor de agregación en 89% de los aislados bacterianos positivos a este factor. El 68% y 69% de los aislados bacterianos resultaron positivos a penicilina y oxacilina respectivamente. La mayoría de los aislados (116 expresaron al menos 1 factor de virulencia (hemolisinas, cápsula o factor de agregación. Finalmente, el papel de los factores de virulencia y su relación en la patogenicidad de S. aureus en la mastitis bovina en México es discutido.

  6. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes.

    Science.gov (United States)

    Logan, Sreemathi; Pharaoh, Gavin A; Marlin, M Caleb; Masser, Dustin R; Matsuzaki, Satoshi; Wronowski, Benjamin; Yeganeh, Alexander; Parks, Eileen E; Premkumar, Pavithra; Farley, Julie A; Owen, Daniel B; Humphries, Kenneth M; Kinter, Michael; Freeman, Willard M; Szweda, Luke I; Van Remmen, Holly; Sonntag, William E

    2018-02-01

    A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-Cre TAM /igfr f/f ). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfr f/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30-50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H 2 O 2 -induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction

  7. Seroprevalence and risk factors of several bovine viral diseases in dairy farms of San Pedro de los Milagros, Antioquia, Colombia

    National Research Council Canada - National Science Library

    Nicolás Fernando Ramírez Vásquez; David Villar Argaiz; Jorge Arturo Fernández Silva; Julián Londoño Pino; Jenny Jovanna Chaparro Gutiérrez; Martha Eufemia Olivera Ángel

    2016-01-01

    .... All farms were up to date on the annual official vaccinations against brucellosis and foot and mouth disease, and 5 out of 29 farms used vaccines against viruses of the bovine respiratory complex...

  8. Effect of insulin-like growth factor-1 during in vitro oocyte maturation and in vitro culture of bovine embryos

    Directory of Open Access Journals (Sweden)

    Quetglas M.D.

    2001-01-01

    Full Text Available The effects of insulin-like growth factor-I (IGF-I on in vitro maturation (IVM (experiment I and on in vitro embryo development (experiment II of bovine oocytes fertilized in vitro, were evaluated in terms of cleavage (CR, blastocyst (BR and hatching (HR rates. For IVM, immature cumulus-oocyte complexes were cultured in TCM-199 medium supplemented with Hepes, sodium bicarbonate, sodium pyruvate, additives, fetal calf serum (B-199 medium and gonadotropins (14 U/ml PMSG and 7 U/ml hCG. For embryo development, the oocytes/zygotes were cultured in B-199 medium with bovine oviduct epithelial cells in suspension under silicon oil. Treatments for in vitro culture conditions for both experiments were: 1- B-199 + 200 ng/ml IGF-I; 2- B-199 + 100 ng/ml IGF-I; 3- B-199 + 50 ng/ml IGF-I; 4- B-199 + 10 ng/ml IGF-I; 5- B-199 + 0 ng/ml IGF-I. All cultures were performed at 38.5ºC in 5% CO2 in air and the data were analyzed by chi-square test. In experiment I, there were no differences (P>0.05 among treatments for CR, BR or HR. In experiment II, the addition of IGF-I to the embryo culture medium (ECM resulted in a significant increase in CR while for BR and HR this effect was not observed. The addition of 200 ng/ml IGF-I to ECM increased CR (71.1% when compared to 100 ng/ml IGF-I (57.6% or control (56.7% groups, however, there were no differences when compared to 50 (69.4% or 10 ng/ml (73.1% groups. There was no beneficial effect of the addition of IGF-I in the IVM or ECM media on the in vitro development of embryos produced from oocytes matured and fertilized in vitro.

  9. Targeting and function of the mitochondrial fission factor GDAP1 are dependent on its tail-anchor.

    Directory of Open Access Journals (Sweden)

    Konstanze M Wagner

    Full Text Available Proteins controlling mitochondrial dynamics are often targeted to and anchored into the mitochondrial outer membrane (MOM by their carboxyl-terminal tail-anchor domain (TA. However, it is not known whether the TA modulates protein function. GDAP1 is a mitochondrial fission factor with two neighboring hydrophobic domains each flanked by basic amino acids (aa. Here we define GDAP1 as TA MOM protein. GDAP1 carries a single transmembrane domain (TMD that is, together with the adjacent basic aa, critical for MOM targeting. The flanking N-terminal region containing the other hydrophobic domain is located in the cytoplasm. TMD sequence, length, and high hydrophobicity do not influence GDAP1 fission function if MOM targeting is maintained. The basic aa bordering the TMD in the cytoplasm, however, are required for both targeting of GDAP1 as part of the TA and GDAP1-mediated fission. Thus, this GDAP1 region contains critical overlapping motifs defining intracellular targeting by the TA concomitant with functional aspects.

  10. Impact of biological factors on the interpretation of bovine trypanosomosis serology.

    Science.gov (United States)

    Greiner, M; Bhat, T S; Patzelt, R J; Kakaire, D; Schares, G; Dietz, E; Böhning, D; Zessin, K H; Mehlitz, D

    1997-04-01

    A total of 457 cattle from dairy farms in Mukono County, Uganda, were investigated for Trypanosoma antibodies by ELISA. The objective of the study was to identify explanatory covariate factors for seropositivity among nine farm-specific and four animal-specific variables. We used logistic regression models for parasitological and serological outcome variables and then compared the adjusted odds ratios for explanatory factors between the models. Age is positively correlated with seropositivity but not with the detection of the parasite. Therefore, age group-specific cut-off values were established using mixture-distribution analysis. This procedure, as well as a mixture-distribution-derived cut-off value for the total sample, resulted in a greater relative efficiency of the ELISA as compared to conventional interpretation (cut-off value defined using non-exposed negative controls). The relevance of age and other biological factors for the serological status is briefly discussed.

  11. Autocrine effect of vascular endothelial growth factor-A is essential for mitochondrial function in brown adipocytes.

    Science.gov (United States)

    Mahdaviani, Kiana; Chess, David; Wu, Yuanyuan; Shirihai, Orian; Aprahamian, Tamar R

    2016-01-01

    The obesity epidemic in the United States, as well as the accompanying condition of type 2 diabetes, puts a majority of the population at an increased risk of developing cardiovascular diseases including coronary artery disease, stroke, and myocardial infarction. In contrast to white adipose tissue (WAT), brown adipose tissue (BAT) is well vascularized, rich in mitochondria, and highly oxidative. While it is known that the angiogenic factor VEGF-A is required for brown adipocyte development, the functional consequences and exact mechanism remain to be elucidated. Here, we show that VEGF-A plays an essential autocrine role in the function of BAT. Mouse models were generated with an adipose-specific and macrophage-specific ablation of VEGF-A. Adipose tissue characteristics and thermogenic response were analyzed in vivo, and mitochondrial morphology and oxidative respiration were analyzed in vitro to assess effects of endogenous VEGF-A ablation. VEGF-A expression levels are highest in adipocyte precursors compared to immune or endothelial cell populations within both WAT and BAT. Loss of VEGF-A in adipocytes, but not macrophages, results in decreased adipose tissue vascularization, with remarkably diminished thermogenic capacity in vivo. Complete ablation of endogenous VEGF-A decreases oxidative capacity of mitochondria in brown adipocytes. Further, acute ablation of VEGF-A in brown adipocytes in vitro impairs mitochondrial respiration, despite similar mitochondrial mass compared to controls. These data demonstrate that VEGF-A serves to orchestrate the acquisition of thermogenic capacity of brown adipocytes through mitochondrial function in conjunction with the recruitment of blood vessels. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A case-control study of risk factors for bovine cysticercosis in Danish cattle herds

    DEFF Research Database (Denmark)

    Calvo Artavia, Francisco Fernando; Nielsen, Liza Rosenbaum; Dahl, J.

    2013-01-01

    a questionnaire and register data from the Danish Cattle Database were grouped into meaningful variables and used to investigate the risk factors for BC using a multivariable logistic regression model. Case herds were almost three times more likely than control herds to let all or most animals out grazing. Case...

  13. Prevalence and risk factors of bovine mastitis in Ambo town of West ...

    African Journals Online (AJOL)

    A cross-sectional study was conducted to estimate the prevalence and associated risk factors of mastitis in dairy cows from November, 2012 to July, 2013 in Ambo town of West Shewa Zone, Oromia Regional State. Thorough clinical examination was made on all lactating cows for evidence of signs of clinical mastitis ...

  14. Association of a polymorphism in mitochondrial transcription factor A (TFAM) with Parkinson's disease dementia but not dementia with Lewy bodies.

    Science.gov (United States)

    Gatt, Ariana P; Jones, Emma L; Francis, Paul T; Ballard, Clive; Bateman, Joseph M

    2013-12-17

    The single nucleotide polymorphism (SNP) A>G rs2306604 in the gene encoding mitochondrial transcription factor A (TFAM) has been associated with Alzheimer's disease, with the A allele being recognised as a risk factor, but has not been studied in other types of dementia. We hypothesised that TFAM SNP rs2306604 might also be associated with Lewy body dementias. To test this hypothesis rs2306604 genotype was determined in 141 controls and 135 patients with dementia with Lewy bodies (DLB) or Parkinson's disease dementia (PDD). rs2306604 genotype frequencies were significantly different to controls in PDD (p=0.042), but not in DLB (p=0.529). The A allele was also associated with PDD (p=0.024, OR=2.092), but not DLB (p=0.429, OR=1.308). Moreover, the A allele was strongly associated with PDD in males (p=0.001, OR=5.570), but not in females (p=0.832, OR=1.100). Mitochondrial DNA copy number in the prefrontal cortex was also significantly reduced in PDD patients, but this reduction was not associated with rs2306604 genotype. These data show that the TFAM SNP rs2306604 A allele may be a risk factor for PDD, particularly in males, but not for DLB. Therefore, the genetic factors that predispose individuals to develop dementia may differ in PDD and DLB. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Altered expression of transforming growth factor-beta isoforms in bovine cystic ovarian disease.

    Science.gov (United States)

    Matiller, V; Stangaferro, M L; Díaz, P U; Ortega, H H; Rey, F; Huber, E; Salvetti, N R

    2014-10-01

    Cystic ovarian disease (COD) is one of the main causes of infertility in dairy cattle. It has been shown that intra-ovarian factors may contribute to follicular persistence. Transforming growth factor-beta (TGFB) isoforms are important paracrine and autocrine signalling molecules that regulate ovarian follicle growth and physiology. Considering the importance of these factors in the ovarian physiology, in this study, we examined the expression of TGFB isoforms (TGFB1, TGFB2 and TGFB3) in the ovary of healthy cows and animals with spontaneous and adrenocorticotrophic hormone (ACTH)-induced COD. In the oestrous-synchronized control group, the expression of TGFB1 in granulosa and theca cells was higher in spontaneous cysts than in atretic or tertiary follicles. When we compared TGFB2 expression in granulosa cells from atretic or tertiary follicles from the oestrous-synchronized control group with that in ACTH-induced or spontaneous follicular cysts, we found a higher expression in the latter. The expression of the TGFB isoforms studied was also altered during folliculogenesis in both the spontaneous and ACTH-induced COD groups. As it has been previously shown that TGFB influences steroidogenesis, ovarian follicular proliferation and apoptosis, an alteration in its expression may contribute to the pathogenesis of this disease. © 2014 Blackwell Verlag GmbH.

  16. Mitochondrial Transcription Factors TFA, TFB1 and TFB2: A Search for DNA Variants/Haplotypes and the Risk of Cardiac Hypertrophy

    Directory of Open Access Journals (Sweden)

    Cristina Alonso-Montes

    2008-01-01

    Full Text Available Mitochondrial transcription factors mtTFA, mtTFB1 and mtTFB2 are required for the replication of mitochondrial DNA (mtDNA, regulating the number of mtDNA copies. Mice with a mtTFA deletion showed a reduced number of mtDNA copies, a reduction in respiratory chain activity, and a characteristic dilated cardiomyopathy. DNA variants in these genes could be involved in the risk for cardiac hypertrophy (HCM.

  17. High expression of nuclear factor 90 (NF90 leads to mitochondrial degradation in skeletal and cardiac muscles.

    Directory of Open Access Journals (Sweden)

    Takuma Higuchi

    Full Text Available While NF90 has been known to participate in transcription, translation and microRNA biogenesis, physiological functions of this protein still remain unclear. To uncover this, we generated transgenic (Tg mice using NF90 cDNA under the control of β-actin promoter. The NF90 Tg mice exhibited a reduction in body weight compared with wild-type mice, and a robust expression of NF90 was detected in skeletal muscle, heart and eye of the Tg mice. To evaluate the NF90 overexpression-induced physiological changes in the tissues, we performed a number of analyses including CT-analysis and hemodynamic test, revealing that the NF90 Tg mice developed skeletal muscular atrophy and heart failure. To explore causes of the abnormalities in the NF90 Tg mice, we performed histological and biochemical analyses for the skeletal and cardiac muscles of the Tg mice. Surprisingly, these analyses demonstrated that mitochondria in those muscular tissues of the Tg mice were degenerated by autophagy. To gain further insight into the cause for the mitochondrial degeneration, we identified NF90-associated factors by peptide mass fingerprinting. Of note, approximately half of the NF90-associated complexes were ribosome-related proteins. Interestingly, protein synthesis rate was significantly suppressed by high-expression of NF90. These observations suggest that NF90 would negatively regulate the function of ribosome via its interaction with the factors involved in the ribosome function. Furthermore, we found that the translations or protein stabilities of PGC-1 and NRF-1, which are critical transcription factors for expression of mitochondrial genes, were significantly depressed in the skeletal muscles of the NF90 Tg mice. Taken together, these findings suggest that the mitochondrial degeneration engaged in the skeletal muscle atrophy and the heart failure in the NF90 Tg mice may be caused by NF90-induced posttranscriptional repression of transcription factors such as PGC-1 and

  18. Compound C prevents Hypoxia-Inducible Factor-1α protein stabilization by regulating the cellular oxygen availability via interaction with Mitochondrial Complex I

    Directory of Open Access Journals (Sweden)

    Hagen Thilo

    2011-04-01

    Full Text Available Abstract The transcription factor Hypoxia-Inducible Factor-1α is a master regulator of the cellular response to low oxygen concentration. Compound C, an inhibitor of AMP-activated kinase, has been reported to inhibit hypoxia dependent Hypoxia-Inducible Factor-1α activation via a mechanism that is independent of AMP-activated kinase but dependent on its interaction with the mitochondrial electron transport chain. The objective of this study is to characterize the interaction of Compound C with the mitochondrial electron transport chain and to determine the mechanism through which the drug influences the stability of the Hypoxia-Inducible Factor-1α protein. We found that Compound C functions as an inhibitor of complex I of the mitochondrial electron transport chain as demonstrated by its effect on mitochondrial respiration. It also prevents hypoxia-induced Hypoxia-Inducible Factor-1α stabilization in a dose dependent manner. In addition, Compound C does not have significant effects on reactive oxygen species production from complex I via both forward and reverse electron flux. This study provides evidence that similar to other mitochondrial electron transport chain inhibitors, Compound C regulates Hypoxia-Inducible Factor-1α stability by controlling the cellular oxygen concentration.

  19. Calf-level factors associated with bovine neonatal pancytopenia--a multi-country case-control study.

    Directory of Open Access Journals (Sweden)

    Bryony A Jones

    Full Text Available Bovine neonatal pancytopenia (BNP, a high fatality condition causing haemorrhages in calves aged less than 4 weeks, was first reported in 2007 in Germany and subsequently observed at low incidence in other European countries and New Zealand. A multi-country matched case-control study was conducted in 2011 to identify calf-level risk factors for BNP. 405 BNP cases were recruited from 330 farms in Belgium, France, Germany and the Netherlands by laboratory confirmation of farmer-reported cases. Up to four calves of similar age from the same farm were selected as controls (1154 calves. Risk factor data were collected by questionnaire. Multivariable modelling using conditional logistic regression indicated that PregSure®BVD (PregSure, Pfizer Animal Health vaccination of the dam was strongly associated with BNP cases (adjusted matched Odds Ratio - amOR 17.8 first lactation dams; 95% confidence interval - ci 2.4, 134.4; p = 0.005, and second or more lactation PregSure-vaccinated dams were more likely to have a case than first lactation vaccinated dams (amOR 2.2 second lactation; ci 1.1, 4.3; p = 0.024; amOR 5.3 third or more lactation; ci 2.9, 9.8; p = <0.001. Feeding colostrum from other cows was strongly associated with BNP if the dam was not PregSure-vaccinated (amOR 30.5; ci 2.1, 440.5; p = 0.012, but the effect was less if the dam was PregSure-vaccinated (amOR 2.1; ci 1.1, 4.0; p = 0.024. Feeding exclusively dam's milk was a higher risk than other types of milk (amOR 3.4; ci 1.6, 7.5; p = 0.002. The population attributable fractions were 0.84 (ci 0.68, 0.92 for PregSure vaccination, 0.13 (ci 0.06, 0.19 for feeding other cows' colostrum, and 0.15 (ci 0.08, 0.22 for feeding dam's milk. No other calf-level factors were identified, suggesting that there are other important factors that are outside the scope of this study, such as genetics, which explain why BNP develops in some PregSure-colostrum-exposed calves but not in

  20. Risk factors associated with the antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Daniele C. Beuron

    2014-10-01

    Full Text Available The objective of this study was to evaluate herd management practices and mastitis treatment procedures as risk factors associated with Staphylococcus aureus antimicrobial resistance. For this study, 13 herds were selected to participate in the study to evaluate the association between their management practices and mastitis treatment procedures and in vitro antimicrobial susceptibility. A total of 1069 composite milk samples were collected aseptically from the selected cows in four different periods over two years. The samples were used for microbiological culturing of S. aureus isolates and evaluation of their antimicrobial susceptibility. A total of 756 samples (70.7% were culture-positive, and S. aureus comprised 27.77% (n=210 of the isolates. The S. aureus isolates were tested using the disk-diffusion susceptibility assay with the following antimicrobials: ampicillin 10mg; clindamycin 2μg; penicillin 1mg; ceftiofur 30μg; gentamicin 10mg; sulfa-trimethoprim 25μg; enrofloxacin 5μg; sulfonamide 300μg; tetracycline 30μg; oxacillin 1mg; cephalothin 30μg and erythromycin 5μg. The variables that were significantly associated with S. aureus resistance were as follows: the treatment of clinical mastitis for ampicillin (OR=2.18, dry cow treatment for enrofloxacin (OR=2.11 and not sending milk samples for microbiological culture and susceptibility tests, for ampicillin (OR=2.57 and penicillin (OR=4.69. In conclusion, the identification of risk factors for S. aureus resistance against various mastitis antimicrobials is an important information that may help in practical recommendations for prudent use of antimicrobial in milk production.

  1. Properties of a recombinant bovine tissue factor expressed by Silkworm pupae and its performance as an Owren-type prothrombin time reagent for warfarin monitoring.

    Science.gov (United States)

    Okuda, Masahiro; Taniguchi, Tomokuni; Takamiya, Osamu

    2012-09-01

    Tissue factor (TF), or thromboplastin, is a glycoprotein that triggers the extrinsic coagulation pathway. In blood coagulation testing, TF has been used as a natural source for determining Quick prothrombin time (PT) or the Owren PT (OBT). Currently, natural sources are being replaced with recombinant proteins because of their uniform characteristics and the possibility of stable mass production of PT reagents. Because bovine spongiform encephalopathy (BSE)-infected cows are widespread in Japan, we prepared a recombinant bovine TF (rbTF) with a baculovirus expression system using silkworms. To overcome the limitations of natural TF, especially in bovine brain, we expressed a full-length rbTF protein in Silkworm pupae with a baculovirus expression system. Baculovirus inactivation and the presence of DNA fragments in the rbTF fraction were confirmed using Reed-Muench and polymerase chain reaction methods after inactivation with a detergent. The rbTF fraction prepared by an immobilized anti-Silkworm pupae fluid protein Sepharose 4B column was identified as a visible band on western blots with a polyclonal antibody against human TF with cross-reactivity with TFs. The inhibition of the polyclonal antibody against human TF by the clotting assay for PT was identified, and amidolytic biological activity through activated factor VII on S-2288 substrate was observed. In conclusion, the rbTF expressed by the baculovirus system using Silkworm pupae was uniformly specific for bovine TF. The OBT reagent incorporated by this rbTF was similar to those of commercial reagents. It also showed a suitable International Sensitivity Index and reproducibility precision, thereby allowing for diagnostic use. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. BOVINE TUBERCULOSIS (BTB) AS A RISK FACTOR FOR DEVELOPING TUBERCULOSIS IN HUMANS IN THE RURAL COMMUNITY OF ETHIOPIA: A CASE-CONTROL STUDY.

    Science.gov (United States)

    Mengistu, Araya; Enquselassi, Fikre; Aseffa, Abraham; Beyen, Demissew

    2015-01-01

    The current study aimed at assessing BTB as a possible risk factor for human TB in the rural community of North Eastern and Western parts of Ethiopia. A case-control design was conducted among cattle owning households with TB and without TB. Comparative cervical intradermal test using purified protein derivatives were used to test cattle. Reading of the reaction was done 72 ± 4hrs after antigen injection. Based on the skin test reaction measurement, cattle categorized as negative, doubtful and positive. Questionnaires were used to collect the required factors. Thirty-five with TB and 105 households without TB participated in this study of which 49.3% and 61.4% had the habit of drinking raw milk and eating uncooked meat, respectively. About 70.7% knew about the chance of disease transmission from animals to humans. Among the TB households 31.43% shared their house with their cattle. Of the attendants, approximately 38% shared utensil. Based on > 2mms as a cutoff value 23.6% an overall apparent bovine tuberculosis (BTB) and 48.6% apparent BTB in households with TB were recorded. The odds for households having bovine TB in their cattle to get tuberculosis was more than 8 times (95% CI; 2.82-24.60) higher than those owned by households without TB. Bovine TB has been seen as an exposure to human pulmonary TB occurrence. A separate house for cattle should be constructed to minimize the fear of cross infections and further study regarding the possible infection of cattle with M. tuberculosis is suggested. Key wordsi bovine tuberculosis, households, human TB, M. tuberculosis, risk.

  3. Associations between inflammatory factors, lipid peroxidation and antioxidant capacity in bovine seminal plasma

    Directory of Open Access Journals (Sweden)

    Eva Tvrdá

    2016-05-01

    Full Text Available Oxidative stress and inflammation are cooperative events involved in male reproductive dysfunction.   In   the   present   study, we assessed the associations between the spermatozoa motility, inflammatory factors (C-reactive protein and Interleukin-6, total antioxidant status (TAS and lipid peroxidation expressed as malondialdehyde (MDA concentration in the seminal plasma of breeding bulls. 17 semen samples were included in the study. Computer-aided sperm analysis (CASA system was used to assess the spermatozoa motion characteristics, and seminal plasma was collected for further analyses. Interleukin-6 (IL-6 was quantified using ELISA, while C-reactive protein (CRP and markers of the oxidative balance were evaluated by UV/VIS spectrophotometry. The correlation analysis revealed significantly positive associations between the sperm motility and TAS (P<0.05, while both parameters were in significantly negative correlations with CRP (P<0.05, IL-6 (P<0.05 and MDA (P<0.01. At the same time, the samples were divided according to the motility characteristics into groups of Excellent (Ex and Moderate (Mo quality. CRP, IL-6 as well as MDA concentrations were significantly (P<0.05 higher in the Mo group, while the Ex group exhibited a significantly higher antioxidant capacity (P<0.05.  The relationships between the oxidative balance and inflammatory markers detected in our study suggest their intricate involvement in the resulting semen quality.

  4. Bovine cysticercosis in slaughtered cattle as an indicator of Good Agricultural Practices (GAP) and epidemiological risk factors.

    Science.gov (United States)

    Rossi, Gabriel Augusto Marques; Hoppe, Estevam Guilherme Lux; Mathias, Luis Antonio; Martins, Ana Maria Centola Vidal; Mussi, Leila Aparecida; Prata, Luiz Francisco

    2015-03-01

    This study focused on estimating the economic losses resulting from cysticercosis at beef cattle farms that supply an export slaughterhouse located in the state of São Paulo, Brazil, and to identify the epidemiological risks factors involved in the disease to ascertain if these farms adopt Good Agricultural Practices (GAP). To this, we used data recorded in 2012 by Brazil's Federal Inspection Service (SIF) on the daily occurrence of the disease, according to the farm from which the animals originated. In addition, the associated risk factors were determined based on a case-control study at 48 farms. Cysticercosis was detected in 2.26% (95% CI 2.2-2.33) of the 190,903 bovines supplied by 556 farms in the following four states: 2.92% (95% CI 2.83-3.03) in São Paulo, 1.81% (95% CI 1.71-1.93) in Minas Gerais, 0.71% (95% CI 0.6-0.82) in Goiás and 1.11% (95% CI 0.79-1.57) in Mato Grosso do Sul, with significant differences in the epidemiological indices of these states. Cysticercosis was detected at 58.45% (95% CI 54.36-62.55) of the farms of this study, representing estimated economic losses of US$312,194.52 for the farmers. Lower prevalence of this disease were found at the farms qualified for exports to the European Union, indicating a statistically significant difference from those not qualified to export to Europe. The access of cattle to non-controlled water sources, as well as sport fishing activities near the farms, was identified as risk factors. Cysticercosis causes considerable losses in Brazil's beef supply chain, with lower prevalence appearing only at farms qualified to export to the European Union. As for the access of cattle to non-controlled water sources, this is an indication that GAP are not implemented by some farms, demonstrating the violation of international agreements by the industry and the farms. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2011-07-25

    Abstract Introduction To examine the effects of tumour necrosis factor (TNF) blocking therapy on the levels of early mitochondrial genome alterations and oxidative stress. Methods Eighteen inflammatory arthritis patients underwent synovial tissue oxygen (tpO2) measurements and clinical assessment of disease activity (DAS28-CRP) at baseline (T0) and three months (T3) after starting biologic therapy. Synovial tissue lipid peroxidation (4-HNE), T and B cell specific markers and synovial vascular endothelial growth factor (VEGF) were quantified by immunohistochemistry. Synovial levels of random mitochondrial DNA (mtDNA) mutations were assessed using Random Mutation Capture (RMC) assay. Results 4-HNE levels pre\\/post anti TNF-α therapy were inversely correlated with in vivo tpO2 (P < 0.008; r = -0.60). Biologic therapy responders showed a significantly reduced 4-HNE expression (P < 0.05). High 4-HNE expression correlated with high DAS28-CRP (P = 0.02; r = 0.53), tender joint count for 28 joints (TJC-28) (P = 0.03; r = 0.49), swollen joint count for 28 joints (SJC-28) (P = 0.03; r = 0.50) and visual analogue scale (VAS) (P = 0.04; r = 0.48). Strong positive association was found between the number of 4-HNE positive cells and CD4+ cells (P = 0.04; r = 0.60), CD8+ cells (P = 0.001; r = 0.70), CD20+ cells (P = 0.04; r = 0.68), CD68+ cells (P = 0.04; r = 0.47) and synovial VEGF expression (P = 0.01; r = 063). In patients whose in vivo tpO2 levels improved post treatment, significant reduction in mtDNA mutations and DAS28-CRP was observed (P < 0.05). In contrast in those patients whose tpO2 levels remained the same or reduced at T3, no significant changes for mtDNA mutations and DAS28-CRP were found. Conclusions High levels of synovial oxidative stress and mitochondrial mutation burden are strongly associated with low in vivo oxygen tension and synovial inflammation. Furthermore these significant mitochondrial genome alterations are rescued following successful anti TNF

  6. Brimonidine blocks glutamate excitotoxicity-induced oxidative stress and preserves mitochondrial transcription factor a in ischemic retinal injury.

    Directory of Open Access Journals (Sweden)

    Dongwook Lee

    Full Text Available Glutamate excitotoxicity-induced oxidative stress have been linked to mitochondrial dysfunction in retinal ischemia and optic neuropathies including glaucoma. Brimonindine (BMD, an alpha 2-adrenergic receptor agonist, contributes to the neuroprotection of retinal ganglion cells (RGCs against glutamate excitotoxicity or oxidative stress. However, the molecular mechanisms of BMD-associated mitochondrial preservation in RGC protection against glutamate excitotoxicity-induced oxidative stress following retinal ischemic injury remain largely unknown. Here, we tested whether activation of alpha 2 adrenergic receptor by systemic BMD treatment blocks glutamate excitotoxicity-induced oxidative stress, and preserves the expression of mitochondrial transcription factor A (Tfam and oxidative phosphorylation (OXPHOS complex in ischemic retina. Sprague-Dawley rats received BMD (1 mg/kg/day or vehicle (0.9% saline systemically and then transient ischemia was induced by acute intraocular pressure elevation. Systemic BMD treatment significantly increased RGC survival at 4 weeks after ischemia. At 24 hours, BMD significantly decreased Bax expression but increased Bcl-xL and phosphorylated Bad protein expression in ischemic retina. Importantly. BMD significantly blocked the upregulations of N-methyl-D-aspartate receptors 1 and 2A protein expression, as well as of SOD2 protein expression in ischemic retina at 24 hours. During the early neurodegeneration following ischemic injury (12-72 hours, Tfam and OXPHOS complex protein expression were significantly increased in vehicle-treated retina. At 24 hours after ischemia, Tfam immunoreactivity was increased in the outer plexiform layer, inner nuclear layer, inner plexiform layer and ganglion cell layer. Further, Tfam protein was expressed predominantly in RGCs. Finally, BMD preserved Tfam immunoreactivity in RGCs as well as Tfam/OXPHOS complex protein expression in the retinal extracts against ischemic injury. Our

  7. Expression of Heparin-Binding EGF-Like Growth Factor (HB-EGF) in Bovine Endometrium: Effects of HB-EGF and Interferon-τ on Prostaglandin Production.

    Science.gov (United States)

    Takatsu, K; Acosta, T J

    2015-06-01

    Heparin-binding EGF-like growth factor (HB-EGF) regulates several cell functions by binding to its membrane receptor (ErbB1 and ErbB4). Experimental evidences suggest that HB-EGF, prostaglandins (PGs) and interferon-τ (IFN-τ) regulate uterine function for pregnancy establishment in ruminants. In this study, the mRNA expressions of HB-EGF, ErbB1 and ErbB4 in bovine endometrium and the effects of HB-EGF and IFN-τ on PGE2 and PGF2-α production by endometrial cells were investigated. RT-PCR analysis revealed that HB-EGF mRNA was greater at the mid-luteal stage than at the early and regressed luteal stages (p HB-EGF, ErbB1 and ErbB4 mRNA in epithelial cells (p HB-EGF did not affect PGF2-α or PGE2 production by bovine endometrial epithelial cells, but increased PGF2-α and PGE2 production by bovine endometrial stromal cells (p HB-EGF-stimulated PGF2-α (p  0.05) production by stromal cells. These results indicate that HB-EGF and its receptors expression changed in bovine endometrium throughout the oestrous cycle. IFN-τ increased their expression in cultured endometrial cells. HB-EGF and IFN-τ have the ability to regulate PGs production by stromal cells and therefore may play a role in the local regulation of uterine function at the time of implantation in cattle. © 2015 Blackwell Verlag GmbH.

  8. Identification and characterization of insulin-like growth factor I (IGF-I) and IGF-II/mannose-6-phosphate receptors in bovine adrenal cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.M.; Kiess, W.; Beikler, T.; Simmler, P.; Reichel, M.; Adelmann, B.; Kessler, U.; Engelhardt, D. (Univ. of Munich (Germany))

    1994-03-01

    The authors have identified and characterized insulin-like growth factor I (IGF-I) and IGF-II/mannose-6-phosphate (IGF-II/M6P) receptors in bovine adrenal cells. Iodine-125-labelled IGF-I ([[sup 125]I]IGF-I) binding was characteristic of the IGF-I receptor, and binding kinetics as well as receptor densities were similar in cortical and medullary membranes. Scatchard analysis of [[sup 125]I]IGF-I binding to cultured adrenocortical cells showed a single class of high-affinity binding sites with a K[sub d] of 1.4 nmol/l and an average of 150 000 binding sites/cell. Affinity cross-linking experiments displayed a band at an apparent molecular weight of 135 kD, corresponding to the size of the [alpha]-subunit of the IGF-I receptor. In analogy, the binding of [[sup 125]I]IGF-II to bovine adrenal membranes was characteristic of the IGF-II/M6P receptor and no differences between cortical and medullary membrane fractions were found. Scatchard analysis revealed a single class of high-affinity binding sites in adrenocortical cells with a K[sub d] of 1.1 nmol/l and an average of 280 000 binding sites/cell. The identity of the IGF-II/M6P receptor was confirmed by western blotting of adrenocortical membranes with an anti-IGF-II/M6P receptor antibody and by affinity cross-linking of adrenocortical cells with labeled IGF-II. In conclusion, the authors have identified and characterized IGF-I and IGF-II/M6P receptors in bovine adrenocortical as well as medullary cells. In both regions of the bovine adrenal gland the IGF-II/M6P receptor is much more abundant than the IGF-I receptor. 27 refs., 4 figs.

  9. Factors affecting the outcome of in vitro bovine embryo production using ovum pick-up-derived cumulus oocyte complexes

    NARCIS (Netherlands)

    Merton, J.S.

    2013-01-01

    Optimization of bovine ovum pick up (OPU) followed by in vitro embryo production (IVP) has been driven by the desire of both beef and dairy cattle breeders to enhance genetic improvement. The work presented in this thesis focuses on optimizing the efficiency and efficacy of the OPU-IVP program.

  10. Increased pulmonary secretion of tumor necrosis factor-alpha in calves experimentally infected with bovine respiratory syncytial virus

    DEFF Research Database (Denmark)

    Rontved, C. M.; Tjørnehøj, Kirsten; Viuff, B.

    2000-01-01

    Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease among calves in the Danish cattle industry. An experimental BRSV infection model was used to study the pathogenesis of the disease in calves. Broncho alveolar lung lavage (BAL) was performed on 28 Jersey calves...

  11. The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in Prefrontal Cortex.

    Science.gov (United States)

    Jeanneteau, Freddy; Barrère, Christian; Vos, Mariska; De Vries, Carlie J M; Rouillard, Claude; Levesque, Daniel; Dromard, Yann; Moisan, Marie-Pierre; Duric, Vanja; Franklin, Tina C; Duman, Ronald S; Lewis, David A; Ginsberg, Stephen D; Arango-Lievano, Margarita

    2018-02-07

    The energetic costs of behavioral chronic stress are unlikely to be sustainable without neuronal plasticity. Mitochondria have the capacity to handle synaptic activity up to a limit before energetic depletion occurs. Protective mechanisms driven by the induction of neuronal genes likely evolved to buffer the consequences of chronic stress on excitatory neurons in prefrontal cortex (PFC), as this circuitry is vulnerable to excitotoxic insults. Little is known about the genes involved in mitochondrial adaptation to the buildup of chronic stress. Using combinations of genetic manipulations and stress for analyzing structural, transcriptional, mitochondrial, and behavioral outcomes, we characterized NR4A1 as a stress-inducible modifier of mitochondrial energetic competence and dendritic spine number in PFC. NR4A1 acted as a transcription factor for changing the expression of target genes previously involved in mitochondrial uncoupling, AMP-activated protein kinase activation, and synaptic growth. Maintenance of NR4A1 activity by chronic stress played a critical role in the regressive synaptic organization in PFC of mouse models of stress (male only). Knockdown, dominant-negative approach, and knockout of Nr4a1 in mice and rats (male only) protected pyramidal neurons against the adverse effects of chronic stress. In human PFC tissues of men and women, high levels of the transcriptionally active NR4A1 correlated with measures of synaptic loss and cognitive impairment. In the context of chronic stress, prolonged expression and activity of NR4A1 may lead to responses of mitochondria and synaptic connectivity that do not match environmental demand, resulting in circuit malfunction between PFC and other brain regions, constituting a pathological feature across disorders. SIGNIFICANCE STATEMENT The bioenergetic cost of chronic stress is too high to be sustainable by pyramidal prefrontal neurons. Cellular checkpoints have evolved to adjust the responses of mitochondria and

  12. Comparison of the prevalence and incidence of infection with bovine virus diarrhoea virus (BVDV) in Denmark and Michigan and association with possible risk factors

    DEFF Research Database (Denmark)

    Houe, H.; Baker, J.C.; Maes, R.K.

    1995-01-01

    Based on 2 previous surveys on the occurrence of infection with bovine virus diarrhoea virus (BVDV) in Danish and Michigan dairy herds, the prevalence and incidence of the infection were compared. The presence of certain possible risk factors for the occurrence of infection in the 2 areas were...... purchased more than 40 animals within recent 3 1/2-4 years were significantly associated with presence of PI animals in the dairy herds (p = 0.01) when tested by the Mantel-Haenszel chi 2. Using multivariable logistic regression, the occurrence of PI animals was found to be significantly related...

  13. An 8-year longitudinal sero-epidemiological study of bovine leukaemia virus (BLV) infection in dairy cattle in Turkey and analysis of risk factors associated with BLV seropositivity.

    Science.gov (United States)

    Şevik, Murat; Avcı, Oğuzhan; İnce, Ömer Barış

    2015-04-01

    Enzootic bovine leukosis (EBL) which is caused by bovine leukaemia virus (BLV) has an important economic impact on dairy herds due to reduced milk production and restrictions on livestock exports. This study was conducted to determine the BLV infection status in Central Anatolia Region of Turkey, an important milk production centre, and to examine the risk factors such as purchasing cattle, increasing cattle age, cattle breed and herd size associated with transmission of BLV infection. To estimate the rate of BLV infection, a survey for specific antibodies in 28,982 serum samples from animals belonging to 1116 different herds situated in Central Anatolia Region of Turkey were tested from January 2006 to December 2013. A generalized mixed linear model was used to evaluate the risk factors that influenced BLV seroprevalence. Antibodies against BLV were detected in 431 (2.28 %) of 18,822 Holstein and 29 (0.28 %) of 10,160 Brown Swiss cows. Among 1116 herds, 132 herds (11.82 %) had one or more positive animals. Also results of our study show that the prevalence of BLV infection increased from 2006 to 2011, and it tends to reduce with BLV control programme. Furthermore, we found positive associations between percentage of seropositive animal and increasing cattle age, herd size, cattle breed and purchased cattle. Age-specific prevalence showed that BLV prevalence increased with age. These factors should be taken into consideration for control of BLV infection.

  14. Comparison of anti-pathogenic activities of the human and bovine milk N-glycome: Fucosylation is a key factor.

    Science.gov (United States)

    Wang, Wen-Li; Wang, Wei; Du, Ya-Min; Wu, Hong; Yu, Xiao-Bo; Ye, Ke-Ping; Li, Chun-Bao; Jung, Yong-Sam; Qian, Ying-Juan; Voglmeir, Josef; Liu, Li

    2017-11-15

    Health differences between breast- and formula-fed infants have long been apparent despite great efforts in improving the function of baby formula by adjusting the levels of various milk nutritional components. However, the N-glycome, a type of oligosaccharide decorating a diverse range of proteins, has not been extensively studied in milk regarding its biological function. In this study, the anti-pathogenic function of the enzymatically released human and bovine milk N-glycome against 5 food-borne pathogens was investigated. The human milk N-glycome showed significantly higher activity than bovine milk. After enzymatic defucosylation of human and bovine N-glycan pool, UHPLC peak shifts were observed in both suggesting heavy fucosylation of samples. Furthermore, the anti-pathogenic activity of the defulosylated N-glycome decreased significantly, and the significance of functional difference between the two almost disappeared. This result indicates the essential role of fucosylation for the anti-pathogenic function of the milk N-glycome, especially in human milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Upstream Stimulating Factors 1 and 2 Enhance Transcription from the Placenta-Specific Promoter 1.1 of the Bovine Cyp19 Gene

    Directory of Open Access Journals (Sweden)

    Vanselow Jens

    2010-01-01

    Full Text Available Abstract Background Placenta-derived oestrogens have an impact on the growth and differentiation of the trophoblast, and are involved in processes initiating and facilitating birth. The enzyme that converts androgens into oestrogens, aromatase cytochrome P450 (P450arom, is encoded by the Cyp19 gene. In the placenta of the cow, expression of Cyp19 relies on promoter 1.1 (P1.1. Our recent studies of P1.1 in vitro and in a human trophoblast cell line (Jeg3 revealed that interactions of placental nuclear protein(s with the E-box element at position -340 are required for full promoter activity. The aim of this work was to identify and characterise the placental E-box (-340-binding protein(s (E-BP as a step towards understanding how the expression of Cyp19 is regulated in the bovine placenta. Results The significance of the E-box was confirmed in cultured primary bovine trophoblasts. We enriched the E-BP from placental nuclear extracts using DNA-affinity Dynabeads and showed by Western blot analysis and supershift EMSA experiments that the E-BP is composed of the transcription factors upstream stimulating factor (USF 1 and USF2. Depletion of the USFs by RNAi and expression of a dominant-negative USF mutant, were both associated with a significant decrease in P1.1-dependent reporter gene expression. Furthermore, scatter plot analysis of P1.1 activity vs. USF binding to the E-box revealed a strong positive correlation between the two parameters. Conclusion From these results we conclude that USF1 and USF2 are activators of the bovine placenta-specific promoter P1.1 and thus act in the opposite mode as in the case of the non-orthologous human placenta-specific promoter.

  16. In vitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone.

    Science.gov (United States)

    Araújo, V R; Gastal, M O; Wischral, A; Figueiredo, J R; Gastal, E L

    2014-12-01

    The aim of this study was to evaluate the development and estradiol production of isolated bovine secondary follicles in two-dimensional (2D, experiment 1) and three-dimensional (3D using alginate, experiment 2) long-term culture systems in the absence (control group; only α-MEM(+)) or presence of vascular endothelial growth factor (VEGF), insulin-like growth factor-1, or GH alone, or a combination of all. A total of 363 isolated secondary follicles were cultured individually for 32 days at 38.5 °C in 5% CO2 in a humidified incubator with addition of medium (5 μL) every other day. In 2D culture system, follicular growth and antrum formation rates were higher (P 0.05). In summary, this study demonstrated that the benefits of using a certain type of medium supplement depended on the culture system (2D vs. 3D). Vascular endothelial growth factor was an effective supplement for the in vitro culture of bovine secondary follicles when the 2D culture system was used, whereas GH only affected estradiol production using the 3D culture system. This study sheds light on advancements in methodology to facilitate subsequent studies on bovine preantral follicle development. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Ciliary neurotrophic factor reverses aberrant mitochondrial bioenergetics through the JAK/STAT pathway in cultured sensory neurons derived from streptozotocin-induced diabetic rodents.

    Science.gov (United States)

    Chowdhury, Subir Roy; Saleh, Ali; Akude, Eli; Smith, Darrell R; Morrow, Dwane; Tessler, Lori; Calcutt, Nigel A; Fernyhough, Paul

    2014-07-01

    Mitochondrial dysfunction occurs in sensory neurons and contributes to diabetic neuropathy. Ciliary neurotrophic factor (CNTF) stimulates axon regeneration in type 1 diabetic rodents and prevents deficits in axonal caliber, nerve conduction, and thermal sensation. We tested the hypothesis that CNTF enhances sensory neuron function in diabetes through JAK/STAT (Janus kinase/signal transducers and activators of transcription) signaling to normalize impaired mitochondrial bioenergetics. The effect of CNTF on gene expression and neurite outgrowth of cultured adult dorsal root ganglia (DRG) sensory neurons derived from control and streptozotocin (STZ)-induced diabetic rodents was quantified. Polarization status and bioenergetics profile of mitochondria from cultured sensory neurons were determined. CNTF treatment prevented reduced STAT3 phosphorylation (Tyr 705) in DRG of STZ-diabetic mice and also enhanced STAT3 phosphorylation in rat DRG cultures. CNTF normalized polarization status of the mitochondrial inner membrane and corrected the aberrant oligomycin-induced mitochondrial hyperpolarization in axons of diabetic neurons. The mitochondrial bioenergetics profile demonstrated that spare respiratory capacity and respiratory control ratio were significantly depressed in sensory neurons cultured from STZ-diabetic rats and were corrected by acute CNTF treatment. The positive effects of CNTF on neuronal mitochondrial function were significantly inhibited by the specific JAK inhibitor, AG490. Neurite outgrowth of sensory neurons from age-matched control and STZ-induced diabetic rats was elevated by CNTF and blocked by AG490. We propose that CNTF's ability to enhance axon regeneration and protect from fiber degeneration in diabetes is associated with its targeting of mitochondrial function and improvement of cellular bioenergetics, in part, through JAK/STAT signaling.

  18. The Insulin-like Growth Factor-I–mTOR Signaling Pathway Induces the Mitochondrial Pyrimidine Nucleotide Carrier to Promote Cell Growth

    NARCIS (Netherlands)

    Floyd, Suzanne; Favre, Cedric; Lasorsa, Francesco M.; Leahy, Madeline; Trigiante, Giuseppe; Stroebel, Philipp; Marx, Alexander; Loughran, Gary; O’Callaghan, Katie; Marobbio, Carlo M.T.; Slotboom, Dirk J.; Kunji, Edmund R.S.; Palmieri, Ferdinando; O’Connor, Rosemary

    2007-01-01

    The insulin/insulin-like growth factor (IGF) signaling pathway to mTOR is essential for the survival and growth of normal cells and also contributes to the genesis and progression of cancer. This signaling pathway is linked with regulation of mitochondrial function, but how is incompletely

  19. Clinical grade cultivation of human Schwann cell, by the using of human autologous serum instead of fetal bovine serum and without growth factors.

    Science.gov (United States)

    Aghayan, Hamid-Reza; Arjmand, Babak; Norouzi-Javidan, Abbas; Saberi, Hooshang; Soleimani, Masoud; Tavakoli, Seyed Amir-Hossein; Khodadadi, Abbas; Tirgar, Niloufar; Mohammadi-Jahani, Fereshteh

    2012-06-01

    Clinical grade cultivation of human schwann cell by the utilization of human autologous serum instead of fetal bovine serum, and also avoiding any growth factors, can increase safety level of this procedure in cases of clinical cell transplantation. The aim of this study was demonstration of the feasibility of clinical grade schwann cell cultivation. In this experimental study after obtaining consent from close relatives we harvested 10 sural nerves from brain death donors and then cultured in 10 seperated culture media plus autologous serum. We also prepared autologous serum from donor's whole blood. Then cultured cells were evaluated by S100 antibody staining for both morphology and purity. Cell purity range was from 97% to 99% (mean=98.11 ± 0.782%). Mean of the cell count was 14,055.56 ± 2,480.479 per micro liter. There was not significant correlation between cell purity and either the culture period or the age of donors (P>0.05). The spearman correlation coefficient for the cell purity with the period or the age of donors was 0.21 and 0.09, respectively. We demonstrated the feasibility of clinical grade schwann cell cultivation by the using of human autologous serum instead of fetal bovine serum and also without the using of growth factors. We also recommended all cell preparation facilities to adhere to the GMP and other similar quality disciplines especially in the preparation of clinically-used cell products.

  20. Investigation of the prevalence of bovine tuberculosis and risk ...

    African Journals Online (AJOL)

    Investigation of the prevalence of bovine tuberculosis and risk factors for human infection with bovine tuberculosis among dairy and non-dairy farming neighbour households in Dagoretti Division, Nairobi, Kenya.

  1. Sero prevalence and risk factors associated with bovine herpes virus type 1 (BHV1) infection in non-vaccinated cattle herds in Andalusia (South of Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, M. A.; Arenas-Casas, A.; Carbonero-Martinez, A.; Borge-Rodriguez, C.; Garcia-Bocanegra, I.; Maldonado, J. L.; Gomez-Pacheco, J. M.; Perea-Remujo, J. A.

    2009-07-01

    An epidemiological and serological survey of bovine herpes virus 1 (BHV1) infection was conducted in Andalusia from January to April of 2000. A total of 4,035 blood samples were collected from 164 herds. A questionnaire, which included variables potentially associated with infection, was filled out for each herd. Serum samples were obtained to identify specific BHV1 antibodies and were tested using a blocking ELISA test. The observed crude odds ratio (OR) (estimate of the chance of a particular event occurring in an exposed group in relation to its rate of occurrence in a nonexposed group) for vaccination is 9.8 (95 % confidence interval: 8.3-11.7). The vaccinated group comprised large dairy farms. This study can only be considered as representative of unvaccinated, small to medium size dairy farms and beef farms in Andalusia. True sero prevalence of the BHV1 virus in non vaccinated bovine populations in Andalusia reached 45.7% of individuals and 70.4% of herds. Risk factors for BHV1 infection in bovine Andalusian non vaccinated herds are nonexistence of specific cattle infrastructure (OR: 3.07), beef crossbreeding (OR: 7.90), affiliation with Livestock Health Defence Associations (OR: 2.57), a history of reproductive disorders (OR: 8.39), external replacement (OR: 2.74), proximity to an urban area (OR: 6.11) and herd size (41.98). To control for confounding effects, a binomial logistic regression model was developed. From this regression, BHV1 infections are concentrated in large herds, with external replacement, located close to urban areas. This is the first published report on BHV1 prevalence in the South of Spain. (Author) 14 refs.

  2. Purification and biochemical characterization of a fibroblast growth factor-binding protein (FGF-BP) from the lactoferrin fraction of bovine milk.

    Science.gov (United States)

    Kawakami, Akio; Hirayama, Kyoko; Kawakami, Fumitaka; Kawakami, Hiroshi; Fujihara, Michio; Ohtsuki, Kenzo

    2006-03-01

    By means of gel filtration on a TSK-gel HPLC column in the presence of 8 M urea, a 37-kDa polypeptide (p37) was completely separated from lactoferrin (LF) in the heparin HII fraction of the partially purified LF fraction prepared from bovine milk. Purified p37 was identified as a fibroblast growth factor-binding protein (FGF-BP), since its N-terminal 14 amino acid residues (KKEGRNRRGSKASA) were 100% identical to the corresponding sequence of bovine FGF-BP. It was found, in vitro, that (i) p37 had a higher binding affinity with bFGF than bLF; (ii) p37 functioned as a phosphate acceptor for at least three protein kinases (PKA, CK1 and CK2); (iii) bLF stimulated about 3-fold the PKA-mediated phosphorylation of p37, but suppressed its phosphorylation by CK1; and (iv) galloyl pedunculagin was an effective inhibitor for the phosphorylation of p37 by PKA and CK1. Furthermore, the physiological correlation between p37 and bLF may be regulated through specific phosphorylation of p37 by PKA, since p37 fully phosphorylated by PKA did not bind to bLF in vitro. The sulfatide-induced conformational changes in p37 enabled the phosphorylation of p37 by CK1 and also reduced its ability to bind with bLF in vitro. From these results presented here, it is concluded that (i) p37 (FGF-BP) may be tightly associated with bLF in bovine milk; and (ii) the physiological correlation between p37 and bLF may be regulated by the PKA-mediated full phosphorylation of p37 or by the direct binding of sulfatide to p37 in vivo.

  3. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  4. 77 FR 29914 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-05-21

    ... RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products AGENCY... live bovines and products derived from bovines with regard to bovine spongiform encephalopathy. This... products to revise the conditions for the importation of live bovines and products derived from bovines...

  5. Serological survey of bovine brucellosis in Fulani nomadic cattle breeds (Bos indicus) of North-central Nigeria: Potential risk factors and zoonotic implications.

    Science.gov (United States)

    Alhaji, N B; Wungak, Y S; Bertu, W J

    2016-01-01

    A cross sectional study was conducted to investigate seroprevalence and associated risk factors of bovine brucellosis in Fulani nomadic herds in the 3 agro-ecological zones of Niger State, North-central Nigeria between January and August 2013. A total of 672 cattle in 113 herds were screened for Brucella antibodies using Rose Bengal Plate Test (RBPT) and confirmed by Lateral flow Assay (LFA). Data on herd characteristics and zoonotic factors were collected using structured questionnaire administered on Fulani herd owners. Factors associated with Brucella infection were tested using Chi-square test and multivariable logistic model. The overall cattle-level seroprevalence was 1.9% (95% CI: 1.1-3.2) with highest in agro-zone C (3.2%). Herd-level seroprevalence was 9.7% (95% CI: 5.23-16.29) and highest in agro-zone C (13.5%). Sex and agro-ecological zones were significantly (Pbrucellosis occurrence. Inhalation of droplets from milk of infected cows, and drinking raw milk were less likely [OR 0.27; 95% CI: 0.09-0.82 and OR 0.27; 95% CI: 0.08-0.99, respectively] not to predisposed to brucellosis in humans. Eating infected raw meat, and contact with infected placenta were more likely [OR 7.49; 95% CI: 2.06-28.32 and OR 5.74; 95% CI: 1.78-18.47, respectively] to be risks for the disease in humans. These results highlighted the important risk factors for bovine brucellosis in Fulani herds. Thus, brucellosis control programs which take these factors into consideration will be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mitochondrial biogenesis in brown adipose tissue is associated with differential expression of transcription regulatory factors

    Czech Academy of Sciences Publication Activity Database

    Villena, J. A.; Carmona, M. C.; Rodriguez de la Concepción, M.; Rossmeisl, Martin; Vinas, O.; Mampel, T.; Iglesias, R.; Giralt, M.; Villarroya, F.

    2002-01-01

    Roč. 59, č. 11 (2002), s. 1934-1944 ISSN 1420-682X Grant - others:Ministerio de Ciencia y Tecnología(ES) PM98.0188 Institutional research plan: CEZ:AV0Z5011922 Keywords : brown adipose tissue * mitochondria * transcription factors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.259, year: 2002

  7. Antiviral effects of bovine interferons on bovine respiratory tract viruses.

    OpenAIRE

    Fulton, R W; Downing, M M; Cummins, J M

    1984-01-01

    The antiviral effects of bovine interferons on the replication of bovine respiratory tract viruses were studied. Bovine turbinate monolayer cultures were treated with bovine interferons and challenged with several bovine herpesvirus 1 strains, bovine viral diarrhea virus, parainfluenza type 3 virus, goat respiratory syncytial virus, bovine respiratory syncytial virus, bovine adenovirus type 7, or vesicular stomatitis virus. Treatment with bovine interferons reduced viral yield for each of the...

  8. Mitochondrial vasculopathy.

    Science.gov (United States)

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-05-26

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications.

  9. Requirement of FADD, NEMO, and BAX/BAK for Aberrant Mitochondrial Function in Tumor Necrosis Factor Alpha-Induced Necrosis▿

    Science.gov (United States)

    Irrinki, Krishna M.; Mallilankaraman, Karthik; Thapa, Roshan J.; Chandramoorthy, Harish C.; Smith, Frank J.; Jog, Neelakshi R.; Gandhirajan, Rajesh Kumar; Kelsen, Steven G.; Houser, Steven R.; May, Michael J.; Balachandran, Siddharth; Madesh, Muniswamy

    2011-01-01

    Necroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis factor alpha (TNF-α)-induced necroptosis requires the adaptor proteins FADD and NEMO. FADD was found to mediate formation of the TNF-α-induced pronecrotic RIP1-RIP3 kinase complex, whereas the IκB Kinase (IKK) subunit NEMO appears to function downstream of RIP1-RIP3. Interestingly, loss of RelA potentiated TNF-α-dependent necroptosis, indicating that NEMO regulates necroptosis independently of NF-κB. Using both pharmacologic and genetic approaches, we demonstrate that the overexpression of antioxidants alleviates ROS elevation and necroptosis. Finally, elimination of BAX and BAK or overexpression of Bcl-xL protects cells from necroptosis at a later step. These findings provide evidence that mitochondria play an amplifying role in inflammation-induced necroptosis. PMID:21746883

  10. PREVENTION OF PHOSPHATE - INDUCED MITOCHONDRIAL SWELLING

    Science.gov (United States)

    Kroll, Arnold J.; Kuwabara, Toichiro

    1962-01-01

    The prevention of phosphate-induced mitochondrial swelling in the whole retina of the rabbit was studied with the electron microscope. It was found that a mixture of ATP, Mg++, and bovine serum albumin protected the mitochondria in vitro. This finding confirmed the results obtained spectrophotometrically with isolated rat liver mitochondria by Lehninger. PMID:13927020

  11. Evidence for sub-haplogroup h5 of mitochondrial DNA as a risk factor for late onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Aurelia Santoro

    Full Text Available BACKGROUND: Alzheimer's Disease (AD is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. METHODOLOGY/PRINCIPAL FINDINGS: We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23 in particular for females (OR=2.19, 95% CI:1.06-4.51 and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031, and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%. The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052 of sporadic mutations in tRNA and rRNA genes when compared with controls. CONCLUSIONS: Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and

  12. [Research on potential interaction between mitochondrial DNA copy number and related factors on risk of hypertension in coal miners].

    Science.gov (United States)

    Guo, J Y; Lei, L J; Qiao, N; Fan, G Q; Sun, C M; Huang, J J; Wang, T

    2017-01-10

    Objective: To investigate the effects of mitochondrial DNA (mtDNA) copy number in peripheral blood and related factors on the risk of hypertension in coal miners. Methods: A case-control study was conducted in 378 coal miners with hypertension and 325 healthy coal miners recruited from Datong Coal Mine Group. A standard questionnaire was used to collect their general information, such as demographic characteristics, habits and occupational history. Fluorescence quantitative PCR was performed to detect the copy number of mtDNA. Logistic regression model was applied for identifying the related risk factors of hypertension and analyzing the interaction between mtDNA copy number and risk factors. Results: The prevalence of hypertension of high mtDNA copy number was lower than mtDNA copy numberin 0-5.67 group, but the difference was not statistically significant (P=0.414). Alcohol drinking (OR=1.80, 95% CI: 1.26-2.56), family history of hypertension (OR=1.74, 95% CI: 1.20- 2.50), work shifts (OR=0.69, 95% CI: 0.48-0.99), education level (P=0.012) and family monthly income level (P=0.001) were related to the prevalence of hypertension. There were potential interactions between mtDNA copy number and alcohol drinking, family monthly income level, family history of hypertension, respectively. Alcohol drinking was a risk factor for hypertension [1.77 (1.25-2.50)]. Potential interactions between mtDNA copy number and alcohol drinking reduced the risk of hypertension (OR=1.20, 95% CI: 1.07-1.35). Family history of hypertension was a risk factor for hypertension [1.81(1.26-2.59)]. Potential interactions between mtDNA copy number and family history of hypertension reduced the risk of hypertension (OR=1.24, 95%CI: 1.09-1.41). Family monthly income level was a protect factor for hypertension [0.55(0.46-0.66)]. Potential interactions between mtDNA copy number and family monthly income level increased the protection role of hypertension (OR=0.90, 95% CI: 0.86-0.94). Conclusion: mt

  13. Genetic risk factors affecting mitochondrial function are associated with kidney disease in people with Type 1 diabetes

    DEFF Research Database (Denmark)

    Swan, E J; Salem, R M; Sandholm, N

    2015-01-01

    AIM: To evaluate the association with diabetic kidney disease of single nucleotide polymorphisms (SNPs) that may contribute to mitochondrial dysfunction. METHODS: The mitochondrial genome and 1039 nuclear genes that are integral to mitochondrial function were investigated using a case (n = 823...... individuals with diabetic kidney disease) vs. control (n = 903 individuals with diabetes and no renal disease) approach. All people included in the analysis were of white European origin and were diagnosed with Type 1 diabetes before the age of 31 years. Replication was conducted in 5093 people with similar...... phenotypes to those of the discovery collection. Association analyses were performed using the plink genetic analysis toolset, with adjustment for relevant covariates. RESULTS: A total of 25 SNPs were evaluated in the mitochondrial genome, but none were significantly associated with diabetic kidney disease...

  14. Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis.

    Science.gov (United States)

    Kuzmenko, Anton; Derbikova, Ksenia; Salvatori, Roger; Tankov, Stoyan; Atkinson, Gemma C; Tenson, Tanel; Ott, Martin; Kamenski, Piotr; Hauryliuk, Vasili

    2016-01-05

    The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system's components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.

  15. Mitochondrial Myopathy

    Science.gov (United States)

    ... symptoms of mitochondrial myopathies include muscle weakness or exercise intolerance, heart failure or rhythm disturbances, dementia, movement disorders, stroke-like episodes, deafness, blindness, droopy ...

  16. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease

    Directory of Open Access Journals (Sweden)

    Christopher A Powell

    2015-03-01

    Full Text Available The human mitochondrial genome (mtDNA encodes twenty-two tRNAs (mt-tRNAs that are necessary for the intraorganellar translation of the thirteen mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5’ and 3’ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7 % of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes, leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nuclear genes coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes.

  17. Detection of antibodies and risk factors for infection with bovine respiratory syncytial virus and parainfluenza virus-3 in beef cattle of Yucatan, Mexico.

    Science.gov (United States)

    Solís-Calderón, J J; Segura-Correa, J C; Aguilar-Romero, F; Segura-Correa, V M

    2007-11-15

    We collected blood samples from 756 > or =2-year-old cattle in 54 herds in Yucatan, Mexico, and used all of those to determine the antibody seroprevalences (in an indirect enzyme-linked inmunosorbance assay) to bovine respiratory syncytial virus (BRSV) and risk factors for animal-level seropositivity. We used 728 of the same samples (from 52 of the same herds) to do the same for parainfluenza virus-3 (PIV3). Cattle were selected by two-stage cluster sampling. Herd-level and animal-level risk factors were obtained through a personal interview. We analyzed the data by using a random-effects multivariable logistic regression model for clustered observations. All herds had at least 3 (BRSV) or 5 (PIV3) seropositive animals. The animal-level true seroprevalences were: 90.8% (86.5, 95.2%) and 85.6% (80.9, 90.4%) for BRSV and PIV3, respectively. Animals in large herds and old animals had the highest odds of being seropositives to BRSV, and those risk factors plus animals born on the farm for PIV3 infection.

  18. The Arabidopsis Tail-Anchored Protein PEROXISOMAL AND MITOCHONDRIAL DIVISION FACTOR1 Is Involved in the Morphogenesis and Proliferation of Peroxisomes and Mitochondria[C][W

    Science.gov (United States)

    Aung, Kyaw; Hu, Jianping

    2011-01-01

    Peroxisomes and mitochondria are multifunctional eukaryotic organelles that are not only interconnected metabolically but also share proteins in division. Two evolutionarily conserved division factors, dynamin-related protein (DRP) and its organelle anchor FISSION1 (FIS1), mediate the fission of both peroxisomes and mitochondria. Here, we identified and characterized a plant-specific protein shared by these two types of organelles. The Arabidopsis thaliana PEROXISOMAL and MITOCHONDRIAL DIVISION FACTOR1 (PMD1) is a coiled-coil protein tethered to the membranes of peroxisomes and mitochondria by its C terminus. Null mutants of PMD1 contain enlarged peroxisomes and elongated mitochondria, and plants overexpressing PMD1 have an increased number of these organelles that are smaller in size and often aggregated. PMD1 lacks physical interaction with the known division proteins DRP3 and FIS1; it is also not required for DRP3’s organelle targeting. Affinity purifications pulled down PMD1’s homolog, PMD2, which exclusively targets to mitochondria and plays a specific role in mitochondrial morphogenesis. PMD1 and PMD2 can form homo- and heterocomplexes. Organelle targeting signals reside in the C termini of these proteins. Our results suggest that PMD1 facilitates peroxisomal and mitochondrial proliferation in a FIS1/DRP3-independent manner and that the homologous proteins PMD1 and PMD2 perform nonredundant functions in organelle morphogenesis. PMID:22147290

  19. Molecular Regulation of the Mitochondrial F1Fo-ATPsynthase: Physiological and Pathological Significance of the Inhibitory Factor 1 (IF 1

    Directory of Open Access Journals (Sweden)

    Danilo Faccenda

    2012-01-01

    Full Text Available In mammals, the mitochondrial F1Fo-ATPsynthase sets out the energy homeostasis by producing the bulk of cellular ATP. As for every enzyme, the laws of thermodynamics command it; however, it is privileged to have a dedicated molecular regulator that controls its rotation. This is the so-called ATPase Inhibitory Factor 1 (IF1 that blocks its reversal to avoid the consumption of cellular ATP when the enzyme acts as an ATP hydrolase. Recent evidence has also demonstrated that IF1 may control the alignment of the enzyme along the mitochondrial inner membrane, thus increasing the interest for the molecule. We conceived this review to outline the fundamental knowledge of the F1Fo-ATPsynthase and link it to the molecular mechanisms by which IF1 regulates its way of function, with the ultimate goal to highlight this as an important and possibly unique means to control this indispensable enzyme in both physiological and pathological settings.

  20. Polymorphisms in the mitochondrial ribosome recycling factor EF-G2mt/MEF2 compromise cell respiratory function and increase atorvastatin toxicity.

    Directory of Open Access Journals (Sweden)

    Sylvie Callegari

    Full Text Available Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the Elongation Factor Gene (EF-G 2, which has previously been shown to play a specific role in mitochondrial ribosome recycling. Using small interfering RNA (siRNA silencing of expression in human cell lines, we demonstrate that the EF-G2mt gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration. Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms (SNPs in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans.

  1. PREVALENCE OF BOVINE (1)

    African Journals Online (AJOL)

    BACKGROUND: Tuberculosis is caused by a number of Mycobacterium species, of which Mycobacterium bovis, causing 'bovine tuberculosis' is ... KEY WORDS: Mycobacterium bovis, Zoonosis, Holeta, Ethiopia causing 'bovine tuberculosis ..... isolation of infected animals in which communal grazing and watering practiced.

  2. Models of bovine babesiosis including juvenile cattle.

    Science.gov (United States)

    Saad-Roy, C M; Shuai, Zhisheng; van den Driessche, P

    2015-03-01

    Bovine Babesiosis in cattle is caused by the transmission of protozoa of Babesia spp. by ticks as vectors. Juvenile cattle (Bovine Babesiosis, rarely show symptoms, and acquire immunity upon recovery. Susceptibility to the disease varies between breeds of cattle. Models of the dynamics of Bovine Babesiosis transmitted by the cattle tick that include these factors are formulated as systems of ordinary differential equations. Basic reproduction numbers are calculated, and it is proved that if these numbers are below the threshold value of one, then Bovine Babesiosis dies out. However, above the threshold number of one, the disease may approach an endemic state. In this case, control measures are suggested by determining target reproduction numbers. The percentage of a particular population (for example, the adult bovine population) needed to be controlled to eradicate the disease is evaluated numerically using Columbia data from the literature.

  3. Occurrence and factors associated with bovine cysticercosis recorded in cattle at meat inspection in Denmark in 2004-2011

    DEFF Research Database (Denmark)

    Calvo Artavia, Francisco Fernando; Nielsen, Liza Rosenbaum; Dahl, J.

    2013-01-01

    were attributed to female gender. Increasing age at slaughter was also associated with high risk of BC. There may be overlaps between these effects in animals with multiple risk factors. Other underlying factors such as grazing patterns might explain the risk factors and attribution results found...... in this study. However, grazing practices are currently not recorded in the Danish cattle database. Therefore, animal level risk factors such as age and gender together with other risk factors such as grazing practices might be included as food chain information, required to be provided by the farmer prior...

  4. β-Catenin, a Transcription Factor Activated by Canonical Wnt Signaling, Is Expressed in Sensory Neurons of Calves Latently Infected with Bovine Herpesvirus 1.

    Science.gov (United States)

    Liu, Yilin; Hancock, Morgan; Workman, Aspen; Doster, Alan; Jones, Clinton

    2016-01-06

    Like many Alphaherpesvirinae subfamily members, bovine herpesvirus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons, the latency-related (LR)-RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch-mediated transcription, and stimulates neurite formation in cells expressing Notch. An LR mutant virus containing stop codons at the amino terminus of ORF2 does not reactivate from latency or replicate efficiently in certain tissues, indicating that LR gene products are important. In this study, β-catenin, a transcription factor activated by the canonical Wnt signaling pathway, was frequently detected in ORF2-positive trigeminal ganglionic neurons of latently infected, but not mock-infected, calves. Conversely, the lytic cycle regulatory protein (BoHV-1 infected cell protein 0, or bICP0) was not frequently detected in β-catenin-positive neurons in latently infected calves. During dexamethasone-induced reactivation from latency, mRNA expression levels of two Wnt antagonists, Dickkopf-1 (DKK-1) and secreted Frizzled-related protein 2 (SFRP2), were induced in bovine trigeminal ganglia (TG), which correlated with reduced β-catenin protein expression in TG neurons 6 h after dexamethasone treatment. ORF2 and a coactivator of β-catenin, mastermind-like protein 1 (MAML1), stabilized β-catenin protein levels and stimulated β-catenin-dependent transcription in mouse neuroblastoma cells more effectively than MAML1 or ORF2 alone. Neuroblastoma cells expressing ORF2, MAML1, and β-catenin were highly resistant to cell death following serum withdrawal, whereas most cells transfected with only one of these genes died. The Wnt signaling pathway interferes with neurodegeneration but promotes neuronal differentiation, suggesting that stabilization of β-catenin expression by ORF2 promotes neuronal survival and differentiation. Bovine herpesvirus 1 (BoHV-1) is an important pathogen of

  5. A common mitochondrial DNA variant and increased body mass index as associated factors for development of type 2 diabetes: Additive effects of genetic and environmental factors.

    Science.gov (United States)

    Liou, Chia-Wei; Lin, Tsu-Kung; Huei Weng, Hsu; Lee, Cheng-Feng; Chen, Tzu-Ling; Wei, Yau-Huei; Chen, Shang-Der; Chuang, Yao-Chung; Weng, Shao-Wen; Wang, Pei-Wen

    2007-01-01

    The suggested correlation between a T-to-C transition at the nucleotide 16189 in mitochondrial DNA (mtDNA) with increasing insulin resistance and adult-onset diabetes mellitus (DM) is debatable. Our study examined mtDNA from 462 subjects with type 2 diabetes (T2DM) and 592 normoglycemic controls (non-DM). Each participant's body mass index (BMI), fasting plasma glucose, fasting insulin concentration, insulin resistance index, and beta-cell function were measured. Sequencing for mtDNA, focusing on exploration of the hypervariable polycytosine tract within the control region, was also conducted in all subjects. Prevalence of the mtDNA 16189 variant was significantly different between DM and non-DM subjects (39.2% vs. 30.7% respectively; P = 0.004). Increased incidence of DM was noted in those harboring the 16189 variant compared with those lacking the variant (multivariate odds ratio, 1.38; 95% confidence interval, 1.07-1.80). Moreover, increased BMI was identified as an aggravating factor for development of DM in subjects harboring the variant. Odds ratio determinations yielded 2.14 in overweight and 4.63 in obese subjects harboring the variant in comparison with subjects without (1.83 in overweight and 2.16 in obese subjects). This is consistent with a progressively increased prevalence of the mtDNA 16189 variant in the non-DM groups with higher fasting insulin concentration, insulin resistance index, and beta-cell function (all P(trend) 16189 variant can influence development of T2DM. The demonstrated dynamic between the 16189 variant and increased BMI exemplify an additive effect of genetic and environmental factors on the pathogenesis of T2DM.

  6. Detection of antibodies and risk factors for infection with bovine respiratory syncytial virus and parainfluenza virus 3 in dual-purpose farms in Colima, Mexico.

    Science.gov (United States)

    Figueroa-Chávez, Daniel; Segura-Correa, José C; García-Márquez, Luís Jorge; Pescador-Rubio, Alfonso; Valdivia-Flores, Arturo Gerardo

    2012-10-01

    A cross-sectional study was carried out, from November 2007 to March 2008, to estimate the prevalence of and to determine risk factors associated with bovine syncytial respiratory virus (BRSV) and parainfluenza 3 virus (PIV3) in dual-purpose herds in Colima, México. One hundred and seventy-six sera from 33 herds for PIV3 and 232 sera from 44 herds for BRSV were used. Sera were analyzed by indirect ELISA for the detection of antibodies against BRSV and PIV3 in cattle herds to determine the seroprevalence of respiratory diseases. The apparent and true prevalences for PIV3 were 60.8% and 54.4% and for BRSV 52.2% and 50.8%, respectively. The percentage of herds showing at least one positive animal was 78.7% for PIV3, and 93.2% for BRSV. Age (≤ 12, 13-48, and >48 months old) and respiratory signs (no, yes) showed significant association (P < 0.05) with PIV3 and age with BRSV. This study showed that animals were exposed to both viruses and that age was the main risk factor. The need to establish new vaccination plans to effectively protect cattle against those infections in the state of Colima, Mexico is suggested.

  7. Etiology, antimicrobial susceptibility profile of Staphylococcus spp. and risk factors associated with bovine mastitis in the states of Bahia and Pernambuco

    Directory of Open Access Journals (Sweden)

    Carina C. Krewer

    2013-05-01

    Full Text Available The purpose of this paper was to study the etiology of mastitis, determine the antimicrobial susceptibility profile of Staphylococcus spp. and to identify the risk factors associated with infection in dairy cows in the states of Bahia and Pernambuco, Brazil. From the 2,064 milk samples analyzed, 2.6% were associated with cases of clinical mastitis and 28.2% with subclinical mastitis. In the microbiological culture, Staphylococcus spp. (49.1% and Corynebacterium spp. (35.3% were the main agents found, followed by Prototheca spp. (4.6% and Gram negative bacilli (3.6%. In the antimicrobial susceptibility testing, all 218 Staphylococcus spp. were susceptible to rifampicin and the least effective drug was amoxicillin (32.6%. Multidrug resistance to three or more drugs was observed in 65.6% of Staphylococcus spp. The risk factors identified for mastitis were the extensive production system, not providing feed supplements, teat drying process, not disinfecting the teats before and after milking, and inadequate hygiene habits of the milking workers. The presence of multiresistant isolates in bovine milk demonstrates the importance of the choice and appropriate use of antimicrobial agents. Prophylactic and control measures, including teat antisepsis and best practices for achieving hygienic milking should be established in order to prevent new cases of the disease in herds.

  8. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Debets, A.J.M.; Slakhorst-Wandel, S.M.; Hoekstra, R.F.

    2008-01-01

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  9. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Debets, Alfons J M; Slakhorst, S Marijke; Hoekstra, Rolf F

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  10. Chronic psychosocial stress induces reversible mitochondrial damage and corticotropin-releasing factor receptor type-1 upregulation in the rat intestine and IBS-like gut dysfunction.

    Science.gov (United States)

    Vicario, María; Alonso, Carmen; Guilarte, Mar; Serra, Jordi; Martínez, Cristina; González-Castro, Ana M; Lobo, Beatriz; Antolín, María; Andreu, Antoni L; García-Arumí, Elena; Casellas, Montserrat; Saperas, Esteban; Malagelada, Juan Ramón; Azpiroz, Fernando; Santos, Javier

    2012-01-01

    The association between psychological and environmental stress with functional gastrointestinal disorders, especially irritable bowel syndrome (IBS), is well established. However, the underlying pathogenic mechanisms remain unknown. We aimed to probe chronic psychosocial stress as a primary inducer of intestinal dysfunction and investigate corticotropin-releasing factor (CRF) signaling and mitochondrial damage as key contributors to the stress-mediated effects. Wistar-Kyoto rats were submitted to crowding stress (CS; 8 rats/cage) or sham-crowding stress (SC; 2 rats/cage) for up to 15 consecutive days. Hypothalamic-pituitary-adrenal (HPA) axis activity was evaluated. Intestinal tissues were obtained 1h, 1, 7, or 30 days after stress exposure, to assess neutrophil infiltration, epithelial ion transport, mitochondrial function, and CRF receptors expression. Colonic response to CRF (10 μg/kg i.p.) and hyperalgesia were evaluated after ending stress exposure. Chronic psychosocial stress activated HPA axis and induced reversible intestinal mucosal inflammation. Epithelial permeability and conductance were increased in CS rats, effect that lasted for up to 7 days after stress cessation. Visceral hypersensitivity persisted for up to 30 days post stress. Abnormal colonic response to exogenous CRF lasted for up to 7 days after stress. Mitochondrial activity was disturbed throughout the intestine, although mitochondrial response to CRF was preserved. Colonic expression of CRF receptor type-1 was increased in CS rats, and negatively correlated with body weight gain. In conclusion, chronic psychosocial stress triggers reversible inflammation, persistent epithelial dysfunction, and colonic hyperalgesia. These findings support crowding stress as a suitable animal model to unravel the complex pathophysiology underlying to common human intestinal stress-related disorders, such as IBS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Melatonin in Mitochondrial Dysfunction and Related Disorders

    OpenAIRE

    Venkatramanujam Srinivasan; D Warren Spence; Pandi-Perumal, Seithikurippu R; Brown, Gregory M.; Cardinali, Daniel P.

    2011-01-01

    Mitochondrial dysfunction is considered one of the major causative factors in the aging process, ischemia/reperfusion (I/R), septic shock, and neurodegenerative disorders like Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO) synthase activity, enhanced NO production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial per...

  12. Mitochondrial DNA.

    Science.gov (United States)

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  13. Deletion of the mitochondrial flavoprotein apoptosis inducing factor (AIF induces beta-cell apoptosis and impairs beta-cell mass.

    Directory of Open Access Journals (Sweden)

    Fabienne T Schulthess

    Full Text Available BACKGROUND: Apoptosis is a hallmark of beta-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to beta-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF. In the present study, we investigated the role of AIF on beta-cell mass and survival using the Harlequin (Hq mutant mice, which are hypomorphic for AIF. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT. Analysis of beta-cell mass in these mice revealed a greater than 4-fold reduction in beta-cell mass together with an 8-fold increase in beta-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of beta-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in beta-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the beta-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. beta-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on beta-cell function was potentiated. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AIF is essential for maintaining beta-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on beta-cell survival.

  14. Herd-level animal management factors associated with the occurrence of bovine neonatal pancytopenia in calves in a multi-country study

    NARCIS (Netherlands)

    Sauter-Louis, Carola; Jones, Bryony A; Henning, Jörg; Stoll, Alexander; Nielen, Mirjam; Van Schaik, Gerdien; Smolenaars, Anja; Schouten, Matthijs; den Uijl, Ingrid; Fourichon, Christine; Guatteo, Raphael; Madouasse, Aurélien; Nusinovici, Simon; Deprez, Piet; De Vliegher, Sarne; Laureyns, Jozef; Booth, Richard; Cardwell, Jacqueline M; Pfeiffer, Dirk U

    2017-01-01

    Since 2007, mortality associated with a previously unreported haemorrhagic disease has been observed in young calves in several European countries. The syndrome, which has been named 'bovine neonatal pancytopenia' (BNP), is characterised by thrombocytopenia, leukocytopenia and a panmyelophthisis. A

  15. Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells

    Science.gov (United States)

    Schreiber, Nicole B.

    2012-01-01

    Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1–5 mm) and large (8–22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle. PMID:22798350

  16. Bovine oviductal monolayers cultured under three-dimension conditions secrete factors able to release spermatozoa adhering to the tubal reservoir in vitro.

    Science.gov (United States)

    Gualtieri, R; Mollo, V; Braun, S; Barbato, V; Fiorentino, I; Talevi, R

    2013-02-01

    Different in vitro models have been developed to understand the interaction of gametes and embryos with the maternal reproductive tract. We recently showed that bovine oviductal monolayers three-dimensionally cultured in Gray's medium on collagen-coated microporous polycarbonate inserts under liquid-air interface conditions are well polarized, develop cilia, remain viable for at least 3 weeks postconfluence, and mantain the viability of bound spermatozoa significantly better than bidimensionally cultured monolayers. Herein, we used these culture conditions to understand whether: (1) spermatozoa adhering to three-dimensionally cultured oviductal monolayers can be released by heparin or penicillamine as previously shown with bidimensionally cultured oviductal monolayers and explants; and (2) media conditioned by three-dimensionally cultured oviductal monolayers were able to release spermatozoa adhering to oviductal explants. Findings demonstrated that (1) spermatozoa adhering to three-dimensionally cultured oviductal monolayers are readily released by heparin and penicillamine, (2) media conditioned by three-dimensionally cultured oviductal monolayers are able to release spermatozoa bound to oviductal explants, (3) do not depress sperm motility and viability, (4) they improve sperm kinetics, and (5) promote binding to the zona pellucida. In conclusion, in vitro data suggest that the release of spermatozoa adhering to the oviductal reservoir in vivo can be triggered by factors secreted by the oviduct itself that induce sperm capacitation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Fatores de risco hospitalar para implante de bioprótese valvar de pericárdio bovino Hospital risk factors for bovine pericardial bioprosthesis valve implantation

    Directory of Open Access Journals (Sweden)

    Mateus W. De Bacco

    2007-08-01

    Full Text Available FUNDAMENTO: Identificação de fatores de risco pré-operatórios na cirurgia cardíaca valvar visa melhor resultado cirúrgico pela possível neutralização de condições relacionadas com morbi-mortalidade aumentada. OBJETIVO: Este estudo objetiva identificar fatores de risco hospitalar em pacientes submetidos a implante de bioprótese de pericárdio bovino. MÉTODOS: Estudo retrospectivo incluindo 703 pacientes consecutivos submetidos a implante de pelo menos uma bioprótese de pericárdio bovino St. Jude Medical-Biocor® de setembro de 1991 a dezembro de 2005 no Instituto de Cardiologia do RS, sendo 392 aórticos, 250 mitrais e 61 mitro-aórticos. Analisadas as características sexo, idade, índice de massa corporal, classe funcional (New York Heart Association - NYHA, fração de ejeção, lesão valvar, hipertensão arterial sistêmica, diabete melito, função renal, arritmias cardíacas, cirurgia cardíaca prévia, revascularização miocárdica, plastia tricúspide e caráter eletivo, de urgência ou de emergência da cirurgia. Desfecho primordial foi mortalidade hospitalar. Utilizou-se regressão logística para examinar relação entre fatores de risco e mortalidade hospitalar. RESULTADOS: Ocorreram 101 (14,3% óbitos hospitalares. Características significativamente relacionadas à mortalidade aumentada foram sexo feminino (p 2,4mg/dl (p=0,004, classe funcional IV (pBACKGROUND: Identification of preoperative heart valve surgery risk factors aim to improve surgical outcomes with the possibility to offset conditions related to increased morbidity and mortality. OBJECTIVE: Intent of this study is to identify hospital risk factors in patients undergoing bovine pericardial bioprosthesis implantation. METHODS: Retrospective study including 703 consecutive patients who underwent implantation of at least one St. Jude Medical-Biocor™ bovine pericardial bioprosthesis between September 1991 and December 2005 at the Rio Grande do Sul

  18. Mitochondrial Dysfunction in Gliomas

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Anni, H.; Dráber, Pavel

    2013-01-01

    Roč. 20, č. 3 (2013), s. 216-227 ISSN 1071-9091 R&D Projects: GA MŠk LH12050 Institutional support: RVO:68378050 Keywords : gliomas * mitochondrial dysfunction * microtubule proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.883, year: 2013

  19. Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF2α and Elongation Factor eEF2

    Science.gov (United States)

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    Over 20000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 µM and 0.068 µM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods. PMID:21875114

  20. Herd-level animal management factors associated with the occurrence of bovine neonatal pancytopenia in calves in a multi-country study.

    Directory of Open Access Journals (Sweden)

    Carola Sauter-Louis

    Full Text Available Since 2007, mortality associated with a previously unreported haemorrhagic disease has been observed in young calves in several European countries. The syndrome, which has been named 'bovine neonatal pancytopenia' (BNP, is characterised by thrombocytopenia, leukocytopenia and a panmyelophthisis. A herd-level case-control study was conducted in four BNP affected countries (Belgium, France, Germany and the Netherlands to identify herd management risk factors for BNP occurrence. Data were collected using structured face-to-face and telephone interviews of farm managers and their local veterinarians. In total, 363 case farms and 887 control farms were included in a matched multivariable conditional logistic regression analysis. Case-control status was strongly associated with the odds of herd level use of the vaccine PregSure® BVD (PregSure, Pfizer Animal Health (matched adjusted odds ratio (OR 107.2; 95% CI: 41.0-280.1. This was also the case for the practices of feeding calves colostrum from the calf's own dam (OR 2.0; 95% CI: 1.1-3.4 or feeding pooled colostrum (OR 4.1; 95% CI: 1.9-8.8. Given that the study had relatively high statistical power and represented a variety of cattle production and husbandry systems, it can be concluded with some confidence that no other herd level management factors are competent causes for a sufficient cause of BNP occurrence on herd level. It is suggested that genetic characteristics of the dams and BNP calves should be the focus of further investigations aimed at identifying the currently missing component causes that together with PregSure vaccination and colostrum feeding represent a sufficient cause for occurrence of BNP in calves.

  1. Immunolocalization of Upstream binding factor and pocket protein p130 during final stages of bovine oocyte growth

    Czech Academy of Sciences Publication Activity Database

    Baran, Vladimír; Pavlok, Antonín; Bjerregaard, B.; Wrenzycki, C.; Hermann, D.; Philimonenko, V. V.; Lapathitis, Georgios; Hozák, Pavel; Niemann, H.; Motlík, Jan

    2004-01-01

    Roč. 70, č. 4 (2004), s. 877-886 ISSN 0006-3363 R&D Projects: GA MŠk ME 573; GA MŠk LN00A065; GA AV ČR IPP1050128 Grant - others:Slovenská Akademie věd(SK) Vega 2/3065/23; Evropská unie(XE) QLK3-CT1999-00104 Institutional research plan: CEZ:AV0Z5045916 Keywords : pocket protein p130 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.550, year: 2004

  2. Thiamine deficiency results in release of soluble factors that disrupt mitochondrial membrane potential and downregulate the glutamate transporter splice-variant GLT-1b in cultured astrocytes.

    Science.gov (United States)

    Jhala, Shivraj S; Wang, Dongmei; Hazell, Alan S

    2014-06-06

    Loss of astrocytic glutamate transporters is a major feature of both thiamine deficiency (TD) and Wernicke's encephalopathy. However, the underlying basis of this process is not well understood. In the present study we have investigated the possibility of release of astrocytic soluble factors that might be involved in the regulation of the glutamate transporter GLT-1b in these cells. Treatment of naïve astrocytes with conditioned media from astrocytes exposed to TD conditions resulted in a progressive decrease in glutamate uptake over 24 h. Immunoblotting and flow cytometry measurements indicated this was accompanied by a 20-40% loss of GLT-1b. Astrocytes exposed to either TD or TD conditioned media showed increased disruption of mitochondrial membrane potential compared to control cells, and treatment of astrocytes with TD resulted in an increase in the pro-inflammatory cytokine TNF-α and elevated levels of phospho-IκB fragment, indicative of increased activation of NF-κB. Inhibition of TNF-α activity with the use of a neutralizing antibody blocked the increased NF-κB activation, while inhibition of NF-κB ameliorated the decrease in GLT-1b and reversed the decrease in glutamate uptake occurring with TD treatment. Together, these findings indicate that astrocytes exposed to TD conditions show responses suggesting that soluble factors released by these cells under conditions of TD play a regulatory role in terms of glutamate transport function and mitochondrial integrity. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Control of bovine hepatic fatty acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-(/sup 14/C)palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C)acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO/sup 2/ and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 ..mu..M). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 ..mu..M and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine.

  4. Cross-sectional study on bovine mastitis and its associated risk factors in Ambo district of West Shewa zone, Oromia, Ethiopia

    Directory of Open Access Journals (Sweden)

    Edilu J. Sarba

    2017-04-01

    Full Text Available Aim: A cross-sectional study was conducted to estimate the prevalence and associated risk factors of mastitis in dairy cows. Materials and Methods: A total of 302 dairy cows were selected from all volunteer dairy farms in Ambo district of West Shewa Zone, Oromia region. Thorough clinical examination was made on all lactating cows for evidence of signs of clinical mastitis followed by collection of milk sample for examination of gross changes of milk secretion and California mastitis test. Results: About 126 (41.7% cows had mastitis, of which 9.9% (30/302 were clinical and 32.8% (96/302 were subclinical mastitis cases. The quarter level prevalence was 44.4% (536/1208, comprising 9.3% (112/1208, clinical and 32.8% (396/1208 subclinical forms of mastitis. In addition, 5.5% (66/1208 of teats were found to be blind on the clinical examination of udder and teat. The Chi-square analysis of intrinsic risk factors revealed significantly (p<0.05 higher prevalence of mastitis in crossbred cattle (47.2% than indigenous (15.4%, in cattle above 7 years (75% than less than 2-6 years of age (28% and cows given more than 4 calves (81.3% than those with less than 4 calves (31.1% irrespective to their lactation stage. There was also significantly (p<0.05 higher mastitis prevalence in larger (46.6% than smaller herds (24.2% and among the farming systems in semi-intensive (47.1% and intensive (42.3% than extensive (8.1% management system. Conclusion: This study indicated a higher prevalence of mastitis linked with several risk factors. Thus, early diagnosis and regular screening of cows for subclinical mastitis together with proper therapeutic management of clinical cases are of paramount importance. Moreover, control and prevention strategies should be designed and implemented with great emphasis given to risk factors to reduce bovine mastitis and its impact on milk production and food security.

  5. Cross-sectional study on bovine mastitis and its associated risk factors in Ambo district of West Shewa zone, Oromia, Ethiopia

    Science.gov (United States)

    Sarba, Edilu J.; Tola, Getachew K.

    2017-01-01

    Aim: A cross-sectional study was conducted to estimate the prevalence and associated risk factors of mastitis in dairy cows. Materials and Methods: A total of 302 dairy cows were selected from all volunteer dairy farms in Ambo district of West Shewa Zone, Oromia region. Thorough clinical examination was made on all lactating cows for evidence of signs of clinical mastitis followed by collection of milk sample for examination of gross changes of milk secretion and California mastitis test. Result: About 126 (41.7%) cows had mastitis, of which 9.9% (30/302) were clinical and 32.8% (96/302) were subclinical mastitis cases. The quarter level prevalence was 44.4% (536/1208), comprising 9.3% (112/1208), clinical and 32.8% (396/1208) subclinical forms of mastitis. In addition, 5.5% (66/1208) of teats were found to be blind on the clinical examination of udder and teat. The Chi-square analysis of intrinsic risk factors revealed significantly (pmastitis in crossbred cattle (47.2%) than indigenous (15.4%), in cattle above 7 years (75%) than less than 2-6 years of age (28%) and cows given more than 4 calves (81.3%) than those with less than 4 calves (31.1%) irrespective to their lactation stage. There was also significantly (pmastitis prevalence in larger (46.6%) than smaller herds (24.2%) and among the farming systems in semi-intensive (47.1%) and intensive (42.3%) than extensive (8.1%) management system. Conclusion: This study indicated a higher prevalence of mastitis linked with several risk factors. Thus, early diagnosis and regular screening of cows for subclinical mastitis together with proper therapeutic management of clinical cases are of paramount importance. Moreover, control and prevention strategies should be designed and implemented with great emphasis given to risk factors to reduce bovine mastitis and its impact on milk production and food security. PMID:28507411

  6. Genotypes, Virulence Factors and Antimicrobial Resistance Genes of Staphylococcus aureus Isolated in Bovine Subclinical Mastitis from Eastern China

    Directory of Open Access Journals (Sweden)

    Javed Memon§, Yongchun Yang§, Jam Kashifa, Muhammad Yaqoob, Rehana Buriroa, Jamila Soomroa, Wang Liping and Fan Hongjie*

    2013-11-01

    Full Text Available This study was carried out to determine the genotypes, virulence factors and antimicrobial resistance traits of 34 Staphylococcus aureus isolated from subclinical mastitis in Eastern China. Minimal inhibitory concentration (MIC results showed resistance to erythromycin in all isolates. A high frequency of Methicillin resistant S. aureus (MRSA; 29% was observed and these isolates were also highly resistant to penicillin, oxacillin, oxytetracycline and chloramphenicol than methicillin sensitive S. aureus (MSSA isolates. Thirteen pathogenic factors and seven resistance genes including mecA and blaZ gene were checked through PCR. The spaX gene was found in all isolates, whereas cna, spaIg, nuc, clfA, fnbpB, hlA, hlB and seA were present in 35, 79, 85, 59, 35, 85, 71 and 38% isolates, respectively. Nine isolates carried a group of 8 different virulence genes. Moreover, macrolide resistance genes ermB and ermC were present in all isolates. High resistance rate against methicillin was found but no isolate was positive for mecA gene, whereas blaZ and tetK were detected in 82 and 56% isolates, respectively. Genes; fnbpA, seB, seC, seD, dfrK and tetM were not found in any isolate. The statistical association between phenotypic resistance and virulence genes showed, clfA, fnbpB, hlB and seA, were potentially associated with penicillin G, ciprofloxacin, methicillin, chloramphenicol, trimethoprim and oxytetracycline resistance (P≤0.05. REP-PCR based genotyping showed seven distinct genotypes (A-G prevalent in this region. This study reports the presence of multidrug resistant S. aureus in sub-clinical mastitis which were also highly virulent that could be a major obstacle in the treatment of mastitis in this region of China.

  7. Fatores de risco associados à mastite bovina causada por Prototheca zopfii Risk factors associated with bovine mastitis caused by Prototheca zopfii

    Directory of Open Access Journals (Sweden)

    Aline Artioli Machado Yamamura

    2008-06-01

    Full Text Available Este trabalho teve como objetivo o estudo de fatores de risco associados à mastite bovina causada por Prototheca zopfii. Foram analisadas 13 propriedades leiteiras dos Estados do Paraná e de São Paulo, segundo os seguintes critérios de seleção: confirmação prévia de casos de mastite por Prototheca spp., triagem pela pesquisa de Prototheca spp. em tanques de expansão e latões e rebanhos com contagem de células somáticas acima de 5x105cel mL-1. As amostras coletadas consistiram de: leite, água, solo, fezes e swab de teteiras. Prototheca spp. foi isolada de amostras de leite dos quartos mamários com mastite clínica ou subclínica em uma propriedade e de amostras de leite e do ambiente em quatro propriedades, nas quais foi isolada em amostras de: água de bebedouro, abastecimento, esgoto, empoçada no piso de estábulo e sala de ordenha, solo de piquete e pasto, teteiras, fezes de bezerros e suínos. Do total de 383 vacas examinadas, Prototheca spp. foi isolada em 20 (5,2% vacas, sendo caracterizada como P. zopfii em 18. Os fatores de risco associados à mastite causada por P. zopfii foram: criação das vacas a pasto, alimentação dos animais com pasto e silagem, realização de ordenha mecânica em estábulo, permanência das vacas após ordenha em piquete sem alimento, criação de suínos próxima às instalações dos bovinos, existência de cães, gatos e roedores, falta de higienização dos tetos com água, pré-imersão dos tetos em aplicador com retorno e sem a troca do anti-séptico, alimentação dos bezerros com leite de vacas com mastite clínica e serem as vacas da raça holandesa.This research had as objective the study of risk factors associated with bovine mastitis caused by Prototheca zopfii. Thirteen dairy herds in Paraná and São Paulo states were analyzed and selected according to the following criteria: previous confirmation of Prototheca spp. mastitis cases, screening of Prototheca spp. in bulk tanks and

  8. Colour of bovine subcutaneous adipose tissue: A review of contributory factors, associations with carcass and meat quality and its potential utility in authentication of dietary history.

    Science.gov (United States)

    Dunne, P G; Monahan, F J; O'Mara, F P; Moloney, A P

    2009-01-01

    The colour of bovine subcutaneous (sc) adipose tissue (carcass fat) depends on the age, gender and breed of cattle. Diet is the most important extrinsic factor but its influence depends on the duration of feeding. Cattle produced under extensive grass-based production systems generally have carcass fat which is more yellow than their intensively-reared, concentrate-fed counterparts and this is caused by carotenoids from green forage. Although yellow carcass fat is negatively regarded in many countries, evidence suggests it may be associated with a healthier fatty acid profile and antioxidant content in beef, synonymous with grass feeding. Nonetheless, management strategies to reduce fat colour of grass-fed cattle are sought after. Current research suggests that yellow colour of this tissue is reduced if pasture-fed cattle are converted to a grain-based diet, which results in accretion of adipose tissue and dilution of carotenoids. Colour changes may depend on the initial yellow colour, the carotene and utilisable energy in the finishing diet, the duration of finishing, the amount of fat accumulated during finishing and the rate of utilisation of carotene from body fat. Differences in nutritional strategies which cause differences in fatty acid composition may be reflected by differences in fat colour and carotenoid concentration. Fat colour and carotenoids are prominent among a panoply of measurements which can aid the authentication of the dietary history and thus to some extent, the origin of beef, although this potential utility is complicated by the simultaneous rather than discrete use of forages and concentrates in real production systems.

  9. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia.

    Science.gov (United States)

    Abebe, Rahmeto; Hatiya, Hagere; Abera, Mesele; Megersa, Bekele; Asmare, Kassahun

    2016-12-03

    Mastitis is a disease of major economic importance in dairy industry worldwide. It is of particular concern in developing countries like Ethiopia, where milk and milk products are scarce. The objectives of the study were to estimate the prevalence of mastitis, identify the cow-and herd-level potential risk factors and isolate Staphylococcus aureus, one of etiological agents for contagious mastitis, from cows positive for mastitis. A total of 529 lactating cows selected randomly from 95 herds were screened by California mastitis test (CMT) for sub-clinical mastitis. Also 172 milk samples collected from CMT positive cows were cultured for isolation of S. aureus. Based on CMT result and clinical examination, the prevalence of mastitis at herd-level was 74.7% (95% CI: 64.5, 82.8). The corresponding cow-level prevalence was 62.6% (95% CI: 58.3, 66.7), of which 59.2 and 3.4% were sub-clinical and clinical mastitis cases, respectively. S. aureus was isolated from 51.2% of the milk samples cultured and 73.2% of the herds affected with mastitis. In the multivariable logistic regression model, the herd-level factors significantly associated (p mastitis were herd size, bedding material, and milking mastitic cows last, while at cow-level, breed, parity, stage of lactation, udder and leg hygiene, and teat end shape were noted to have a significant effect on mastitis occurrence. The very high prevalence of mastitis, more importantly the sub-clinical one, in the herds examined revealed the huge potential economic loss the sector suffers. Perhaps this was attributed to lack of implementation of the routine mastitis prevention and control practices by all of the herd owners. The findings of this study warrants the need for strategic approach including dairy extension that focus on enhancing dairy farmers' awareness and practice of hygienic milking, regular screening for sub-clinical mastitis, dry cow therapy and culling of chronically infected cows.

  10. Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents.

    Science.gov (United States)

    Saleh, Ali; Roy Chowdhury, Subir K; Smith, Darrell R; Balakrishnan, Savitha; Tessler, Lori; Martens, Corina; Morrow, Dwane; Schartner, Emily; Frizzi, Katie E; Calcutt, Nigel A; Fernyhough, Paul

    2013-02-01

    Diabetes causes mitochondrial dysfunction in sensory neurons that may contribute to peripheral neuropathy. Ciliary neurotrophic factor (CNTF) promotes sensory neuron survival and axon regeneration and prevents axonal dwindling, nerve conduction deficits and thermal hypoalgesia in diabetic rats. In this study, we tested the hypothesis that CNTF protects sensory neuron function during diabetes through normalization of impaired mitochondrial bioenergetics. In addition, we investigated whether the NF-κB signal transduction pathway was mobilized by CNTF. Neurite outgrowth of sensory neurons derived from streptozotocin (STZ)-induced diabetic rats was reduced compared to neurons from control rats and exposure to CNTF for 24 h enhanced neurite outgrowth. CNTF also activated NF-κB, as assessed by Western blotting for the NF-κB p50 subunit and reporter assays for NF-κB promoter activity. Conversely, blockade of NF-κB signaling using SN50 peptide inhibited CNTF-mediated neurite outgrowth. Studies in mice with STZ-induced diabetes demonstrated that systemic therapy with CNTF prevented functional indices of peripheral neuropathy along with deficiencies in dorsal root ganglion (DRG) NF-κB p50 expression and DNA binding activity. DRG neurons derived from STZ-diabetic mice also exhibited deficiencies in maximal oxygen consumption rate and associated spare respiratory capacity that were corrected by exposure to CNTF for 24 h in an NF-κB-dependent manner. We propose that the ability of CNTF to enhance axon regeneration and protect peripheral nerve from structural and functional indices of diabetic peripheral neuropathy is associated with targeting of mitochondrial function, in part via NF-κB activation, and improvement of cellular bioenergetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. 78 FR 73993 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2013-12-10

    ... Health Inspection Service 9 CFR Parts 92, 93, 94, 95, 96, and 98 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Corrections In rule document 2013-28228 appearing on...

  12. 77 FR 20319 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-04-04

    ...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 9 CFR Part 93 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Correction In proposed rule document...

  13. Pneumolysin induced mitochondrial dysfunction leads to release of mitochondrial DNA

    OpenAIRE

    Nerlich, Andreas; Mieth, Maren; Letsiou, Eleftheria; Fatykhova, Diana; Zscheppang, Katja; Imai-Matsushima, Aki; Meyer, Thomas F.; Paasch, Lisa; Mitchell, Timothy J.; Tönnies, Mario; Bauer, Torsten T.; Schneider, Paul; Neudecker, Jens; Rückert, Jens C.; Eggeling, Stephan

    2018-01-01

    Streptococcus pneumoniae (S.pn.) is the most common bacterial pathogen causing community acquired pneumonia. The pore-forming toxin pneumolysin (PLY) is the major virulence factor of S.pn. and supposed to affect alveolar epithelial cells thereby activating the immune system by liberation of danger-associated molecular patterns (DAMP). To test this hypothesis, we established a novel live-cell imaging based assay to analyse mitochondrial function and associated release of mitochondrial DNA (mtD...

  14. Diagnosis of bovine neosporosis.

    Science.gov (United States)

    Dubey, J P; Schares, G

    2006-08-31

    The protozoan parasite Neospora caninum is a major cause of abortion in cattle. The diagnosis of neosporosis-associated mortality and abortion in cattle is difficult. In the present paper we review histologic, serologic, immunohistochemical, and molecular methods for dignosis of bovine neosporosis. Although not a routine method of diagnosis, methods to isolate viable N. caninum from bovine tissues are also reviewed.

  15. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function.

    Science.gov (United States)

    Penhoat, A; Chatelain, P G; Jaillard, C; Saez, J M

    1988-06-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked [125I]iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions [125I]iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less. The enhanced steroidogenic responsiveness of IGF-I and insulin-treated cells were related to an enhanced capacity to produce pregnenolone and an increased activity of several steroid

  16. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    Energy Technology Data Exchange (ETDEWEB)

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.

    1988-06-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked (/sup 125/I)iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions (/sup 125/I)iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less.

  17. Prevalence of bovine tuberculosis and risk factor assessment in cattle in rural livestock areas of Govuro District in the Southeast of Mozambique.

    Directory of Open Access Journals (Sweden)

    Ivânia Moiane

    Full Text Available BACKGROUND: Bovine tuberculosis (bTB, caused by Mycobacterium bovis, is an infectious disease of cattle that also affects other domestic animals, free-ranging and farmed wildlife, and also humans. In Mozambique, scattered surveys have reported a wide variation of bTB prevalence rates in cattle from different regions. Due to direct economic repercussions on livestock and indirect consequences for human health and wildlife, knowing the prevalence rates of the disease is essential to define an effective control strategy. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional study was conducted in Govuro district to determine bTB prevalence in cattle and identify associated risk factors. A representative sample of the cattle population was defined, stratified by livestock areas (n = 14. A total of 1136 cattle from 289 farmers were tested using the single comparative intradermal tuberculin test. The overall apparent prevalence was estimated at 39.6% (95% CI 36.8-42.5 using a diagnostic threshold cut-off according to the World Organization for Animal Health. bTB reactors were found in 13 livestock areas, with prevalence rates ranging from 8.1 to 65.8%. Age was the main risk factor; animals older than 4 years were more likely to be positive reactors (OR = 3.2, 95% CI: 2.2-4.7. Landim local breed showed a lower prevalence than crossbred animals (Landim × Brahman (OR = 0.6, 95% CI: 0.4-0.8. CONCLUSIONS/SIGNIFICANCE: The findings reveal an urgent need for intervention with effective, area-based, control measures in order to reduce bTB prevalence and prevent its spread to the human population. In addition to the high prevalence, population habits in Govuro, particularly the consumption of raw milk, clearly may potentiate the transmission to humans. Thus, further studies on human tuberculosis and the molecular characterization of the predominant strain lineages that cause bTB in cattle and humans are urgently required to evaluate the impact on human health in

  18. ß-catenin, a transcription factor activated by canonical Wnt signaling, is expressed in sensory neurons of calves latently infected with bovine herpesvirus 1

    Science.gov (United States)

    Like many a-herpesvirinae subfamily members, bovine herpes virus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons: the latency-related (LR) RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch mediate...

  19. The increasing of fibroblast growth factor 2, osteocalcin, and osteoblast due to the induction of the combination of Aloe vera and 2% xenograft concelous bovine

    Directory of Open Access Journals (Sweden)

    Utari Kresnoadi

    2012-12-01

    Full Text Available Background: To make a successfull denture prominent ridge is needed, preservation on tooth extraction socket is needed in order to prevent alveol bone resorption caused by revocation trauma. An innovative modification of the material empirically suspected to be able reduce inflammation caused by the revocation trauma is a combination of Aloe vera and xenograft concelous bovine (XCB and Aloe vera is a biogenic stimulator and accelerating the growth of alveolar ridge bone after tooth extraction. Purpose: The research was aimed to determine of the increasing alveol bone formation by inducing the combination of Aloe vera and 2% xenograft concelous bovine. Methods: To address the problems, the combination of Aloe vera and xenograft concelous bovine was induced into the tooth extraction sockets of Cavia cabayas which devided on 8 groups. Groups control, filled with XCB, Aloe vera and Aloe vera and XCB combination, at 7 days and 30 days after extraction. Afterwards, immunohistochemical examination was conducted to examine the expressions of FGF-2 and osteocalcin, as the product of the growth of osteoblasts. Results: There were significantly increases expression of FGF-2 and osteocalcyn on group which filled with XCB, Aloe vera and combined Aloe vera and XCB. Conclusion: It may be concluded that the induction of the combination of Aloe vera and xenograft concelous bovine into the tooth sockets can enhance the growth expressions of FGF-2 and osteocalcin as the product of osteoblasts, thus, the growth of alveolar bone was increased.Latar belakang: Untuk keberhasilan pembuatan gigitiruan diperlukan ridge yang prominent, maka diperlukan suatu preservasi soket pencabutan gigi untuk mencegah terjadinya resopsi tulang alveolar akibat trauma pencabutan. Suatu inovasi modifikasi bahan yang diduga secara empiris dapat mengurangi keradangan karena trauma pencabutan adalah berupa kombinasi Aloe vera dan xenograft concelous bovine (XCB. Aloe vera yang merupakan

  20. A Single-Target Mitochondrial RNA Editing Factor of Funaria hygrometrica Can Fully Reconstitute RNA Editing at Two Sites in Physcomitrella patens.

    Science.gov (United States)

    Schallenberg-Rüdinger, Mareike; Oldenkott, Bastian; Hiss, Manuel; Trinh, Phuong Le; Knoop, Volker; Rensing, Stefan A

    2017-03-01

    Nuclear-encoded pentatricopeptide repeat (PPR) proteins are key factors for site-specific RNA editing, converting cytidines into uridines in plant mitochondria and chloroplasts. All editing factors in the model moss Physcomitrella patens have a C-terminal DYW domain with similarity to cytidine deaminase. However, numerous editing factors in flowering plants lack such a terminal DYW domain, questioning its immediate role in the pyrimidine base conversion process. Here we further investigate the Physcomitrella DYW-type PPR protein PPR_78, responsible for mitochondrial editing sites cox1eU755SL and rps14eU137SL. Complementation assays with truncated proteins demonstrate that the DYW domain is essential for full PPR_78 editing functionality. The DYW domain can be replaced, however, with its counterpart from another editing factor, PPR_79. The PPR_78 ortholog of the related moss Funaria hygrometrica fully complements the Physcomitrella mutant for editing at both sites, although the editing site in rps14 is lacking in Funaria. Editing factor orthologs in different taxa may thus retain editing capacity for multiple sites despite the absence of editing requirement. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Echinochrome A Increases Mitochondrial Mass and Function by Modulating Mitochondrial Biogenesis Regulatory Genes

    Directory of Open Access Journals (Sweden)

    Seung Hun Jeong

    2014-08-01

    Full Text Available Echinochrome A (Ech A is a natural pigment from sea urchins that has been reported to have antioxidant properties and a cardio protective effect against ischemia reperfusion injury. In this study, we ascertained whether Ech A enhances the mitochondrial biogenesis and oxidative phosphorylation in rat cardio myoblast H9c2 cells. To study the effects of Ech A on mitochondrial biogenesis, we measured mitochondrial mass, level of oxidative phosphorylation, and mitochondrial biogenesis regulatory gene expression. Ech A treatment did not induce cytotoxicity. However, Ech A treatment enhanced oxygen consumption rate and mitochondrial ATP level. Likewise, Ech A treatment increased mitochondrial contents in H9c2 cells. Furthermore, Ech A treatment up-regulated biogenesis of regulatory transcription genes, including proliferator-activated receptor gamma co-activator (PGC-1α, estrogen-related receptor (ERR-α, peroxisome proliferator-activator receptor (PPAR-γ, and nuclear respiratory factor (NRF-1 and such mitochondrial transcription regulatory genes as mitochondrial transcriptional factor A (TFAM, mitochondrial transcription factor B2 (TFB2M, mitochondrial DNA direct polymerase (POLMRT, single strand binding protein (SSBP and Tu translation elongation factor (TUFM. In conclusion, these data suggest that Ech A is a potentiated marine drug which enhances mitochondrial biogenesis.

  2. The bovine peripheral-type benzodiazepine receptor: A receptor with low affinity for benzodiazepines

    Energy Technology Data Exchange (ETDEWEB)

    Parola, A.L.; Laird, H.E. II (Univ. of Arizona, Tucson (USA))

    1991-01-01

    The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit ({sup 3}H)PK 11195 binding was PK 11195 > protoporphyrin IX > benzodiazepines. ({sup 3}H)PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. ({sup 3}H)PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing and denaturing conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.

  3. Activation of bovine neutrophils by Brucella spp.

    Science.gov (United States)

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Insufficient Astrocyte-Derived Brain-Derived Neurotrophic Factor Contributes to Propofol-Induced Neuron Death Through Akt/Glycogen Synthase Kinase 3β/Mitochondrial Fission Pathway.

    Science.gov (United States)

    Liu, Yanan; Yan, Yasheng; Inagaki, Yasuyoshi; Logan, Sarah; Bosnjak, Zeljko J; Bai, Xiaowen

    2017-07-01

    Growing animal evidence demonstrates that prolonged exposure to propofol during brain development induces widespread neuronal cell death, but there is little information on the role of astrocytes. Astrocytes can release neurotrophic growth factors such as brain-derived neurotrophic factor (BDNF), which can exert the protective effect on neurons in paracrine fashion. We hypothesize that during propofol anesthesia, BDNF released from developing astrocytes may not be sufficient to prevent propofol-induced neurotoxicity. Hippocampal astrocytes and neurons isolated from neonatal Sprague Dawley rats were exposed to propofol at a clinically relevant dose of 30 μM or dimethyl sulfoxide as control for 6 hours. Propofol-induced cell death was determined by propidium iodide (PI) staining in astrocyte-alone cultures, neuron-alone cultures, or cocultures containing either low or high density of astrocytes (1:9 or 1:1 ratio of astrocytes to neurons ratio [ANR], respectively). The astrocyte-conditioned medium was collected 12 hours after propofol exposure and measured by protein array assay. BDNF concentration in astrocyte-conditioned medium was quantified using enzyme-linked immunosorbent assay. Neuron-alone cultures were treated with BDNF, tyrosine receptor kinase B inhibitor cyclotraxin-B, glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021, or mitochondrial fission inhibitor Mdivi-1 before propofol exposure. Western blot was performed for quantification of the level of protein kinase B and GSK3β. Mitochondrial shape was visualized through translocase of the outer membrane 20 staining. Propofol increased cell death in neurons by 1.8-fold (% of PI-positive cells [PI%] = 18.6; 95% confidence interval [CI], 15.2-21.9, P .05]). Astrocytes secreted BDNF in a cell density-dependent way and propofol decreased BDNF secretion from astrocytes. Administration of BDNF, CHIR99021, or Mdivi-1 significantly attenuated the propofol-induced neuronal death and aberrant mitochondria in

  5. Qualitative and quantitative impacts assessment of contagious bovine pleuropneumonia in Fulani pastoral herds of North-central Nigeria: The associated socio-cultural factors.

    Science.gov (United States)

    Alhaji, N B; Babalobi, O O

    2016-06-01

    Contagious bovine pleuropneumonia is one of the most important trans-boundary disease affecting Fulani cattle herds of Nigeria and whose control is urgently needed. A Participatory Epidemiology approach and cross-sectional study were concurrently conducted to investigate qualitative and quantitative impacts of CBPP, respectively and associated socio-cultural factors that influenced exposure of Fulani nomadic pastoral communities to its risk in Niger State, North-central Nigeria between January and December 2013. A total of nine pastoral communities were purposively selected for qualitative impact assessment using Participatory Rural Appraisal tools, while 765 cattle randomly sampled from 125 purposively selected nomadic herds were analyzed using c-ELISA. Data on socio-cultural characteristics were collected using structured questionnaires administered on nomadic herd owners of the 125 selected herds. Kendall's Coefficient of Concordance W statistics and OpenEpi 2.3 were used for statistical analyses. Pastoralists' dependent factors associated with their socio-cultural activities were tested using Chisquare tests and likelihood backward logistic regressions. The mean proportional piles (relative qualitative impact) of CBPP was 12.6%, and nomads agreement on this impact was strong (W=0.6855) and statistically significant (Pecological zone, while lowest of 6.2% was in Eastern zone. Pastoralists in the age groups 51-60 and 61-70 years were more likely (OR 13.07; 95% CI: 3.21, 53.12 and OR 7.10; 95% CI: 1.77, 28.33, respectively) to have satisfactory information/awareness on CBPP and lowland transhumance pastoralists were more likely (OR 5.21; 95% CI: 2.01, 13.54) to have satisfactory information. Socio-cultural activities of extensive husbandry system was six times more likely (OR 5.79; 95% CI: 2.55, 13.13) to be satisfactory practice that influenced CBPP occurrence in herds, while culture of borrowing and loaning of cattle was twenty times more likely (OR 19.94; 95

  6. Bovine Herpesvirus 4 infections and bovine mastitis

    NARCIS (Netherlands)

    Wellenberg, Gerardus Johannus

    2002-01-01

    Mastitis is an often occurring disease in dairy cattle with an enormous economic impact for milk producers worldwide. Despite intensive research, which is historically based on the detection of bacterial udder pathogens, still around 20-35% of clinical cases of bovine mastitis have an unknown

  7. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  8. Tumor Necrosis Factor-α and Apoptosis Signal-Regulating Kinase 1 Control Reactive Oxygen Species Release, Mitochondrial Autophagy and C-Jun N-Terminal Kinase/P38 Phosphorylation During Necrotizing Enterocolitis

    Directory of Open Access Journals (Sweden)

    Naira Baregamian

    2009-01-01

    Full Text Available Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC. Tumor necrosis factor (TNFα is thought to generate reactive oxygen species (ROS and activate the apoptosis signal-regulating kinase 1 (ASK1-c-Jun N-terminal kinase (JNK/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.

  9. Melatonin and human mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    Reza Sharafati-Chaleshtori

    2017-01-01

    Full Text Available Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.

  10. Identification of Factors Interacting with hMSH2 and hMLH1 in the Fetal Liver and Investigations of how Mitochondrial Dysfunction Creates a Mutator Phenotype

    DEFF Research Database (Denmark)

    Rasmussen, Anne Karin

    demonstrated that hMSH2 interacts with a human 5’ → 3’ exonuclease 1 (hEXO1). Data presented in this thesis also support the conclusion that mitochondrial dysfunction leads to spontaneous nuclear DNA damage. We employed the yeast Saccharomyces cerevisiae as a model system to investigate a potential link...... between mitochondrial activity and genomic instability. Mitochondrial dysfunction and genetic instability are characteristic features of cancer cells. Furthermore, mitochondrial dysfunction is a key feature of aging due to accumulation of mutations in mtDNA. Our studies in a yeast model system suggest...

  11. ATP Depletion Via Mitochondrial F1F0 Complex by Lethal Factor is an Early Event in B. Anthracis-Induced Sudden Cell Death

    Directory of Open Access Journals (Sweden)

    Mitchell W. Woodberry

    2009-08-01

    Full Text Available Bacillus anthracis’ primary virulence factor is a tripartite anthrax toxin consisting of edema factor (EF, lethal factor (LF and protective antigen (PA. In complex with PA, EF and LF are internalized via receptor-mediated endocytosis. EF is a calmodulin- dependent adenylate cyclase that induces tissue edema. LF is a zinc-metalloprotease that cleaves members of mitogen-activated protein kinase kinases. Lethal toxin (LT: PA plus LF-induced death of macrophages is primarily attributed to expression of the sensitive Nalp1b allele, inflammasome formation and activation of caspase-1, but early events that initiate these processes are unknown. Here we provide evidence that an early essential event in pyroptosis of alveolar macrophages is LF-mediated depletion of cellular ATP. The underlying mechanism involves interaction of LF with F1F0-complex gamma and beta subunits leading to increased ATPase activity in mitochondria. In support, mitochondrial DNA-depleted MH-S cells have decreased F1F0 ATPase activity due to the lack of F06 and F08 polypeptides and show increased resistance to LT. We conclude that ATP depletion is an important early event in LT-induced sudden cell death and its prevention increases survival of toxin-sensitive cells.

  12. P53/Drp1-dependent mitochondrial fission mediates aldosterone-induced podocyte injury and mitochondrial dysfunction.

    Science.gov (United States)

    Yuan, Yanggang; Zhang, Aiqing; Qi, Jia; Wang, Hui; Liu, Xi; Zhao, Min; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zhang, Bo; Zhang, Aihua; Xing, Changying

    2017-06-28

    Mitochondrial dysfunction is increasingly recognized as an important factor in glomerular diseases. Previous study showed that mitochondrial fission contributed mitochondrial dysfunction. However, the mechanism of mitochondrial fission on mitochondrial dysfunction in aldosterone-induced podocyte injury remains ambiguous. This study aimed to investigate the pathogenic effect of mitochondrial fission both in vivo and in vitro. In an animal model of aldosterone-induced nephropathy, inhibition of the mitochondrial fission protein Drp1 (dynamin-related protein 1) suppressed aldosterone-induced podocyte injury. In cultured podocytes, aldosterone dose-dependently induced Drp1 expression. Knockdown of Drp1 inhibited aldosterone-induced mitochondrial fission, mitochondrial dysfunction and podocyte apoptosis. Furthermore, aldosterone dose-dependently induced p53 expression. Knockdown of p53 inhibited aldosterone-induced Drp1 expression, mitochondrial dysfunction and podocyte apoptosis. These findings implicated that aldosterone-induced mitochondrial dysfunction and podocyte injury mediated by p53/Drp1-dependent mitochondrial fission, which may provide opportunities for therapeutic intervention for podocyte injury. Copyright © 2017, American Journal of Physiology-Renal Physiology.

  13. Fatores de virulência em linhagens de Escherichia coli isoladas de mastite bovina Virulence factors in Escherichia coli strains isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    M.G. Ribeiro

    2006-10-01

    Full Text Available Avaliou-se a ocorrência de fatores de virulência e do sorotipo O157:H7 em 120 linhagens de Escherichia coli, isoladas de 80 casos de mastite clínica bovina e 40 de mastite subclínica. Verificou-se alfa-hemolisina em oito (6,7% linhagens, isoladas de cinco casos de mastite clínica e três de mastite subclínica e em nenhuma das estirpes detectou-se enteroemolisina. A presença de sideróforos foi encontrada em 11 (9,2% linhagens, sete de mastite clínica e quatro de subclínica. Em duas (1,7% estirpes isoladas de mastite subclínica, identificou-se enterotoxina STa. Observou-se efeito citopático em células vero compatível com a produção de verotoxina-VT em cinco (4,2% linhagens, duas de mastite clínica e três subclínicas. Em uma (0,8% linhagem isolada de mastite clínica, detectou-se efeito citopático compatível com o fator necrosante citotóxico. Nenhuma estirpe apresentou-se sorbitol-negativa no MacConkey-sorbitol, tampouco aglutinou com o sorotipo O157:H7. Os antimicrobianos mais efetivos foram polimixina B (97,5% e norfloxacina (95,8%. Observou-se multi-resistência a dois ou mais antimicrobianos em 24 (20% estirpes, principalmente com o uso de ampicilina e ceftiofur.The occurrence of different virulence factors and O157:H7 serotype investigation in 120 Escherichia coli strains isolated from clinical (80 cases and subclinical (40 cases bovine mastitis was evaluated. Alpha-haemolysin was detected in 8 (6.7% strains (5 clinical and 3 subclinical cases. None strain showed enterohaemolysin production. E. coli growth under iron restriction conditions (siderophores production was observed in 11 (9.2% strains (7 clinical and 4 subclinical cases. STa enterotoxin was detected in 2 (1.7% strains from subclinical cases. Cytotoxic effect in vero cells compatible with verotoxin-VT production was observed in 5 (4.2% strains (2 clinical and 3 subclinical cases. One strain (0.8% isolated from clinical mastitis showed cytophatic effect in vero

  14. Partial characterization of the factor in theca-cell conditioned medium that inhibits the progression of FSH-induced meiosis of bovine oocytes surrounded by cumulus cells connected to the membrana granulosa.

    Science.gov (United States)

    van Tol, H T; Bevers, M M

    2001-11-01

    A factor, secreted by theca cells, inhibits FSH induced resumption of meiosis in bovine oocytes that are surrounded by cumulus cells which are attached to a piece of the membrana granulosa (COCGs). In order to characterize this factor, theca cell conditioned medium (CMt) was heat-treated, filtered through a 5 kD spin off filter, charcoal treated, chloroform extracted and protease treated. To investigate whether the meiosis inhibiting factor produced by theca cells was also present in follicular fluid (FF), the same treatments were done with 50% bovine follicular fluid (bFF). COCGs, originating from 2 to 8 mm follicles of bovine ovaries collected at a slaughterhouse, were cultured in groups of 15 per 600 microl medium supplemented with 0.05 IU ml FSH for 22 hr at 39 degrees C in a humidified atmosphere of 5% CO(2). After culture the oocytes were denuded, stained with orcein, and the nuclear status assessed. Heat treatment did not affect the meiosis arresting capacity of CMt since a similar proportion of the oocytes remained at the GV stage after 22 hr of culture in heat treated CMt as compared to the proportion of oocytes in the GV stage after culture in untreated CMt. Filtering through a 5 kD spin-off filter revealed that the meiosis inhibiting action was maintained in the <5 kD fraction, although there was a significant (P < 0.05) loss of inhibiting activity compared to nonfiltered CMt. No significant decrease was observed in the meiosis arresting capacity of the <5 kD fraction after charcoal or protease treatment. Extraction of the <5 kD fraction with chloroform also did not affect the theca cell produced factor. The effect of the theca cell factor on the progression of meiosis of the oocytes that resumed meiosis, as demonstrated by a very low percentage of the oocytes that matured up to the M2 stage, was not affected following any of the treatments. With regard to bFF, the results show a lower percentage of the oocytes in the GV stage after culture in 50% bFF as

  15. Mitochondrial Signaling: Forwards, Backwards, and In Between

    Directory of Open Access Journals (Sweden)

    Sean P. Whelan

    2013-01-01

    Full Text Available Mitochondria are semiautonomous organelles that are a defining characteristic of almost all eukaryotic cells. They are vital for energy production, but increasing evidence shows that they play important roles in a wide range of cellular signaling and homeostasis. Our understanding of nuclear control of mitochondrial function has expanded over the past half century with the discovery of multiple transcription factors and cofactors governing mitochondrial biogenesis. More recently, nuclear changes in response to mitochondrial messaging have led to characterization of retrograde mitochondrial signaling, in which mitochondria have the ability to alter nuclear gene expression. Mitochondria are also integral to other components of stress response or quality control including ROS signaling, unfolded protein response, mitochondrial autophagy, and biogenesis. These avenues of mitochondrial signaling are discussed in this review.

  16. Listeria monocytogenes transiently alters mitochondrial dynamics during infection.

    Science.gov (United States)

    Stavru, Fabrizia; Bouillaud, Frédéric; Sartori, Anna; Ricquier, Daniel; Cossart, Pascale

    2011-03-01

    Mitochondria are essential and highly dynamic organelles, constantly undergoing fusion and fission. We analyzed mitochondrial dynamics during infection with the human bacterial pathogen Listeria monocytogenes and show that this infection profoundly alters mitochondrial dynamics by causing transient mitochondrial network fragmentation. Mitochondrial fragmentation is specific to pathogenic Listeria monocytogenes, and it is not observed with the nonpathogenic Listeria innocua species or several other intracellular pathogens. Strikingly, the efficiency of Listeria infection is affected in cells where either mitochondrial fusion or fission has been altered by siRNA treatment, highlighting the relevance of mitochondrial dynamics for Listeria infection. We identified the secreted pore-forming toxin listeriolysin O as the bacterial factor mainly responsible for mitochondrial network disruption and mitochondrial function modulation. Together, our results suggest that the transient shutdown of mitochondrial function and dynamics represents a strategy used by Listeria at the onset of infection to interfere with cellular physiology.

  17. Localization of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2 in bovine placentomes from implantation until term

    DEFF Research Database (Denmark)

    Pfarrer, C.D.; Ruziwa, S.D.; Winther, H.

    2006-01-01

    ). To determine the role of VEGF in bovine implantation and placentation, placentomes and interplacentomal areas from 33 cows from early implantation until near term were evaluated by immunohistochemistry. VEGF immunoreactivity was detected in fetal and maternal blood vessel tissues during implantation until near...... term were evaluated by immunohistochemistry. VEGF immunoreactivity was detected in fetal and maternal blood vessel tissues during implantation and throughout gestation, and in preimplantatory trophoblast cells and uterine epithelium. After implantation the immunoreaction was confined to TGC and uterine......, facilitating feto-maternal exchange via paracrine action, (3) chemotactic activity on capillary endothelium, and (4) an autocrine influence on TGC migratory activity....

  18. Induction of reactive oxygen species-mediated apoptosis by purified Schisandrae semen essential oil in human leukemia U937 cells through activation of the caspase cascades and nuclear relocation of mitochondrial apoptogenic factors.

    Science.gov (United States)

    Yu, Gyeong Jin; Choi, Il-Whan; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min; Kim, Wun-Jae; Yoo, Young Hyun; Choi, Yung Hyun

    2015-10-01

    The aim of this study was to evaluate the beneficial effects of Schisandrae semen essential oil (SSeo) on apoptosis events and the mechanisms associated with these effects in human leukemia U937 cells. The treatment of U937 cells with SSeo significantly inhibited survival and induced apoptosis. Schisandrae semen essential oil treatment increased the levels of death receptors and Fas, and activated caspases accompanied by proteolytic degradation of poly(ADP-ribose)-polymerase, which was associated with the downregulation of members of the inhibitor of apoptosis protein family protein expression; however, a pan-caspase inhibitor reversed SSeo-induced apoptosis. Treating the cells with SSeo also caused truncation of Bid, translocation of proapoptotic Bax to the mitochondria, and loss of mitochondrial membrane permeabilization, thereby inducing the release of cytochrome c into the cytosol. Subsequently, SSeo upregulated the translocation of mitochondrial apoptogenic factors, such as endonuclease G and apoptosis-inducing factor, into the nucleus during the apoptotic process. Notably, SSeo immediately increased the generation of intracellular reactive oxygen species (ROS); however, pretreatment with N-acetylcysteine, a common ROS quencher, almost completely blocked SSeo-induced apoptosis. Taken together, these findings indicate that SSeo caused ROS- and caspase-dependent cell death involving mitochondrial dysfunction and nuclear translocation of mitochondrial proapoptosis proteins. Based on our data, the consumption of Schisandrae semen or its essential oil is a good natural therapeutic agent for anticancer activity and regression. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Clinical applications of bovine colostrum therapy

    DEFF Research Database (Denmark)

    Rathe, Mathias; Müller, Klaus; Sangild, Per Torp

    2014-01-01

    Bovine colostrum, the first milk that cows produce after parturition, contains high levels of growth factors and immunomodulatory components. Some healthy and diseased individuals may gain health benefits by consuming bovine colostrum as a food supplement. This review provides a systematic......, critical evaluation of the current state of knowledge in this area. Fifty-one eligible studies were identified from the following databases: Medline, Embase, Global Health, the Cochrane Library, and the Cumulative Index to Nursing and Allied Health Literature. Studies were heterogeneous with regard...

  20. Mitochondrial DNA Alterations and Reduced Mitochondrial Function in Aging

    OpenAIRE

    Hebert, Sadie L.; Lanza, Ian R.; Nair, K. Sreekumaran

    2010-01-01

    Oxidative damage to mitochondrial DNA increases with aging. This damage has the potential to affect mitochondrial DNA replication and transcription which could alter the abundance or functionality of mitochondrial proteins. This review describes mitochondrial DNA alterations and changes in mitochondrial function that occur with aging. Age-related alterations in mitochondrial DNA as a possible contributor to the reduction in mitochondrial function are discussed.

  1. Mitochondrial Aging: Is There a Mitochondrial Clock?

    Science.gov (United States)

    Zorov, Dmitry B; Popkov, Vasily A; Zorova, Ljubava D; Vorobjev, Ivan A; Pevzner, Irina B; Silachev, Denis N; Zorov, Savva D; Jankauskas, Stanislovas S; Babenko, Valentina A; Plotnikov, Egor Y

    2017-09-01

    Fragmentation (fission) of mitochondria, occurring in response to oxidative challenge, leads to heterogeneity in the mitochondrial population. It is assumed that fission provides a way to segregate mitochondrial content between the "young" and "old" phenotype, with the formation of mitochondrial "garbage," which later will be disposed. Fidelity of this process is the basis of mitochondrial homeostasis, which is disrupted in pathological conditions and aging. The asymmetry of the mitochondrial fission is similar to that of their evolutionary ancestors, bacteria, which also undergo an aging process. It is assumed that mitochondrial markers of aging are recognized by the mitochondrial quality control system, preventing the accumulation of dysfunctional mitochondria, which normally are subjected to disposal. Possibly, oncocytoma, with its abnormal proliferation of mitochondria occupying the entire cytoplasm, represents the case when segregation of damaged mitochondria is impaired during mitochondrial division. It is plausible that mitochondria contain a "clock" which counts the degree of mitochondrial senescence as the extent of flagging (by ubiquitination) of damaged mitochondria. Mitochondrial aging captures the essence of the systemic aging which must be analyzed. We assume that the mitochondrial aging mechanism is similar to the mechanism of aging of the immune system which we discuss in detail. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Mitochondrial Respiratory Chain Inhibitors Involved in ROS Production Induced by Acute High Concentrations of Iodide and the Effects of SOD as a Protective Factor

    Directory of Open Access Journals (Sweden)

    Lingyan Wang

    2015-01-01

    Full Text Available A major source of reactive oxygen species (ROS generation is the mitochondria. By using flow cytometry of the mitochondrial fluorescent probe, MitoSOX Red, western blot of mitochondrial ROS scavenger Peroxiredoxin (Prx 3 and fluorescence immunostaining, ELISA of cleaved caspases 3 and 9, and TUNEL staining, we demonstrated that exposure to 100 μM KI for 2 hours significantly increased mitochondrial superoxide production and Prx 3 protein expression with increased expressions of cleaved caspases 3 and 9. Besides, we indicated that superoxide dismutase (SOD at 1000 unit/mL attenuated the increase in mitochondrial superoxide production, Prx 3 protein expression, and lactate dehydrogenase (LDH release and improved the relative cell viability at 100 μM KI exposure. However, SOD inhibitor diethyldithiocarbamic acid (DETC (2 mM, Rotenone (0.5 μM, a mitochondrial complex I inhibitor, and Antimycin A (10 μM, a complex III inhibitor, caused an increase in mitochondrial superoxide production, Prx 3 protein expression, and LDH release and decreased the relative cell viability. We conclude that the inhibitors of mitochondrial respiratory chain complex I or III may be involved in oxidative stress caused by elevated concentrations of iodide, and SOD demonstrates its protective effect on the Fischer rat thyroid cell line (FRTL cells.

  3. Investigation into the prevalence of bovine brucellosis and the risk ...

    African Journals Online (AJOL)

    Investigation into the prevalence of bovine brucellosis and the risk factors that predispose human to infection among urban dairy and non-dairy farming households in Dagoretti Division, Nairobi, Kenya.

  4. Enzootic bovine leucosis.

    Science.gov (United States)

    Tyler, L

    1978-09-02

    Enzootic bovine leucosis is associated with infection by bovine leucosis virus. The incubation period is measured in years and a minority of infected animals develop clinical signs. The disease is widespread in Europe and elsewhere and can cause significant economic loss. The epidemiology is incompletely understood and findings from one cattle production system may not be directly applicable to another. Major control programmes exist in Denmark and West Germany and control schemes are being developed elsewhere. Eradication of enzootic bovine leucosis has been established as a goal in the EEC and research is revealing the ways in which this goal may be attained. To be effective, control and epidemiological monitoring must be interactive. Recently introduced serological tests, of improved sensitivity, provide a valuable tool.

  5. Activities for leptin in bovine trophoblast cells.

    Science.gov (United States)

    Hughes, C K; Xie, M M; McCoski, S R; Ealy, A D

    2017-01-01

    Leptin is involved in various reproductive processes in humans and rodents, including placental development and function. The specific ways that leptin influences placental development and function in cattle are poorly understood. This work was completed to explore how leptin regulates hormone, cytokine and metalloprotease transcript abundance, and cell proliferation in cultured bovine trophoblast cells. In the first set of studies, cells were cultured in the presence of graded recombinant bovine leptin concentrations (0, 10, 50, 250 ng/mL) for 6 or 24 h. Transcript profiles were examined from extracted RNA. Leptin supplementation did not affect abundance of the maternal recognition of pregnancy factor, interferon-tau (IFNT), but leptin increased (P leptin. Transcript abundance of the remodeling factor, metalloprotease 2 (MMP2), was greater (P leptin-treated cells at 24 h but not at 6 h. The 24 h MMP2 response was greatest (P leptin treatment. In a separate set of studies, cell proliferation assays were completed. Leptin supplementation did not affect bovine trophoblast cell line proliferation at any dose tested. In conclusion, leptin supplementation did not affect bovine trophoblast cell proliferation or IFNT expression, but leptin increases CSH2 and MMP2 transcript abundance. Both of these factors are involved with peri-implantation and postimplantation placental development and function, and this implicates leptin as a potential mediator of early placental development and function in cattle. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pasteurella multocida and bovine respiratory disease.

    Science.gov (United States)

    Dabo, S M; Taylor, J D; Confer, A W

    2007-12-01

    Pasteurella multocida is a pathogenic Gram-negative bacterium that has been classified into three subspecies, five capsular serogroups and 16 serotypes. P. multocida serogroup A isolates are bovine nasopharyngeal commensals, bovine pathogens and common isolates from bovine respiratory disease (BRD), both enzootic calf pneumonia of young dairy calves and shipping fever of weaned, stressed beef cattle. P. multocida A:3 is the most common serotype isolated from BRD, and these isolates have limited heterogeneity based on outer membrane protein (OMP) profiles and ribotyping. Development of P. multocida-induced pneumonia is associated with environmental and stress factors such as shipping, co-mingling, and overcrowding as well as concurrent or predisposing viral or bacterial infections. Lung lesions consist of an acute to subacute bronchopneumonia that may or may not have an associated pleuritis. Numerous virulence or potential virulence factors have been described for bovine respiratory isolates including adherence and colonization factors, iron-regulated and acquisition proteins, extracellular enzymes such as neuraminidase, lipopolysaccharide, polysaccharide capsule and a variety of OMPs. Immunity of cattle against respiratory pasteurellosis is poorly understood; however, high serum antibodies to OMPs appear to be important for enhancing resistance to the bacterium. Currently available P. multocida vaccines for use in cattle are predominately traditional bacterins and a live streptomycin-dependent mutant. The field efficacy of these vaccines is not well documented in the literature.

  7. Detection of Adulteration in Italian Mozzarella Cheese Using Mitochondrial DNA Templates as Biomarkers

    Directory of Open Access Journals (Sweden)

    Ivan Bonizzi

    2005-01-01

    Full Text Available Considering the importance of monitoring adulterations of genuine cheeses in the dairy industry, a polymerase chain reaction–based method was developed to detect bovine- specific mitochondrial DNA sequence in Italian water buffalo Mozzarella cheese. DNA was isolated from cheese matrix and governing liquid by organic extractions and kit purifications. Amplifications of a 134-bp fragment were performed with a bovine–specific set of primers designed on the sequence alignment of bovine and buffalo mitochondrial cytochrome oxidase subunit I. The specificity of the primers was tested using DNA from the blood of two species (water buffalo and bovine, which are present together in adulterated Italian Mozzarella cheese. This method reliably detected a content of 0.5 % of bovin milk, making it suitable for routine fraud monitoring.

  8. Caenorhabditis elegans ATPase inhibitor factor 1 (IF1 MAI-2 preserves the mitochondrial membrane potential (Δψm and is important to induce germ cell apoptosis.

    Directory of Open Access Journals (Sweden)

    L P Fernández-Cárdenas

    Full Text Available When the electrochemical proton gradient is disrupted in the mitochondria, IF1 (Inhibitor Factor-1 inhibits the reverse hydrolytic activity of the F1Fo-ATP synthase, thereby allowing cells to conserve ATP at the expense of losing the mitochondrial membrane potential (Δψm. The function of IF1 has been studied mainly in different cell lines, but these studies have generated contrasting results, which have not been helpful to understand the real role of this protein in a whole organism. In this work, we studied IF1 function in Caenorhabditis elegans to understand IF1´s role in vivo. C. elegans has two inhibitor proteins of the F1Fo-ATPase, MAI-1 and MAI-2. To determine their protein localization in C. elegans, we generated translational reporters and found that MAI-2 is expressed ubiquitously in the mitochondria; conversely, MAI-1 was found in the cytoplasm and nuclei of certain tissues. By CRISPR/Cas9 genome editing, we generated mai-2 mutant alleles. Here, we showed that mai-2 mutant animals have normal progeny, embryonic development and lifespan. Contrasting with the results previously obtained in cell lines, we found no evident defects in the mitochondrial network, dimer/monomer ATP synthase ratio, ATP concentration or respiration. Our results suggest that some of the roles previously attributed to IF1 in cell lines could not reflect the function of this protein in a whole organism and could be attributed to specific cell lines or methods used to silence, knockout or overexpress this protein. However, we did observe that animals lacking IF1 had an enhanced Δψm and lower physiological germ cell apoptosis. Importantly, we found that mai-2 mutant animals must be under stress to observe the role of IF1. Accordingly, we observed that mai-2 mutant animals were more sensitive to heat shock, oxidative stress and electron transport chain blockade. Furthermore, we observed that IF1 is important to induce germ cell apoptosis under certain types of

  9. Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells.

    Science.gov (United States)

    Karbowski, Mariusz; Cleland, Megan M; Roelofs, Brian A

    2014-01-01

    Technological improvements in microscopy and the development of mitochondria-specific imaging molecular tools have illuminated the dynamic rearrangements of these essential organelles. These rearrangements are mainly the result of two opposing processes: mitochondrial fusion and mitochondrial fission. Consistent with this, in addition to mitochondrial motility, these two processes are major factors determining the overall degree of continuity of the mitochondrial network, as well as the average size of mitochondria within the cell. In this chapter, we detail the use of advanced confocal microscopy and mitochondrial matrix-targeted photoactivatable green fluorescent protein (mito-PAGFP) for the investigation of mitochondrial dynamics. We focus on direct visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living mammalian cells. These assays were instrumental in important recent discoveries within the field of mitochondrial biology, including the role of mitochondrial fusion in the activation of mitochondrial steps in apoptosis, participation of Bcl-2 family proteins in mitochondrial morphogenesis, and stress-induced mitochondrial hyperfusion. We present some basic directions that should be helpful in designing mito-PAGFP-based experiments. Furthermore, since analyses of mitochondrial fusion using mito-PAGFP-based assays rely on time-lapse imaging, critical parameters of time-lapse microscopy and cell preparation are also discussed.

  10. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells.

    Directory of Open Access Journals (Sweden)

    Ding Zhang

    Full Text Available Cadmium ions (Cd2+ have been reported to accumulate in bovine tissues, although Cd2+ cytotoxicity has not been investigated thoroughly in this species. Zinc ions (Zn2+ have been shown to antagonize the toxic effects of heavy metals such as Cd2+ in some systems. The present study investigated Cd2+ cytotoxicity in Madin-Darby bovine kidney (MDBK epithelial cells, and explored whether this was modified by Zn2+. Exposure to Cd2+ led to a dose- and time-dependent increase in apoptotic cell death, with increased intracellular levels of reactive oxygen species and mitochondrial damage. Zn2+ supplementation alleviated Cd2+-induced cytotoxicity and this protective effect was more obvious when cells were exposed to a lower concentration of Cd2+ (10 μM, as compared to 50 μM Cd2+. This indicated that high levels of Cd2+ accumulation might induce irreversible damage in bovine kidney cells. Metallothioneins (MTs are metal-binding proteins that play an essential role in heavy metal ion detoxification. We found that co-exposure to Zn2+ and Cd2+ synergistically enhanced RNA and protein expression of MT-1, MT-2, and the metal-regulatory transcription factor 1 in MDBK cells. Notably, addition of Zn2+ reduced the amounts of cytosolic Cd2+ detected following MDBK exposure to 10 μM Cd2+. These findings revealed a protective role of Zn2+ in counteracting Cd2+ uptake and toxicity in MDBK cells, indicating that this approach may provide a means to protect livestock from excessive Cd2+ accumulation.

  11. Mitochondrial mutations in cancer.

    Science.gov (United States)

    Brandon, M; Baldi, P; Wallace, D C

    2006-08-07

    cell proliferation and (2) milder mutations that may permit tumors to adapt to new environments. The former may be lost during subsequent tumor oxygenation while the latter may become fixed. Hence, mitochondrial dysfunction does appear to be a factor in cancer etiology, an insight that may suggest new approaches for diagnosis and treatment.

  12. On the alterations in serum concentration of somatotropin and insuline-like growth factor 1 in lactating cows after the treatment with a little studied recombinant bovine somatotropin.

    Science.gov (United States)

    Castigliego, L; Grifoni, G; Rosati, R; Iannone, G; Armani, A; Gianfaldoni, D; Guidi, A

    2009-08-01

    A study was performed to delineate bST and IGF-1 variation, over a whole lactation, in cows treated with a nowadays widely commercialised but little studied sustained release formulation of recombinant bST. Total bST levels were found to be exceptionally high in the first days after administration, but decreased rapidly in the second week after injection. The increase in the IGF-1 serum concentration was significant for almost the entire biweekly cycle. Based on this study, the peaks of ST (often above 100 ng/ml) are considered particularly unlikely to be found in non-treated bovines, even under pathological conditions, especially when detected in a number of animals within a herd. Notwithstanding the great heterogeneity of results on this topic, these data suggest that tests against fraud involving the use of rbST in dairy products may be regarded as a feasible possibility.

  13. Detection of Adulteration in Italian Mozzarella Cheese Using Mitochondrial DNA Templates as Biomarkers

    OpenAIRE

    Ivan Bonizzi; Vlatka Cubric Curik; Pietro Parma; Gian Franco Greppi; Giuseppe Enne; Maria Feligini

    2005-01-01

    Considering the importance of monitoring adulterations of genuine cheeses in the dairy industry, a polymerase chain reaction–based method was developed to detect bovine- specific mitochondrial DNA sequence in Italian water buffalo Mozzarella cheese. DNA was isolated from cheese matrix and governing liquid by organic extractions and kit purifications. Amplifications of a 134-bp fragment were performed with a bovine–specific set of primers designed on the sequence alignment of bovine and buffal...

  14. Caspase-independent apoptosis in Friend's erythroleukemia cells: role of mitochondrial ATP synthesis impairment in relocation of apoptosis-inducing factor and endonuclease G.

    Science.gov (United States)

    Comelli, Marina; Genero, Nadia; Mavelli, Irene

    2009-02-01

    Mitochondria have emerged as the central components of both caspase-dependent and independent apoptosis signalling pathways through release of different apoptogenic proteins. We previously documented that parental and differentiated Friend's erythroleukemia cells were induced to apoptosis by oligomycin and H(2)O(2) exposure, showing that the energy impairment occurring in both cases as a consequence of a severe mitochondrial F(0)F(1)ATPsynthase inactivation was a common early feature. Here we provide evidence for AIF and Endo G mitochondrio-nuclear relocation in both cases, as a component of caspase-independent apoptosis pathways. No detectable change in mitochondrial transmembrane potential and no variation in mitochondrial levels of Bcl-2 and Bax are observed. These results point to the osmotic rupture of the mitochondrial outer membrane as occurring in response to cell exposure to the two energy-impairing treatments under conditions preserving the mitochondrial inner membrane. A critical role of the mitochondrial F(0)F(1)ATP synthase inhibition in this process is also suggested.

  15. Preimplantation development and expression of Hsp-70 and Bax genes in bovine blastocysts derived from oocytes matured in alpha-MEM supplemented with growth factors and synthetic macromolecules.

    Science.gov (United States)

    Vireque, A A; Camargo, L S A; Serapião, R V; Rosa E Silva, A A M; Watanabe, Y F; Ferreira, E M; Navarro, P A A S; Martins, W P; Ferriani, R A

    2009-03-01

    In vitro culture conditions affect both the maternal and embryonic expression of genes and is likely to alter both oocyte and embryo developmental competence. The search for better and less variable culture conditions simulating those in vivo has led to the development of defined culture media, with lower impact on the molecular reprogramming of oocytes and embryos. We evaluated embryo development and relative abundance (RA) of Hsp-70 and Bax transcripts in bovine blastocysts produced from oocytes matured in a chemically defined IVM system with synthetic polymers. Immature cumulus oocyte complexes (COCs) were matured for 22-24h in alpha-MEM supplemented with IGF-1, insulin, 0.1% polyvinyl alcohol (PVA), or 0.1% polyvinylpyrrolidone (PVP), but without FSH or LH. The control group consisted of COCs matured in TCM plus FSH and 10% estrous cow serum. After fertilization, presumptive zygotes were co-cultured with cumulus cells until 224 h post-insemination. Total RNA was isolated from embryo pools, reverse transcribed into cDNA, and subjected to transcript analysis by real-time PCR. Cleavage rate was higher (P<0.05) for the control group (68.3%) than for the PVA (54.4%) and PVP-40 (58.3%) groups. Nevertheless, there was no difference among the PVA, PVP-40 and control groups in blastocyst or hatching rates. Similarly, no difference in relative abundance of Hsp-70 and Bax transcripts was detected in comparison to the control group. We inferred that bovine oocytes can be matured in serum- and gonadotrophin-free medium supplemented with PVA or PVP, enriched with IGF-I and insulin, without altering post-cleavage development and relative abundance of some genes associated with stress and apoptosis.

  16. Intervet Symposium: bovine neosporosis

    NARCIS (Netherlands)

    Schetters, T.; Dubey, J.P.; Adrianarivo, A.; Frankena, K.; Romero, J.J.; Pérez, E.; Heuer, C.; Nicholson, C.; Russell, D.; Weston, J.

    2004-01-01

    This article summarises the most relevant data of presentations delivered at the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP) held in New Orleans, LA, USA, from 10 to 14 August 2003) in a symposium session on bovine neosporosis. The

  17. Genotyping bovine coronaviruses.

    Science.gov (United States)

    Bovine coronaviruses (BoCV) are enveloped, single-stranded, positive-sense RNA viruses of the Coronaviridae family. Infection is associated with enteritis and pneumonia in calves and Winter Dysentery in adult cattle. Strains, isolated more than 50 years ago, are used in vaccines and as laboratory ...

  18. Paternally inherited markers in bovine hybrid populations.

    Science.gov (United States)

    Verkaar, E L C; Vervaecke, H; Roden, C; Romero Mendoza, L; Barwegen, M W; Susilawati, T; Nijman, I J; Lenstra, J A

    2003-12-01

    The genetic integrity of crossfertile bovine- or cattle-like species may be endangered by species hybridization. Previously, amplified fragment length polymorphism, satellite fragment length polymorphism and microsatellite assays have been used to analyze the species composition of nuclear DNA in taurine cattle, zebu, banteng and bison populations, while mitochondrial DNA reveals the origin of the maternal lineages. Here, we describe species-specific markers of the paternally transmitted Y-chromosome for the direct detection of male-mediated introgression. Convenient PCR-restriction fragment length polymorphism and competitive PCR assays are shown to differentiate the Y-chromosomes of taurine cattle, American bison and European bison, and to detect the banteng origin of Indonesian Madura and Bali cattle bulls.

  19. The Alzheimer's Disease Mitochondrial Cascade Hypothesis: Progress and Perspectives

    Science.gov (United States)

    Swerdlow, Russell H.; Burns, Jeffrey M.; Khan, Shaharyar M.

    2013-01-01

    Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it. PMID:24071439

  20. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives.

    Science.gov (United States)

    Swerdlow, Russell H; Burns, Jeffrey M; Khan, Shaharyar M

    2014-08-01

    Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains that gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts that biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it. © 2013.

  1. Mitochondrial disease and epilepsy.

    Science.gov (United States)

    Rahman, Shamima

    2012-05-01

    Mitochondrial respiratory chain disorders are relatively common inborn errors of energy metabolism, with a combined prevalence of one in 5000. These disorders typically affect tissues with high energy requirements, and cerebral involvement occurs frequently in childhood, often manifesting in seizures. Mitochondrial diseases are genetically heterogeneous; to date, mutations have been reported in all 37 mitochondrially encoded genes and more than 80 nuclear genes. The major genetic causes of mitochondrial epilepsy are mitochondrial DNA mutations (including those typically associated with the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS] and myoclonic epilepsy with ragged red fibres [MERRF] syndromes); mutations in POLG (classically associated with Alpers syndrome but also presenting as the mitochondrial recessive ataxia syndrome [MIRAS], spinocerebellar ataxia with epilepsy [SCAE], and myoclonus, epilepsy, myopathy, sensory ataxia [MEMSA] syndromes in older individuals) and other disorders of mitochondrial DNA maintenance; complex I deficiency; disorders of coenzyme Q(10) biosynthesis; and disorders of mitochondrial translation such as RARS2 mutations. It is not clear why some genetic defects, but not others, are particularly associated with seizures. Epilepsy may be the presenting feature of mitochondrial disease but is often part of a multisystem clinical presentation. Mitochondrial epilepsy may be very difficult to manage, and is often a poor prognostic feature. At present there are no curative treatments for mitochondrial disease. Individuals with mitochondrial epilepsy are frequently prescribed multiple anticonvulsants, and the role of vitamins and other nutritional supplements and the ketogenic diet remain unproven. © The Author. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  2. Integrated analysis of the involvement of nitric oxide synthesis in mitochondrial proliferation, mitochondrial deficiency and apoptosis in skeletal muscle fibres

    Science.gov (United States)

    Rodrigues, Gabriela Silva; Godinho, Rosely Oliveira; Kiyomoto, Beatriz Hitomi; Gamba, Juliana; Oliveira, Acary Souza Bulle; Schmidt, Beny; Tengan, Célia Harumi

    2016-01-01

    Nitric oxide (NO) is an important signaling messenger involved in different mitochondrial processes but only few studies explored the participation of NO in mitochondrial abnormalities found in patients with genetic mitochondrial deficiencies. In this study we verified whether NO synthase (NOS) activity was altered in different types of mitochondrial abnormalities and whether changes in mitochondrial function and NOS activity could be associated with the induction of apoptosis. We performed a quantitative and integrated analysis of NOS activity in individual muscle fibres of patients with mitochondrial diseases, considering mitochondrial function (cytochrome-c-oxidase activity), mitochondrial content, mitochondrial DNA mutation and presence of apoptotic nuclei. Our results indicated that sarcolemmal NOS activity was increased in muscle fibres with mitochondrial proliferation, supporting the relevance of neuronal NOS in the mitochondrial biogenesis process. Sarcoplasmic NOS activity was reduced in cytochrome-c-oxidase deficient fibres, probably as a consequence of the involvement of NO in the regulation of the respiratory chain. Alterations in NOS activity or mitochondrial abnormalities were not predisposing factors to apoptotic nuclei. Taken together, our results show that NO can be considered a potential molecular target for strategies to increase mitochondrial content and indicate that this approach may not be associated with increased apoptotic events. PMID:26856437

  3. Pyruvate kinase M2 and the mitochondrial ATPase Inhibitory Factor 1 provide novel biomarkers of dermatomyositis: a metabolic link to oncogenesis.

    Science.gov (United States)

    Santacatterina, Fulvio; Sánchez-Aragó, María; Catalán-García, Marc; Garrabou, Glòria; de Arenas, Cristina Nuñez; Grau, Josep M; Cardellach, Francesc; Cuezva, José M

    2017-02-10

    Metabolic alterations play a role in the development of inflammatory myopathies (IMs). Herein, we have investigated through a multiplex assay whether proteins of energy metabolism could provide biomarkers of IMs. A cohort of thirty-two muscle biopsies and forty plasma samples comprising polymyositis (PM), dermatomyositis (DM) and sporadic inclusion body myositis (sIBM) and control donors was interrogated with monoclonal antibodies against proteins of energy metabolism using reverse phase protein microarrays (RPPA). When compared to controls the expression of the proteins is not significantly affected in the muscle of PM patients. However, the expression of β-actin is significantly increased in DM and sIBM in consistence with muscle and fiber regeneration. Concurrently, the expression of some proteins involved in glucose metabolism displayed a significant reduction in muscle of sIBM suggesting a repression of glycolytic metabolism in these patients. In contrasts to these findings, the expression of the glycolytic pyruvate kinase isoform M2 (PKM2) and of the mitochondrial ATPase Inhibitor Factor 1 (IF1) and Hsp60 were significantly augmented in DM when compared to other IMs in accordance with a metabolic shift prone to cancer development. PKM2 alone or in combination with other biomarkers allowed the discrimination of control and IMs with very high (>95%) sensitivity and specificity. Unfortunately, plasma levels of PKM2 were not significantly altered in DM patients to recommend its use as a non-invasive biomarker of the disease. Expression of proteins of energy metabolism in muscle enabled discrimination of patients with IMs. RPPA identified the glycolysis promoting PKM2 and IF1 proteins as specific biomarkers of dermatomyositis, providing a biochemical link of this IM with oncogenesis.

  4. Epidemiology, pathology, immunology and diagnosis of bovine farcy: a review.

    Science.gov (United States)

    Hamid, Mohamed E

    2012-06-01

    Bovine farcy (which is caused by Mycobacterium farcinogenes and Mycobacterium senegalense) is a chronic suppurative granulomatous inflammation of the skin and lymphatics of cattle and is seen mostly in sub-Saharan Africa. It is not yet certain whether Nocardia farcinica causes cutaneous nocardiosis (farcy) in animals that mimics bovine farcy. Epidemiological data have steadily reported finding bovine farcy in adult cattle of the transhumance pastoralist tribes of the Sahel and the Sudanian savannah zones. M. farcinogenes and or M. senegalense do not affect other domestic or non-domestic animals; it is not known whether these bacteria are zoonotic. The disease--once widespread in many regions--has disappeared from some countries historically known to have it. Reports of bovine farcy prevalence seem to be linked to the existence of survey initiatives by governments and diagnostic capabilities in each country. Farcy causes economic loss due to damaged hides and also is a public-health burden (because the lymphadenitis due to farcy resembles the lesions of bovine tuberculosis in carcasses and the meat is considered inappropriate for human consumption). The current literature is deficient in establishing definitely the prevalence, transmission patterns, and risk factors of bovine farcy. Ixodid ticks transmit other skin diseases (such as dermatophilosis) and might play a role in bovine farcy (given the similarity in the bio-physiology and geographic distribution of the disease). In addition, the tick-resistance of cattle breeds such as the N'Dama, Fulani or the Nilotic might explain their resistance to bovine farcy. Apart from the judicious use of conventional smear-and-culture methods, few diagnostic tests have been developed; the molecular and serological tests have not been evaluated for reproducibility and accuracy. This review points out aspects of bovine farcy that need further research and updates available data on the prevalence, distribution, risk factors

  5. Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum.

    Science.gov (United States)

    Cao, Zhimin; West, Clint; Norton-Wenzel, Carol S; Rej, Robert; Davis, Faith B; Davis, Paul J; Rej, Robert

    2009-01-01

    Charcoal- or resin-stripping of fetal bovine serum (FBS) or bovine calf serum (BCS) intended for supplementation of cell culture media is widely practiced to remove a variety of endogenous compounds, including steroid, peptide, and thyroid hormones. The possibility that stripping removes other biologically relevant factors from serum may not be appreciated. In this report, standardized clinical laboratory testing methods were used to assess the effects of resin- and charcoal-stripping on content in FBS and BCS of more than 25 analytes in the sera. In addition to hormones, the serum constituents affected by stripping are certain vitamins, electrolytes, enzyme activities, and metabolites.

  6. Studies on substantially increased proteins in follicular fluid of bovine ovarian follicular cysts using 2-D PAGE and MALDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Isobe Naoki

    2005-06-01

    Full Text Available Abstract Background The objective of this study was to identify substantially increased proteins in bovine cystic follicular fluid (FF in order to clarify the pathology and etiology of bovine ovarian follicular cysts (BOFC. Methods Proteins in normal and cystic FF samples were subjected to two-dimensional polyacrylamide gel electrophoresis (2-D PAGE and were compared using silver stained gel images with PDQuest image analysis software. Peptides from these increased spots were analyzed by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS, and were identified based on the NCBI database by a peptide mass fingerprinting method. Results Comparative proteomic analysis showed 8 increased protein spots present in cystic FF. MS analysis and database searching revealed that the increased proteins in cystic FF were bovine mitochondrial f1-atpase (BMFA, erythroid associated factor (EAF, methionine synthase (MeS, VEGF-receptor, glyceraldehydes 3-phosphate dehydrogenase (GAPDH, heat shock protein 70 (HSP70, β-lactoglobulin (BLG and succinate dehydrogenase Ip subunit (SD. Conclusion Our results suggest that these proteins are overexpressed in BOFC, and that they may play important roles in the pathogenesis of BOFC. Furthermore, these proteins in the FF could be useful biomarkers for BOFC.

  7. Studies on substantially increased proteins in follicular fluid of bovine ovarian follicular cysts using 2-D PAGE and MALDI-TOF MS.

    Science.gov (United States)

    Maniwa, Jiro; Izumi, Shunsuke; Isobe, Naoki; Terada, Takato

    2005-06-08

    The objective of this study was to identify substantially increased proteins in bovine cystic follicular fluid (FF) in order to clarify the pathology and etiology of bovine ovarian follicular cysts (BOFC). Proteins in normal and cystic FF samples were subjected to two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and were compared using silver stained gel images with PDQuest image analysis software. Peptides from these increased spots were analyzed by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and were identified based on the NCBI database by a peptide mass fingerprinting method. Comparative proteomic analysis showed 8 increased protein spots present in cystic FF. MS analysis and database searching revealed that the increased proteins in cystic FF were bovine mitochondrial f1-atpase (BMFA), erythroid associated factor (EAF), methionine synthase (MeS), VEGF-receptor, glyceraldehydes 3-phosphate dehydrogenase (GAPDH), heat shock protein 70 (HSP70), beta-lactoglobulin (BLG) and succinate dehydrogenase Ip subunit (SD). Our results suggest that these proteins are overexpressed in BOFC, and that they may play important roles in the pathogenesis of BOFC. Furthermore, these proteins in the FF could be useful biomarkers for BOFC.

  8. Bovine parainfluenza-3 virus.

    Science.gov (United States)

    Ellis, John A

    2010-11-01

    Bovine parainfluenza-3 virus (bPI(3)V) is a long-recognized, currently underappreciated, endemic infection in cattle populations. Clinical disease is most common in calves with poor passive transfer or decayed maternal antibodies. It is usually mild, consisting of fever, nasal discharge, and dry cough. Caused at least partly by local immunosuppressive effects, bPI(3)V infection is often complicated by coinfection with other respiratory viruses and bacteria, and is therefore an important component of enzootic pneumonia in calves and bovine respiratory disease complex in feedlot cattle. Active infection can be diagnosed by virus isolation from nasal swabs, or IF testing on smears made from nasal swabs. Timing of sampling is critical in obtaining definitive diagnostic test results. Parenteral and intranasal modified live vaccine combination vaccines are available. Priming early in calfhood with intranasal vaccine, followed by boosting with parenteral vaccine, may be the best immunoprophylactic approach. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Camel and bovine chymosin

    DEFF Research Database (Denmark)

    Jensen, Jesper Langholm; Mølgaard, Anne; Poulsen, Jens-Christian Navarro

    2013-01-01

    Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite...... chymosin. Both enzymes possess local positively charged patches on their surface that can play a role in interactions with the overall negatively charged C-terminus of κ-casein. Camel chymosin contains two additional positive patches that favour interaction with the substrate. The improved electrostatic...... interactions arising from variation in the surface charges and the greater malleability both in domain movements and substrate binding contribute to the better milk-clotting activity of camel chymosin towards bovine milk....

  10. Mycotic bovine nasal granuloma

    Directory of Open Access Journals (Sweden)

    Conti Díaz Ismael Alejandro

    2003-01-01

    Full Text Available A case of mycotic bovine nasal granuloma in a 10 year-old Jersey cow, produced by Drechslera halodes is presented. Histopathological sections showed abundant hyaline and pigmented extra and intracellular fungal structures together with a polymorphic cellular granuloma formed by neutrophils, lymphocytes, plasmocytes, histiocytes and giant cells of the Langhans type. It is the first case of mycotic bovine nasal granuloma recognized in Uruguay although this disease seems to be frequent according to the opinion of veterinarian specialists. Another similar clinical case also in a Jersey cow from the same dairy house with an intense cellular infiltrate rich in eosinophils without granulomatous image, together with extracellular hyaline and fuliginous fungal forms, is also referred for comparative purposes. Geotrichum sp. was isolated. The need of an early diagnosis and treatment of the disease is stressed.

  11. Immunoprophylaxis of bovine respiratory syndrome

    Directory of Open Access Journals (Sweden)

    Rogan Dragan

    2010-01-01

    Full Text Available Bovine Respiratory Syndrome (BRS is a multifactorial disease caused by the interaction of infective agents, the environment and the individual immunological response of animals in the herd. Despite five decades of research on BRS, no clear understanding of how environmental factors influence pathogenic outcomes of the disease has been defined. As such, the development of immunoprophylaxis and vaccine programmes to prevent outbreaks of BRS in cattle has not been successful. The current paper discusses vaccination programmes for all categories of cattle and presents a review of existing vaccines being used for immunoprophylaxis of respiratory syndrome in cattle and discusses the advantages and disadvantages of the currently used vaccines and vaccination programmes. Lastly, a discussion detailing the design of future perfect vaccines is presented.

  12. Viral infections and bovine mastitis: a review.

    Science.gov (United States)

    Wellenberg, G J; van der Poel, W H M; Van Oirschot, J T

    2002-08-02

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or parainfluenza 3 virus-induced clinical mastitis, while an intramammary inoculation of foot-and-mouth disease virus resulted in necrosis of the mammary gland. Subclinical mastitis has been induced after a simultaneous intramammary and intranasal inoculation of lactating cows with bovine herpesvirus 4. Bovine leukaemia virus has been detected in mammary tissue of cows with subclinical mastitis, but whether this virus was able to induce bovine mastitis has not been reported. Bovine herpesvirus 2, vaccinia, cowpox, pseudocowpox, vesicular stomatitis, foot-and-mouth disease viruses, and bovine papillomaviruses can play an indirect role in the aetiology of bovine mastitis. These viruses can induce teat lesions, for instance in the ductus papillaris, which result in a reduction of the natural defence mechanisms of the udder and indirectly in bovine mastitis due to bacterial pathogens. Bovine herpesvirus 1, bovine viral diarrhoea virus, bovine immunodeficiency virus, and bovine leukaemia virus infections may play an indirect role in bovine mastitis, due to their immunosuppressive properties. But, more research is warranted to underline their indirect role in bovine mastitis. We conclude that viral infections can play a direct or indirect role in the aetiology of bovine mastitis; therefore, their importance in the aetiology of bovine mastitis and their economical impact needs further attention.

  13. Melatonin in Mitochondrial Dysfunction and Related Disorders

    Science.gov (United States)

    Srinivasan, Venkatramanujam; Spence, D. Warren; Pandi-Perumal, Seithikurippu R.; Brown, Gregory M.; Cardinali, Daniel P.

    2011-01-01

    Mitochondrial dysfunction is considered one of the major causative factors in the aging process, ischemia/reperfusion (I/R), septic shock, and neurodegenerative disorders like Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO) synthase activity, enhanced NO production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pore all have been suggested as factors responsible for impaired mitochondrial function. Melatonin, the major hormone of the pineal gland, also acts as an antioxidant and as a regulator of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective for preventing oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. In addition, melatonin is known to retard aging and to inhibit the lethal effects of septic shock or I/R lesions by maintaining respiratory complex activities, electron transport chain, and ATP production in mitochondria. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other antioxidants. Melatonin has thus emerged as a major potential therapeutic tool for treating neurodegenerative disorders such as PD or AD, and for preventing the lethal effects of septic shock or I/R. PMID:21629741

  14. Melatonin in Mitochondrial Dysfunction and Related Disorders

    Directory of Open Access Journals (Sweden)

    Venkatramanujam Srinivasan

    2011-01-01

    Full Text Available Mitochondrial dysfunction is considered one of the major causative factors in the aging process, ischemia/reperfusion (I/R, septic shock, and neurodegenerative disorders like Parkinson's disease (PD, Alzheimer's disease (AD, and Huntington's disease (HD. Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO synthase activity, enhanced NO production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pore all have been suggested as factors responsible for impaired mitochondrial function. Melatonin, the major hormone of the pineal gland, also acts as an antioxidant and as a regulator of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective for preventing oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. In addition, melatonin is known to retard aging and to inhibit the lethal effects of septic shock or I/R lesions by maintaining respiratory complex activities, electron transport chain, and ATP production in mitochondria. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other antioxidants. Melatonin has thus emerged as a major potential therapeutic tool for treating neurodegenerative disorders such as PD or AD, and for preventing the lethal effects of septic shock or I/R.

  15. Diagnostic imaging in bovine orthopedics.

    Science.gov (United States)

    Kofler, Johann; Geissbühler, Urs; Steiner, Adrian

    2014-03-01

    Although a radiographic unit is not standard equipment for bovine practitioners in hospital or field situations, ultrasound machines with 7.5-MHz linear transducers have been used in bovine reproduction for many years, and are eminently suitable for evaluation of orthopedic disorders. The goal of this article is to encourage veterinarians to use radiology and ultrasonography for the evaluation of bovine orthopedic disorders. These diagnostic imaging techniques improve the likelihood of a definitive diagnosis in every bovine patient but especially in highly valuable cattle, whose owners demand increasingly more diagnostic and surgical interventions that require high-level specialized techniques. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Epigenetic revival of a dead cardiomyocyte through mitochondrial interventions.

    Science.gov (United States)

    Kunkel, George H; Chaturvedi, Pankaj; Tyagi, Suresh C

    2015-08-01

    Mitochondrial dysfunction has been reported to underline heart failure, and our earlier report suggests that mitochondrial fusion and fission contributes significantly to volume overload heart failure. Although ample studies highlight mitochondrial dysfunction to be a major cause, studies are lacking to uncover the role of mitochondrial epigenetics, i.e. epigenetic modifications of mtDNA in cardiomyocyte function. Additionally, mitochondrial proteases like calpain and Lon proteases are underexplored. Cardiomyopathies are correlated to mitochondrial damage via increased reactive oxygen species production and free calcium within cardiomyocytes. These abnormalities drive increased proteolytic activity from matrix metalloproteinases and calpains, respectively. These proteases degrade the cytoskeleton of the cardiomyocyte and lead to myocyte death. mtDNA methylation is another factor that can lead to myocyte death by silencing several genes of mitochondria or upregulating the expression of mitochondrial proteases by hypomethylation. Cardiomyocyte resuscitation can occur through mitochondrial interventions by decreasing the proteolytic activity and reverting back the epigenetic changes in the mtDNA which lead to myocyte dysfunction. Epigenetic changes in the mtDNA are triggered by environmental factors like pollution and eating habits with cigarette smoking. An analysis of mitochondrial epigenetics in cigarette-smoking mothers will reveal an underlying novel mechanism leading to mitochondrial dysfunction and eventually heart failure. This review is focused on the mitochondrial dysfunction mechanisms that can be reverted back to resuscitate cardiomyocytes.

  17. Mitochondrial translation initiation machinery: conservation and diversification.

    Science.gov (United States)

    Kuzmenko, Anton; Atkinson, Gemma C; Levitskii, Sergey; Zenkin, Nikolay; Tenson, Tanel; Hauryliuk, Vasili; Kamenski, Piotr

    2014-05-01

    The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components - mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  18. Epigenetics, epidemiology and mitochondrial DNA diseases

    OpenAIRE

    Chinnery, Patrick F; Elliott, Hannah R; Hudson, Gavin; Samuels, David C; Relton, Caroline L

    2012-01-01

    Over the last two decades, the mutation of mitochondrial DNA (mtDNA) has emerged as a major cause of inherited human disease. The disorders present clinically in at least 1 in 10 000 adults, but pathogenic mutations are found in approximately 1 in 200 of the background population. Mitochondrial DNA is maternally inherited and there can be marked phenotypic variability within the same family. Heteroplasmy is a significant factor and environmental toxins also appear to modulate the phenotype. A...

  19. In Vitro Assessment of Silver Nanoparticles Toxicity in Hepatic Mitochondrial Function

    Science.gov (United States)

    2008-09-08

    biuret method calibrated with bovine serum albumin (Gornall et al., 1949). Mitochondrial respiration. Oxygen consumption of isolated mitochondria was...Z39-18 2 TABLE OF CONTENTS Summary 3 Introduction 4 Methods 6 Results 8 Discussion 17 Conclusions...phosphorylation, bioenergetic deficits, and, presumably, cell death. 6 METHODS Isolation of liver mitochondria. Liver

  20. Meta-Analysis of mitochondrial DNA reveals several population bottlenecks during worldwide migrations of cattle

    NARCIS (Netherlands)

    Lenstra, Johannes A.; Ajmone-Marsan, Paolo; Beja-Pereira, Albano; Bollongino, Ruth; Bradley, Daniel G.; Colli, Licia; De Gaetano, Anna; Edwards, Ceiridwen J.; Felius, Marleen; Ferretti, Luca; Ginja, Catarina; Hristov, Peter; Kantanen, Juha; Lirón, Juan Pedro; Magee, David A.; Negrini, Riccardo; Radoslavov, Georgi A.

    2014-01-01

    Several studies have investigated the differentiation of mitochondrial DNA in Eurasian, African and American cattle as well as archaeological bovine material. A global survey of these studies shows that haplogroup distributions are more stable in time than in space. All major migrations of cattle

  1. Identification of sequence polymorphism in the D-Loop region of mitochondrial DNA as a risk factor for hepatocellular carcinoma with distinct etiology

    Directory of Open Access Journals (Sweden)

    Zhang Ruixing

    2010-09-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is frequently preceded by hepatitis virus infection or alcohol abuse. Genetic backgrounds may increase susceptibility to HCC from these exposures. Methods Mitochondrial DNA (mtDNA of peripheral blood, tumor, and/or adjacent non-tumor tissue from 49 hepatitis B virus-related and 11 alcohol-related HCC patients, and from 38 controls without HCC were examined for single nucleotide polymorphisms (SNPs and mutations in the D-Loop region. Results Single nucleotide polymorphisms (SNPs in the D-loop region of mt DNA were examined in HCC patients. Individual SNPs, namely the 16266C/T, 16293A/G, 16299A/G, 16303G/A, 242C/T, 368A/G, and 462C/T minor alleles, were associated with increased risk for alcohol- HCC, and the 523A/del was associated with increased risks of both HCC types. The mitochondrial haplotypes under the M haplogroup with a defining 489C polymorphism were detected in 27 (55.1% of HBV-HCCand 8 (72.7% of alcohol- HCC patients, and in 15 (39.5% of controls. Frequencies of the 489T/152T, 489T/523A, and 489T/525C haplotypes were significantly reduced in HBV-HCC patients compared with controls. In contrast, the haplotypes of 489C with 152T, 249A, 309C, 523Del, or 525Del associated significantly with increase of alcohol-HCC risk. Mutations in the D-Loop region were detected in 5 adjacent non-tumor tissues and increased in cancer stage (21 of 49 HBV-HCC and 4 of 11 alcohol- HCC, p Conclusions In sum, mitochondrial haplotypes may differentially predispose patients to HBV-HCC and alcohol-HCC. Mutations of the mitochondrial D-Loop sequence may relate to HCC development.

  2. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Susana Rovira-Llopis

    2017-04-01

    Full Text Available Mitochondria play a key role in maintaining cellular metabolic homeostasis. These organelles have a high plasticity and are involved in dynamic processes such as mitochondrial fusion and fission, mitophagy and mitochondrial biogenesis. Type 2 diabetes is characterised by mitochondrial dysfunction, high production of reactive oxygen species (ROS and low levels of ATP. Mitochondrial fusion is modulated by different proteins, including mitofusin-1 (MFN1, mitofusin-2 (MFN2 and optic atrophy (OPA-1, while fission is controlled by mitochondrial fission 1 (FIS1, dynamin-related protein 1 (DRP1 and mitochondrial fission factor (MFF. PARKIN and (PTEN-induced putative kinase 1 (PINK1 participate in the process of mitophagy, for which mitochondrial fission is necessary. In this review, we discuss the molecular pathways of mitochondrial dynamics, their impairment under type 2 diabetes, and pharmaceutical approaches for targeting mitochondrial dynamics, such as mitochondrial division inhibitor-1 (mdivi-1, dynasore, P110 and 15-oxospiramilactone. Furthermore, we discuss the pathophysiological implications of impaired mitochondrial dynamics, especially in type 2 diabetes.

  3. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E. (Georgetown Univ. School of Medicine, Washington, DC (USA))

    1989-12-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4{prime}-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit {sup 3}H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations.

  4. Progress in mitochondrial epigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana

    2013-08-01

    Mitochondria, intracellular organelles with their own genome, have been shown capable of interacting with epigenetic mechanisms in at least four different ways. First, epigenetic mechanisms that regulate the expression of nuclear genome influence mitochondria by modulating the expression of nuclear-encoded mitochondrial genes. Second, a cell-specific mitochondrial DNA content (copy number) and mitochondrial activity determine the methylation pattern of nuclear genes. Third, mitochondrial DNA variants influence the nuclear gene expression patterns and the nuclear DNA (ncDNA) methylation levels. Fourth and most recent line of evidence indicates that mitochondrial DNA similar to ncDNA also is subject to epigenetic modifications, particularly by the 5-methylcytosine and 5-hydroxymethylcytosine marks. The latter interaction of mitochondria with epigenetics has been termed 'mitochondrial epigenetics'. Here we summarize recent developments in this particular area of epigenetic research. Furthermore, we propose the term 'mitoepigenetics' to include all four above-noted types of interactions between mitochondria and epigenetics, and we suggest a more restricted usage of the term 'mitochondrial epigenetics' for molecular events dealing solely with the intra-mitochondrial epigenetics and the modifications of mitochondrial genome.

  5. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Science.gov (United States)

    Fischer, Tara D.; Hylin, Michael J.; Zhao, Jing; Moore, Anthony N.; Waxham, M. Neal; Dash, Pramod K.

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  6. Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis

    DEFF Research Database (Denmark)

    Sjövall, Fredrik; Morota, Saori; Hansson, Magnus J

    2010-01-01

    Mitochondrial dysfunction has been suggested as a contributing factor to the pathogenesis of sepsis-induced multiple organ failure. Also, restoration of mitochondrial function, known as mitochondrial biogenesis, has been implicated as a key factor for the recovery of organ function in patients wi...

  7. Schizophrenia and Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    Suleyman Akarsu

    2014-08-01

    Full Text Available Genetic factors play an important role in the development of schizophrenia that the etiology is clearly not known. However, specific inheritance mechanism of this disorder is still unclear. Inheritance of schizophrenia is thought to be polygenic or multifactorial. In the recent studies, mitochondrial function and cerebral energy metabolism abnormalities have been identified in patients with schizophrenia. Cognitive deficits and behavioral abnormalities evident as typically found in the clinical course of schizophrenia may develop due to the affection of neuronal plasticity and brain circuits by impaired function of mitochondria. Some changes were found in patients with schizophrenia compared with control subjects in the researches examining both brain and peripheral tissues. Also, it was seen that antipsychotics used in the treatment of schizophrenia might lead to a progressive reduction in oxidative phosphorylation capacity of mitochondria by inhibition of respiratory chain. Especially the findings of the peripheral tissues in patients with schizophrenia were considered to be used as a biological marker for schizophrenia in these studies. Changes in the mitochondria of platelets are considered as a peripheral model for the neurons because of the lack of the platelets' own DNA. These changes reflect the findings of the brain in a variety of neuropsychiatric disorders. At the present time, making the diagnosis of schizophrenia based on only clinical criteria reveal the necessity of finding peripheral biological marker for schizophrenia. Thus further systematic studies investigating the relationship between schizophrenia and changes in mitochondrial electron transport chain are required. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(4.000: 340-354

  8. Expression levels of mRNA for insulin-like growth factors 1 and 2, IGF receptors and IGF binding proteins in in vivo and in vitro grown bovine follicles.

    Science.gov (United States)

    Rebouças, Emanuela L; Costa, José J N; Passos, Maria J; Silva, Anderson W B; Rossi, Rodrigo O D S; van den Hurk, Robert; Silva, José R V

    2014-11-01

    This study investigated mRNA levels for insulin-like growth factors (IGFs) IGF1 (IGF-I) and IGF2 (IGF-II), IGF receptors (IGF1R and IGF2R), and binding proteins (IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6) in bovine follicles of 0.2, 0.5 or 1.0 mm in diameter. mRNA expression levels in in vitro cultured follicles that reached approximately 0.5 mm were compared with that of in vivo grown follicles. IGF1R and IGF2R expression levels in 0.5 mm in vivo follicles were higher than in 1.0 or 0.2 mm follicles, respectively. IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6 showed variable expression in the follicular size classes analyzed. In vitro grown follicles had significantly reduced expression levels for IGF1, IGF1R, IGFBP-3, IGFBP-5 and IGFBP-6 mRNA when compared with 0.2 mm follicles, but, when compared with in vivo grown follicles (0.5 mm), only IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 showed a reduction in their expression. In conclusion, IGFs, their receptors and IGFBPs showed variable expression of mRNA levels in the follicular size classes analyzed.

  9. Hypoxia as a therapy for mitochondrial disease.

    Science.gov (United States)

    Jain, Isha H; Zazzeron, Luca; Goli, Rahul; Alexa, Kristen; Schatzman-Bone, Stephanie; Dhillon, Harveen; Goldberger, Olga; Peng, Jun; Shalem, Ophir; Sanjana, Neville E; Zhang, Feng; Goessling, Wolfram; Zapol, Warren M; Mootha, Vamsi K

    2016-04-01

    Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability. Genetic or small-molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology, and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction. Copyright © 2016, American Association for the Advancement of Science.

  10. Evaluation of developmental changes in bovine in vitro produced embryos following exposure to bovine Herpesvirus type 5

    Directory of Open Access Journals (Sweden)

    Brenner Mariana PC

    2012-07-01

    Full Text Available Abstract Background Bovine Herpesvirus type-5 (BoHV-5 is a neurovirulent α-Herpesvirus which is potentially pathogenic for cows and suspected to be associated with reproductive disorders. Interestingly, natural transmission of BoHV-5 by contaminated semen was recently described in Australia. Additionally, BoHV-5 was also isolated from the semen of a healthy bull in the same country and incriminated in a natural outbreak of reproductive disease after artificial insemination. In contrast with BoHV-1, experimental exposure of in vitro produced bovine embryos to BoHV-5 does not affect embryo viability and seems to inhibit some pathways of apoptosis. However, the mechanisms responsible for these phenomena are poorly understood. In this study, we examined mitochondrial activity, antioxidant protection, stress response and developmental rates of in vitro produced bovine embryos that were exposed and unexposed to BoHV-5. Methods For this purpose, bovine embryos produced in vitro were assayed for cell markers after experimental infection of oocytes (n = 30; five repetitions, in vitro fertilization and development. The indirect immunofluorescence was employed to measure the expression of superoxide dismutase 1 (SOD1, anti-oxidant like protein 1 (AOP-1, heat shock protein 70.1 (Hsp 70.1 and also viral antigens in embryos derived from BoHV-5 exposed and unexposed oocytes. The determination of gene transcripts of mitochondrial activity (SOD1, antioxidant protection (AOP-1 and stress response (Hsp70.1 were evaluated using the reverse transcriptase polymerase chain reaction (RT-PCR. MitoTracker Green FM, JC-1 and Hoechst 33342-staining were used to evaluate mitochondrial distribution, segregation patterns and embryos morphology. The intensity of labeling was graded semi-quantitatively and embryos considered intensively marked were used for statistical analysis. Results The quality of the produced embryos was not affected by exposure to BoHV-5. Of the 357

  11. Viral infections and bovine mastitis: a review

    NARCIS (Netherlands)

    Wellenberg, G.J.; Poel, van der W.H.M.; Oirschot, van J.T.

    2002-01-01

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or

  12. Mitochondrial adaptation in steatotic mice.

    Science.gov (United States)

    Einer, Claudia; Hohenester, Simon; Wimmer, Ralf; Wottke, Lena; Artmann, Renate; Schulz, Sabine; Gosmann, Christian; Simmons, Alisha; Leitzinger, Christin; Eberhagen, Carola; Borchard, Sabine; Schmitt, Sabine; Hauck, Stefanie M; von Toerne, Christine; Jastroch, Martin; Walheim, Ellen; Rust, Christian; Gerbes, Alexander L; Popper, Bastian; Mayr, Doris; Schnurr, Max; Vollmar, Angelika M; Denk, Gerald; Zischka, Hans

    2017-09-19

    Western lifestyle-associated malnutrition causes steatosis that may progress to liver inflammation and mitochondrial dysfunction has been suggested as a key factor in promoting this disease. Here we have molecularly, biochemically and biophysically analyzed mitochondria from steatotic wild type and immune-compromised mice fed a Western diet (WD) - enriched in saturated fatty acids (SFAs). WD-mitochondria demonstrated lipidomic changes, a decreased mitochondrial ATP production capacity and a significant sensitivity to calcium. These changes preceded hepatocyte damage and were not associated with enhanced ROS production. Thus, WD-mitochondria do not promote steatohepatitis per se, but demonstrate bioenergetic deficits and increased sensitivity to stress signals. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  13. Bovine Staphylococcus aureus secretes the leukocidin LukMF′ to kill migrating neutrophils through CCR1

    NARCIS (Netherlands)

    Vrieling, M.; Koymans, K.J.; Heesterbeek, D.A.C.; Aerts, P.C.; Rutten, V.P.M.G.|info:eu-repo/dai/nl/092848028; de Haas, C.J.C.; van Kessel, K.P.M.; Koets, A.P.|info:eu-repo/dai/nl/194306992; Nijland, R; van Strijp, J.A.G.

    2015-01-01

    Although Staphylococcus aureus is best known for infecting humans, bovine-specific strains are a major cause of mastitis in dairy cattle. The bicomponent leukocidin LukMF′, exclusively harbored by S. aureus of ruminant origin, is a virulence factor associated with bovine infections. In this study,

  14. A systematic assessment of mitochondrial function identified novel signatures for drug-induced mitochondrial disruption in cells.

    Science.gov (United States)

    Li, Nianyu; Oquendo, Elisa; Capaldi, Roderick A; Robinson, J Paul; He, Yudong D; Hamadeh, Hisham K; Afshari, Cynthia A; Lightfoot-Dunn, Ruth; Narayanan, Padma Kumar

    2014-11-01

    Mitochondrial perturbation has been recognized as a contributing factor to various drug-induced organ toxicities. To address this issue, we developed a high-throughput flow cytometry-based mitochondrial signaling assay to systematically investigate mitochondrial/cellular parameters known to be directly impacted by mitochondrial dysfunction: mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (ROS), intracellular reduced glutathione (GSH) level, and cell viability. Modulation of these parameters by a training set of compounds, comprised of established mitochondrial poisons and 60 marketed drugs (30 nM to 1mM), was tested in HL-60 cells (a human pro-myelocytic leukemia cell line) cultured in either glucose-supplemented (GSM) or glucose-free (containing galactose/glutamine; GFM) RPMI-1640 media. Post-hoc bio-informatic analyses of IC50 or EC50 values for all parameters tested revealed that MMP depolarization in HL-60 cells cultured in GSM was the most reliable parameter for determining mitochondrial dysfunction in these cells. Disruptors of mitochondrial function depolarized MMP at concentrations lower than those that caused loss of cell viability, especially in cells cultured in GSM; cellular GSH levels correlated more closely to loss of viability in vitro. Some mitochondrial respiratory chain inhibitors increased mitochondrial ROS generation; however, measuring an increase in ROS alone was not sufficient to identify mitochondrial disruptors. Furthermore, hierarchical cluster analysis of all measured parameters provided confirmation that MMP depletion, without loss of cell viability, was the key signature for identifying mitochondrial disruptors. Subsequent classification of compounds based on ratios of IC50s of cell viability:MMP determined that this parameter is the most critical indicator of mitochondrial health in cells and provides a powerful tool to predict whether novel small molecule entities possess this liability. © The Author

  15. Parkinson's disease and mitochondrial gene variations

    DEFF Research Database (Denmark)

    Andalib, Sasan; Vafaee, Manouchehr Seyedi; Gjedde, Albert

    2014-01-01

    Parkinson's disease (PD) is a common disorder of the central nervous system in the elderly. The pathogenesis of PD is a complex process, with genetics as an important contributing factor. This factor may stem from mitochondrial gene variations and mutations as well as from nuclear gene variations...

  16. Mitochondrial DNA mutations provoke dominant inhibition of mitochondrial inner membrane fusion.

    Directory of Open Access Journals (Sweden)

    Cécile Sauvanet

    Full Text Available Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA. We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP or to maternally inherited Leigh Syndrome (MILS in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from

  17. The Mitochondrial-Derived Peptide Humanin Protects RPE Cells From Oxidative Stress, Senescence, and Mitochondrial Dysfunction.

    Science.gov (United States)

    Sreekumar, Parameswaran G; Ishikawa, Keijiro; Spee, Chris; Mehta, Hemal H; Wan, Junxiang; Yen, Kelvin; Cohen, Pinchas; Kannan, Ram; Hinton, David R

    2016-03-01

    To investigate the expression of humanin (HN) in human retinal pigment epithelial (hRPE) cells and its effect on oxidative stress-induced cell death, mitochondrial bioenergetics, and senescence. Humanin localization in RPE cells and polarized RPE monolayers was assessed by confocal microscopy. Human RPE cells were treated with 150 μM tert-Butyl hydroperoxide (tBH) in the absence/presence of HN (0.5-10 μg/mL) for 24 hours. Mitochondrial respiration was measured by XF96 analyzer. Retinal pigment epithelial cell death and caspase-3 activation, mitochondrial biogenesis and senescence were analyzed by TUNEL, immunoblot analysis, mitochondrial DNA copy number, SA-β-Gal staining, and p16INK4a expression and HN levels by ELISA. Oxidative stress-induced changes in transepithelial resistance were studied in RPE monolayers with and without HN cotreatment. A prominent localization of HN was found in the cytoplasmic and mitochondrial compartments of hRPE. Humanin cotreatment inhibited tBH-induced reactive oxygen species formation and significantly restored mitochondrial bioenergetics in hRPE cells. Exogenous HN was taken up by RPE and colocalized with mitochondria. The oxidative stress-induced decrease in mitochondrial bioenergetics was prevented by HN cotreatment. Humanin treatment increased mitochondrial DNA copy number and upregulated mitochondrial transcription factor A, a key biogenesis regulator protein. Humanin protected RPE cells from oxidative stress-induced cell death by STAT3 phosphorylation and inhibiting caspase-3 activation. Humanin treatment inhibited oxidant-induced senescence. Polarized RPE demonstrated elevated cellular HN and increased resistance to cell death. Humanin protected RPE cells against oxidative stress-induced cell death and restored mitochondrial function. Our data suggest a potential role for HN therapy in the prevention of retinal degeneration, including AMD.

  18. Pathogenesis of bovine neosporosis.

    Science.gov (United States)

    Dubey, J P; Buxton, D; Wouda, W

    2006-05-01

    The protozoan parasite Neospora caninum is a major pathogen of cattle and dogs, being a significant cause of abortion in cattle in many countries. It is one of the most efficiently transmitted parasites, with up to 90% of cattle infected in some herds. The pathogenesis of abortion due to Neospora is complex and only partially understood. Losses occur after a primary infection during pregnancy but more commonly as the result of recrudescence of a persistent infection during pregnancy. Parasitaemia is followed by invasion of the placenta and fetus. It is suggested that abortion occurs when primary parasite-induced placental damage jeopardises fetal survival directly or causes release of maternal prostaglandins that in turn cause luteolysis and abortion. Fetal damage may also occur due to primary tissue damage caused by the multiplication of N. caninum in the fetus or due to insufficient oxygen/nutrition, secondary to placental damage. In addition, maternal immune expulsion of the fetus may occur associated with maternal placental inflammation and the release of maternal pro-inflammatory cytokines in the placenta. Thus N. caninum is a primary pathogen capable of causing abortion either through maternal placental inflammation, maternal and fetal placental necrosis, fetal damage, or a combination of all three. The question of how N. caninum kills the fetus exposes the complex and finely balanced biological processes that have evolved to permit bovine and other mammalian pregnancies to occur. Defining these immunological mechanisms will shed light on potential methods of control of bovine neosporosis and enrich our understanding of the continuity of mammalian and protozoal survival.

  19. Herd prevalence of bovine brucellosis and analysis of risk factors in cattle in urban and peri-urban areas of the Kampala economic zone, Uganda

    Directory of Open Access Journals (Sweden)

    Eisler Mark C

    2011-10-01

    Full Text Available Abstract Background Human brucellosis has been found to be prevalent in the urban areas of Kampala, the capital city of Uganda. A cross-sectional study was designed to generate precise information on the prevalence of brucellosis in cattle and risk factors for the disease in its urban and peri-urban dairy farming systems. Results The adjusted herd prevalence of brucellosis was 6.5% (11/177, 95% CI: 3.6%-10.0% and the adjusted individual animal prevalence was 5.0% (21/423, 95% CI: 2.7% - 9.3% based on diagnosis using commercial kits of the competitive enzyme-linked immunosorbent assay (CELISA for Brucella abortus antibodies. Mean within-herd prevalence was found to be 25.9% (95% CI: 9.7% - 53.1% and brucellosis prevalence in an infected herd ranged from 9.1% to 50%. A risk factor could not be identified at the animal level but two risk factors were identified at the herd level: large herd size and history of abortion. The mean number of milking cows in a free-grazing herd (5.0 was significantly larger than a herd with a movement restricted (1.7, p Conclusions Vaccination should be targeted at commercial large-scale farms with free-grazing farming to control brucellosis in cattle in and around Kampala city.

  20. Bovine and Caprine Brucellosis in Bangladesh: Bayesian evaluation of four serological tests, true prevalence, and associated risk factors in household animals.

    Science.gov (United States)

    Ahasan, Md Shamim; Rahman, Md Siddiqur; Rahman, A K M Anisur; Berkvens, Dirk

    2017-01-01

    A cross-sectional study was carried out to estimate the true prevalence of Brucella spp. and identify allied risk factors/indicators associated with brucellosis in the Dinajpur and Mymensingh districts of Bangladesh. A total 320 stratified random blood samples were collected and tested in parallel for Brucella antibodies using Rose Bengal (RBT), slow agglutination (SAT), and indirect and competitive ELISA. In addition, a structured questionnaire was administered to each household herd owner to gather information regarding potential risk factors. Both univariate and multivariate logistic regression analyses were used to identify potential risk factors or indicators at animal level. A Bayesian approach was used to estimate the true prevalence of brucellosis along with the test performances (Se and Sp). The estimated animal level true prevalence in cattle was 9.70 % (95 % CPI 5.0-16 %) and in goat 6.3 % (95 % CPI 2.8-11.0 %). The highest sensitivity was achieved by SAT ranges from 69.6 to 78.9 %, and iELISA was found to be more specific (97.4 to 98.8 %) in comparison with other tests. On the other hand, a significant level of (P brucellosis.

  1. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria

    Science.gov (United States)

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-01-01

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548

  2. Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability.

    Science.gov (United States)

    Luz, Anthony L; Godebo, Tewodros R; Smith, Latasha L; Leuthner, Tess C; Maurer, Laura L; Meyer, Joel N

    2017-07-15

    Mitochondrial fission, fusion, and mitophagy are interlinked processes that regulate mitochondrial shape, number, and size, as well as metabolic activity and stress response. The fundamental importance of these processes is evident in the fact that mutations in fission (DRP1), fusion (MFN2, OPA1), and mitophagy (PINK1, PARK2) genes can cause human disease (collectively >1/10,000). Interestingly, however, the age of onset and severity of clinical manifestations varies greatly between patients with these diseases (even those harboring identical mutations), suggesting a role for environmental factors in the development and progression of certain mitochondrial diseases. Using the model organism Caenorhabditis elegans, we screened ten mitochondrial toxicants (2, 4-dinitrophenol, acetaldehyde, acrolein, aflatoxin B1, arsenite, cadmium, cisplatin, doxycycline, paraquat, rotenone) for increased or decreased toxicity in fusion (fzo-1, eat-3)-, fission (drp-1)-, and mitophagy (pdr-1, pink-1)-deficient nematodes using a larval growth assay. In general, fusion-deficient nematodes were the most sensitive to toxicants, including aflatoxin B1, arsenite, cisplatin, paraquat, and rotenone. Because arsenite was particularly potent in fission- and fusion-deficient nematodes, and hundreds of millions of people are chronically exposed to arsenic, we investigated the effects of these genetic deficiencies on arsenic toxicity in more depth. We found that deficiencies in fission and fusion sensitized nematodes to arsenite-induced lethality throughout aging. Furthermore, low-dose arsenite, which acted in a "mitohormetic" fashion by increasing mitochondrial function (in particular, basal and maximal oxygen consumption) in wild-type nematodes by a wide range of measures, exacerbated mitochondrial dysfunction in fusion-deficient nematodes. Analysis of multiple mechanistic changes suggested that disruption of pyruvate metabolism and Krebs cycle activity underlie the observed arsenite

  3. Use of computer-assisted sperm analysis and flow cytometry to detect seasonal variations of bovine semen quality.

    Science.gov (United States)

    Malama, E; Zeron, Y; Janett, F; Siuda, M; Roth, Z; Bollwein, H

    2017-01-01

    Seasonal fluctuations of climate are considered a major factor affecting spermatogenesis and semen quality in the bovine. Our study aimed to investigate the effect of season on functional parameters of frozen-thawed bovine semen using computer-assisted sperm analysis (CASA) and flow cytometry. For this purpose, 86 ejaculates were collected from five mature Holstein-Friesian bulls kept under subtropical conditions during summer (August to September; n = 43) and winter (December to January; n = 43) months. Semen was diluted with a Tris-egg yolk-based extender and frozen at -196 °C. Computer-assisted sperm analysis was performed immediately after thawing (0h) and after 3 hours of incubation (3h) to evaluate the percentage (%) of total motile, progressively motile, and rapidly motile sperm. In addition, the average path, curvilinear, and straight-line velocities as well as the amplitude of lateral head displacement of sperm were determined. The percentages of sperm with intact plasma membrane and acrosome (PMAI, %), with high mitochondrial membrane potential (HMMP, %), with low intracellular Ca(+2) levels (LOW-Ca(+2), %), and with high DNA fragmentation index (DFI%, %) were flow cytometrically determined at 0 and 3h. The survival rate of sperm under hypotonic conditions (HYPO-SURV, %) and the percentage of sperm with inducible acrosome reaction (IAR, %) were assessed using flow cytometry at 0 and 3h, respectively. The fixed effect of season (winter vs. summer) on the quality parameters of sperm was explored by applying linear mixed-effects models. The results showed an improvement of all CASA parameters, except for the straight-line velocity (P > 0.05) in winter compared with summer for both unincubated and incubated sperm (P  0.05 in all cases). Concluding, the employment of CASA and flow cytometry revealed season-related alterations in the functional status of cryopreserved bovine sperm, which suggest an adverse effect of summer heat stress on motility, plasma

  4. MOLECULAR PATTERN OF MYCOBACTERIUM BOVIS ISOLATES AND ITS RELATIONSHIP WITH RISK FACTORS ASSOCIATED WITH THE PRESENCE OF BOVINE TUBERCULOSIS IN NORTHERN MEXICO

    Directory of Open Access Journals (Sweden)

    I. F. Padilla

    2011-02-01

    Full Text Available The objective of this study was to determine the molecular pattern of M. bovis isolates from cattle of Northern Mexico and its relationship with some risk factors. Isolates (n=60 were obtained from the states of Coahuila (COA, n=14, Tamaulipas (TAM, n=16, Nuevo Leon (NL, n=14 and Baja California and Durango (DUR, n=16. The risk factors studied were: system of production (Dairy and Beef, state, age, lesion type (localized and generalized, and type of presentation (caseous and calcified. Samples were analyzed at the Regional Laboratory of Monterrey NL, following a spoligotyping protocol. Twenty-five spoligotypes belonging to the M. bovis complex were identified. Eleven (18.3% isolates presented a unique pattern, whereas 49 (81.7% were grouped in 14 clusters. The largest clusters had 12 and 17 isolates. The average heterozygocities per state were 21.4% (NL, 15.6% (TAM, 15.6% COA and 9.9% (DUR. The genetic distances of the isolates between states did not show differences (P > 0.05 when examined by Chi-square tests. The average genetic diversity (15.6% was due to the variation of strains within subpopulations. In this study an 8.3% difference among states was obtained, which suggest the idea of a unique strain of M. bovis with many variants and that the genetic diversity found for M. bovis could be in part due to the movement of animals between regions. Statistical analysis did not show association (P > 0.05 between risk factors and strains of M. bovis.

  5. Role of Cardiolipin in Mitochondrial Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jan Dudek

    2017-09-01

    Full Text Available The phospholipid cardiolipin (CL is an essential constituent of mitochondrial membranes and plays a role in many mitochondrial processes, including respiration and energy conversion. Pathological changes in CL amount or species composition can have deleterious consequences for mitochondrial function and trigger the production of reactive oxygen species. Signaling networks monitor mitochondrial function and trigger an adequate cellular response. Here, we summarize the role of CL in cellular signaling pathways and focus on tissues with high-energy demand, like the heart. CL itself was recently identified as a precursor for the formation of lipid mediators. We highlight the concept of CL as a signaling platform. CL is exposed to the outer mitochondrial membrane upon mitochondrial stress and CL domains serve as a binding site in many cellular signaling events. During mitophagy, CL interacts with essential players of mitophagy like Beclin 1 and recruits the autophagic machinery by its interaction with LC3. Apoptotic signaling pathways require CL as a binding platform to recruit apoptotic factors such as tBid, Bax, caspase-8. CL required for the activation of the inflammasome and plays a role in inflammatory signaling. As changes in CL species composition has been observed in many diseases, the signaling pathways described here may play a general role in pathology.

  6. Campylobacter jejuni prevalence and hygienic quality of retail bovine ground meat in Finland.

    Science.gov (United States)

    Llarena, A-K; Sivonen, K; Hänninen, M-L

    2014-05-01

    Detection of common genotypes of Campylobacter jejuni among Finnish human and bovine isolates, suggested that bovines may be a source for zoonotic Camp. jejuni infection. In addition, a Finnish epidemiological study implied the tasting and eating raw or undercooked beef as risk factors for acquiring campylobacteriosis. We therefore performed a study on the occurrence of Camp. jejuni in retail bovine ground meat in Helsinki by the use of both cultivation and PCR. During 2011 and 2012, 175 bovine ground meat samples were collected. None of the samples were Campylobacter positive by cultivation, and only one sample (0.6%) was Camp. jejuni positive by the use of PCR on template extracted directly from ground meat. According to our findings, Finnish bovine ground meat is an unlikely source for human campylobacteriosis. Additionally, the hygienic quality of bovine ground meat at retail level was screened and found to be good when monitored by aerobic micro-organisms, total thermotolerant coliforms and Eshericha coli. This study provides the first data on the occurrence of the zoonotic pathogen Campylobacter jejuni in Finnish bovine ground meat. This knowledge is important as part of future Campylobacter risk assessment, management and monitoring programs, particularly when assessing the relative attribution of poultry, pork and bovine meat to the burden of human campylobacteriosis. According to our results, Finnish bovine ground meat at retail level is of good hygienic quality. © 2013 The Society for Applied Microbiology.

  7. Epidemiology of Bovine Mastitis in Cows of Dharwad District

    Science.gov (United States)

    Kurjogi, Mahantesh M.; Kaliwal, Basappa B.

    2014-01-01

    Bovine mastitis is very common in cows of both developed and developing countries. The prevalence of clinical and subclinical mastitis (SCM) varies from region to region. Hence, the present study was carried out to determine the prevalence of mastitis using three diagnostic tests by considering different risk factors like age, lactation, breed, season, quarters, and herd. The results showed that surf field mastitis test (SFMT) is the most sensitive test for diagnosis of bovine mastitis, the older age and cows with later part of lactation period were more prone to bovine mastitis, and exotic breeds like Holstein freshen (HF) were more susceptible to bovine mastitis. The highest incidence of mastitis was recorded in monsoon season. The prevalence of subclinical and clinical mastitis was more in single and two quarters, respectively, and the rate of bovine mastitis was more in unorganized herds. The study concluded that SCM is directly associated with age, lactation period, and environmental factors of the cow and clinical mastitis is more associated with breed of the cow and environmental conditions. PMID:27382623

  8. Mitochondrial Oxidative Damage in Aging and Alzheimer's Disease: Implications for Mitochondrially Targeted Antioxidant Therapeutics

    OpenAIRE

    P. Hemachandra Reddy

    2006-01-01

    The overall aim of this article is to review current therapeutic strategies for treating AD, with a focus on mitochondrially targeted antioxidant treatments. Recent advances in molecular, cellular, and animal model studies of AD have revealed that amyloid precursor protein derivatives, including amyloid beta (Aβ) monomers and oligomers, are likely key factors in tau hyperphosphorylation, mitochondrial oxidative damage, inflammatory changes, and synaptic failure in the brain ...

  9. Epidemiology of bovine fascioliasis in the Nile Delta region of Egypt: Its prevalence, evaluation of risk factors, and its economic significance

    Directory of Open Access Journals (Sweden)

    Abdelgawad S. El-Tahawy

    2017-10-01

    Full Text Available Aim: This study focuses on the risk factors associated with the prevalence of Fasciola affecting cattle population in three provinces belonging to the Nile Delta of Egypt and to estimate the economic losses as a result of fascioliasis. Materials and Methods: From January 2015 to end of December 2015, records of 21 farms (4976 cattle were analyzed to screen the prevalence of fascioliasis among cattle farms, to identify its associated risk factors and its economic impacts on Nile Delta region of Egypt. Results: The overall prevalence of fascioliasis in the Nile Delta region of Egypt was 9.77%. The prevalence of fascioliasis was found to be statistically significantly associated with age, sex, breed, and type of farms. The highest prevalence was observed in 3 age groups (8.35%. In terms of body condition scores, cattle with medium and poor conditions were associated with fascioliasis more than those with good body condition. Besides, cattle raised in organic farms were associated with lower risk of fascioliasis than those in conventional farms. The prevalence of fascioliasis was noted more prominent in districts with moderate temperatures and with relative humidity (>60%. The annual overall costs for fascioliasis were estimated to be 221.2 USD/cow due to the significant reduction in body weight, reduction in milk production, and the treatment costs for fascioliasis. Conclusion: The results provided could be helpful for improving the control and preventive strategies.

  10. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  11. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  12. Sinus grafting using recombinant human tissue factor, platelet-rich plasma gel, autologous bone, and anorganic bovine bone mineral xenograft: histologic analysis and case reports.

    Science.gov (United States)

    Philippart, Pierre; Daubie, Valéry; Pochet, Roland

    2005-01-01

    The purpose of this study was to analyze healthy bone formation by means of histology and immunohistochemistry after grafting with a mixture of autologous ground calvarial bone, inorganic xenograft, platelet-rich plasma (PRP), and recombinant human tissue factor (rhTF). Maxillary sinus floor augmentation was performed on 3 patients by grafting with 5 to 10 mL of a paste consisting of autologous powder from calvarial bone (diameter plasma), and about 1 microg rhTF. Six and 10 months after grafting, bone cores were extracted for implant fixation and analyzed. Histology demonstrated a high degree of inorganic xenograft integration and natural bone regeneration. Both the xenograft and newly synthesized bone were colonized with osteocytes and surrounded by osteoblasts. Six-month-old bone cores demonstrated a ratio of synthesized bone to xenograft particles ratio of 0.5, whereas 10-month-old cores demonstrated a ratio of 2. A low degree of inflammation could also be observed using S100A8 immunohistochemistry. Autologous grafting in edentulous patients is a complex procedure; the successful substitution of synthetic analogs for ground bone is a major challenge. In this investigation, it was shown that inorganic xenograft in the harvested bone paste could be safe for patients and had high bone regeneration capacity over time. The sinus graft showed intense bone formation 6 months after grafting and a further increase in bone growth 10 months after grafting.

  13. Effect of spermatozoa motility hyperactivation factors and gamete coincubation duration on in vitro bovine embryo development using flow cytometrically sorted spermatozoa.

    Science.gov (United States)

    Ferré, Luis B; Bogliotti, Yanina; Chitwood, James L; Fresno, Cristóbal; Ortega, Hugo H; Kjelland, Michael E; Ross, Pablo J

    2016-02-24

    The aim of the present study was to evaluate the effects of sperm motility enhancers and different IVF times on cleavage, polyspermy, blastocyst formation, embryo quality and hatching ability. In Experiment 1, sex-sorted X chromosome-bearing Bos taurus spermatozoa were incubated for 30 min before 18 h fertilisation with hyperactivating factors, namely 10 mM caffeine (CA), 5 mM theophylline (TH), 10 mM caffeine and 5 mM theophylline (CA + TH); and untreated spermatozoa (control). In Experiment 2, matured B. taurus oocytes were fertilised using a short (8 h) or standard (18 h) fertilisation length, comparing two different fertilisation media, namely synthetic oviducal fluid (SOF) fertilisation medium (SOF-FERT) and M199 fertilisation medium (M199-FERT). Cleavage and blastocyst formation rates were significantly higher in the CA + TH group (77% and 27%, respectively) compared with the control group (71% and 21%, respectively). Cleavage rates and blastocyst formation were significantly lower for the shortest fertilisation time (8 h) in M199-FERT medium (42% and 12%, respectively). The SOF-FERT medium with an 8 h fertilisation time resulted in the highest cleavage rates and blastocyst formation (74% and 29%, respectively). The SOF-FERT medium produced the highest embryo quality (50% Grade 1) and hatching rate (66%). Motility enhancers did not affect polyspermy rates, whereas polyspermy was affected when fertilisation length was extended from 8 h (3%) to 18 h (9%) and in M199-FERT (14%) compared with SOF-FERT (6%). We conclude that adding the motility enhancers CA and TH to sex sorted spermatozoa and Tyrode's albumin lactate pyruvate (TALP)-Sperm can improve cleavage and embryo development rates without increasing polyspermy. In addition, shortening the oocyte-sperm coincubation time (8 h) resulted in similar overall embryo performance rates compared with the prolonged (18 h) interval.

  14. Genome-wide association study for inhibin, luteinizing hormone, insulin-like growth factor 1, testicular size and semen traits in bovine species.

    Science.gov (United States)

    Fortes, M R S; Reverter, A; Kelly, M; McCulloch, R; Lehnert, S A

    2013-07-01

    The fertility of young bulls impacts on reproduction rates, farm profit and the rate of genetic progress in beef herds. Cattle researchers and industry therefore routinely collect data on the reproductive performance of bulls. Genome-wide association studies were carried out to identify genomic regions and genes associated with reproductive traits measured during the pubertal development of Tropical Composite bulls, from 4 to 24 months of age. Data from 1 085 bulls were collected for seven traits: blood hormone levels of inhibin at 4 months (IN), luteinizing hormone following a gonadotropin releasing hormone challenge at 4 months (LH), insulin-like growth factor 1 at 6 months (IGF1), scrotal circumference at 12 months (SC), sperm motility at 18 months (MOT), percentage of normal spermatozoa at 24 months (PNS) and age at a scrotal circumference of 26 cm (AGE26, or pubertal age). Data from 729 068 single-nucleotide polymorphisms were used in the association analysis. Significant polymorphism associations were discovered for IN, IGF1, SC, AGE26 and PNS. Based on these associations, INHBE, INHBC and HELB are proposed as candidate genes for IN regulation. Polymorphisms associated with IGF1 mapped to the PLAG1 gene region, validating a reported quantitative trait locus on chromosome 14 for IGF1. The X chromosome contained most of the significant associations found for SC, AGE26 and PNS. These findings will contribute to the identification of diagnostic genetic markers and informed genomic selection strategies to assist breeding of cattle with improved fertility. Furthermore, this work provides evidence contributing to gene function annotation in the context of male fertility. © 2013 American Society of Andrology and European Academy of Andrology.

  15. Characterization of Bovine 5′-flanking Region during Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hye-Jeong Jang

    2015-12-01

    Full Text Available Embryonic stem cells (ESCs have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (−420/+181 bovine NANOG 5′-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (−420/+181 promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.

  16. Inhibition of mitochondrial translation effectively sensitizes renal cell carcinoma to chemotherapy.

    Science.gov (United States)

    Wang, Bo; Ao, Jinsong; Yu, Dan; Rao, Ting; Ruan, Yuan; Yao, Xiaobin

    2017-08-26

    The functional importance of mitochondrial protein translation has been recently documented in the context of various cancers but not renal cell carcinoma (RCC). In lines with these efforts, our work demonstrates that mitochondrial translation inhibition by tigecycline or depletion of EF-Tu mitochondrial translation factor effectively targets RCC and significantly sensitizes RCC response to chemotherapy. We show that antibiotic tigecycline inhibits multiple biological functions of RCC, including growth, colony formation and survival. It also significantly enhances in vitro and in vivo efficacy of paclitaxel in RCC. Tigecycline preferentially inhibits translation of mitochondrial DNA-encoded proteins, activities of mitochondrial respiratory complexes that contain mitochondrially encoded subunits. As a consequence of mitochondrial respiratory chain inhibition, decreased mitochondrial respiration is observed in RCC cells exposed to tigecycline. In contrast, tigecycline is ineffective in RCC ρ0 cells that lack mitochondrial DNA and subsequent mitochondrial respiration, further confirm mitochondrial translation inhibition as the mechanism of tigecycline's action in RCC. Importantly, genetic inhibition of mitochondrial translation by EF-Tu knockdown reproduced the inhibitory effects of tigecycline. Finally, we show the association between mitochondrial translation inhibition and suppression of PI3K/Akt/mTOR signaling pathway. Our work used pharmacological and genetic strategies to demonstrate the important roles of mitochondrial translation in RCC and emphasize the therapeutic value of sensitizing RCC to chemotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes

    Directory of Open Access Journals (Sweden)

    Ya-Wen eLu

    2015-02-01

    Full Text Available The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step towards delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: 1 oxidative phosphorylation (subunits and assembly factors; 2 mitochondrial DNA maintenance and expression; 3 mitochondrial protein import and assembly; 4 mitochondrial quality control (chaperones and proteases; 5 iron-sulfur cluster homeostasis; and 6 mitochondrial dynamics (fission and fusion. Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.

  18. United Mitochondrial Disease Foundation

    Science.gov (United States)

    ... Grants Funded Projects Patient Evaluation for Professionals Energy Metabolism Review Mitochondrial Structure, Function and Diseases Review Cell ... for Life Walkathons Schedule of EFL Walks UMDF Social Media Tweets by UMDF Our Partners Affiliate Organizations ...

  19. Epilepsy and Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    Russell P. Saneto DO, PhD

    2017-10-01

    Full Text Available Epilepsy is a common manifestation of mitochondrial disease. In a large cohort of children and adolescents with mitochondrial disease (n = 180, over 48% of patients developed seizures. The majority (68% of patients were younger than 3 years and medically intractable (90%. The electroencephalographic pattern of multiregional epileptiform discharges over the left and right hemisphere with background slowing occurred in 62%. The epilepsy syndrome, infantile spasms, was seen in 17%. Polymerase γ mutations were the most common genetic etiology of seizures, representing Alpers-Huttenlocher syndrome (14%. The severity of disease in those patients with epilepsy was significant, as 13% of patients experienced early death. Simply the loss of energy production cannot explain the development of seizures or all patients with mitochondrial dysfunction would have epilepsy. Until the various aspects of mitochondrial physiology that are involved in proper brain development are understood, epilepsy and its treatment will remain unsatisfactory.

  20. Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division.

    Science.gov (United States)

    Jokinen, Riikka; Marttinen, Paula; Stewart, James B; Neil Dear, T; Battersby, Brendan J

    2016-02-15

    Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Antihelmintic Resistance For Gastrointestinal Bovine Nematodes

    Directory of Open Access Journals (Sweden)

    Patricia Torres Vásquez

    2007-06-01

    Full Text Available The gastrointestinal nematodes (GIN, in domestic animals, especially in bovines are a very important factor that affects their productivity, because cattle production systems have intervened in the relationship between gastrointestinal parasites (PGI and the host, breaking therefore the ecological balance between them. In many opportunities the development of parasitic populations have been favored or a parasitic population have been led to extinction, it has made that these populations express genes that would not express under normal conditions, favoring thus, resistance to medications that were made to their destruction. NGI are highly important in all cattle exploitations, but their inappropriate handling, mainly in the pharmacological aspect, has created vermifuge resistance by some parasitic populations. This article will determine the importance of the vermifuge resistance in cattle exploitations, as a factor of risk for the control of parasitic populations. The most important antihelmintic groups used in bovine are Benzimidazoles, Levamisol and Ivermectine and with these products resistance has been reported by parasitic populations such as in Haemochus contortus, Trichostrongylus. colubriformis, Ostertagia circumcicta, Ostertagia ostertagi. Different risk factors were classified in extrinsic (which don’t depend on the gastrointestinal parasite and intrinsic (which depend directly on gastrointestinal parasites related with genetics which occupy a great importance in the development of the vermifuge resistance.

  2. Mitochondrial cholesterol import.

    Science.gov (United States)

    Elustondo, Pia; Martin, Laura A; Karten, Barbara

    2017-01-01

    All animal subcellular membranes require cholesterol, which influences membrane fluidity and permeability, fission and fusion processes, and membrane protein function. The distribution of cholesterol among subcellular membranes is highly heterogeneous and the cholesterol content of each membrane must be carefully regulated. Compared to other subcellular membranes, mitochondrial membranes are cholesterol-poor, particularly the inner mitochondrial membrane (IMM). As a result, steroidogenesis can be controlled through the delivery of cholesterol to the IMM, where it is converted to pregnenolone. The low basal levels of cholesterol also make mitochondria sensitive to changes in cholesterol content, which can have a relatively large impact on the biophysical and functional characteristics of mitochondrial membranes. Increased mitochondrial cholesterol levels have been observed in diverse pathological conditions including cancer, steatohepatitis, Alzheimer disease and Niemann-Pick Type C1-deficiency, and are associated with increased oxidative stress, impaired oxidative phosphorylation, and changes in the susceptibility to apoptosis, among other alterations in mitochondrial function. Mitochondria are not included in the vesicular trafficking network; therefore, cholesterol transport to mitochondria is mostly achieved through the activity of lipid transfer proteins at membrane contact sites or by cytosolic, diffusible lipid transfer proteins. Here we will give an overview of the main mechanisms involved in mitochondrial cholesterol import, focusing on the steroidogenic acute regulatory protein StAR/STARD1 and other members of the StAR-related lipid transfer (START) domain protein family, and we will discuss how changes in mitochondrial cholesterol levels can arise and affect mitochondrial function. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. MITOCHONDRIAL DNA- REVOLUTIONARY EVOLUTION

    Directory of Open Access Journals (Sweden)

    Vaidhehi Narayan Nayak

    2017-07-01

    Full Text Available BACKGROUND Mitochondrion, the sausage-shaped organelle residing in the cytoplasm of all eukaryotic cells, apart from being the power house, represents endosymbiotic evolution of a free living organism to intracellular structure. Anthropologically, mitochondrial DNA is the fossilised source to trace the human ancestry particularly of maternal lineage. This article attempts to highlight the various biological functions of mitochondrial DNA (mtDNA with a note on its forensic application.

  4. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  5. Bovine Viral Diarrhea Virus-Associated Disease in Feedlot Cattle.

    Science.gov (United States)

    Larson, Robert L

    2015-11-01

    Bovine viral diarrhea virus (BVDv) is associated with bovine respiratory disease complex and other diseases of feedlot cattle. Although occasionally a primary pathogen, BVDv's impact on cattle health is through the immunosuppressive effects of the virus and its synergism with other pathogens. The simple presence or absence of BVDv does not result in consistent health outcomes because BVDv is only one of many risk factors that contribute to disease syndromes. Current interventions have limitations and the optimum strategy for their uses to limit the health, production, and economic costs associated with BVDv have to be carefully considered for optimum cost-effectiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. PREVALENCE OF BOVINE FACIOLOSIS IN HALABA MUNICIPAL ABATTOR SOUTHERN ETHIOPIA

    OpenAIRE

    Muna Abdella; Wubit Tafese Mhatebu

    2016-01-01

    A cross-sectional study was carried out from November 2015 to march 2016 on bovine fasciolosis, to assess the abattoir based prevalence, predominant species of bovine fasciolosis and associated risk factors of the disease in cattle slaughtered in Halaba municipal abattoir. A total of 384 cattle were examined using post mortem examination. Infection rates were (3.64%), 2.34%, 2.08%, and 1.82 % F. gigantic, F. hepatica, mixed and immature respectively with the overall prevalence of 9.88 % (38)....

  7. Neurogenic vasodilatation in isolated bovine and canine penile arteries.

    Science.gov (United States)

    Bowman, A; Gillespie, J S

    1983-01-01

    Field stimulation of isolated, perfused bovine or canine penile arteries produced dilatation, after the adrenergic motor component of the response had been blocked with guanethidine and the vessels had developed a background tone. The vasodilatation was blocked by tetrodotoxin but not by atropine. The vasodilator responses to field stimulation were compared with those produced by ATP, by vasoactive intestinal peptide (VIP), and by the inhibitory factor extracted from the bovine retractor penis muscle. Of the three putative transmitters, the inhibitory factor produced responses that most closely resembled those to field stimulation. Haemoglobin, which blocks non-adrenergic, non-cholinergic inhibitory transmission in the bovine and canine retractor penis muscles, did not impair the vasodilatations produced by ATP or VIP, but slowly reduced or abolished those produced by field stimulation or by the inhibitory factor. Haemoglobin itself produced a powerful constriction of the isolated penile arteries. The results are compatable with the possibility that the inhibitory factor from the bovine retractor penis muscle (which may be the inhibitory transmitter in that muscle) is, or closely resembles, the transmitter of non-adrenergic, non-cholinergic vasodilator fibres in the penile arteries of dog and ox. PMID:6684686

  8. Bovine Pulmonary Tuberculosis At Bahir Dar Municipality Abattoir ...

    African Journals Online (AJOL)

    Bovine Pulmonary Tuberculosis At Bahir Dar Municipality Abattoir, Ethiopia. ... About 44.4 % of gross tuberculous lesions were found in the tracheo-bronchial lymph node while 33.4% in the mediastinal lymph node. Analysis of risk factors revealed that cross breed cattle were more likely to have high proportion of reactors ...

  9. Bovine Hydatidosis in Eastern Part of Ethiopia | Mulatu | Momona ...

    African Journals Online (AJOL)

    A cross-sectional study was conducted on bovine hydatidosis from November 2010 to March 2011 with the aims of investigating its occurrence, risk factors and economic losses in Dire Dawa municipality abattoir. The study revealed 20.05% occurrence of hydatidosis based on the postmortem examination of1536 cattle.

  10. A quantitative risk assessment for bovine spongiform encephalopathy in Japan

    NARCIS (Netherlands)

    Kadohira, M.; Stevenson, M.A.; Hogasen, H.R.; Koeijer, de A.A.

    2012-01-01

    A predictive case-cohort model was applied to Japanese data to analyze the interaction between challenge and stability factors for bovine spongiform encephalopathy (BSE) for the period 1985–2020. BSE risk in cattle was estimated as the expected number of detectable cases per year. The model was

  11. Pathogen reduction in minimally managed composting of bovine manure

    Science.gov (United States)

    Persistence of pathogenic bacteria such as E. coli O157:H7, Salmonella spp., and Listeria monocytogenes in bovine feces and contaminated soils is an important risk factor in perpetuating the initial infection as well as re-infection of cattle and dissemination of pathogens throughout agricultural la...

  12. Prevalence of clinical bovine dermatophilosis in dairy cattle in ...

    African Journals Online (AJOL)

    A cross-sectional study was conducted from June, 2013 to October, 2014 to determine the prevalence and associated risk factors of clinical bovine dermatophilosis in dairy cattle in selected districttowns of West Shewa Zone. A total of 816 dairy cattle from 60 dairy farms were clinically examined for skin lesion followed by ...

  13. Prevalence of Bovine Tuberculosis in indigenous cattle in Gairo ...

    African Journals Online (AJOL)

    Bovine tuberculosis (bTB) caused by Mycobacterium bovis is an important zoonosis that affects uman, wildlife and livestock. A cross sectional study was carried out between December 2012 and January 2013 to establish the prevalence of bTB and the associated risk factors among ive and slaughter indigenous cattle in ...

  14. Sero-prevalence of contagious bovine pleuropneumonia and its ...

    African Journals Online (AJOL)

    Contagious bovine pleuropneumonia (CBPP) is a disease of cattle caused by. Mycoplasma mycoides ... of Western Oromia Zones as well as to assess the risk factors associated with the occurrence of the disease. ... to stop further spread of the disease and appropriate controlling and prevention should be designed in ...

  15. Sero-prevalence of contagious bovine pleuropneumonia and its ...

    African Journals Online (AJOL)

    Sero-prevalence of contagious bovine pleuropneumonia and its potential risk factors in selected sites of Western Oromia, Ethiopia. ... was high, This warrants the need of the institute to follow appropriate preventive and control measures to stop further spread of the disease and appropriate controlling and prevention should ...

  16. Bovine Mastitis in Dairy Cows in Mekele, Northern Ethiopia ...

    African Journals Online (AJOL)

    A cross-sectional study was conducted from October 2007 to April 2008 on Holstein and Holstein-Zebu cross breds lactating dairy cows in and around Mekele to determine the prevalence, major risk factors and major bacterial pathogens of bovine mastitis in the study area. Simple random sampling of dairy herds, clinical ...

  17. Okra yield fertilized with bovine manure and biofertilizer

    Directory of Open Access Journals (Sweden)

    Ademar Pereira de Oliveira

    2013-12-01

    Full Text Available The use of bovine manure becomes an useful and economic practice for the small and medium producers of vegetables, and the okra plant normally demands high doses of organic fertilizers. This study was carried out, from January to July 2011, at the Federal University of Paraíba, in Areia city - PB, aiming to evaluate the effect of bovine manure and biofertilizer on the productive behavior of the okra plant. The experimental design used was randomized blocks, with four repetitions in factorial scheme 6 x 2, with the doses factors of bovine manure (0, 10, 20, 30, 40 and 50 t ha-1 with and without biofertilizer. The average mass of commercial fruit of okra, with and without biofertilizer was 18 and 16.5 g, respectively, in the doses of 27.5 and 60 t ha-1 of manure. The number of fruit plant-1 without biofertilizer was 30 fruits plant-1 of okra in the dose of 60 t ha-1 and with biofertilizer, the number of fruits plant-1 was 33 fruits in the dose of 28 t ha-1 of bovine manure. The productivity of commercial fruits of okra without biofertilizer was 20.4 t ha-1 and 22 t ha-1 with biofertilizer, respectively, in the doses of 60 and 31 t ha-1 of bovine manure.

  18. Copro-PCR based detection of bovine schistosome infection in India.

    Science.gov (United States)

    Lakshmanan, B; Devada, K; Joseph, S; Aravindakshan, T V; Sabu, L

    2016-01-01

    Schistosomosis and amphistomosis are the two economically important and widely prevalent snail-borne trematode infections in grazing cattle of southern India. Acute infections are symptomatically similar and difficult to detect by routine microscopy for eggs. The present study was directed towards the development of a copro-polymerase chain reaction (copro-PCR) for detection of bovine schistosome species, using custom-designed primers targeting 18S and 28S ribosomal RNA as well as mitochondrial DNA. The study demonstrated the enhanced diagnostic specificity of mitochondrial DNA markers over ribosomal RNA genes as genus-specific probes to detect schistosomes. We developed a sensitive PCR assay using primers designed from mitochondrial DNA sequences targeting the partial rrnl (16S rRNA), tCys (transfer RNA for cysteine) and partial rrnS (12S rRNA) genes of Schistosoma spindale to specifically detect schistosome infection from faecal samples of naturally infected bovines. The salient findings of the work also throw light on to the high similarity of the ribosomal RNA gene sequences of schistosomes with those of Gastrothylax crumenifer and Fischoederius elongatus, the most prevalent pouched amphistomes of the region. Further investigation has to be directed towards unravelling the complete gene sequences of 18S and 28S ribosomal RNA as well as mitochondrial DNA sequences of amphistome isolates from India.

  19. Mitochondrial signaling in health and disease

    National Research Council Canada - National Science Library

    Orrenius, Sten; Packer, Lester; Cadenas, Enrique

    2012-01-01

    .... The text covers themes essential for the maintenance of mitochondrial activity, including electron transport and energy production, mitochondrial biogenesis and dynamics, mitochondrial signaling...

  20. [Autism, epilepsy and mitochondrial disease: points of contact].

    Science.gov (United States)

    García-Peñas, J J

    2008-01-01

    Autism is a neurodevelopmental disorder with unknown etiology, although several different specific organic conditions have been found to be associated with autism in about 10 to 37% of cases. Autism with regression has been reported in one third of autistic children with previously normal development. Epilepsy is quite common in autism spectrum disorders. The rate of comorbidity varies between 20-30% of cases, depending upon the age and type of disorder. Major risk factors for epilepsy in autistic children are mental retardation and additional neurological disorders, as well as some specific associated medical conditions like chromosomal abnormalities, phakomatosis and inherited metabolic disorders. To review the possible linkage between autism, epilepsy and mitochondrial dysfunction. The hypothesis of a disturbed bioenergetic metabolism underlying autism has been suggested by the detection of high lactate levels in some patients. Although the mechanism of hyperlactacidemia remains unknown, a likely possibility involves mitochondrial oxidative phosphorylation dysfunction in neuronal cells. Reduced levels of respiratory mitochondrial enzymes, ultraestructural mitochondrial abnormalities and a broad range of mitochondrial DNA mutations suggest a linkage between autism, epilepsy and mitochondrial disorders. Though mitochondrial disorders are a rare cause of autism in children, we must keep in mind this etiology in autistic patients with epilepsy and associated signs of neurologic and/or systemic dysfunction. Finding biochemical or structural mitochondrial abnormalities in an autistic child does not necessarily imply a primary mitochondrial disorder but can also be secondary to technical inaccuracies or another genetic disorder.

  1. Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway.

    Science.gov (United States)

    Liu, Xuefeng; Mayeda, Akila; Tao, Mingfang; Zheng, Zhi-Ming

    2003-02-01

    Bovine papillomavirus type 1 (BPV-1) late pre-mRNAs are spliced in keratinocytes in a differentiation-specific manner: the late leader 5' splice site alternatively splices to a proximal 3' splice site (at nucleotide 3225) to express L2 or to a distal 3' splice site (at nucleotide 3605) to express L1. Two exonic splicing enhancers, each containing two ASF/SF2 (alternative splicing factor/splicing factor 2) binding sites, are located between the two 3' splice sites and have been identified as regulating alternative 3' splice site usage. The present report demonstrates for the first time that ASF/SF2 is required under physiological conditions for the expression of BPV-1 late RNAs and for selection of the proximal 3' splice site for BPV-1 RNA splicing in DT40-ASF cells, a genetically engineered chicken B-cell line that expresses only human ASF/SF2 controlled by a tetracycline-repressible promoter. Depletion of ASF/SF2 from the cells by tetracycline greatly decreased viral RNA expression and RNA splicing at the proximal 3' splice site while increasing use of the distal 3' splice site in the remaining viral RNAs. Activation of cells lacking ASF/SF2 through anti-immunoglobulin M-B-cell receptor cross-linking rescued viral RNA expression and splicing at the proximal 3' splice site and enhanced Akt phosphorylation and expression of the phosphorylated serine/arginine-rich (SR) proteins SRp30s (especially SC35) and SRp40. Treatment with wortmannin, a specific phosphatidylinositol 3-kinase/Akt kinase inhibitor, completely blocked the activation-induced activities. ASF/SF2 thus plays an important role in viral RNA expression and splicing at the proximal 3' splice site, but activation-rescued viral RNA expression and splicing in ASF/SF2-depleted cells is mediated through the phosphatidylinositol 3-kinase/Akt pathway and is associated with the enhanced expression of other SR proteins.

  2. A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal.

    Science.gov (United States)

    Sosnowska, Danuta; Richardson, Chris; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan; Ridgway, Iain

    2014-12-01

    Study of negligibly senescent animals may provide clues that lead to better understanding of the cardiac aging process. To elucidate mechanisms of successful cardiac aging, we investigated age-related changes in proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in the heart of the ocean quahog Arctica islandica, the longest-lived noncolonial animal (maximum life span potential: 508 years). We found that in the heart of A. islandica the level of oxidatively damaged proteins did not change significantly up to 120 years of age. No significant aging-induced changes were observed in caspase-like and trypsin-like proteasome activity. Chymotrypsin-like proteasome activity showed a significant early-life decline, then it remained stable for up to 182 years. No significant relationship was observed between the extent of protein ubiquitination and age. In the heart of A. islandica, an early-life decline in expression of HSP90 and five mitochondrial electron transport chain complexes was observed. We found significant age-related increases in the expression of three cytokine-like mediators (interleukin-6, interleukin-1β, and tumor necrosis factor-α) in the heart of A. islandica. Collectively, in extremely long-lived molluscs, maintenance of protein homeostasis likely contributes to the preservation of cardiac function. Our data also support the concept that low-grade chronic inflammation in the cardiovascular system is a universal feature of the aging process, which is also manifest in invertebrates. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Ocular manifestations of mitochondrial disease

    Directory of Open Access Journals (Sweden)

    S. D. Mathebula

    2012-12-01

    Full Text Available Mitochondrial disease caused by mutations in mitochondrial DNA is recognized as one of the most common causes of inherited neurological disease. Neuro-ophthalmic manifestations are a common feature of mitochondrial disease.  Optic atrophy causing central visual loss is the dominant feature of mitochondrial DNA diseases. Nystagmus is also encountered in mitochondrial disease.Although optometrists are not involved with the management of mitochondrial disease, they are likely to see more patients with this disease. Oph-thalmic examination forms part of the clinical assessment of mitochondrial disease. Mitochondrial disease should be suspected in any patient with unexplained optic neuropathy, ophthalmoplegia, pigmentary retinopathy or retrochiasmal visual loss. Despite considerable advances in the under-standing of mitochondrial genetics and the patho-genesis of mtDNA diseases, no effective treatment options are currently available for patients withmitochondrial dysfunction. (S Afr Optom 201271(1 46-50

  4. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    Science.gov (United States)

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  5. Immunomodulatory effects of bovine colostrum in human peripheral blood mononuclear cells

    National Research Council Canada - National Science Library

    Biswas, Priscilla; Vecchi, Andrea; Mantegani, Paola; Mantelli, Barbara; Fortis, Claudio; Lazzarin, Adriano

    2007-01-01

    Human and bovine colostrum (BC) contain a remarkable amount of bioactive substances, including antibodies towards many common pathogens of the intestinal and respiratory tract as well as growth factors, vitamins, cytokines...

  6. Mitochondrial dysfunction and human immunodeficiency virus ...

    African Journals Online (AJOL)

    2011-05-04

    May 4, 2011 ... factors. Aids 2002;16(10):1341-1349. 63. John M, Moore CB, James IR, et al. Chronic hyperlactatemia in HIV-infected patients taking antiretroviral therapy. Aids 2001;15(6):717-723. 64. Henry K, Erice A, Balfour HH, Jr., et al. Lymphocyte mitochondrial biomarkers in asymptomatic HIV-1-infected individuals ...

  7. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes in...

  8. Higher mitochondrial potential and elevated mitochondrial respiration are associated with excessive activation of blood platelets in diabetic rats.

    Science.gov (United States)

    Siewiera, Karolina; Kassassir, Hassan; Talar, Marcin; Wieteska, Lukasz; Watala, Cezary

    2016-03-01

    The high glucose concentration observed in diabetic patients is a recognized factor of mitochondrial damage in various cell types. Its impact on mitochondrial bioenergetics in blood platelets remains largely vague. The aim of the study was to determine how the metabolism of carbohydrates, which has been impaired by streptozotocin-induced diabetes may affect the functioning of platelet mitochondria. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Platelet mitochondrial respiratory capacity was monitored as oxygen consumption (high-resolution respirometry). Mitochondrial membrane potential was assessed using a fluorescent probe, JC-1. Activation of circulating platelets was monitored by flow cytometry measuring of the expressions of CD61 and CD62P on a blood platelet surface. To determine mitochondrial protein density in platelets, Western Blot technique was used. The results indicate significantly elevated mitochondria mass, increased mitochondrial membrane potential (ΔΨm) and enhanced respiration in STZ-diabetic animals, although the respiration control ratios appear to remain unchanged. Higher ΔΨm and elevated mitochondrial respiration were closely related to the excessive activation of circulating platelets in diabetic animals. Long-term diabetes can result in increased mitochondrial mass and may lead to hyperpolarization of blood platelet mitochondrial membrane. These alterations may be a potential underlying cause of abnormal platelet functioning in diabetes mellitus and hence, a potential target for antiplatelet therapies in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Iron and Copper in Mitochondrial Diseases

    Science.gov (United States)

    Xu, Wenjing; Barrientos, Tomasa; Andrews, Nancy C.

    2013-01-01

    Summary Transition metals are frequently used as co-factors for enzymes and oxygen-carrying proteins that take advantage of their propensity to gain and lose single electrons. Metals are particularly important in mitochondria, where they play essential roles in the production of ATP and detoxification of reactive oxygen species. At the same time, transition metals (particularly Fe and Cu) can promote the formation of harmful radicals, necessitating meticulous control of metal concentration and subcellular compartmentalization. We summarize our current understanding of Fe and Cu in mammalian mitochondrial biology, and discuss human diseases associated with aberrations in mitochondrial metal homeostasis. PMID:23473029

  10. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    Science.gov (United States)

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( GPCR, MMP2/9, hbEGF, EGFR, erbB2, and IGF-1R. However, the mechanism through which TBA mediates changes in protein degradation is different and appears to involve only the EGFR and erbB2. Furthermore, it appears the protein kinase B pathway is involved in TBA's effects on fused BSC cultures.

  11. Enhanced tumorigenicity by mitochondrial DNA mild mutations.

    Science.gov (United States)

    Cruz-Bermúdez, Alberto; Vallejo, Carmen G; Vicente-Blanco, Ramiro J; Gallardo, María Esther; Fernández-Moreno, Miguel Ángel; Quintanilla, Miguel; Garesse, Rafael

    2015-05-30

    To understand how mitochondria are involved in malignant transformation we have generated a collection of transmitochondrial cybrid cell lines on the same nuclear background (143B) but with mutant mitochondrial DNA (mtDNA) variants with different degrees of pathogenicity. These include the severe mutation in the tRNALys gene, m.8363G>A, and the three milder yet prevalent Leber's hereditary optic neuropathy (LHON) mutations in the MT-ND1 (m.3460G>A), MT-ND4 (m.11778G>A) and MT-ND6 (m.14484T>C) mitochondrial genes. We found that 143B ρ0 cells devoid of mtDNA and cybrids harboring wild type mtDNA or that causing severe mitochondrial dysfunction do not produce tumors when injected in nude mice. By contrast cybrids containing mild mutant mtDNAs exhibit different tumorigenic capacities, depending on OXPHOS dysfunction.The differences in tumorigenicity correlate with an enhanced resistance to apoptosis and high levels of NOX expression. However, the final capacity of the different cybrid cell lines to generate tumors is most likely a consequence of a complex array of pro-oncogenic and anti-oncogenic factors associated with mitochondrial dysfunction.Our results demonstrate the essential role of mtDNA in tumorigenesis and explain the numerous and varied mtDNA mutations found in human tumors, most of which give rise to mild mitochondrial dysfunction.

  12. Synaptic Mitochondrial Pathology in Alzheimer's Disease

    Science.gov (United States)

    Du, Heng; Guo, Lan

    2012-01-01

    Abstract Significance: Synaptic degeneration, an early pathological feature in Alzheimer's disease (AD), is closely correlated to impaired cognitive function and memory loss. Recent studies suggest that involvement of amyloid-beta peptide (Aβ) in synaptic mitochondrial alteration underlies these synaptic lesions. Thus, to understand the Aβ-associated synaptic mitochondrial perturbations would fortify our understanding of synaptic stress in the pathogenesis of AD. Recent Advances: Increasing evidence suggests that synaptic mitochondrial dysfunction is strongly associated with synaptic failure in many neurodegenerative diseases including AD. Based on recent findings in human AD subjects, AD animal models, and AD cellular models, synaptic mitochondria undergo multiple malfunctions including Aβ accumulation, increased oxidative stress, decreased respiration, and compromised calcium handling capacity, all of which occur earlier than changes seen in nonsynaptic mitochondria before predominant AD pathology. Of note, the impact of Aβ on mitochondrial motility and dynamics exacerbates synaptic mitochondrial alterations. Critical Issues: Synaptic mitochondria demonstrate early deficits in AD; in combination with the role that synaptic mitochondria play in sustaining synaptic functions, deficits in synaptic mitochondria may be a key factor involved in an early synaptic pathology in AD. Future Directions: The importance of synaptic mitochondria in supporting synapses and the high vulnerability of synaptic mitochondria to Aβ make them a promising target of new therapeutic strategy for AD. Antioxid. Redox Signal. 16, 1467–1475. PMID:21942330

  13. MITOCHONDRIAL MYOPATHY: A NEW THERAPEUTIC APPROACH.

    Science.gov (United States)

    Hagiu, B A; Mungiu, C

    2016-01-01

    Restoration of deoxyribonucleic acid in mitochondrial myopathies may occur after a mechanical or chemical injury of striated muscle or by endurance training. Therapies with enzymes, gene therapies, or treatments with substances that stimulate mitochondrial biogenesis are used at the moment. Genesis of mitochondria may also come from myonuclei by releasing the nuclear respiratory factor-1/2 during muscle contractions. Multiplying of myonuclei depends on muscle satellite cell activation. Since the electromyostimulation increase the number of circulating stem cells that may participate in the genesis of new muscle fibers (adding to the deposit of specific stem cells of the muscle), and intermittent hypoxia stimulates the proliferation of muscle satellite cells, we propose to combine the two processes for the treatment of mitochondrial myopathies. Respective combined therapy may be useful for restoring damaged mitochondria by drug side effects.

  14. Mitochondrial dysfunction in obesity.

    Science.gov (United States)

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival

    Science.gov (United States)

    Khacho, Mireille; Tarabay, Michelle; Patten, David; Khacho, Pamela; MacLaurin, Jason G.; Guadagno, Jennifer; Bergeron, Richard; Cregan, Sean P.; Harper, Mary-Ellen; Park, David S.; Slack, Ruth S.

    2014-01-01

    Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. PMID:24686499

  16. TMpcp: a Tuber magnatum gene which encodes a putative mitochondrial phosphate carrier.

    Science.gov (United States)

    Garnero, L; Bonfante, P

    2000-01-01

    Little is known about the genome of Tuber, Ascomycetes which comprise a number of ectomycorrhizal species. Screening of a genomic library of Tuber magnatum led to identification of a chitin synthase gene (chs). On sequencing upstream of it in the same phage, we found a 2000 bp long fragment that proved to contain a hypothetical gene with high homology with mitochondrial phosphate carriers from human and bovine heart, and from Saccharomyces cerevisiae. The sequence contains two putative introns and its open reading frame encodes for a protein 305 amino acids long. A primary sequence analysis revealed 6 hydrophobic segments and a signature pattern, similar to that of other mitochondrial carriers.

  17. Effects of bovine oviduct epithelial cells, fetal calf serum and bovine serum albumin on gene expression in single bovine embryos produced in the synthetic oviduct fluid culture system.

    Science.gov (United States)

    Pedersen, Mona E; Øzdas, Øzen Banu; Farstad, Wenche; Tverdal, Aage; Olsaker, Ingrid

    2005-01-01

    In this study the synthetic oviduct fluid (SOF) system with bovine oviduct epithelial cell (BOEC) co-culture is compared with an SOF system with common protein supplements. One thousand six hundred bovine embryos were cultured in SOF media supplemented with BOEC, fetal calf serum (FCS) and bovine serum albumin (BSA). Eight different culture groups were assigned according to the different supplementation factors. Developmental competence and the expression levels of five genes, namely glucose transporter-1 (Glut-1), heat shock protein 70 (HSP), connexin43 (Cx43), (2)-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), analysed as mRNA by using reverse transcription-polymerase chain reaction, were measured on bovine embryos cultured for 9 days. Gene expression of these in vitro-produced embryos was compared with the gene expression of in vivo-produced embryos. There was no significant difference found in embryo developmental competence between the Day 9 embryos in BOEC co-culture, FCS and BSA supplements in SOF media. However, differences in gene expression were observed. With respect to gene expression in in vivo and in vitro embryos, BOEC co-culture affected the same genes as did supplementation with FCS and BSA. HSP was the only gene that differed significantly between in vitro and in vivo embryos. When the different in vitro groups were compared, a significant difference between the BOEC co-culture and the FCS supplementation groups due to Glut-1 expression was observed.

  18. Honokiol Attenuates Oligomeric Amyloid β1-42-Induced Alzheimer’s Disease in Mice Through Attenuating Mitochondrial Apoptosis and Inhibiting the Nuclear Factor Kappa-B Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Mo Wang

    2017-08-01

    Full Text Available Background: Increasing evidence indicates that amyloid β oligomer (AβO is toxic to neurons in Alzheimer’s disease (AD brain. The aim of the present study is to evaluate the effects of honokiol on AβO-induced learning and memory dysfunction in mice. Methods: AD mice model was established by AβO intrahippocampal injection. The cognitive function was evaluated using Morris water maze (MWM. Nissl staining was used to examine the hippocampal neuron damage. Primary hippocampal neurons were exposed to AβO. The apoptosis in the hippocampal tissues and primary neurons was assessed using terminal dexynucleotidyl transferase-mediated dUTP nick end labeling-neuronal nuclei (NeuN and Hoechst staining, respectively. The mitochondrial membrane potential and radical oxygen species were detected using standard methods. Western blotting assay was used to check the expression levels of apoptotic and nuclear factor kappa-B (NF-κB signaling-associated proteins and electrophoretic mobility shift assay was used to detect NF-κB-DNA binding. Results: Honokiol increased the time spend in the target zone of the AD mice in the MWM. In addition, honokiol dose-dependently attenuated AβO-induced hippocampal neuronal apoptosis, reactive oxygen species production and loss of mitochondrial membrane potential. Furthermore, AβO-induced NF-κB activation was inhibited by honokiol, as well as the upregulated amyloid precursor protein and β-secretase. Conclusion: Honokiol attenuates AβO-induced learning and memory dysfunction in mice and it may be a potential candidate in AD therapy.

  19. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males...

  20. Vimar Is a Novel Regulator of Mitochondrial Fission through Miro.

    Directory of Open Access Journals (Sweden)

    Lianggong Ding

    2016-10-01

    Full Text Available As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF. However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro's effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson's disease (PD, caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional.

  1. LHON and other optic nerve atrophies: the mitochondrial connection.

    Science.gov (United States)

    Howell, Neil

    2003-01-01

    The clinical, biochemical and genetic features of Leber's hereditary optic neuropathy (LHON) are reviewed. The etiology of LHON is complex, but the primary risk factor is a mutation in one of the seven mitochondrial genes that encode subunits of respiratory chain complex I. The pathogenesis of LHON is not yet understood, but one plausible model is that increased or altered mitochondrial ROS production renders the retinal ganglion cells vulnerable to apoptotic cell death. In addition to LHON, there are a large number of other optic nerve degenerative disorders including autosomal dominant optic atrophy, the toxic/nutritional optic neuropathies and glaucoma. A review of the recent scientific literature suggests that these disorders also involve mitochondrial dysfunction or altered mitochondrial signaling pathways in their pathogenesis. This mitochondrial link provides new avenues of experimental investigation to these major causes of loss of vision.

  2. Mitochondrial deficiency in Cockayne syndrome.

    Science.gov (United States)

    Scheibye-Knudsen, Morten; Croteau, Deborah L; Bohr, Vilhelm A

    2013-01-01

    Cockayne syndrome is a rare inherited disorder characterized by accelerated aging, cachectic dwarfism and many other features. Recent work has implicated mitochondrial dysfunction in the pathogenesis of this disease. This is particularly interesting since mitochondrial deficiencies are believed to be important in the aging process. In this review, we discuss recent findings of mitochondrial pathology in Cockayne syndrome and suggest possible mechanisms for the mitochondrial dysfunction. Published by Elsevier Ireland Ltd.

  3. Mitochondrial deficiency in Cockayne syndrome

    OpenAIRE

    Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2013-01-01

    Cockayne syndrome is a rare inherited disorder characterized by accelerated aging, cachectic dwarfism and many other features. Recent work has implicated mitochondrial dysfunction in the pathogenesis of this disease. This is particularly interesting since mitochondrial deficiencies are believed to be important in the aging process. In this review, we will discuss recent findings of mitochondrial pathology in Cockayne syndrome and suggest possible mechanisms for the mitochondrial dysfunction.

  4. Diprosopia em bovino Bovine diprosopus

    Directory of Open Access Journals (Sweden)

    I.T. Rotta

    2008-04-01

    Full Text Available This work describes a malformation in one newborn female bovine, with two faces and two skull fused, showing one single head. Duplications of the nasal and oral structures, tetraofthalmy, two brains, one single cerebellum, and pons were observed. The right thyroid was hypertrophic and the other organs had normal morphology. Every change observed in this case was compatibles with diprosopus.

  5. Bovine spongiform encephalopathy in sheep?

    NARCIS (Netherlands)

    Schreuder, B.E.C.; Somerville, R.A.

    2003-01-01

    Bovine spongiform encephalopathy (BSE) in sheep has not been identified under natural conditions at the time of writing and remains a hypothetical issue. However, rumours about the possible finding of a BSE-like isolate in sheep have led to great unrest within the sheep industry, among the general

  6. Infectious bovine rhinotracheitis in Scotland.

    Science.gov (United States)

    2017-10-14

    A cattle dashboard has recently been developed to share surveillance information gathered from submissions to the Great Britain veterinary diagnostic network. Data relating to Scotland come from the SAC C VS. This article, by Tim Geraghty, relates to cases of infectious bovine rhinotracheitis in Scotland, as summarised on the APHA Cattle Dashboard. British Veterinary Association.

  7. Identification of lactoferrin in bovine tears.

    Science.gov (United States)

    Brown, M H; Brightman, A H; Fenwick, B W; Rider, M A

    1996-09-01

    To determine whether bovine tear film contains the iron-binding glycoprotein, lactoferrin. 40 Adult Hereford, Angus, and Simmental cattle. Protein analysis: pooled bovine tears were used for protein analysis (size exclusion high-performance liquid chromatography [HPLC] fractionation). HPLC was used for tear analysis. A diode array detector was used (215 and 280 microns) for chromatogram analysis and comparisons. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE): protein electrophoresis was performed, using 7.5% running gels with 4% stacking gels. Molecular weight of proteins in the unknown samples was determined as recommended by the manufacturer of the standards. Protein sequencing: amino acid sequencing, using automated Edman degradation of HPLC purified protein, was performed. The sequence obtained was compared with the known protein sequence of bovine lactoferrin. HPLC analysis of whole bovine tears resulted in a consistent chromatogram. Peak collection was performed to recover a protein from the bovine tear film with chromatogram characteristics nearly identical to purified bovine lactoferrin. Silver-stained SDS-PAGE of this peak revealed a band with molecular mass consistent with bovine lactoferrin (estimated mass of 78 kd). The first 13 amino acid residues of this protein were identical to the amino acid sequence of bovine lactoferrin. Analysis of whole bovine tears, using size exclusion HPLC, SDS-PAGE, and amino acid sequencing, provided evidence that bovine tears contain lactoferrin. Lactoferrin probably exerts a bacteriostatic effect in bovine tear film. Locally produced lactoferrin may bathe the ocular surface and sequester iron from potential pathogens.

  8. Pharmacologic Effects on Mitochondrial Function

    Science.gov (United States)

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  9. The Interaction of Mitochondrial Biogenesis and Fission/Fusion Mediated by PGC-1α Regulates Rotenone-Induced Dopaminergic Neurotoxicity.

    Science.gov (United States)

    Peng, Kaige; Yang, Likui; Wang, Jian; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Cai, Ying; Cui, Zhihong; Ao, Lin; Liu, Jinyi; Zou, Zhongmin; Sai, Yan; Cao, Jia

    2017-07-01

    Parkinson's disease is a common neurodegenerative disease in the elderly, and mitochondrial defects underlie the pathogenesis of PD. Impairment of mitochondrial homeostasis results in reactive oxygen species formation, which in turn can potentiate the accumulation of dysfunctional mitochondria, forming a vicious cycle in the neuron. Mitochondrial fission/fusion and biogenesis play important roles in maintaining mitochondrial homeostasis. It has been reported that PGC-1α is a powerful transcription factor that is widely involved in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. Therefore, we explored mitochondrial biogenesis, mitochondrial fission/fusion, and especially PGC-1α as the key point in the signaling mechanism of their interaction in rotenone-induced dopamine neurotoxicity. The results showed that mitochondrial number and mass were reduced significantly, accompanied by alterations in proteins known to regulate mitochondrial fission/fusion (MFN2, OPA1, Drp1, and Fis1) and mitochondrial biogenesis (PGC-1α and mtTFA). Further experiments proved that inhibition of mitochondrial fission or promotion of mitochondrial fusion has protective effects in rotenone-induced neurotoxicity and also promotes mitochondrial biogenesis. By establishing cell models of PGC-1α overexpression and reduced expression, we found that PGC-1α can regulate MFN2 and Drp1 protein expression and phosphorylation to influence mitochondrial fission/fusion. In summary, it can be concluded that PGC-1α-mediated cross talk between mitochondrial biogenesis and fission/fusion contributes to rotenone-induced dopaminergic neurodegeneration.

  10. Bovine leukemia virus: current perspectives

    Directory of Open Access Journals (Sweden)

    Juliarena MA

    2017-08-01

    Full Text Available Marcela Alicia Juliarena,1 Clarisa Natalia Barrios,1 Claudia María Lützelschwab,1 Eduardo Néstor Esteban,2 Silvina Elena Gutiérrez1 1Department of Animal Health and Preventive Medicine, Veterinary Research Center of Tandil (CIVETAN, CIC-CONICET, Faculty of Veterinary Science, National University of the Center of Buenos Aires Province, Tandil, Argentina; 2BIOALPINA Program (GENIAL/COTANA, Colonia Alpina, Argentina Abstract: Enzootic bovine leukosis, caused by bovine leukemia virus (BLV, is the most common neoplasm of dairy cattle. Although beef and dairy cattle are susceptible to BLV infection and BLV-associated lymphosarcoma, the disease is more commonly detected in dairy herds, mostly because of the management practices in dairy farms. The pathogenicity of BLV in its natural host, the bovine, depends mainly on the resistance/susceptibility genetics of the animal. The majority of infected cattle are asymptomatic, promoting the extremely high dissemination rate of BLV in many bovine populations. The important productive losses caused by the BLV, added to the health risk of maintaining populations with a high prevalence of infection with a retrovirus, generates the need to implement control measures. Different strategies to control the virus have been attempted. The most effective approach is to identify and cull the totality of infected cattle in the herd. However, this approach is not suitable for herds with high prevalence of infection. At present, no treatment or vaccine has proven effective for the control of BLV. Thus far, the genetic selection of resistant animals emerges as a natural strategy for the containment of the BLV dissemination. In natural conditions, most of the infected, resistant cattle can control the infection, and therefore do not pass the virus to other animals, gradually decreasing the prevalence of the herd. Keywords: bovine leukemia virus, control, genetic resistance, BoLA-DRB3

  11. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity.

    Science.gov (United States)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika; Tian, Jane; Sykora, Peter; Ramamoorthy, Mahesh; Wang, Zheng Ming; Singh, Dharmendra Kumar; Akbari, Mansour; Kasiviswanathan, Rajesh; Copeland, William C; Bohr, Vilhelm A

    2012-06-01

    RECQL4 is associated with Rothmund-Thomson Syndrome (RTS), a rare autosomal recessive disorder characterized by premature aging, genomic instability, and cancer predisposition. RECQL4 is a member of the RecQ helicase family, and has many similarities to WRN protein, which is also implicated in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial reserve capacity after lentiviral knockdown of RECQL4 in two different primary cell lines. Additionally, biochemical assays with RECQL4, mitochondrial transcription factor A, and mitochondrial DNA polymerase γ showed that the polymerase inhibited RECQL4's helicase activity. RECQL4 is the first 3'-5' RecQ helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity. © 2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  12. Contamination of milk by enterococci and coliforms from bovine faeces.

    Science.gov (United States)

    Kagkli, D M; Vancanneyt, M; Vandamme, P; Hill, C; Cogan, T M

    2007-11-01

    -188 and Kagkli et al. 2007, Int J Food Microbiol114, 243-251) on two other farms. The three studies show that contamination of milk by enterococci, lactobacilli and coliforms of bovine faecal origin is extremely low. The results also suggest that where raw milk is implicated in food infection, other factors in addition to faecal contamination must be involved.

  13. Oxygen tension and oocyte density during in vitro maturation affect the in vitro fertilization of bovine oocytes

    Directory of Open Access Journals (Sweden)

    Angelo Bertani Giotto

    2015-12-01

    Full Text Available Oocyte maturation is the key factor affecting the fertilization and embryonic development. Factors such as oocyte density and oxygen tension can directly influence the IMV. Thus, the objective of this study was to evaluate the effect of the association of oxygen tensions (5% or 20% with different oocyte densities (1:10?l or 1:20?l in the in vitro maturation (IVM of bovine oocytes on maturation and fertilization rates, ROS production and antioxidant activity. Three experiments were performed with bovine oocytes that were obtained from slaughterhouse ovaries. After selection, the oocytes were randomly distributed in four treatments: 1:10/5%; 1:10/20%; 1:20/5%and 1:20/20% for each experiment. In experiment I, nuclear maturation status and cytoplasmic maturation were evaluated through detection of the first polar body by immunofluorescence and the mitochondrial reorganization assay. In experiment II, ROS production and antioxidant activity were analyzed in oocytes and IVM medium after 24 h of maturation through detection of ROS, reduced glutathione (GSH and Superoxide dismutase activity by spectrofluorimetric methods. In experiment III, fertilization was evaluated through pronucleus formation, sperm penetration with or without decondensation and polyspermy rates by immunofluorescence. In experiment I, the nuclear maturation and cytoplasmic maturation were similar among treatments (P>0.05. In experiment II, reactive oxygen species in oocytes were elevated in treatments with low oxygen tension which was independent of oocyte density (P<0.05. Additionally, ROS levels in IVM medium were higher in treatments with high oocyte density by volume of medium, which was independent of oxygen tension (P<0.05. In Experiment III, the fertilization and penetration rates were higher in the treatment with 20% oxygen tension and high oocyte density (P<0.05. Furthermore, a high incidence of polyspermy was observed in groups with high oxygen tension and low oocyte

  14. Sulfur dioxide inhibits expression of mitochondrial oxidative phosphorylation genes encoded by both nuclear DNA and mitochondrial DNA in rat lungs.

    Science.gov (United States)

    Qin, Guohua; Wang, Jiaoxia; Sang, Nan

    2017-01-01

    Epidemiological studies show that sulfur dioxide (SO2), a major air pollutant, is associated with the morbidity and mortality of respiratory tract diseases. The aim of the present study was to determine the effects of SO2 on mitochondria and the corresponding molecular characterization in the lung. Male Wistar rats were exposed to 0, 3.5, 7, and 14 mg/m3 SO2 (4 h/day, 30 days). Mitochondrial dysfunction including decreases of cytochrome c oxidase (COX) activity and mitochondrial membrane potential (MMP) was observed in the lungs of rats after SO2 inhalation. We showed that total mitochondrial DNA (mtDNA) content was significantly decreased in the lungs from rats exposed to SO2. Furthermore, SO2 repressed the expression of complex IV and V subunits encoded by both nuclear DNA (nDNA) and mtDNA. Moreover, such changes were accompanied by depressions of three regulatory factors: peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). The findings suggest that SO2 exposure induced mitochondrial dysfunction in rat lungs. Both nDNA and mtDNA are involved in SO2-induced depression of mitochondrial biogenesis in the lungs. There might be a tissue-specific response of mitochondrial biosynthesis to SO2 inhalation. Such impairment may lead to cellular dysfunction and eventually lung diseases.

  15. Raw bovine milk improves gut responses to feeding relative to infant formula in preterm piglets

    DEFF Research Database (Denmark)

    Li, Yang; Lykke, Mikkel; Chatterton, D E W

    2014-01-01

    For preterm neonates, the quality of the first milk is crucial for intestinal maturation and resistance to necrotizing enterocolitis (NEC). Among other factors, milk quality is determined by the stage of lactation and processing. We hypothesized that unprocessed mature bovine milk (BM; raw bovine...... effects as BM, except for lactase activity and lactose absorption. In conclusion, the maturational and protective effects on the immature intestine decreased in the order BC>BM>WMP, but all three intact bovine milk diets were markedly better than IF. The stage of lactation (colostrum vs. mature milk...

  16. Allicin Protects PC12 Cells Against 6-OHDA-Induced Oxidative Stress and Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics.

    Science.gov (United States)

    Liu, Hao; Mao, Ping; Wang, Jia; Wang, Tuo; Xie, Chang-Hou

    2015-01-01

    Parkinson disease (PD) is a common adult-onset neurodegenerative disorder, and PD related neuronal injury is associated with oxidative stress and mitochondrial dysfunction. Allicin, the main biologically active compound derived from garlic, has been shown to exert various anti-oxidative and anti-apoptotic activities in in vitro and in vivo studies. The present study aimed to investigate the potential protective role of allicin in an in vitro PD model induced by 6-hydroxydopamine (6-OHDA) in PC12 cells. The protective effects were measured by cell viability, decreased lactate dehydrogenase (LDH) release and flow cytometry, and the anti-oxidative activity was determined by reactive oxygen species (ROS) generation, lipid peroxidation and the endogenous antioxidant enzyme activities. Mitochondrial function in PC12 cells was detected by mitochondrial membrane potential (MMP) collapse, cytochrome c release, mitochondrial ATP synthesis, and the mitochondrial Ca(2+) buffering capacity. To investigate the potential mechanism, we also measured the expression of mitochondrial biogenesis factors, mitochondrial morphological dynamic changes, as well as detected mitochondrial dynamic proteins by western blot. We found that allicin treatment significant increased cell viability, and decreased LDH release and apoptotic cell death after 6-OHDA exposure. Allicin also inhibited ROS generation, reduced lipid peroxidation and preserved the endogenous antioxidant enzyme activities. These protective effects were associated with suppressed mitochondrial dysfunction, as evidenced by decreased MMP collapse and cytochrome c release, preserved mitochondrial ATP synthesis, and the promotion of mitochondrial Ca(2+) buffering capacity. In addition, allicin significantly enhanced mitochondrial biogenesis and prevented fragmentation of mitochondrial network after 6-OHDA treatment. The results of western blot analysis showed that the 6-OHDA induced decrease in the expression of optic atrophy type 1

  17. Allicin Protects PC12 Cells Against 6-OHDA-Induced Oxidative Stress and Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2015-06-01

    Full Text Available Background: Parkinson disease (PD is a common adult-onset neurodegenerative disorder, and PD related neuronal injury is associated with oxidative stress and mitochondrial dysfunction. Allicin, the main biologically active compound derived from garlic, has been shown to exert various anti-oxidative and anti-apoptotic activities in in vitro and in vivo studies. Methods: The present study aimed to investigate the potential protective role of allicin in an in vitro PD model induced by 6-hydroxydopamine (6-OHDA in PC12 cells. The protective effects were measured by cell viability, decreased lactate dehydrogenase (LDH release and flow cytometry, and the anti-oxidative activity was determined by reactive oxygen species (ROS generation, lipid peroxidation and the endogenous antioxidant enzyme activities. Mitochondrial function in PC12 cells was detected by mitochondrial membrane potential (MMP collapse, cytochrome c release, mitochondrial ATP synthesis, and the mitochondrial Ca2+ buffering capacity. To investigate the potential mechanism, we also measured the expression of mitochondrial biogenesis factors, mitochondrial morphological dynamic changes, as well as detected mitochondrial dynamic proteins by western blot. Results: We found that allicin treatment significant increased cell viability, and decreased LDH release and apoptotic cell death after 6-OHDA exposure. Allicin also inhibited ROS generation, reduced lipid peroxidation and preserved the endogenous antioxidant enzyme activities. These protective effects were associated with suppressed mitochondrial dysfunction, as evidenced by decreased MMP collapse and cytochrome c release, preserved mitochondrial ATP synthesis, and the promotion of mitochondrial Ca2+ buffering capacity. In addition, allicin significantly enhanced mitochondrial biogenesis and prevented fragmentation of mitochondrial network after 6-OHDA treatment. The results of western blot analysis showed that the 6-OHDA induced decrease

  18. Protons Trigger Mitochondrial Flashes.

    Science.gov (United States)

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Mitochondrial mutations in cancer

    National Research Council Canada - National Science Library

    Brandon, M; Baldi, P; Wallace, D C

    2006-01-01

    ...). The mitochondria are assembled from both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) genes. The mtDNA codes for 37 genes essential of OXPHOS, is present in thousands of copies per cell, and has a very high mutations rate...

  20. Mitochondrial diseases: a review

    Directory of Open Access Journals (Sweden)

    Daniel Jarovsky

    2006-12-01

    Full Text Available Mitochondria are organelles responsible for production of mostenergy through oxidative phosphorylation process (OXPHOS. Itcontains a double strand DNA (mitDNA of about 16,500 bp encodingtwo ribosomal RNAs and 37 mitochondrial proteins. Mutation inmitDNA may result in multisystem syndromes known asmitochondrial diseases, affecting predominantly tissues thatrequire high levels of ATP such as skeletal muscle (mitochondrialmyopathies, brain (e.g. MELAS, MERRF, LHON e NARP, liver,kidney (Fanconi syndrome, heart and endocrine glands (Pearsonsyndrome. A case of mitochondrial disease was first reported in1962 and correlation of such disease with mutations in mitDNAgained scientific importance in late 1980’s. There are 150 alterationsreported in mitDNA capable of producing metabolic dysfunctionsof clinical relevance. To date, no standard protocol for diagnosis ofmitochondrial diseases has been established, partially due to thewide amplitude of clinical manifestation generally observed. Acombined analysis of clinical data, biochemical, morphologicaland laboratory tests must be performed to evaluate mitochondrialrespiratory chain activity and integrity of nuclear and mitochondrialgenomes. Currently, there are no effective treatments availablefor mitochondrial diseases, but only palliative therapeutics usingconventional strategies to relieve symptoms. Thus, gene therapyemerges as potential therapeutic strategy for more efficienttreatment of mitochondrial diseases.

  1. LHON: Mitochondrial Mutations and More.

    Science.gov (United States)

    Kirches, E

    2011-03-01

    Leber's hereditary optic neuropathy (LHON) is a mitochondrial disorder leading to severe visual impairment or even blindness by death of retinal ganglion cells (RGCs). The primary cause of the disease is usually a mutation of the mitochondrial genome (mtDNA) causing a single amino acid exchange in one of the mtDNA-encoded subunits of NADH:ubiquinone oxidoreductase, the first complex of the electron transport chain. It was thus obvious to accuse neuronal energy depletion as the most probable mediator of neuronal death. The group of Valerio Carelli and other authors have nicely shown that energy depletion shapes the cell fate in a LHON cybrid cell model. However, the cybrids used were osteosarcoma cells, which do not fully model neuronal energy metabolism. Although complex I mutations may cause oxidative stress, a potential pathogenetic role of the latter was less taken into focus. The hypothesis of bioenergetic failure does not provide a simple explanation for the relatively late disease onset and for the incomplete penetrance, which differs remarkably between genders. It is assumed that other genetic and environmental factors are needed in addition to the 'primary LHON mutations' to elicit RGC death. Relevant nuclear modifier genes have not been identified so far. The review discusses the unresolved problems of a pathogenetic hypothesis based on ATP decline and/or ROS-induced apoptosis in RGCs.

  2. Principal-Component Analysis for Assessment of Population Stratification in Mitochondrial Medical Genetics

    Science.gov (United States)

    Biffi, Alessandro; Anderson, Christopher D.; Nalls, Michael A.; Rahman, Rosanna; Sonni, Akshata; Cortellini, Lynelle; Rost, Natalia S.; Matarin, Mar; Hernandez, Dena G.; Plourde, Anna; de Bakker, Paul I.W.; Ross, Owen A.; Greenberg, Steven M.; Furie, Karen L.; Meschia, James F.; Singleton, Andrew B.; Saxena, Richa; Rosand, Jonathan

    2010-01-01

    Although inherited mitochondrial genetic variation can cause human disease, no validated methods exist for control of confounding due to mitochondrial population stratification (PS). We sought to identify a reliable method for PS assessment in mitochondrial medical genetics. We analyzed mitochondrial SNP data from 1513 European American individuals concomitantly genotyped with the use of a previously validated panel of 144 mitochondrial markers as well as the Affymetrix 6.0 (n = 432), Illumina 610-Quad (n = 458), or Illumina 660 (n = 623) platforms. Additional analyses were performed in 938 participants in the Human Genome Diversity Panel (HGDP) (Illumina 650). We compared the following methods for controlling for PS: haplogroup-stratified analyses, mitochondrial principal-component analysis (PCA), and combined autosomal-mitochondrial PCA. We computed mitochondrial genomic inflation factors (mtGIFs) and test statistics for simulated case-control and continuous phenotypes (10,000 simulations each) with varying degrees of correlation with mitochondrial ancestry. Results were then compared across adjustment methods. We also calculated power for discovery of true associations under each method, using a simulation approach. Mitochondrial PCA recapitulated haplogroup information, but haplogroup-stratified analyses were inferior to mitochondrial PCA in controlling for PS. Correlation between nuclear and mitochondrial principal components (PCs) was very limited. Adjustment for nuclear PCs had no effect on mitochondrial analysis of simulated phenotypes. Mitochondrial PCA performed with the use of data from commercially available genome-wide arrays correlated strongly with PCA performed with the use of an exhaustive mitochondrial marker panel. Finally, we demonstrate, through simulation, no loss in power for detection of true associations with the use of mitochondrial PCA. PMID:20537299

  3. Propofol affinity to mitochondrial membranes does not alter mitochondrial function.

    Science.gov (United States)

    Félix, Luís M; Correia, Fernando; Pinto, Pedro A; Campos, Sónia P; Fernandes, Telma; Videira, Romeu; Oliveira, M M; Peixoto, Francisco P; Antunes, Luís M

    2017-05-15

    The molecular mechanisms of hepatotoxicity after propofol anaesthesia have not been fully elucidated, although there is a relation with mitochondrial dysfunction. The action of propofol on mitochondrial hepatic functions in a rat model was evaluated by infusion for 4h with 25 and 62.5mg/kg/h propofol or 3.125ml/kg/h (vehicle). Liver mitochondrial respiratory rates were evaluated as well as mitochondrial transmembrane potential (ΔΨ), calcium fluxes, mitochondrial enzymatic activities (Complex I-V) and oxidative stress biomarkers (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase, lipid peroxidation and the oxidised/reduced glutathione ratio). Biophysical interactions with membrane models were also performed. The mitochondrial transmembrane potential was decreased and the opening time of the mitochondrial permeability transition pore was slightly reduced for the highest dose. The activity of complex II was stimulated by propofol, which also causes fluctuations on some respiratory parameters, whereas the antioxidant system was affected in a nonspecific manner. Fluorescence quenching studies suggested that propofol is preferably located in deeper regions of the bilayer and has a high affinity to mitochondrial membranes. It is suggested that propofol interacts with liver mitochondrial membranes with mild modification in mitochondrial function. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The antibacterial psoriasin is induced by infection in the bovine udder

    OpenAIRE

    Regenhard, Petra; Petzl, Wolfram; Zerbe, Holm; Sauerwein, Helga

    2009-01-01

    Abstract Human psoriasin (S100A7) has been described as a member of the family of S100 calcium-binding proteins and is over-expressed in patients suffering from psoriasis. The bovine homolog was first identified as a cow-derived respiratory allergen. Human psoriasin as well as its bovine homolog exhibit antibacterial activity especially against Escherichia coli. During E. coli mastitis, the host defence status is a cardinal factor influencing systemic disease severity, and Escheric...

  5. Analysis of Mitochondrial Network Morphology in Cultured Myoblasts from Patients with Mitochondrial Disorders

    Czech Academy of Sciences Publication Activity Database

    Sládková, J.; Spáčilová, J.; Čapek, Martin; Tesařová, M.; Hansíková, H.; Honzík, T.; Martínek, J.; Zámečník, J.; Kostková, O.; Zeman, J.

    2015-01-01

    Roč. 39, č. 5 (2015), s. 340-350 ISSN 0191-3123 R&D Projects: GA ČR(CZ) GB14-36804G; GA MŠk(CZ) LH13028 Institutional support: RVO:67985823 Keywords : cristae * Fiji * image analysis * mitochondrial disorders * myoblasts * ultrastructure Subject RIV: EA - Cell Biology Impact factor: 0.828, year: 2015

  6. Ancient DNA: genomic amplification of Roman and medieval bovine bones

    Directory of Open Access Journals (Sweden)

    A. Valentini

    2010-04-01

    Full Text Available Cattle remains (bones and teeth of both roman and medieval age were collected in the archaeological site of Ferento (Viterbo, Italy with the aim of extracting and characterising nucleic acids. Procedures to minimize contamination with modern DNA and to help ancient DNA (aDNA preservation of the archaeological remains were adopted. Different techniques to extract aDNA (like Phenol/chloroform extraction from bovine bones were tested to identify the method that applies to the peculiar characteristics of the study site. Currently, aDNA investigation is mainly based on mtDNA, due to the ease of amplification of the small and high-copied genome and to its usefulness in evolutionary studies. Preliminary amplification of both mitochondrial and nuclear aDNA fragments from samples of Roman and medieval animals were performed and partial specific sequences of mitochondrial D-loop as well as of nuclear genes were obtained. The innovative amplification of nuclear aDNA could enable the analysis of genes involved in specific animal traits, giving insights of ancient economic and cultural uses, as well as providing information on the origin of modern livestock population.

  7. Bovine cysticercosis situation in Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel Augusto Marques Rossi

    2014-02-01

    Full Text Available The taeniasis-cysticercosis complex is a long known zoonotic parasitosis characteristic of underdeveloped countries. In addition to its public health significance, this parasitosis is cause of economic losses to the beef production chain, and synonymous of technical inadequacy in relation to the adoption of Good Agricultural Practices. The occurrences of both human teniasis and bovine cysticercosis could and should be controlled with basic sanitary measures. However, there is much variation in the occurrence of the disease in cattle, characterizing a low rate of technical development as well as problems related to the adoption of basic sanitation measures. This review describes, in details, the causative agent and its epidemiological chain, besides raising current information about the occurrence of bovine cysticercosis in different regions of Brazil, aiming at the adoption of prophylactic measures by different segments responsible.

  8. Diagnosis and Control of Bovine Neosporosis.

    Science.gov (United States)

    McAllister, Milton M

    2016-07-01

    Neosporosis is one of the most common and widespread causes of bovine abortion. The causative parasite is transmitted in at least two ways, horizontally from canids, and by endogenous transmission within maternal lines of infected cattle. The prevalence of neosporosis is higher in the dairy industry than in the beef industry because of risk factors associated with intensive feeding. There are no vaccines, but logical management options are discussed that can lower the risk of abortion outbreaks and gradually reduce the prevalence of infection within herds. Steps should be taken to prevent total mixed rations from becoming contaminated by canine feces. If a herd has a high rate of infection that is associated with abortions in heifers, then the rate of reduction of infection prevalence can be speeded by only selecting seronegative replacement heifers to enter the breeding herd. Elimination of all infected cattle is not a recommended goal. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mitochondrial Stat3, the Need for Design Thinking.

    Science.gov (United States)

    Yang, Rui; Rincon, Mercedes

    2016-01-01

    Stat3 has been studied extensively as a transcription factor, however the finding that Stat3 also localizes to mitochondria has opened a new area to discover non-classical functions. Here we review the current knowledge of mitochondrial Stat3 as a regulator of the electron transport chain (ETC) and its impact on mitochondrial production of ATP and ROS. We also describe recent findings identifying Stat3 as a regulator of mitochondrial Ca(2+) homeostasis through its effect on the ETC. It is becoming evident that these non-classical functions of Stat3 can have a major impact on cancer progression, cardiovascular diseases, and inflammatory diseases. Therefore, mitochondrial Stat3 functions challenge the current design of therapies that solely target Stat3 as a transcription factor and suggest the need for "design thinking," which leads to the development of novel strategies, to intervene the Stat3 pathway.

  10. Mitochondrial translation initiation machinery: Conservation and diversification☆

    Science.gov (United States)

    Kuzmenko, Anton; Atkinson, Gemma C.; Levitskii, Sergey; Zenkin, Nikolay; Tenson, Tanel; Hauryliuk, Vasili; Kamenski, Piotr

    2014-01-01

    The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components – mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. PMID:23954798

  11. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Philippe A Parone

    Full Text Available Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS. At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.

  12. Nuclear gadgets in mitochondrial DNA replication and transcription.

    Science.gov (United States)

    Clayton, D A

    1991-03-01

    In mammalian mitochondrial DNA, activation of the light-strand promoter mediates both priming of leading-strand replication and initiation of light-strand transcription. Accurate and efficient transcription requires at least two proteins: mitochondrial RNA polymerase and a separable transcription factor that can function across species boundaries. Subsequently, primer RNAs are cleaved by a site-specific ribonucleoprotein endoribonuclease that recognizes short, highly conserved sequence elements in the RNA substrate.

  13. Platyzoan mitochondrial genomes.

    Science.gov (United States)

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. MITOCHONDRIAL NEUROGASTROINTESTINAL ENCEPHALOMYOPATHY (MNGIE

    Directory of Open Access Journals (Sweden)

    P. Ayatollahi

    2006-06-01

    Full Text Available Mitochondrial neurogastrointestinal encephalo-myopathy (MNGIE is a rare autosomal recessive disease caused by thymidine phosphorylase (TP gene mutation. Here we report a patient with MNGIE in whom sensorimotor polyneuropathy was the first presenting symptom and had a fluctuating course. This 26-year-old female patient developed acute-onset demyelinating polyneuropathy from the age of 6 with two relapses later on. In addition, she had gastrointestinal symptoms (diarrhea, recurrent abdominal pain, progressive weight loss and ophthalmoparesis. Brain magnetic resonance imaging showed white matter abnormalities, and muscle biopsy showed ragged red fibers. This constellation of clinical and laboratory findings raised the diagnosis of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE. This report highlights the uncommon clinical characteristics of this rare disease.

  15. Molecular identification of species of Taenia causing bovine cysticercosis in Ethiopia.

    Science.gov (United States)

    Hailemariam, Z; Nakao, M; Menkir, S; Lavikainen, A; Iwaki, T; Yanagida, T; Okamoto, M; Ito, A

    2014-09-01

    Bovine cysticercosis causing damage to the beef industry is closely linked to human taeniasis due to Taenia saginata. In African countries, Taenia spp. from wildlife are also involved as possible sources of infections in livestock. To identify the aetiological agents of bovine cysticercosis in Ethiopia, cysticerci were collected from 41 cattle slaughtered in the eastern and central areas during 2010-2012. A single cysticercus per animal was subjected to the polymerase chain reaction (PCR)-based DNA sequencing of mitochondrial cytochrome c oxidase subunit 1 gene, and the resultant sequence was compared with those of members of the genus Taenia. Although 38 out of 41 cysticerci (92.7%) were identified as T. saginata, three samples (7.3%) showed the hitherto unknown sequences of Taenia sp., which is distantly related to Taenia solium, Taenia arctos and Taenia ovis. Old literatures suggest it to be Taenia hyaenae, but morphological identification of species could not be completed by observing only the larval samples.

  16. Endosymbionts and mitochondrial origins

    Science.gov (United States)

    Woese, C. R.

    1977-01-01

    The possibility is put forth that the mitochondrion did not originate from an endosymbiosis 1-2 billion years ago involving an aerobic bacterium. Rather, it arose by endosymbiosis in a much earlier anaerobic period and was initially a photosynthetic organelle analogous to the modern chloroplast. This suggestion arises from a reconsideration of the nature of endosymbiosis. It explains the remarkable diversity in mitochondrial information storage and processing systems.

  17. Mitochondrial oxidative stress and cardiac ageing.

    Science.gov (United States)

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    2018-02-02

    According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  19. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  20. Mitochondrial Subversion in Cancer

    Science.gov (United States)

    Chatterjee, Aditi; Dasgupta, Santanu; Sidransky, David

    2012-01-01

    Mitochondria control essential cellular activities including generation of ATP via oxidative phosphorylation. Mitochondrial DNA (mtDNA) mutations in the regulatory D-loop region and somatic mtDNA mutations are common in primary human cancers. The biological impact of a given mutation may vary, depending on the nature of the mutation and the proportion of mutant mtDNAs carried by the cell. Identification of mtDNA mutations in precancerous lesions supports their early contribution to cell transformation and cancer progression. Introduction of mtDNA mutations in transformed cells has been associated with increased ROS production and tumor growth. Studies reveal that increased and altered mtDNA plays a role in the development of cancer but further work is required to establish the functional significance of specific mitochondrial mutations in cancer and disease progression. This review offers some insight into the extent of mtDNA mutations, their functional consequences in tumorigenesis, mitochondrial therapeutics, and future clinical application. PMID:21543342

  1. Mycobacterium bovis (Bovine Tuberculosis) in Humans

    Science.gov (United States)

    Mycobacterium bovis (Bovine Tuberculosis) in Humans What is Mycobacterium bovis ? In the United States, the majority of tuberculosis (TB) cases in people are caused by Mycobacterium tuberculosis ( ...

  2. A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity.

    Directory of Open Access Journals (Sweden)

    Janet H C Yeo

    Full Text Available We identified Mrpl44 in a search for mammalian proteins that contain RNase III domains. This protein was previously found in association with the mitochondrial ribosome of bovine liver extracts. However, the precise Mrpl44 localization had been unclear. Here, we show by immunofluorescence microscopy and subcellular fractionation that Mrpl44 is localized to the matrix of the mitochondria. We found that it can form multimers, and confirm that it is part of the large subunit of the mitochondrial ribosome. By manipulating its expression, we show that Mrpl44 may be important for regulating the expression of mtDNA-encoded genes. This was at the level of RNA expression and protein translation. This ultimately impacted ATP synthesis capability and respiratory capacity of cells. These findings indicate that Mrpl44 plays an important role in the regulation of the mitochondrial OXPHOS capacity.

  3. Complete mitochondrial genomes of the tooth of a poached Bornean banteng (Bos javanicus lowi; Cetartiodactyla, Bovidae).

    Science.gov (United States)

    Ishige, Taichiro; Gakuhari, Takashi; Hanzawa, Kei; Kono, Tomohiro; Sunjoto, Indra; Sukor, Jum Rafiah Abdul; Ahmad, Abdul Hamid; Matsubayashi, Hisashi

    2016-07-01

    Here we report the complete mitochondrial genome of the Bornean banteng Bos javanicus lowi (Cetartiodactyla, Bovidae), which was determined using next-generation sequencing. The mitochondrial genome is 16,344 bp in length containing 13 protein-coding genes, 21 tRNAs and 2 rRNAs. It shows the typical pattern of bovine mitochondrial arrangement. Phylogenetic tree analysis of complete mtDNA sequences showed that Bornean banteng is more closely related to gaur than to other banteng subspecies. Divergence dating indicated that Bornean banteng and gaur diverged from their common ancestor approximately 5.03 million years ago. These results suggest that Bornean banteng might be a distinct species in need of conservation.

  4. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  5. Dysfunctional mitochondrial fission impairs cell reprogramming.

    Science.gov (United States)

    Prieto, Javier; León, Marian; Ponsoda, Xavier; García-García, Francisco; Bort, Roque; Serna, Eva; Barneo-Muñoz, Manuela; Palau, Francesc; Dopazo, Joaquín; López-García, Carlos; Torres, Josema

    2016-12-01

    We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming. Microarray data revealed a prominent down-regulation of cell cycle pathways in Gdap1-null cells early in reprogramming and cell cycle profiling uncovered a G2/M growth arrest in Gdap1-null cells undergoing reprogramming. High-Content analysis showed that this growth arrest was DNA damage-independent. We propose that lack of efficient mitochondrial fission impairs cell reprogramming by interfering with cell cycle progression in a DNA damage-independent manner.

  6. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Heegaard, Peter M. H.; Thymann, Thomas

    2014-01-01

    Background & aims Only few hours of formula feeding may induce proinflammatory responses and predispose to necrotizing enterocolitis (NEC) in preterm pigs. We hypothesized that bovine colostrum, rich in bioactive factors, would improve intestinal function in preterm pigs following an initial...... exposure to formula feeding after some days of total parenteral nutrition (TPN). Methods After receiving TPN for 2 days, preterm pigs were fed formula (FORM, n = 14), bovine colostrum (COLOS, n = 6), or formula (6 h) followed by bovine colostrum (FCOLOS, n = 14). Intestinal lesions, function, and structure...... and FCOLOS pigs, relative to FORM pigs. Intestinal gene expression of serum amyloid A, IL-1β, -6 and -8, and bacterial abundance, correlated positively with NEC severity of the distal small intestine. Conclusions Bovine colostrum restores intestinal function after initial formula-induced inflammation...

  7. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... by a dystrophic morphology. The results add to the complexity of the pathogenesis underlying mitochondrial myopathies, and expand the knowledge about the impact of energy deficiency on another aspect of muscle structure and function....

  8. Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Shunsuke Miura

    2017-09-01

    Full Text Available Aging is a major factor in the decline of limb blood flow with ischemia. However, the underlying mechanism remains unclear. We investigated the role of mitochondrial reactive oxygen species (ROS with regard to limb perfusion recovery in aging during ischemia. We performed femoral artery ligation in young and old mice with or without treatment with a scavenger of mitochondrial superoxide, MitoTEMPO (180 μg/kg/day, from pre-operative day 7 to post-operative day (POD 21 infusion using an implanted mini-pump. The recoveries of cutaneous blood flow in the ischemic hind limb were lower in old mice than in young mice but were improved in MitoTEMPO-treated old mice. Mitochondrial DNA damage appeared in ischemic aged muscles but was eliminated by MitoTEMPO treatment. For POD 2, MitoTEMPO treatment suppressed the expression of p53 and the ratio of Bax/Bcl2 and upregulated the expression of hypoxia-inducible factor-1α (HIF-1α and vascular endothelial growth factor (VEGF in ischemic aged skeletal muscles. For POD 21, MitoTEMPO treatment preserved the expression of PGC-1α in ischemic aged skeletal muscle. The ischemic soleus of old mice showed a lower mitochondrial respiratory control ratio in POD 21 compared to young mice, which was recovered in MitoTEMPO-treated old mice. Scavenging of mitochondrial superoxide attenuated mitochondrial DNA damage and preserved the mitochondrial respiration, in addition to suppression of the expression of p53 and preservation of the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α in ischemic skeletal muscles with aging. Resolution of excessive mitochondrial superoxide could be an effective therapy to recover blood flow of skeletal muscle during ischemia in senescence.

  9. (Npro) protein of bovine viral d

    Indian Academy of Sciences (India)

    Prakash

    Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle and sheep, and causes significant respiratory and reproductive disease worldwide. Bovine viral diarrhoea virus type 1 (BVDV-1), BVDV-2 along with the border disease virus (BDV) and classical swine fever virus (CSFV) belong to the genus ...

  10. Bovine cysticercosis in the European Union

    DEFF Research Database (Denmark)

    Blagojevic, Bojan; Robertson, Lucy J.; Vieira-Pinto, Madalena

    2017-01-01

    Bovine cysticercosis is caused by the larval stage of Taenia saginata and has a global distribution. This zoonosis usually causes only mild disease in humans, but has an important economic impact on the meat sector as bovine carcasses that are found to be infected are either condemned or undergo ...

  11. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health.

    Science.gov (United States)

    Bohovych, Iryna; Chan, Sherine S L; Khalimonchuk, Oleh

    2015-04-20

    Mitochondria are complex dynamic organelles pivotal for cellular physiology and human health. Failure to maintain mitochondrial health leads to numerous maladies that include late-onset neurodegenerative diseases and cardiovascular disorders. Furthermore, a decline in mitochondrial health is prevalent with aging. A set of evolutionary conserved mechanisms known as mitochondrial quality control (MQC) is involved in recognition and correction of the mitochondrial proteome. Here, we review current knowledge and latest developments in MQC. We particularly focus on the proteolytic aspect of MQC and its impact on health and aging. While our knowledge about MQC is steadily growing, critical gaps remain in the mechanistic understanding of how MQC modules sense damage and preserve mitochondrial welfare, particularly in higher organisms. Delineating how coordinated action of the MQC modules orchestrates physiological responses on both organellar and cellular levels will further elucidate the current picture of MQC's role and function in health, cellular stress, and degenerative diseases.

  12. MITOCHONDRIAL BKCa CHANNEL

    OpenAIRE

    Enrique eBalderas; Jin eZhang; Enrico eStefani; Ligia eToro

    2015-01-01

    Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa) has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS), voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, an...

  13. A distinct mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) phenotype associates with YARS2 mutations

    OpenAIRE

    Shahni, Rojeen; Wedatilake, Yehani; Cleary, Maureen A; Lindley, Keith J; Sibson, Keith R; Rahman, Shamima

    2013-01-01

    Nuclear-encoded disorders of mitochondrial translation are clinically and genetically heterogeneous. Genetic causes include defects of mitochondrial aminoacyl-tRNA synthetases, and factors required for initiation, elongation and termination of protein synthesis as well as ribosome recycling. We report on a new case of myopathy, lactic acidosis and sideroblastic anemia (MLASA) syndrome caused by defective mitochondrial tyrosyl aminoacylation. The patient presented at 1 year with anemia initial...

  14. Mitochondrial Dysfunction in Metabolic Syndrome and Asthma

    Directory of Open Access Journals (Sweden)

    Ulaganathan Mabalirajan

    2013-01-01

    Full Text Available Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma.

  15. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  16. Recent Gene Duplication and Subfunctionalization Produced a Mitochondrial GrpE, the Nucleotide Exchange Factor of the Hsp70 Complex, Specialized in Thermotolerance to Chronic Heat Stress in Arabidopsis1[W][OA

    Science.gov (United States)

    Hu, Catherine; Lin, Siou-ying; Chi, Wen-tzu; Charng, Yee-yung

    2012-01-01

    The duplication and divergence of heat stress (HS) response genes might help plants adapt to varied HS conditions, but little is known on the topic. Here, we examined the evolution and function of Arabidopsis (Arabidopsis thaliana) mitochondrial GrpE (Mge) proteins. GrpE acts as a nucleotide-exchange factor in the Hsp70/DnaK chaperone machinery. Genomic data show that AtMge1 and AtMge2 arose from a recent whole-genome duplication event. Phylogenetic analysis indicated that duplication and preservation of Mges occurred independently in many plant species, which suggests a common tendency in the evolution of the genes. Intron retention contributed to the divergence of the protein structure of Mge paralogs in higher plants. In both Arabidopsis and tomato (Solanum lycopersicum), Mge1 is induced by ultraviolet B light and Mge2 is induced by heat, which suggests regulatory divergence of the genes. Consistently, AtMge2 but not AtMge1 is under the control of HsfA1, the master regulator of the HS response. Heterologous expression of AtMge2 but not AtMge1 in the temperature-sensitive Escherichia coli grpE mutant restored its growth at 43°C. Arabidopsis T-DNA knockout lines under different HS regimes revealed that Mge2 is specifically required for tolerating prolonged exposure to moderately high temperature, as compared with the need of the heat shock protein 101 and the HS-associated 32-kD protein for short-term extreme heat. Therefore, with duplication and subfunctionalization, one copy of the Arabidopsis Mge genes became specialized in a distinct type of HS. We provide direct evidence supporting the connection between gene duplication and adaptation to environmental stress. PMID:22128139

  17. Mitochondrial disorders and the eye

    Directory of Open Access Journals (Sweden)

    O’Neill EC

    2011-09-01

    Full Text Available Nicole J Van Bergen, Rahul Chakrabarti, Evelyn C O'Neill, Jonathan G Crowston, Ian A TrounceCentre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, AustraliaAbstract: The clinical significance of disturbed mitochondrial function in the eye has emerged since mitochondrial DNA (mtDNA mutation was described in Leber's hereditary optic neuropathy. The spectrum of mitochondrial dysfunction has become apparent through increased understanding of the contribution of nuclear and somatic mtDNA mutations to mitochondrial dynamics and function. Common ophthalmic manifestations of mitochondrial dysfunction include optic atrophy, pigmentary retinopathy, and ophthalmoplegia. The majority of patients with ocular manifestations of mitochondrial disease also have variable central and peripheral nervous system involvement. Mitochondrial dysfunction has recently been associated with age-related retinal disease including macular degeneration and glaucoma. Therefore, therapeutic targets directed at promoting mitochondrial biogenesis and function offer a potential to both preserve retinal function and attenuate neurodegenerative processes.Keywords: mitochondria, disease, retina, eye, aging, neuroprotection

  18. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    ) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  19. Biochemical diagnosis of mitochondrial disorders

    NARCIS (Netherlands)

    Rodenburg, R.J.T.

    2011-01-01

    Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of

  20. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes.

    Science.gov (United States)

    Zhao, Xue-Ming; Hao, Hai-Sheng; Du, Wei-Hua; Zhao, Shan-Jiang; Wang, Hao-Yu; Wang, Na; Wang, Dong; Liu, Yan; Qin, Tong; Zhu, Hua-Bin

    2016-03-01

    Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10(-9) m melatonin. We analyzed the ROS, mitochondrial Ca(2+) (mCa(2+) ) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa(2+) , Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa(2+) , Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Updating of the bovine neosporosis

    Directory of Open Access Journals (Sweden)

    Alexander Martínez Contreras

    2012-06-01

    Full Text Available In the fields of Medicine and bovine production, there is a wide variety of diseases affecting reproduction, in relation to the number of live births, the interval between births and open days, among others. Some of these diseases produce abortions and embryonic death, which explain the alteration of reproductive parameters. Many of these diseases have an infectious origin, such as parasites, bacteria, viruses and fungi, which are transmitted among animals. Besides, some of them have zoonotic features that generate problems to human health. Among these agents, the Neospora caninum, protozoan stands out. Its life cycle is fulfilled in several species of animals like the dog and the coyote. These two act as its definitive hosts and the cattle as its intermediary host. The Neospora caninum causes in the infected animals, reproductive disorders, clinical manifestations and decreased production which affects productivity of small, medium and large producers. Because of this, diagnostic techniques that allow understanding the epidemiological behavior of this disease have been developed. However in spite of being a major agent in the bovine reproductive health, few studies have been undertaken to determine the prevalence of this agent around the world. Therefore, the objective of this review was to collect updated information on the behavior of this parasite, targeting its epidemiology, its symptoms, its impact on production and the methods of its control and prevention.

  2. Bovine papillomavirus isolation by ultracentrifugation.

    Science.gov (United States)

    Araldi, R P; Giovanni, D N S; Melo, T C; Diniz, N; Mazzuchelli-de-Souza, J; Sant'Ana, T A; Carvalho, R F; Beçak, W; Stocco, R C

    2014-11-01

    The bovine papillomavirus (BPV) is the etiological agent of bovine papillomatosis, which causes significant economic losses to livestock, characterized by the presence of papillomas that regress spontaneously or persist and progress to malignancy. Currently, there are 13 types of BPVs described in the literature as well as 32 putative new types. This study aimed to isolate viral particles of BPV from skin papillomas, using a novel viral isolation method. The virus types were previously identified with new primers designed. 77 cutaneous papilloma samples of 27 animals, Simmental breed, were surgically removed. The DNA was extracted and subjected to PCR using Delta-Epsilon and Xi primers. The bands were purified and sequenced. The sequences were analyzed using software and compared to the GenBank database, by BLAST tool. The viral typing showed a prevalence of BPV-2 in 81.81% of samples. It was also detected the presence of the putative new virus type BR/UEL2 in one sample. Virus isolation was performed by ultracentrifugation in a single density of cesium chloride. The method of virus isolation is less laborious than those previously described, allowing the isolation of complete virus particles of BPV-2. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Identification of bovine material in porcine spray-dried blood derivatives using the Polymerase Chain Reaction technique

    Directory of Open Access Journals (Sweden)

    Sánchez A.

    2004-01-01

    Full Text Available Due to the widely supported theory of bovine spongiform encephalopathy (BSE spread in cattle by contaminated animal feeds, screening of feed products has become essential. For many years, manufacturers have used blood and plasma proteins as high quality ingredients of foods for both pets and farm animals. However, in Europe, the Commission Regulation 1234/2003/EC temporally bans the use of processed animal proteins, including blood-derivative products, in feedstuffs for all farm animals which are fattened or bred for the production of food. This regulation has some exceptions, such as the use of non ruminant blood products into the feed of farm fish. Authorization of the re-introduction of these proteins into animal feed formulations, especially non ruminant proteins into the feed for non ruminant farm animals, is expected when adequate control methods to discriminate ruminant proteins exist. Currently, the number of validated methods to differentiate the species of origin for most of the animal by-products is limited. Here we report the development of a rapid and sensitive polymerase chain reaction (PCR-based assay, which allows detection of bovine or porcine specific mitochondrial DNAfrom spray-dried blood derivate products (plasma, whole blood and red cells, as a marker for bovine contamination in porcine products. Sample extracts, suitable for PCR, were easily and quickly obtained with the commercial PrepManTM Ultra reagent (Applied Biosystems. To confirm the porcine origin of the samples, primers targeting a specific region of 134 bp of the porcine cytochrome b coding sequence were designed (cytbporc1-F and cytbporc2-R. Previously published PCR primers (L8129 and H8357, specific for a 271 bp fragment of the bovine mitochondrial ATPase 8-ATPase 6 genes, were chosen to accomplish amplification of bovine DNA. The limit of detection (LOD of the bovine PCR assay was at least of 0.05% (v/v of bovine inclusion in spray-dried porcine plasma or red

  4. Recent Advances in Mitochondrial Disease.

    Science.gov (United States)

    Craven, Lyndsey; Alston, Charlotte L; Taylor, Robert W; Turnbull, Doug M

    2017-08-31

    Mitochondrial disease is a challenging area of genetics because two distinct genomes can contribute to disease pathogenesis. It is also challenging clinically because of the myriad of different symptoms and, until recently, a lack of a genetic diagnosis in many patients. The last five years has brought remarkable progress in this area. We provide a brief overview of mitochondrial origin, function, and biology, which are key to understanding the genetic basis of mitochondrial disease. However, the primary purpose of this review is to describe the recent advances related to the diagnosis, genetic basis, and prevention of mitochondrial disease, highlighting the newly described disease genes and the evolving methodologies aimed at preventing mitochondrial DNA disease transmission.

  5. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  6. Mitochondrial transcription in mammalian cells.

    Science.gov (United States)

    Shokolenko, Inna N; Alexeyev, Mikhail F

    2017-01-01

    As a consequence of recent discoveries of intimate involvement of mitochondria with key cellular processes, there has been a resurgence of interest in all aspects of mitochondrial biology, including the intricate mechanisms of mitochondrial DNA maintenance and expression. Despite four decades of research, there remains a lot to be learned about the processes that enable transcription of genetic information from mitochondrial DNA to RNA, as well as their regulation. These processes are vitally important, as evidenced by the lethality of inactivating the central components of mitochondrial transcription machinery. Here, we review the current understanding of mitochondrial transcription and its regulation in mammalian cells. We also discuss key theories in the field and highlight controversial subjects and future directions as we see them.

  7. Mitochondria-targeted DsRed2 protein expression during the early stage of bovine somatic cell nuclear transfer embryo development.

    Science.gov (United States)

    Park, Hyo-Jin; Min, Sung-Hun; Choi, Hoonsung; Park, Junghyung; Kim, Sun-Uk; Lee, Seunghoon; Lee, Sang-Rae; Kong, Il-Keun; Chang, Kyu-Tae; Koo, Deog-Bon; Lee, Dong-Seok

    2016-09-01

    Somatic cell nuclear transfer (SCNT) has been widely used as an efficient tool in biomedical research for the generation of transgenic animals from somatic cells with genetic modifications. Although remarkable advances in SCNT techniques have been reported in a variety of mammals, the cloning efficiency in domestic animals is still low due to the developmental defects of SCNT embryos. In particular, recent evidence has revealed that mitochondrial dysfunction is detected during the early development of SCNT embryos. However, there have been relatively few or no studies regarding the development of a system for evaluating mitochondrial behavior or dynamics. For the first time, in mitochondria of bovine SCNT embryos, we developed a method for the visualization of mitochondria and expression of fluorescence proteins. To express red fluorescence in mitochondria of cloned embryos, bovine ear skin fibroblasts, nuclear donor, were stably transfected with a vector carrying mitochondria-targeting DsRed2 gene tagged with V5 epitope (mito-DsRed2-V5 tag) using lentivirus-mediated gene transfer because of its ability to integrate in the cell genome and the potential for long-term transgene expression in the transduced cells and their dividing cells. From western blotting analysis of V5 tag protein using mitochondrial fraction and confocal microscopy of red fluorescence using SCNT embryos, we found that the mitochondrial expression of the mito-DsRed2 protein was detected until the blastocyst stage. In addition, according to image analysis, it may be suggested possible use of the system for visualization of mitochondrial localization and evaluation of mitochondrial behaviors or dynamics in early development of bovine SCNT embryos.

  8. Presentation of adult mitochondrial epilepsy.

    Science.gov (United States)

    Finsterer, Josef; Mahjoub, Sinda Zarrouk

    2013-03-01

    Mitochondrial disorders (MIDs) frequently manifest phenotypically as epilepsy (mitochondrial epilepsy). Mitochondrial epilepsy occurs in early-onset as well as late-onset syndromic and non-syndromic MIDs. We were interested in the types of epilepsy, the prevalence of mitochondrial epilepsy, the type and effectiveness of treatment, and in the outcome of adult MID patients with epilepsy. We retrospectively evaluated adult patients with syndromic or non-syndromic MIDs and epilepsy. MIDs were classified according to the modified Walker criteria as definite, probable, and possible. Epilepsy in adult patients with a MID was classified as "structural/metabolic" in two-thirds of the cases and as "genetic" in one-third of the cases. Although all types of seizures may occur in mitochondrial epilepsy, adult patients most frequently presented with generalised tonic-clonic seizures, partial seizures, convulsive status epilepticus, or non-convulsive status epilepticus. Cerebral imaging was normal in one-third of the patients. Two-thirds of the adult patients with mitochondrial epilepsy who took antiepileptic drugs received monotherapy, one-third combination treatment. The antiepileptic drugs most frequently administered included levetiracetam, lamotrigine, valproic acid, and gabapentin. Antiepileptic drugs were usually well tolerated and the outcome favourable. Adult mitochondrial epilepsy appears to be less frequent than previously believed but the prevalence strongly depends on patient selection. Mitochondrial epilepsy is most frequently "structural/metabolic". AEDs recommended for mitochondrial epilepsy include levetiracetam, lamotrigine, gabapentin and lacosamide. The outcome of mitochondrial epilepsy may be more favourable if mitochondrion-toxic AEDs are avoided. Only if non-mitochondrion-toxic AEDs are ineffective, mitochondrion-toxic AEDs may be used. Copyright © 2012 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  9. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    Directory of Open Access Journals (Sweden)

    Dun-Xian Tan

    2016-12-01

    Full Text Available Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s. Melatonin protects mitochondria by scavenging reactive oxygen species (ROS, inhibiting the mitochondrial permeability transition pore (MPTP, and activating uncoupling proteins (UCPs. Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria.

  10. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics.

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C; Qin, Lilan; Reiter, Russel J

    2016-12-16

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria.

  11. 9 CFR 113.309 - Bovine Parainfluenza3 Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Parainfluenza3 Vaccine. 113.309... Virus Vaccines § 113.309 Bovine Parainfluenza3 Vaccine. Bovine Parainfluenza3 Vaccine shall be produced... virus dose from the lot of Master Seed Virus shall be established as follows: (1) Twenty-five bovine...

  12. 21 CFR 184.1034 - Catalase (bovine liver).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Catalase (bovine liver). 184.1034 Section 184.1034... Listing of Specific Substances Affirmed as GRAS § 184.1034 Catalase (bovine liver). (a) Catalase (bovine liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is...

  13. Propofol Is Mitochondrion-Toxic and May Unmask a Mitochondrial Disorder.

    Science.gov (United States)

    Finsterer, Josef; Frank, Marlies

    2016-11-01

    There are indications that preexisting mitochondrial disorders or beta-oxidation defects predispose for propofol infusion syndrome. This review aimed at investigating if propofol infusion syndrome occurs exclusively in patients with mitochondrial disorder and if propofol can unmask a mitochondrial disorder. Propofol infusion syndrome has been reported in genetically confirmed mitochondrial disorder patients. In addition, muscle biopsy of patients with propofol infusion syndrome revealed complex IV or complex II deficiency. In animal studies propofol disrupted the electron flow along the respiratory chain and decreased complex I, complex II, and complex III of the respiratory chain. In addition, propofol disrupted the permeability transition pore and reduced the mitochondrial membrane potential. In conclusion, propofol is mitochondrion-toxic and mitochondrial disorder patients should not receive propofol in high dosages over a prolonged period of time. Short-term application of propofol should be safe even in mitochondrial disorder patients. Not only does propofol infusion syndrome occur in mitochondrial disorder patients, but mitochondrial disorder patients are likely at higher risk to develop propofol infusion syndrome. Patients who develop propofol infusion syndrome should be screened for mitochondrial disorder. Propofol infusion syndrome is preventable if risk factors are thoroughly assessed, and if long-term propofol is avoided in patients at risk for propofol infusion syndrome. © The Author(s) 2016.

  14. A mitochondrial etiology of Alzheimer and Parkinson disease.

    Science.gov (United States)

    Coskun, Pinar; Wyrembak, Joanne; Schriner, Samual E; Chen, Hsiao-Wen; Marciniack, Christine; Laferla, Frank; Wallace, Douglas C

    2012-05-01

    The genetics and pathophysiology of Alzheimer Disease (AD) and Parkinson Disease (PD) appears complex. However, mitochondrial dysfunction is a common observation in these and other neurodegenerative diseases. We argue that the available data on AD and PD can be incorporated into a single integrated paradigm based on mitochondrial genetics and pathophysiology. Rare chromosomal cases of AD and PD can be interpreted as affecting mitochondrial function, quality control, and mitochondrial DNA (mtDNA) integrity. mtDNA lineages, haplogroups, such haplogroup H5a which harbors the mtDNA tRNA(Gln) A8336G variant, are important risk factors for AD and PD. Somatic mtDNA mutations are elevated in AD, PD, and Down Syndrome and Dementia (DSAD) both in brains and also systemically. AD, DS, and DSAD brains also have reduced mtDNA ND6 mRNA levels, altered mtDNA copy number, and perturbed Aβ metabolism. Classical AD genetic changes incorporated into the 3XTg-AD (APP, Tau, PS1) mouse result in reduced forebrain size, life-long reduced mitochondrial respiration in 3XTg-AD males, and initially elevated respiration and complex I and IV activities in 3XTg-AD females which markedly declines with age. Therefore, mitochondrial dysfunction provides a unifying genetic and pathophysiology explanation for AD, PD, and other neurodegenerative diseases. This article is part of a Special Issue entitled Biochemistry of Mitochondria. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Chemoprevention of obesity by dietary natural compounds targeting mitochondrial regulation.

    Science.gov (United States)

    Lai, Ching-Shu; Wu, Jia-Ching; Ho, Chi-Tang; Pan, Min-Hsiung

    2017-06-01

    Mitochondria are at the center stage in the control of energy homeostasis in many organs and tissues including adipose tissue. Recently, abundant evidence from experimental studies has clearly supported the strong correlation between mitochondrial dysfunction in adipocytes and obesity. Various physiological conditions such as excessive nutrition, genetic factors, hypoxia, and toxins disrupt mitochondrial function by impairing mitochondrial biogenesis, dynamics, and oxidative capacity. Mitochondrial dysfunction in adipocytes could have an impact on differentiation, adipogenesis, insulin sensitivity, and the significant alteration in their metabolic function, which ultimately results in obesity and type 2 diabetes. Numerous dietary natural compounds are the subject of research for the prevention and treatment of obesity through reprogramming multiple metabolic pathways. Some of them have the potential against obesity by modulating insulin signaling, decreasing oxidative damage, downregulating adipokines secretion, and increasing mitochondrial DNA that improves mitochondrial function and thus maintain metabolic homeostasis. Here, we focus on and summarize and briefly discuss the currently known targets and the mitochondria-targeting effects of dietary natural compounds in the intervention of obesity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1.

    Directory of Open Access Journals (Sweden)

    Ronald A Merrill

    2011-04-01

    Full Text Available Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM targeted form of the protein kinase A (PKA catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1 as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1, inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.

  17. Mitochondrial Function and Mitophagy in the Elderly: Effects of Exercise

    Directory of Open Access Journals (Sweden)

    Osvaldo C. Moreira

    2017-01-01

    Full Text Available Aging is a natural, multifactorial and multiorganic phenomenon wherein there are gradual physiological and pathological changes over time. Aging has been associated with a decrease of autophagy capacity and mitochondrial functions, such as biogenesis, dynamics, and mitophagy. These processes are essential for the maintenance of mitochondrial structural integrity and, therefore, for cell life, since mitochondrial dysfunction leads to an impairment of energy metabolism and increased production of reactive oxygen species, which consequently trigger mechanisms of cellular senescence and apoptotic cell death. Moreover, reduced mitochondrial function can contribute to age-associated disease phenotypes in model organisms and humans. Literature data show beneficial effects of exercise on the impairment of mitochondrial biogenesis and dynamics and on the decrease in the mitophagic capacity associated to aging. Thus, exercise could have effects on the major cell signaling pathways that are involved in the mitochondria quality and quantity control in the elderly. Although it is known that several exercise protocols are able to modify the activity and turnover of mitochondria, further studies are necessary in order to better identify the mechanisms of interaction between mitochondrial functions, aging, and physical activity, as well as to analyze possible factors influencing these processes.

  18. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease

    Science.gov (United States)

    Cai, Qian; Tammineni, Prasad

    2016-01-01

    Alzheimer’s disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Synaptic damage, an early pathological event, correlates strongly with cognitive deficits and memory loss. Mitochondria are essential organelles for synaptic function. Neurons utilize specialized mechanisms to drive mitochondrial trafficking to synapses in which mitochondria buffer Ca2+ and serve as local energy sources by supplying ATP to sustain neurotransmitter release. Mitochondrial abnormalities are one of the earliest and prominent features in AD patient brains. Amyloid-β (Aβ) and tau both trigger mitochondrial alterations. Accumulating evidence suggests that mitochondrial perturbation acts as a key factor that is involved in synaptic failure and degeneration in AD. The importance of mitochondria in supporting synaptic function has made them a promising target of new therapeutic strategy for AD. Here, we review the molecular mechanisms regulating mitochondrial function at synapses, highlight recent findings on the disturbance of mitochondrial dynamics and transport in AD, and discuss how these alterations impact synaptic vesicle release and thus contribute to synaptic pathology associated with AD. PMID:27767992

  19. Cellular Allometry of Mitochondrial Functionality Establishes the Optimal Cell Size.

    Science.gov (United States)

    Miettinen, Teemu P; Björklund, Mikael

    2016-11-07

    Eukaryotic cells attempt to maintain an optimal size, resulting in size homeostasis. While cellular content scales isometrically with cell size, allometric laws indicate that metabolism per mass unit should decline with increasing size. Here we use elutriation and single-cell flow cytometry to analyze mitochondrial scaling with cell size. While mitochondrial content increases linearly, mitochondrial membrane potential and oxidative phosphorylation are highest at intermediate cell sizes. Thus, mitochondrial content and functional scaling are uncoupled. The nonlinearity of mitochondrial functionality is cell size, not cell cycle, dependent, and it results in an optimal cell size whereby cellular fitness and proliferative capacity are maximized. While optimal cell size is controlled by growth factor signaling, its establishment and maintenance requires mitochondrial dynamics, which can be controlled by the mevalonate pathway. Thus, optimization of cellular fitness and functionality through mitochondria can explain the requirement for size control, as well as provide means for its maintenance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Regulation of mitochondrial gene expression, the epigenetic enigma.

    Science.gov (United States)

    Mposhi, Archibold; Van der Wijst, Monique Gp; Faber, Klaas Nico; Rots, Marianne G

    2017-03-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether mitochondrial DNA (mtDNA) undergoes similar epigenetic changes to regulate mitochondrial gene expression. Recently, it has been shown that mtDNA is differentially methylated in various diseases such as diabetes and colorectal cancer. Interestingly, this differential methylation was often associated with altered mitochondrial gene expression. However, the direct role of mtDNA methylation on gene expression remains elusive. Alternatively, the activity of the mitochondrial transcription factor A (TFAM), a protein involved in mtDNA packaging, might also influence gene expression. This review discusses the role of mtDNA methylation and potential epigenetic-like modifications of TFAM with respect to mtDNA transcription and replication. We suggest three mechanisms: (1) methylation within the non-coding D-loop, (2) methylation at gene start sites (GSS) and (3) post-translational modifications (PTMs) of TFAM. Unraveling mitochondrial gene expression regulation could open new therapeutic avenues for mitochondrial diseases.

  1. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect

    DEFF Research Database (Denmark)

    Antonicka, Hana; Østergaard, Elsebet; Sasarman, Florin

    2010-01-01

    severe decreases of complexes I, IV, and V and a smaller decrease in complex III. The steady-state levels of mitochondrial mRNAs, tRNAs, and rRNAs were not reduced, nor were those of the mitochondrial translation elongation factors or the protein components of the mitochondrial ribosome. Using......We investigated the genetic basis for a global and uniform decrease in mitochondrial translation in fibroblasts from patients in two unrelated pedigrees who developed Leigh syndrome, optic atrophy, and ophthalmoplegia. Analysis of the assembly of the oxidative phosphorylation complexes showed......, released from the ribosome during the elongation phase of translation....

  2. Human and bovine viruses in the Milwaukee River watershed: hydrologically relevant representation and relations with environmental variables.

    Science.gov (United States)

    Corsi, S R; Borchardt, M A; Spencer, S K; Hughes, P E; Baldwin, A K

    2014-08-15

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56-2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n=63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  3. Human and bovine viruses in the Milwaukee River Watershed: hydrologically relevant representation and relations with environmental variables

    Science.gov (United States)

    Corsi, Steven R.; Borchardt, M. A.; Spencer, S. K.; Hughes, Peter E.; Baldwin, Austin K.

    2014-01-01

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  4. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius).

    LENUS (Irish Health Repository)

    Edwards, Ceiridwen J

    2010-01-01

    BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+\\/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified

  5. Plasminogen activator inhibitor 1 and Antipain preserve acrosome integrity of bovine spermatozoa during cryopreservation

    Directory of Open Access Journals (Sweden)

    M.A. Castelo Branco

    Full Text Available ABSTRACT Seminal plasma contains serine proteases and serine protease inhibitor, which are involved in mammalian fertilization, and the inhibitors can be applied to prevent cold-induced sperm capacitation. The effects of different concentrations of two serine protease inhibitors were analyzed, Plasminogen activator inhibitor 1 - PAI-1 (70ƞg, 140ƞg and 210 ƞg and Antipain (10µg, 50µg and 100µg as supplementation to bovine semen cryopreservation extender. The effects of the inhibitors on the sperm parameters (sperm kinetics - CASA, acrosome integrity, plasma membrane integrity, mitochondrial membrane potential, sperm defects and acrosome reaction rate were evaluated in the post-thaw semen. Cryopreservation of sperm with Antipain decreased post-thaw kinetic parameters of MP, VSL, LIN, SRT and the percentage of hyper-activated sperm while PAI-1 (210 ƞg decreased VSL and LIN. Antipain and PAI-1 had no effect on the integrity parameters of the plasma membrane, mitochondrial membrane potential and sperm defects. Sperm cryopreserved in the presence of Antipain and PAI-1 (70 and 140 ƞg preserved acrosome integrity, as they were able to complete the in vitro acrosome reaction. In conclusion, the serine protease inhibitors, Antipain and PAI-1 (70 and 140ƞg are able to preserve the acrosome integrity of cryopreserved bovine sperm.

  6. Mangiferin Accelerates Glycolysis and Enhances Mitochondrial Bioenergetics

    Directory of Open Access Journals (Sweden)

    Zhongbo Liu

    2018-01-01

    Full Text Available One of the main causes of hyperglycemia is inefficient or impaired glucose utilization by skeletal muscle, which can be exacerbated by chronic high caloric intake. Previously, we identified a natural compound, mangiferin (MGF that improved glucose utilization in high fat diet (HFD-induced insulin resistant mice. To further identify the molecular mechanisms of MGF action on glucose metabolism, we conducted targeted metabolomics and transcriptomics studies of glycolyic and mitochondrial bioenergetics pathways in skeletal muscle. These data revealed that MGF increased glycolytic metabolites that were further augmented as glycolysis proceeded from the early to the late steps. Consistent with an MGF-stimulation of glycolytic flux there was a concomitant increase in the expression of enzymes catalyzing glycolysis. MGF also increased important metabolites in the tricarboxylic acid (TCA cycle, such as α-ketoglutarate and fumarate. Interestingly however, there was a reduction in succinate, a metabolite that also feeds into the electron transport chain to produce energy. MGF increased succinate clearance by enhancing the expression and activity of succinate dehydrogenase, leading to increased ATP production. At the transcriptional level, MGF induced mRNAs of mitochondrial genes and their transcriptional factors. Together, these data suggest that MGF upregulates mitochondrial oxidative capacity that likely drives the acceleration of glycolysis flux.

  7. Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages

    Directory of Open Access Journals (Sweden)

    Jan Van den Bossche

    2016-10-01

    Full Text Available Macrophages are innate immune cells that adopt diverse activation states in response to their microenvironment. Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1 macrophages to anti-inflammatory (M2 macrophages is of high interest. Here, we find that mouse and human M1 macrophages fail to convert into M2 cells upon IL-4 exposure in vitro and in vivo. In sharp contrast, M2 macrophages are more plastic and readily repolarized into an inflammatory M1 state. We identify M1-associated inhibition of mitochondrial oxidative phosphorylation as the factor responsible for preventing M1→M2 repolarization. Inhibiting nitric oxide production, a key effector molecule in M1 cells, dampens the decline in mitochondrial function to improve metabolic and phenotypic reprogramming to M2 macrophages. Thus, inflammatory macrophage activation blunts oxidative phosphorylation, thereby preventing repolarization. Therapeutically restoring mitochondrial function might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control disease.

  8. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  9. Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping.

    Science.gov (United States)

    Vlasblom, James; Jin, Ke; Kassir, Sandy; Babu, Mohan

    2014-04-04

    Mitochondria are double membraned, dynamic organelles that are required for a large number of cellular processes, and defects in their function have emerged as causative factors for a growing number of human disorders and are highly associated with cancer, metabolic, and neurodegenerative (ND) diseases. Biochemical and genetic investigations have uncovered small numbers of candidate mitochondrial proteins (MPs) involved in ND disease, but given the diversity of processes affected by MP function and the difficulty of detecting interactions involving these proteins, many more likely remain unknown. However, high-throughput proteomic and genomic approaches developed in genetically tractable model prokaryotes and lower eukaryotes have proven to be effective tools for querying the physical (protein-protein) and functional (gene-gene) relationships between diverse types of proteins, including cytosolic and membrane proteins. In this review, we highlight how experimental and computational approaches developed recently by our group and others can be effectively used towards elucidating the mitochondrial interactome in an unbiased and systematic manner to uncover network-based connections. We discuss how the knowledge from the resulting interaction networks can effectively contribute towards the identification of new mitochondrial disease gene candidates, and thus further clarify the role of mitochondrial biology and the complex etiologies of ND disease. Biochemical and genetic investigations have uncovered small numbers of candidate mitochondrial proteins (MPs) involved in neurodegenerative (ND) diseases, but given the diversity of processes affected by MP function and the difficulty of detecting interactions involving these proteins, many more likely remain unknown. Large-scale proteomic and genomic approaches developed in model prokaryotes and lower eukaryotes have proven to be effective tools for querying the physical (protein-protein) and functional (gene

  10. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    OpenAIRE

    Swerdlow, Russell H.

    2011-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed.

  11. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    NARCIS (Netherlands)

    Hoeks, J.; Herpen, N.A.; Mensink, M.R.; Moonen-Kornips, E.; Beurden, van D.; Hesselink, M.K.C.; Schrauwen, P.

    2010-01-01

    OBJECTIVE-Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we

  12. Use of quantitative and conventional PCR to assess biodegradation of bovine and plant DNA during cattle mortality composting.

    Science.gov (United States)

    Xu, Weiping; Reuter, Tim; Xu, Yongping; Alexander, Trevor W; Gilroyed, Brandon; Jin, Liji; Stanford, Kim; Larney, Francis J; McAllister, Tim A

    2009-08-15

    Understanding mortality composting requires assessing the biodegradation efficacy of carcasses and other materials of animal and plant origin. Biosecure (plastic-wrapped) compost structures were built containing 16 cattle carcasses placed on 40 cm straw and covered with 160-cm of feedlot manure. Compost was collected from depths of 80 and 160 cm (P80, P160) and DNA degradation assessed over 147 days of static composting, and during 180 days of active composting. Residual soft tissues from carcasses were collected on day 147. At P80, copies of a 171-bp bovine mitochondrial DNA (Mt171) and 138-bp plant Rubisco gene fragment (Rub138) were reduced compared to initial copy numbers (CN) by 79% and 99% after 147 days, respectively. At P160, Mt171, and Rub138 decreased compared to initial CN by 20% and 99% by day 147, respectively. After 327 days, degradation of Mt171 increased to 91% compared to initial CN. Compared to fresh tissues, residual tissues at day 147 had a 99% reduction in genomic DNA yield. Yield of DNA was related to copies of a 760-bp bovine mitochondrial fragment (Mt760) which were > 93% reduced at both P80 and P160 after 147 day. Secondary composting improved decomposition of bovine tissues and Mt760 was not detectable after 207 days. A 99% reduction in genomic DNA of composted tissue and > 93% reduction of Mt760 suggests almost complete decomposition of carcass soft tissue after 147 days.

  13. Bovine Mastitis: Frontiers in Immunogenetics

    Directory of Open Access Journals (Sweden)

    Kathleen eThompson-Crispi

    2014-10-01

    Full Text Available Mastitis is one of the most prevalent and costly diseases in the dairy industry with losses attributable to reduced milk production, discarded milk, early culling, veterinary services, and labor costs. Typically, mastitis is an inflammation of the mammary gland most often, but not limited to, bacterial infection, and is characterized by the movement of leukocytes and serum proteins from the blood to the site of infection. It contributes to compromised milk quality and the potential spread of antimicrobial resistance if antibiotic treatment is not astutely applied. Despite the implementation of management practises and genetic selection approaches, bovine mastitis control continues to be inadequate. However, some novel genetic strategies have recently been demonstrated to reduce mastitis incidence by taking advantage of a cow’s natural ability to make appropriate immune responses against invading pathogens. Specifically, dairy cattle with enhanced and balanced immune responses have a lower occurrence of disease, including mastitis, and they can be identified and selected for using the High Immune Response (HIR technology. Enhanced immune responsiveness is also associated with improved response to vaccination, increased milk and colostrum quality. Since immunity is an important fitness trait, beneficial associations with longevity and reproduction are also often noted. This review highlights the genetic regulation of the bovine immune system and its vital contributions to disease resistance. Genetic selection approaches currently used in the dairy industry to reduce the incidence of disease are reviewed, including the HIR technology, genomics to improve disease resistance or immune response, as well as the Immunity+TM sire line. Improving the overall immune responsiveness of cattle is expected to provide superior disease resistance, increasing animal welfare and food quality while maintaining favourable production levels to feed a growing

  14. Bovine Mastitis: Frontiers in Immunogenetics

    Science.gov (United States)

    Thompson-Crispi, Kathleen; Atalla, Heba; Miglior, Filippo; Mallard, Bonnie A.

    2014-01-01

    Mastitis is one of the most prevalent and costly diseases in the dairy industry with losses attributable to reduced milk production, discarded milk, early culling, veterinary services, and labor costs. Typically, mastitis is an inflammation of the mammary gland most often, but not limited to, bacterial infection, and is characterized by the movement of leukocytes and serum proteins from the blood to the site of infection. It contributes to compromised milk quality and the potential spread of antimicrobial resistance if antibiotic treatment is not astutely applied. Despite the implementation of management practises and genetic selection approaches, bovine mastitis control continues to be inadequate. However, some novel genetic strategies have recently been demonstrated to reduce mastitis incidence by taking advantage of a cow’s natural ability to make appropriate immune responses against invading pathogens. Specifically, dairy cattle with enhanced and balanced immune responses have a lower occurrence of disease, including mastitis, and they can be identified and selected for using the high immune response (HIR) technology. Enhanced immune responsiveness is also associated with improved response to vaccination, increased milk, and colostrum quality. Since immunity is an important fitness trait, beneficial associations with longevity and reproduction are also often noted. This review highlights the genetic regulation of the bovine immune system and its vital contributions to disease resistance. Genetic selection approaches currently used in the dairy industry to reduce the incidence of disease are reviewed, including the HIR technology, genomics to improve disease resistance or immune response, as well as the Immunity+™ sire line. Improving the overall immune responsiveness of cattle is expected to provide superior disease resistance, increasing animal welfare and food quality while maintaining favorable production levels to feed a growing population. PMID

  15. Mitochondrial Dysfunction in Stem Cell Aging

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2015-04-01

    Full Text Available BACKGROUND: Regardless of the precise underlying molecular mechanisms, the fundamental defining manifestation of aging is an overall decline in the functional capacity of various organs to maintain baseline tissue homeostasis and to respond adequately to physiological needs under stress. There is an increasingly urgent need for a more complete understanding of the molecular pathways and biological processes underlying aging and age-related disorders. CONTENT: Mitochondria constitute the most prominent source of adenosine triphosphate (ATP and are implicated in multiple anabolic and catabolic circuitries. In addition, mitochondria coordinate cell-wide stress responses and control non-apoptotic cell death routines. The involvement of mitochondria in both vital and lethal processes is crucial for both embryonic and postembryonic development, as well as for the maintenance of adult tissue homeostasis. Age-associated telomere damage, diminution of telomere ‘capping’ function and associated p53 activation have emerged as prime instigators of a functional decline of tissue stem cells and of mitochondrial dysfunction that adversely affect renewal and bioenergetic support in diverse tissues. Constructing a model of how telomeres, stem cells and mitochondria interact with key molecules governing genome integrity, ‘stemness’ and metabolism provides a framework for how diverse factors contribute to aging and age-related disorders. SUMMARY: Cellular senescence defined as an irreversible proliferation arrest promotes age-related decline in mammalian tissue homeostasis. The aging of tissue-specific stem cell and progenitor cell compartments is believed to be central to the decline of tissue and organ integrity and function in the elderly. Taken into consideration that the overwhelming majority of intracellular reactive oxygen species (ROS are of mitochondrial origin, it is reasonable to posit that the elevated ROS production might be caused by

  16. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load.

    Science.gov (United States)

    Takeshima, Shin-Nosuke; Sasaki, Shinji; Meripet, Polat; Sugimoto, Yoshikazu; Aida, Yoko

    2017-04-04

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma that has spread worldwide and causes serious problems for the cattle industry. The BLV proviral load, which represents the BLV genome integrated into host genome, is a useful index for estimating disease progression and transmission risk. Here, we conducted a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with BLV proviral load in Japanese Black cattle. The study examined 93 cattle with a high proviral load and 266 with a low proviral load. Three SNPs showed a significant association with proviral load. One SNP was detected in the CNTN3 gene on chromosome 22, and two (which were not in linkage disequilibrium) were detected in the bovine major histocompatibility complex region on chromosome 23. These results suggest that polymorphisms in the major histocompatibility complex region affect proviral load. This is the first report to detect SNPs associated with BLV proviral load in Japanese Black cattle using whole genome association study, and understanding host factors may provide important clues for controlling the spread of BLV in Japanese Black cattle.

  17. Rescue of vitrified-warmed bovine oocytes with rho-associated coiled-coil kinase inhibitor.

    Science.gov (United States)

    Hwang, In-Sul; Hara, Hiromasa; Chung, Hak-Jae; Hirabayashi, Masumi; Hochi, Shinichi

    2013-08-01

    Cryotolerance of matured bovine oocytes is not fully practical even though a promising vitrification procedure with a ultrarapid cooling rate was applied. The present study was conducted to investigate whether recovery culture of vitrified-warmed bovine oocytes with an inhibitor (Y-27632) of Rho-associated coiled-coil kinase (ROCK) can improve the developmental potential after in vitro fertilization (IVF) and in vitro culture. Immediately after warming, almost all oocytes appeared to be morphological normal. Treatment of the postwarming oocytes with 10 μM Y-27632 for 2 h resulted in the significantly higher oocyte survival rate before IVF as well as higher cleavage rate and blastocyst formation rate. Quality analysis of the resultant blastocysts in terms of total cell number and apoptotic cell ratio also showed the positive effect of the Y-27632 treatment. Time-dependent change in mitochondrial activity of the vitrified-warmed oocytes was not influenced by ROCK inhibition during the period of recovery culture. However, the ability of ooplasm to support single-aster formation was improved by the ROCK inhibition. Thus, inhibition of ROCK activity in vitrified-warmed bovine oocytes during a short-term recovery culture can lead to higher developmental competence, probably due to decreased apoptosis and normalized function of the microtubule-organizing center.

  18. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Science.gov (United States)

    Saeed-Zidane, Mohammed; Linden, Lea; Salilew-Wondim, Dessie; Held, Eva; Neuhoff, Christiane; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Tesfaye, Dawit

    2017-01-01

    Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo) or those released by granulosa cells without oxidative stress (NormalExo) were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein), altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells exposed to oxidative

  19. Recombinant viral vaccines for enzootic bovine leucosis

    National Research Council Canada - National Science Library

    Daniel, R C; Gatei, M H; Good, M F; Boyle, D B; Lavin, M F

    1993-01-01

    ...) and part of gp30 of the bovine leukaemia virus (BLV) are described. It has been reported that vaccination of sheep with recombinant VV vaccines containing the complete env gene appears to protect sheep against challenge infection with BLV...

  20. Virome of US bovine calf serum.

    Science.gov (United States)

    Sadeghi, Mohammadreza; Kapusinszky, Beatrix; Yugo, Danielle M; Phan, Tung Gia; Deng, Xutao; Kanevsky, Isis; Opriessnig, Tanja; Woolums, Amelia R; Hurley, David J; Meng, Xiang-Jin; Delwart, Eric

    2017-03-01

    Using viral metagenomics we analyzed four bovine serum pools assembled from 715 calves in the United States. Two parvoviruses, bovine parvovirus 2 (BPV2) and a previously uncharacterized parvovirus designated as bosavirus (BosaV), were detected in 3 and 4 pools respectively and their complete coding sequences generated. Based on NS1 protein identity, bosavirus qualifies as a member of a new species in the copiparvovirus genus. Also detected were low number of reads matching ungulate tetraparvovirus 2, bovine hepacivirus, and several papillomaviruses. This study further characterizes the diversity of viruses in calf serum with the potential to infect fetuses and through fetal bovine serum contaminate cell cultures. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. Mitochondrial contribution to lipofuscin formation

    Directory of Open Access Journals (Sweden)

    Jeannette König

    2017-04-01

    Moreover, we observed that Lon protease downregulation is linked to a higher lipofuscinogenesis whereas the application of the mitochondrial-targeted antioxidant mitoTEMPO is able to prevent the accumulation of this protein aggregate.

  2. Pathogenic mitochondrial DNA point mutations

    Directory of Open Access Journals (Sweden)

    N. A. Litvinova

    2014-01-01

    Full Text Available Cell energy metabolic disorders, the basis for which is mitochondrial insufficiency caused by mitochondrial DNA (mtDNA point mutations, give rise to a broad spectrum of clinical manifestations so the purpose of this review is to analyze the recent publications on the relationship of mtDNA point mutations to mitochondrial diseases, which unveil the importance of development of molecular diagnosis. The presence of A3243G, T3271C, T3291C, C3256T, A8344G, G8356A, A3260G, СЗЗОЗТ, and A4300Gmutations in mtDNA may suggest that there are multiorgan dysfunctions and multisystem disorders, the clinical signs and symptoms of which can vary with time, which emphasizes the importance of comprehensive genetic studies if the mitochondrial disease is assumed to be clinical.

  3. Metabolism and Calcification of Bovine Tooth Enamel

    OpenAIRE

    高木, 亨; 田上, 順次; 中村, 聡; Tohru, Takagi; Junji, TAGAMI; Satoshi, Nakamura; 東京医科歯科大学歯学部 生化学講座; 東京医科歯科大学歯学部 歯科保存学第1講座; 東京医科歯科大学歯学部 医用器材研究所; Department of Biochemistry, Faculty of Dentistry Tokyo Medical and Dental University; Department of Operative Dentistry, Faculty of Dentistry Tokyo Medical and Dental University; Institute of Medical and Dental Engineering, Faculty of Dentistry Tokyo Medical and Dental University

    1997-01-01

    The purpose of this study was to investigate the mineralization mechanism in developing enamel using pH staining. Unerupted bovine teeth were used for the expriment. The activity of a proteolytic enzyme was evaluated against enamel protein obtainedfrom bovine enamel. Crystals in developing enamel, which were classlfied into neutral zone 1 and 2, acid zone 1 and 2, were investigated using infrared spectroscopy, thermal analysis, and power X-ray diffractometry. Proteolytic enzyme showed the hig...

  4. Interactions between bovine cornea proteoglycans and collagen.

    OpenAIRE

    Speziale, P.; Bardoni, A; Balduini, C.

    1980-01-01

    Two types of proteoglycan subunits were obtained from bovine cornea, the first mainly composed of proteochondroitin sulphate and the second of proteokeratan sulphate. These two fractions can be obtained from the tissue as an aggregate, and are able to recombine each other after separation, to re-form the original structure. In order to investigate collagen-proteoglycan interactions, type-I collagen was isolated from bovine cornea by pepsin digestion followed by 3.5% (w/v) NaCl precipitation, ...

  5. Advances in lactoferrin research concerning bovine mastitis.

    Science.gov (United States)

    Shimazaki, Kei-Ichi; Kawai, Kazuhiro

    2017-02-01

    Lactoferrin is a multifunctional, iron-binding glycoprotein found in milk and other exocrine secretions. Lactoferrin in milk plays vital roles in the healthy development of newborn mammals, and is also an innate resistance factor involved in the prevention of mammary gland infection by microorganisms. Inflammation of the udder because of bacterial infection is referred to as mastitis. There have been many investigations into the relationships between lactoferrin and mastitis, which fall into several categories. The main categories are fluctuations in the lactoferrin concentration of milk, lactoferrin activity against mastitis pathogens, elucidation of the processes underlying the onset of mastitis, participation of lactoferrin in the immune system, and utilization of lactoferrin in mastitis treatment and prevention. This minireview describes lactoferrin research concerning bovine mastitis. In the 1970s, many researchers reported that the lactoferrin concentration fluctuates in milk from cows with mastitis. From the late 1980s, many studies clarified the infection-defense mechanism in the udder and the contribution of lactoferrin to the immune system. After the year 2000, the processes underlying the onset of mastitis were elucidated in vivo and in vitro, and lactoferrin was applied for the treatment and prevention of mastitis.

  6. Bovine Serum Albumin: a double allergy risk.

    Science.gov (United States)

    Voltolini, S; Spigno, F; Cioè, A; Cagnati, P; Bignardi, D; Minale, P

    2013-08-01

    We analyse two cases of Bovine Serum Albumin (BSA) allergy. The first regards a female laboratory technician with a history of bronchial asthma due to cat allergy, who developed an exacerbation of bronchial symptoms as a consequence of BSA powder inhalation at work. To date, sensitization to BSA as a cause of occupational asthma has rarely been reported in the scientific literature. The second case concerns a woman with a similar cat sensitivity, who presented an oral allergy syndrome-type clinical reaction, gastric pain and diarrhoea immediately after eating cooked pork meat. Subsequently, she developed the same reaction after eating goat meat and goat cheese, and then also after eating beef. Both patients resulted specifically sensitized to BSA and to other mammalian serum albumins which play a role as panallergens in animals. The two cases show that BSA, a well known cause of food allergy in childhood, may also provoke symptoms of food allergy in adulthood, though in case of powder inhalation, it may provoke respiratory symptoms. Prior animal sensitization appears to represent a risk factor.

  7. Nitrate-containing beetroot enhances myocyte metabolism and mitochondrial content

    Directory of Open Access Journals (Sweden)

    Roger A. Vaughan

    2016-01-01

    Full Text Available Beetroot (甜菜 tián cài juice consumption is of current interest for improving aerobic performance by acting as a vasodilator and possibly through alterations in skeletal muscle metabolism and physiology. This work explored the effects of a commercially available beetroot supplement on metabolism, gene expression, and mitochondrial content in cultured myocytes. C2C12 myocytes were treated with various concentrations of the beetroot supplement for various durations. Glycolytic metabolism and oxidative metabolism were quantified via measurement of extracellular acidification and oxygen consumption, respectively. Metabolic gene expression was measured using quantitative reverse transcription–polymerase chain reaction, and mitochondrial content was assessed with flow cytometry and confocal microscopy. Cells treated with beetroot exhibited significantly increased oxidative metabolism, concurrently with elevated metabolic gene expression including peroxisome proliferator-activated receptor gamma coactivator-1 alpha, nuclear respiratory factor 1, mitochondrial transcription factor A, and glucose transporter 4, leading to increased mitochondrial biogenesis. Our data show that treatment with a beetroot supplement increases basal oxidative metabolism. Our observations are also among the first to demonstrate that beetroot extract is an inducer of metabolic gene expression and mitochondrial biogenesis. These observations support the need for further investigation into the therapeutic and pharmacological effects of nitrate-containing supplements for health and athletic benefits.

  8. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  9. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae.

    Science.gov (United States)

    Richards, Vincent P; Lang, Ping; Bitar, Paulina D Pavinski; Lefébure, Tristan; Schukken, Ynte H; Zadoks, Ruth N; Stanhope, Michael J

    2011-08-01

    In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: pother mastitis-causing species of bacteria provided strong evidence for two cases of interspecies LGT within the shared bovine environment: bovine S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight into mechanisms facilitating environmental adaptation and acquisition of potential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A metagenomics and case-control study to identify viruses associated with bovine respiratory disease.

    Science.gov (United States)

    Ng, Terry Fei Fan; Kondov, Nikola O; Deng, Xutao; Van Eenennaam, Alison; Neibergs, Holly L; Delwart, Eric

    2015-05-01

    Bovine respiratory disease (BRD) is a common health problem for both dairy and beef cattle, resulting in significant economic loses. In order to identify viruses associated with BRD, we used a metagenomics approach to enrich and sequence viral nucleic acids in the nasal swabs of 50 young dairy cattle with symptoms of BRD. Following deep sequencing, de novo assembly, and translated protein sequence similarity searches, numerous known and previously uncharacterized viruses were identified. Bovine adenovirus 3, bovine adeno-associated virus, bovine influenza D virus, bovine parvovirus 2, bovine herpesvirus 6, bovine rhinitis A virus, and multiple genotypes of bovine rhinitis B virus were identified. The genomes of a previously uncharacterized astrovirus and picobirnaviruses were also partially or fully sequenced. Using real-time PCR, the rates of detection of the eight viruses that generated the most reads were compared for the nasal secretions of 50 animals with BRD versus 50 location-matched healthy control animals. Viruses were detected in 68% of BRD-affected animals versus 16% of healthy control animals. Thirty-eight percent of sick animals versus 8% of controls were infected with multiple respiratory viruses. Significantly associated with BRD were bovine adenovirus 3 (P metagenomics and real-time PCR detection approach in carefully matched cases and controls can provide a rapid means to identify viruses associated with a complex disease, paving the way for further confirmatory tests and ultimately to effective intervention strategies. Bovine respiratory disease is the most economically important disease affecting the cattle industry, whose complex root causes include environmental, genetics, and infectious factors. Using an unbiased metagenomics approach, we characterized the viruses in respiratory secretions from BRD cases and identified known and previously uncharacterized viruses belonging to seven viral families. Using a case-control format with location

  11. Mitochondrial efficiency and insulin resistance

    Directory of Open Access Journals (Sweden)

    Raffaella eCrescenzo

    2015-01-01

    Full Text Available Insulin resistance, ‘a relative impairment in the ability of insulin to exert its effects on glucose,protein and lipid metabolism in target tissues’, has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type 2 diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle.

  12. Mitochondrial haplogroups modify the risk of developing hypertrophic cardiomyopathy in a Danish population

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Hedley, Paula L

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes coding for proteins involved in sarcomere function. The disease is associated with mitochondrial dysfunction. Evolutionarily developed variation in mitochondrial DNA (mtDNA), defining mtDNA haplogroups...... and haplogroup clusters, is associated with functional differences in mitochondrial function and susceptibility to various diseases, including ischemic cardiomyopathy. We hypothesized that mtDNA haplogroups, in particular H, J and K, might modify disease susceptibility to HCM. Mitochondrial DNA, isolated from...... factors in the development of HCM. Thus, constitutive differences in mitochondrial function may influence the occurrence and clinical presentation of HCM. This could explain some of the phenotypic variability in HCM. The fact that haplogroup H and J are also modifying factors in ischemic cardiomyopathy...

  13. Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies

    Directory of Open Access Journals (Sweden)

    Kirsten Kehrein

    2015-02-01

    Full Text Available Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle.

  14. Anti-Bovine Programmed Death-1 Rat-Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle.

    Science.gov (United States)

    Okagawa, Tomohiro; Konnai, Satoru; Nishimori, Asami; Maekawa, Naoya; Ikebuchi, Ryoyo; Goto, Shinya; Nakajima, Chie; Kohara, Junko; Ogasawara, Satoshi; Kato, Yukinari; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2017-01-01

    Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1), is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat-bovine chimeric monoclonal antibody 5D2 (Boch5D2) was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV). Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals.

  15. Anti-Bovine Programmed Death-1 Rat–Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle

    Science.gov (United States)

    Okagawa, Tomohiro; Konnai, Satoru; Nishimori, Asami; Maekawa, Naoya; Ikebuchi, Ryoyo; Goto, Shinya; Nakajima, Chie; Kohara, Junko; Ogasawara, Satoshi; Kato, Yukinari; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2017-01-01

    Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1), is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat–bovine chimeric monoclonal antibody 5D2 (Boch5D2) was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV). Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals. PMID:28638381

  16. Anti-Bovine Programmed Death-1 Rat–Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle

    Directory of Open Access Journals (Sweden)

    Tomohiro Okagawa

    2017-06-01

    Full Text Available Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1/PD-ligand 1 (PD-L1, is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat–bovine chimeric monoclonal antibody 5D2 (Boch5D2 was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV. Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals.

  17. Genetic variations among Indonesian native cattle breeds based on polymorphisms analysis in the growth hormone loci and mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    SUTARNO

    2010-01-01

    Full Text Available Sutarno (2010 Genetic variations among Indonesian native cattle breeds based on polymorphisms analysis in the growth hormone loci and mitochondrial DNA. Biodiversitas 11: 1-5. Genetic variation within breeds is important and its study has become a subject of interest in livestock species, as it has many applications in animal breeding and genetics, such as the identification of animals and parentage testing, gene mapping and identifying markers for performance traits. Two loci of bovine growth hormone genes, and two regions of mitochondrial DNA, D-loop and ND-5 were characterized using polymerase chain reaction – restriction fragment length polymorphism (PCR-RFLP involving 120 Indonesian native cattle of Bali, Madura, PO and West Sumatra breeds. The results indicated that sequence variations were detected both in the growth hormone loci and mitochondrial DNA.

  18. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    Science.gov (United States)

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong

    2016-06-01

    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.

  19. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin.

    Science.gov (United States)

    Govender, Jenelle; Loos, Ben; Marais, Erna; Engelbrecht, Anna-Mart

    2014-11-01

    Anthracyclines, such as doxorubicin, are among the most valuable treatments for various cancers, but their clinical use is limited due to detrimental side effects such as cardiotoxicity. Doxorubicin-induced cardiotoxicity is emerging as a critical issue among cancer survivors and is an area of much significance to the field of cardio-oncology. Abnormalities in mitochondrial functions such as defects in the respiratory chain, decreased adenosine triphosphate production, mitochondrial DNA damage, modulation of mitochondrial sirtuin activity and free radical formation have all been suggested as the primary causative factors in the pathogenesis of doxorubicin-induced cardiotoxicity. Melatonin is a potent antioxidant, is nontoxic, and has been shown to influence mitochondrial homeostasis and function. Although a number of studies support the mitochondrial protective role of melatonin, the exact mechanisms by which melatonin confers mitochondrial protection in the context of doxorubicin-induced cardiotoxicity remain to be elucidated. This review focuses on the role of melatonin on doxorubicin-induced bioenergetic failure, free radical generation, and cell death. A further aim is to highlight other mitochondrial parameters such as mitophagy, autophagy, mitochondrial fission and fusion, and mitochondrial sirtuin activity, which lack evidence to support the role of melatonin in the context of cardiotoxicity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Differential regional and subtype-specific vulnerability of enteric neurons to mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Andreu Viader

    Full Text Available Mitochondrial dysfunction is a central mediator of disease progression in diverse neurodegenerative diseases that often present with prominent gastrointestinal abnormalities. Gastrointestinal dysfunction in these disorders is related, at least in part, to defects in the enteric nervous system (ENS. The role of mitochondrial deficits in ENS neurodegeneration and their relative contribution to gastrointestinal dysfunction, however, are unclear. To better understand how mitochondrial abnormalities in the ENS influence enteric neurodegeneration and affect intestinal function, we generated mice (Tfam-ENSKOs with impaired mitochondrial metabolism in enteric neurons and glia through the targeted deletion of the mitochondrial transcription factor A gene (Tfam. Tfam-ENSKO mice were initially viable but, at an early age, they developed severe gastrointestinal motility problems characterized by intestinal pseudo-obstruction resulting in premature death. This gastrointestinal dysfunction was caused by extensive, progressive neurodegeneration of the ENS involving both neurons and glia. Interestingly, mitochondrial defects differentially affected specific subpopulations of enteric neurons and regions of the gastrointestinal tract. Mitochondrial deficiency-related neuronal and glial loss was most prominent in the proximal small intestine, but the first affected neurons, nitrergic inhibitory neurons, had the greatest losses in the distal small intestine. This regional and subtype-specific variability in susceptibility to mitochondrial defects resulted in an imbalance of inhibitory and excitatory neurons that likely accounts for the observed phenotype in Tfam-ENSKO mice. Mitochondrial dysfunction, therefore, is likely to be an important driving force of neurodegeneration in the ENS and contribute to gastrointestinal symptoms in people with neurodegenerative disorders.

  1. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin; Lee, Hyun-Woo; Kang, Hyeok Gu [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoon, Young Eun; Han, Woong Kyu [Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Kyung Hwa [Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of); Kim, Kyung-Sup, E-mail: KYUNGSUP59@yuhs.ac [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2016-06-03

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.

  2. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene.

    Science.gov (United States)

    Li, Anning; Zhang, Yaran; Zhao, Zhidong; Wang, Mingming; Zan, Linsen

    2016-01-01

    The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5'-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5'-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5'-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle.

  3. EGF stimulates proliferation in the bovine placental trophoblast cell line F3 via Ras and MAPK.

    Science.gov (United States)

    Hambruch, N; Haeger, J-D; Dilly, M; Pfarrer, C

    2010-01-01

    In the bovine placenta, multinucleate trophoblast giant cells (TGC), evolving from uninucleate trophoblast cells, are crucial for feto-maternal interaction as they show endocrine activity and the ability to migrate and fuse with caruncular epithelial cells. In contrast to caruncular epithelial cells, the isolation and culture of bovine trophoblast cells is complicated because they cease to express their specific products, like placental lactogen (PL), during prolonged culture. In the present study, we aimed to establish a bovine cotyledonary trophoblast cell line targeting our long term goal to develop an in vitro model for the bovine placenta. Therefore, the functional activity of important signalling pathways was tested. Primary trophoblast cells were isolated from a bovine cotyledon of a male fetus and successfully subcultured and cryopreserved. The obtained cell line, termed F3, showed epithelial morphology and characteristic binuclear giant cells in small numbers through all passages. The trophoblastic origin of F3 cells was verified by amplification of a Y-chromosome specific DNA-sequence and the presence of PL mRNA. Immunofluorescence demonstrated that F3 cells were continuously positive for zonula occludens-2 (ZO-2), cytokeratin and vimentin, whereas they expressed the TGC specific marker PL only in the first two passages. F3 cell growth was accelerated in medium supplied with epidermal growth factor (EGF). EGF-stimulated proliferation was mediated through activation of Ras and the phosphorylation of mitogen-activated protein kinase (MAPK) 42 and 44. In conclusion, the F3 cell line shows several in vivo characteristics of bovine cotyledonary trophoblast cells. The response to EGF stimulation indicates that EGF plays a role during bovine placentation, and illustrated that F3 cells may provide a valuable tool for further mechanistic studies elucidating the feto-maternal interplay.

  4. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene.

    Directory of Open Access Journals (Sweden)

    Anning Li

    Full Text Available The pyruvate dehydrogenase beta subunit (PDHB is a subunit of pyruvate dehydrogenase (E1, which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp of the 5'-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5'-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5'-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1. Electrophoretic mobility shift assay (EMSA and chromatin immunoprecipitation assay (ChIP in combination with asite-directed mutation experiment indicated both myogenin (MYOG and the CCAAT/enhancer-binding protein beta (C/EBPß to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle.

  5. Stimulatory Effects of Balanced Deep Sea Water on Mitochondrial Biogenesis and Function.

    Directory of Open Access Journals (Sweden)

    Byung Geun Ha

    Full Text Available The worldwide prevalence of metabolic diseases, including obesity and diabetes, is increasing. Mitochondrial dysfunction is recognized as a core feature of these diseases. Emerging evidence also suggests that defects in mitochondrial biogenesis, number, morphology, fusion, and fission, contribute to the development and progression of metabolic diseases. Our previous studies revealed that balanced deep-sea water (BDSW has potential as a treatment for diabetes and obesity. In this study, we aimed to investigate the mechanism by which BDSW regulates diabetes and obesity by studying its effects on mitochondrial metabolism. To determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA content, mitochondrial enzyme activity, and the expression of transcription factors and mitochondria specific genes, as well as on the phosphorylation of signaling molecules associated with mitochondria biogenesis and its function in C2C12 myotubes. BDSW increased mitochondrial biogenesis in a time and dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances gene expression of PGC-1α, NRF1, and TFAM for mitochondrial transcription; MFN1/2 and DRP1 for mitochondrial fusion; OPA1 for mitochondrial fission; TOMM40 and TIMM44 for mitochondrial protein import; CPT-1α and MCAD for fatty acid oxidation; CYTC for oxidative phosphorylation. Upregulation of these genes was validated by increased mitochondria staining, CS activity, CytC oxidase activity, NAD+ to NADH ratio, and the phosphorylation of signaling molecules such as AMPK and SIRT1. Moreover, drinking BDSW remarkably improved mtDNA content in the muscles of HFD-induced obese mice. Taken together, these results suggest that the stimulatory effect of BDSW on mitochondrial biogenesis and function may provide further insights into the regulatory mechanism of BDSW-induced anti-diabetic and anti-obesity action.

  6. All-Trans-Retinoic Acid Enhances Mitochondrial Function in Models of Human Liver

    Science.gov (United States)

    Tripathy, Sasmita; Chapman, John D; Han, Chang Y; Hogarth, Cathryn A; Arnold, Samuel L.M.; Onken, Jennifer; Kent, Travis; Goodlett, David R

    2016-01-01

    All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. Although atRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver. The aim of this study was to determine whether atRA regulates hepatic mitochondrial activity. atRA treatment increased the mRNA and protein expression of multiple components of mitochondrial β-oxidation, tricarboxylic acid (TCA) cycle, and respiratory chain. Additionally, atRA increased mitochondrial biogenesis in human hepatocytes and in HepG2 cells with and without lipid loading based on peroxisome proliferator activated receptor gamma coactivator 1α and 1β and nuclear respiratory factor 1 mRNA and mitochondrial DNA quantification. atRA also increased β-oxidation and ATP production in HepG2 cells and in human hepatocytes. Knockdown studies of RARα, RARβ, and PPARδ revealed that the enhancement of mitochondrial biogenesis and β-oxidation by atRA requires peroxisome proliferator activated receptor delta. In vivo in mice, atRA treatment increased mitochondrial biogenesis markers after an overnight fast. Inhibition of atRA metabolism by talarozole, a cytochrome P450 (CYP) 26 specific inhibitor, increased the effects of atRA on mitochondrial biogenesis markers in HepG2 cells and in vivo in mice. These studies show that atRA regulates mitochondrial function and lipid metabolism and that increasing atRA concentrations in human liver via CYP26 inhibition may increase mitochondrial biogenesis and fatty acid β-oxidation and provide therapeutic benefit in diseases associated with mitochondrial dysfunction. PMID:26921399

  7. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences.

    Science.gov (United States)

    Rostami, Sima; Salavati, Reza; Beech, Robin N; Babaei, Zahra; Sharbatkhori, Mitra; Harandi, Majid Fasihi

    2015-04-01

    Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3-2.4% while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2-2.5% and the overall nucleotide variation was determined as 5.8% among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene.

  8. Mitochondrial optic neuropathies – Disease mechanisms and therapeutic strategies

    Science.gov (United States)

    Yu-Wai-Man, Patrick; Griffiths, Philip G.; Chinnery, Patrick F.

    2011-01-01

    Leber hereditary optic neuropathy (LHON) and autosomal-dominant optic atrophy (DOA) are the two most common inherited optic neuropathies in the general population. Both disorders share strikin