WorldWideScience

Sample records for bounded diffusion models

  1. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles.

    Science.gov (United States)

    Stefferson, Michael W; Norris, Samantha L; Vernerey, Franck J; Betterton, Meredith D; Hough, Loren E

    2017-06-29

    Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.

  2. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles

    Science.gov (United States)

    Stefferson, Michael W.; Norris, Samantha L.; Vernerey, Franck J.; Betterton, Meredith D.; E Hough, Loren

    2017-08-01

    Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.

  3. Using Time-Varying Evidence to Test Models of Decision Dynamics: Bounded Diffusion vs. the Leaky Competing Accumulator Model.

    Science.gov (United States)

    Tsetsos, Konstantinos; Gao, Juan; McClelland, James L; Usher, Marius

    2012-01-01

    When people make decisions, do they give equal weight to evidence arriving at different times? A recent study (Kiani et al., 2008) using brief motion pulses (superimposed on a random moving dot display) reported a primacy effect: pulses presented early in a motion observation period had a stronger impact than pulses presented later. This observation was interpreted as supporting the bounded diffusion (BD) model and ruling out models in which evidence accumulation is subject to leakage or decay of early-arriving information. We use motion pulses and other manipulations of the timing of the perceptual evidence in new experiments and simulations that support the leaky competing accumulator (LCA) model as an alternative to the BD model. While the LCA does include leakage, we show that it can exhibit primacy as a result of competition between alternatives (implemented via mutual inhibition), when the inhibition is strong relative to the leak. Our experiments replicate the primacy effect when participants must be prepared to respond quickly at the end of a motion observation period. With less time pressure, however, the primacy effect is much weaker. For 2 (out of 10) participants, a primacy bias observed in trials where the motion observation period is short becomes weaker or reverses (becoming a recency effect) as the observation period lengthens. Our simulation studies show that primacy is equally consistent with the LCA or with BD. The transition from primacy-to-recency can also be captured by the LCA but not by BD. Individual differences and relations between the LCA and other models are discussed.

  4. Bounds on charge and heat diffusivities in momentum dissipating holography

    Energy Technology Data Exchange (ETDEWEB)

    Amoretti, Andrea [Dipartimento di Fisica, Università di Genova,via Dodecaneso 33, I-16146, Genova (Italy); INFN - Sezione di Genova,via Dodecaneso 33, I-16146, Genova (Italy); Lorentz Institute for Theoretical Physics,Niels Bohrweg 2, Leiden NL-2333 CA (Netherlands); Braggio, Alessandro [INFN - Sezione di Genova,via Dodecaneso 33, I-16146, Genova (Italy); CNR-SPIN,Via Dodecaneso 33, 16146, Genova (Italy); Magnoli, Nicodemo [Dipartimento di Fisica, Università di Genova,via Dodecaneso 33, I-16146, Genova (Italy); INFN - Sezione di Genova,via Dodecaneso 33, I-16146, Genova (Italy); Musso, Daniele [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, I-34151 Trieste (Italy)

    2015-07-20

    Inspired by a recently conjectured universal bound for thermo-electric diffusion constants in quantum critical, strongly coupled systems and relying on holographic analytical computations, we investigate the possibility of formulating Planckian bounds in different holographic models featuring momentum dissipation. For a certain family of solutions to a simple massive gravity dilaton model at zero charge density we find linear in temperature resistivity and entropy density alongside a constant electric susceptibility. In addition we explicitly find that the sum of the thermo-electric diffusion constants is bounded.

  5. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  6. A FRAP model to investigate reaction-diffusion of proteins within a bounded domain: a theoretical approach

    CERN Document Server

    Tsibidis, George D

    2008-01-01

    Temporally and spatially resolved measurements of protein transport inside cells provide important clues to the functional architecture and dynamics of biological systems. Fluorescence Recovery After Photobleaching (FRAP) technique has been used over the past three decades to measure the mobility of macromolecules and protein transport and interaction with immobile structures inside the cell nucleus. A theoretical model is presented that aims to describe protein transport inside the nucleus, a process which is influenced by the presence of a boundary (i.e. membrane). A set of reaction-diffusion equations is employed to model both the diffusion of proteins and their interaction with immobile binding sites. The proposed model has been designed to be applied to biological samples with a Confocal Laser Scanning Microscope (CLSM) equipped with the feature to bleach regions characterised by a scanning beam that has a radially Gaussian distributed profile. The proposed model leads to FRAP curves that depend on the o...

  7. Salinity transfer in bounded double diffusive convection

    NARCIS (Netherlands)

    Yang, Yantao; van der Poel, Erwin; Ostilla Monico, Rodolfo; Sun, Chao; Verzicco, Roberto; Grossmann, Siegfried; Lohse, Detlef

    2015-01-01

    The double diffusive convection between two parallel plates is numerically studied for a series of parameters. The flow is driven by the salinity difference and stabilised by the thermal field. Our simulations are directly compared with experiments by Hage & Tilgner (Phys. Fluids, vol. 22, 2010,

  8. Diffusion induced by bounded noise in a two-dimensional coupled memory system

    Directory of Open Access Journals (Sweden)

    Pengfei Xu

    2014-01-01

    Full Text Available The diffusion behavior driven by bounded noise under the influence of a coupled harmonic potential is investigated in a two-dimensional coupled-damped model. With the help of the Laplace analysis we obtain exact descriptions for a particle's two-time dynamics which is subjected to a coupled harmonic potential and a coupled damping. The time lag is used to describe the velocity autocorrelation function and mean square displacement of the diffusing particle. The diffusion behavior for the time lag is also discussed with respect to the coupled items and the amplitude of bounded noise.

  9. Bounded Rationality and the Diffusion of Modern Investment Treaties

    DEFF Research Database (Denmark)

    Skovgaard Poulsen, Lauge

    2014-01-01

    Given the considerable sovereignty costs involved, the adoption of modern investment treaties by practically all developing countries presents somewhat of a puzzle. Based on a review of leading explanations of investment treaty diffusion, the article advances a new theory using behavioral economics...... insights on cognitive heuristics. In line with recent work on policy diffusion, it suggests that a bounded rationality framework has considerable potential to explain why, and how, developing countries have adopted modern investment treaties. To illustrate the potential of this approach, the case of South...

  10. Translational diffusion of chain polymers. I. Improved variational bounds

    Science.gov (United States)

    Fixman, Marshall

    1986-04-01

    Variational estimates of an upper bound to the diffusion constant have been obtained from equilibrium simulations of Gaussian and cubic lattice chains. The trial functions that represent the deformation of the chain due to the external force have been inferred from the previous dynamical simulations of short Gaussian chains, which implied that local rather than large scale deformations were important. The variational results are in excellent agreement with the dynamical results for short Gaussian chains, and with exact results for rigid, planar, polygonal polymers. The variational results for long Gaussian chains (up to 896 beads) and cubic lattice chains (up to 448 beads), give an extrapolated reduction of the diffusion constant due to fluctuating hydrodynamic interaction of about 8% below the Kirkwood formula. The exact amount of the decrease may depend on friction constants and local chain structure.

  11. Controllable uncertain opinion diffusion under confidence bound and unpredicted diffusion probability

    Science.gov (United States)

    Yan, Fuhan; Li, Zhaofeng; Jiang, Yichuan

    2016-05-01

    The issues of modeling and analyzing diffusion in social networks have been extensively studied in the last few decades. Recently, many studies focus on uncertain diffusion process. The uncertainty of diffusion process means that the diffusion probability is unpredicted because of some complex factors. For instance, the variety of individuals' opinions is an important factor that can cause uncertainty of diffusion probability. In detail, the difference between opinions can influence the diffusion probability, and then the evolution of opinions will cause the uncertainty of diffusion probability. It is known that controlling the diffusion process is important in the context of viral marketing and political propaganda. However, previous methods are hardly feasible to control the uncertain diffusion process of individual opinion. In this paper, we present suitable strategy to control this diffusion process based on the approximate estimation of the uncertain factors. We formulate a model in which the diffusion probability is influenced by the distance between opinions, and briefly discuss the properties of the diffusion model. Then, we present an optimization problem at the background of voting to show how to control this uncertain diffusion process. In detail, it is assumed that each individual can choose one of the two candidates or abstention based on his/her opinion. Then, we present strategy to set suitable initiators and their opinions so that the advantage of one candidate will be maximized at the end of diffusion. The results show that traditional influence maximization algorithms are not applicable to this problem, and our algorithm can achieve expected performance.

  12. Modelling of Innovation Diffusion

    Directory of Open Access Journals (Sweden)

    Arkadiusz Kijek

    2010-01-01

    Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract

  13. Valuation models and Simon's bounded rationality

    National Research Council Canada - National Science Library

    Alexandra Strommer de Farias Godoi

    2009-01-01

    This paper aims at reconciling the evidence that sophisticated valuation models are increasingly used by companies in their investment appraisal with the literature of bounded rationality, according...

  14. P2-16: Dual-Bound Model and the Role of Time Bound in Perceptual Decision Making

    Directory of Open Access Journals (Sweden)

    Daeseob Lim

    2012-10-01

    Full Text Available The diffusion model (DM encapsulates the dynamics of perceptual decision within a ‘diffusion field’ that is defined by a basis with sensory-evidence (SE and time vectors. At the core of the DM, it assumes that a decision is not made until an evidence particle drifts in the diffusion field and eventually hits one of the two pre-fixed bounds defined in the SE axis. This assumption dictates when and which choice is made by referring to when and which bound will be hit by the evidence particle. What if urgency pressures the decision system to make a choice even when the evidence particle has yet hit the SE bound? Previous modeling attempts at coping with time pressure, despite differences in detail, all manipulated the coordinate of SE bounds. Here, we offer a novel solution by adopting another bound on the time axis. This ‘dual-bound’ model (DBM posits that decisions can also be made when the evidence particle hits a time bound, which is determined on a trial-by-trial basis by a ‘perceived time interval’ – how long the system can stay in the ‘diffusion’ field. The classic single-bound model (SBM exhibited systematic errors in predicting both the reaction time distributions and the time-varying bias in choice. Those errors were not corrected by previously proposed variants of the SBM until the time bound was introduced. The validity of the DBM was further supported by the strong across-individual correlation between observed precision of interval timing and the predicted trial-by-trial variability of the time bound.

  15. Model Independent Bounds on Kinetic Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Izaguirre, Eder; Wacker, Jay G.; /SLAC

    2011-08-22

    New Abelian vector bosons can kinetically mix with the hypercharge gauge boson of the Standard Model. This letter computes the model independent limits on vector bosons with masses from 1 GeV to 1 TeV. The limits arise from the numerous e{sup +}e{sup -} experiments that have been performed in this energy range and bound the kinetic mixing by {epsilon} {approx}< 0.03 for most of the mass range studied, regardless of any additional interactions that the new vector boson may have.

  16. Valuation models and Simon's bounded rationality

    Directory of Open Access Journals (Sweden)

    Alexandra Strommer de Farias Godoi

    2009-09-01

    Full Text Available This paper aims at reconciling the evidence that sophisticated valuation models are increasingly used by companies in their investment appraisal with the literature of bounded rationality, according to which objective optimization is impracticable in the real world because it would demand an immense level of sophistication of the analytical and computational processes of human beings. We show how normative valuation models should rather be viewed as forms of reality representation, frameworks according to which the real world is perceived, fragmented for a better understanding, and recomposed, providing an orderly method for undertaking a task as complex as the investment decision.

  17. Fractal model of anomalous diffusion.

    Science.gov (United States)

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  18. Assembly of membrane-bound protein complexes: detection and analysis by single molecule diffusion.

    Science.gov (United States)

    Ziemba, Brian P; Knight, Jefferson D; Falke, Joseph J

    2012-02-28

    Protein complexes assembled on membrane surfaces regulate a wide array of signaling pathways and cell processes. Thus, a molecular understanding of the membrane surface diffusion and regulatory events leading to the assembly of active membrane complexes is crucial to signaling biology and medicine. Here we present a novel single molecule diffusion analysis designed to detect complex formation on supported lipid bilayers. The usefulness of the method is illustrated by detection of an engineered, heterodimeric complex in which two membrane-bound pleckstrin homology (PH) domains associate stably, but reversibly, upon Ca(2+)-triggered binding of calmodulin (CaM) to a target peptide from myosin light chain kinase (MLCKp). Specifically, when a monomeric, fluorescent PH-CaM domain fusion protein diffusing on a supported bilayer binds a dark MLCKp-PH domain fusion protein, the heterodimeric complex is observed to diffuse nearly 2-fold more slowly than the monomer because both of its twin PH domains can simultaneously bind to the viscous bilayer. In a mixed population of monomers and heterodimers, the single molecule diffusion analysis resolves, identifies and quantitates the rapidly diffusing monomers and slowly diffusing heterodimers. The affinity of the CaM-MLCKp interaction is measured by titrating dark MLCKp-PH construct into the system, while monitoring the changing ratio of monomers and heterodimers, yielding a saturating binding curve. Strikingly, the apparent affinity of the CaM-MLCKp complex is ~10(2)-fold greater in the membrane system than in solution, apparently due to both faster complex association and slower complex dissociation on the membrane surface. More broadly, the present findings suggest that single molecule diffusion measurements on supported bilayers will provide an important tool for analyzing the 2D diffusion and assembly reactions governing the formation of diverse membrane-bound complexes, including key complexes from critical signaling

  19. Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds

    KAUST Repository

    Desvillettes, Laurent

    2008-01-01

    In the continuation of [Desvillettes, L., Fellner, K.: Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations. J. Math. Anal. Appl. 319 (2006), no. 1, 157-176], we study reversible reaction-diffusion equations via entropy methods (based on the free energy functional) for a 1D system of four species. We improve the existing theory by getting 1) almost exponential convergence in L1 to the steady state via a precise entropy-entropy dissipation estimate, 2) an explicit global L∞ bound via interpolation of a polynomially growing H1 bound with the almost exponential L1 convergence, and 3), finally, explicit exponential convergence to the steady state in all Sobolev norms.

  20. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  1. Asymptotic-bound-state model for Feshbach resonances

    NARCIS (Netherlands)

    Tiecke, T.G.; Goosen, M.R.; Walraven, J.T.M.; Kokkelmans, S.J.J.M.F.

    2010-01-01

    We present an asymptotic-bound-state model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body

  2. In vivo facilitated diffusion model.

    Directory of Open Access Journals (Sweden)

    Maximilian Bauer

    Full Text Available Under dilute in vitro conditions transcription factors rapidly locate their target sequence on DNA by using the facilitated diffusion mechanism. However, whether this strategy of alternating between three-dimensional bulk diffusion and one-dimensional sliding along the DNA contour is still beneficial in the crowded interior of cells is highly disputed. Here we use a simple model for the bacterial genome inside the cell and present a semi-analytical model for the in vivo target search of transcription factors within the facilitated diffusion framework. Without having to resort to extensive simulations we determine the mean search time of a lac repressor in a living E. coli cell by including parameters deduced from experimental measurements. The results agree very well with experimental findings, and thus the facilitated diffusion picture emerges as a quantitative approach to gene regulation in living bacteria cells. Furthermore we see that the search time is not very sensitive to the parameters characterizing the DNA configuration and that the cell seems to operate very close to optimal conditions for target localization. Local searches as implied by the colocalization mechanism are only found to mildly accelerate the mean search time within our model.

  3. On Large Time Behavior and Selection Principle for a Diffusive Carr-Penrose Model

    Science.gov (United States)

    Conlon, Joseph G.; Dabkowski, Michael; Wu, Jingchen

    2016-04-01

    This paper is concerned with the study of a diffusive perturbation of the linear LSW model introduced by Carr and Penrose. A main subject of interest is to understand how the presence of diffusion acts as a selection principle, which singles out a particular self-similar solution of the linear LSW model as determining the large time behavior of the diffusive model. A selection principle is rigorously proven for a model which is a semiclassical approximation to the diffusive model. Upper bounds on the rate of coarsening are also obtained for the full diffusive model.

  4. Lower Bounds Estimate for the Blow-Up Time of a Slow Diffusion Equation with Nonlocal Source and Inner Absorption

    Directory of Open Access Journals (Sweden)

    Zhong Bo Fang

    2014-01-01

    Full Text Available We investigate a slow diffusion equation with nonlocal source and inner absorption subject to homogeneous Dirichlet boundary condition or homogeneous Neumann boundary condition. Based on an auxiliary function method and a differential inequality technique, lower bounds for the blow-up time are given if the blow-up occurs in finite time.

  5. Modelling the Diffusion of Scientific Publications

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); D. Fok (Dennis)

    2007-01-01

    textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and

  6. Modeling the diffusion of scientific publications

    NARCIS (Netherlands)

    D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and

  7. Experimental bounds on collapse models from gravitational wave detectors

    Science.gov (United States)

    Carlesso, Matteo; Bassi, Angelo; Falferi, Paolo; Vinante, Andrea

    2016-12-01

    Wave function collapse models postulate a fundamental breakdown of the quantum superposition principle at the macroscale. Therefore, experimental tests of collapse models are also fundamental tests of quantum mechanics. Here, we compute the upper bounds on the collapse parameters, which can be inferred by the gravitational wave detectors LIGO, LISA Pathfinder, and AURIGA. We consider the most widely used collapse model, the continuous spontaneous localization (CSL) model. We show that these experiments exclude a huge portion of the CSL parameter space, the strongest bound being set by the recently launched space mission LISA Pathfinder. We also rule out a proposal for quantum-gravity-induced decoherence.

  8. RETADD: a Regional Trajectory And Diffusion-Deposition model

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C. L.; Murphy, B. D.; Nappo, Jr., C. J.

    1978-06-01

    The Regional Trajectory and Diffusion-Deposition Model (RETADD) is based upon a version of the National Oceanic and Atmospheric Administration Air Resources Laboratory's Regional-Continental Scale Transport, Diffusion, and Deposition Model. The FORTRAN IV computer model uses a trajectory analysis technique for estimating the transport and long-range diffusion of material emitted from a point source. The wind trajectory portion of the code uses observed upper air winds to compute the transport of the material. Ground level concentrations and depositions are computed by using the Gaussian plume equation for wind trajectories projected forward in time. Options are included to specify an upper bound for the mixed layer and a chemical decomposition rate for the effluent. The limitations to the technique are discussed, the equations and model are described, and listings of the program, input, and output are included.

  9. CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL

    KAUST Repository

    CARRILLO, JOSÉ ANTONIO

    2012-12-01

    A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical concentration. For arbitrarily small cross-diffusion coefficients and for suitable exponents of the nonlinear diffusion terms, the global-in-time existence of weak solutions is proved, thus preventing finite-time blow up of the cell density. The global existence result also holds for linear and fast diffusion of the cell density in a certain parameter range in three dimensions. Furthermore, we show L∞ bounds for the solutions to the parabolic-elliptic system. Sufficient conditions leading to the asymptotic stability of the constant steady state are given for a particular choice of the nonlinear diffusion exponents. Numerical experiments in two and three space dimensions illustrate the theoretical results. © 2012 World Scientific Publishing Company.

  10. Electrostatic charge bounds for ball lightning models

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Karl D [Department of Technology, Texas State University, San Marcos, TX 78666 (United States)], E-mail: kdstephan@txstate.edu

    2008-03-15

    Several current theories concerning the nature of ball lightning predict a substantial electrostatic charge in order to account for its observed motion and shape (Turner 1998 Phys. Rep. 293 1; Abrahamson and Dinniss 2000 Nature 403 519). Using charged soap bubbles as a physical model for ball lightning, we show that the magnitude of charge predicted by some of these theories is too high to allow for the types of motion commonly observed in natural ball lightning, which includes horizontal motion above the ground and movement near grounded conductors. Experiments show that at charge levels of only 10-15 nC, 3-cm-diameter soap bubbles tend to be attracted by induced charges to the nearest grounded conductor and rupture. We conclude with a scaling rule that can be used to extrapolate these results to larger objects and surroundings.

  11. Electrostatic charge bounds for ball lightning models

    Science.gov (United States)

    Stephan, Karl D.

    2008-03-01

    Several current theories concerning the nature of ball lightning predict a substantial electrostatic charge in order to account for its observed motion and shape (Turner 1998 Phys. Rep. 293 1; Abrahamson and Dinniss 2000 Nature 403 519). Using charged soap bubbles as a physical model for ball lightning, we show that the magnitude of charge predicted by some of these theories is too high to allow for the types of motion commonly observed in natural ball lightning, which includes horizontal motion above the ground and movement near grounded conductors. Experiments show that at charge levels of only 10-15 nC, 3-cm-diameter soap bubbles tend to be attracted by induced charges to the nearest grounded conductor and rupture. We conclude with a scaling rule that can be used to extrapolate these results to larger objects and surroundings.

  12. Cryptography In The Bounded Quantum-Storage Model

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Salvail, Louis; Schaffner, Christian

    2005-01-01

    , whereas an adversarial player needs quantum memory of size at least n/2 in order to break the protocol, where n is the number of qubits transmitted. This is in sharp contrast to the classical bounded- memory model, where we can only tolerate adversaries with memory of size quadratic in honest players......We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...

  13. Cryptography in the Bounded Quantum-Storage Model

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Serge, Fehr; Schaffner, Christian

    2008-01-01

    , whereas an adversarial player needs quantum memory of size at least $n/2$ in order to break the protocol, where $n$ is the number of qubits transmitted. This is in sharp contrast to the classical bounded-memory model, where we can only tolerate adversaries with memory of size quadratic in honest players......We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...

  14. Fractal model of anomalous diffusion

    OpenAIRE

    Gmachowski, Lech

    2015-01-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An...

  15. Efficient Proof Engines for Bounded Model Checking of Hybrid Systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2005-01-01

    of the various optimizations that arise naturally in the bounded model checking context, e.g. isomorphic replication of learned conflict clauses or tailored decision strategies, and extends them to the hybrid domain. We demonstrate that those optimizations are crucial to the performance of the tool....

  16. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges i ℏ , which are placed in between the two fixed imaginary charges arising due to the classical turning ...

  17. Cryptography in the Bounded Quantum-Storage Model

    NARCIS (Netherlands)

    I.B. Damgård (Ivan); S. Fehr (Serge); L. Salvail (Louis); C. Schaffner (Christian)

    2008-01-01

    htmlabstractWe initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary’s quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no

  18. Cryptography in the Bounded Quantum-Storage Model

    NARCIS (Netherlands)

    I.B. Damgård (Ivan); S. Fehr (Serge); L. Salvail (Louis); C. Schaffner (Christian)

    2005-01-01

    htmlabstractWe initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary’s quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no

  19. Vulnerable Derivatives and Good Deal Bounds: A Structural Model

    DEFF Research Database (Denmark)

    Murgoci, Agatha

    2013-01-01

    We price vulnerable derivatives -- i.e. derivatives where the counterparty may default. These are basically the derivatives traded on the over-the-counter (OTC) markets. Default is modeled in a structural framework. The technique employed for pricing is good deal bounds (GDBs). The method imposes...

  20. Composable Security in the Bounded-Quantum-Storage Model

    NARCIS (Netherlands)

    S.D.C. Wehner (Stephanie); J. Wullschleger

    2008-01-01

    htmlabstractWe give a new, simulation-based, definition for security in the bounded-quantum-storage model, and show that this definition allows for sequential composition of protocols. Damgård et al. (FOCS ’05, CRYPTO ’07) showed how to securely implement bit commitment and oblivious transfer in the

  1. Composable security in the bounded-quantum-storage model

    NARCIS (Netherlands)

    S.D.C. Wehner (Stephanie); J. Wullschleger

    2007-01-01

    htmlabstractWe present a simplified framework for proving sequential composability in the quantum setting. In particular, we give a new, simulation-based, definition for security in the bounded-quantum-storage model, and show that this definition allows for sequential composition of protocols.

  2. Bounds on collapse models from cold-atom experiments

    Science.gov (United States)

    Bilardello, Marco; Donadi, Sandro; Vinante, Andrea; Bassi, Angelo

    2016-11-01

    The spontaneous localization mechanism of collapse models induces a Brownian motion in all physical systems. This effect is very weak, but experimental progress in creating ultracold atomic systems can be used to detect it. In this paper, we considered a recent experiment (Kovachy et al., 2015), where an atomic ensemble was cooled down to picokelvins. Any Brownian motion induces an extra increase of the position variance of the gas. We study this effect by solving the dynamical equations for the Continuous Spontaneous Localizations (CSL) model, as well as for its non-Markovian and dissipative extensions. The resulting bounds, with a 95 % of confidence level, are beaten only by measurements of spontaneous X-ray emission and by experiments with cantilever (in the latter case, only for rC ≥ 10-7 m, where rC is one of the two collapse parameters of the CSL model). We show that, contrary to the bounds given by X-ray measurements, non-Markovian effects do not change the bounds, for any reasonable choice of a frequency cutoff in the spectrum of the collapse noise. Therefore the bounds here considered are more robust. We also show that dissipative effects are unimportant for a large spectrum of temperatures of the noise, while for low temperatures the excluded region in the parameter space is the more reduced, the lower the temperature.

  3. Vertically bounded double diffusive convection in the fingering regime: comparing no-slip vs free-slip boundary conditions

    CERN Document Server

    Yang, Yantao; Lohse, Detlef

    2016-01-01

    Vertically bounded fingering double diffusive convection (DDC) is numerically investigated, focusing on the influences of different velocity boundary conditions, i.e. the no-slip condition which is inevitable in the lab-scale experimental research, and the free-slip condition which is an approximation for the interfaces in many natural environments, such as the oceans. For both boundary conditions the flow is dominated by fingers and the global responses follow the same scaling laws, with enhanced prefactors for the free-slip cases. Therefore, the laboratory experiments with the no-slip boundaries serve as a good model for the finger layers in the ocean. Moreover, in the free-slip case although the tangential shear stress is eliminated at the boundaries, the local dissipation rate in the near-wall region may exceed the value found in the no-slip cases, which is caused by the stronger vertical motions of fingers and sheet structures near the free-slip boundaries. This counter intuitive result might be relevant...

  4. Surface-bounded growth modeling applied to human mandibles

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt; Brookstein, F. L.; Conradsen, Knut

    2000-01-01

    automatically using shape features and a new algorithm called geometry-constrained diffusion. The semilandmarks are mapped into Procrustes space. Principal component analysis extracts a one-dimensional subspace, which is used to construct a linear growth model. The worst case mean modeling error in a cross...

  5. Key management and encryption under the bounded storage model.

    Energy Technology Data Exchange (ETDEWEB)

    Draelos, Timothy John; Neumann, William Douglas; Lanzone, Andrew J.; Anderson, William Erik

    2005-11-01

    There are several engineering obstacles that need to be solved before key management and encryption under the bounded storage model can be realized. One of the critical obstacles hindering its adoption is the construction of a scheme that achieves reliable communication in the event that timing synchronization errors occur. One of the main accomplishments of this project was the development of a new scheme that solves this problem. We show in general that there exist message encoding techniques under the bounded storage model that provide an arbitrarily small probability of transmission error. We compute the maximum capacity of this channel using the unsynchronized key-expansion as side-channel information at the decoder and provide tight lower bounds for a particular class of key-expansion functions that are pseudo-invariant to timing errors. Using our results in combination with Dziembowski et al. [11] encryption scheme we can construct a scheme that solves the timing synchronization error problem. In addition to this work we conducted a detailed case study of current and future storage technologies. We analyzed the cost, capacity, and storage data rate of various technologies, so that precise security parameters can be developed for bounded storage encryption schemes. This will provide an invaluable tool for developing these schemes in practice.

  6. Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks

    Science.gov (United States)

    Vandresar, Neil T.; Haberbusch, Mark S.

    1994-01-01

    Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.

  7. Applied Bounded Model Checking for Interlocking System Designs

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf

    2013-01-01

    In this article the verification and validation of interlocking systems is investigated. Reviewing both geographical and route-related interlocking, the verification objectives can be structured from a perspective of computer science into (1) verification of static semantics, and (2) verification...... of behavioural (operational) semantics. The former checks that the plant model – that is, the software components reflecting the physical components of the interlocking system – has been set up in an adequate way. The latter investigates trains moving through the network, with the objective to uncover potential...... safety violations. From a formal methods perspective, these verification objectives can be approached by theorem proving, global, or bounded model checking. This article explains the techniques for application of bounded model checking techniques, and discusses their advantages in comparison...

  8. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg

    2005-01-01

    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  9. Probability bounds analysis for nonlinear population ecology models.

    Science.gov (United States)

    Enszer, Joshua A; Andrei Măceș, D; Stadtherr, Mark A

    2015-09-01

    Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals. Copyright © 2015. Published by Elsevier Inc.

  10. Double diffusivity model under stochastic forcing

    Science.gov (United States)

    Chattopadhyay, Amit K.; Aifantis, Elias C.

    2017-05-01

    The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into

  11. Surface-bounded growth modeling applied to human mandibles

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt

    1999-01-01

    to yield a spatially dense field. Different methods for constructing the sparse field are compared. Adaptive Gaussian smoothing is the preferred method since it is parameter free and yields good results in practice. A new method, geometry-constrained diffusion, is used to simplify The most successful...... growth model is linear and based on results from shape analysis and principal component analysis. The growth model is tested in a cross validation study with good results. The worst case mean modeling error in the cross validation study is 3.7 mm. It occurs when modeling the shape and size of a 12 years...

  12. Trait Characteristics of Diffusion Model Parameters

    National Research Council Canada - National Science Library

    Schubert, Anna-Lena; Frischkorn, Gidon; Hagemann, Dirk; Voss, Andreas

    2016-01-01

    ... to individual differences in intelligence. However, if diffusion model parameters are to reflect trait-like properties of cognitive processes, they have to qualify as trait-like variables themselves, i.e...

  13. DIFFUSION BACKGROUND MODEL FOR MOVING OBJECTS DETECTION

    Directory of Open Access Journals (Sweden)

    B. V. Vishnyakov

    2015-05-01

    Full Text Available In this paper, we propose a new approach for moving objects detection in video surveillance systems. It is based on construction of the regression diffusion maps for the image sequence. This approach is completely different from the state of the art approaches. We show that the motion analysis method, based on diffusion maps, allows objects that move with different speed or even stop for a short while to be uniformly detected. We show that proposed model is comparable to the most popular modern background models. We also show several ways of speeding up diffusion maps algorithm itself.

  14. Leader's opinion priority bounded confidence model for network opinion evolution

    Science.gov (United States)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    Aiming at the weight of trust someone given to participate in the interaction in Hegselmann-Krause's type consensus model is the same and virtual social networks among individuals with different level of education, personal influence, etc. For differences between agents, a novelty bounded confidence model was proposed with leader's opinion considered priority. Interaction neighbors can be divided into two kinds. The first kind is made up of "opinion leaders" group, another kind is made up of ordinary people. For different groups to give different weights of trust. We also analyzed the related characteristics of the new model under the symmetrical bounded confidence parameters and combined with the classical HK model were analyzed. Simulation experiment results show that no matter the network size and initial view is subject to uniform distribution or discrete distribution. We can control the "opinion-leader" good change the number of views and values, and even improve the convergence speed. Experiment also found that the choice of "opinion leaders" is not the more the better, the model well explain how the "opinion leader" in the process of the evolution of the public opinion play the role of the leader.

  15. A Stochastic Diffusion Model of Climate Change

    CERN Document Server

    Pelletier, J D

    1995-01-01

    We present a model for variations in atmospheric temperature from time scales of one day to one million years based on a stochastic diffusion (random walk) model of the turbulent transport of heat energy vertically in a coupled atmosphere-ocean model. The predictions of the model are supported by station records and paleoclimatic proxy data of temperature variations.

  16. Kumaraswamy autoregressive moving average models for double bounded environmental data

    Science.gov (United States)

    Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme

    2017-12-01

    In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.

  17. An interval-valued reliability model with bounded failure rates

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, Victor

    2012-01-01

    The approach to deriving interval-valued reliability measures described in this paper is distinctive from other imprecise reliability models in that it overcomes the issue of having to impose an upper bound on time to failure. It rests on the presupposition that a constant interval-valued failure...... rate is known possibly along with other reliability measures, precise or imprecise. The Lagrange method is used to solve the constrained optimization problem to derive new reliability measures of interest. The obtained results call for an exponential-wise approximation of failure probability density...... function if only partial failure information is available. An example is provided. © 2012 Copyright Taylor and Francis Group, LLC....

  18. Minimal Z' models present bounds and early LHC reach

    CERN Document Server

    Salvioni, Ennio; Zwirner, Fabio

    2009-01-01

    We consider `minimal' Z' models, whose phenomenology is controlled by only three parameters beyond the Standard Model ones: the Z' mass and two effective coupling constants. They encompass many popular models motivated by grand unification, as well as many arising in other theoretical contexts. This parameterization takes also into account both mass and kinetic mixing effects, which we show to be sizable in some cases. After discussing the interplay between the bounds from electroweak precision tests and recent direct searches at the Tevatron, we extend our analysis to estimate the early LHC discovery potential. We consider a center-of-mass energy from 7 towards 10 TeV and an integrated luminosity from 50 to several hundred pb^-1, taking all existing bounds into account. We find that the LHC will start exploring virgin land in parameter space for M_Z' around 700 GeV, with lower masses still excluded by the Tevatron and higher masses still excluded by electroweak precision tests. Increasing the energy up to 10...

  19. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  20. Analysis on a diffusive SIS epidemic model with logistic source

    Science.gov (United States)

    Li, Bo; Li, Huicong; Tong, Yachun

    2017-08-01

    In this paper, we are concerned with an SIS epidemic reaction-diffusion model with logistic source in spatially heterogeneous environment. We first discuss some basic properties of the parabolic system, including the uniform upper bound of solutions and global stability of the endemic equilibrium when spatial environment is homogeneous. Our primary focus is to determine the asymptotic profile of endemic equilibria (when exist) if the diffusion (migration) rate of the susceptible or infected population is small or large. Combined with the results of Li et al. (J Differ Equ 262:885-913, 2017) where the case of linear source is studied, our analysis suggests that varying total population enhances persistence of infectious disease.

  1. Agent-based modelling of cholera diffusion

    NARCIS (Netherlands)

    Augustijn-Beckers, Petronella; Doldersum, Tom; Useya, Juliana; Augustijn, Dionysius C.M.

    2016-01-01

    This paper introduces a spatially explicit agent-based simulation model for micro-scale cholera diffusion. The model simulates both an environmental reservoir of naturally occurring V.cholerae bacteria and hyperinfectious V. cholerae. Objective of the research is to test if runoff from open refuse

  2. Effects of bounded space in the solutions of time-space fractional diffusion equation.

    Science.gov (United States)

    Allami, M H; Shokri, B

    2010-12-01

    By using a recently proposed numerical method, the fractional diffusion equation with memory in a finite domain is solved for different asymmetry parameters and fractional orders. Some scaling laws are revisited in this condition, such as growth rate in a distance from pulse perturbation, the time when the perturbative peak reaches the other points, and advectionlike behavior as a result of asymmetry and memory. Conditions for negativity and instability of solutions are shown. Also up-hill transport and its time-space region are studied.

  3. Multiphase Microfluidics The Diffuse Interface Model

    CERN Document Server

    2012-01-01

    Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.

  4. Parameter estimation in fractional diffusion models

    CERN Document Server

    Kubilius, Kęstutis; Ralchenko, Kostiantyn

    2017-01-01

    This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...

  5. Diffusive description of lattice gas models

    DEFF Research Database (Denmark)

    Fiig, T.; Jensen, H.J.

    1993-01-01

    We have investigated a lattice gas model consisting of repulsive particles following deterministic dynamics. Two versions of the model are studied. In one case we consider a Finite open system in which particles can leave and enter the lattice over the edge. In the other case we use periodic...... in time. We have numerically investigated the power spectrum of the density fluctuations, the lifetime distribution, and the spatial correlation function. We discuss the appropriate Langevin-like diffusion equation which can reproduce our numerical findings. Our conclusion is that the deterministic...... lattice gases are described by a diffusion equation without any bulk noise. The open lattice gas exhibits a crossover behavior as the probability for introducing particles at the edge of the system becomes small. The power spectrum changes from a 1/f to a 1/f2 spectrum. The diffusive description, proven...

  6. Bounded Stochastic Shell Mixing Model: Further Development and Application to Inhomogeneous Scalar Mixing

    Science.gov (United States)

    Vaithianathan, T.; Xia, Yanjun; Collins, Lance R.

    2011-11-01

    Xia and Collins [Physics of Fluids 23 (6):065107, 2011] developed the Bounded Stochastic Shell Mixing (BSSM) model that takes into account the multi-scale nature of the turbulent mixing process. They successfully applied the model to mixing of isotropic scalars with an initial double-delta probability density function (PDF). To enforce the scalar bounds, they introduced a novel ``zeroth mode'' that precisely cancels the inherently non-conservative random terms in the formulation. The extension of the model to the mixing of inhomogeneous scalar fields uses notional particles that move with a fluctuating velocity that is chosen to conform with the underlying turbulent energy spectrum. A consistency condition further requires the particle motion in the direction of the mean scalar gradient be carefully connected to the generation of the scalar fluctuation. The appropriate constraint has been derived and is enforced by the numerical algorithm. This new formulation has been applied to turbulent mixing of a scalar slab of specified thickness. (In the limit of zero thickness, this reduces to the classical ``line source'' problem.) We analyze multiple scalars so that differential diffusion can be considered as well as the effect of the thickness of the slab (relative to the turbulence length scales). The predictions of the BSSM model compare well with direct numerical simulations.

  7. Large Time Asymptotics for a Continuous Coagulation-Fragmentation Model with Degenerate Size-Dependent Diffusion

    KAUST Repository

    Desvillettes, Laurent

    2010-01-01

    We study a continuous coagulation-fragmentation model with constant kernels for reacting polymers (see [M. Aizenman and T. Bak, Comm. Math. Phys., 65 (1979), pp. 203-230]). The polymers are set to diffuse within a smooth bounded one-dimensional domain with no-flux boundary conditions. In particular, we consider size-dependent diffusion coefficients, which may degenerate for small and large cluster-sizes. We prove that the entropy-entropy dissipation method applies directly in this inhomogeneous setting. We first show the necessary basic a priori estimates in dimension one, and second we show faster-than-polynomial convergence toward global equilibria for diffusion coefficients which vanish not faster than linearly for large sizes. This extends the previous results of [J.A. Carrillo, L. Desvillettes, and K. Fellner, Comm. Math. Phys., 278 (2008), pp. 433-451], which assumes that the diffusion coefficients are bounded below. © 2009 Society for Industrial and Applied Mathematics.

  8. Fractional diffusion models of nonlocal transport

    Energy Technology Data Exchange (ETDEWEB)

    Del-Castillo-Negrete, Diego B [ORNL

    2006-08-01

    A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an alpha-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, {tau}, with the system's size, L, {tau}{approx}L{sup {alpha}}, of low-confinement mode plasma where 1<{alpha}<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady states in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments.

  9. Fractional diffusion models of nonlocal transport

    Science.gov (United States)

    del-Castillo-Negrete, D.

    2006-08-01

    A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ("memory") effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the "effective" diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ ˜Lα, of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments.

  10. Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains

    Science.gov (United States)

    Grebenkov, Denis S.; Metzler, Ralf; Oshanin, Gleb

    2017-10-01

    We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. A similar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA. We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters. We analyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations.

  11. Improved metastability bounds on the standard model Higgs mass

    CERN Document Server

    Espinosa, J R; Espinosa, J R; Quiros, M

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the Standard Model at finite (and zero) temperature can have a deep and unphysical stable minimum \\langle \\phi(T)\\rangle at values of the field much larger than G_F^{-1/2}. We have computed absolute lower bounds on M_H, as a function of M_t, imposing the condition of no decay by thermal fluctuations, or quantum tunnelling, to the stable minimum. Our effective potential at zero temperature includes all next-to-leading logarithmic corrections (making it extremely scale-independent), and we have used pole masses for the Higgs-boson and top-quark. Thermal corrections to the effective potential include plasma effects by one-loop ring resummation of Debye masses. All calculations, including the effective potential and the bubble nucleation rate, are performed numerically and so the results do not rely on any kind of analytical approximation. Easy-to-use fits are provided for the benefit of the reader. Conclusions on the possi...

  12. Determination of disk diffusion susceptibility testing interpretive criteria using model-based analysis: development and implementation.

    Science.gov (United States)

    DePalma, Glen; Turnidge, John; Craig, Bruce A

    2017-02-01

    The determination of diffusion test breakpoints has become a challenging issue due to the increasing resistance of microorganisms to antibiotics. Currently, the most commonly-used method for determining these breakpoints is the modified error-rate bounded method. Its use has remained widespread despite the introduction of several model-based methods that have been shown superior in terms of precision and accuracy. However, the computational complexities associated with these new approaches has been a significant barrier for clinicians. To remedy this, we developed and examine the utility of a free online software package designed for the determination of diffusion test breakpoints: dBETS (diffusion Breakpoint Estimation Testing Software). This software package allows clinicians to easily analyze data from susceptibility experiments through visualization, error-rate bounded, and model-based approaches. We analyze four publicly available data sets from the Clinical and Laboratory Standards Institute using dBETS. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Semi-bounded Rationality: A model for decision making

    OpenAIRE

    Tshilidzi Marwala

    2013-01-01

    In this paper the theory of semi-bounded rationality is proposed as an extension of the theory of bounded rationality. In particular, it is proposed that a decision making process involves two components and these are the correlation machine, which estimates missing values, and the causal machine, which relates the cause to the effect. Rational decision making involves using information which is almost always imperfect and incomplete as well as some intelligent machine which if it is a human ...

  14. Optimal information diffusion in stochastic block models

    CERN Document Server

    Curato, Gianbiagio

    2016-01-01

    We use the linear threshold model to study the diffusion of information on a network generated by the stochastic block model. We focus our analysis on a two community structure where the initial set of informed nodes lies only in one of the two communities and we look for optimal network structures, i.e. those maximizing the asymptotic extent of the diffusion. We find that, constraining the mean degree and the fraction of initially informed nodes, the optimal structure can be assortative (modular), core-periphery, or even disassortative. We then look for minimal cost structures, i.e. those such that a minimal fraction of initially informed nodes is needed to trigger a global cascade. We find that the optimal networks are assortative but with a structure very close to a core-periphery graph, i.e. a very dense community linked to a much more sparsely connected periphery.

  15. Microbial cell modeling via reacting diffusive particles

    Science.gov (United States)

    Plimpton, Steven J.; Slepoy, Alex

    2005-01-01

    We describe a particle-based simulator called ChemCell that we are developing with the goal of modeling the protein chemistry of biological cells for phenomena where spatial effects are important. Membranes and organelle structure are represented by triangulated surfaces. Diffusing particles represent proteins, complexes, or other biomolecules of interest. Particles interact with their neighbors in accord with Monte Carlo rules to perform biochemical reactions which can represent protein complex formation and dissociation, ligand binding, etc. In this brief paper we give the motivation for such a model, describe a few of the code's features, and highlight interesting computational issues that arise in particle-based cell modeling.

  16. A gravitational diffusion model without dark matter

    Science.gov (United States)

    Britten, Roy J.

    1998-01-01

    In this model, without dark matter, the flat rotation curves of galaxies and the mass-to-light ratios of clusters of galaxies are described quantitatively. The hypothesis is that the agent of gravitational force is propagated as if it were scattered with a mean free path of ≈5 kiloparsecs. As a result, the force between moderately distant masses, separated by more than the mean free path, diminishes as the inverse first power of the distance, following diffusion equations, and describes the flat rotation curves of galaxies. The force between masses separated by <1 kiloparsec diminishes as the inverse square of distance. The excess gravitational force (ratio of 1/r:1/r2) increases with the scale of structures from galaxies to clusters of galaxies. However, there is reduced force at great distances because of the ≈12 billion years that has been available for diffusion to occur. This model with a mean free path of ≈5 kiloparsecs predicts a maximum excess force of a few hundredfold for objects the size of galactic clusters a few megaparsecs in size. With only a single free parameter, the predicted curve for excess gravitational force vs. size of structures fits reasonably well with observations from those for dwarf galaxies through galactic clusters. Under the diffusion model, no matter is proposed in addition to the observed baryons plus radiation and thus the proposed density of the universe is only a few percent of that required for closure. PMID:9520368

  17. Modeling the reemergence of information diffusion in social network

    Science.gov (United States)

    Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong

    2018-01-01

    Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.

  18. Tarmo: A Framework for Parallelized Bounded Model Checking

    Directory of Open Access Journals (Sweden)

    Siert Wieringa

    2009-12-01

    Full Text Available This paper investigates approaches to parallelizing Bounded Model Checking (BMC for shared memory environments as well as for clusters of workstations. We present a generic framework for parallelized BMC named Tarmo. Our framework can be used with any incremental SAT encoding for BMC but for the results in this paper we use only the current state-of-the-art encoding for full PLTL. Using this encoding allows us to check both safety and liveness properties, contrary to an earlier work on distributing BMC that is limited to safety properties only. Despite our focus on BMC after it has been translated to SAT, existing distributed SAT solvers are not well suited for our application. This is because solving a BMC problem is not solving a set of independent SAT instances but rather involves solving multiple related SAT instances, encoded incrementally, where the satisfiability of each instance corresponds to the existence of a counterexample of a specific length. Our framework includes a generic architecture for a shared clause database that allows easy clause sharing between SAT solver threads solving various such instances. We present extensive experimental results obtained with multiple variants of our Tarmo implementation. Our shared memory variants have a significantly better performance than conventional single threaded approaches, which is a result that many users can benefit from as multi-core and multi-processor technology is widely available. Furthermore we demonstrate that our framework can be deployed in a typical cluster of workstations, where several multi-core machines are connected by a network.

  19. Creatinine Diffusion Modeling in Capacitive Sensors

    Science.gov (United States)

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr

    2016-12-01

    In this paper, creatinine diffusion in capacitive sensors is discussed. The factors influencing the response time of creatinine biosensors are mathematically formulated and then three novel approaches for decreasing the response time are presented. At first, a piezoelectric actuator is used to vibrate the microtube that contains the blood sample, in order to reduce the viscosity of blood, and thus to increase the coefficient of diffusion. Then, the blood sample is assumed to be pushed through a porous medium, and the relevant conditions are investigated. Finally, the effect of the dentate shape of dielectric on response time is studied. The algorithms and the mathematical models are presented and discussed, and the results of simulations are illustrated. The response times for the first, second and third method are 60, 0.036 and about 31 s, respectively. It is also found that pumping results in very fast responses.

  20. Perceptual decision making: Drift-diffusion model is equivalent to a Bayesian model

    Directory of Open Access Journals (Sweden)

    Sebastian eBitzer

    2014-02-01

    Full Text Available Behavioural data obtained with perceptual decision making experiments are typically analysed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence towards a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses.

  1. Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model.

    Science.gov (United States)

    Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J

    2014-01-01

    Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses.

  2. Modeling of Reaction Processes Controlled by Diffusion

    CERN Document Server

    Revelli, J

    2003-01-01

    Stochastic modeling is quite powerful in science and technology.The technics derived from this process have been used with great success in laser theory, biological systems and chemical reactions.Besides, they provide a theoretical framework for the analysis of experimental results on the field of particle's diffusion in ordered and disordered materials.In this work we analyze transport processes in one-dimensional fluctuating media, which are media that change their state in time.This fact induces changes in the movements of the particles giving rise to different phenomena and dynamics that will be described and analyzed in this work.We present some random walk models to describe these fluctuating media.These models include state transitions governed by different dynamical processes.We also analyze the trapping problem in a lattice by means of a simple model which predicts a resonance-like phenomenon.Also we study effective diffusion processes over surfaces due to random walks in the bulk.We consider differe...

  3. Behavioral Consistency of C and Verilog Programs Using Bounded Model Checking

    Science.gov (United States)

    2003-05-01

    We present an algorithm that checks behavioral consistency between an ANSI-C program and a circuit given in Verilog using Bounded Model Checking . Both...behavioral consistency between an ANSI-C program and a circuit given in Verilog using Bounded Model Checking . Both the circuit and the program are unwound

  4. Combinatorial bounds on the α-divergence of univariate mixture models

    KAUST Repository

    Nielsen, Frank

    2017-06-20

    We derive lower- and upper-bounds of α-divergence between univariate mixture models with components in the exponential family. Three pairs of bounds are presented in order with increasing quality and increasing computational cost. They are verified empirically through simulated Gaussian mixture models. The presented methodology generalizes to other divergence families relying on Hellinger-type integrals.

  5. Boundedly Rational versus Optimization-Based Models of Strategic Thinking and Learning in Games

    OpenAIRE

    Crawford, Vincent P

    2013-01-01

    Harstad and Selten’s article in this forum performs a valuable service by highlighting the dominance of optimization-based models over boundedly rational models in modern microeconomics, and questioning whether optimization-based models are a better way forward than boundedly rational models. This article complements Rabin’s response to Harstad and Selten, focusing on modeling strategic behavior. I consider Harstad and Selten’s examples and proposed boundedly rational models in the ligh...

  6. Trends Prediction Using Social Diffusion Models

    OpenAIRE

    Altshuler, Yaniv; Pan, Wei; Pentland, Alex

    2011-01-01

    The importance of the ability to predict trends in social media has been growing rapidly in the past few years with the growing dominance of social media in our everyday’s life. Whereas many works focus on the detection of anomalies in networks, there exist little theoretical work on the prediction of the likelihood of anomalous network pattern to globally spread and become “trends”. In this work we present an analytic model for the social diffusion dynamics of spreading network patterns. Our...

  7. Reaction-diffusion pulses: a combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Llebot, Josep Enric [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Fort, Joaquim [Dept. de FIsica, Univ. de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

    2004-07-02

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations.

  8. Ancestral process and diffusion model with selection

    CERN Document Server

    Mano, Shuhei

    2008-01-01

    The ancestral selection graph in population genetics introduced by Krone and Neuhauser (1997) is an analogue to the coalescent genealogy. The number of ancestral particles, backward in time, of a sample of genes is an ancestral process, which is a birth and death process with quadratic death and linear birth rate. In this paper an explicit form of the number of ancestral particle is obtained, by using the density of the allele frequency in the corresponding diffusion model obtained by Kimura (1955). It is shown that fixation is convergence of the ancestral process to the stationary measure. The time to fixation of an allele is studied in terms of the ancestral process.

  9. The Voter Model and Jump Diffusion

    CERN Document Server

    Majmudar, Jimit; Baumgaertner, Bert O; Tyson, Rebecca C

    2015-01-01

    Opinions, and subsequently opinion dynamics, depend not just on interactions among individuals, but also on external influences such as the mass media. The dependence on local interactions, however, has received considerably more attention. In this paper, we use the classical voter model as a basis, and extend it to include external influences. We show that this new model can be understood using the theory of jump diffusion processes. We derive results pertaining to fixation probability and expected consensus time of the process, and find that the contribution of an external influence significantly dwarfs the contribution of the node-to-node interactions in terms of driving the social network to eventual consensus. This result suggests the potential importance of ``macro-level'' phenomena such as the media influence as compared to the ``micro-level'' local interactions, in modelling opinion dynamics.

  10. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    + iQ(xk) = 0, 1 ≤ k ≤ n. (17) the solution for the differential eq. (17), for an exactly solvable potential that is for cer- tain Q(xk), are the zeros of appropriate orthogonal polynomials. The interval is fixed by the fixed poles of the potential. It is well known that the classical orthogonal poly- nomials arise as solutions to the bound ...

  11. Stochastic Modelling of the Diffusion Coefficient for Concrete

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In the paper, a new stochastic modelling of the diffusion coefficient D is presented. The modelling is based on physical understanding of the diffusion process and on some recent experimental results. The diffusion coefficients D is strongly dependent on the w/c ratio and the temperature....

  12. Rigorous Derivation of a Nonlinear Diffusion Equation as Fast-Reaction Limit of a Continuous Coagulation-Fragmentation Model with Diffusion

    KAUST Repository

    Carrillo, J. A.

    2009-10-30

    Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [5], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters. © Taylor & Francis Group, LLC.

  13. Accounting for diffusion in agent based models of reaction-diffusion systems with application to cytoskeletal diffusion.

    Directory of Open Access Journals (Sweden)

    Mohammad Azimi

    Full Text Available Diffusion plays a key role in many biochemical reaction systems seen in nature. Scenarios where diffusion behavior is critical can be seen in the cell and subcellular compartments where molecular crowding limits the interaction between particles. We investigate the application of a computational method for modeling the diffusion of molecules and macromolecules in three-dimensional solutions using agent based modeling. This method allows for realistic modeling of a system of particles with different properties such as size, diffusion coefficients, and affinity as well as the environment properties such as viscosity and geometry. Simulations using these movement probabilities yield behavior that mimics natural diffusion. Using this modeling framework, we simulate the effects of molecular crowding on effective diffusion and have validated the results of our model using Langevin dynamics simulations and note that they are in good agreement with previous experimental data. Furthermore, we investigate an extension of this framework where single discrete cells can contain multiple particles of varying size in an effort to highlight errors that can arise from discretization that lead to the unnatural behavior of particles undergoing diffusion. Subsequently, we explore various algorithms that differ in how they handle the movement of multiple particles per cell and suggest an algorithm that properly accommodates multiple particles of various sizes per cell that can replicate the natural behavior of these particles diffusing. Finally, we use the present modeling framework to investigate the effect of structural geometry on the directionality of diffusion in the cell cytoskeleton with the observation that parallel orientation in the structural geometry of actin filaments of filopodia and the branched structure of lamellipodia can give directionality to diffusion at the filopodia-lamellipodia interface.

  14. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    Science.gov (United States)

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.

  15. Dynamics of competing diffusion processes in a bias electric field: kinetic Ising model approach and phenomenological descriptions

    CERN Document Server

    Aldrin-Denny, R

    1998-01-01

    The methodology of formulating spatio-temporal diffusion-migration equations in an applied electric field for two competing diffusion processes is outlined using kinetic Ising model versions with the help of spin-exchange dynamics due to Kawasaki. The two transport processes considered here correspond to bounded displacement of species attached to supramolecular structures and electron hopping between spatially separated electron transfer active centres. The dependence of the diffusion coefficient on number density as well as the microscopic basis underlying phenomenological diffusion-migration equations are pointed out. (author)

  16. Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Tucker, W. Troy (Applied Biomathematics, Setauket, NY); Zhang, Jianzhong (Iowa State University, Ames, IA); Ginzburg, Lev (Applied Biomathematics, Setauket, NY); Berleant, Daniel J. (Iowa State University, Ames, IA); Ferson, Scott (Applied Biomathematics, Setauket, NY); Hajagos, Janos (Applied Biomathematics, Setauket, NY); Nelsen, Roger B. (Lewis & Clark College, Portland, OR)

    2004-10-01

    This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.

  17. Bass-SIR model for diffusion of new products

    CERN Document Server

    Fibich, Gadi

    2016-01-01

    We consider the diffusion of new products in social networks, where consumers who adopt the product can later "recover" and stop influencing others to adopt the product. We show that the diffusion is not described by the SIR model, but rather by a novel model, the Bass-SIR model, which combines the Bass model for diffusion of new products with the SIR model for epidemics. The phase transition of consumers from non-adopters to adopters is described by a non-standard Kolmogorov-Johnson-Mehl-Avrami model, in which clusters growth is limited by adopters' recovery. Therefore, diffusion in the Bass-SIR model only depends on the local structure of the social network, but not on the average distance between consumers. Consequently, unlike the SIR model, a small-worlds structure has a negligible effect on the diffusion. Surprisingly, diffusion on scale-free networks is nearly identical to that on Cartesian ones.

  18. Extending the diffusion approximation to the boundary using an integrated diffusion model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen; Du, Zhidong; Pan, Liang, E-mail: liangpan@purdue.edu [School of Mechanical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-06-15

    The widely used diffusion approximation is inaccurate to describe the transport behaviors near surfaces and interfaces. To solve such stochastic processes, an integro-differential equation, such as the Boltzmann transport equation (BTE), is typically required. In this work, we show that it is possible to keep the simplicity of the diffusion approximation by introducing a nonlocal source term and a spatially varying diffusion coefficient. We apply the proposed integrated diffusion model (IDM) to a benchmark problem of heat conduction across a thin film to demonstrate its feasibility. We also validate the model when boundary reflections and uniform internal heat generation are present.

  19. Extending the diffusion approximation to the boundary using an integrated diffusion model

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2015-06-01

    Full Text Available The widely used diffusion approximation is inaccurate to describe the transport behaviors near surfaces and interfaces. To solve such stochastic processes, an integro-differential equation, such as the Boltzmann transport equation (BTE, is typically required. In this work, we show that it is possible to keep the simplicity of the diffusion approximation by introducing a nonlocal source term and a spatially varying diffusion coefficient. We apply the proposed integrated diffusion model (IDM to a benchmark problem of heat conduction across a thin film to demonstrate its feasibility. We also validate the model when boundary reflections and uniform internal heat generation are present.

  20. Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    C. S. Hassler

    2009-10-01

    Full Text Available Iron (Fe is known to be mostly bound to organic ligands and to limit primary productivity in the Southern Ocean. It is thus important to investigate the bioavailability of organically bound Fe. In this study, we used four phytoplankton species of the Southern Ocean (Phaeocystis sp., Chaetoceros sp., Fragilariopsis kerguelensis and Thalassiosira antarctica Comber to measure the influence of various organic ligands on Fe solubility and bioavailability. Short-term uptake Fe:C ratios were inversely related to the surface area to volume ratios of the phytoplankton. The ratio of extracellular to intracellular Fe is used to discuss the relative importance of diffusive supply and uptake to control Fe bioavailability. The effect of excess organic ligands on Fe bioavailability cannot be solely explained by their effect on Fe solubility. For most strains studied, the bioavailability of Fe can be enhanced relative to inorganic Fe in the presence of porphyrin, catecholate siderophore and saccharides whereas it was decreased in presence of hydroxamate siderophore and organic amine. For Thalassiosira, iron bioavailability was not affected by the presence of porphyrin, catecholate siderophore and saccharides. The enhancement of Fe bioavailability in presence of saccharides is presented as the result from both the formation of bioavailable (or chemically labile organic form of Fe and the stabilisation of Fe within the dissolved phase. Given the ubiquitous presence of saccharides in the ocean, these compounds might represent an important factor to control the basal level of soluble and bioavailable Fe. Results show that the use of model phytoplankton is promising to improve mechanistic understanding of Fe bioavailability and primary productivity in HNLC regions of the ocean.

  1. An error bound for a discrete reduced order model of a linear multivariable system

    Science.gov (United States)

    Al-Saggaf, Ubaid M.; Franklin, Gene F.

    1987-01-01

    The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.

  2. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanfeng, E-mail: lyfxjd@163.com; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.

  3. Bounds on the number of bound states in the transfer matrix spectrum for some weakly correlated lattice models

    Energy Technology Data Exchange (ETDEWEB)

    O' Carroll, Michael [Departamento de Matematica Aplicada e Estatistica, ICMC-USP, C.P. 668,13560-970 Sao Carlos, Sao Paulo (Brazil)

    2012-07-15

    We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H{sub o}+W where H{sub o}=-{gamma}{Delta}{sub l}, 0 < {gamma} Much-Less-Than 1 and {Delta}{sub l} is the d-dimensional lattice Laplacian: {gamma}={beta}, the inverse temperature for spin systems and {gamma}={kappa}{sup 3} where {kappa} is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound Double-Vertical-Line W(x, y) Double-Vertical-Line Less-Than-Or-Slanted-Equal-To cexp ( -a( Double-Vertical-Line x Double-Vertical-Line + Double-Vertical-Line y Double-Vertical-Line )), a large: exp-a={beta}/{beta}{sub o}{sup (1/2)}({kappa}/{kappa}{sub o}) for spin (QCD) models. H{sub o}, W, and H act in l{sub 2}(Z{sup d}), d Greater-Than-Or-Slanted-Equal-To 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.

  4. Turbulence modeling for flows in wall bounded porous media: An analysis based on direct numerical simulations

    Science.gov (United States)

    Jin, Y.; Kuznetsov, A. V.

    2017-04-01

    Various models are available for simulating turbulent flows in porous media. Models based on the eddy viscosity assumption are often adopted to close the Reynolds stress term. In order to validate the assumptions behind such turbulence models, we studied the dynamics of macroscopic momentum and turbulence kinetic energy in porous media flows by utilizing Direct Numerical Simulation (DNS). The generic porous matrix is composed of regularly arranged spheres. The resulting periodic porous medium is bounded by two walls. The DNS analyses with a Lattice Boltzmann method were performed for various values of the applied pressure gradient, pore size to channel width ratio, and porosity. The DNS results were averaged over time and volume to obtain macroscopic results. The results show that the macroscopic shear Reynolds stress in all Representative Elementary Volumes (REVs), independent of their location, is negligibly small, although the mean velocity gradient takes nonzero values near the wall. The turbulence kinetic energy production rate is generally balanced by the dissipation rate in each REV. The DNS results support a zero-equation turbulence model that accounts for the fact that turbulent structures are restricted in size by the pore scale. The DNS results also suggest that the Brinkman term, which expresses the diffusion of momentum, has an important effect near the wall where the gradient of the shear stress is large. Therefore, the Brinkman term should be taken into account in the macroscopic momentum equation as a component of the total drag. A preliminary macroscopic model for calculating turbulent porous media flows has been proposed and compared with our DNS results.

  5. Matrix diffusion model. In situ tests using natural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rasilainen, K. [VTT Energy, Espoo (Finland)

    1997-11-01

    Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories. 98 refs. The thesis includes also eight previous publications by author.

  6. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2010-02-15

    We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)

  7. Diffusion of homologous model migrants in rubbery polystyrene: molar mass dependence and activation energy of diffusion.

    Science.gov (United States)

    Pinte, Jérémy; Joly, Catherine; Dole, Patrice; Feigenbaum, Alexandre

    2010-04-01

    Published diffusion prediction models for the diffusion of additives in food packaging simplify reality by having a small number of parameters only. Therefore, extrapolation of such models to barrier polymers, larger ranges of temperature and/or additive molecular weight (M(W)) is questionable. Extra data is still required to generalize these existing prediction models. In this paper, diffusion of a specifically designed homologous set of model additives (from 236 to 1120 g mol(-1)) was monitored in two polystyrenes in the rubbery state (from 100 to 180 degrees C): syndiotactic semi-crystalline polystyrene and its amorphous equivalent. Variations in associated diffusion coefficient D and activation energy Ea with migrant M(W) and temperature were surprisingly low. Comparison of experimental behaviour with model predictions was performed. In their actual form, none of the models is capable of describing all experimental data, but there is evidence of convergence of the different approaches.

  8. A new numerical scheme for bounding acceleration in the LWR model

    OpenAIRE

    LECLERCQ, L; ELSEVIER

    2005-01-01

    This paper deals with the numerical resolution of bounded acceleration extensions of the LWR model. Two different manners for bounding accelerations in the LWR model will be presented: introducing a moving boundary condition in front of an accelerating flow or defining a field of constraints on the maximum allowed speed in the (x,t) plane. Both extensions lead to the same solutions if the declining branch of the fundamental diagram is linear. The existing numerical scheme for the latter exte...

  9. Tools for model-independent bounds in direct dark matter searches

    DEFF Research Database (Denmark)

    Cirelli, M.; Del Nobile, E.; Panci, P.

    2013-01-01

    We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei.......We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei....

  10. Anomalous diffusion of drug release from a slab matrix: fractional diffusion models.

    Science.gov (United States)

    Yin, Chen; Li, Xicheng

    2011-10-10

    Mathematical models for the release of drug from both non-degradable and degradable slab matrices in which the initial drug loading is greater than the solubility are presented in this paper. Taking the anomalous diffusions in the drug release processes into account, the fractional calculus is introduced to model the related phenomena. To describe different kinds of anomalous diffusions, corresponding fractional diffusion equations are adopted. By employing the integral transform methods, similarity solution method and perturbation method, exact and approximation solutions to the models are obtained. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A material optimization model to approximate energy bounds for cellular materials under multiload conditions

    DEFF Research Database (Denmark)

    Guedes, J.M.; Rodrigues, H.C.; Bendsøe, Martin P.

    2003-01-01

    bounds within this class of composites. A comparison of the computational results with the globally optimal bounds given via rank-N layered composites illustrates the behaviour for tension and shear load situations, as well as the importance of considering the shape of the basic unit cell as part......This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal...

  12. Take it NP-easy: Bounded model construction for duration calculus

    DEFF Research Database (Denmark)

    Fränzle, Martin

    2002-01-01

    constrained to bounded length. As a corollary we obtain that model construction is in NP for the formulae actually encountered in case studies using Duration Calculus, as these have a certain small-model property. First experiments with a prototype implementation of the procedures demonstrate a competitive......Following the recent successes of bounded model-checking, we reconsider the problem of constructing models of discrete-time Duration Calculus formulae. While this problem is known to be non-elementary when arbitrary length models are considered [Hansen94], it turns out to be only NP-complete when...

  13. Radon diffusion through multilayer earthen covers: models and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, D.W.; Oster, C.A.; Nelson, R.W.; Gee, G.W.

    1981-09-01

    A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems has been investigated. The purpose of this study is to develop the theoretical basis for modeling radon diffusion and to develop an understanding of the fundamental interactions that influence radon diffusion. This study develops the theoretical basis for modeling radon diffusion in one, two and three dimensions. The theory has been incorporated into three computer models that are used to analyze several tailings and cover configurations. This report contains a discussion of the theoretical basis for modeling radon diffusion, a discussion of the computer models used to analyze uranium mill tailings and multilayered cover systems, and presents the results that have been obtained.

  14. A variable-order fractal derivative model for anomalous diffusion

    Directory of Open Access Journals (Sweden)

    Liu Xiaoting

    2017-01-01

    Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.

  15. One-dimensional diffusion model in an Inhomogeneous region

    CSIR Research Space (South Africa)

    Fedotov, I

    2006-01-01

    Full Text Available A one-dimensional model is developed to describe atomic diffusion in a graphite tube atomizer for electrothermal atomic adsorption spectrometry. The underlying idea of the model is the solution of an inhomogeneous one-dimensional diffusion equation...

  16. Mass media and polarisation processes in the bounded confidence model of opinion dynamics

    OpenAIRE

    McKeown, Gary; Sheehy, Noel

    2006-01-01

    This paper presents a social simulation in which we add an additional layer of mass media communication to the social network 'bounded confidence' model of Deffuant et al (2000). A population of agents on a lattice with continuous opinions and bounded confidence adjust their opinions on the basis of binary social network interactions between neighbours or communication with a fixed opinion. There are two mechanisms for interaction. 'Social interaction' occurs between neighbours on a lattice a...

  17. [Diffusion and diffusion-osmosis models of the charged macromolecule transfer in barriers of biosystems].

    Science.gov (United States)

    Varakin, A I; Mazur, V V; Arkhipova, N V; Serianov, Iu V

    2009-01-01

    Mathematical models of the transfer of charged macromolecules have been constructed on the basis of the classical equations of electromigration diffusion of Helmholtz-Smolukhovskii, Goldman, and Goldman-Hodgkin-Katz. It was shown that ion transfer in placental (mimicking lipid-protein barriers) and muscle barriers occurs by different mechanisms. In placental barriers, the electromigration diffusion occurs along lipid-protein channels formed due to the conformational deformation of phospholipid and protein molecules with the coefficients of diffusion D = (2.6-3.6) x 10(-8) cm2/s. The transfer in muscle barriers is due to the migration across charged interfibrillar channels with the negative diffusion activation energy, which is explained by changes in the structure of muscle fibers and expenditures of thermal energy for the extrusion of Cl- from channel walls with the diffusion coefficient D = (6.0-10.0) x 10(-6) cm2/s.

  18. Bounded Rationality

    National Research Council Canada - National Science Library

    Ballester Pla, Coralio; Hernández, Penélope

    2012-01-01

    The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models...

  19. Asymptotic solutions of diffusion models for risk reserves

    Directory of Open Access Journals (Sweden)

    S. Shao

    2003-01-01

    Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.

  20. Stochastic modeling of the diffusion coefficient for concrete

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    . A deterministic relationship between the diffusion coefficient and the w/c ratio and the temperature is used for the stochastic modelling. The w/c ratio and the temperature are modelled by log-normally and normally distributed stochastic variables, respectively. It is then shown by Monte Carlo simulation...... that the diffusion coefficient D may be modelled by a normally distributed stochastic variable. The sensitivities of D with regard to the mean values and the standard deviations are evaluated.......In the paper, a new stochastic modelling of the diffusion coefficient D is presented. The modelling is based on a physical understanding of the diffusion process and on some recent experimental results. The diffusion coefficient D is strongly dependent on the w/c ratio and the temperature...

  1. Derivative-free method for bound constrained nonlinear monotone equations and its application in solving steady state reaction-diffusion problems

    Directory of Open Access Journals (Sweden)

    Octavio Batta

    2016-10-01

    Full Text Available We present a derivative-free algorithm for solving bound constrained systems of nonlinear monotone equations. The algorithm generates feasible iterates using in a systematic way the residual as search direction and a suitable step-length closely related to the Barzilai-Borwein choice. A convergence analysis is described. We also present one application in solving problems related with the study of reaction-diffusion processes that can be described by nonlinear partial differential equations of elliptic type. Numerical experiences are included to highlight the efficacy of proposed algorithm.

  2. A memory diffusion model for molecular anisotropic diffusion in siliceous β-zeolite.

    Science.gov (United States)

    Ji, Xiangfei; An, Zhuanzhuan; Yang, Xiaofeng

    2016-01-01

    A memory diffusion model of molecules on β-zeolite is proposed. In the model, molecular diffusion in β-zeolites is treated as jumping from one adsorption site to its neighbors and the jumping probability is a compound probability which includes that provided by the transitional state theory as well as that derived from the information about which direction the target molecule comes from. The proposed approach reveals that the diffusivities along two crystal axes on β-zeolite are correlated. The model is tested by molecular dynamics simulations on diffusion of benzene and other simple molecules in β-zeolites. The results show that the molecules with larger diameters fit the prediction much better and that the "memory effects" are important in all cases.

  3. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    paper, we report our results on boson bound states (BBS) in the β-FPU model. The paper is organized as follows. In §2, we first describe the model and introduce the quantization scheme, then, at 4-quanta level, we introduce the basis we used to diagonalize the effective. Hamiltonian. The energy spectrum of the model at ...

  4. Bounding the $\

    CERN Document Server

    Gutiérrez-Rodríguez, A

    2003-01-01

    A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).

  5. Fractional diffusion models of transport in magnetically confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Negrete, D. del; Carreras, B. A.; Lynch, V. E.

    2005-07-01

    Experimental and theoretical evidence suggests that transport in magnetically confined fusion plasmas deviates from the standard diffusion paradigm. Some examples include the confinement time scaling in L-mode plasmas, rapid pulse propagation phenomena, and inward transport in off-axis fueling experiments. The limitations of the diffusion paradigm can be traced back to the restrictive assumptions in which it is based. In particular, Fick's law, one of the cornerstones of diffusive transport, assumes that the fluxes only depend on local quantities, i. e. the spatial gradient of the field (s). another key issue is the Markovian assumption that neglects memory effects. Also, at a microscopic level, standard diffusion assumes and underlying Gaussian, uncorrelated stochastic process (i. e. a Brownian random walk) with well defined characteristic spatio-temporal scales. Motivated by the need to develop models of non-diffusive transport, we discuss here a class of transport models base on the use of fractional derivative operators. The models incorporates in a unified way non-Fickian transport, non-Markovian processes or memory effects, and non-diffusive scaling. At a microscopic level, the models describe an underlying stochastic process without characteristic spatio-temporal scales that generalizes the Brownian random walk. As a concrete case study to motivate and test the model, we consider transport of tracers in three-dimensional, pressure-gradient-driven turbulence. We show that in this system transport is non-diffusive and cannot be described in the context of the standard diffusion parading. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit super-diffusive scaling. there is quantitative agreement between the turbulence transport calculations and the proposed fractional diffusion model. In particular, the model

  6. Applied Bounded Model Checking for Interlocking System Designs

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf

    2014-01-01

    of behavioural (operational) semantics. The former checks that the plant model – that is, the software components reflecting the physical components of the interlocking system – has been set up in an adequate way. The latter investigates trains moving through the network, with the objective to uncover potential...

  7. Lower bound plane stress element for modelling 3D structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2017-01-01

    In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...

  8. The Calculation and Use of Confidence Bounds in POD Models

    Science.gov (United States)

    Spencer, Floyd W.

    2007-03-01

    At a qualitative level the calculation of a statistical confidence interval for a quantity X is an attempt to answer the question: "How variable could X have been and still be consistent with the data that have been observed?" Models used in POD estimation fit an entire curve to the data in hand. However, the quantity of interest, X(p), is often a single point on the curve, such as the flaw size for which the probability of detection is equal to p. In order to make a confidence statement about X(p) the uncertainty about the parameter estimates are translated to the uncertainty about X(p). Often the calculation is made for each p and the results displayed as a curve. Curves derived in such a manner are not themselves POD-curves, although often interpreted as such. In this paper the most often recommended method in the statistical literature, based on likelihoods, are presented. It is shown that the methodology extends naturally to models incorporating additional parameters to model specific POD behaviors.

  9. Dynamic hysteresis modeling including skin effect using diffusion equation model

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Souad, E-mail: souadhamada@yahoo.fr [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Louai, Fatima Zohra, E-mail: fz_louai@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Nait-Said, Nasreddine, E-mail: n_naitsaid@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Benabou, Abdelkader, E-mail: Abdelkader.Benabou@univ-lille1.fr [L2EP, Université de Lille1, 59655 Villeneuve d’Ascq (France)

    2016-07-15

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  10. Ultrasonic Modeling of Bounded Beam Reflection from Anisotropic Media

    Science.gov (United States)

    Schmitt, D. R.; Malehmir, R.; Kazemi, N.

    2016-12-01

    In this contribution, we try to physically model and understand the physics behind directional dependency of reflectivity from an anisotropic medium as a test of existing theory. One aspect of this is to motivate researchers to look beyond the simplifying assumptions that have been widely employed in the analysis of azimuthally varying seismic reflectivity. To do this, we are making laboratory measurements of the acoustic reflectivity from an orthorhombic medium cut at a variety of orientations in order to expose surfaces with differing anisotropy. The laboratory experiments employ a large aperture transmitter and a small, near-point-source, receiver placed within a goniometer that allows for rotation of the transducers and of the sample, this system was developed in earlier studies of reflectivity from porous media. This enables us to measure reflectivity from any azimuth and over a large range of incidence angles. We used Aluminum with known elastic properties for calibration and comparing the reflectivity results with Zoepprtiz solution. The successful correlation with reflectivity data enables us to go one step ahead and replace the sample with any anisotropic sample. The samples are machined from a `phenolic' material created with fibre cloth layers embedded within an epoxy resin, this material is known to be weakly orthorhombic. Blocks fo this material are cut such that the reflecting surfaces lie at a variety of angles with respect to the layering. These results suggest that some care should be employed in azimuthal seismic studies as it may be difficult to detect the differences in the reflectivity before the P-wave critical angle. However, this critical angle displays substantial change with azimuth and may provide important information for seismic investigations.The reflectivity variations are being modelled using a code called ARTc (Anisotropic Reflection and Transmission code) that provides the plane-wave reflectivity and transmissivity for the general

  11. Reasoning the fast and frugal way: models of bounded rationality.

    Science.gov (United States)

    Gigerenzer, G; Goldstein, D G

    1996-10-01

    Humans and animals make inferences about the world under limited time and knowledge. In contrast, many models of rational inference treat the mind as a Laplacean Demon, equipped with unlimited time, knowledge, and computational might. Following H. Simon's notion of satisfying, the authors have proposed a family of algorithms based on a simple psychological mechanism: one-reason decision making. These fast and frugal algorithms violate fundamental tenets of classical rationality: They neither look up nor integrate all information. By computer simulation, the authors held a competition between the satisfying "Take The Best" algorithm and various "rational" inference procedures (e.g., multiple regression). The Take The Best algorithm matched or outperformed all competitors in inferential speed and accuracy. This result in an existence proof that cognitive mechanisms capable of successful performance in the real world do not need to satisfy the classical norms of rational inference.

  12. Data assimilation experiments using the diffusive back and forth nudging for the NEMO ocean model

    Science.gov (United States)

    Ruggiero, G. A.; Ourmières, Y.; Cosme, E.; Blum, J.; Auroux, D.; Verron, J.

    2014-07-01

    The Diffusive Back and Forth Nudging (DBFN) is an easy-to-implement iterative data assimilation method based on the well-known Nudging method. It consists in a sequence of forward and backward model integrations, within a given time window, both of them using a feedback term to the observations. Therefore in the DBFN, the Nudging asymptotic behavior is translated into an infinite number of iterations within a bounded time domain. In this method, the backward integration is carried out thanks to what is called backward model, which is basically the forward model with reversed time step sign. To maintain numeral stability the diffusion terms also have their sign reversed, giving a diffusive character to the algorithm. In this article the DBFN performance to control a primitive equation ocean model is investigated. In this kind of model non-resolved scales are modeled by diffusion operators which dissipate energy that cascade from large to small scales. Thus, in this article the DBFN approximations and their consequences on the data assimilation system set-up are analyzed. Our main result is that the DBFN may provide results which are comparable to those produced by a 4Dvar implementation with a much simpler implementation and a shorter CPU time for convergence.

  13. Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems

    DEFF Research Database (Denmark)

    Becker, Bernd; Behle, Markus; Eisenbrand, Fritz

    2004-01-01

    We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit...

  14. A return to the traveling salesman model: a network branch and bound approach

    Directory of Open Access Journals (Sweden)

    Elias Munapo

    2013-02-01

    Full Text Available This paper presents a network branch and bound approach for solving the traveling salesman problem. The problem is broken into sub-problems, each of which is solved as a minimum spanning tree model. This is easier to solve than either the linear programming-based or assignment models.

  15. An Associational Model for the Diffusion of Complex Innovations.

    Science.gov (United States)

    Barnett, George A.

    A paradigm for the study of the diffusion of complex innovations through a society is presented in this paper; the paradigm is useful for studying sociocultural change as innovations diffuse. The model is designed to account for change within social systems rather than in individuals, although it would also be consistent with information…

  16. Sound field modeling in architectural acoustics using a diffusion equation

    OpenAIRE

    Picaut, Judicaël; Valeau, Vincent; Billon, Alexis; Sakout, Anas

    2006-01-01

    A numerical approach is proposed to model the reverberated sound field in rooms. The model is based on the numerical implementation of a diffusion model enabling spatial variations of the sound energy within a room, unlike the statistical theory. The proposed method allows to take into account most of complex phenomena encountered in room acoustics, like mixed reflections on walls (diffuse and specular), low and high absorption on walls, atmospheric attenuation, fitted zones. Moreover, the mo...

  17. Sound field modeling in architectural acoustics using a diffusion equation

    OpenAIRE

    PICAUT, J; VALEAU, V; BILLON, A; SAKOUT, A

    2006-01-01

    A numerical approach is proposed to model the reverberated sound field in rooms. The model is based on the numerical implementation of a diffusion model enabling spatial variations of the sound energy within a room, unlike the statistical theory. The proposed method allows to take into account most of complex phenomena encountered in room acoustics, like mixed reflections on walls (diffuse and specular), low and high absorption on walls, atmospheric attenation, fitted zones. Moreover, the mod...

  18. Speeding-up the Fitting of the Model Defining the Ribs-bounded Contour

    Directory of Open Access Journals (Sweden)

    Bilinskas Mykolas J.

    2017-05-01

    Full Text Available The method for analysing transversal plane images from computer tomography scans is considered in the paper. This method allows not only approximating ribs-bounded contour but also evaluating patient rotation around the vertical axis during a scan. In this method, a mathematical model describing the ribs-bounded contour was created and the problem of approximation has been solved by finding the optimal parameters of the mathematical model using least-squares-type objective function. The local search has been per-formed using local descent by quasi-Newton methods. The benefits of analytical derivatives of the function are disclosed in the paper.

  19. Attractor for a Reaction-Diffusion System Modeling Cancer Network

    Directory of Open Access Journals (Sweden)

    Xueyong Chen

    2014-01-01

    Full Text Available A reaction-diffusion cancer network regulated by microRNA is considered in this paper. We study the asymptotic behavior of solution and show the existence of global uniformly bounded solution to the system in a bounded domain Ω⊂Rn. Some estimates and asymptotic compactness of the solutions are proved. As a result, we establish the existence of the global attractor in L2(Ω×L2(Ω and prove that the solution converges to stable steady states. These results can help to understand the dynamical character of cancer network and propose a new insight to study the mechanism of cancer. In the end, the numerical simulation shows that the analytical results agree with numerical simulation.

  20. Modelling of diffuse solar fraction with multiple predictors

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Barbara; Boland, John [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Lauret, Philippe [Laboratoire de Physique du Batiment et des Systemes, University of La Reunion, Reunion (France)

    2010-02-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global radiation is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from direct on some other plane using trigonometry, we need to have diffuse radiation on the horizontal plane available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia. Boland et al. developed a validated model for Australian conditions. Boland et al. detailed our recent advances in developing the theoretical framework for the use of the logistic function instead of piecewise linear or simple nonlinear functions and was the first step in identifying the means for developing a generic model for estimating diffuse from global and other predictors. We have developed a multiple predictor model, which is much simpler than previous models, and uses hourly clearness index, daily clearness index, solar altitude, apparent solar time and a measure of persistence of global radiation level as predictors. This model performs marginally better than currently used models for locations in the Northern Hemisphere and substantially better for Southern Hemisphere locations. We suggest it can be used as a universal model. (author)

  1. What Can the Diffusion Model Tell Us About Prospective Memory?

    Science.gov (United States)

    Horn, Sebastian S.; Bayen, Ute J.; Smith, Rebekah E.

    2011-01-01

    Cognitive process models, such as Ratcliff’s (1978) diffusion model, are useful tools for examining cost- or interference effects in event-based prospective memory (PM). The diffusion model includes several parameters that provide insight into how and why ongoing-task performance may be affected by a PM task and is ideally suited to analyze performance because both reaction time and accuracy are taken into account. Separate analyses of these measures can easily yield misleading interpretations in cases of speed-accuracy tradeoffs. The diffusion model allows us to measure possible criterion shifts and is thus an important methodological improvement over standard analyses. Performance in an ongoing lexical decision task (Smith, 2003) was analyzed with the diffusion model. The results suggest that criterion shifts play an important role when a PM task is added, but do not fully explain the cost effect on RT. PMID:21443332

  2. Shell-model description of weakly bound and unbound nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Michel, N. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Joint Institute for Heavy Ion Research, Oak Ridge, TN (United States); Nazarewicz, W. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Warsaw University, Institute of Theoretical Physics, Warsaw (Poland); Ploszajczak, M.; Rotureau, J. [CEA/DSM-CNRS/IN2P3, Grand Accelerateur National d' Ions Lourds (GANIL), Caen (France)

    2005-09-01

    A consistent description of weakly bound and unbound nuclei requires an accurate description of the particle continuum properties when carrying out multiconfiguration mixing. This is the domain of the Gamow Shell Model (GSM) which is the multiconfigurational shell model in the complex k-plane formulated using a complete Berggren ensemble representing bound single-particle (s.p.) states, s.p. resonances, and non-resonant complex energy continuum states. We discuss the salient features of effective interactions in weakly bound systems and show selected applications of the GSM formalism to p-shell nuclei. Finally, a development of the new non-perturbative scheme based on Density Matrix Renormalization Group methods to select the most significant continuum configurations in GSM calculations is discussed shortly. (orig.)

  3. Weak diffusion limits of dynamic conditional correlation models

    DEFF Research Database (Denmark)

    Hafner, Christian M.; Laurent, Sebastien; Violante, Francesco

    The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized...... by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a non-degenerate diffusion limit can be obtained. Alternative sets of conditions are considered...

  4. STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies

    Directory of Open Access Journals (Sweden)

    Hepburn Iain

    2012-05-01

    Full Text Available Abstract Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins, conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates

  5. STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies

    Science.gov (United States)

    2012-01-01

    Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates models of cellular

  6. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies.

    Science.gov (United States)

    Hepburn, Iain; Chen, Weiliang; Wils, Stefan; De Schutter, Erik

    2012-05-10

    Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. We describe STEPS, a stochastic reaction-diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction-diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. STEPS simulates models of cellular reaction-diffusion systems with complex

  7. Integrating Models of Diffusion and Behavior to Predict Innovation Adoption, Maintenance, and Social Diffusion.

    Science.gov (United States)

    Smith, Rachel A; Kim, Youllee; Zhu, Xun; Doudou, Dimi Théodore; Sternberg, Eleanore D; Thomas, Matthew B

    2018-02-15

    This study documents an investigation into the adoption and diffusion of eave tubes, a novel mosquito vector control, during a large-scale scientific field trial in West Africa. The diffusion of innovations (DOI) and the integrated model of behavior (IMB) were integrated (i.e., innovation attributes with attitudes and social pressures with norms) to predict participants' (N = 329) diffusion intentions. The findings showed that positive attitudes about the innovation's attributes were a consistent positive predictor of diffusion intentions: adopting it, maintaining it, and talking with others about it. As expected by the DOI and the IMB, the social pressure created by a descriptive norm positively predicted intentions to adopt and maintain the innovation. Drawing upon sharing research, we argued that the descriptive norm may dampen future talk about the innovation, because it may no longer be seen as a novel, useful topic to discuss. As predicted, the results showed that as the descriptive norm increased, the intention to talk about the innovation decreased. These results provide broad support for integrating the DOI and the IMB to predict diffusion and for efforts to draw on other research to understand motivations for social diffusion.

  8. Frequency Weighted Model Order Reduction Technique and Error Bounds for Discrete Time Systems

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2014-01-01

    for whole frequency range. However, certain applications (like controller reduction require frequency weighted approximation, which introduce the concept of using frequency weights in model reduction techniques. Limitations of some existing frequency weighted model reduction techniques include lack of stability of reduced order models (for two sided weighting case and frequency response error bounds. A new frequency weighted technique for balanced model reduction for discrete time systems is proposed. The proposed technique guarantees stable reduced order models even for the case when two sided weightings are present. Efficient technique for frequency weighted Gramians is also proposed. Results are compared with other existing frequency weighted model reduction techniques for discrete time systems. Moreover, the proposed technique yields frequency response error bounds.

  9. Colored and dissipative continuous spontaneous localization model and bounds from matter-wave interferometry

    Science.gov (United States)

    Toroš, Marko; Gasbarri, Giulio; Bassi, Angelo

    2017-12-01

    Matter-wave interferometry is a direct test of the quantum superposition principle for massive systems, and of collapse models. Here we show that the bounds placed by matter-wave interferometry depend weakly on the details of the collapse mechanism. Specifically, we compute the bounds on the CSL model and its variants, provided by the KDTL interferometry experiment of Arndt's group (Eibenberger et al. (2013) [3]), which currently holds the record of largest mass in interferometry. We also show that the CSL family of models emerges naturally by considering a minimal set of assumptions. In particular, we construct the dynamical map for the colored and dissipative Continuous Spontaneous Localization (cdCSL) model, which reduces to the CSL model and variants in the appropriate limits. In addition, we discuss the measure of macroscopicity based on the cdCSL model.

  10. Modeling dendrite density from magnetic resonance diffusion measurements

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif

    2007-01-01

    .e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides...

  11. When Is a Diffusion Profile Not a Diffusion Profile? the Importance of Initial State Assumptions in Diffusion Modelling

    Science.gov (United States)

    Morgan, D. J.; Chamberlain, K. J.; Kahl, M.; Potts, N. J.; Pankhurst, M. J.; Wilson, C. J. N.

    2014-12-01

    Over the past 20 years, diffusion chronometers have evolved from a niche tool into one of routine application, with more practitioners, new tools and increasingly large datasets. As we expand the horizons of diffusional geochronometry, it is worth taking stock of developments in methodologies and data acquisition, and taking time to revisit the underpinnings of the technique. Data collected as part of recent projects on Campi Flegrei, the Bishop Tuff and Fimmvörðuháls-Eyjafjallajökull are here used to investigate the initial state assumption, an absolutely vital aspect underpinning most diffusional work and one that is rarely evaluated despite its fundamental importance. To illustrate the nature of the problem we consider two widely-used element-mineral systems for felsic and mafic systems, respectively. First, barium and strontium profiles within sanidine crystals, modelled independently, can give strongly contrasting timescales from the same crystal zone. We can reconcile the datasets only for a situation where the initial boundary within the crystal was not a sharp step function, but relatively fuzzy before diffusion onset. This fuzziness effectively starts both chronometers off with an apparent, and false, pre-existing timescale, impacting the slower-diffusing barium much more strongly than the faster-diffusing strontium, yielding thousands of years of non-existent diffusion history. By combining both elements, a starting width of tens of microns can be shown, shortening the true diffusive timescales from tens of thousands of years to hundreds. Second, in olivine, we encounter different growth-related problems. Here, Fe-Mg interdiffusion occurs at a rate comparable to growth, with the compound nature of zonation making it difficult to extract the diffusion component. This requires a treatment of changing boundary conditions and sequential growth to generate the curvature seen in natural data, in order to recover timescales for anything but the outermost

  12. A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics

    Science.gov (United States)

    He, Ying; Puckett, Elbridge Gerry; Billen, Magali I.

    2017-02-01

    Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly discontinuous. While there are different methods for tracking rock composition in numerical simulations of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of implementation when choosing an appropriate method. Existing methods can be computationally expensive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter (abbreviated as DG-BP) using a second order Runge-Kutta, strong stability-preserving time discretization method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adaptive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demonstrated using the falling box problem. We find that the DG-BP method maintains sharper compositional boundaries (3-5 elements) as compared to an artificial entropy-viscosity method (6-15 elements), although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discontinuity. However, using Taylor-Hood elements and a uniform mesh there is an over-/undershoot error on the order of 0.0001%, but this error increases to 0.01-0.10% when using AMR. Therefore, for research problems in which a continuous field method is desired the DG

  13. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined with the number state method. We find that the relative magnitude of anharmonic coefficient has a significant effect on forming ...

  14. Using dynamical uncertainty models estimating uncertainty bounds on power plant performance prediction

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Mataji, B.

    2007-01-01

    Predicting the performance of large scale plants can be difficult due to model uncertainties etc, meaning that one can be almost certain that the prediction will diverge from the plant performance with time. In this paper output multiplicative uncertainty models are used as dynamical models of th...... models, is applied to two different sets of measured plant data. The computed uncertainty bounds cover the measured plant output, while the nominal prediction is outside these uncertainty bounds for some samples in these examples.  ......Predicting the performance of large scale plants can be difficult due to model uncertainties etc, meaning that one can be almost certain that the prediction will diverge from the plant performance with time. In this paper output multiplicative uncertainty models are used as dynamical models...... of the prediction error. These proposed dynamical uncertainty models result in an upper and lower bound on the predicted performance of the plant. The dynamical uncertainty models are used to estimate the uncertainty of the predicted performance of a coal-fired power plant. The proposed scheme, which uses dynamical...

  15. New bound on low reheating temperature for dark matter in models with early matter domination

    Science.gov (United States)

    Choi, Ki-Young; Takahashi, Tomo

    2017-08-01

    We investigate a new bound on the low reheating temperature in a scenario where the Universe experiences early matter domination before reheating after which the standard big bang cosmology begins. In many models of dark matter (DM), the small scale fluctuations of DM grow during the early matter-domination era and seed the formation of the ultracompact minihalos (UCMHs). Using the constraints on the number of UCMHs from gamma-ray observations, we find a lower bound on the reheating temperature between O (10 )-O (100 ) MeV for WIMP dark matter depending on the nature of DM. A similar bound could be obtained for non-WIMP dark matter by observing UCMHs gravitationally such as pulsar timing, microlensing and so on, in some future observations.

  16. Diffusion

    OpenAIRE

    Gierl, Heribert

    1995-01-01

    Diffusion. - In: Handwörterbuch des Marketing / hrsg. von Bruno Tietz ... - 2., völlig neu gestalt. Aufl. - Stuttgart : Schäffer-Poeschel, 1995. - S. 469-477. - (Enzyklopädie der Betriebswirtschaftslehre ; 4)

  17. Modelling Urban diffuse pollution in groundwater

    Science.gov (United States)

    Jato, Musa; Smith, Martin; Cundy, Andrew

    2017-04-01

    Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.

  18. Evaluation of the Thermodynamic Models for the Thermal Diffusion Factor

    DEFF Research Database (Denmark)

    Gonzalez-Bagnoli, Mariana G.; Shapiro, Alexander; Stenby, Erling Halfdan

    2003-01-01

    Over the years, several thermodynamic models for the thermal diffusion factors for binary mixtures have been proposed. The goal of this paper is to test some of these models in combination with different equations of state. We tested the following models: those proposed by Rutherford and Drickamer...... we applied different thermodynamic models, such as the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The necessity to try different thermo-dynamic models is caused by the high sensitivity of the thermal diffusion factors to the values of the partial molar properties. Two different...

  19. Catchment Models and Management Tools for diffuse Contaminants (Sediment, Phosphorus and Pesticides): DIFFUSE Project

    Science.gov (United States)

    Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael

    2017-04-01

    The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state

  20. A Rough Set Bounded Spatially Constrained Asymmetric Gaussian Mixture Model for Image Segmentation.

    Science.gov (United States)

    Ji, Zexuan; Huang, Yubo; Sun, Quansen; Cao, Guo; Zheng, Yuhui

    2017-01-01

    Accurate image segmentation is an important issue in image processing, where Gaussian mixture models play an important part and have been proven effective. However, most Gaussian mixture model (GMM) based methods suffer from one or more limitations, such as limited noise robustness, over-smoothness for segmentations, and lack of flexibility to fit data. In order to address these issues, in this paper, we propose a rough set bounded asymmetric Gaussian mixture model with spatial constraint for image segmentation. First, based on our previous work where each cluster is characterized by three automatically determined rough-fuzzy regions, we partition the target image into three rough regions with two adaptively computed thresholds. Second, a new bounded indicator function is proposed to determine the bounded support regions of the observed data. The bounded indicator and posterior probability of a pixel that belongs to each sub-region is estimated with respect to the rough region where the pixel lies. Third, to further reduce over-smoothness for segmentations, two novel prior factors are proposed that incorporate the spatial information among neighborhood pixels, which are constructed based on the prior and posterior probabilities of the within- and between-clusters, and considers the spatial direction. We compare our algorithm to state-of-the-art segmentation approaches in both synthetic and real images to demonstrate the superior performance of the proposed algorithm.

  1. Existence and Uniqueness of Positive and Bounded Solutions of a Discrete Population Model with Fractional Dynamics

    Directory of Open Access Journals (Sweden)

    J. E. Macías-Díaz

    2017-01-01

    Full Text Available We depart from the well-known one-dimensional Fisher’s equation from population dynamics and consider an extension of this model using Riesz fractional derivatives in space. Positive and bounded initial-boundary data are imposed on a closed and bounded domain, and a fully discrete form of this fractional initial-boundary-value problem is provided next using fractional centered differences. The fully discrete population model is implicit and linear, so a convenient vector representation is readily derived. Under suitable conditions, the matrix representing the implicit problem is an inverse-positive matrix. Using this fact, we establish that the discrete population model is capable of preserving the positivity and the boundedness of the discrete initial-boundary conditions. Moreover, the computational solubility of the discrete model is tackled in the closing remarks.

  2. Data assimilation experiments using diffusive back-and-forth nudging for the NEMO ocean model

    Science.gov (United States)

    Ruggiero, G. A.; Ourmières, Y.; Cosme, E.; Blum, J.; Auroux, D.; Verron, J.

    2015-04-01

    The diffusive back-and-forth nudging (DBFN) is an easy-to-implement iterative data assimilation method based on the well-known nudging method. It consists of a sequence of forward and backward model integrations, within a given time window, both of them using a feedback term to the observations. Therefore, in the DBFN, the nudging asymptotic behaviour is translated into an infinite number of iterations within a bounded time domain. In this method, the backward integration is carried out thanks to what is called backward model, which is basically the forward model with reversed time step sign. To maintain numeral stability, the diffusion terms also have their sign reversed, giving a diffusive character to the algorithm. In this article the DBFN performance to control a primitive equation ocean model is investigated. In this kind of model non-resolved scales are modelled by diffusion operators which dissipate energy that cascade from large to small scales. Thus, in this article, the DBFN approximations and their consequences for the data assimilation system set-up are analysed. Our main result is that the DBFN may provide results which are comparable to those produced by a 4Dvar implementation with a much simpler implementation and a shorter CPU time for convergence. The conducted sensitivity tests show that the 4Dvar profits of long assimilation windows to propagate surface information downwards, and that for the DBFN, it is worth using short assimilation windows to reduce the impact of diffusion-induced errors. Moreover, the DBFN is less sensitive to the first guess than the 4Dvar.

  3. Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

    Directory of Open Access Journals (Sweden)

    Asao Arai

    2016-01-01

    Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.

  4. Tetraquark bound states and resonances in a unitary microscopic quark model: A case study of bound states of two light quarks and two heavy antiquarks

    Science.gov (United States)

    Bicudo, P.; Cardoso, M.

    2016-11-01

    We address q q Q ¯Q ¯ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix and finding its pole positions in the complex energy plane, for some quantum numbers. However, a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice QCD results for the l l b ¯ b ¯ tetraquark bound states. We conclude that the string flip-flop models need further improvement.

  5. Derivation of effective fission gas diffusivities in UO2 from lower length scale simulations and implementation of fission gas diffusion models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tonks, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-07

    This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO2 were derived for both intrinsic conditions and under irradiation. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.

  6. When mechanism matters: Bayesian forecasting using models of ecological diffusion.

    Science.gov (United States)

    Hefley, Trevor J; Hooten, Mevin B; Russell, Robin E; Walsh, Daniel P; Powell, James A

    2017-05-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting. © 2017 John Wiley & Sons Ltd/CNRS.

  7. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  8. Improved bounds on the epidemic threshold of exact SIS models on complex networks

    KAUST Repository

    Ruhi, Navid Azizan

    2017-01-05

    The SIS (susceptible-infected-susceptible) epidemic model on an arbitrary network, without making approximations, is a 2n-state Markov chain with a unique absorbing state (the all-healthy state). This makes analysis of the SIS model and, in particular, determining the threshold of epidemic spread quite challenging. It has been shown that the exact marginal probabilities of infection can be upper bounded by an n-dimensional linear time-invariant system, a consequence of which is that the Markov chain is “fast-mixing” when the LTI system is stable, i.e. when equation (where β is the infection rate per link, δ is the recovery rate, and λmax(A) is the largest eigenvalue of the network\\'s adjacency matrix). This well-known threshold has been recently shown not to be tight in several cases, such as in a star network. In this paper, we provide tighter upper bounds on the exact marginal probabilities of infection, by also taking pairwise infection probabilities into account. Based on this improved bound, we derive tighter eigenvalue conditions that guarantee fast mixing (i.e., logarithmic mixing time) of the chain. We demonstrate the improvement of the threshold condition by comparing the new bound with the known one on various networks with various epidemic parameters.

  9. Homogenization of neutronic diffusion models; Homogeneisation des modeles de diffusion en neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Capdebosq, Y

    1999-09-01

    In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)

  10. Mesoscale modelling of crack-induced diffusivity in concrete

    Science.gov (United States)

    Nilenius, Filip; Larsson, Fredrik; Lundgren, Karin; Runesson, Kenneth

    2015-02-01

    Cracks have large impact on the diffusivity of concrete since they provide low-resistance pathways for moisture and chloride ions to migrate through the material. In this work, crack-induced diffusivity in concrete is modelled on the heterogeneous mesoscale and computationally homogenized to obtain macroscale diffusivity properties. Computations are carried out using the finite element method on three-dimensional statistical volume elements (SVEs) comprising the mesoscale constituents in terms of cement paste, aggregates and the interfacial transition zone (ITZ). The SVEs are subjected to uni-axial tension loading and cracks are simulated by use of an isotropic damage model. In a damaged finite element, the crack plane is assumed to be perpendicular to the largest principle strain, and diffusivity properties are assigned to the element only in the in-plane direction of the crack by anisotropic constitutive modelling. The numerical results show that the macroscale diffusivity of concrete can be correlated to the applied mechanical straining of the SVE and that the macroscale diffusivity increases mainly in the transversal direction relative to the axis of imposed mechanical straining.

  11. Model of turnover kinetics in the lamellipodium: implications of slow- and fast- diffusing capping protein and Arp2/3 complex

    Science.gov (United States)

    McMillen, Laura M.; Vavylonis, Dimitrios

    2016-12-01

    Cell protrusion through polymerization of actin filaments at the leading edge of motile cells may be influenced by spatial gradients of diffuse actin and regulators. Here we study the distribution of two of the most important regulators, capping protein and Arp2/3 complex, which regulate actin polymerization in the lamellipodium through capping and nucleation of free barbed ends. We modeled their kinetics using data from prior single molecule microscopy experiments on XTC cells. These experiments have provided evidence for a broad distribution of diffusion coefficients of both capping protein and Arp2/3 complex. The slowly diffusing proteins appear as extended ‘clouds’ while proteins bound to the actin filament network appear as speckles that undergo retrograde flow. Speckle appearance and disappearance events correspond to assembly and dissociation from the actin filament network and speckle lifetimes correspond to the dissociation rate. The slowly diffusing capping protein could represent severed capped actin filament fragments or membrane-bound capping protein. Prior evidence suggests that slowly diffusing Apr2/3 complex associates with the membrane. We use the measured rates and estimates of diffusion coefficients of capping protein and Arp2/3 complex in a Monte Carlo simulation that includes particles in association with a filament network and diffuse in the cytoplasm. We consider two separate pools of diffuse proteins, representing fast and slowly diffusing species. We find a steady state with concentration gradients involving a balance of diffusive flow of fast and slow species with retrograde flow. We show that simulations of FRAP are consistent with prior experiments performed on different cell types. We provide estimates for the ratio of bound to diffuse complexes and calculate conditions where Arp2/3 complex recycling by diffusion may become limiting. We discuss the implications of slowly diffusing populations and suggest experiments to distinguish

  12. A cascade computer model for mocrobicide diffusivity from mucoadhesive formulations

    OpenAIRE

    Lee, Yugyung; Khemka, Alok; Acharya, Gayathri; Giri, Namita; Lee, Chi H.

    2015-01-01

    Background The cascade computer model (CCM) was designed as a machine-learning feature platform for prediction of drug diffusivity from the mucoadhesive formulations. Three basic models (the statistical regression model, the K nearest neighbor model and the modified version of the back propagation neural network) in CCM operate sequentially in close collaboration with each other, employing the estimated value obtained from the afore-positioned base model as an input value to the next-position...

  13. Bounds on the Higgs mass in the standard model and the minimal supersymmetric standard model

    CERN Document Server

    Quiros, M.

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the {\\bf Standard Model} can develop a non-standard minimum for values of the field much larger than the weak scale. In those cases the standard minimum becomes metastable and the possibility of decay to the non-standard one arises. Comparison of the decay rate to the non-standard minimum at finite (and zero) temperature with the corresponding expansion rate of the Universe allows to identify the region, in the (M_H, M_t) plane, where the Higgs field is sitting at the standard electroweak minimum. In the {\\bf Minimal Supersymmetric Standard Model}, approximate analytical expressions for the Higgs mass spectrum and couplings are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log corrections. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass o...

  14. Self-similar Gaussian processes for modeling anomalous diffusion

    Science.gov (United States)

    Lim, S. C.; Muniandy, S. V.

    2002-08-01

    We study some Gaussian models for anomalous diffusion, which include the time-rescaled Brownian motion, two types of fractional Brownian motion, and models associated with fractional Brownian motion based on the generalized Langevin equation. Gaussian processes associated with these models satisfy the anomalous diffusion relation which requires the mean-square displacement to vary with tα, 0Brownian motion and time-rescaled Brownian motion all have the same probability distribution function, the Slepian theorem can be used to compare their first passage time distributions, which are different. Finally, in order to model anomalous diffusion with a variable exponent α(t) it is necessary to consider the multifractional extensions of these Gaussian processes.

  15. A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making.

    Science.gov (United States)

    Fard, Pouyan R; Park, Hame; Warkentin, Andrej; Kiebel, Stefan J; Bitzer, Sebastian

    2017-01-01

    Perceptual decision making can be described as a process of accumulating evidence to a bound which has been formalized within drift-diffusion models (DDMs). Recently, an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this Bayesian model directly links information in the stimulus to the decision process. Here, we extend this Bayesian model further and allow inter-trial variability of two parameters following the extended version of the DDM. We derive parameter distributions for the Bayesian model and show that they lead to predictions that are qualitatively equivalent to those made by the extended drift-diffusion model (eDDM). Further, we demonstrate the usefulness of the extended Bayesian model (eBM) for the analysis of concrete behavioral data. Specifically, using Bayesian model selection, we find evidence that including additional inter-trial parameter variability provides for a better model, when the model is constrained by trial-wise stimulus features. This result is remarkable because it was derived using just 200 trials per condition, which is typically thought to be insufficient for identifying variability parameters in DDMs. In sum, we present a Bayesian analysis, which provides for a novel and promising analysis of perceptual decision making experiments.

  16. A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making

    Science.gov (United States)

    Fard, Pouyan R.; Park, Hame; Warkentin, Andrej; Kiebel, Stefan J.; Bitzer, Sebastian

    2017-01-01

    Perceptual decision making can be described as a process of accumulating evidence to a bound which has been formalized within drift-diffusion models (DDMs). Recently, an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this Bayesian model directly links information in the stimulus to the decision process. Here, we extend this Bayesian model further and allow inter-trial variability of two parameters following the extended version of the DDM. We derive parameter distributions for the Bayesian model and show that they lead to predictions that are qualitatively equivalent to those made by the extended drift-diffusion model (eDDM). Further, we demonstrate the usefulness of the extended Bayesian model (eBM) for the analysis of concrete behavioral data. Specifically, using Bayesian model selection, we find evidence that including additional inter-trial parameter variability provides for a better model, when the model is constrained by trial-wise stimulus features. This result is remarkable because it was derived using just 200 trials per condition, which is typically thought to be insufficient for identifying variability parameters in DDMs. In sum, we present a Bayesian analysis, which provides for a novel and promising analysis of perceptual decision making experiments. PMID:28553219

  17. A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making

    Directory of Open Access Journals (Sweden)

    Pouyan R. Fard

    2017-05-01

    Full Text Available Perceptual decision making can be described as a process of accumulating evidence to a bound which has been formalized within drift-diffusion models (DDMs. Recently, an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this Bayesian model directly links information in the stimulus to the decision process. Here, we extend this Bayesian model further and allow inter-trial variability of two parameters following the extended version of the DDM. We derive parameter distributions for the Bayesian model and show that they lead to predictions that are qualitatively equivalent to those made by the extended drift-diffusion model (eDDM. Further, we demonstrate the usefulness of the extended Bayesian model (eBM for the analysis of concrete behavioral data. Specifically, using Bayesian model selection, we find evidence that including additional inter-trial parameter variability provides for a better model, when the model is constrained by trial-wise stimulus features. This result is remarkable because it was derived using just 200 trials per condition, which is typically thought to be insufficient for identifying variability parameters in DDMs. In sum, we present a Bayesian analysis, which provides for a novel and promising analysis of perceptual decision making experiments.

  18. Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain

    Directory of Open Access Journals (Sweden)

    G. Sanchez

    2017-10-01

    Full Text Available Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3 is based on a model proposed by Ruiz-Arias et al. (2010 and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.

  19. Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain

    Science.gov (United States)

    Sanchez, Guadalupe; Serrano, Antonio; Cancillo, María Luisa

    2017-10-01

    Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER) is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3) is based on a model proposed by Ruiz-Arias et al. (2010) and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE) equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.

  20. Modelling and simulation of diffusive processes methods and applications

    CERN Document Server

    Basu, SK

    2014-01-01

    This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport

  1. Crystallization of the Atg12–Atg5 conjugate bound to Atg16 by the free-interface diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Nobuo N.; Fujioka, Yuko [Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-21, W-11, Kita-ku, Sapporo 001-0021 (Japan); Ohsumi, Yoshinori [Division of Molecular Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585 (Japan); Inagaki, Fuyuhiko, E-mail: finagaki@pharm.hokudai.ac.jp [Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-21, W-11, Kita-ku, Sapporo 001-0021 (Japan)

    2008-05-01

    The Atg12–Atg5 conjugate was prepared by in vivo reconstitution and was crystallized with Atg16 using the free-interface diffusion method. Autophagy mediates the bulk degradation of cytoplasmic components in lysosomes/vacuoles. Five autophagy-related (Atg) proteins are involved in a ubiquitin-like protein conjugation system. Atg12 is conjugated to its sole target, Atg5, by two enzymes, Atg7 and Atg10. The Atg12–Atg5 conjugates form a multimeric complex with Atg16. Formation of the Atg12–Atg5–Atg16 ternary complex is crucial for the functions of these proteins on autophagy. Here, the expression, purification and crystallization of the Atg12–Atg5 conjugate bound to the N-terminal region of Atg16 (Atg16N) are reported. The Atg12–Atg5 conjugates were formed by co-expressing Atg5, Atg7, Atg10 and Atg12 in Eschericia coli. The Atg12–Atg5–Atg16N ternary complex was formed by mixing purified Atg12–Atg5 conjugates and Atg16N, and was further purified by gel-filtration chromatography. Crystallization screening was performed by the free-interface diffusion method. Using obtained microcrystals as seeds, large crystals for diffraction data collection were obtained by the sitting-drop vapour-diffusion method. The crystal contained one ternary complex per asymmetric unit, and diffracted to 2.6 Å resolution.

  2. Bound states in a model of interaction of Dirac field with material plane

    Directory of Open Access Journals (Sweden)

    Pismak Yu. M.

    2016-01-01

    Full Text Available In the framework of the Symanzik approach model of the interaction of the Dirac spinor field with the material plane in the 3 + 1-dimensional space is constructed. The model contains eight real parameters characterizing the properties of the material plane. The general solution of the Euler-Lagrange equations of the model and dispersion equations for bound states are analyzed. It is shown that there is a choice of parameters of the model in which the connected states are characterized by dispersion law of a mass-less particle moving along the material plane with the dimensionless Fermi velocity not exceeding one.

  3. Langevin equation with fluctuating diffusivity: A two-state model.

    Science.gov (United States)

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.

  4. Langevin equation with fluctuating diffusivity: A two-state model

    Science.gov (United States)

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.

  5. Upper bound on the gluino mass in supersymmetric models with extra matters

    Directory of Open Access Journals (Sweden)

    Takeo Moroi

    2016-09-01

    Full Text Available We discuss the upper bound on the gluino mass in supersymmetric models with vector-like extra matters. In order to realize the observed Higgs mass of 125 GeV, the gluino mass is bounded from above in supersymmetric models. With the existence of the vector-like extra matters at around TeV, we show that such an upper bound on the gluino mass is significantly reduced compared to the case of minimal supersymmetric standard model. This is due to the fact that radiatively generated stop masses as well the stop trilinear coupling are enhanced in the presence of the vector-like multiplets. In a wide range of parameter space of the model with extra matters, particularly with sizable tan⁡β (which is the ratio of the vacuum expectation values of the two Higgs bosons, the gluino is required to be lighter than ∼3 TeV, which is likely to be within the reach of forthcoming LHC experiment.

  6. Mathematical models for drug diffusion through the compartments of ...

    African Journals Online (AJOL)

    This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick's principle and law of mass action. The rate constants governing the law of mass action ...

  7. A combinatorial model of malware diffusion via bluetooth connections.

    Directory of Open Access Journals (Sweden)

    Stefano Merler

    Full Text Available We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy and closed form (more complex but efficiently computable expression.

  8. A combinatorial model of malware diffusion via bluetooth connections.

    Science.gov (United States)

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.

  9. A coupled model for intragranular deformation and chemical diffusion

    Science.gov (United States)

    Zhong, Xin; Vrijmoed, Johannes; Moulas, Evangelos; Tajčmanová, Lucie

    2017-09-01

    A coupled model for chemical diffusion and mechanical deformation is developed in analogy to the studies of poroelasticity and thermoelasticity. Nondimensionalization of the governing equations yields a controlling dimensionless parameter, the Deborah number, given by the ratio of the characteristic time for pressure relaxation and concentration homogenization. Using the Deborah number two types of plausible chemical zonation are distinguished, i.e. diffusion controlled, and mechanically controlled. The transition between these two types of chemical zonation is determined at the conditions where the Deborah number equals one. We apply our model to a chemically zoned plagioclase rim in a spherical coordinate frame assuming homogeneous initial pressure. Using thermodynamic data, an experimentally derived diffusion coefficient and a viscous flow law for plagioclase, our numerical simulations show that up to ∼0.6 GPa grain-scale pressure variation is generated during the diffusion-deformation process. Due to the mechanical-chemical coupling, the pressure variations maintain the chemical zonation longer than predicted by the classical diffusion model. The fully coupled mechanical-chemical model provides an alternative explanation for the preservation of chemically zoned minerals, and may contribute to a better understanding of metamorphic processes in the deep Earth interior.

  10. Strongest model-independent bound on the lifetime of Dark Matter

    CERN Document Server

    Audren, Benjamin; Mangano, Gianpiero; Serpico, Pasquale Dario; Tram, Thomas

    2014-01-01

    Dark Matter is essential for structure formation in the late Universe so it must be stable on cosmological time scales. But how stable exactly? Only assuming decays into relativistic particles, we report an otherwise model independent bound on the lifetime of Dark Matter using current cosmological data. Since these decays affect only the low-$\\ell$ multipoles of the CMB, the Dark Matter lifetime is expected to correlate with the tensor-to-scalar ratio $r$ as well as curvature $\\Omega_k$. We consider two models, including $r$ and $r+\\Omega_k$ respectively, versus data from Planck, WMAP, WiggleZ and Baryon Acoustic Oscillations, with or without the BICEP2 data (if interpreted in terms of primordial gravitational waves). This results in a lower bound on the lifetime of CDM given by 160Gyr (without BICEP2) or 200Gyr (with BICEP2) at 95% confidence level.

  11. An Improved Upper Bound for the Critical Probability of the Frog Model on Homogeneous Trees

    Science.gov (United States)

    Lebensztayn, Élcio; Machado, Fábio P.; Popov, Serguei

    2005-04-01

    We study the frog model on homogeneous trees, a discrete time system of simple symmetric random walks whose description is as follows. There are active and inactive particles living on the vertices. Each active particle performs a simple symmetric random walk having a geometrically distributed random lifetime with parameter (1 - p). When an active particle hits an inactive particle, the latter becomes active. We obtain an improved upper bound for the critical parameter for having indefinite survival of active particles, in the case of one-particle-per-vertex initial configuration. The main tool is to construct a class of branching processes which are dominated by the frog model and analyze their supercritical behavior. This approach allows us also to present an upper bound for the critical probability in the case of random initial configuration.

  12. Open Systems with Error Bounds: Spin-Boson Model with Spectral Density Variations.

    Science.gov (United States)

    Mascherpa, F; Smirne, A; Huelga, S F; Plenio, M B

    2017-03-10

    In the study of open quantum systems, one of the most common ways to describe environmental effects on the reduced dynamics is through the spectral density. However, in many models this object cannot be computed from first principles and needs to be inferred on phenomenological grounds or fitted to experimental data. Consequently, some uncertainty regarding its form and parameters is unavoidable; this in turn calls into question the accuracy of any theoretical predictions based on a given spectral density. Here, we focus on the spin-boson model as a prototypical open quantum system, find two error bounds on predicted expectation values in terms of the spectral density variation considered, and state a sufficient condition for the strongest one to apply. We further demonstrate an application of our result, by bounding the error brought about by the approximations involved in the hierarchical equations of motion resolution method for spin-boson dynamics.

  13. Mathematical models of a diffusion-convection in porous media

    Directory of Open Access Journals (Sweden)

    Anvarbek M. Meirmanov

    2012-06-01

    Full Text Available Mathematical models of a diffusion-convection in porous media are derived from the homogenization theory. We start with the mathematical model on the microscopic level, which consist of the Stokes system for a weakly compressible viscous liquid occupying a pore space, coupled with a diffusion-convection equation for the admixture. We suppose that the viscosity of the liquid depends on a concentration of the admixture and for this nonlinear system we prove the global in time existence of a weak solution. Next we rigorously fulfil the homogenization procedure as the dimensionless size of pores tends to zero, while the porous body is geometrically periodic. As a result, we derive new mathematical models of a diffusion-convection in absolutely rigid porous media.

  14. Numerical modelling of swirling diffusive flames

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.

  15. Modelling on cavitation in a diffuser with vortex generator

    Directory of Open Access Journals (Sweden)

    Jablonská J.

    2013-04-01

    Full Text Available Based on cavitation modelling in Laval nozzle results and experience, problem with the diffuser with vortex generator was defined. The problem describes unsteady multiphase flow of water. Different cavitation models were used when modelling in Fluent, flow condition is inlet and pressure condition is outlet. Boundary conditions were specified by Energy Institute, Victor Kaplan’s Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology. Numerical modelling is compared with experiment.

  16. Dynamic properties of the Solow model with bounded technological progress and time-to-build technology.

    Science.gov (United States)

    Guerrini, Luca; Sodini, Mauro

    2014-01-01

    We introduce a time-to-build technology in a Solow model with bounded technological progress. Our analysis shows that the system may be asymptotically stable, or it can produce stability switches and Hopf bifurcations when time delay varies. The direction and the stability criteria of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. Numerical simulations confirms the theoretical results.

  17. Modeling Dynamics of Diffusion Across Heterogeneous Social Networks: News Diffusion in Social Media

    Directory of Open Access Journals (Sweden)

    Peter Christen

    2013-10-01

    Full Text Available Diverse online social networks are becoming increasingly interconnected by sharing information. Accordingly, emergent macro-level phenomena have been observed, such as the synchronous spread of information across different types of social media. Attempting to analyze the emergent global behavior is impossible from the examination of a single social platform, and dynamic influences between different social networks are not negligible. Furthermore, the underlying structural property of networks is important, as it drives the diffusion process in a stochastic way. In this paper, we propose a macro-level diffusion model with a probabilistic approach by combining both the heterogeneity and structural connectivity of social networks. As real-world phenomena, we explore instances of news diffusion across different social media platforms from a dataset that contains over 386 million web documents covering a one-month period in early 2011. We find that influence between different media types is varied by the context of information. News media are the most influential in the arts and economy categories, while social networking sites (SNS and blog media are in the politics and culture categories, respectively. Furthermore, controversial topics, such as political protests and multiculturalism failure, tend to spread concurrently across social media, while entertainment topics, such as film releases and celebrities, are more likely driven by interactions within single social platforms. We expect that the proposed model applies to a wider class of diffusion phenomena in diverse fields and that it provides a way of interpreting the dynamics of diffusion in terms of the strength and directionality of influences among populations.

  18. A semi-analytical method for simulating matrix diffusion in numerical transport models.

    Science.gov (United States)

    Falta, Ronald W; Wang, Wenwen

    2017-02-01

    A semi-analytical approximation for transient matrix diffusion is developed for use in numerical contaminant transport simulators. This method is an adaptation and extension of the heat conduction method of Vinsome and Westerveld (1980) used to simulate heat losses during thermally enhanced oil recovery. The semi-analytical method is used in place of discretization of the low permeability materials, and it represents the concentration profile in the low permeability materials with a fitting function that is adjusted in each element at each time-step. The resulting matrix diffusion fluxes are added to the numerical model as linear concentration-dependent source/sink terms. Since only the high permeability zones need to be discretized, the numerical formulation is extremely efficient compared to traditional approaches that require discretization of both the high and low permeability zones. The semi-analytical method compares favorably with the analytical solution for transient one-dimensional diffusion with first order decay, with a two-layer aquifer/aquitard solution, with the solution for transport in a fracture with matrix diffusion and decay, and with a fully numerical solution for transport in a thin sand zone bounded by clay with variable decay rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Early LHC bound on the W{sup Prime} boson mass in the nonuniversal gauge interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Gyun [Department of Science Education, Gwangju National University of Education, Gwangju 500-703 (Korea, Republic of); Lee, Kang Young, E-mail: kylee14214@gmail.com [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2012-01-05

    We study the phenomenology of the heavy charged gauge boson and obtain the lower bounds on its mass with the early LHC data at 7 TeV center-of-mass energy in the nonuniversal gauge interaction model, in which the electroweak SU(2) gauge group depends upon the fermion family. We found that the direct bound with the early data of the LHC is already better than the indirect bound on the mass of the W{sup Prime} boson.

  20. A New Boundary Model for Simulating Complex and Flexible Wall Bounded Domain in Dissipative Particle Dynamics

    Directory of Open Access Journals (Sweden)

    Saeid Mokhtarian

    2014-01-01

    Full Text Available Despite extensive area of applications, simulation of complex wall bounded problems or any deformable boundary is still a challenge in a Dissipative Particle Dynamics simulation. This limitation is rooted in the soft force nature of DPD and the fact that we need to use an antipenetration model for escaped particles. In the present paper, we propose a new model of antipenetration which preserves the conservation of linear momentum on the boundaries and enables us to simulate complex and flexible boundaries. Finally by performing numerical simulations, we demonstrate the validity of our new model.

  1. Small-signal modeling of MOSFET cascode with merged diffusion

    Science.gov (United States)

    Yun, Yeonam; Jhon, Hee-Sauk; Jeon, Jongwook; Lee, Jaehong; Shin, Hyungcheol

    2009-05-01

    For the first time, the small-signal model of MOSFET cascode with merged diffusion is presented. It is the cascade of the two quasi-static MOSFET small-signal equivalent circuits. Drain of one transistor and source of another transistor is shared with merged diffusion. By Y-parameter analysis, capacitances, resistances and transconductances comprising the small-signal equivalent circuit were extracted analytically using four port S parameter measurement. This modeling method was verified with the measured Y parameter data up to 15 GHz.

  2. Modeling Diffusion of Many Innovations via Multilevel Diffusion Curves: Payola in Pop Music Radio

    OpenAIRE

    Rossman, Gabriel; Chiu, Ming Ming; Mol, Joeri

    2006-01-01

    We introduce a new statistical method – multilevel diffusion curves – to model how multiple innovations spread through an industry. Specifically, we analyze when radio stations begin broadcasting 534 pop singles. Ordinarily radio stations imitate one another, an endogenous process producing a characteristic “s-curve.” However, payola can dwarf this process and produce a characteristic negative exponential curve, controlling for the song artist's number of successful songs in the past year. Th...

  3. Diffusion in energy materials: Governing dynamics from atomistic modelling

    Science.gov (United States)

    Parfitt, D.; Kordatos, A.; Filippatos, P. P.; Chroneos, A.

    2017-09-01

    Understanding diffusion in energy materials is critical to optimising the performance of solid oxide fuel cells (SOFCs) and batteries both of which are of great technological interest as they offer high efficiency for cleaner energy conversion and storage. In the present review, we highlight the insights offered by atomistic modelling of the ionic diffusion mechanisms in SOFCs and batteries and how the growing predictive capability of high-throughput modelling, together with our new ability to control compositions and microstructures, will produce advanced materials that are designed rather than chosen for a given application. The first part of the review focuses on the oxygen diffusion mechanisms in cathode and electrolyte materials for SOFCs and in particular, doped ceria and perovskite-related phases with anisotropic structures. The second part focuses on disordered oxides and two-dimensional materials as these are very promising systems for battery applications.

  4. Estimation and prediction under local volatility jump-diffusion model

    Science.gov (United States)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  5. The development and verification of the Perez diffuse radiation model

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.; Stewart, R.; Seals, R.; Guertin, T.

    1988-10-01

    The purpose of this work was to determine site specific coefficients (within the US) for use with the Perez diffuse irradiance model. The model predicts diffuse irradiance on tilted planes of any orientation for all insolation conditions, based on the knowledge of direct and global (or diffuse) irradiance. This is a component of SNLA's photovoltaic simulation program PVFORM. The model consists of (1) a pre-set geometric framework that describes the main non-isotropic features of sky radiance--circumsolar and horizon/zenith effects--and (2) an experimentally derived component that describes the variations of these anisotropic effects with weather conditions. A measurement program was initiated to provide the data necessary for (1) deriving the model's experimental component for several US locations, (2) comparing model configuration and evaluating performance at these locations and (3) evaluating site dependency and recommending, if justified, model configurations adapted to particular environments/climates. Five environmentally distinct sites were selected based on their potential impact on model performance. In addition, work was performed to improve sky condition parameterization and eliminate all unjustified complexities of the original model. The main results of this work are the following: (1) the model algorithm has been greatly simplified while conserving original accuracy, (2) the physical soundness and effectiveness of the insolation parameterization method have been improved, (3) one unique model, with a fixed set of coefficients, has been shown to be sufficiently accurate to describe sites within the US. 22 refs., 19 figs., 14 tabs.

  6. Atomistic model for excitons: Capturing Strongly Bound Excitons in Monolayer Transition-Metal Dichalcogenides

    Science.gov (United States)

    Tseng, Frank; Simsek, Ergun; Gunlycke, Daniel

    2015-03-01

    Monolayer transition-metal dichalcogenides form a direct bandgap predicted in the visible regime making them attractive host materials for various electronic and optoelectronic applications. Due to a weak dielectric screening in these materials, strongly bound electron-hole pairs or excitons have binding energies up to at least several hundred meV's. While the conventional wisdom is to think of excitons as hydrogen-like quasi-particles, we show that the hydrogen model breaks down for these experimentally observed strongly bound, room-temperature excitons. To capture these non-hydrogen-like photo-excitations, we introduce an atomistic model for excitons that predicts both bright excitons and dark excitons, and their broken degeneracy in these two-dimensional materials. For strongly bound exciton states, the lattice potential significantly distorts the envelope wave functions, which affects predicted exciton peak energies. The combination of large binding energies and non-degeneracy of exciton states in monolayer transition metal dichalogendies may furthermore be exploited in room temperature applications where prolonged exciton lifetimes are necessary. This work has been funded by the Office of Naval Research (ONR), directly and through the Naval Research Laboratory (NRL). F.T and E.S acknowledge support from NRL through the NRC Research Associateship Program and ONR Summer Faculty Program, respectively.

  7. Opinion formation and distribution in a bounded-confidence model on various networks

    Science.gov (United States)

    Meng, X. Flora; Van Gorder, Robert A.; Porter, Mason A.

    2018-02-01

    In the social, behavioral, and economic sciences, it is important to predict which individual opinions eventually dominate in a large population, whether there will be a consensus, and how long it takes for a consensus to form. Such ideas have been studied heavily both in physics and in other disciplines, and the answers depend strongly both on how one models opinions and on the network structure on which opinions evolve. One model that was created to study consensus formation quantitatively is the Deffuant model, in which the opinion distribution of a population evolves via sequential random pairwise encounters. To consider heterogeneity of interactions in a population along with social influence, we study the Deffuant model on various network structures (deterministic synthetic networks, random synthetic networks, and social networks constructed from Facebook data). We numerically simulate the Deffuant model and conduct regression analyses to investigate the dependence of the time to reach steady states on various model parameters, including a confidence bound for opinion updates, the number of participating entities, and their willingness to compromise. We find that network structure and parameter values both have important effects on the convergence time and the number of steady-state opinion groups. For some network architectures, we observe that the relationship between the convergence time and model parameters undergoes a transition at a critical value of the confidence bound. For some networks, the steady-state opinion distribution also changes from consensus to multiple opinion groups at this critical value.

  8. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    Science.gov (United States)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  9. Reaction-diffusion models of decontamination

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves...... in the aqueous solution and then is oxidized by the decontaminant. The polymer is insoluble in water, and so builds up near the interface, where its presence can impede the transport of contaminant. In these circumstances, Dstl wish to have mathematical models that give an understanding of the process, and can...

  10. Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis.

    Directory of Open Access Journals (Sweden)

    Jonathan Saragosti

    Full Text Available The bacterium Escherichia coli in suspension in a liquid medium swims by a succession of runs and tumbles, effectively describing a random walk. The tumbles randomize incompletely, i.e. with a directional persistence, the orientation taken by the bacterium. Here, we model these tumbles by an active rotational diffusion process characterized by a diffusion coefficient and a diffusion time. In homogeneous media, this description accounts well for the experimental reorientations. In shallow gradients of nutrients, tumbles are still described by a unique rotational diffusion coefficient. Together with an increase in the run length, these tumbles significantly contribute to the net chemotactic drift via a modulation of their duration as a function of the direction of the preceding run. Finally, we discuss the limits of this model in propagating concentration waves characterized by steep gradients. In that case, the effective rotational diffusion coefficient itself varies with the direction of the preceding run. We propose that this effect is related to the number of flagella involved in the reorientation process.

  11. Electron transfer between physically bound electron donors and acceptors: a fluorescence blob model approach.

    Science.gov (United States)

    Baig, Christine Keyes; Duhamel, Jean

    2010-11-11

    The present study reports on the applicability of the fluorescence blob model (FBM) to analyze the complex fluorescence decays obtained with DNA-intercalated ethidium bromide (EB) as it transfers an electron to copper cations bound to the DNA helix. Traditionally, the information retrieved about the electron transfer process taking place between an electron donor intercalated in DNA and an electron acceptor physically and randomly bound to DNA has been limited due to the distribution of distances that quenching can occur over, which leads to a distribution of rate constants resulting in complex fluorescence decays. These complications can be overcome by analyzing the fluorescence data with a fluorescence blob model (FBM) that allows for the study of fluorescence quenching between fluorophores and quenchers randomly spaced along a polymeric backbone. The fluorescence decays obtained for EB intercalated between two DNA base pairs (bp) as it transfers an electron to copper randomly bound to the DNA were well fit with the FBM. In the FBM analysis, electron transfer is characterized by the size of a blob in term of base pairs, N(blob), over which electron transfer occurs, as well as the rate constant of electron transfer inside a blob, k(blob). The present work demonstrates that electron transfer between intercalated EB and randomly bound copper occurs over an average distance that increases with increasing duplex length up to a duplex length of 12 bp, beyond which the distance over which electron transfer occurs remains constant with duplex length and equals 10.8 ± 0.4 bp.

  12. Gamow shell-model description of weakly bound and unbound nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Michel, N.; Nazarewicz, W. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Ploszajczak, M.; Rotureau, J. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DSM- NRS/IN2P3, BP 55027, F-14076 Caen Cedex 05 (France)

    2004-12-01

    Recently, the shell model in the complex k-plane (the so-called Gamow Shell Model) has been formulated using a complex Berggren ensemble representing bound single-particle states, single-particle resonances, and non-resonant continuum states. In this framework, we shall discuss binding energies and energy spectra of neutron-rich helium and lithium isotopes. The single-particle basis used is that of the Hartree-Fock potential generated self-consistently by the finite-range residual interaction. (Author) 21 refs., 5 tabs., 2 figs.

  13. The Tightness of the Kesten-Stigum Reconstruction Bound of Symmetric Model with Multiple Mutations

    Science.gov (United States)

    Liu, Wenjian; Jammalamadaka, Sreenivasa Rao; Ning, Ning

    2017-12-01

    It is well known that reconstruction problems, as the interdisciplinary subject, have been studied in numerous contexts including statistical physics, information theory and computational biology, to name a few. We consider a 2q-state symmetric model, with two categories of q states in each category, and 3 transition probabilities: the probability to remain in the same state, the probability to change states but remain in the same category, and the probability to change categories. We construct a nonlinear second-order dynamical system based on this model and show that the Kesten-Stigum reconstruction bound is not tight when q ≥ 4.

  14. Wedge-Local Fields in Integrable Models with Bound States II: Diagonal S-Matrix

    Science.gov (United States)

    Cadamuro, Daniela; Tanimoto, Yoh

    2017-01-01

    We construct candidates for observables in wedge-shaped regions for a class of 1+1-dimensional integrable quantum field theories with bound states whose S-matrix is diagonal, by extending our previous methods for scalar S-matrices. Examples include the Z(N)-Ising models, the A_N-affine Toda field theories and some S-matrices with CDD factors. We show that these candidate operators which are associated with elementary particles commute weakly on a dense domain. For the models with two species of particles, we can take a larger domain of weak commutativity and give an argument for the Reeh-Schlieder property.

  15. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    Energy Technology Data Exchange (ETDEWEB)

    KALYANAPU, ALFRED [Los Alamos National Laboratory; MCPHERSON, TIMOTHY N. [Los Alamos National Laboratory; BURIAN, STEVEN J. [NON LANL

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  16. Statistical validation of engineering and scientific models : bounds, calibration, and extrapolation.

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Kevin J.; Hills, Richard Guy (New Mexico State University, Las Cruces, NM)

    2005-04-01

    Numerical models of complex phenomena often contain approximations due to our inability to fully model the underlying physics, the excessive computational resources required to fully resolve the physics, the need to calibrate constitutive models, or in some cases, our ability to only bound behavior. Here we illustrate the relationship between approximation, calibration, extrapolation, and model validation through a series of examples that use the linear transient convective/dispersion equation to represent the nonlinear behavior of Burgers equation. While the use of these models represents a simplification relative to the types of systems we normally address in engineering and science, the present examples do support the tutorial nature of this document without obscuring the basic issues presented with unnecessarily complex models.

  17. Three dimensional simulated modelling of diffusion capacitance of ...

    African Journals Online (AJOL)

    A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...

  18. Regularization modeling for large-eddy simulation of diffusion flames

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Wesseling, P.; Oñate, E.; Périaux, J.

    We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more

  19. Modeling the diffusion of phosphorus in silicon in 3-D

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.R. [Univ. of Texas, Austin, TX (United States)

    1994-12-31

    The use of matrix preconditioning in semiconductor process simulation is examined. The simplified nonlinear single-species model for the diffusion of phosphorus into silicon is considered. The experimental three-dimensional simulator, PEPPER3, which uses finite differences and the numerical method of lines to implement the reaction-diffusion equation is modified to allow NSPCG to be called to solve the linear system in the inner Newton loop. Use of NSPCG allowed various accelerators such as Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) to be used in conjunction with preconditioners such as Richardson, Jacobi, and Incomplete Cholesky.

  20. Modeling Radiation Belt Electron Dynamics with the DREAM3D Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Weichao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cunningham, Gregory S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Michael G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Steven K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blake, Bernard J. [The Aerospace Corporation, El Segundo, CA (United States); Baker, Daniel N. [Lab. for Atmospheric and Space Physics, Boulder, CO (United States); Spence, Harlan [Univ. of New Hampshire, Durham, NH (United States)

    2014-02-14

    The simulation results from our 3D diffusion model on the CRRES era suggest; our model captures the general variations of radiation belt electrons, including the dropouts and the enhancements; the overestimations inside the plasmapause can be improved by increasing the PA diffusion from hiss waves; and that better DLL and wave models are required.

  1. A comparison between skeleton and bounding box models for falling direction recognition

    Science.gov (United States)

    Narupiyakul, Lalita; Srisrisawang, Nitikorn

    2017-12-01

    Falling is an injury that can lead to a serious medical condition in every range of the age of people. However, in the case of elderly, the risk of serious injury is much higher. Due to the fact that one way of preventing serious injury is to treat the fallen person as soon as possible, several works attempted to implement different algorithms to recognize the fall. Our work compares the performance of two models based on features extraction: (i) Body joint data (Skeleton Data) which are the joint's positions in 3 axes and (ii) Bounding box (Box-size Data) covering all body joints. Machine learning algorithms that were chosen are Decision Tree (DT), Naïve Bayes (NB), K-nearest neighbors (KNN), Linear discriminant analysis (LDA), Voting Classification (VC), and Gradient boosting (GB). The results illustrate that the models trained with Skeleton data are performed far better than those trained with Box-size data (with an average accuracy of 94-81% and 80-75%, respectively). KNN shows the best performance in both Body joint model and Bounding box model. In conclusion, KNN with Body joint model performs the best among the others.

  2. Priority diffusion model in lattices and complex networks.

    Science.gov (United States)

    Maragakis, Michalis; Carmi, Shai; ben-Avraham, Daniel; Havlin, Shlomo; Argyrakis, Panos

    2008-02-01

    We introduce a model for diffusion of two classes of particles (A and B ) with priority: where both species are present in the same site the motion of A's takes precedence over that of B's. This describes realistic situations in wireless and communication networks. In regular lattices the diffusion of the two species is normal, but the B particles are significantly slower due to the presence of the A particles. From the fraction of sites where the B particles can move freely, which we compute analytically, we derive the diffusion coefficients of the two species. In heterogeneous networks the fraction of sites where B's are free decreases exponentially with the degree of the sites. This, coupled with accumulation of particles in high-degree nodes, leads to trapping of the low priority particles in scale-free networks.

  3. Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways

    Science.gov (United States)

    Kilinc, Devrim; Blasiak, Agata; O'Mahony, James J.; Lee, Gil U.

    2014-11-01

    Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules, and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.

  4. Bivariate Nonlinear Diffusion Degradation Process Modeling via Copula and MCMC

    Directory of Open Access Journals (Sweden)

    Huibing Hao

    2014-01-01

    Full Text Available A novel reliability assessment method for degradation product with two dependent performance characteristics (PCs is proposed, which is different from existing work that only utilized one dimensional degradation data. In this model, the dependence of two PCs is described by the Frank copula function, and each PC is governed by a random effected nonlinear diffusion process where random effects capture the unit to unit differences. Considering that the model is so complicated and analytically intractable, Markov Chain Monte Carlo (MCMC method is used to estimate the unknown parameters. A numerical example about LED lamp is given to demonstrate the usefulness and validity of the proposed model and method. Numerical results show that the random effected nonlinear diffusion model is very useful by checking the goodness of fit of the real data, and ignoring the dependence between PCs may result in different reliability conclusion.

  5. On a Generalized Squared Gaussian Diffusion Model for Option Valuation

    Directory of Open Access Journals (Sweden)

    Edeki S.O.

    2017-01-01

    Full Text Available In financial mathematics, option pricing models are vital tools whose usefulness cannot be overemphasized. Modern approaches and modelling of financial derivatives are therefore required in option pricing and valuation settings. In this paper, we derive via the application of Ito lemma, a pricing model referred to as Generalized Squared Gaussian Diffusion Model (GSGDM for option pricing and valuation. Same approach can be considered via Stratonovich stochastic dynamics. We also show that the classical Black-Scholes, and the square root constant elasticity of variance models are special cases of the GSGDM. In addition, general solution of the GSGDM is obtained using modified variational iterative method (MVIM.

  6. Bounding the Electromagnetic and Weak Dipole Moments of the Tau-Lepton in a Simplest Little Higgs Model

    Science.gov (United States)

    Gutiérrez-Rodríguez, A.

    From the total cross-section for the reaction e+e-→τ+τ-γ at the Z1 pole and in the framework of a simplest little Higgs model (SLHM), we get a limit on the characteristic energy scale of the model f, f ≥ 5.4 TeV, which in turn induces bounds on the electromagnetic and weak dipole moments of the tau-lepton. Our bounds on the electromagnetic moments are consistent with the bounds obtained by the L3 and OPAL collaborations for the reaction e+e-→τ+τ-γ. We also obtained bounds on the tau weak dipole moments which are consistent with the bounds obtained recently by the DELPHI and ALEPH collaborations from the reaction e+e-→τ+τ-.

  7. Macroscopic diffusion models for precipitation in crystalline gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Sven-Joachim Wolfgang

    2009-09-21

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  8. The Cramer-Rao Bound and DMT Signal Optimisation for the Identification of a Wiener-Type Model

    Directory of Open Access Journals (Sweden)

    H. Koeppl

    2004-09-01

    Full Text Available In linear system identification, optimal excitation signals can be determined using the Cramer-Rao bound. This problem has not been thoroughly studied for the nonlinear case. In this work, the Cramer-Rao bound for a factorisable Volterra model is derived. The analytical result is supported with simulation examples. The bound is then used to find the optimal excitation signal out of the class of discrete multitone signals. As the model is nonlinear in the parameters, the bound depends on the model parameters themselves. On this basis, a three-step identification procedure is proposed. To illustrate the procedure, signal optimisation is explicitly performed for a third-order nonlinear model. Methods of nonlinear optimisation are applied for the parameter estimation of the model. As a baseline, the problem of optimal discrete multitone signals for linear FIR filter estimation is reviewed.

  9. Robust and fast nonlinear optimization of diffusion MRI microstructure models.

    Science.gov (United States)

    Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A

    2017-07-15

    Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of

  10. Multi-Level Reduced Order Modeling Equipped with Probabilistic Error Bounds

    Science.gov (United States)

    Abdo, Mohammad Gamal Mohammad Mostafa

    This thesis develops robust reduced order modeling (ROM) techniques to achieve the needed efficiency to render feasible the use of high fidelity tools for routine engineering analyses. Markedly different from the state-of-the-art ROM techniques, our work focuses only on techniques which can quantify the credibility of the reduction which can be measured with the reduction errors upper-bounded for the envisaged range of ROM model application. Our objective is two-fold. First, further developments of ROM techniques are proposed when conventional ROM techniques are too taxing to be computationally practical. This is achieved via a multi-level ROM methodology designed to take advantage of the multi-scale modeling strategy typically employed for computationally taxing models such as those associated with the modeling of nuclear reactor behavior. Second, the discrepancies between the original model and ROM model predictions over the full range of model application conditions are upper-bounded in a probabilistic sense with high probability. ROM techniques may be classified into two broad categories: surrogate construction techniques and dimensionality reduction techniques, with the latter being the primary focus of this work. We focus on dimensionality reduction, because it offers a rigorous approach by which reduction errors can be quantified via upper-bounds that are met in a probabilistic sense. Surrogate techniques typically rely on fitting a parametric model form to the original model at a number of training points, with the residual of the fit taken as a measure of the prediction accuracy of the surrogate. This approach, however, does not generally guarantee that the surrogate model predictions at points not included in the training process will be bound by the error estimated from the fitting residual. Dimensionality reduction techniques however employ a different philosophy to render the reduction, wherein randomized snapshots of the model variables, such as the

  11. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  12. Fractional Heat Conduction Models and Thermal Diffusivity Determination

    Directory of Open Access Journals (Sweden)

    Monika Žecová

    2015-01-01

    Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.

  13. A Diffusion Model for Two-sided Service Systems

    Science.gov (United States)

    Homma, Koichi; Yano, Koujin; Funabashi, Motohisa

    A diffusion model is proposed for two-sided service systems. ‘Two-sided’ refers to the existence of an economic network effect between two different and interrelated groups, e.g., card holders and merchants in an electronic money service. The service benefit for a member of one side depends on the number and quality of the members on the other side. A mathematical model by J. H. Rohlfs explains the network (or bandwagon) effect of communications services. In Rohlfs' model, only the users' group exists and the model is one-sided. This paper extends Rohlfs' model to a two-sided model. We propose, first, a micro model that explains individual behavior in regard to service subscription of both sides and a computational method that drives the proposed model. Second, we develop macro models with two diffusion-rate variables by simplifying the micro model. As a case study, we apply the models to an electronic money service and discuss the simulation results and actual statistics.

  14. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Goodson, Kenneth E. (Stanford University, Stanford, CA)

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  15. What is a leader of opinion formation in bounded confidence models?

    CERN Document Server

    Kurmyshev, E

    2013-01-01

    Taking a decision in democratic social groups is based on the opinion of the majority or on the consensus. So, the study of opinion dynamics is of great interest in analyzing social phenomena. Among the different models of opinion dynamics, bounded confidence models have been studied in different contexts and shown interesting dynamics [1-3]. In [E. Kurmyshev, H.A. Ju\\'arez, and R.A. Gonz\\'alez-Silva, Phys. A 390, 16 (2011)] we proposed a new bounded confidence model and studied the self-formation of opinion in heterogeneous societies composed by agents of two psychological types, concord (C-) and partial antagonism (PA-) agents. In this work we study the influence of "leaders" on the clustering of opinions. Mixed C/PA-societies along with the pure C- and PA-society are studied. The influence of the leader's connectivity in the network, his toughness or tolerance and his opinion on the opinion dynamics is studied as a function of the initial opinion uncertainty (tolerance) of the population. Numerical results...

  16. Efficacy of the chemotherapeutic action of HPMA copolymer‐bound doxorubicin in a solid tumor model of ovarian carcinoma

    National Research Council Canada - National Science Library

    Minko, Tamara; Kopečková, Pavla; Kopeček, Jindřich

    2000-01-01

    Anticancer activity and main mechanisms of action of free doxorubicin (DOX) and HPMA copolymer‐bound DOX (P(GFLG)‐DOX) were studied in solid tumor mice models of DOX sensitive and resistant human ovarian carcinoma...

  17. Using a Water Balance Model to Bound Potential Irrigation Development in the Upper Blue Nile Basin

    Science.gov (United States)

    Jain Figueroa, A.; McLaughlin, D.

    2016-12-01

    The Grand Ethiopian Renaissance Dam (GERD), on the Blue Nile is an example of water resource management underpinning food, water and energy security. Downstream countries have long expressed concern about water projects in Ethiopia because of possible diversions to agricultural uses that could reduce flow in the Nile. Such diversions are attractive to Ethiopia as a partial solution to its food security problems but they could also conflict with hydropower revenue from GERD. This research estimates an upper bound on diversions above the GERD project by considering the potential for irrigated agriculture expansion and, in particular, the availability of water and land resources for crop production. Although many studies have aimed to simulate downstream flows for various Nile basin management plans, few have taken the perspective of bounding the likely impacts of upstream agricultural development. The approach is to construct an optimization model to establish a bound on Upper Blue Nile (UBN) agricultural development, paying particular attention to soil suitability and seasonal variability in climate. The results show that land and climate constraints impose significant limitations on crop production. Only 25% of the land area is suitable for irrigation due to the soil, slope and temperature constraints. When precipitation is also considered only 11% of current land area could be used in a way that increases water consumption. The results suggest that Ethiopia could consume an additional 3.75 billion cubic meters (bcm) of water per year, through changes in land use and storage capacity. By exploiting this irrigation potential, Ethiopia could potentially decrease the annual flow downstream of the UBN by 8 percent from the current 46 bcm/y to the modeled 42 bcm/y.

  18. Local Model Checking of Weighted CTL with Upper-Bound Constraints

    DEFF Research Database (Denmark)

    Jensen, Jonas Finnemann; Larsen, Kim Guldstrand; Srba, Jiri

    2013-01-01

    We present a symbolic extension of dependency graphs by Liu and Smolka in order to model-check weighted Kripke structures against the logic CTL with upper-bound weight constraints. Our extension introduces a new type of edges into dependency graphs and lifts the computation of fixed-points from...... boolean domain to nonnegative integers in order to cope with the weights. We present both global and local algorithms for the fixed-point computation on symbolic dependency graphs and argue for the advantages of our approach compared to the direct encoding of the model checking problem into dependency...... graphs. We implement all algorithms in a publicly available tool prototype and evaluate them on several experiments. The principal conclusion is that our local algorithm is the most efficient one with an order of magnitude improvement for model checking problems with a high number of “witnesses”....

  19. Modeling information diffusion in time-varying community networks

    Science.gov (United States)

    Cui, Xuelian; Zhao, Narisa

    2017-12-01

    Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.

  20. An innovation diffusion model for new mobile technologies acceptance

    Directory of Open Access Journals (Sweden)

    Barkoczia Nadi

    2017-01-01

    Full Text Available This paper aims to approach the diffusion model developed in 1960 by Frank Bass has been utilized to study the distribution of different types of new products and services. The Bass Model helps by describing the process in which new products are adopted in a market. This model is a useful tool for predicting the first purchase of an innovative product for which there are competing alternatives on the market. It also provides the innovator with information regarding the size of customers and the adoption time for the product. The second part of the paper is dedicated to a monographic study of specific conceptual correlations between the diffusion of technology and marketing management that emphasizes technological uncertainty and market uncertainty as major risks to innovative projects. In the final section, the results of empirical research conducted in Baia-Mare, Romania will be presented in a way that uses diffusion Bass model to estimate the adoption period for new mobile technologies.

  1. Water diffusion in bicelles and the mixed bicelle model.

    Science.gov (United States)

    Soong, Ronald; Macdonald, Peter M

    2009-01-06

    To test a prediction of the mixed bicelle model, stimulated echo (STE) pulsed field gradient (PFG) (1)H nuclear magnetic resonance (NMR) measurements of water diffusion between and across bicellar lamellae were performed in positively and negatively magnetically aligned bicelles, composed of mixtures of DHPC (1,2-dihexanoyl-sn-glycero-3-phosphocholine) and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), as a function of temperature and of the proportion of added short-chain lipid DHPC. (31)P NMR spectra obtained for each situation confirmed that the DHPC undergoes fast exchange between curved and planar regions as per the mixed bicelle model and permitted an estimate of the proportion of the two DHPC populations. Water diffusion across the bicellar lamellae was shown to scale directly with q*, the fraction of edge versus planar phospholipid, rather than simply the ratio q, the global fraction of long-chain to short-chain phospholipid. Geometric modeling of the dependence of water diffusion on q* suggested an upper limit of 400 A for the size of DHPC-rich toroidal perforations within the bicelle lamellae. These findings constitute an independent confirmation of the mixed bicelle model in which DHPC is not confined to edge regions but enjoys, instead, a finite miscibility with DMPC.

  2. Experimental exploration of diffusion panel labyrinth in scale model

    Science.gov (United States)

    Vance, Mandi M.

    Small rehearsal and performance venues often lack the rich reverberation found in larger spaces. Higini Arau-Puchades has designed and implemented a system of diffusion panels in the Orchestra Rehearsal Room at the Great Theatre Liceu and the Tonhalle St. Gallen that lengthen the reverberation time. These panels defy traditional room acoustics theory which holds that adding material to a room will shorten the reverberation time. This work explores several versions of Arau-Puchades' panels and room characteristics in scale model. Reverberation times are taken from room impulse response measurements in order to better understand the unusual phenomenon. Scale modeling enables many tests but has limitations in its accuracy due to the higher frequency range involved. Further investigations are necessary to establish how the sound energy interacts with the diffusion panels and confirm their validity in a range of applications.

  3. VON MISES-FISHER MIXTURE MODEL OF THE DIFFUSION ODF

    Science.gov (United States)

    McGraw, Tim; Vemuri, Baba C.; Yezierski, Bob; Mareci, Thomas

    2009-01-01

    High angular resolution diffusion imaging (HARDI) permits the computation of water molecule displacement probabilities over the sphere. This probability is often referred to as the orientation distribution function (ODF). In this paper we present a novel model for representing this diffusion ODF namely, a mixture of von Mises-Fisher (vMF) distributions. Our model is compact in that it requires very few parameters to represent complicated ODF geometries which occur specifically in the presence of heterogeneous nerve fiber orientations. We present a Riemannian geometric framework for computing intrinsic distances (in closed-form) and for performing interpolation between ODFs represented by vMF mixtures. We also present closed-form equations for entropy and variance based anisotropy measures that are then computed and illustrated for real HARDI data from a rat brain. PMID:19759891

  4. Modeling and Analysis of New Products Diffusion on Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Shuping Li

    2014-01-01

    Full Text Available We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation diffusion is successful or not, or else it is proved that the network model has at least one positive equilibrium. For networks with the power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products propagation strategies for two classes of nodes in scale-free networks.

  5. Social influence and perceptual decision making: a diffusion model analysis.

    Science.gov (United States)

    Germar, Markus; Schlemmer, Alexander; Krug, Kristine; Voss, Andreas; Mojzisch, Andreas

    2014-02-01

    Classic studies on social influence used simple perceptual decision-making tasks to examine how the opinions of others change individuals' judgments. Since then, one of the most fundamental questions in social psychology has been whether social influence can alter basic perceptual processes. To address this issue, we used a diffusion model analysis. Diffusion models provide a stochastic approach for separating the cognitive processes underlying speeded binary decisions. Following this approach, our study is the first to disentangle whether social influence on decision making is due to altering the uptake of available sensory information or due to shifting the decision criteria. In two experiments, we found consistent evidence for the idea that social influence alters the uptake of available sensory evidence. By contrast, participants did not adjust their decision criteria.

  6. Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core.

    Science.gov (United States)

    Ziemba, Brian P; Falke, Joseph J

    2013-01-01

    Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer. Other peripheral proteins exhibit more complex bilayer contacts, for example classical protein kinase C isoforms (PKCs) bind as many as six lipids in stepwise fashion, resulting in the penetration of three PKC domains (C1A, C1B, C2) into the bilayer headgroup and hydrocarbon regions. A molecular understanding of the molecular features that control the diffusion speeds of proteins bound to supported bilayers would enable key molecular information to be extracted from experimental diffusion constants, revealing protein-lipid and protein-bilayer interactions difficult to study by other methods. The present study investigates a range of 11 different peripheral protein constructs comprised by 1-3 distinct domains (PH, C1A, C1B, C2, anti-lipid antibody). By combining these constructs with various combinations of target lipids, the study measures 2D diffusion constants on supported bilayers for 17 different protein-lipid complexes. The resulting experimental diffusion constants, together with the known membrane interaction parameters of each complex, are used to analyze the molecular features correlated with diffusional slowing and bilayer friction. The findings show that both (1) individual bound lipids and (2) individual protein domains that penetrate into the hydrocarbon core make additive contributions to the friction against the bilayer, thereby defining the 2D diffusion constant. An empirical formula is developed that accurately estimates the diffusion

  7. Stationary Patterns of a Cross-Diffusion Epidemic Model

    Directory of Open Access Journals (Sweden)

    Yongli Cai

    2013-01-01

    Full Text Available We investigate the complex dynamics of cross-diffusion SI epidemic model. We first give the conditions of the local and global stability of the nonnegative constant steady states, which indicates that the basic reproduction number determines whether there is an endemic outbreak or not. Furthermore, we prove the existence and nonexistence of the positive nonconstant steady states, which guarantees the existence of the stationary patterns.

  8. Modeling diffusion of an alkaline plume in a clay barrier

    OpenAIRE

    Gaucher, Eric C.; Blanc, Philippe; Matray, Jean-Michel; Michau, Nicolas

    2004-01-01

    International audience; The design of clay plugs used for sealing access galleries to a radioactive waste repository built with concrete structures in a deep clayey formation must take into consideration their chemical evolution over time. Diffusion of an alkaline plume from concrete into bentonite was therefore modeled over a 100 ka period with the PHREEQC geochemical code in order to determine, as a function of time, modifications to mineral surfaces, dissolution of existing minerals and pr...

  9. Joint Parameter Estimation for the Two-Wave with Diffuse Power Fading Model

    Directory of Open Access Journals (Sweden)

    Jesus Lopez-Fernandez

    2016-06-01

    Full Text Available Wireless sensor networks deployed within metallic cavities are known to suffer from a very severe fading, even in strong line-of-sight propagation conditions. This behavior is well-captured by the Two-Wave with Diffuse Power (TWDP fading distribution, which shows great fit to field measurements in such scenarios. In this paper, we address the joint estimation of the parameters K and Δ that characterize the TWDP fading model, based on the observation of the received signal envelope. We use a moment-based approach to derive closed-form expressions for the estimators of K and Δ, as well as closed-form expressions for their asymptotic variance. Results show that the estimation error is close to the Cramer-Rao lower bound for a wide range of values of the parameters K and Δ. The performance degradation due to a finite number of observations is also analyzed.

  10. From superWIMPs to decaying dark matter. Models, bounds and indirect searches

    Energy Technology Data Exchange (ETDEWEB)

    Weniger, Christoph

    2010-06-15

    Despite lots of observational and theoretical efforts, the particle nature of dark matter remains unknown. Beyond the paradigmatic WIMPs (Weakly Interacting Massive Particles), many theoretically well motivated models exist where dark matter interacts much more weakly than electroweak with Standard Model particles. In this case new phenomena occur, like the decay of dark matter or the interference with the standard cosmology of the early Universe. In this thesis we study some of these aspects of superweakly coupled dark matter in general, and in the special case of hidden U(1){sub X} gauginos that kinetically mix with hypercharge. There, we will assume that the gauge group remains unbroken, similar to the Standard Model U(1){sub em}. We study different kinds of cosmological bounds, including bounds from thermal overproduction, from primordial nucleosynthesis and from structure formation. Furthermore, we study the possible cosmic-ray signatures predicted by this scenario, with emphasis on the electron and positron channel in light of the recent observations by PAMELA and Fermi LAT. Moreover we study the cosmic-ray signatures of decaying dark matter independently of concrete particle-physics models. In particular we analyze in how far the rise in the positron fraction above 10 GeV, as observed by PAMELA, can be explained by dark matter decay. Lastly, we concentrate on related predictions for gamma-ray observations with the Fermi LAT, and propose to use the dipole-like anisotropy of the prompt gamma-ray dark matter signal to distinguish exotic dark matter contributions from the extragalactic gamma-ray background. (orig.)

  11. Deterministic Optimization Model of Elevetor Operation Problemsand An Application of Branch-and-Bound Method

    Science.gov (United States)

    Inamoto, Tsutomu; Tamaki, Hisashi; Murao, Hajime; Kitamura, Shinzo

    In this paper, we propose a framework for obtaining the optimal car service to elevator operation problems by applying branch-and-bound methods based on the deterministic optimization model. In building the model, we assume the followings: the numbers such as time and car positions are discritized, the movement of cars and passengers synchronized with discrete time, and all passengers arriving to the hall is known beforehand. In the model, the transportation of any passenger is considered as a combination of two jobs, i.e., an into-job and an out-of-job. The into-job corresponds to a passenger's getting into a car, while the out-of-job corresponds to getting out of a car. Here, the optimal car service of the problem is obtained by assigning each into-job to an appropriate car and determining the processing order of into- and out-of-jobs for each car under some constraints including the precedence conditions. In designing a BAB solution, the assignment of into-jobs to cars and the processing order of jobs on each car are taken as decision variables. It is expected that the optimal (or near-optimal) car service obtained by applying such techniques as branch-and-bound methods based on the model is helpful to estimate the effectiveness of the utilization of look-ahead information. It is also useful in valuating the performance of the existing rules for elevator operation. In the paper, by using the proposed method, the validity of an existing rule, i.e., the Call-Dispatching and Selective-Collective rule (CDSC), is examined. The results of computational experiments show that the performance of the CDSC rule is not always the optimal or near-optimal, while it reveals a practical potential, i.e., it generates rather good car services within very short time.

  12. Spreading Speed, Traveling Waves, and Minimal Domain Size in Impulsive Reaction–Diffusion Models

    KAUST Repository

    Lewis, Mark A.

    2012-08-15

    How growth, mortality, and dispersal in a species affect the species\\' spread and persistence constitutes a central problem in spatial ecology. We propose impulsive reaction-diffusion equation models for species with distinct reproductive and dispersal stages. These models can describe a seasonal birth pulse plus nonlinear mortality and dispersal throughout the year. Alternatively, they can describe seasonal harvesting, plus nonlinear birth and mortality as well as dispersal throughout the year. The population dynamics in the seasonal pulse is described by a discrete map that gives the density of the population at the end of a pulse as a possibly nonmonotone function of the density of the population at the beginning of the pulse. The dynamics in the dispersal stage is governed by a nonlinear reaction-diffusion equation in a bounded or unbounded domain. We develop a spatially explicit theoretical framework that links species vital rates (mortality or fecundity) and dispersal characteristics with species\\' spreading speeds, traveling wave speeds, as well as minimal domain size for species persistence. We provide an explicit formula for the spreading speed in terms of model parameters, and show that the spreading speed can be characterized as the slowest speed of a class of traveling wave solutions. We also give an explicit formula for the minimal domain size using model parameters. Our results show how the diffusion coefficient, and the combination of discrete- and continuous-time growth and mortality determine the spread and persistence dynamics of the population in a wide variety of ecological scenarios. Numerical simulations are presented to demonstrate the theoretical results. © 2012 Society for Mathematical Biology.

  13. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands

    Science.gov (United States)

    Richter, Lars; de Graaf, Chris; Sieghart, Werner; Varagic, Zdravko; Mörzinger, Martina; de Esch, Iwan J P; Ecker, Gerhard F; Ernst, Margot

    2012-01-01

    Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABAA receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an un biased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design. PMID:22446838

  14. Two-phase flow with surfactants: Diffuse interface models and their analysis

    CERN Document Server

    Abels, Helmut; Lam, Kei Fong; Weber, Josef

    2016-01-01

    New diffuse interface and sharp interface models for soluble and insoluble surfactants fulfilling energy inequalities are introduced. We discuss their relation with the help of asymptotic analysis and present an existence result for a particular diffuse interface model.

  15. Multiscale modeling of spin transport across a diffuse interface

    Science.gov (United States)

    Chureemart, J.; Cuadrado, R.; Chureemart, P.; Chantrell, R. W.

    2017-12-01

    We present multiscale calculations to describe the spin transport behavior of the Co/Cu bilayer structure including the effect of the interface. The multiscale approach introduces the connection between the ab initio calculation used to describe the electronic structure of the system and the generalized spin accumulation model employed to describe the spin transport behavior. We have applied our model to atomically smooth and diffuse interfaces. The results demonstrate the huge importance of the use of first principle calculations, not only due to the interfacial coordinates optimization but also the magnetic and electronic properties obtained through the electronic structure. The system including the effect of interface with and without the charge fluctuation are studied. The results indicate that changes of electronic structure at the Co/Cu interface give rise to an interfacial resistance distributed over several atomic planes, similar to the effect of interface diffusion. We argue that even atomically smooth Co/Cu interfaces have properties analogous to a diffuse interface due to the variation of electronic structure at the interface.

  16. Charge diffusion in the one-dimensional Hubbard model

    Science.gov (United States)

    Steinigeweg, R.; Jin, F.; De Raedt, H.; Michielsen, K.; Gemmer, J.

    2017-08-01

    We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of these nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. We additionally demonstrate that, in the half-filling sector, this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.

  17. Partial Differential Equations of an Epidemic Model with Spatial Diffusion

    Directory of Open Access Journals (Sweden)

    El Mehdi Lotfi

    2014-01-01

    Full Text Available The aim of this paper is to study the dynamics of a reaction-diffusion SIR epidemic model with specific nonlinear incidence rate. The global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the eradication of disease from population. When the basic reproduction number is greater than unity, then disease-free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists in the population. Numerical simulations are presented to illustrate our theoretical results.

  18. Time Fractional Diffusion Equations and Analytical Solvable Models

    Science.gov (United States)

    Bakalis, Evangelos; Zerbetto, Francesco

    2016-08-01

    The anomalous diffusion of a particle that moves in complex environments is analytically studied by means of the time fractional diffusion equation. The influence on the dynamics of a random moving particle caused by a uniform external field is taken into account. We extract analytical solutions in terms either of the Mittag-Leffler functions or of the M- Wright function for the probability distribution, for the velocity autocorrelation function as well as for the mean and the mean square displacement. Discussion of the applicability of the model to real systems is made in order to provide new insight of the medium from the analysis of the motion of a particle embedded in it.

  19. Affinity based information diffusion model in social networks

    Science.gov (United States)

    Liu, Hongli; Xie, Yun; Hu, Haibo; Chen, Zhigao

    2014-12-01

    There is a widespread intuitive sense that people prefer participating in spreading the information in which they are interested. The affinity of people with information disseminated can affect the information propagation in social networks. In this paper, we propose an information diffusion model incorporating the mechanism of affinity of people with information which considers the fitness of affinity values of people with affinity threshold of the information. We find that the final size of information diffusion is affected by affinity threshold of the information, average degree of the network and the probability of people's losing their interest in the information. We also explore the effects of other factors on information spreading by numerical simulations and find that the probabilities of people's questioning and confirming the information can affect the propagation speed, but not the final scope.

  20. Modeling of Moisture Diffusion in Carbon Braided Composites

    Directory of Open Access Journals (Sweden)

    S. Laurenzi

    2008-01-01

    Full Text Available In this study, we develop a methodology based on finite element analysis to predict the weight gain of carbon braided composite materials exposed to moisture. The analysis was based on the analogy between thermal conduction and diffusion processes, which allowed for a commercial code for finite element analysis to be used. A detailed finite element model using a repetitive unit cell (RUC was developed both for bundle and carbon braided composites. Conditioning tests were performed to estimate the diffusivity of both the resin and composite. When comparing numerical and experimental results, it was observed that the procedure introduces an average error of 20% and a maximum error of 31% if the RUC is assumed to be isotropic. On the other hand, the average error does not exceed 10% and the maximum error is less than 20% when the material is considered as orthotropic. The procedure is independent of the particular fiber architecture and can be extended to other composites.

  1. Edge of chaos in reaction diffusion CNN model

    Directory of Open Access Journals (Sweden)

    Slavova Angela

    2017-02-01

    Full Text Available In this paper, we study the dynamics of a reaction-diffusion Cellular Nonlinear Network (RD-CNN nodel in which the reaction term is represented by Brusselator cell. We investigate the RD-CNN dynamics by means of describing function method. Comparison with classical results for Brusselator equation is provided. Then we introduce a new RD-CNN model with memristor coupling, for which the edge of chaos regime in the parameter space is determined. Numerical simulations are presented for obtaining dynamic patterns in the RD-CNN model with memristor coupling.

  2. AUTOMATIC 3D BUILDING MODEL GENERATION FROM LIDAR AND IMAGE DATA USING SEQUENTIAL MINIMUM BOUNDING RECTANGLE

    Directory of Open Access Journals (Sweden)

    E. Kwak

    2012-07-01

    Full Text Available Digital Building Model is an important component in many applications such as city modelling, natural disaster planning, and aftermath evaluation. The importance of accurate and up-to-date building models has been discussed by many researchers, and many different approaches for efficient building model generation have been proposed. They can be categorised according to the data source used, the data processing strategy, and the amount of human interaction. In terms of data source, due to the limitations of using single source data, integration of multi-senor data is desired since it preserves the advantages of the involved datasets. Aerial imagery and LiDAR data are among the commonly combined sources to obtain 3D building models with good vertical accuracy from laser scanning and good planimetric accuracy from aerial images. The most used data processing strategies are data-driven and model-driven ones. Theoretically one can model any shape of buildings using data-driven approaches but practically it leaves the question of how to impose constraints and set the rules during the generation process. Due to the complexity of the implementation of the data-driven approaches, model-based approaches draw the attention of the researchers. However, the major drawback of model-based approaches is that the establishment of representative models involves a manual process that requires human intervention. Therefore, the objective of this research work is to automatically generate building models using the Minimum Bounding Rectangle algorithm and sequentially adjusting them to combine the advantages of image and LiDAR datasets.

  3. A diffusion model for host-parasite interaction

    Science.gov (United States)

    Milner, Fabio Augusto; Patton, Curtis Allan

    2003-05-01

    A variety of host-parasite models are found in the literature. They usually consist of a small number of ordinary differential equations, which describe the dynamics of the total number of hosts and the total number of parasites. The authors introduced earlier a new approach to such models using a partial differential equation which uses the parasite density as a continuous structure variable. So far the new model contained only convective terms with respect to this variable, and the qualitative properties of solutions were not in agreement with observed parasite distributions. In the present work, the authors introduce diffusive terms to the previous model. Results of simulations for a specific host-parasite system appearing in fish farms are presented. These show a much better qualitative fit with real data than results from simulations with any other models.

  4. A discrete model to study reaction-diffusion-mechanics systems.

    Science.gov (United States)

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  5. Sooting Characteristics and Modeling in Counterflow Diffusion Flames

    KAUST Repository

    Wang, Yu

    2013-11-01

    Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting

  6. Closed-system 'economic' models for psychiatric disorders: Western atomism and its culture-bound syndromes.

    Science.gov (United States)

    Wallace, Rodrick

    2015-08-01

    The stabilization of human cognition via feedback from embedding social and cultural contexts is a dynamic process deeply intertwined with it, constituting, in a sense, the riverbanks directing the flow of a stream of generalized consciousness at different scales: Cultural norms and social interaction are synergistic with individual and group cognition and their disorders. A canonical failure mode in atomistic cultures is found to be a 'ground state' collapse well represented by atomistic models of economic interaction that are increasingly characterized as divorced from reality by heterodox economists. That is, high rates of psychopathic and antisocial personality disorder and obsessive compulsive disorder emerge as culture-bound syndromes particular to Western or Westernizing societies, or to those undergoing social disintegration.

  7. Application of the evolution theory in modelling of innovation diffusion

    Directory of Open Access Journals (Sweden)

    Krstić Milan

    2016-01-01

    Full Text Available The theory of evolution has found numerous analogies and applications in other scientific disciplines apart from biology. In that sense, today the so-called 'memetic-evolution' has been widely accepted. Memes represent a complex adaptable system, where one 'meme' represents an evolutional cultural element, i.e. the smallest unit of information which can be identified and used in order to explain the evolution process. Among others, the field of innovations has proved itself to be a suitable area where the theory of evolution can also be successfully applied. In this work the authors have started from the assumption that it is also possible to apply the theory of evolution in the modelling of the process of innovation diffusion. Based on the conducted theoretical research, the authors conclude that the process of innovation diffusion in the interpretation of a 'meme' is actually the process of imitation of the 'meme' of innovation. Since during the process of their replication certain 'memes' show a bigger success compared to others, that eventually leads to their natural selection. For the survival of innovation 'memes', their manifestations are of key importance in the sense of their longevity, fruitfulness and faithful replicating. The results of the conducted research have categorically confirmed the assumption of the possibility of application of the evolution theory with the innovation diffusion with the help of innovation 'memes', which opens up the perspectives for some new researches on the subject.

  8. A Reaction-Diffusion Model of Cholinergic Retinal Waves

    Science.gov (United States)

    Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan

    2014-01-01

    Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327

  9. Reaction-Diffusion Modeling ERK- and STAT-Interaction Dynamics

    Directory of Open Access Journals (Sweden)

    Georgiev Nikola

    2006-01-01

    Full Text Available The modeling of the dynamics of interaction between ERK and STAT signaling pathways in the cell needs to establish the biochemical diagram of the corresponding proteins interactions as well as the corresponding reaction-diffusion scheme. Starting from the verbal description available in the literature of the cross talk between the two pathways, a simple diagram of interaction between ERK and STAT5a proteins is chosen to write corresponding kinetic equations. The dynamics of interaction is modeled in a form of two-dimensional nonlinear dynamical system for ERK—and STAT5a —protein concentrations. Then the spatial modeling of the interaction is accomplished by introducing an appropriate diffusion-reaction scheme. The obtained system of partial differential equations is analyzed and it is argued that the possibility of Turing bifurcation is presented by loss of stability of the homogeneous steady state and forms dissipative structures in the ERK and STAT interaction process. In these terms, a possible scaffolding effect in the protein interaction is related to the process of stabilization and destabilization of the dissipative structures (pattern formation inherent to the model of ERK and STAT cross talk.

  10. Compact Models for Defect Diffusivity in Semiconductor Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Lee, Stephen R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Department; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Department

    2017-09-01

    Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers to optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE

  11. Solution of the spatial neutral model yields new bounds on the Amazonian species richness

    Science.gov (United States)

    Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.

    2017-02-01

    Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).

  12. Modeling Diffusion Induced Stresses for Lithium-Ion Battery Materials

    Science.gov (United States)

    Chiu Huang, Cheng-Kai

    Advancing lithium-ion battery technology is of paramount importance for satisfying the energy storage needs in the U.S., especially for the application in the electric vehicle industry. To provide a better acceleration for electric vehicles, a fast and repeatable discharging rate is required. However, particle fractures and capacity loss have been reported under high current rate (C-rate) during charging/discharging and after a period of cycling. During charging and discharging, lithium ions extract from and intercalate into electrode materials accompanied with the volume change and phase transition between Li-rich phase and Li-poor phase. It is suggested that the diffusion-induced-stress is one of the main reasons causing capacity loss due to the mechanical degradation of electrode particles. Therefore, there is a fundamental need to provide a mechanistic understanding by considering the structure-mechanics-property interactions in lithium-ion battery materials. Among many cathode materials, the olivine-based lithium-iron-phosphate (LiFePO4) with an orthorhombic crystal structure is one of the promising cathode materials for the application in electric vehicles. In this research we first use a multiphysic approach to investigate the stress evolution, especially on the phase boundary during lithiation in single LiFePO4 particles. A diffusion-controlled finite element model accompanied with the experimentally observed phase boundary propagation is developed via a finite element package, ANSYS, in which lithium ion concentration-dependent anisotropic material properties and volume misfits are incorporated. The stress components on the phase boundary are used to explain the Mode I, Mode II, and Mode III fracture propensities in LiFePO4 particles. The elastic strain energy evolution is also discussed to explain why a layer-by-layer lithium insertion mechanism (i.e. first-order phase transformation) is energetically preferred. Another importation issue is how current

  13. Reading and a diffusion model analysis of reaction time.

    Science.gov (United States)

    Naples, Adam; Katz, Leonard; Grigorenko, Elena L

    2012-01-01

    Processing speed is associated with reading performance. However, the literature is not clear either on the definition of processing speed or on why and how it contributes to reading performance. In this study we demonstrated that processing speed, as measured by reaction time, is not a unitary construct. Using the diffusion model of two-choice reaction time, we assessed processing speed in a series of same-different reaction time tasks for letter and number strings. We demonstrated that the association between reaction time and reading performance is driven by processing speed for reading-related information, but not motor or sensory encoding speed.

  14. Parametric pattern selection in a reaction-diffusion model.

    Directory of Open Access Journals (Sweden)

    Michael Stich

    Full Text Available We compare spot patterns generated by Turing mechanisms with those generated by replication cascades, in a model one-dimensional reaction-diffusion system. We determine the stability region of spot solutions in parameter space as a function of a natural control parameter (feed-rate where degenerate patterns with different numbers of spots coexist for a fixed feed-rate. While it is possible to generate identical patterns via both mechanisms, we show that replication cascades lead to a wider choice of pattern profiles that can be selected through a tuning of the feed-rate, exploiting hysteresis and directionality effects of the different pattern pathways.

  15. Analysis of a diffuse interface model of multispecies tumor growth

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2017-01-01

    Roč. 30, č. 4 (2017), s. 1639-1658 ISSN 0951-7715 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Cahn-Hilliard equation * Darcy law * diffuse interface model Subject RIV: BA - General Mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aa6063/meta;jsessionid=73B30CFD9F74DD027762D29C83D3094F.c3.iopscience.cld.iop.org

  16. Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothi, D.; Murty, T.V.R.; Sarma, V.V.; Rao, D.P.

    of Marine Sciences Vol. 29, June 2000, pp. 185-187 Short Communication Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model D Jyothi, T V Ramana Murty, V V Sarma & D P Rao National.... - Jan.) Y2(x) = 8.55283 x + 17.5469 (Jan. - April) These equations would be more useful to get diffusion coefficients for any point along the channel axis, which in turn, helps to compute the concentration of pollutant along the axis of estuary. Thus...

  17. Water Diffusion Modelling of CFB Fly Ash Thermoset Composite

    Directory of Open Access Journals (Sweden)

    Villa Ralph P.

    2016-01-01

    Full Text Available The shift in coal-fired power plants from pulverized coal (PC boiler technology into the greener circulating fluidized bed (CFB boiler technology resulted into a major deviation in the properties of the waste fly ash generated making it less suitable for its previous application as additives for construction materials. A new market for CFB fly ash had to be found for it not to end up as a zero value by-product. Using CFB fly ash as filler for thermoset composites is a new and remarkable application. Only a few studies, however, have been done to characterize the properties of this new material. Further experimentation and analysis may be costly and time-consuming since common procedures are material destructive. A computer-aided modeling of the composite’s water sorption behavior was done. The effect of particle loading, size and shape were considered. These properties were varied and the resulting overall diffusivities were compared to previous experimental studies. The comparison of the model and experimental diffusivity values showed satisfactory results. This model may then provide a cheaper and more time-efficient method for the characterization of the water sorption properties of CFB fly ash thermoset composites. In the future, this may lead to further studies on its application as a green material.

  18. SHIR competitive information diffusion model for online social media

    Science.gov (United States)

    Liu, Yun; Diao, Su-Meng; Zhu, Yi-Xiang; Liu, Qing

    2016-11-01

    In online social media, opinion divergences and differentiations generally exist as a result of individuals' extensive participation and personalization. In this paper, a Susceptible-Hesitated-Infected-Removed (SHIR) model is proposed to study the dynamics of competitive dual information diffusion. The proposed model extends the classical SIR model by adding hesitators as a neutralized state of dual information competition. It is both hesitators and stable spreaders that facilitate information dissemination. Researching on the impacts of diffusion parameters, it is found that the final density of stiflers increases monotonically as infection rate increases and removal rate decreases. And the advantage information with larger stable transition rate takes control of whole influence of dual information. The density of disadvantage information spreaders slightly grows with the increase of its stable transition rate, while whole spreaders of dual information and the relaxation time remain almost unchanged. Moreover, simulations imply that the final result of competition is closely related to the ratio of stable transition rates of dual information. If the stable transition rates of dual information are nearly the same, a slightly reduction of the smaller one brings out a significant disadvantage in its propagation coverage. Additionally, the relationship of the ratio of final stiflers versus the ratio of stable transition rates presents power characteristic.

  19. Diffusive overshooting in hot bottom burning AGB models

    Science.gov (United States)

    Driebe, T.; Blocker, T.; Herwig, F.; Schonberner, D.

    The concept of diffusive overshooting based on hydrodynamical simulations of convection zones (Freytag et al. 1996) has already successfully been introduced to AGB models by Herwig et al. (1997). For a 3 M_odot AGB model sequence, Herwig et al. (1997) found with this prescription of additional slow mixing dredge up, i.e. the production of carbon stars of relatively low masses, as well as the formation of a 13C pocket to drive the s-process in these stars. In this study we investigate the influence of the exponential diffusive overshoot scheme on more massive AGB models which suffer from hot bottom burning (HBB). It is well known that HBB leads to the break-down of the core-mass luminosity relation and to the formation of Li-rich AGB stars. Additionally, it may prevent, at least temporarily, the carbon-star stage due to CN cycling of the enriched envelope matter. These important consequences of HBB depend considerably on the treatment of convection (and mass loss). Consequently, the efficiency of HBB and its competition with dredge-up episodes depend also on the aforementioned additional slow mixing processes which obviously successfully operate at and below the H/He interface.

  20. A chaotic model for advertising diffusion problem with competition

    Science.gov (United States)

    Ip, W. H.; Yung, K. L.; Wang, Dingwei

    2012-08-01

    In this article, the author extends Dawid and Feichtinger's chaotic advertising diffusion model into the duopoly case. A computer simulation system is used to test this enhanced model. Based on the analysis of simulation results, it is found that the best advertising strategy in duopoly is to increase the advertising investment to reach the best Win-Win situation where the oscillation of market portion will not occur. In order to effectively arrive at the best situation, we define a synthetic index and two thresholds. An estimation method for the parameters of the index and thresholds is proposed in this research. We can reach the Win-Win situation by simply selecting the control parameters to make the synthetic index close to the threshold of min-oscillation state. The numerical example and computational results indicated that the proposed chaotic model is useful to describe and analyse advertising diffusion process in duopoly, it is an efficient tool for the selection and optimisation of advertising strategy.

  1. A dynamic model of membrane-bound phospholipase Cβ2 activation by Gβγ subunits.

    Science.gov (United States)

    Han, Daniel S; Golebiewska, Urszula; Stolzenberg, Sebastian; Scarlata, Suzanne F; Weinstein, Harel

    2011-09-01

    Phospholipase C (PLC) β2, a well studied member of the family of enzymes that catalyze the hydrolysis of the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP₂) into secondary messengers, can be activated by the Gβγ subunits of heterotrimeric G-proteins in a manner that depends on the presence and composition of the associated phospholipid membrane surface. The N-terminal pleckstrin homology (PH) domain of PLCβ2 mediates both the response to Gβγ and membrane binding, but how these interactions are coupled to yield an activated catalytic core remains unknown. Here we propose a mechanism based on molecular models of truncated PLCβ2 in its activated form complexed with Gβγ and in the catalytically inactive/membrane-bound form, obtained with the application of protein-protein docking algorithms and coarse-grained molecular dynamics simulations. These models were probed experimentally, and the inferences were confirmed by results from a combination of molecular biology and fluorescence assays. Results from the dynamic simulations of the molecular models and their interactions with various lipid bilayers identify the determinants of PLCβ2-PH domain specificity for Gβγ and lipid membranes and suggest a mechanism for the previously reported dependence of Gβγ activation on the associated membrane composition. Together, these findings explain the roles of the different activators in terms of their effect on the orientations of the PH and catalytic core domains relative to the lipid membranes.

  2. A Dynamic Model of Membrane-Bound Phospholipase Cβ2 Activation by Gβγ Subunits

    Science.gov (United States)

    Han, Daniel S.; Golebiewska, Urszula; Stolzenberg, Sebastian; Weinstein, Harel

    2011-01-01

    Phospholipase C (PLC) β2, a well studied member of the family of enzymes that catalyze the hydrolysis of the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) into secondary messengers, can be activated by the Gβγ subunits of heterotrimeric G-proteins in a manner that depends on the presence and composition of the associated phospholipid membrane surface. The N-terminal pleckstrin homology (PH) domain of PLCβ2 mediates both the response to Gβγ and membrane binding, but how these interactions are coupled to yield an activated catalytic core remains unknown. Here we propose a mechanism based on molecular models of truncated PLCβ2 in its activated form complexed with Gβγ and in the catalytically inactive/membrane-bound form, obtained with the application of protein-protein docking algorithms and coarse-grained molecular dynamics simulations. These models were probed experimentally, and the inferences were confirmed by results from a combination of molecular biology and fluorescence assays. Results from the dynamic simulations of the molecular models and their interactions with various lipid bilayers identify the determinants of PLCβ2-PH domain specificity for Gβγ and lipid membranes and suggest a mechanism for the previously reported dependence of Gβγ activation on the associated membrane composition. Together, these findings explain the roles of the different activators in terms of their effect on the orientations of the PH and catalytic core domains relative to the lipid membranes. PMID:21693623

  3. Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine

    Directory of Open Access Journals (Sweden)

    Abagyan Ruben

    2002-01-01

    Full Text Available Abstract Background Nicotine is a psychoactive drug presenting a diverse array of biological activities, some positive, such as enhancement of cognitive performances, others negative, such as addiction liability. Ligands that discriminate between the different isotypes of nicotinic acetylcholine receptors (nAChRs could present improved pharmacology and toxicity profile. Results Based on the recent crystal structure of a soluble acetylcholine binding protein from snails, we have built atomic models of acetylcholine and nicotine bound to the pocket of four different human nAChR subtypes. The structures of the docked ligands correlate with available biochemical data, and reveal that the determinants for isotype selectivity are relying essentially on four residues, providing diversity of the ligand binding pocket both in terms of Van der Waals boundary, and electrostatic potential. We used our models to screen in silico a large compound database and identify a new ligand candidate that could display subtype selectivity. Conclusion The nAChR-agonist models should be useful for the design of nAChR agonists with diverse specificity profiles.

  4. On soot and radiation modeling in buoyant turbulent diffusion flames

    Science.gov (United States)

    Snegirev, Alexander; Markus, Ekaterina; Kuznetsov, Egor; Harris, John; Wu, Ted

    2017-10-01

    FLUENT simulations of methane- and heptane-fueled buoyant turbulent diffusion flames are presented. Within the large eddy simulation framework three soot formation models (the one-step model by Khan and Greeves, the two-step model by Tesner et al., and the Moss-Brookes model) combined with three soot oxidation models (Fenimore-Jones, Lee et al. and Magnussen-Hjertager models) are compared. The Moss-Brookes soot formation model is then extended to a sooty fuel by introducing a unified piecewise-linear correlation between the soot precursor concentration and the mixture fraction. The correlation is calibrated for heptane, and predictions of soot yield in the overfire region and the radiative fluxes are compared to the measurement data. It is shown for the heptane flame that soot dominates in radiation emission although gas contribution is still considerable being about one third. In the heptane flame, predictions of flame radiative emission and soot yield obtained with the eddy dissipation combustion model (utilizing the single-step global reaction) are compared to those made with the steady flamelet model using the reduced reaction mechanism with 29 species and 52 reactions. A simplified approach to allow for the subgrid turbulence-radiation-reaction interaction (TRRI) in the flame is proposed.

  5. Diffusion in the two-dimensional necklace model for reptation.

    Science.gov (United States)

    Terranova, G; Aldao, C M; Mártin, H O

    2007-09-01

    An extension of a recently introduced one-dimensional model, the necklace model, is used to study the reptation of a chain of N particles in a two-dimensional square lattice. The mobilities of end and middle particles of a chain are governed by three free parameters. This new model mimics the behavior of a long linear and flexible polymer in a gel. Noninteracting and self-avoiding chains are considered. For both cases, analytical approximations for the diffusion coefficient of the center of mass of the chain, for all values of N , are proposed. The validity of these approximations for different values of the free parameters is verified by means of Monte Carlo simulations. Extensions to higher dimensions are also discussed.

  6. Modeling the Determinants Influencing the Diffusion of Mobile Internet

    Science.gov (United States)

    Alwahaishi, Saleh; Snášel, Václav

    2013-04-01

    Understanding individual acceptance and use of Information and Communication Technology (ICT) is one of the most mature streams of information systems research. In Information Technology and Information System research, numerous theories are used to understand users' adoption of new technologies. Various models were developed including the Innovation Diffusion Theory, Theory of Reasoned Action, Theory of Planned Behavior, Technology Acceptance Model, and recently, the Unified Theory of Acceptance and Use of Technology. This research composes a new hybrid theoretical framework to identify the factors affecting the acceptance and use of Mobile Internet -as an ICT application- in a consumer context. The proposed model incorporates eight constructs: Performance Expectancy (PE), Effort Expectancy (EE), Facilitating Conditions (FC), Social Influences (SI), Perceived Value (PV), Perceived Playfulness (PP), Attention Focus (AF), and Behavioral intention (BI). Individual differences-namely, age, gender, education, income, and experience are moderating the effects of these constructs on behavioral intention and technology use.

  7. Towards Understanding Life Cycle Savings of Boundedly Rational Agents : A Model with Feasibility Goals (Revision of DP 2008-14)

    NARCIS (Netherlands)

    Binswanger, J.

    2010-01-01

    This paper develops a new life cycle model that aims to describe the savings and asset allocation choices of boundedly rational agents. In this model, agents make forward-looking decisions without the requirement of anticipating their actual future decisions. Instead, agents pursue two simple

  8. Model-based control of transitional and turbulent wall-bounded shear flows

    Science.gov (United States)

    Moarref, Rashad

    Turbulent flows are ubiquitous in nature and engineering. Dissipation of kinetic energy by turbulent flow around airplanes, ships, and submarines increases resistance to their motion (drag). In this dissertation, we have designed flow control strategies for enhancing performance of vehicles and other systems involving turbulent flows. While traditional flow control techniques combine physical intuition with costly numerical simulations and experiments, we have developed control-oriented models of wall-bounded shear flows that enable simulation-free and computationally-efficient design of flow controllers. Model-based approach to flow control design has been motivated by the realization that progressive loss of robustness and consequential noise amplification initiate the departure from the laminar flow. In view of this, we have used the Navier-Stokes equations with uncertainty linearized around the laminar flow as a control-oriented model for transitional flows and we have shown that reducing the sensitivity of fluctuations to external disturbances represents a powerful paradigm for preventing transition. In addition, we have established that turbulence modeling in conjunction with judiciously selected linearization of the flow with control can be used as a powerful control-oriented model for turbulent flows. We have illustrated the predictive power of our model-based control design in three concrete problems: preventing transition by (i) a sensorless strategy based on traveling waves and (ii) an optimal state-feedback controller based on local flow information; and (iii) skin-friction drag reduction in turbulent flows by transverse wall oscillations. We have developed analytical and computational tools based on perturbation analysis (in the control amplitude) for control design by means of spatially- and temporally- periodic flow manipulation in problems (i) and (iii), respectively. In problem (ii), we have utilized tools for designing structured optimal state

  9. Model of fission yeast cell shape driven by membrane-bound growth factors and the cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Tyler Drake

    Full Text Available Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular

  10. Issues of diffuse pollution model complexity arising from performance benchmarking

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Flow and nitrate dynamics were simulated in two catchments, the River Aire in northern England and the River Ythan in north-east Scotland. In the case of the Aire, a diffuse pollution model was coupled with a river quality model (CASCADE-QUESTOR; in the study of the Ythan, an integrated model (SWAT was used. In each study, model performance was evaluated for differing levels of spatial representation in input data sets (rainfall, soils and land use. In respect of nitrate concentrations, the performance of the models was compared with that of a regression model based on proportions of land cover. The overall objective was to assess the merits of spatially distributed input data sets. In both catchments, specific measures of quantitative performance showed that models using the most detailed available input data contributed, at best, only a marginal improvement over simpler implementations. Hence, the level of complexity used in input data sets has to be determined, not only on multiple criteria of quantitative performance but also on qualitative assessments, reflecting the specific context of the model application and the current and likely future needs of end-users.

  11. The approximate number system acuity redefined: A diffusion model approach

    Directory of Open Access Journals (Sweden)

    Joonkoo ePark

    2015-12-01

    Full Text Available While all humans are capable of nonverbally representing numerical quantity using so-called the approximate number system (ANS, there exist considerable individual differences in its acuity. For example, in a non-symbolic number comparison task, some people find it easy to discriminate brief presentations of 14 dots from 16 dots while others do not. Quantifying individual ANS acuity from such a task has become an essential practice in the field, as individual differences in such a primitive number sense is thought to provide insights into individual differences in learned symbolic math abilities. However, the dominant method of characterizing ANS acuity—computing the Weber fraction (w—only utilizes the accuracy data while ignoring response times (RT. Here, we offer a novel approach of quantifying ANS acuity by using the diffusion model, which accounts both accuracy and RT distributions. Specifically, the drift rate in the diffusion model, which indexes the quality of the stimulus information, is used to capture the precision of the internal quantity representation. Analysis of behavioral data shows that w is contaminated by speed-accuracy tradeoff, making it problematic to be conceptualized as ANS acuity, while drift rate provides a measure more independent from speed-accuracy criterion settings. Furthermore, drift rate is a better predictor of symbolic math ability than w, suggesting a practical utility of the measure. These findings demonstrate critical limitations of the use of w and suggest clear advantages of using drift rate as a measure of primitive numerical competence.

  12. Molecular Modeling of Diffusion on a Crystalline PETN Surface

    Energy Technology Data Exchange (ETDEWEB)

    Lin, P; Khare, R; Gee, R H; Weeks, B L

    2007-07-13

    Surface diffusion on a PETN crystal was investigated by treating the surface diffusion as an activated process in the formalism of transition state theory. In particular, surface diffusion on the (110) and (101) facets, as well as diffusion between these facets, were considered. We successfully obtained the potential energy barriers required for PETN surface diffusion. Our results show that the (110) surface is more thermally active than the (101) surface and PETN molecules mainly diffuses from the (110) to (101) facet. These results are in good agreement with experimental observations and previous simulations.

  13. Conditions for global dynamic stability of a class of resource-bounded model ecosystems.

    Science.gov (United States)

    Seymour, Robert M; Knight, Gwenan; Fung, Tak

    2010-11-01

    This paper studies a class of dynamical systems that model multi-species ecosystems. These systems are 'resource bounded' in the sense that species compete to utilize an underlying limiting resource or substrate. This boundedness means that the relevant state space can be reduced to a simplex, with coordinates representing the proportions of substrate utilized by the various species. If the vector field is inward pointing on the boundary of the simplex, the state space is forward invariant under the system flow, a requirement that can be interpreted as the presence of non-zero exogenous recruitment. We consider conditions under which these model systems have a unique interior equilibrium that is globally asymptotically stable. The systems we consider generalize classical multi-species Lotka-Volterra systems, the behaviour of which is characterized by properties of the community (or interaction) matrix. However, the more general systems considered here are not characterized by a single matrix, but rather a family of matrices. We develop a set of 'explicit conditions' on the basis of a notion of 'uniform diagonal dominance' for such a family of matrices, that allows us to extract a set of sufficient conditions for global asymptotic stability based on properties of a single, derived matrix. Examples of these explicit conditions are discussed.

  14. Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma

    Directory of Open Access Journals (Sweden)

    Oren J Becher

    2015-07-01

    Full Text Available Diffuse Intrinsic Pontine Glioma (DIPG is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of six and eight. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab, as well as to potentially treat them in the clinic. This review will detail the initial strides towards modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Lastly, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.

  15. A Numerical Model of Deuterium and Oxygen-18 Diffusion in the Confined Lower Wilcox Aquifer of the Lower Mississippi Valley (USA)

    Science.gov (United States)

    Currens, B. J.; Sawyer, A. H.; Fryar, A. E.; Parris, T. M.; Zhu, J.

    2015-12-01

    Deuterium and oxygen-18 are routinely used with noble gases and radioisotopes (e.g., 2H, 14C, 36Cl) to infer climate during groundwater recharge. However, diffusion of 2H and 18O between a confined aquifer and bounding aquitards could alter total isotope concentrations and the inferred temperature during recharge if groundwater flow is sufficiently slow. Hendry and Schwartz (WRR 24(10), 1988) explained anomalous 2H and 18O enrichment in the Milk River aquifer of Alberta by analytically modeling isotope diffusion between the lower bounding aquitard and the aquifer. Haile (PhD dissertation, U. Kentucky, 2011) inferred the same mechanism to explain 2H and 18O enrichment along a flowpath in the confined Lower Wilcox aquifer of the northern Gulf Coastal Plain in Missouri and Arkansas. Based on the geologic and hydraulic properties of the Lower Wilcox aquifer, a numerical model has been constructed to determine how diffusion may influence 2H and 18O concentrations in regional aquifers with residence times on the order of 104 to 105 years. The model combines solutions for a 1D forward-in-time, finite-difference groundwater flow equation with an explicit-implicit Crank-Nicholson algorithm for advection and diffusion to solve for flow velocity and isotope concentration. Initial results are consistent with the analytical solution of Hendry and Schwartz (1988), indicating diffusion as a means of isotopic enrichment along regional groundwater flowpaths.

  16. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  17. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas

    2016-12-17

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  18. A Jump Diffusion Model for Volatility and Duration

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    by the market microstructure theory. Traditional measures of volatility do not utilize durations. I adopt a jump diffusion process to model the persistence of intraday volatility and conditional duration, and their interdependence. The jump component is disentangled from the continuous part of the price......, volatility and conditional duration process. I develop a MCMC algorithm for the inference of irregularly spaced multivariate process with jumps. The algorithm provides smoothed estimates of the latent variables such as spot volatility, jump times and jump sizes. I apply this model to IBM data and I find...... meaningful relationship between volatility and conditional duration. Also, jumps play an important role in the total variation, but the jump variation is smaller than traditional measures that use returns sampled at lower frequency....

  19. Cell-bound lipases from Burkholderia sp. ZYB002: gene sequence analysis, expression, enzymatic characterization, and 3D structural model.

    Science.gov (United States)

    Shu, Zhengyu; Lin, Hong; Shi, Shaolei; Mu, Xiangduo; Liu, Yanru; Huang, Jianzhong

    2016-05-03

    The whole-cell lipase from Burkholderia cepacia has been used as a biocatalyst in organic synthesis. However, there is no report in the literature on the component or the gene sequence of the cell-bound lipase from this species. Qualitative analysis of the cell-bound lipase would help to illuminate the regulation mechanism of gene expression and further improve the yield of the cell-bound lipase by gene engineering. Three predictive cell-bound lipases, lipA, lipC21 and lipC24, from Burkholderia sp. ZYB002 were cloned and expressed in E. coli. Both LipA and LipC24 displayed the lipase activity. LipC24 was a novel mesophilic enzyme and displayed preference for medium-chain-length acyl groups (C10-C14). The 3D structural model of LipC24 revealed the open Y-type active site. LipA displayed 96 % amino acid sequence identity with the known extracellular lipase. lipA-inactivation and lipC24-inactivation decreased the total cell-bound lipase activity of Burkholderia sp. ZYB002 by 42 % and 14 %, respectively. The cell-bound lipase activity from Burkholderia sp. ZYB002 originated from a multi-enzyme mixture with LipA as the main component. LipC24 was a novel lipase and displayed different enzymatic characteristics and structural model with LipA. Besides LipA and LipC24, other type of the cell-bound lipases (or esterases) should exist.

  20. Low-complexity stochastic modeling of wall-bounded shear flows

    Science.gov (United States)

    Zare, Armin

    Turbulent flows are ubiquitous in nature and they appear in many engineering applications. Transition to turbulence, in general, increases skin-friction drag in air/water vehicles compromising their fuel-efficiency and reduces the efficiency and longevity of wind turbines. While traditional flow control techniques combine physical intuition with costly experiments, their effectiveness can be significantly enhanced by control design based on low-complexity models and optimization. In this dissertation, we develop a theoretical and computational framework for the low-complexity stochastic modeling of wall-bounded shear flows. Part I of the dissertation is devoted to the development of a modeling framework which incorporates data-driven techniques to refine physics-based models. We consider the problem of completing partially known sample statistics in a way that is consistent with underlying stochastically driven linear dynamics. Neither the statistics nor the dynamics are precisely known. Thus, our objective is to reconcile the two in a parsimonious manner. To this end, we formulate optimization problems to identify the dynamics and directionality of input excitation in order to explain and complete available covariance data. For problem sizes that general-purpose solvers cannot handle, we develop customized optimization algorithms based on alternating direction methods. The solution to the optimization problem provides information about critical directions that have maximal effect in bringing model and statistics in agreement. In Part II, we employ our modeling framework to account for statistical signatures of turbulent channel flow using low-complexity stochastic dynamical models. We demonstrate that white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics and develop models for colored-in-time forcing of the linearized Navier-Stokes equations. We also examine the efficacy of stochastically forced linearized NS equations and their

  1. Rule-based spatial modeling with diffusing, geometrically constrained molecules

    Directory of Open Access Journals (Sweden)

    Lohel Maiko

    2010-06-01

    Full Text Available Abstract Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS, we have chosen an already existing formalism (BioNetGen for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules. When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial

  2. Modeling Periodic Impulsive Effects on Online TV Series Diffusion.

    Directory of Open Access Journals (Sweden)

    Peihua Fu

    Full Text Available Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data.We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution.We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation.To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public

  3. Modeling Periodic Impulsive Effects on Online TV Series Diffusion.

    Science.gov (United States)

    Fu, Peihua; Zhu, Anding; Fang, Qiwen; Wang, Xi

    Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public social communities

  4. Diffuse ultrasonic backscatter using a multi-Gaussian beam model.

    Science.gov (United States)

    Li, Xiongbing; Song, Yongfeng; Arguelles, Andrea P; Turner, Joseph A

    2017-07-01

    Diffuse ultrasonic backscatter is widely used to evaluate microstructural parameters of heterogeneous materials. Recent singly scattered response (SSR) models utilize a single-Gaussian beam (SGB) assumption which is expected to have limitations. Following a similar formalism, a model is presented using a multi-Gaussian beam (MGB) assumption to characterize the transducer beam for longitudinal-to-longitudinal scattering at normal incidence through an interface with arbitrary curvature. First, the Wigner transform of the transducer field is defined using conjugate double-layer MGB expressions. The theoretical analysis shows that ten groups of Gaussian beams are sufficient for convergence. Compared with the SGB-SSR curve, the shape of MGB-SSR curve is positive skewed. Differences between the MGB-SSR model and the SGB-SSR model are quantified and shown to be complex functions of frequency, sample curvature, transducer parameters, and focal depth in the material. Finally, both models are used to fit experimental spatial variance data from a 304 stainless steel pipe with planar, convex, and concave surfaces. The results show that the MGB-SSR has some characteristics suggesting a better fit to the experiments. However, both models result in grain size estimates within the uncertainty of the optical microscopy suggesting that the SGB is sufficient for normal incidence pulse-echo measurements.

  5. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    NARCIS (Netherlands)

    W. Tu (Weichao); G.S. Cunningham; Y. Chen; M.G. Henderson; E. Camporeale (Enrico); G.D. Reeves (Geoffrey)

    2013-01-01

    textabstractAs a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15

  6. Bounded Parikh Automata

    Directory of Open Access Journals (Sweden)

    Michaël Cadilhac

    2011-08-01

    Full Text Available The Parikh finite word automaton model (PA was introduced and studied by Klaedtke and Ruess in 2003. Here, by means of related models, it is shown that the bounded languages recognized by PA are the same as those recognized by deterministic PA. Moreover, this class of languages is the class of bounded languages whose set of iterations is semilinear.

  7. A massively parallel exponential integrator for advection-diffusion models

    Science.gov (United States)

    Martínez, A.; Bergamaschi, L.; Caliari, M.; Vianello, M.

    2009-09-01

    This work considers the Real Leja Points Method (ReLPM), [M. Caliari, M. Vianello, L. Bergamaschi, Interpolating discrete advection-diffusion propagators at spectral Leja sequences, J. Comput. Appl. Math. 172 (2004) 79-99], for the exponential integration of large-scale sparse systems of ODEs, generated by Finite Element or Finite Difference discretizations of 3-D advection-diffusion models. We present an efficient parallel implementation of ReLPM for polynomial interpolation of the matrix exponential propagators and , [phi](z)=(exp(z)-1)/z. A scalability analysis of the most important computational kernel inside the code, the parallel sparse matrix-vector product, has been performed, as well as an experimental study of the communication overhead. As a result of this study an optimized parallel sparse matrix-vector product routine has been implemented. The resulting code shows good scaling behavior even when using more than one thousand processors. The numerical results presented on a number of very large test cases gives experimental evidence that ReLPM is a reliable and efficient tool for the simulation of complex hydrodynamic processes on parallel architectures.

  8. Analytical model of diffuse reflectance spectrum of skin tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lisenko, S A; Kugeiko, M M; Firago, V A [Belarusian State University, Minsk (Belarus); Sobchuk, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    2014-01-31

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions. (biophotonics)

  9. Postural control model interpretation of stabilogram diffusion analysis

    Science.gov (United States)

    Peterka, R. J.

    2000-01-01

    Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.

  10. BF{sub 3} PIII modeling: Implantation, amorphisation and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Essa, Z.; Cristiano, F.; Spiegel, Y.; Boulenc, P.; Qiu, Y.; Quillec, M.; Taleb, N.; Burenkov, A.; Hackenberg, M.; Bedel-Pereira, E.; Mortet, V.; Torregrosa, Frank; Tavernier, C. [STMicroelectronics 850 rue Jean Monnet F-38926 Crolles France and LAAS-CNRS 7 av. du Col. Roche 31077 Toulouse (France); LAAS-CNRS 7 av. du Col. Roche 31077 Toulouse (France); IBS av. Gaston Imbert prolongee 13790 Peynier Rousset (France); STMicroelectronics 850 rue Jean Monnet F-38926 Crolles (France); LAAS-CNRS 7 av. du Col. Roche 31077 Toulouse (France); Probion Analysis 37 rue de Fontenay 92220 Bagneux (France); Fraunhofer IISB Schottkystrasse 10, 91058 Erlangen (Germany); LAAS-CNRS 7 av. du Col. Roche 31077 Toulouse (France); IBS av. Gaston Imbert prolongee 13790 Peynier Rousset (France); STMicroelectronics 850 rue Jean Monnet F-38926 Crolles (France)

    2012-11-06

    In the race for highly doped ultra-shallow junctions (USJs) in complementary metal oxide semi-conductor (CMOS) technologies, plasma immersion ion implantation (PIII) is a promising alternative to traditional beamline implantation. Currently, no commercial technology computer aided design (TCAD) process simulator allows modeling the complete USJ fabrication process by PIII, including as-implanted dopant profiles, damage formation, dopant diffusion and activation. In this work, a full simulation of a p-type BF{sub 3} PIII USJ has been carried out. In order to investigate the various physical phenomena mentioned above, process conditions included a high energy/high dose case (10 kV, 5 Multiplication-Sign 10{sup 15} cm{sup -2}), specifically designed to increase damage formation, as well as more technology relevant implant conditions (0.5 kV) for comparison. All implanted samples were annealed at different temperatures and times. As implanted profiles for both boron and fluorine in BF{sub 3} implants were modeled and compared to Secondary Ion Mass Spectrometry (SIMS) measurements. Amorphous/crystalline (a/c) interface depths were measured by transmission electron microscopy (TEM) and successfully simulated. Diffused profiles simulations agreed with SIMS data at low thermal budgets. A boron peak behind the a/c interface was observed in all annealed SIMS profiles for the 10 kV case, indicating boron trapping from EOR defects in this region even after high thermal budgets. TEM measurements on the annealed samples showed an end of range (EOR) defects survival behind the a/c interface, including large dislocation loops (DLs) lying on (001) plane parallel to the surface. In the last part of this work, activation simulations were compared to Hall measurements and confirmed the need to develop a (001) large BICs model.

  11. BF3 PIII modeling: Implantation, amorphisation and diffusion

    Science.gov (United States)

    Essa, Z.; Cristiano, F.; Spiegel, Y.; Boulenc, P.; Qiu, Y.; Quillec, M.; Taleb, N.; Burenkov, A.; Hackenberg, M.; Bedel-Pereira, E.; Mortet, V.; Torregrosa, Frank; Tavernier, C.

    2012-11-01

    In the race for highly doped ultra-shallow junctions (USJs) in complementary metal oxide semi-conductor (CMOS) technologies, plasma immersion ion implantation (PIII) is a promising alternative to traditional beamline implantation. Currently, no commercial technology computer aided design (TCAD) process simulator allows modeling the complete USJ fabrication process by PIII, including as-implanted dopant profiles, damage formation, dopant diffusion and activation. In this work, a full simulation of a p-type BF3 PIII USJ has been carried out. In order to investigate the various physical phenomena mentioned above, process conditions included a high energy/high dose case (10 kV, 5×1015 cm-2), specifically designed to increase damage formation, as well as more technology relevant implant conditions (0.5 kV) for comparison. All implanted samples were annealed at different temperatures and times. As implanted profiles for both boron and fluorine in BF3 implants were modeled and compared to Secondary Ion Mass Spectrometry (SIMS) measurements. Amorphous/crystalline (a/c) interface depths were measured by transmission electron microscopy (TEM) and successfully simulated. Diffused profiles simulations agreed with SIMS data at low thermal budgets. A boron peak behind the a/c interface was observed in all annealed SIMS profiles for the 10 kV case, indicating boron trapping from EOR defects in this region even after high thermal budgets. TEM measurements on the annealed samples showed an end of range (EOR) defects survival behind the a/c interface, including large dislocation loops (DLs) lying on (001) plane parallel to the surface. In the last part of this work, activation simulations were compared to Hall measurements and confirmed the need to develop a (001) large BICs model.

  12. Super-Grid Modeling of the Elastic Wave Equation in Semi-Bounded Domains

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N. Anders; Sjögreen, Björn

    2014-10-01

    Abstract

    We develop a super-grid modeling technique for solving the elastic wave equation in semi-bounded two- and three-dimensional spatial domains. In this method, waves are slowed down and dissipated in sponge layers near the far-field boundaries. Mathematically, this is equivalent to a coordinate mapping that transforms a very large physical domain to a significantly smaller computational domain, where the elastic wave equation is solved numerically on a regular grid. To damp out waves that become poorly resolved because of the coordinate mapping, a high order artificial dissipation operator is added in layers near the boundaries of the computational domain. We prove by energy estimates that the super-grid modeling leads to a stable numerical method with decreasing energy, which is valid for heterogeneous material properties and a free surface boundary condition on one side of the domain. Our spatial discretization is based on a fourth order accurate finite difference method, which satisfies the principle of summation by parts. We show that the discrete energy estimate holds also when a centered finite difference stencil is combined with homogeneous Dirichlet conditions at several ghost points outside of the far-field boundaries. Therefore, the coefficients in the finite difference stencils need only be boundary modified near the free surface. This allows for improved computational efficiency and significant simplifications of the implementation of the proposed method in multi-dimensional domains. Numerical experiments in three space dimensions show that the modeling error from truncating the domain can be made very small by choosing a sufficiently wide super-grid damping layer. The numerical accuracy is first evaluated against analytical solutions of Lamb’s problem, where fourth order accuracy is observed with a sixth order artificial dissipation. We then use successive grid refinements to study the numerical accuracy in the more

  13. On the ergodicity bounds for a constant retrial rate queueing model

    OpenAIRE

    Zeifman, Alexander; Satin, Yacov; Morozov, Evsey; Nekrasova, Ruslana; Gorshenin, Andrey

    2015-01-01

    We consider a Markovian single-server retrial queueing system with a constant retrial rate. Conditions of null ergodicity and exponential ergodicity for the correspondent process, as well as bounds on the rate of convergence are obtained.

  14. A Lower Bound on the Lyapunov Exponent for the Generalized Harper's Model

    Science.gov (United States)

    Jitomirskaya, Svetlana; Liu, Wencai

    2017-02-01

    We obtain a lower bound for the Lyapunov exponent of a family of discrete Schrödinger operators (Hu)_n=u_{n+1}+u_{n-1}+2a_1 cos 2π (θ +nα )u_n+2a_2 cos 4π (θ +nα )u_n, that incorporates both a_1 and a_2, thus going beyond the Herman's bound.

  15. Gender-Specific Models of Work-Bound Korean Adolescents' Social Supports and Career Adaptability on Subsequent Job Satisfaction

    Science.gov (United States)

    Han, Hyojung; Rojewski, Jay W.

    2015-01-01

    A Korean national database, the High School Graduates Occupational Mobility Survey, was used to examine the influence of perceived social supports (family and school) and career adaptability on the subsequent job satisfaction of work-bound adolescents 4 months after their transition from high school to work. Structural equation modeling analysis…

  16. Individual differences in emotion word processing: A diffusion model analysis.

    Science.gov (United States)

    Mueller, Christina J; Kuchinke, Lars

    2016-06-01

    The exploratory study investigated individual differences in implicit processing of emotional words in a lexical decision task. A processing advantage for positive words was observed, and differences between happy and fear-related words in response times were predicted by individual differences in specific variables of emotion processing: Whereas more pronounced goal-directed behavior was related to a specific slowdown in processing of fear-related words, the rate of spontaneous eye blinks (indexing brain dopamine levels) was associated with a processing advantage of happy words. Estimating diffusion model parameters revealed that the drift rate (rate of information accumulation) captures unique variance of processing differences between happy and fear-related words, with highest drift rates observed for happy words. Overall emotion recognition ability predicted individual differences in drift rates between happy and fear-related words. The findings emphasize that a significant amount of variance in emotion processing is explained by individual differences in behavioral data.

  17. Multipole-bound molecular negative ions

    CERN Document Server

    Abdul-Karim, H; Desfrançois, C

    2002-01-01

    Within the framework of a simple electrostatic model, as compared to recent experimental results, we here discuss the stability of very weakly bound molecular negative ions. In contrast with the case of conventional valence anions, the excess electron is then located in a very diffuse orbital and is mainly bound by electrostatic dipolar, quadrupolar, and polarization forces, at large distances from the neutral molecular core. By fitting a single repulsion parameter of the model to the available experimental data, it is possible to make quantitative predictions of the excess-electron binding energies in these species. Critical values of the dipole moment, quadrupole moment or polarizability required for the observation of stable multipole-bound negative ions are predicted and compared to available experimental data and ab initio calculations. Refs. 26 (author)

  18. Multi-Higgs doublet models: physical parametrization, sum rules and unitarity bounds

    Science.gov (United States)

    Bento, Miguel P.; Haber, Howard E.; Romão, J. C.; Silva, João P.

    2017-11-01

    If the scalar sector of the Standard Model is non-minimal, one might expect multiple generations of the hypercharge-1/2 scalar doublet analogous to the generational structure of the fermions. In this work, we examine the structure of a Higgs sector consisting of N Higgs doublets (where N ≥ 2). It is particularly convenient to work in the so-called charged Higgs basis, in which the neutral Higgs vacuum expectation value resides entirely in the first Higgs doublet, and the charged components of remaining N - 1 Higgs doublets are mass-eigenstate fields. We elucidate the interactions of the gauge bosons with the physical Higgs scalars and the Goldstone bosons and show that they are determined by an N × 2 N matrix. This matrix depends on ( N - 1)(2 N - 1) real parameters that are associated with the mixing of the neutral Higgs fields in the charged Higgs basis. Among these parameters, N - 1 are unphysical (and can be removed by rephasing the physical charged Higgs fields), and the remaining 2( N - 1)2 parameters are physical. We also demonstrate a particularly simple form for the cubic interaction and some of the quartic interactions of the Goldstone bosons with the physical Higgs scalars. These results are applied in the derivation of Higgs coupling sum rules and tree-level unitarity bounds that restrict the size of the quartic scalar couplings. In particular, new applications to three Higgs doublet models with an order-4 CP symmetry and with a Z_3 symmetry, respectively, are presented.

  19. Technology diffusion in energy-economy models: The case of Danish vintage models

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    2000-01-01

    the costs of greenhouse gas mitigation. This paper examines the effect on aggregate energy efficiency of using technological vintage models to describe technology diffusion. The focus is on short- to medium-term issues. Three different models of Danish energy supply and demand are used to illustrate......Technological progress is an important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological progress and diffusion of new technologies are among the reasons for diverging results obtained using bottom-up and top-down models for analyzing...... the consequences of the vintage modelling approach. The fluctuating utilization rates for power capacity in Denmark are found to have a significant impact on average fuel efficiencies. Diffusion of electric appliances is linked to economic activity and saturation levels for each appliance. In the sector...

  20. Stochastic fire-diffuse-fire model with realistic cluster dynamics

    Science.gov (United States)

    Calabrese, Ana; Fraiman, Daniel; Zysman, Daniel; Ponce Dawson, Silvina

    2010-09-01

    Living organisms use waves that propagate through excitable media to transport information. Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+ signals that range from localized release events to global waves has been observed in Xenopus laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors (IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic reticulum. In this article we construct a stochastic model for a cluster of IP3R ’s that replicates the experimental observations reported in [D. Fraiman , Biophys. J. 90, 3897 (2006)10.1529/biophysj.105.075911]. We then couple this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete stochastic model for calcium dynamics. The model we propose describes the transition regimes between isolated release and steadily propagating waves as the IP3 concentration is increased.

  1. On the Bass diffusion theory, empirical models and out-of-sample forecasting

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    2003-01-01

    textabstractThe Bass (1969) diffusion theory often guides the construction of forecasting models for new product diffusion. To match the model with data, one needs to put forward a statistical model. This paper compares four empirical versions of the model, where two of these explicitly incorporate

  2. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  3. A mechanistic model of an upper bound on oceanic carbon export as a function of mixed layer depth and temperature

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-11-01

    Full Text Available Export production reflects the amount of organic matter transferred from the ocean surface to depth through biological processes. This export is in large part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD. In this study, building on Sverdrup's critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A meta-analysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, particularly the subantarctic zone, is likely limited by light for a significant portion of the growing season.

  4. A Viral Product Diffusion Model to Forecast the Market Performance of Products

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2017-01-01

    Full Text Available To investigate the diffusion of products in the market, this paper proposes a viral product diffusion model using an epidemiological approach. This model presents the process of product diffusion through the dynamics of human behaviors. Based on the stability theory of Ordinary Differential Equations, we demonstrate the conditions under which a product in the market persists or dies out eventually. Next, we use Google data to validate the model. Fitting results illustrate that the viral product diffusion model not only depicts the steady growth process of products, but also describes the whole diffusion process during which the products increase at the initial stage and then gradually decrease and sometimes even exhibit multiple peaks. This shows that the viral product diffusion model can be used to forecast the developing tendency of products in the market through early behavior of these products. Moreover, our model also provides useful insights on how to design effective marketing strategies via social contagions.

  5. Agent-based Modeling Automated: Data-driven Generation of Innovation Diffusion Models

    NARCIS (Netherlands)

    Jensen, T.; Chappin, E.J.L.

    2016-01-01

    Simulation modeling is useful to gain insights into driving mechanisms of diffusion of innovations. This study aims to introduce automation to make identification of such mechanisms with agent-based simulation modeling less costly in time and labor. We present a novel automation procedure in which

  6. Modelling of sand transport under wave-generated sheet flows with a RANS diffusion model

    NARCIS (Netherlands)

    Hassan, Wael; Ribberink, Jan S.

    2010-01-01

    A 1DV-RANS diffusion model is used to study sand transport processes in oscillatory flat-bed/sheet flow conditions. The central aim is the verification of the model with laboratory data and to identify processes controlling the magnitude and direction (‘onshore’/‘offshore’) of the net time-averaged

  7. The dynamics of multimodal integration: The averaging diffusion model.

    Science.gov (United States)

    Turner, Brandon M; Gao, Juan; Koenig, Scott; Palfy, Dylan; L McClelland, James

    2017-12-01

    We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.

  8. The FLO Diffusive 1D-2D Model for Simulation of River Flooding

    Directory of Open Access Journals (Sweden)

    Costanza Aricò

    2016-05-01

    Full Text Available An integrated 1D-2D model for the solution of the diffusive approximation of the shallow water equations, named FLO, is proposed in the present paper. Governing equations are solved using the MArching in Space and Time (MAST approach. The 2D floodplain domain is discretized using a triangular mesh, and standard river sections are used for modeling 1D flow inside the section width occurring with low or standard discharges. 1D elements, inside the 1D domain, are quadrilaterals bounded by the trace of two consecutive sections and by the sides connecting their extreme points. The water level is assumed to vary linearly inside each quadrilateral along the flow direction, but to remain constant along the direction normal to the flow. The computational cell can share zero, one or two nodes with triangles of the 2D domain when lateral coupling occurs and more than two nodes in the case of frontal coupling, if the corresponding section is at one end of the 1D channel. No boundary condition at the transition between the 1D-2D domain has to be solved, and no additional variable has to be introduced. Discontinuities arising between 1D and 2D domains at 1D sections with a top width smaller than the trace of the section are properly solved without any special restriction on the time step.

  9. Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence

    OpenAIRE

    Wishart, Justin Rory

    2011-01-01

    In this paper, a lower bound is determined in the minimax sense for change point estimators of the first derivative of a regression function in the fractional white noise model. Similar minimax results presented previously in the area focus on change points in the derivatives of a regression function in the white noise model or consider estimation of the regression function in the presence of correlated errors.

  10. Diffusion Modeling: A Study of the Diffusion of “Jatropha Curcas ...

    African Journals Online (AJOL)

    Diffusion of innovation is a versatile social science theory which typically represents an interface of communication and change. Its goal is to attempt to understand the range of influences to which consumers of new ideas, products, or systems are exposed to at a given point in time in a given social environment. The present ...

  11. Bounded Gaussian process regression

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

    2013-01-01

    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...

  12. Large N Chern-Simons with massive fundamental fermions — A model with no bound states

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, Yitzhak [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science,Rehovot 76100 (Israel); Sonnenschein, Jacob [The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2014-12-29

    In a previous paper http://dx.doi.org/10.1007/JHEP12(2013)091, we analyzed the theory of massive fermions in the fundamental representation coupled to a U(N) Chern-Simons gauge theory in three dimensions at level K. It was done in the large N, large K limits where λ=(N/K) was kept fixed. Among other results, we showed there that there are no high mass “quark anti-quark' bound states. Here we show that there are no bound states at all.

  13. On devising Boussinesq-type models with bounded eigenspectra: One horizontal dimension

    DEFF Research Database (Denmark)

    Eskilsson, Claes; Engsig-Karup, Allan Peter

    2014-01-01

    using a spectral element method of arbitrary spatial order p. It is shown that existing sets of parameters, found by optimising the linear dispersion relation, give rise to unbounded eigenspectra which govern stability. For explicit time-stepping schemes the global CFL time-step restriction typically......) are introduced. Using spectral element simulations of stream function waves it is illustrated that (i) the bounded equations capture the physics of the wave motion as well as the standard unbounded equations, and (ii) the bounded equations are computationally more efficient when explicit time-stepping schemes...

  14. Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions

    Directory of Open Access Journals (Sweden)

    S. M. Miller

    2014-02-01

    the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two Markov chain Monte Carlo (MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing option for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.

  15. Bound states and the Bekenstein bound

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael

    2003-10-16

    We explore the validity of the generalized Bekenstein bound, S<= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  16. Diffusion in Liquids : Equilibrium Molecular Simulations and Predictive Engineering Models

    NARCIS (Netherlands)

    Liu, X.

    2013-01-01

    The aim of this thesis is to study multicomponent diffusion in liquids using Molecular Dynamics (MD) simulations. Diffusion plays an important role in mass transport processes. In binary systems, mass transfer processes have been studied extensively using both experiments and molecular simulations.

  17. What cognitive processes drive response biases? A diffusion model analysis

    Directory of Open Access Journals (Sweden)

    Fabio P. Leite

    2011-10-01

    Full Text Available We used a diffusion model to examine the effects of response-bias manipulations on response time (RT and accuracy data collected in two experiments involving a two-choice decision making task. We asked 18 subjects to respond ``low'' or ``high'' to the number of asterisks in a 10x10 grid, based on an experimenter-determined decision cutoff. In the model, evidence is accumulated until either a ``low'' or ``high'' decision criterion is reached, and this, in turn, initiates a response. We performed two experiments with four experimental conditions. In conditions 1 and 2, the decision cutoff between low and high judgments was fixed at 50. In condition 1, we manipulated the frequency with which low- and high-stimuli were presented. In condition 2, we used payoff structures that mimicked the frequency manipulation. We found that manipulating stimulus frequency resulted in a larger effect on RT and accuracy than did manipulating payoff structure. In the model, we found that manipulating stimulus frequency produced greater changes in the starting point of the evidence accumulation process than did manipulating payoff structure. In conditions 3 and 4, we set the decision cutoff at 40, 50, or 60 (Experiment 1 and at 45 or 55 (Experiment 2. In condition 3, there was an equal number of low- and high-stimuli, whereas in condition 4 there were unequal proportions of low- and high-stimuli. The model analyses showed that starting-point changes accounted for biases produced by changes in stimulus proportions, whereas evidence biases accounted for changes in the decision cutoff.

  18. Synchronized stability in a reaction–diffusion neural network model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ling; Zhao, Hongyong, E-mail: hongyongz@126.com

    2014-11-14

    The reaction–diffusion neural network consisting of a pair of identical tri-neuron loops is considered. We present detailed discussions about the synchronized stability and Hopf bifurcation, deducing the non-trivial role that delay plays in different locations. The corresponding numerical simulations are used to illustrate the effectiveness of the obtained results. In addition, the numerical results about the effects of diffusion reveal that diffusion may speed up the tendency to synchronization and induce the synchronized equilibrium point to be stable. Furthermore, if the parameters are located in appropriate regions, multiple unstability and bistability or unstability and bistability may coexist. - Highlights: • Point to non-trivial role that τ plays in different positions. • Diffusion speeds up the tendency to synchronization. • Diffusion induces the synchronized equilibrium point to be stable. • The coexistence of multiple unstability and bistability or unstability and bistability.

  19. Bounded Rationality

    Directory of Open Access Journals (Sweden)

    Ballester Pla, Coralio

    2012-03-01

    Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.

    La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.

  20. Bounds for the price of a European-style Asian option in a binary tree model

    NARCIS (Netherlands)

    Reynaerts, H; Vanmaele, M.; Dhaene, J.L.M.; Deelstra, G.

    2006-01-01

    Inspired by the ideas of Rogers and Shi [J. Appl. Prob. 32 (1995) 1077], Chalasani et al. [J. Comput. Finance 1(4) (1998) 11] derived accurate lower and upper bounds for the price of a European-style Asian option with continuous averaging over the full lifetime of the option, using a discrete-time

  1. Simulating Radiotherapy Effect in High-Grade Glioma by Using Diffusive Modeling and Brain Atlases

    Directory of Open Access Journals (Sweden)

    Alexandros Roniotis

    2012-01-01

    Full Text Available Applying diffusive models for simulating the spatiotemporal change of concentration of tumour cells is a modern application of predictive oncology. Diffusive models are used for modelling glioblastoma, the most aggressive type of glioma. This paper presents the results of applying a linear quadratic model for simulating the effects of radiotherapy on an advanced diffusive glioma model. This diffusive model takes into consideration the heterogeneous velocity of glioma in gray and white matter and the anisotropic migration of tumor cells, which is facilitated along white fibers. This work uses normal brain atlases for extracting the proportions of white and gray matter and the diffusion tensors used for anisotropy. The paper also presents the results of applying this glioma model on real clinical datasets.

  2. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser

  3. A Model for Diffusion and Immobilization of Lithium in SiOC Nanocomposite Anodes

    Science.gov (United States)

    Stein, Peter; Vrankovic, Dragoljub; Graczyk-Zajac, Magdalena; Riedel, Ralf; Xu, Bai-Xiang

    2017-09-01

    In order to simulate the diffusion of Li ions in SiOC nanocomposites, we developed a reaction-diffusion model for multiphase materials. This model extends existing models for single-phase diffusion through consideration of the ion transport across material interfaces. In each phase, this model regards mobile and immobilized ions together with the irreversible trapping process. The behavior of material interfaces is incorporated using a Butler-Volmer reaction kinetics model. The model is verified using a simple two-phase benchmark on a square domain. Simulations of the coupled diffusion in a random microstructure show a stalling effect, whereby the immobilization process effectively stops the diffusion of mobile ions during the first stages of intercalation.

  4. Pre-Test Assessment of the Upper Bound of the Drag Coefficient Repeatability of a Wind Tunnel Model

    Science.gov (United States)

    Ulbrich, N.; L'Esperance, A.

    2017-01-01

    A new method is presented that computes a pre{test estimate of the upper bound of the drag coefficient repeatability of a wind tunnel model. This upper bound is a conservative estimate of the precision error of the drag coefficient. For clarity, precision error contributions associated with the measurement of the dynamic pressure are analyzed separately from those that are associated with the measurement of the aerodynamic loads. The upper bound is computed by using information about the model, the tunnel conditions, and the balance in combination with an estimate of the expected output variations as input. The model information consists of the reference area and an assumed angle of attack. The tunnel conditions are described by the Mach number and the total pressure or unit Reynolds number. The balance inputs are the partial derivatives of the axial and normal force with respect to all balance outputs. Finally, an empirical output variation of 1.0 microV/V is used to relate both random instrumentation and angle measurement errors to the precision error of the drag coefficient. Results of the analysis are reported by plotting the upper bound of the precision error versus the tunnel conditions. The analysis shows that the influence of the dynamic pressure measurement error on the precision error of the drag coefficient is often small when compared with the influence of errors that are associated with the load measurements. Consequently, the sensitivities of the axial and normal force gages of the balance have a significant influence on the overall magnitude of the drag coefficient's precision error. Therefore, results of the error analysis can be used for balance selection purposes as the drag prediction characteristics of balances of similar size and capacities can objectively be compared. Data from two wind tunnel models and three balances are used to illustrate the assessment of the precision error of the drag coefficient.

  5. DIFFUSION MODEL OF CREAMY- AND VEGETABLE SPREADS MIXING

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2015-01-01

    Full Text Available Summary .A mathematical model of the process of mixing cream- and vegetable spread was developed. In modeling the diffusion understanding of the nature of the process were used, allowing escape from the apparatus geometry. After turning on the mixer the mixing process begins. Its duration can be determined by the behavior of the tracer particles introduced into the agitated medium in a predetermined quantity through the free liquid surface within a short period of time. If tracer particles have the same density with the surrounding bulk liquid phase, then the path of movement of the particles and the fluid are identical. The degree of homogeneity of the composition can be stirred calculated by the coefficient of variation, which is identified by the local concentrations of tracer particles in the volume of stirred medium. The task of a one-dimensional particle transport in the plane layer of the mixed liquid is solved for their calculation. The calculated ratios obtained allow us to calculate the particle concentration at any point in the volume being mixed at random times. Based on the experiment effective mixing coefficients are identified and relations for their assessment, depending on the Reynolds number of the mixer in the range studied variations of process are offered. Using the time dependence of the variation coefficient characterizing the homogenity of the system being mixed, it is possible to determine the duration of mixing to obtain the product with the desired uniformity and homogeneity of the product under the definition of a predetermined duration of the mixing process. The variation coefficient %, indicating a sufficiently good uniformity of the spread composition was found for the spread №1, being mixed with a stirrer rotating at a speed of n=150 rev / min, and the dimensionless length of the process Fo =0,0935 for obtaining estimated relations. Using the proposed calculation algorithm one can estimate the homogeneity of the

  6. Diffuse Phosphorus Models in the United States and Europe: Their Usages, Scales, and Uncertainties

    NARCIS (Netherlands)

    Radcliffe, D.E.; Freer, J.; Schoumans, O.F.

    2009-01-01

    Today there are many well-established computer models that are being used at different spatial and temporal scales to describe water, sediment, and P transport from diffuse sources. In this review, we describe how diffuse P models are commonly being used in the United States and Europe, the

  7. Hierarchical Bayesian modeling of the space - time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  8. A mathematical model in charactering chloride diffusivity in unsaturated cementitious material

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.

    2017-01-01

    In this paper, a new analytic model for predicting chloride diffusivity in unsaturated cementitious materials is developed based on conductivity theory and Nernst-Einstein equation. The model specifies that chloride diffusivity in unsaturated cementitious materials can be mathematically described as

  9. Two-body bound and edge states in the extended SSH Bose-Hubbard model

    Science.gov (United States)

    Di Liberto, M.; Recati, A.; Carusotto, I.; Menotti, C.

    2017-07-01

    We study the bosonic two-body problem in a Su-Schrieffer-Heeger dimerized chain with on-site and nearest-neighbor interactions. We find two classes of bound states. The first, similar to the one induced by on-site interactions, has its center of mass on the strong link, whereas the second, existing only thanks to nearest-neighbor interactions, is centered on the weak link. We identify energy crossings between these states and analyse them using exact diagonalization and perturbation theory. In the presence of open boundary conditions, novel strongly-localized edge-bound states appear in the spectrum as a consequence of the interplay between lattice geometry, on-site and nearest-neighbor interactions. Contrary to the case of purely on-site interactions, such EBS persist even in the strongly interacting regime.

  10. Upper and lower Higgs boson mass bounds from a lattice Higgs-Yukawa model with dynamical overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, Philipp [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2009-12-15

    We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2){sub L} x U(1){sub Y} symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter {lambda}. (orig.)

  11. A reaction diffusion model of pattern formation in clustering of adatoms on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Trilochan Bagarti

    2012-12-01

    Full Text Available We study a reaction diffusion model which describes the formation of patterns on surfaces having defects. Through this model, the primary goal is to study the growth process of Ge on Si surface. We consider a two species reaction diffusion process where the reacting species are assumed to diffuse on the two dimensional surface with first order interconversion reaction occuring at various defect sites which we call reaction centers. Two models of defects, namely a ring defect and a point defect are considered separately. As reaction centers are assumed to be strongly localized in space, the proposed reaction-diffusion model is found to be exactly solvable. We use Green's function method to study the dynamics of reaction diffusion processes. Further we explore this model through Monte Carlo (MC simulations to study the growth processes in the presence of a large number of defects. The first passage time statistics has been studied numerically.

  12. Diffusion-controlled reactions modeling in Geant4-DNA

    Science.gov (United States)

    Karamitros, M.; Luan, S.; Bernal, M. A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H. N.; Stepan, V.; Incerti, S.

    2014-10-01

    Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k-d tree data structure for quickly locating, for a given molecule, its closest reactants. The

  13. Diffusion-controlled reactions modeling in Geant4-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Karamitros, M., E-mail: matkara@gmail.com [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Luan, S. [University of New Mexico, Department of Computer Science, Albuquerque, NM (United States); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Allison, J. [Geant4 Associates International Ltd (United Kingdom); Baldacchino, G. [CEA Saclay, IRAMIS, LIDYL, Radiation Physical Chemistry Group, F-91191 Gif sur Yvette Cedex (France); CNRS, UMR3299, SIS2M, F-91191 Gif sur Yvette Cedex (France); Davidkova, M. [Nuclear Physics Institute of the ASCR, Prague (Czech Republic); Francis, Z. [Saint Joseph University, Faculty of Sciences, Department of Physics, Mkalles, Beirut (Lebanon); Friedland, W. [Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstädter Landstr. 1, 85764 Neuherberg (Germany); Ivantchenko, V. [Ecoanalytica, 119899 Moscow (Russian Federation); Geant4 Associates International Ltd (United Kingdom); Ivantchenko, A. [Geant4 Associates International Ltd (United Kingdom); Mantero, A. [SwHaRD s.r.l., via Buccari 9, 16153 Genova (Italy); Nieminem, P.; Santin, G. [ESA-ESTEC, 2200 AG Noordwijk (Netherlands); Tran, H.N. [Division of Nuclear Physics and Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Stepan, V. [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Nuclear Physics Institute of the ASCR, Prague (Czech Republic); Incerti, S., E-mail: incerti@cenbg.in2p3.fr [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)

    2014-10-01

    Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k–d tree data structure for quickly locating, for a given molecule, its closest reactants. The

  14. Physical re-examination of parameters on a molecular collisions-based diffusion model for diffusivity prediction in polymers.

    Science.gov (United States)

    Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-29

    Molecular collisions, which are the microscopic origin of molecular diffusive motion, are affected by both the molecular surface area and the distance between molecules. Their product can be regarded as the free space around a penetrant molecule defined as the "shell-like free volume" and can be taken as a characteristic of molecular collisions. On the basis of this notion, a new diffusion theory has been developed. The model can predict molecular diffusivity in polymeric systems using only well-defined single-component parameters of molecular volume, molecular surface area, free volume, and pre-exponential factors. By consideration of the physical description of the model, the actual body moved and which neighbor molecules are collided with are the volume and the surface area of the penetrant molecular core. In the present study, a semiempirical quantum chemical calculation was used to calculate both of these parameters. The model and the newly developed parameters offer fairly good predictive ability. © 2011 American Chemical Society

  15. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Hansen, Brian; Østergaard, Leif

    2007-01-01

    PURPOSE: To understand the diffusion attenuated MR signal from normal and ischemic brain tissue in order to extract structural and physiological information using mathematical modeling, taking into account the transverse relaxation rates in gray matter. MATERIALS AND METHODS: We fit our diffusion...... compartment. A global optimum was found from a wide range of parameter permutations using cluster computing. We also present simulations of cell swelling and changes of exchange rate and intracellular diffusion as possible cellular mechanisms in ischemia. RESULTS: Our model estimates an extracellular volume...... fraction of 0.19 in accordance with the accepted value from histology. The absolute apparent diffusion coefficient obtained from the model was similar to that of experiments. The model and the experimental results indicate significant differences in diffusion and transverse relaxation between the tissue...

  16. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  17. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling.

    Science.gov (United States)

    Telfeyan, Katherine; Ware, S Doug; Reimus, Paul W; Birdsell, Kay H

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Quantum Chernoff bound metric for the XY model at finite temperature

    Science.gov (United States)

    Abasto, Damian F.; Jacobson, N. Tobias; Zanardi, Paolo

    2008-02-01

    We explore the finite-temperature phase diagram of the anisotropic XY spin chain using the quantum Chernoff bound metric on thermal states. The analysis of the metric elements allows one to easily identify, in terms of different scaling with temperature, quasiclassical and quantum-critical regions. These results extend recent ones obtained using the Bures metric and show that different information-theoretic notions of distance can carry the same sophisticated information about the phase diagram of an interacting many-body system featuring quantum-critical points.

  19. Research on a Dynamic Master-Slave Cournot Triopoly Game Model with Bounded Rational Rule and Its Control

    Directory of Open Access Journals (Sweden)

    Hongliang Tu

    2016-01-01

    Full Text Available The oligopoly market is modelled by a new dynamic master-slave Cournot triopoly game model with bounded rational rule. The local stabile conditions and the stable region are got by the dynamical systems bifurcation theory. The dynamics characteristics of the system with the changes of the adjustment speed parameters are analyzed by means of bifurcation diagram, largest Lyapunov exponents, phase portrait, and sensitive dependence on initial conditions. Furthermore, the parameters adjustment method is used to control the complex dynamical behaviors of the systems. The derived results have some important theoretical and practical meanings for the oligopoly market.

  20. Pattern Formation in a Predator-Prey Model with Both Cross Diffusion and Time Delay

    Directory of Open Access Journals (Sweden)

    Boli Xie

    2014-01-01

    Full Text Available A predator-prey model with both cross diffusion and time delay is considered. We give the conditions for emerging Turing instability in detail. Furthermore, we illustrate the spatial patterns via numerical simulations, which show that the model dynamics exhibits a delay and diffusion controlled formation growth not only of spots and stripe-like patterns, but also of the two coexist. The obtained results show that this system has rich dynamics; these patterns show that it is useful for the diffusive predation model with a delay effect to reveal the spatial dynamics in the real model.

  1. A fractional Fokker-Planck model for anomalous diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Johan, E-mail: anderson.johan@gmail.com [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Kim, Eun-jin [Department of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Moradi, Sara [Ecole Polytechnique, CNRS UMR7648, LPP, F-91128 Palaiseau (France)

    2014-12-15

    In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Lévy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.

  2. A Model for the Determination of Diffusion Capacity Under Non-Standard Temperature and Pressure Conditions

    Directory of Open Access Journals (Sweden)

    Eitzinger Bernhard

    2014-07-01

    Full Text Available The diffusion capacity of cigarette paper has been reported to be an important parameter in relation to the self-extinguishment of cigarettes and also in relation to carbon monoxide yields. Although the diffusion capacity is routinely measured and instruments for this measurement have been available for several years, differences between measured values obtained on the same paper sample but on different instruments or in different laboratories may be substantial and may make it difficult to use these values, for example, as a basis for paper specifications. Among several reasons, deviations of temperature and pressure from standard conditions, especially within the measurement chamber of the instrument, may contribute to the high variation in diffusion capacity data. Deviations of temperature and pressure will have an influence on the gas flow rates, the diffusion processes inside the measurement chamber and consequently the measured CO2 concentration. Generally, the diffusion capacity is determined from a mathematical model, which describes the diffusion processes inside the measurement chamber. Such models provide the CO2 concentration in the outflow gas for a given diffusion capacity. For practical applications the inverse model is needed, that is, the diffusion capacity shall be determined from a measured CO2 concentration. Often such an inverse model is approximated by a polynomial, which, however, is only valid for standard temperature and pressure. It is shown that relative approximation errors from such polynomials, even without temperature and pressure deviations, cannot always be neglected and it is proposed to eliminate such errors by direct inversion of the model with a comparably simple iterative method. A model which includes temperature and pressure effects is described and the effects of temperature and pressure deviations on the diffusion capacity are theoretically estimated by comparing the output of a model with and without

  3. Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations

    Science.gov (United States)

    Wu, Hao; Noé, Frank

    2011-03-01

    Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.

  4. Diffusion of PAH in potato and carrot slices and application for a potato model

    DEFF Research Database (Denmark)

    Trapp, Stefan; Cammarano, A.; Capri, E.

    2007-01-01

    A method for quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through thin layers was applied to plant tissue. The method employs two silicone disks, one serving as source and one as sink for a series of PAHs diffusing through thin layers...... of water, potato tissue, and carrot tissue. Naphthalene, phenanthrene, anthracene, and fluoranthene served as model substances. Their transfer from source to sink disk was measured by HPLC to determine a velocity rate constant proportional to the diffusive conductivity. The diffusive flux through the plant...

  5. Continuous Dependence in Front Propagation for Convective Reaction-Diffusion Models with Aggregative Movements

    Directory of Open Access Journals (Sweden)

    Luisa Malaguti

    2011-01-01

    Full Text Available The paper deals with a degenerate reaction-diffusion equation, including aggregative movements and convective terms. The model also incorporates a real parameter causing the change from a purely diffusive to a diffusive-aggregative and to a purely aggregative regime. Existence and qualitative properties of traveling wave solutions are investigated, and estimates of their threshold speeds are furnished. Further, the continuous dependence of the threshold wave speed and of the wave profiles on a real parameter is studied, both when the process maintains its diffusion-aggregation nature and when it switches from it to another regime.

  6. Resource consumption of a diffusion model for prevention programs: the PROSPER delivery system.

    Science.gov (United States)

    Crowley, Daniel M; Jones, Damon E; Greenberg, Mark T; Feinberg, Mark E; Spoth, Richard L

    2012-03-01

    To prepare public systems to implement evidence-based prevention programs for adolescents, it is necessary to have accurate estimates of programs' resource consumption. When evidence-based programs are implemented through a specialized prevention delivery system, additional costs may be incurred during cultivation of the delivery infrastructure. Currently, there is limited research on the resource consumption of such delivery systems and programs. In this article, we describe the resource consumption of implementing the PROSPER (PROmoting School-Community-University Partnerships to Enhance Resilience) delivery system for a period of 5 years in one state, and how the financial and economic costs of its implementation affect local communities as well as the Cooperative Extension and University systems. We used a six-step framework for conducting cost analysis, using a Cost-Procedure-Process-Outcome Analysis model (Yates, Analyzing costs, procedures, processes, and outcomes in human services: An introduction, 1996; Yates, 2009). This method entails defining the delivery System; bounding cost parameters; identifying, quantifying, and valuing systemic resource Consumption, and conducting sensitivity analysis of the cost estimates. Our analyses estimated both the financial and economic costs of the PROSPER delivery system. Evaluation of PROSPER illustrated how costs vary over time depending on the primacy of certain activities (e.g., team development, facilitator training, program implementation). Additionally, this work describes how the PROSPER model cultivates a complex resource infrastructure and provides preliminary evidence of systemic efficiencies. This work highlights the need to study the costs of diffusion across time and broadens definitions of what is essential for successful implementation. In particular, cost analyses offer innovative methodologies for analyzing the resource needs of prevention systems. Copyright © 2012 Society for Adolescent Health and

  7. Comparison Of Diffuse Solar Radiation Models Using Data For ...

    African Journals Online (AJOL)

    Measurements of global solar radiation and sunshine duration data during the period from 1984 to 1999 were supplied by IITA (International Institute of Tropical Agriculture) at Onne. The data were used to establish empirical relationships that would connect the daily monthly average diffuse irradiation with both relative ...

  8. The diffusion-buffer phenomenon in a mathematical model of biology

    Energy Technology Data Exchange (ETDEWEB)

    Kolesov, Andrei Yu [Yaroslavl Demidov State University (Russian Federation); Rozov, Nikolai Kh [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    1998-10-31

    We consider the Neumann problem for partial differential-difference equations with diffusion that models a predator-prey problem. Using infinite-dimensional normalization, we establish the diffusion-buffer phenomenon, which means that the system can have any number of stable spatially inhomogeneous cycles if its parameters are properly chosen.

  9. Study of the mathematical model for absorption and diffusion in ultra-napkins

    Directory of Open Access Journals (Sweden)

    Paola Mannucci

    1995-11-01

    Full Text Available We anlyse a mathematical model for absorption and diffusion of a fluid in ultra-napkins. We consider a diffusion equation coupled with an ordinary differential equation, subjected to a discontinuous Neumann boundary condition.We prove the existence and the uniqueness of a regular solution which is continuous up to the boundary.

  10. Fitting the CDO correlation skew: a tractable structural jump-diffusion model

    DEFF Research Database (Denmark)

    Willemann, Søren

    2007-01-01

    We extend a well-known structural jump-diffusion model for credit risk to handle both correlations through diffusion of asset values and common jumps in asset value. Through a simplifying assumption on the default timing and efficient numerical techniques, we develop a semi-analytic framework all...

  11. Rotational diffusion model of orientational enhancement in AC field biased photorefractive polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Jespersen, K.G.; Johansen, P.M.

    2001-01-01

    The response of photorefractive (PR) polymers subject to AC field biasing is analyzed within the space-charge field formalism. The frequency dependence of orientational enhancement is taken into account using a rotational diffusion model for the angular distribution of chromophores. The possibili...... for simultaneous utilization of AC and orientational enhancement techniques in polymers is discussed for different values of the rotational diffusion time....

  12. A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging

    Science.gov (United States)

    Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.

    2016-10-01

    Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the

  13. Unified one-dimensional model of bounded plasma with nonzero ion temperature in a broad pressure range

    Energy Technology Data Exchange (ETDEWEB)

    Palacio Mizrahi, J. H.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2013-03-15

    A one-dimensional model for steady state plasmas bounded either between large parallel walls, or by a cylinder or a sphere, valid in a wide range of gas pressures, is considered. The model includes nonzero ion temperature, inertial terms in the ion momentum equations, and allows one to calculate the plasma electron temperature and ion current density reaching the wall, as well as the spatial distributions of the ion fluid velocity, plasma density, and plasma potential in the plasma bulk. In addition, the effect of electron inertia is analyzed. The model includes as particular cases several earlier models that were based on a similar set of differential equations, but that are restricted to a specific pressure regime (low, intermediate, or high). Analytical solution is found in planar geometry, and numerical solution is given in cylindrical and spherical geometry. The results obtained are compared with those of earlier models and the differences are analyzed.

  14. Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules.

    Science.gov (United States)

    Trovato, Fabio; Tozzini, Valentina

    2014-12-02

    Recent experiments carried out in the dense cytoplasm of living cells have highlighted the importance of proteome composition and nonspecific intermolecular interactions in regulating macromolecule diffusion and organization. Despite this, the dependence of diffusion-interaction on physicochemical properties such as the degree of poly-dispersity and the balance between steric repulsion and nonspecific attraction among macromolecules was not systematically addressed. In this work, we study the problem of diffusion-interaction in the bacterial cytoplasm, combining theory and experimental data to build a minimal coarse-grained representation of the cytoplasm, which also includes, for the first time to our knowledge, the nucleoid. With stochastic molecular-dynamics simulations of a virtual cytoplasm we are able to track the single biomolecule motion, sizing from 3 to 80 nm, on submillisecond-long trajectories. We demonstrate that the size dependence of diffusion coefficients, anomalous exponents, and the effective viscosity experienced by biomolecules in the cytoplasm is fine-tuned by the intermolecular interactions. Accounting only for excluded volume in these potentials gives a weaker size-dependence than that expected from experimental data. On the contrary, adding nonspecific attraction in the range of 1-10 thermal energy units produces a stronger variation of the transport properties at growing biopolymer sizes. Normal and anomalous diffusive regimes emerge straightforwardly from the combination of high macromolecular concentration, poly-dispersity, stochasticity, and weak nonspecific interactions. As a result, small biopolymers experience a viscous cytoplasm, while the motion of big ones is jammed because the entanglements produced by the network of interactions and the entropic effects caused by poly-dispersity are stronger. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Diffusion Forecasting Model with Basis Functions from QR-Decomposition

    Science.gov (United States)

    Harlim, John; Yang, Haizhao

    2017-12-01

    The diffusion forecasting is a nonparametric approach that provably solves the Fokker-Planck PDE corresponding to Itô diffusion without knowing the underlying equation. The key idea of this method is to approximate the solution of the Fokker-Planck equation with a discrete representation of the shift (Koopman) operator on a set of basis functions generated via the diffusion maps algorithm. While the choice of these basis functions is provably optimal under appropriate conditions, computing these basis functions is quite expensive since it requires the eigendecomposition of an N× N diffusion matrix, where N denotes the data size and could be very large. For large-scale forecasting problems, only a few leading eigenvectors are computationally achievable. To overcome this computational bottleneck, a new set of basis functions constructed by orthonormalizing selected columns of the diffusion matrix and its leading eigenvectors is proposed. This computation can be carried out efficiently via the unpivoted Householder QR factorization. The efficiency and effectiveness of the proposed algorithm will be shown in both deterministically chaotic and stochastic dynamical systems; in the former case, the superiority of the proposed basis functions over purely eigenvectors is significant, while in the latter case forecasting accuracy is improved relative to using a purely small number of eigenvectors. Supporting arguments will be provided on three- and six-dimensional chaotic ODEs, a three-dimensional SDE that mimics turbulent systems, and also on the two spatial modes associated with the boreal winter Madden-Julian Oscillation obtained from applying the Nonlinear Laplacian Spectral Analysis on the measured Outgoing Longwave Radiation.

  16. Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2013-01-01

    Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.

  17. Synthesis of ultrathin poly(methyl methacrylate) model coatings bound via organosilanes to zinc and investigation of their delamination kinetics.

    Science.gov (United States)

    Iqbal, Danish; Rechmann, Julian; Sarfraz, Adnan; Altin, Abdulrahman; Genchev, Georgi; Erbe, Andreas

    2014-10-22

    Polymer coatings are widely used to protect metals from corrosion. Coating adhesion to the base material is critical for good protection, but coatings may fail because of cathodic delamination. Most of the experimental studies on cathodic delamination use polymers to study the corrosion behavior under conditions where the interfacial chemistry at the metal(oxide)/polymer interface is not well-defined. Here, ultrathin linear and cross-linked poly(methyl methacrylate) [PMMA] coatings that are covalently bound to oxide-covered zinc via a silane linker have been prepared. For preparation, zinc was functionalized with vinyltrimethoxysilane (VTS), yielding a vinyl monomer-covered surface. These samples were subjected to thermally initiated free radical polymerization in the presence of methyl methacrylate (MMA) to yield surface-bound ultrathin PMMA films of 10-20 nm thickness, bound to the surface via Zn-O-Si bonds. A similar preparation was also carried out in the presence of different amounts of the cross-linkers ethylene glycol diacrylate and hexanediol diacrylate. Functionalized and polymer-coated zinc samples were characterized by infrared (IR) spectroscopy, secondary ion mass spectrometry (SIMS), ellipsometry, and X-ray photoelectron spectroscopy (XPS). Coating stability toward cathodic delamination has been evaluated by scanning Kelvin probe (SKP) experiments. In all cases, the covalently linked coatings show lower delamination rates of 0.02-0.2 mm h(-1) than coatings attached to the surface without covalent bonds (rates ∼10 mm h(-1)). Samples with a higher fraction of cross-linker delaminate slower, with rates down to 0.03-0.04 mm h(-1), compared to ∼0.3 mm h(-1) without cross-linker. Samples with longer hydrophobic alkyl chains also delaminate slower, with the lowest observed delamination rate of 0.028 mm h(-1) using hexanediol diacrylate. For the coatings studied here, delamination kinetics is not diffusion limited, but the rate is controlled by a chemical

  18. Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion

    Science.gov (United States)

    Boyer, D.; Romo-Cruz, J. C. R.

    2014-10-01

    Motivated by studies on the recurrent properties of animal and human mobility, we introduce a path-dependent random-walk model with long-range memory for which not only the mean-square displacement (MSD) but also the propagator can be obtained exactly in the asymptotic limit. The model consists of a random walker on a lattice, which, at a constant rate, stochastically relocates at a site occupied at some earlier time. This time in the past is chosen randomly according to a memory kernel, whose temporal decay can be varied via an exponent parameter. In the weakly non-Markovian regime, memory reduces the diffusion coefficient from the bare value. When the mean backward jump in time diverges, the diffusion coefficient vanishes and a transition to an anomalous subdiffusive regime occurs. Paradoxically, at the transition, the process is an anticorrelated Lévy flight. Although in the subdiffusive regime the model exhibits some features of the continuous time random walk with infinite mean waiting time, it belongs to another universality class. If memory is very long-ranged, a second transition takes place to a regime characterized by a logarithmic growth of the MSD with time. In this case the process is asymptotically Gaussian and effectively described as a scaled Brownian motion with a diffusion coefficient decaying as 1 /t .

  19. Model selection for high b-value diffusion-weighted MRI of the prostate.

    Science.gov (United States)

    Mazaheri, Yousef; Hötker, Andreas M; Shukla-Dave, Amita; Akin, Oguz; Hricak, Hedvig

    2018-02-01

    To assess the abilities of the standard mono-exponential (ME), bi-exponential (BE), diffusion kurtosis (DK) and stretched exponential (SE) models to characterize diffusion signal in malignant and prostatic tissues and determine which of the four models best characterizes these tissues on a per-voxel basis. This institutional-review-board-approved, HIPAA-compliant, retrospective study included 55 patients (median age, 61years; range, 42-77years) with untreated, biopsy-proven PCa who underwent endorectal coil MRI at 3-Tesla, diffusion-weighted MRI acquired at eight b-values from 0 to 2000s/mm2. Estimated parameters were apparent diffusion coefficent (ME model); diffusion coefficients for the fast (Dfast) and slow (Dslow) components and fraction of fast component, ffast (BE model); diffusion coefficient D, and kurtosis K (DK model); distributed diffusion coefficient DDC and α for (SE model). For one region-of-interest (ROI) in PZ and another in PCa in each patient, the corrected Akaike information criterion (AICc) and the Akaike weight (w) were calculated for each voxel. Based on AICc and w, all non-monoexponential models outperformed the ME model in PZ and PCa. The DK model in PZ and SE model in PCa ROIs best fit the greatest average percentages of voxels (39% and 43%, respectively) and had the highest mean w (35±16×10-2 and 41±22×10-2, respectively). DK and SE models best fit DWI data in PZ and PCa, and non-ME models consistently outperformed the ME model. Voxel-wise mapping of the preferential model demonstrated that the vast majority of voxels in either tissue type were best fit with one of the non-monoexponential models. At the given SNR levels, the maximum b-value of 2000s/mm2 is not sufficiently high to identify the preferred non-monoexponential model. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Trace metal bioavailability: Modeling chemical and biological interactions of sediment-bound zinc

    Science.gov (United States)

    Luoma, S. N.; Bryan, G.W.; Jenne, Everett A.

    1979-01-01

    Extractable concentrations of sediment-bound Zn, as modified by the physicochemical form of the metal in the sediments, controlled Zn concentrations in the deposit-feeding bivalvesScrobicularia plana (collected from 40 stations in 17 estuaries in southwest England) andMacoma balthica (from 28 stations in San Francisco Bay). Over a wide range of concentrations, a significant correlation was found between ammonium acetate-soluble concentrations of Zn in sediments and Zn concentrations in Scrobicularia. This correlation was insufficiently precise to be of predictive value for Scrobicularia, and did not hold for Macoma over the narrower range of Zn concentrations observed in San Francisco Bay. Strong correlation of Zn concentrations inScrobicularia and the bioavailability of sediment-bound Zn to Macoma with ratios of sorption substrate (oxides of iron and manganese, organic carbon, carbonates, humic materials) concentrations in sediments were found in both the English and San Francisco Bay study areas. These correlations were attributed to substrate competition for sorption of Zn within sediments, assuming: 1) competition for sorption of Zn was largely controlled by the relative concentrations of substrates present in the sediments and 2) the bioavailability of Zn to the deposit feeders was determined by the partitioning of Zn among the substrates. The correlations indicated that the availability of Zn to the bivalves increased when concentrations of either amorphous inorganic oxides or humic substances increased in sediments. Availability was reduced at increased concentrations of organic carbon and, in San Francisco Bay, ammonium acetate-soluble Mn. Concentrations of biologically available Zn in solution and low salinities may also have enhanced Zn uptake, although the roles of these variables were less obvious from the statistical analysis.

  1. Applying horizontal diffusion on pressure surface to mesoscale models on terrain-following coordinates

    Science.gov (United States)

    Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...

  2. Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates

    Directory of Open Access Journals (Sweden)

    Marcus C. Christiansen

    2013-10-01

    Full Text Available In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.

  3. NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B-L model

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, Michael [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Lyonnet, Florian [Southern Methodist University, Dallas, TX (United States); Queiroz, Farinaldo S. [Max-Planck-Institut fuer Kernphysik, Particle and Astroparticle Physics Division, Heidelberg (Germany)

    2017-05-15

    Baryon and lepton numbers being accidental global symmetries of the Standard Model (SM), it is natural to promote them to local symmetries. However, to preserve anomaly-freedom, only combinations of B-L are viable. In this spirit, we investigate possible dark matter realizations in the context of the U(1){sub B-L} model: (i) Dirac fermion with unbroken B-L; (ii) Dirac fermion with broken B-L; (iii) scalar dark matter; (iv) two-component dark matter. We compute the relic abundance, direct and indirect detection observables and confront them with recent results from Planck, LUX-2016, and Fermi-LAT and prospects from XENON1T. In addition to the well-known LEP bound M{sub Z}{sup {sub '}}/g{sub BL} >or similar 7 TeV, we include often ignored LHC bounds using 13 TeV dilepton (dimuon + dielectron) data at next-to-leading order plus next-to-leading logarithmic accuracy. We show that, for gauge couplings smaller than 0.4, the LHC gives rise to the strongest collider limit. In particular, we find M{sub Z}{sup {sub '}}/g{sub BL} > 8.7 TeV for g{sub BL} = 0.3. We conclude that the NLO+NLL corrections improve the dilepton bounds on the Z{sup '} mass and that both dark matter candidates are only viable in the Z{sup '} resonance region, with the parameter space for scalar dark matter being fully probed by XENON1T. Lastly, we show that one can successfully have a minimal two-component dark matter model. (orig.)

  4. Generalized Density-Corrected Model for Gas Diffusivity in Variably Saturated Soils

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per

    2011-01-01

    models. The GDC model was further extended to describe two-region (bimodal) soils and could describe and predict Dp/Do well for both different soil aggregate size fractions and variably compacted volcanic ash soils. A possible use of the new GDC model is engineering applications such as the design......Accurate predictions of the soil-gas diffusivity (Dp/Do, where Dp is the soil-gas diffusion coefficient and Do is the diffusion coefficient in free air) from easily measureable parameters like air-filled porosity (ε) and soil total porosity (φ) are valuable when predicting soil aeration...... and the emission of greenhouse gases and gaseous-phase contaminants from soils. Soil type (texture) and soil density (compaction) are two key factors controlling gas diffusivity in soils. We extended a recently presented density-corrected Dp(ε)/Do model by letting both model parameters (α and β) be interdependent...

  5. Numerical study of a cylinder model of the diffusion MRI signal for neuronal dendrite trees

    Science.gov (United States)

    Van Nguyen, Dang; Grebenkov, Denis; Le Bihan, Denis; Li, Jing-Rebecca

    2015-03-01

    We study numerically how the neuronal dendrite tree structure can affect the diffusion magnetic resonance imaging (dMRI) signal in brain tissue. For a large set of randomly generated dendrite trees, synthetic dMRI signals are computed and fitted to a cylinder model to estimate the effective longitudinal diffusivity DL in the direction of neurites. When the dendrite branches are short compared to the diffusion length, DL depends significantly on the ratio between the average branch length and the diffusion length. In turn, DL has very weak dependence on the distribution of branch lengths and orientations of a dendrite tree, and the number of branches per node. We conclude that the cylinder model which ignores the connectivity of the dendrite tree, can still be adapted to describe the apparent diffusion coefficient in brain tissue.

  6. The water-induced linear reduction gas diffusivity model extended to three pore regions

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; De Jonge, Lis Wollesen; Kawamoto, Ken

    2015-01-01

    gas diffusivity from moist to dry conditions across differently structured porous media, including narrow soil size fractions, perforated plastic blocks, fractured limestone, peaty soils, aggregated volcanic ash soils, and particulate substrates for Earth- or space-based applications. The new Cip......An existing gas diffusivity model developed originally for sieved, repacked soils was extended to characterize gas diffusion in differently structured soils and functional pore networks. A gas diffusivity-derived pore connectivity index was used as a measure of soil structure development....... Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally...

  7. Model-Independent Analysis of $B \\to \\pi K$ Decays and Bounds on the Weak Phase $\\gamma$

    CERN Document Server

    Neubert, M

    1999-01-01

    A general parametrization of the amplitudes for the rare two-body decays B -> pi K is introduced, which makes maximal use of theoretical constraints arising from flavour symmetries of the strong interactions and the structure of the low-energy effective weak Hamiltonian. With the help of this parametrization, a model-independent analysis of the branching ratios and direct CP asymmetries in the various B -> pi K decay modes is performed, and the impact of hadronic uncertainties on bounds on the weak phase gamma = arg(Vub*) is investigated.

  8. Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription

    Science.gov (United States)

    d'Onofrio, Alberto; Caravagna, Giulio; de Franciscis, Sebastiano

    2018-02-01

    In this work we consider, from a statistical mechanics point of view, the effects of bounded stochastic perturbations of the protein decay rate for a bistable biomolecular network module. Namely, we consider the perturbations of the protein decay/binding rate constant (DBRC) in a circuit modeling the positive feedback of a transcription factor (TF) on its own synthesis. The DBRC models both the spontaneous degradation of the TF and its linking to other unknown biomolecular factors or drugs. We show that bounded perturbations of the DBRC preserve the positivity of the parameter value (and also its limited variation), and induce effects of interest. First, the noise amplitude induces a first-order phase transition. This is of interest since the system in study has neither spatial components nor it is composed by multiple interacting networks. In particular, we observe that the system passes from two to a unique stochastic attractor, and vice-versa. This behavior is different from noise-induced transitions (also termed phenomenological bifurcations), where a unique stochastic attractor changes its shape depending on the values of a parameter. Moreover, we observe irreversible jumps as a consequence of the above-mentioned phase transition. We show that the illustrated mechanism holds for general models with the same deterministic hysteresis bifurcation structure. Finally, we illustrate the possible implications of our findings to the intracellular pharmacodynamics of drugs delivered in continuous infusion.

  9. Frequency Weighted Model Order Reduction Technique and Error Bounds for Discrete Time Systems

    OpenAIRE

    Muhammad Imran; Abdul Ghafoor; Victor Sreeram

    2014-01-01

    Model reduction is a process of approximating higher order original models by comparatively lower order models with reasonable accuracy in order to provide ease in design, modeling and simulation for large complex systems. Generally, model reduction techniques approximate the higher order systems for whole frequency range. However, certain applications (like controller reduction) require frequency weighted approximation, which introduce the concept of using frequency weights in model reductio...

  10. Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications

    Directory of Open Access Journals (Sweden)

    Olivier Reynaud

    2017-11-01

    Full Text Available In diffusion weighted imaging (DWI, the apparent diffusion coefficient (ADC has been recognized as a useful and sensitive surrogate for cell density, paving the way for non-invasive tumor staging, and characterization of treatment efficacy in cancer. However, microstructural parameters, such as cell size, density and/or compartmental diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive but non-specific probe into changes happening at cellular level. Alternatively, tissue complexity can be probed and quantified using the time dependence of diffusion metrics, sometimes also referred to as temporal diffusion spectroscopy when only using oscillating diffusion gradients. Time-dependent diffusion (TDD is emerging as a strong candidate for specific and non-invasive tumor characterization. Despite the lack of a general analytical solution for all diffusion times/frequencies, TDD can be probed in various regimes where systems simplify in order to extract relevant information about tissue microstructure. The fundamentals of TDD are first reviewed (a in the short time regime, disentangling structural and diffusive tissue properties, and (b near the tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times. Focusing on cell bodies (as opposed to neuronal tracts, a simple but realistic model for intracellular diffusion can offer precious insight on diffusion inside biological systems, at all times. Based on this approach, the main three geometrical models implemented so far (IMPULSED, POMACE, VERDICT are reviewed. Their suitability to quantify cell size, intra- and extracellular spaces (ICS and ECS and diffusivities are assessed. The proper modeling of tissue membrane permeability—hardly a newcomer in the field, but lacking applications—and its impact on microstructural estimates are also considered. After discussing general issues with tissue modeling and microstructural parameter

  11. Modeling of Diffusive Convective and Electromechanical Processes in PEM fuel cells

    DEFF Research Database (Denmark)

    Bang, Mads

    and chemical species. Since analytical solutions to these three dimensional convections diffusion problems can rarely be obtained, the CFX code makes use of a finite volume discretization and numerical techniques, in order to obtain a solution. The model developed solves the convective and diffusive transport...... of the gaseous phase in the fuel cell and allows prediction of the concentration of the species present. A special feature of the approach developed is a method that allows detailed modelling and prediction of electrode kinetics. The transport of electrons in the gas diffusion layer and catalyst layer, as well....... The proposed model makes it possible to predict the effect of geometrical and material properties on fuel cells performance, which means that the model can predict how the gas diffusion layer (GDL) and catalyst layers physical properties affects the distribution of current density, and how this affects...

  12. Pattern Formation in a Cross-Diffusive Holling-Tanner Model

    Directory of Open Access Journals (Sweden)

    Weiming Wang

    2012-01-01

    Full Text Available We present a theoretical analysis of the processes of pattern formation that involves organisms distribution and their interaction of spatially distributed population with self- as well as cross-diffusion in a Holling-Tanner predator-prey model; the sufficient conditions for the Turing instability with zero-flux boundary conditions are obtained; Hopf and Turing bifurcation in a spatial domain is presented, too. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by self- as well as cross-diffusion in the model, and find that the model dynamics exhibits a cross-diffusion controlled formation growth not only to spots, but also to strips, holes, and stripes-spots replication. And the methods and results in the present paper may be useful for the research of the pattern formation in the cross-diffusive model.

  13. A Functional Model for Teaching Osmosis-Diffusion to Biology Students

    Science.gov (United States)

    Olsen, Richard W.; Petry, Douglas E.

    1976-01-01

    Described is a maternal-fetal model, operated by the student, to teach osmosis-diffusion to biology students. Included are materials needed, assembly instructions, and student operating procedures. (SL)

  14. Specifying theories of developmental dyslexia: a diffusion model analysis of word recognition

    NARCIS (Netherlands)

    Zeguers, M.H.T.; Snellings, P.; Tijms, J.; Weeda, W.D.; Tamboer, P.; Bexkens, A.; Huizenga, H.M.

    2011-01-01

    The nature of word recognition difficulties in developmental dyslexia is still a topic of controversy. We investigated the contribution of phonological processing deficits and uncertainty to the word recognition difficulties of dyslexic children by mathematical diffusion modeling of visual and

  15. Characterization and modeling of the metal diffusion from deep ultraviolet photoresist and silicon-based substrate.

    Science.gov (United States)

    Wang, T K; Wan, M Y; Ko, F H; Tseng, C L

    2001-05-01

    The radioactive tracer technique was applied to investigate the out-diffusion of the transition metals (Cu, Fe and Co) from deep ultraviolet (DUV) photoresist into underlying substrate. Two important process parameters, viz., baking temperatures and substrate types (i.e., bare silicon, polysilicon, silicon oxide and silicon nitride), were evaluated. Results indicate that the out-diffusion of Co is insignificant, irrespective of the substrate type and baking temperature. The out-diffusion of Cu is significant for substrates of bare silicon and polysilicon but not for silicon oxide and nitride; for Fe, the story is reversed. The substrate type appears to strongly affect the diffusion, while the baking temperature does not. Also, the effect of solvent evaporation was found to play an important role in impurity diffusion. Using the method of numerical analysis, a diffusion profile was depicted in this work to describe the out-diffusion of metallic impurities from photoresist layer under various baking conditions. In addition, the effectiveness of various wet-cleaning recipes in removing metallic impurities such as Cu, Fe and Co was also studied using the radioactive tracer technique. Among the six cleaning solutions studied, SC2 and SPM are the most effective in impurity removal. An out-diffusion cleaning model was first proposed to describe the cleaning process. A new cleaning coefficient, h(T), was suggested to explain the cleaning effect. The cleaning model could explain the tracer results.

  16. Diffusion of PAH in potato and carrot slices and application for a potato model.

    Science.gov (United States)

    Trapp, Stefan; Cammarano, Anita; Capri, Ettore; Reichenberg, Fredrik; Mayer, Philipp

    2007-05-01

    A method for quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through thin layers was applied to plant tissue. The method employs two silicone disks, one serving as source and one as sink for a series of PAHs diffusing through thin layers of water, potato tissue, and carrot tissue. Naphthalene, phenanthrene, anthracene, and fluoranthene served as model substances. Their transfer from source to sink disk was measured by HPLC to determine a velocity rate constant proportional to the diffusive conductivity. The diffusive flux through the plant tissue was modeled using Fick's first law of diffusion. Both the experimental results and the model suggest that mass transfer through plant tissue occurs predominantly through pore water and that, therefore, the mass transfer ratio between plant tissue and water is independent of the hydrophobicity of the chemical. The findings of this study provide a convenient method to estimate the diffusion of nonvolatile organic chemicals through various plant materials. The application to a radial diffusion model suggests that "growth dilution" rendersthe concentration of highly hydrophobic chemicals in potatoes below their equilibrium partitioning level. This is in agreement with field results for the bioconcentration of PAHs in potatoes.

  17. Epidemic model for information diffusion in web forums: experiments in marketing exchange and political dialog.

    Science.gov (United States)

    Woo, Jiyoung; Chen, Hsinchun

    2016-01-01

    As social media has become more prevalent, its influence on business, politics, and society has become significant. Due to easy access and interaction between large numbers of users, information diffuses in an epidemic style on the web. Understanding the mechanisms of information diffusion through these new publication methods is important for political and marketing purposes. Among social media, web forums, where people in online communities disseminate and receive information, provide a good environment for examining information diffusion. In this paper, we model topic diffusion in web forums using the epidemiology model, the susceptible-infected-recovered (SIR) model, frequently used in previous research to analyze both disease outbreaks and knowledge diffusion. The model was evaluated on a large longitudinal dataset from the web forum of a major retail company and from a general political discussion forum. The fitting results showed that the SIR model is a plausible model to describe the diffusion process of a topic. This research shows that epidemic models can expand their application areas to topic discussion on the web, particularly social media such as web forums.

  18. A qualitative model for aggregation and diffusion of β-amyloid in Alzheimer's disease.

    Science.gov (United States)

    Achdou, Yves; Franchi, Bruno; Marcello, Norina; Tesi, Maria Carla

    2013-12-01

    In this paper we present a mathematical model for the aggregation and diffusion of Aβ amyloid in the brain affected by Alzheimer's disease, at the early stage of the disease. The model is based on a classical discrete Smoluchowski aggregation equation modified to take diffusion into account. We also describe a numerical scheme and discuss the results of the simulations in the light of the recent biomedical literature.

  19. Efficient simulation of diffusion-based choice RT models on CPU and GPU.

    Science.gov (United States)

    Verdonck, Stijn; Meers, Kristof; Tuerlinckx, Francis

    2016-03-01

    In this paper, we present software for the efficient simulation of a broad class of linear and nonlinear diffusion models for choice RT, using either CPU or graphical processing unit (GPU) technology. The software is readily accessible from the popular scripting languages MATLAB and R (both 64-bit). The speed obtained on a single high-end GPU is comparable to that of a small CPU cluster, bringing standard statistical inference of complex diffusion models to the desktop platform.

  20. Prediction of the reverberation time in high absorbent room using a modified diffusion model

    OpenAIRE

    BILLON, A; PICAUT, J; SAKOUT, A

    2008-01-01

    A modification of the diffusion model's boundary condition, based on the Eyring absorption coefficient, to account for high walls absorption is proposed. Numerical comparisons are carried out for three geometrical configurations (a proportionate room, a corridor and a flat enclosure). Comparisons with the statistical theory and a ray-tracing software show that the modified boundary condition increases the accuracy of the diffusion model in term of reverberation time in all the simulated confi...

  1. A diffuse plate boundary model for Indian Ocean tectonics

    Science.gov (United States)

    Wiens, D. A.; Demets, C.; Gordon, R. G.; Stein, S.; Argus, D.

    1985-01-01

    It is suggested that motion along the virtually aseismic Owen fracture zone is negligible, so that Arabia and India are contained within a single Indo-Arabian plate divided from the Australian plate by a diffuse boundary. The boundary is a zone of concentrated seismicity and deformation commonly characterized as 'intraplate'. The rotation vector of Australia relative to Indo-Arabia is consistent with the seismologically observed 2 cm/yr of left-lateral strike-slip along the Ninetyeast Ridge, north-south compression in the Central Indian Ocean, and the north-south extension near Chagos.

  2. Analysis of a HBV Model with Diffusion and Time Delay

    Directory of Open Access Journals (Sweden)

    Noé Chan Chí

    2012-01-01

    Full Text Available This paper discussed a hepatitis B virus infection with delay, spatial diffusion, and standard incidence function. The local stability of equilibrium is obtained via characteristic equations. By using comparison arguments, it is proved that if the basic reproduction number is less than unity, the infection-free equilibrium is globally asymptotically stable. If the basic reproductive number is greater than unity, by means of an iteration technique, sufficiently conditions are obtained for the global asymptotic stability of the infected steady state. Numerical simulations are carried out to illustrate our findings.

  3. Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions

    Science.gov (United States)

    Azin, Reza; Mahmoudy, Mohamad; Raad, Seyed; Osfouri, Shahriar

    2013-12-01

    Storage of CO2 in deep saline aquifers is a promising techniques to mitigate global warming and reduce greenhouse gases (GHG). Correct measurement of diffusivity is essential for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of GHG in saline aquifers. In this study, diffusivity of CO2 into a saline aquifer taken from oil field was measured and modeled. Equilibrium concentration of CO2 at gas-liquid interface was determined using Henry's law. Experimental measurements were reported at temperature and pressure ranges of 32-50°C and 5900-6900 kPa, respectively. Results show that diffusivity of CO2 varies between 3.52-5.98×10-9 m2/s for 5900 kPa and 5.33-6.16×10-9 m2/s for 6900 kPa initial pressure. Also, it was found that both pressure and temperature have a positive impact on the measures of diffusion coefficient. Liquid swelling due to gas dissolution and variations in gas compressibility factor as a result of pressure decay was found negligible. Measured diffusivities were used model the physical model and develop concentration profile of dissolved gas in the liquid phase. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions, which can be applied in full-field studies of carbon capture and sequestration projects.

  4. Matrix Diffusion for Performance Assessment - Experimental Evidence, Modelling Assumptions and Open Issues

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A

    2004-07-01

    In this report a comprehensive overview on the matrix diffusion of solutes in fractured crystalline rocks is presented. Some examples from observations in crystalline bedrock are used to illustrate that matrix diffusion indeed acts on various length scales. Fickian diffusion is discussed in detail followed by some considerations on rock porosity. Due to the fact that the dual-porosity medium model is a very common and versatile method for describing solute transport in fractured porous media, the transport equations and the fundamental assumptions, approximations and simplifications are discussed in detail. There is a variety of geometrical aspects, processes and events which could influence matrix diffusion. The most important of these, such as, e.g., the effect of the flow-wetted fracture surface, channelling and the limited extent of the porous rock for matrix diffusion etc., are addressed. In a further section open issues and unresolved problems related to matrix diffusion are mentioned. Since matrix diffusion is one of the key retarding processes in geosphere transport of dissolved radionuclide species, matrix diffusion was consequently taken into account in past performance assessments of radioactive waste repositories in crystalline host rocks. Some issues regarding matrix diffusion are site-specific while others are independent of the specific situation of a planned repository for radioactive wastes. Eight different performance assessments from Finland, Sweden and Switzerland were considered with the aim of finding out how matrix diffusion was addressed, and whether a consistent picture emerges regarding the varying methodology of the different radioactive waste organisations. In the final section of the report some conclusions are drawn and an outlook is given. An extensive bibliography provides the reader with the key papers and reports related to matrix diffusion. (author)

  5. Perpendicular Diffusion of Solar Energetic Particles: Model Results and Implications for Electrons

    Science.gov (United States)

    Strauss, R. Du Toit; Dresing, Nina; Engelbrecht, N. Eugene

    2017-03-01

    The processes responsible for the effective longitudinal transport of solar energetic particles (SEPs) are still not completely understood. We address this issue by simulating SEP electron propagation using a spatially 2D transport model that includes perpendicular diffusion. By implementing, as far as possible, the most reasonable estimates of the transport (diffusion) coefficients, we compare our results, in a qualitative manner, to recent observations at energies of 55-105 keV, focusing on the longitudinal distribution of the peak intensity, the maximum anisotropy, and the onset time. By using transport coefficients that are derived from first principles, we limit the number of free parameters in the model to (i) the probability of SEPs following diffusing magnetic field lines, quantified by a\\in [0,1], and (ii) the broadness of the Gaussian injection function. It is found that the model solutions are extremely sensitive to the magnitude of the perpendicular diffusion coefficient and relatively insensitive to the form of the injection function as long as a reasonable value of a = 0.2 is used. We illustrate the effects of perpendicular diffusion on the model solutions and discuss the viability of this process as a dominant mechanism by which SEPs are transported in longitude. Lastly, we try to quantity the effectiveness of perpendicular diffusion as an interplay between the magnitude of the relevant diffusion coefficient and the SEP intensity gradient driving the diffusion process. It follows that perpendicular diffusion is extremely effective early in an SEP event when large intensity gradients are present, while the effectiveness quickly decreases with time thereafter.

  6. Modelling and simulation of turbulence and heat transfer in wall-bounded flows

    NARCIS (Netherlands)

    Popovac, M.

    2006-01-01

    At present it is widely accepted that there is no universal turbulence model, i.e. no turbulence model can give acceptably good predictions for all turbulent flows that are found in nature or engineering. Every turbulence model is based on certain assumptions, and hence it is aimed at certain type

  7. Structural Model of the R State of Escherichia coli Aspartate Transcarbamoylase with Substrates Bound

    Energy Technology Data Exchange (ETDEWEB)

    Wang,J.; Eldo, J.; Kantrowitz, E.

    2007-01-01

    The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 {angstrom} away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism.

  8. Drift diffusion model of reward and punishment learning in schizophrenia: Modeling and experimental data.

    Science.gov (United States)

    Moustafa, Ahmed A; Kéri, Szabolcs; Somlai, Zsuzsanna; Balsdon, Tarryn; Frydecka, Dorota; Misiak, Blazej; White, Corey

    2015-09-15

    In this study, we tested reward- and punishment learning performance using a probabilistic classification learning task in patients with schizophrenia (n=37) and healthy controls (n=48). We also fit subjects' data using a Drift Diffusion Model (DDM) of simple decisions to investigate which components of the decision process differ between patients and controls. Modeling results show between-group differences in multiple components of the decision process. Specifically, patients had slower motor/encoding time, higher response caution (favoring accuracy over speed), and a deficit in classification learning for punishment, but not reward, trials. The results suggest that patients with schizophrenia adopt a compensatory strategy of favoring accuracy over speed to improve performance, yet still show signs of a deficit in learning based on negative feedback. Our data highlights the importance of applying fitting models (particularly drift diffusion models) to behavioral data. The implications of these findings are discussed relative to theories of schizophrenia and cognitive processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    Science.gov (United States)

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the

  10. Preliminary Hybrid Modeling of the Panama Canal: Operations and Salinity Diffusion

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2012-01-01

    Full Text Available This paper deals with the initial modeling of water salinity and its diffusion into the lakes during lock operation on the Panama Canal. A hybrid operational model was implemented using the AnyLogic software simulation environment. This was accomplished by generating an operational discrete-event simulation model and a continuous simulation model based on differential equations, which modeled the salinity diffusion in the lakes. This paper presents that unique application and includes the effective integration of lock operations and its impact on the environment.

  11. Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin

    Energy Technology Data Exchange (ETDEWEB)

    Jacovides, C.P.; Asimakopoulos, D.N.; Kaltsounides, N.A. [Department of Environmental Physics and Meteorology, Athens University Campus, Builds PHYS-V, Athens 157 84 (Greece); Boland, J. [School of Mathematics and Statistics and Institute for Sustainable Systems and Technologies, University of South Australia (Australia)

    2010-08-15

    In the photosynthesis process, solar radiation energy is converted to chemical energy by using atmospheric CO{sub 2}. That is, almost all living species depend on energy produced through photosynthesis for their nourishing components thus making photosynthesis vital to the earth's life. Nevertheless, the knowledge of photosynthetic photon flux density Q{sub P} (PAR, 400-700 nm) is important in several applications dealing with plants physiology, biomass production, natural illumination in greenhouses and agricultural research. This study aiming to explore the applicability of several diffuse radiation empirical models, hourly measurements of diffuse PAR and global PAR irradiation collected at Athens (37 N, 23 E, 250 m above MSL) from 1 January 2000 to 31 December 2002, are employed. These data were used to establish an empirical model relating the spectral diffuse fraction, k{sub dP} (ratio of the diffuse-to-global PAR) with the fractional transmission of global PAR k{sub tP} (ratio of the global PAR-to-extraterrestrial solar PAR). The performance of the proposed empirical model was further compared with those of twelve other diffuse-global correlation models available in the literature in terms of the widely used statistical indicators mbe, rmse and t-test. From the overall analysis, it can be concluded that the proposed model predicts diffuse PAR values accurately, whereas most of the candidate empirical models examined here appear to be location-independent for the diffuse PAR predictions. (author)

  12. Andreas Acrivos Dissertation Award Talk: Modeling drag forces and velocity fluctuations in wall-bounded flows at high Reynolds numbers

    Science.gov (United States)

    Yang, Xiang

    2017-11-01

    The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.

  13. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion

    Science.gov (United States)

    Ramirez, J. C.; Beckermann, C.; Karma, A.; Diepers, H.-J.

    2004-05-01

    A phase-field model is developed for simulating quantitatively microstructural pattern formation in solidification of dilute binary alloys with coupled heat and solute diffusion. The model reduces to the sharp-interface equations in a computationally tractable thin-interface limit where (i) the width of the diffuse interface is about one order of magnitude smaller than the radius of curvature of the interface but much larger than the real microscopic width of a solid-liquid interface, and (ii) kinetic effects are negligible. A recently derived antitrapping current [A. Karma, Phys. Rev. Lett. 87, 115701 (2001)] is used in the solute conservation equation to recover precisely local equilibrium at the interface and to eliminate interface stretching and surface diffusion effects that arise when the solutal diffusivities are unequal in the solid and liquid. Model results are first compared to analytical solutions for one-dimensional steady-state solidification. Two-dimensional thermosolutal dendritic growth simulations with vanishing solutal diffusivity in the solid show that both the microstructural evolution and the solute profile in the solid are accurately modeled by the present approach. Results are then presented that illustrate the utility of the model for simulating dendritic solidification for the large ratios of the liquid thermal to solutal diffusivities (Lewis numbers) typical of alloys.

  14. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    Science.gov (United States)

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  15. Modelling of the batch biosorption system: study on exchange of protons with cell wall-bound mineral ions.

    Science.gov (United States)

    Mishra, Vishal

    2015-01-01

    The interchange of the protons with the cell wall-bound calcium and magnesium ions at the interface of solution/bacterial cell surface in the biosorption system at various concentrations of protons has been studied in the present work. A mathematical model for establishing the correlation between concentration of protons and active sites was developed and optimized. The sporadic limited residence time reactor was used to titrate the calcium and magnesium ions at the individual data point. The accuracy of the proposed mathematical model was estimated using error functions such as nonlinear regression, adjusted nonlinear regression coefficient, the chi-square test, P-test and F-test. The values of the chi-square test (0.042-0.017), P-test (proton concentrations. The zeta potential of the bacterium surface at various concentrations of protons was observed to validate the denaturation of active sites.

  16. Nanoscale Diblock copolymer micelles: characterizations and estimation of the effective diffusion coefficients of biomolecules release through cylindrical diffusion model.

    Directory of Open Access Journals (Sweden)

    M Wahab Amjad

    Full Text Available Biomolecules have been widely investigated as potential therapeutics for various diseases. However their use is limited due to rapid degradation and poor cellular uptake in vitro and in vivo. To address this issue, we synthesized a new nano-carrier system comprising of cholic acid-polyethylenimine (CA-PEI copolymer micelles, via carbodiimide-mediated coupling for the efficient delivery of small interfering ribonucleic acid (siRNA and bovine serum albumin (BSA as model protein. The mean particle size of siRNA- or BSA-loaded CA-PEI micelles ranged from 100-150 nm, with zeta potentials of +3-+11 mV, respectively. Atomic force, transmission electron and field emission scanning electron microscopy demonstrated that the micelles exhibited excellent spherical morphology. No significant morphology or size changes were observed in the CA-PEI micelles after siRNA and BSA loading. CA-PEI micelles exhibited sustained release profile, the effective diffusion coefficients were successfully estimated using a mathematically-derived cylindrical diffusion model and the release data of siRNA and BSA closely fitted into this model. High siRNA and BSA binding and loading efficiencies (95% and 70%, respectively were observed for CA-PEI micelles. Stability studies demonstrated that siRNA and BSA integrity was maintained after loading and release. The CA-PEI micelles were non cytotoxic to V79 and DLD-1 cells, as shown by alamarBlue and LIVE/DEAD cell viability assays. RT-PCR study revealed that siRNA-loaded CA-PEI micelles suppressed the mRNA for ABCB1 gene. These results revealed the promising potential of CA-PEI micelles as a stable, safe, and versatile nano-carrier for siRNA and the model protein delivery.

  17. Research article: Watershed management councils and scientific models: Using diffusion literature to explain adoption

    Science.gov (United States)

    King, M.D.; Burkardt, N.; Clark, B.T.

    2006-01-01

    Recent literature on the diffusion of innovations concentrates either specifically on public adoption of policy, where social or environmental conditions are the dependent variables for adoption, or on private adoption of an innovation, where emphasis is placed on the characteristics of the innovation itself. This article uses both the policy diffusion literature and the diffusion of innovation literature to assess watershed management councils' decisions to adopt, or not adopt, scientific models. Watershed management councils are a relevant case study because they possess both public and private attributes. We report on a survey of councils in the United States that was conducted to determine the criteria used when selecting scientific models for studying watershed conditions. We found that specific variables from each body of literature play a role in explaining the choice to adopt scientific models by these quasi-public organizations. The diffusion of innovation literature contributes to an understanding of how organizations select models by confirming the importance of a model's ability to provide better data. Variables from the policy diffusion literature showed that watershed management councils that employ consultants are more likely to use scientific models. We found a gap between those who create scientific models and those who use these models. We recommend shrinking this gap through more communication between these actors and advancing the need for developers to provide more technical assistance.

  18. Modified flooded spherical agglomerate model for gas-diffusion electrodes in alkaline fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, M.A. [Dept. of Chemical Engineering, King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Gultekin, S. [Dept. of Chemical Engineering, King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Sleem-ur-Rahman [Dept. of Chemical Engineering, King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Zakri, A. [Dept. of Chemical Engineering, King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1995-05-01

    The spherical-grain mathematical model is modified and tested against experimental data for single-layer, gas-diffusion electrodes of alkaline fuel cells. The model assumes that the electrode is made of spherical agglomerates of Raney metal and polytetrafluoroethylene (PTFE) that are flooded with electrolyte; the gas occupies the macropores of the electrode. In addition to previous analysis of the diffusion and reaction in the grains, the modified model includes the resistance of gas diffusion into the macropores and a thin electrolyte film surrounding the grain. The original model and the modified model are both compared with experimental polarization data for hydrogen oxidation on an Ni/PTFE electrode in alkaline electrolyte. The newly developed model predicts accurately the experimental data in all regions. (orig.)

  19. Bounded Rational Managers Struggle with Talent Management - An Agent-based Modelling Approach

    DEFF Research Database (Denmark)

    Adamsen, Billy; Thomsen, Svend Erik

    , and by experimenting with different inputs it is possible to learn how the model behaves. The model is used to simulate the real world as it might be in a variety of circumstances (Gilbert, 2008). For this study a simulation model coded in Java-based NetLogo language was created. The simulation model contained only......This study applies an agent-based modeling approach to explore some aspects of an important managerial task: finding and cultivating talented individuals capable of creating value for their organization at some future state. Given that the term talent in talent management is an empty signifier...... method for studying this type of problems. The approach is particularly suitable to topics where understanding processes and their consequences is important. Agent-based models can include agents that are heterogeneous in their features and abilities, and can deal directly with the consequences...

  20. Modelling of silica diffusion experiments with 32Si in Boom Clay.

    Science.gov (United States)

    Aertsens, Marc; De Cannière, Pierre; Moors, Hugo

    2003-03-01

    A mathematical model describing the dissolution of nuclear glass directly disposed in clay combines a first-order dissolution rate law with the diffusion of dissolved silica in clay. According to this model, the main parameters describing the long-term dissolution of the glass are etaR, the product of the diffusion accessible porosity eta and the retardation factor R, and the apparent diffusion coefficient D(app) of dissolved silica in clay. For determining the migration parameters needed for long-term predictions, four Through-Diffusion (T-D) experiments and one percolation test have been performed on undisturbed clay cores. In the Through-Diffusion experiments, the concentration decrease after injection of 32Si (radioactive labelled silica) was measured in the inlet compartment. At the end of the T-D experiments, the clay cores were cut in thin slices and the activity of labelled silica in each slice was determined. The measured activity profiles for these four clay cores are well reproducible. Since no labelled silica could be detected in the outlet compartments, the Through-Diffusion experiments are fitted by two In-Diffusion models: one model assuming linear and reversible sorption equilibrium and a second model taking into account sorption kinetics. Although the kinetic model provides better fits, due to the sufficiently long duration of the experiments, both models give approximately similar values for the fit parameters. The single percolation test leads to an apparent diffusion coefficient value about two to three times lower than those of the Through-Diffusion tests. Therefore, dissolved silica appears to be strongly retarded in Boom Clay. A retardation factor R between 100 and 300 was determined. The corresponding in situ distribution coefficient K(d) is in the range 25-75 cm(3) g(-1). The apparent diffusion coefficient of dissolved silica in Boom Clay is estimated between 2 x 10(-13) and 7 x 10(-13) m(2) s(-1). The pore diffusion coefficient is in the

  1. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  2. Diffusion of a collaborative care model in primary care: a longitudinal qualitative study

    Directory of Open Access Journals (Sweden)

    Vedel Isabelle

    2013-01-01

    Full Text Available Background Although collaborative team models (CTM improve care processes and health outcomes, their diffusion poses challenges related to difficulties in securing their adoption by primary care clinicians (PCPs. The objectives of this study are to understand: (1 how the perceived characteristics of a CTM influenced clinicians' decision to adopt -or not- the model; and (2 the model's diffusion process. Methods We conducted a longitudinal case study based on the Diffusion of Innovations Theory. First, diffusion curves were developed for all 175 PCPs and 59 nurses practicing in one borough of Paris. Second, semi-structured interviews were conducted with a representative sample of 40 PCPs and 15 nurses to better understand the implementation dynamics. Results Diffusion curves showed that 3.5 years after the start of the implementation, 100% of nurses and over 80% of PCPs had adopted the CTM. The dynamics of the CTM's diffusion were different between the PCPs and the nurses. The slopes of the two curves are also distinctly different. Among the nurses, the critical mass of adopters was attained faster, since they adopted the CTM earlier and more quickly than the PCPs. Results of the semi-structured interviews showed that these differences in diffusion dynamics were mostly founded in differences between the PCPs' and the nurses' perceptions of the CTM's compatibility with norms, values and practices and its relative advantage (impact on patient management and work practices. Opinion leaders played a key role in the diffusion of the CTM among PCPs. Conclusion CTM diffusion is a social phenomenon that requires a major commitment by clinicians and a willingness to take risks; the role of opinion leaders is key. Paying attention to the notion of a critical mass of adopters is essential to developing implementation strategies that will accelerate the adoption process by clinicians.

  3. Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George

    2010-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

  4. A novel rumor diffusion model considering the effect of truth in online social media

    Science.gov (United States)

    Sun, Ling; Liu, Yun; Zeng, Qing-An; Xiong, Fei

    2015-12-01

    In this paper, we propose a model to investigate how truth affects rumor diffusion in online social media. Our model reveals a relation between rumor and truth — namely, when a rumor is diffusing, the truth about the rumor also diffuses with it. Two patterns of the agents used to identify rumor, self-identification and passive learning are taken into account. Combining theoretical proof and simulation analysis, we find that the threshold value of rumor diffusion is negatively correlated to the connectivity between nodes in the network and the probability β of agents knowing truth. Increasing β can reduce the maximum density of the rumor spreaders and slow down the generation speed of new rumor spreaders. On the other hand, we conclude that the best rumor diffusion strategy must balance the probability of forwarding rumor and the probability of agents losing interest in the rumor. High spread rate λ of rumor would lead to a surge in truth dissemination which will greatly limit the diffusion of rumor. Furthermore, in the case of unknown λ, increasing β can effectively reduce the maximum proportion of agents who do not know the truth, but cannot narrow the rumor diffusion range in a certain interval of β.

  5. Modelling near-surface bound electron states in a 3D topological insulator: analytical and numerical approaches.

    Science.gov (United States)

    Men'shov, V N; Tugushev, V V; Menshchikova, T V; Eremeev, S V; Echenique, P M; Chulkov, E V

    2014-12-03

    We apply both analytical and ab-initio methods to explore heterostructures composed of a 3D topological insulator (3D TI) and an ultrathin normal insulator (NI) overlayer as a proving ground for the principles of topological phase engineering. Using the continual model of a semi-infinite 3D TI we study the surface potential (SP) effect caused by an attached ultrathin layer of 3D NI on the formation of topological bound states at the interface. The results reveal that the spatial profile and spectrum of these near-surface states strongly depend on both the sign and the strength of the SP. Using ab-initio band structure calculations to take the specificity of the materials into account, we investigate the NI/TI heterostructures formed by a single tetradymite-type quintuple or septuple layer block and the 3D TI substrate. The analytical continuum theory results relate the near-surface state evolution with the SP variation and are in good qualitative agreement with those obtained from density-functional theory (DFT) calculations. We also predict the appearance of the quasi-topological bound state on the 3D NI surface caused by a local band gap inversion induced by an overlayer.

  6. Large-time behaviour of some fully discrete kinetic models in bounded domains

    Directory of Open Access Journals (Sweden)

    Ester Gabetta

    1991-05-01

    Full Text Available We investigate the large-time behaviour of the fully discretized version both of the three velocity Broadwell model and of the four velocity model in a strip. We analyze the different behaviours on the light of some recent results by M. Slemrod [7] and C. Cercignani [3].

  7. Risk Assessment of Alzheimer's Disease using the Information Diffusion Model from Structural Magnetic Resonance Imaging.

    Science.gov (United States)

    Beheshti, Iman; Olya, Hossain G T; Demirel, Hasan

    2016-04-05

    Recently, automatic risk assessment methods have been a target for the detection of Alzheimer's disease (AD) risk. This study aims to develop an automatic computer-aided AD diagnosis technique for risk assessment of AD using information diffusion theory. Information diffusion is a fuzzy mathematics logic of set-value that is used for risk assessment of natural phenomena, which attaches fuzziness (uncertainty) and incompleteness. Data were obtained from voxel-based morphometry analysis of structural magnetic resonance imaging. The information diffusion model results revealed that the risk of AD increases with a reduction of the normalized gray matter ratio (p > 0.5, normalized gray matter ratio <40%). The information diffusion model results were evaluated by calculation of the correlation of two traditional risk assessments of AD, the Mini-Mental State Examination and the Clinical Dementia Rating. The correlation results revealed that the information diffusion model findings were in line with Mini-Mental State Examination and Clinical Dementia Rating results. Application of information diffusion model contributes to the computerization of risk assessment of AD, which has a practical implication for the early detection of AD.

  8. pH imaging reveals worsened tissue acidification in diffusion kurtosis lesion than the kurtosis/diffusion lesion mismatch in an animal model of acute stroke.

    Science.gov (United States)

    Wang, Enfeng; Wu, Yin; Cheung, Jerry S; Zhou, Iris Yuwen; Igarashi, Takahiro; Zhang, XiaoAn; Sun, Phillip Zhe

    2017-10-01

    Diffusion weighted imaging (DWI) has been commonly used in acute stroke examination, yet a portion of DWI lesion may be salvageable. Recently, it has been shown that diffusion kurtosis imaging (DKI) defines the most severely damaged DWI lesion that does not renormalize following early reperfusion. We postulated that the diffusion and kurtosis lesion mismatch experience heterogeneous hemodynamic and/or metabolic injury. We investigated tissue perfusion, pH, diffusion, kurtosis and relaxation from regions of the contralateral normal area, diffusion lesion, kurtosis lesion and their mismatch in an animal model of acute stroke. Our study revealed significant kurtosis and diffusion lesion volume mismatch (19.7 ± 10.7%, P lesion and kurtosis/diffusion lesion mismatch, we showed lower pH in the kurtosis lesion (pH = 6.64 ± 0.12) from that of the kurtosis/diffusion lesion mismatch (6.84 ± 0.11, P lesion and kurtosis/diffusion mismatch agreed well with literature values for regions of ischemic core and penumbra, respectively. Our work documented initial evidence that DKI may reveal the heterogeneous metabolic derangement within the commonly used DWI lesion.

  9. A jump diffusion model for spot electricity prices and market price of risk

    Science.gov (United States)

    Bhar, Ramaprasad; Colwell, David B.; Xiao, Yuewen

    2013-08-01

    We construct a jump-diffusion model with seasonality, mean-reversion, time-dependent jump intensity and heteroskedastic disturbance for electricity spot prices, while keeping the analytical tractability of futures prices. We find that the jump component plays a considerably larger role than the diffusion component in the variance of spot prices. Moreover, the jump intensity is much higher during summer and winter. We also explore the seasonal market price of risk (MPR) with different maturities, from one month to five months. Our results show that the diffusion risk and the jump risk are priced quite differently.

  10. Generalized random walk algorithm for the numerical modeling of complex diffusion processes

    CERN Document Server

    Vamos, C; Vereecken, H

    2003-01-01

    A generalized form of the random walk algorithm to simulate diffusion processes is introduced. Unlike the usual approach, at a given time all the particles from a grid node are simultaneously scattered using the Bernoulli repartition. This procedure saves memory and computing time and no restrictions are imposed for the maximum number of particles to be used in simulations. We prove that for simple diffusion the method generalizes the finite difference scheme and gives the same precision for large enough number of particles. As an example, simulations of diffusion in random velocity field are performed and the main features of the stochastic mathematical model are numerically tested.

  11. Cross-diffusion induced Turing patterns in a sex-structured predator-prey model

    DEFF Research Database (Denmark)

    Liu, J.; Zhou, H.; Zhang, Lai

    2012-01-01

    In this paper, we consider a sex-structured predator-prey model with strongly coupled nonlinear reaction diffusion. Using the Lyapunov functional and Leray-Schauder degree theory, the existence and stability of both homogenous and heterogenous steady-states are investigated. Our results demonstrate...... that the unique homogenous steady-state is locally asymptotically stable for the associated ODE system and PDE system with self-diffusion. With the presence of the cross-diffusion, the homogeneous equilibrium is destabilized, and a heterogenous steady-state emerges as a consequence. In addition, the conditions...... guaranteeing the emergence of Turing patterns are derived....

  12. Solution of classical evolutionary models in the limit when the diffusion approximation breaks down

    Science.gov (United States)

    Saakian, David B.; Hu, Chin-Kun

    2016-10-01

    The discrete time mathematical models of evolution (the discrete time Eigen model, the Moran model, and the Wright-Fisher model) have many applications in complex biological systems. The discrete time Eigen model rather realistically describes the serial passage experiments in biology. Nevertheless, the dynamics of the discrete time Eigen model is solved in this paper. The 90% of results in population genetics are connected with the diffusion approximation of the Wright-Fisher and Moran models. We considered the discrete time Eigen model of asexual virus evolution and the Wright-Fisher model from population genetics. We look at the logarithm of probabilities and apply the Hamilton-Jacobi equation for the models. We define exact dynamics for the population distribution for the discrete time Eigen model. For the Wright-Fisher model, we express the exact steady state solution and fixation probability via the solution of some nonlocal equation then give the series expansion of the solution via degrees of selection and mutation rates. The diffusion theories result in the zeroth order approximation in our approach. The numeric confirms that our method works in the case of strong selection, whereas the diffusion method fails there. Although the diffusion method is exact for the mean first arrival time, it provides incorrect approximation for the dynamics of the tail of distribution.

  13. THE MATHEMATIC MODEL OF POTENTIAL RELAXATION IN COULOSTATIC CONDITIONS FOR LIMITING DIFFUSION CURRENT CASE

    Directory of Open Access Journals (Sweden)

    O. H. Kapitonov

    2010-05-01

    Full Text Available A mathematical model of coulostatic relaxation of the potential for solid metallic electrode was presented. The solution in the case of limiting diffusion current was obtained. On the basis of this model the technique of concentration measurements for heavy metal ions in diluted solutions was suggested. The model adequacy was proved by experimental data.

  14. The first-passage time distribution for the diffusion model with variable drift

    DEFF Research Database (Denmark)

    Blurton, Steven Paul; Kesselmeier, Miriam; Gondan, Matthias

    2017-01-01

    The Ratcliff diffusion model is now arguably the most widely applied model for response time data. Its major advantage is its description of both response times and the probabilities for correct as well as incorrect responses. The model assumes a Wiener process with drift between two constant abs...

  15. Onset to First Alcohol Use in Early Adolescence : A Network Diffusion Model

    NARCIS (Netherlands)

    Light, John M.; Greenan, Charlotte C.; Rusby, Julie C.; Nies, Kimberley M.; Snijders, Tom A. B.

    A novel version of Snijders's stochastic actor-based modeling (SABM) framework is applied to model the diffusion of first alcohol use through middle school-wide longitudinal networks of early adolescents, aged approximately 11-14years. Models couple a standard SABM for friendship network evolution

  16. Ergodic inequality of a two-parameter infinitely-many-alleles diffusion model

    OpenAIRE

    Zhou, Youzhou

    2015-01-01

    In this paper three models are considered. They are the infinitely-many-neutral-alleles model of Ethier and Kurtz (1981), the two-parameter infinitely-many-alleles diffusion model of Petrov (2009), and the infinitely-many-alleles model with symmetric dominance Ethier and Kurtz (1998). New representations of the transition densities are obtained for the first two models and the ergodic inequalities are provided for all three models.

  17. Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30.

    Science.gov (United States)

    Voss, Andreas; Voss, Jochen; Lerche, Veronika

    2015-01-01

    Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets.

  18. Parsimonious Continuous Time Random Walk Models and Kurtosis for Diffusion in Magnetic Resonance of Biological Tissue

    Directory of Open Access Journals (Sweden)

    Carson eIngo

    2015-03-01

    Full Text Available In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusionthrough novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.

  19. Description of Guava Osmotic Dehydration Using a Three-Dimensional Analytical Diffusion Model

    Directory of Open Access Journals (Sweden)

    Wilton Pereira da Silva

    2014-01-01

    Full Text Available The mass migrations during osmotic dehydration of guava were studied. Parallelepiped shaped slices were dipping in syrup of distilled water and sucrose with two concentrations and two temperatures. It was supposed that a three-dimensional diffusion model with boundary condition of the first kind satisfactorily describes the mass migrations and that the volume and effective mass diffusivities can be assumed constant during the process. The effective mass diffusivities were determined by coupling the three-dimensional analytical solution of the diffusion equation with an optimizer based on the inverse method. The proposed model well described the kinetics of water and sucrose migrations and enabled determining the mass distributions (water and sucrose within the product at any instant.

  20. Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue.

    Science.gov (United States)

    Ingo, Carson; Sui, Yi; Chen, Yufen; Parrish, Todd B; Webb, Andrew G; Ronen, Itamar

    2015-03-01

    In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.

  1. Parsimonious Continuous Time Random Walk Models and Kurtosis for Diffusion in Magnetic Resonance of Biological Tissue

    Science.gov (United States)

    Ingo, Carson; Sui, Yi; Chen, Yufen; Parrish, Todd; Webb, Andrew; Ronen, Itamar

    2015-03-01

    In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.

  2. Numerical Simulation of Water Jet Flow Using Diffusion Flux Mixture Model

    Directory of Open Access Journals (Sweden)

    Zhi Shang

    2014-01-01

    Full Text Available A multidimensional diffusion flux mixture model was developed to simulate water jet two-phase flows. Through the modification of the gravity using the gradients of the mixture velocity, the centrifugal force on the water droplets was able to be considered. The slip velocities between the continuous phase (gas and the dispersed phase (water droplets were able to be calculated through multidimensional diffusion flux velocities based on the modified multidimensional drift flux model. Through the numerical simulations, comparing with the experiments and the simulations of traditional algebraic slip mixture model on the water mist spray, the model was validated.

  3. On Modelling Long Term Stock Returns with Ergodic Diffusion Processes: Arbitrage and Arbitrage-Free Specifications

    Directory of Open Access Journals (Sweden)

    Bernard Wong

    2009-01-01

    martingale component is based on an ergodic diffusion with a specified stationary distribution. These models are particularly useful for long horizon asset-liability management as they allow the modelling of long term stock returns with heavy tail ergodic diffusions, with tractable, time homogeneous dynamics, and which moreover admit a complete financial market, leading to unique pricing and hedging strategies. Unfortunately the standard specifications of these models in literature admit arbitrage opportunities. We investigate in detail the features of the existing model specifications which create these arbitrage opportunities and consequently construct a modification that is arbitrage free.

  4. CFD Model for Lift Force in a Wall-Bounded Flow

    Directory of Open Access Journals (Sweden)

    D. Baalbaki

    2013-12-01

    Full Text Available The modeling of the lift force in high shear rate pipe flow is an essential issue for the estimation of the droplet dispersion. The analytical models used in most CFD softwares, such as the popular models of Auton or Saffman, overestimate the intensity of the lift force for inertial particles at high particle Reynolds number. In this paper, after a review of DNS calculations, we present an overall solution for the lift force acting on a droplet in a shear flow, for moderate and high particle Reynolds number in the near-wall zone and for unbounded shear flow. Finally, some numerical results in a cylindrical pipe are presented.

  5. Modeling the relationship between body weight and energy intake: a molecular diffusion-based approach.

    Science.gov (United States)

    Gong, Zhejun; Gong, Zhefeng

    2012-06-29

    Body weight is at least partly controlled by the choices made by a human in response to external stimuli. Changes in body weight are mainly caused by energy intake. By analyzing the mechanisms involved in food intake, we considered that molecular diffusion plays an important role in body weight changes. We propose a model based on Fick's second law of diffusion to simulate the relationship between energy intake and body weight. This model was applied to food intake and body weight data recorded in humans; the model showed a good fit to the experimental data. This model was also effective in predicting future body weight. In conclusion, this model based on molecular diffusion provides a new insight into the body weight mechanisms. This article was reviewed by Dr. Cabral Balreira (nominated by Dr. Peter Olofsson), Prof. Yang Kuang and Dr. Chao Chen.

  6. Modeling and Uncertainty Quantification of Vapor Sorption and Diffusion in Heterogeneous Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Harley, Stephen J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Elizabeth A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-13

    A high-fidelity model of kinetic and equilibrium sorption and diffusion is developed and exercised. The gas-diffusion model is coupled with a triple-sorption mechanism: Henry’s law absorption, Langmuir adsorption, and pooling or clustering of molecules at higher partial pressures. Sorption experiments are conducted and span a range of relative humidities (0-95 %) and temperatures (30-60 °C). Kinetic and equilibrium sorption properties and effective diffusivity are determined by minimizing the absolute difference between measured and modeled uptakes. Uncertainty quantification and sensitivity analysis methods are described and exercised herein to demonstrate the capability of this modeling approach. Water uptake in silica-filled and unfilled poly(dimethylsiloxane) networks is investigated; however, the model is versatile enough to be used with a wide range of materials and vapors.

  7. Relationship between flux and concentration gradient of diffusive particles with the usage of random walk model

    Science.gov (United States)

    Ovchinnikov, M. N.

    2017-09-01

    The fundamental solutions of the diffusion equation for the local-equilibrium and nonlocal models are considered as the limiting cases of the solution of a problem related to consideration of the Brownian particles random walks. The differences between fundamental solutions, flows and concentration gradients were studied. The new modified non-local diffusion equation of the telegrapher type with correction function is suggested. It contains only microparameters of the random walk problem.

  8. Gas diffusion in a pulmonary acinus model: experiments with hyperpolarized helium-3.

    Science.gov (United States)

    Habib, Dayane; Grebenkov, Denis; Guillot, Geneviève

    2008-10-01

    Diffusion of hyperpolarized helium-3 in epoxy phantoms was experimentally studied by pulsed-gradient nuclear magnetic resonance (NMR). One phantom with a dichotomic branching structure densely filling a cubic volume was built using the Kitaoka algorithm to model a healthy human acinus. Two other phantoms, one with a different size and the other one with a partial destruction of the branched structure, were built to simulate changes occurring at the early stages of emphysema. Gas pressure and composition (mixture with nitrogen) were varied, thus exploring different diffusion regimes. Preliminary measurements in a cylindrical glass cell allowed us to calibrate the gradient intensity with 1% accuracy. Measurements of NMR signal attenuation due to gas diffusion were compared to a classical Gaussian model and to Monte Carlo simulations. In the slow diffusion regime, the Gaussian model was in reasonable agreement with experiments for low gradient intensity, but there was a significant systematic deviation at larger gradient intensity. An apparent diffusion coefficient Dapp was deduced, and in agreement with previous findings, a linear decrease of Dapp/D0 with D0(1/2) was observed, where D0 is the free diffusion coefficient. In the regime of intermediate diffusion, experimental data could be described by the Gaussian model for very small gradient intensities only. The corresponding Dapp/D0 values seemed to reach a constant value. Monte Carlo simulations were generally in fair agreement with the measurements in both regimes. Our results suggest that, for diffusion times typical of medical magnetic resonance imaging, an increase in alveolar size has more impact on signal attenuation than a partial destruction of the branched structure at equivalent surface-to-volume ratio.

  9. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  10. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations

    Science.gov (United States)

    La Rosa, Carmelo; Scalisi, Silvia; Lolicato, Fabio; Pannuzzo, Martina; Raudino, Antonio

    2016-05-01

    The protein transport inside a cell is a complex phenomenon that goes through several difficult steps. The facilitated transport requires sophisticated machineries involving protein assemblies. In this work, we developed a diffusion-reaction model to simulate co-transport kinetics of proteins and lipids. We assume the following: (a) there is always a small lipid concentration of order of the Critical Micellar Concentration (CMC) in equilibrium with the membrane; (b) the binding of lipids to proteins modulates the hydrophobicity of the complexes and, therefore, their ability to interact and merge with the bilayer; and (c) some lipids leave the bilayer to replenish those bound to proteins. The model leads to a pair of integral equations for the time-evolution of the adsorbed proteins in the lipid bilayer. Relationships between transport kinetics, CMC, and lipid-protein binding constants were found. Under particular conditions, a perturbation analysis suggests the onset of kinks in the protein adsorption kinetics. To validate our model, we performed leakage measurements of vesicles composed by either high or low CMC lipids interacting with Islet Amyloid PolyPeptide (IAPP) and Aβ (1-40) used as sample proteins. Since the lipid-protein complex stoichiometry is not easily accessible, molecular dynamics simulations were performed using monomeric IAPP interacting with an increasing number of phospholipids. Main results are the following: (a) 1:1 lipid-protein complexes generally show a faster insertion rate proportional to the complex hydrophobicity and inversely related to lipid CMC; (b) on increasing the number of bound lipids, the protein insertion rate decreases; and (c) at slow lipids desorption rate, the lipid-assisted proteins transport might exhibit a discontinuous behavior and does non-linearly depend on protein concentration.

  11. Diffusion weighted imaging in patients with rectal cancer: Comparison between Gaussian and non-Gaussian models.

    Science.gov (United States)

    Manikis, Georgios C; Marias, Kostas; Lambregts, Doenja M J; Nikiforaki, Katerina; van Heeswijk, Miriam M; Bakers, Frans C H; Beets-Tan, Regina G H; Papanikolaou, Nikolaos

    2017-01-01

    The purpose of this study was to compare the performance of four diffusion models, including mono and bi-exponential both Gaussian and non-Gaussian models, in diffusion weighted imaging of rectal cancer. Nineteen patients with rectal adenocarcinoma underwent MRI examination of the rectum before chemoradiation therapy including a 7 b-value diffusion sequence (0, 25, 50, 100, 500, 1000 and 2000 s/mm2) at a 1.5T scanner. Four different diffusion models including mono- and bi-exponential Gaussian (MG and BG) and non-Gaussian (MNG and BNG) were applied on whole tumor volumes of interest. Two different statistical criteria were recruited to assess their fitting performance, including the adjusted-R2 and Root Mean Square Error (RMSE). To decide which model better characterizes rectal cancer, model selection was relied on Akaike Information Criteria (AIC) and F-ratio. All candidate models achieved a good fitting performance with the two most complex models, the BG and the BNG, exhibiting the best fitting performance. However, both criteria for model selection indicated that the MG model performed better than any other model. In particular, using AIC Weights and F-ratio, the pixel-based analysis demonstrated that tumor areas better described by the simplest MG model in an average area of 53% and 33%, respectively. Non-Gaussian behavior was illustrated in an average area of 37% according to the F-ratio, and 7% using AIC Weights. However, the distributions of the pixels best fitted by each of the four models suggest that MG failed to perform better than any other model in all patients, and the overall tumor area. No single diffusion model evaluated herein could accurately describe rectal tumours. These findings probably can be explained on the basis of increased tumour heterogeneity, where areas with high vascularity could be fitted better with bi-exponential models, and areas with necrosis would mostly follow mono-exponential behavior.

  12. ExtremeBounds: Extreme Bounds Analysis in R

    Directory of Open Access Journals (Sweden)

    Marek Hlavac

    2016-08-01

    Full Text Available This article introduces the R package ExtremeBounds to perform extreme bounds analysis (EBA, a sensitivity test that examines how robustly the dependent variable of a regression model is related to a variety of possible determinants. ExtremeBounds supports Leamer's EBA that focuses on the upper and lower extreme bounds of regression coefficients, as well as Sala-i-Martin's EBA which considers their entire distribution. In contrast to existing alternatives, it can estimate models of a variety of user-defined sizes, use regression models other than ordinary least squares, incorporate non-linearities in the model specification, and apply custom weights and standard errors. To alleviate concerns about the multicollinearity and conceptual overlap of examined variables, ExtremeBounds allows users to specify sets of mutually exclusive variables, and can restrict the analysis to coefficients from regression models that yield a variance inflation factor within a prespecified limit.

  13. Notes on the Langevin model for turbulent diffusion of ``marked`` particles

    Energy Technology Data Exchange (ETDEWEB)

    Rodean, H.C.

    1994-01-26

    Three models for scalar diffusion in turbulent flow (eddy diffusivity, random displacement, and on the Langevin equation) are briefly described. These models random velocity increment based Fokker-Planck equation is introduced as are then examined in more detail in the reverse order. The Fokker-Planck equation is the Eulerian equivalent of the Lagrangian Langevin equation, and the derivation of e outlined. The procedure for obtaining the deterministic and stochastic components of the Langevin equation from Kolmogorov`s 1941 inertial range theory and the Fokker-Planck equation is described. it is noted that a unique form of the Langevin equation can be determined for diffusion in one dimension but not in two or three. The Langevin equation for vertical diffusion in the non-Gaussian convective boundary layer is presented and successively simplified for Gaussian inhomogeneous turbulence and Gaussian homogeneous turbulence in turn. The Langevin equation for Gaussian inhomogeneous turbulence is mathematically transformed into the random displacement model. It is shown how the Fokker-Planck equation for the random displacement model is identical in form to the partial differential equation for the eddy diffusivity model. It is noted that the Langevin model is applicable in two cases in which the other two are not valid: (1) very close in time and distance to the point of scalar release and (2) the non-Gaussian convective boundary layer. The two- and three-dimensional cases are considered in Part III.

  14. Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models

    Science.gov (United States)

    Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.

    2016-08-01

    We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional magnetohydrodynamic (MHD) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity, and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti model but the Porth et al. model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average Péclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of ˜ 2 × 1027(Ls/0.42 Ly) cm2 s- 1 (Ls is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of γp ˜ 1010.

  15. q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans.

    Science.gov (United States)

    Golkov, Vladimir; Dosovitskiy, Alexey; Sperl, Jonathan I; Menzel, Marion I; Czisch, Michael; Samann, Philipp; Brox, Thomas; Cremers, Daniel

    2016-05-01

    Numerous scientific fields rely on elaborate but partly suboptimal data processing pipelines. An example is diffusion magnetic resonance imaging (diffusion MRI), a non-invasive microstructure assessment method with a prominent application in neuroimaging. Advanced diffusion models providing accurate microstructural characterization so far have required long acquisition times and thus have been inapplicable for children and adults who are uncooperative, uncomfortable, or unwell. We show that the long scan time requirements are mainly due to disadvantages of classical data processing. We demonstrate how deep learning, a group of algorithms based on recent advances in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This modification allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models. We set a new state of the art by estimating diffusion kurtosis measures from only 12 data points and neurite orientation dispersion and density measures from only 8 data points. This allows unprecedentedly fast and robust protocols facilitating clinical routine and demonstrates how classical data processing can be streamlined by means of deep learning.

  16. Logical-Rule Models of Classification Response Times: A Synthesis of Mental-Architecture, Random-Walk, and Decision-Bound Approaches

    Science.gov (United States)

    Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.

    2010-01-01

    We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…

  17. Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model.

    Science.gov (United States)

    Chen, Wenjie; Huang, Guoru; Zhang, Han

    2017-12-01

    With rapid urbanization, inundation-induced property losses have become more and more severe. Urban inundation modeling is an effective way to reduce these losses. This paper introduces a simplified urban stormwater inundation simulation model based on the United States Environmental Protection Agency Storm Water Management Model (SWMM) and a geographic information system (GIS)-based diffusive overland-flow model. SWMM is applied for computation of flows in storm sewer systems and flooding flows at junctions, while the GIS-based diffusive overland-flow model simulates surface runoff and inundation. One observed rainfall scenario on Haidian Island, Hainan Province, China was chosen to calibrate the model and the other two were used for validation. Comparisons of the model results with field-surveyed data and InfoWorks ICM (Integrated Catchment Modeling) modeled results indicated the inundation model in this paper can provide inundation extents and reasonable inundation depths even in a large study area.

  18. A Time-Regularized, Multiple Gravity-Assist Low-Thrust, Bounded-Impulse Model for Trajectory Optimization

    Science.gov (United States)

    Ellison, Donald H.; Englander, Jacob A.; Conway, Bruce A.

    2017-01-01

    The multiple gravity assist low-thrust (MGALT) trajectory model combines the medium-fidelity Sims-Flanagan bounded-impulse transcription with a patched-conics flyby model and is an important tool for preliminary trajectory design. While this model features fast state propagation via Keplers equation and provides a pleasingly accurate estimation of the total mass budget for the eventual flight suitable integrated trajectory it does suffer from one major drawback, namely its temporal spacing of the control nodes. We introduce a variant of the MGALT transcription that utilizes the generalized anomaly from the universal formulation of Keplers equation as a decision variable in addition to the trajectory phase propagation time. This results in two improvements over the traditional model. The first is that the maneuver locations are equally spaced in generalized anomaly about the orbit rather than time. The second is that the Kepler propagator now has the generalized anomaly as its independent variable instead of time and thus becomes an iteration-free propagation method. The new algorithm is outlined, including the impact that this has on the computation of Jacobian entries for numerical optimization, and a motivating application problem is presented that illustrates the improvements that this model has over the traditional MGALT transcription.

  19. Solusi Optimal Model Optimisasi Robust Untuk Masalah Traveling Salesman Dengan Ketidaktentuan Kotak Dan Pendekatan Metode Branch And Bound

    Directory of Open Access Journals (Sweden)

    Poppy Amriyati

    2015-12-01

    Full Text Available Traveling Salesman Problem (TSP merupakan teknik pencarian rute yang dimulai dari satu titik awal, setiap kota harus dikunjungi sekali dan kemudian kembali ke tempat asal sehingga total jarak atau waktu perjalanan adalah minimum. Untuk mengatasi kedakpastian jarak atau waktu perjalanan, maka perlu dilakukan pengembangan model TSP. Salah satu bidang Optimisasi yang mampu menyelesaikan permasalahan terkait ketidakpastian adalah Optimisasi Robust. Dalam makalah ini dibahas mengenai penerapan Optimisasi Robust pada TSP (RTSP menggunakan pendekatan Box Uncertainty dan diselesaikan dengan menggunakan Metode Branch and Bound. Disajikan simulasi numerik pada software aplikasi Maple untuk beberapa kasus nyata terkait penerapan Optimisasi RTSP , seperti masalah manajemen konstruksi, penentuan jarak tempuh kota di Pulau Jawa, dan Penentuan Rute Mandiri Fun Run.

  20. A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law

    Science.gov (United States)

    Donev, Aleksandar; Fai, Thomas G.; Vanden-Eijnden, Eric

    2014-04-01

    We study diffusive mixing in the presence of thermal fluctuations under the assumption of large Schmidt number. In this regime we obtain a limiting equation that contains a diffusive stochastic drift term with diffusion coefficient obeying a Stokes-Einstein relation, in addition to the expected advection by a random velocity. The overdamped limit correctly reproduces both the enhanced diffusion in the ensemble-averaged mean and the long-range correlated giant fluctuations in individual realizations of the mixing process, and is amenable to efficient numerical solution. Through a combination of Eulerian and Lagrangian numerical methods we demonstrate that diffusion in liquids is not most fundamentally described by Fick’s irreversible law; rather, diffusion is better modeled as reversible random advection by thermal velocity fluctuations. We find that the diffusion coefficient is effectively renormalized to a value that depends on the scale of observation. Our work reveals somewhat unexpected connections between flows at small scales, dominated by thermal fluctuations, and flows at large scales, dominated by turbulent fluctuations.

  1. Estimating Multivariate Exponentail-Affine Term Structure Models from Coupon Bound Prices using Nonlinear Filtering

    DEFF Research Database (Denmark)

    Baadsgaard, Mikkel; Nielsen, Jan Nygaard; Madsen, Henrik

    2000-01-01

    , the central tendency and stochastic volatility. Emphasis is placed on the particular class of exponential-affine term structure models that permits solving the bond pricing PDE in terms of a system of ODEs. It is assumed that coupon bond prices are contaminated by additive white noise, where the stochastic...

  2. Social Rationality as a Unified Model of Man (Including Bounded Rationality)

    NARCIS (Netherlands)

    Lindenberg, Siegwart

    2001-01-01

    In 1957, Simon published a collection of his essays under the title of “Models of Man: Social and Rational”. In the preface, he explains the choice for this title: All of the essays “are concerned with laying foundations for a science of man that will comfortably accommodate his dual nature as a

  3. Putting atomic diffusion theory of magnetic ApBp stars to the test: evaluation of the predictions of time-dependent diffusion models

    Science.gov (United States)

    Kochukhov, O.; Ryabchikova, T. A.

    2018-02-01

    A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.

  4. Bounded Tamper Resilience

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay

    2013-01-01

    a bounded tamper and leakage resilient CCA secure public key cryptosystem based on the DDH assumption. We first define a weaker CPA-like security notion that we can instantiate based on DDH, and then we give a general compiler that yields CCA-security with tamper and leakage resilience. This requires...... a public tamper-proof common reference string. Finally, we explain how to boost bounded tampering and leakage resilience (as in 1. and 2. above) to continuous tampering and leakage resilience, in the so-called floppy model where each user has a personal hardware token (containing leak- and tamper...

  5. Quasi-Brittle Fracture Modeling of Preflawed Bitumen Using a Diffuse Interface Model

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2016-01-01

    Full Text Available Fundamental understandings on the bitumen fracture mechanism are vital to improve the mixture design of asphalt concrete. In this paper, a diffuse interface model, namely, phase-field method is used for modeling the quasi-brittle fracture in bitumen. This method describes the microstructure using a phase-field variable which assumes one in the intact solid and negative one in the crack region. Only the elastic energy will directly contribute to cracking. To account for the growth of cracks, a nonconserved Allen-Cahn equation is adopted to evolve the phase-field variable. Numerical simulations of fracture are performed in bituminous materials with the consideration of quasi-brittle properties. It is found that the simulation results agree well with classic fracture mechanics.

  6. An internal reference model-based PRF temperature mapping method with Cramer-Rao lower bound noise performance analysis.

    Science.gov (United States)

    Li, Cheng; Pan, Xinyi; Ying, Kui; Zhang, Qiang; An, Jing; Weng, Dehe; Qin, Wen; Li, Kuncheng

    2009-11-01

    The conventional phase difference method for MR thermometry suffers from disturbances caused by the presence of lipid protons, motion-induced error, and field drift. A signal model is presented with multi-echo gradient echo (GRE) sequence using a fat signal as an internal reference to overcome these problems. The internal reference signal model is fit to the water and fat signals by the extended Prony algorithm and the Levenberg-Marquardt algorithm to estimate the chemical shifts between water and fat which contain temperature information. A noise analysis of the signal model was conducted using the Cramer-Rao lower bound to evaluate the noise performance of various algorithms, the effects of imaging parameters, and the influence of the water:fat signal ratio in a sample on the temperature estimate. Comparison of the calculated temperature map and thermocouple temperature measurements shows that the maximum temperature estimation error is 0.614 degrees C, with a standard deviation of 0.06 degrees C, confirming the feasibility of this model-based temperature mapping method. The influence of sample water:fat signal ratio on the accuracy of the temperature estimate is evaluated in a water-fat mixed phantom experiment with an optimal ratio of approximately 0.66:1. (c) 2009 Wiley-Liss, Inc.

  7. Modelling Of Eco-innovation Diffusion: The EU Eco-label

    Directory of Open Access Journals (Sweden)

    KIJEK TOMASZ

    2015-03-01

    Full Text Available The aim of this article is to carry out a theoretical and empirical analysis of the process of eco-label diffusion. Eco-labels allow consumers to identify products and services that have a reduced environmental impact during their life cycle. Thus, they are aimed at diminishing the information gap between sellers and buyers. The results of the estimation using the Bass model indicate that the diffusion of the EU eco-label has been most dynamic in countries such as Hungary, Poland, Denmark, Germany and France. In turn, the scope of diffusion (absolute saturation level reached the highest value for companies in France and Italy. In addition, the results of the study confirm the stimulating impact of the scope of eco-label diffusion on consumer awareness of environmental issues. This finding points to the need for environmental education among consumers, which could in turn encourage firms to undertake pro-environmental actions.

  8. Generalized Fractional Master Equation for Self-Similar Stochastic Processes Modelling Anomalous Diffusion

    Directory of Open Access Journals (Sweden)

    Gianni Pagnini

    2012-01-01

    inhomogeneity and nonstationarity properties of the medium. For instance, when this superposition is applied to the time-fractional diffusion process, the resulting Master Equation emerges to be the governing equation of the Erdélyi-Kober fractional diffusion, that describes the evolution of the marginal distribution of the so-called generalized grey Brownian motion. This motion is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion: it is made up of self-similar processes with stationary increments and depends on two real parameters. The class includes the fractional Brownian motion, the time-fractional diffusion stochastic processes, and the standard Brownian motion. In this framework, the M-Wright function (known also as Mainardi function emerges as a natural generalization of the Gaussian distribution, recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.

  9. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Alimadadi, Hossein; Molin, Sebastian

    2017-01-01

    stainless steel was conducted, using the CALPHAD (CALculation of PHAse Diagrams) approach with the DICTRA (DIffusion Controlled TRAnsformation) software. The kinetics of inter-diffusion and austenite formation was explored in detail. The simulation was further validated by comparing with experiments......Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell and electrolysis cell stacks. During stack production and operation, nickel from the Ni/yttria stabilized zirconia fuel electrode or from the Ni contact component layer diffuses into the interconnect plate......, causing transformation of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume, and in mechanical and corrosion properties of the interconnect plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic...

  10. A Computational Approach to Increase Time Scales in Brownian Dynamics–Based Reaction-Diffusion Modeling

    Science.gov (United States)

    Frazier, Zachary

    2012-01-01

    Abstract Particle-based Brownian dynamics simulations offer the opportunity to not only simulate diffusion of particles but also the reactions between them. They therefore provide an opportunity to integrate varied biological data into spatially explicit models of biological processes, such as signal transduction or mitosis. However, particle based reaction-diffusion methods often are hampered by the relatively small time step needed for accurate description of the reaction-diffusion framework. Such small time steps often prevent simulation times that are relevant for biological processes. It is therefore of great importance to develop reaction-diffusion methods that tolerate larger time steps while maintaining relatively high accuracy. Here, we provide an algorithm, which detects potential particle collisions prior to a BD-based particle displacement and at the same time rigorously obeys the detailed balance rule of equilibrium reactions. We can show that for reaction-diffusion processes of particles mimicking proteins, the method can increase the typical BD time step by an order of magnitude while maintaining similar accuracy in the reaction diffusion modelling. PMID:22697237

  11. An agent-based model for diffusion of electric vehicles

    NARCIS (Netherlands)

    Kangur, A.; Bockarjova, M.; Jager, W.; Verbrugge, R.

    2017-01-01

    The transition from fuel cars to electric cars is a large-scale process involving many interactions between consumers and other stakeholders over decades. To explore how policies may interfere with consumer behavior over such a long time period, we developed a social simulation model. In this model,

  12. Bifurcation Analysis of Gene Propagation Model Governed by Reaction-Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Guichen Lu

    2016-01-01

    Full Text Available We present a theoretical analysis of the attractor bifurcation for gene propagation model governed by reaction-diffusion equations. We investigate the dynamical transition problems of the model under the homogeneous boundary conditions. By using the dynamical transition theory, we give a complete characterization of the bifurcated objects in terms of the biological parameters of the problem.

  13. Reaction Time for Trimolecular Reactions in Compartment-based Reaction-Diffusion Models

    OpenAIRE

    Li, F; Chen, M; Erban, R; Cao, Y

    2016-01-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modelling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution.

  14. Proposing an Educational Scaling-and-Diffusion Model for Inquiry-Based Learning Designs

    Science.gov (United States)

    Hung, David; Lee, Shu-Shing

    2015-01-01

    Education cannot adopt the linear model of scaling used by the medical sciences. "Gold standards" cannot be replicated without considering process-in-learning, diversity, and student-variedness in classrooms. This article proposes a nuanced model of educational scaling-and-diffusion, describing the scaling (top-down supports) and…

  15. On the well posedness and further regularity of a diffusive three species aquatic model

    KAUST Repository

    Parshad, R.D.

    2012-01-01

    We consider Upadhay\\'s three species aquatic food chain model, with the inclusion of spatial spread. This is a well established food chain model for the interaction of three given aquatic species. It exhibits rich dynamical behavior, including chaos. We prove the existence of a global weak solution to the diffusive system, followed by existence of local mild and strong solution.

  16. Travelling Waves of an n-Species Food Chain Model with Spatial Diffusion and Time Delays

    OpenAIRE

    Fei Hu; Yuyin Xu; Z. Wang; Wei Ding

    2014-01-01

    We investigate an n-species food chain model with spatial diffusion and time delays. By using Schauder’s fixed point theorem, we obtain the result about the existence of the travelling wave solutions of the food chain model with reaction term satisfying the partial quasimonotonicity conditions.

  17. Travelling Waves of an n-Species Food Chain Model with Spatial Diffusion and Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2014-01-01

    Full Text Available We investigate an n-species food chain model with spatial diffusion and time delays. By using Schauder’s fixed point theorem, we obtain the result about the existence of the travelling wave solutions of the food chain model with reaction term satisfying the partial quasimonotonicity conditions.

  18. A comparison of molecular dynamics and diffuse interface model predictions of Lennard-Jones fluid evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Barbante, Paolo [Dipartimento di Matematica, Politecnico di Milano - Piazza Leonardo da Vinci 32 - 20133 Milano (Italy); Frezzotti, Aldo; Gibelli, Livio [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa 34 - 20156 Milano (Italy)

    2014-12-09

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.

  19. Technology diffusion in hospitals : A log odds random effects regression model

    NARCIS (Netherlands)

    Blank, J.L.T.; Valdmanis, V.G.

    2013-01-01

    This study identifies the factors that affect the diffusion of hospital innovations. We apply a log odds random effects regression model on hospital micro data. We introduce the concept of clustering innovations and the application of a log odds random effects regression model to describe the

  20. Technology diffusion in hospitals: A log odds random effects regression model

    NARCIS (Netherlands)

    J.L.T. Blank (Jos); V.G. Valdmanis (Vivian G.)

    2015-01-01

    textabstractThis study identifies the factors that affect the diffusion of hospital innovations. We apply a log odds random effects regression model on hospital micro data. We introduce the concept of clustering innovations and the application of a log odds random effects regression model to

  1. A ranking of diffusion MRI compartment models with in vivo human brain data

    Science.gov (United States)

    Ferizi, Uran; Schneider, Torben; Panagiotaki, Eleftheria; Nedjati-Gilani, Gemma; Zhang, Hui; Wheeler-Kingshott, Claudia A M; Alexander, Daniel C

    2014-01-01

    Purpose Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in vivo human brain white matter. Methods Recent work shows that three compartment models, designed to capture intra-axonal, extracellular, and isotropically restricted diffusion, best explain multi-b-value data sets from fixed rat corpus callosum. We extend this investigation to in vivo by using a live human subject on a clinical scanner. The analysis compares models of one, two, and three compartments and ranks their ability to explain the measured data. We enhance the original methodology to further evaluate the stability of the ranking. Results As with fixed tissue, three compartment models explain the data best. However, a clearer hierarchical structure and simpler models emerge. We also find that splitting the scanning into shorter sessions has little effect on the ranking of models, and that the results are broadly reproducible across sessions. Conclusion Three compartments are required to explain diffusion MR measurements from in vivo corpus callosum, which informs the choice of model for microstructure imaging applications in the brain. Magn Reson Med 72:1785–1792, 2014. © 2013 The authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:24347370

  2. Bounds for the propagation speed of combustion flames

    Energy Technology Data Exchange (ETDEWEB)

    Fort, Joaquim [Departament de FIsica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain); Campos, Daniel [Grup de FIsica EstadIstica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Gonzalez, Josep R [Grup de Mecanica de Fluids, Departament d' Enginyeria Mecanica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain); Velayos, Joaquim [Grup de Mecanica de Fluids, Departament d' Enginyeria Mecanica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

    2004-07-23

    We focus on a combustion model for premixed flames based on two coupled equations determining the spatial dynamics of temperature and fuel density. We rewrite these equations as a classical reaction-diffusion model, so that we can apply some known methods for the prediction of lower and upper bounds to the front speed. The predictions are compared to simulations, which show that our new bounds substantially improve those following from the linearization method, used in the previous work of Fort et al (2000 J. Phys. A: Math. Gen. 33 6953). Radiative losses lead to pulses rather than fronts. We find a bound for their speed which (in contrast to the linearization one) correctly predicts the order of magnitude of the flame speed.

  3. Modeling the oxygen diffusion of nanocomposite-based food packaging films.

    Science.gov (United States)

    Bhunia, Kanishka; Dhawan, Sumeet; Sablani, Shyam S

    2012-07-01

    Polymer-layered silicate nanocomposites have been shown to improve the gas barrier properties of food packaging polymers. This study developed a computer simulation model using the commercial software, COMSOL Multiphysics to analyze changes in oxygen barrier properties in terms of relative diffusivity, as influenced by configuration and structural parameters that include volume fraction (φ), aspect ratio (α), intercalation width (W), and orientation angle (θ) of nanoparticles. The simulation was performed at different φ (1%, 3%, 5%, and 7%), α (50, 100, 500, and 1000), and W (1, 3, 5, and 7 nm). The θ value was varied from 0° to 85°. Results show that diffusivity decreases with increasing volume fraction, but beyond φ = 5% and α = 500, diffusivity remained almost constant at W values of 1 and 3 nm. Higher relative diffusivity coincided with increasing W and decreasing α value for the same volume fraction of nanoparticles. Diffusivity increased as the rotational angle increased, gradually diminishing the influence of nanoparticles. Diffusivity increased drastically as θ changed from 15° to 30° (relative increment in relative diffusivity was almost 3.5 times). Nanoparticles with exfoliation configuration exhibited better oxygen barrier properties compared to intercalation. The finite element model developed in this study provides insight into oxygen barrier properties for nanocomposite with a wide range of structural parameters. This model can be used to design and manufacture an ideal nanocomposite-based food packaging film with improved gas barrier properties for industrial applications. The model will assist in designing nanocomposite polymeric structures of desired gas barrier properties for food packaging applications. In addition, this study will be helpful in formulating a combination of nanoparticle structural parameters for designing nanocomposite membranes with selective permeability for the industrial applications including membrane

  4. Deterioration Models for Cement Bound Materials in Structural Design and Evaluation of Heavy Duty Pavements

    DEFF Research Database (Denmark)

    Skar, Asmus; Holst, Mogens Løvendorf

    Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design of such ......Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design...... of such pavements are today based on Mechanistic-Empirical (M-E) methods. The M-E method is appropriate for many situations, in other situations it may lead to overdesign, or maybe worse, underdesign. The method has limited capabilities and cannot account for signicant factors affecting the pavement response...... number of model parameters. In order to move a step towards more generalised structural design methods for analysis of heavy duty pavements, this study aims at developing a mechanistic approach based on constitutive models. A simple framework for engineering application is sought; creating a rational...

  5. Understanding Protein Diffusion in Polymer Solutions: A Hydration with Depletion Model.

    Science.gov (United States)

    Feng, Xiaoqing; Chen, Anpu; Wang, Juan; Zhao, Nanrong; Hou, Zhonghuai

    2016-09-20

    Understanding the diffusion of proteins in polymer solutions is of ubiquitous importance for modeling processes in vivo. Here, we present a theoretical framework to analyze the decoupling of translational and rotational diffusion of globular proteins in semidilute polymer solutions. The protein is modeled as a spherical particle with an effective hydrodynamic radius, enveloped by a depletion layer. On the basis of the scaling formula of macroscopic viscosity for polymer solutions as well as the mean-field theory for the depletion effect, we specify the space-dependent viscosity profile in the depletion zone. Following the scheme of classical fluid mechanics, the hydrodynamic drag force as well as torque exerted to the protein can be numerically evaluated, which then allows us to obtain the translational and rotational diffusion coefficients. We have applied our model to study the diffusion of proteins in two particular polymer solution systems, i.e., poly(ethylene glycol) (PEG) and dextran. Strikingly, our theoretical results can reproduce the experimental results quantitatively very well, and fully reproduce the decoupling between translational and rotational diffusion observed in the experiments. In addition, our model facilitates insights into how the effective hydrodynamic radius of the protein changes with polymer systems. We found that the effective hydrodynamic radius of proteins in PEG solutions is nearly the same as that in pure water, indicating PEG induces preferential hydration, while, in dextran solutions, it is generally enhanced due to the stronger attractive interaction between protein and dextran molecules.

  6. Using effective boundary conditions to model fast diffusion on a road in a large field

    Science.gov (United States)

    Li, Huicong; Wang, Xuefeng

    2017-10-01

    We consider a logistic diffusion equation on the plane consisting of two components, a ‘road’ that is parallel to the x-axis, and a ‘field’, in each of which the diffusion rate differs significantly. Compared to the size of the field, the width δ of the road is assumed to be small. Thus in this diffusion equation multiple scales appear in two places: the spatial variable and the diffusion parameter. Such an equation is not easy to solve numerically, and it is not easy to see the effects of the road. Recently, Berestycki, Roquejoffre and Rossi provide a model which is meant to resolve these issues. In this paper we first use the idea of effective boundary conditions (EBCs) to propose, rigorously, a different model: we study the limit of the solution of the original logistic equation as δ→ 0 , obtaining a limiting model, in which the road now is the x-axis with EBCs imposed on it. This effective problem has no multiple scales and hence should be easier to solve numerically. Moreover, to see the effects of the road, we further investigate the asymptotic propagation speed of the effective model, showing that the road indeed enhances the spreading speed along its direction, provided that the diffusion rate on the road is of order O≤ft(δ-1\\right) .

  7. Effects of spatial diffusion on nonequilibrium steady states in a model for prebiotic evolution

    Science.gov (United States)

    Intoy, B. F.; Wynveen, A.; Halley, J. W.

    2016-10-01

    Effects of spatial diffusion in a Kauffman-like model for prebiotic evolution previously studied in a "well-mixed" limit are reported. The previous model was parametrized by a parameter p defined as the probability that a possible reaction in a network of reactions characterizing the artificial chemistry actually appears in the chemical network. In the model reported here, we numerically study a grid of such well-mixed reactors on a two-dimensional spatial lattice in which the model chemical constituents can hop between neighboring reactors at a rate controlled by a second parameter η . We report the frequency of appearance of three distinct types of nonequilibrium steady states, characterized as "diffusively alive locally dead" (DALD), "diffusively dead locally alive" (DDLA) and "diffusively alive locally alive" (DALA). The types are defined according to whether they are chemically equilibrated at each site, diffusively equilibrated between sites, or neither, respectively. With our parametrization of the definitions of these nonequilibrium states, many of the DALA states are growing rapidly in population due to the explosive population growth of a few sites, while their entropy remains well below its equilibrium value. Sharp temporal transitions occur as exploding sites appear. DALD states occur less commonly than the other types and also usually harbor a few explosively growing sites but transitions are less sharp than in DALA systems.

  8. MICROSTRUCTURE-BASED PREDICTION MODEL FOR CHLORIDE ION DIFFUSIVITY IN HYDRATED CEMENT PASTE

    Directory of Open Access Journals (Sweden)

    Liguo Ma

    2017-03-01

    Full Text Available In cement hydration, various hydration products and pores are produced to form a complex microstructure. The quantity of the hydration products and pores heavily influences the macroscopic properties of hydrated cement paste. The chloride ion diffusivity of cement paste is considered to have a close relation to durability. We propose a prediction model of the chloride ion diffusivity of cement paste using homogenization theory to find the relationship between the microstructure and the macroscopic properties. This model considers the percolation phenomenon and the tortuosity of the transport path in the hydrated cement paste microstructure. The chloride ion diffusion coefficient of the cement paste was tested via electricity-accelerated diffusion experiments on cement pastes prepared using three water-cement ratios (0.23, 0.35 and 0.53, respectively. The Jennings-Tennis model was used to calculate the quantity of hydration products in the hydrated cement paste microstructure. With different homogenization theories, the predicted results of the chloride ion diffusion coefficients agree well with the experimental data, which shows the reliability of the presented model.

  9. Interpretation of diffusion MR imaging data using a gamma distribution model.

    Science.gov (United States)

    Oshio, Koichi; Shinmoto, Hiroshi; Mulkern, Robert V

    2014-01-01

    Although many models have been proposed to interpret non-Gaussian diffusion MRI data in biological tissues, it is often difficult to see the correlation between the MRI data and the histological changes in the tissue. Among these models, so called statistical models, which assume the diffusion coefficient D is distributed continuously within a voxel, are more suitable for interpreting the data in a histological context than others. In this work, we examined a statistical model based on the gamma distribution. First, the proposed gamma model, the bi-exponential model, and the truncated Gaussian model were compared for goodness of fit. To evaluate diagnostic capability, area fractions of certain D ranges were evaluated. The area fraction for D 3.0 mm2/s (frac > 3) was considered to reflect perfusion component. A clinical data set of histologically proven prostate cancer cases from previous study was used. For the cancer tissue, the gamma model was better fit than the truncated Gaussian model, and there was no significant difference between the gamma model and the bi-exponential model. For the normal peripheral zone tissue, there was no significant differences among all models. In the 2D scatter plot of frac 3, Cancer and non-cancer tissues were clearly separated. Using the proposed model, the diffusion MR data was well fit, and histological interpretation of the data appears possible.

  10. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...

  11. Shrinkage Simulation of Holographic Grating Using Diffusion Model in PQ-PMMA Photopolymer

    Directory of Open Access Journals (Sweden)

    Wei Zepeng

    2015-01-01

    Full Text Available An extended model based on nonlocal polymerization-driven diffusion model is derived by introducing shrinkage process for describing photopolymerized dynamics in PQ-PMMA photopolymer. The kinetic parameters, polymerization rate and diffusion rate are experimentally determined to provide quantitative simulation. The numerical results show that the fringes at edge of grating are firstly shifted and consequently, it leads to a contrast reduction of holograms. Finally, theoretical results are experimentally checked by temporal evolution of diffraction efficiency, and the shrinkage coefficient 0.5% is approximately achieved under incident intensity 25.3mw/cm2. This work can enhance the applicability of diffusion model and contribute to the reasonable description of the grating formation in the photopolymer.

  12. Analytical solution of diffusion model for nutrient release from controlled release fertilizer

    Science.gov (United States)

    Ameenuddin Irfan, Sayed; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar

    2017-09-01

    An analytical method has been developed to solve the initial value problem which arises from Fick’s diffusion equation encountered in the modelling of the Controlled Release Fertilizers. The proposed analytical solution is developed using the modified Adomian decomposition method. This method does not require the discretization method, reliability and efficiency of this method is more and it also reduces the calculation time. The model has predicted the effect of granule radius and diffusion coefficient on the nutrient release and total release time of Controlled Release Fertilizer. Model has predicted that increase in the radius of granule reduces the release and vice versa in case of diffusion coefficient. Detailed understanding of these parameters helps in improved designing of Controlled Release Fertilizer.

  13. Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    Science.gov (United States)

    Fazeli, Mohammadreza

    In this thesis, pore network modeling was used to study how the microstructure of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) influences multiphase transport within the composite layer. An equivalent pore network of a GDL was used to study the effects of GDL/catalyst layer condensation points and contact quality on the spatial distribution of liquid water in the GDL. Next, pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures, and favorable GDL compression values for preferred liquid water distributions were found for two commercially available GDL materials. Finally, a technique was developed for calculating the oxygen diffusivity in carbon paper substrates with a microporous layer (MPL) coating through pore network modeling. A hybrid network was incorporated into the pore network model, and effective diffusivity predictions of MPL coated GDL materials were obtained.

  14. Grey Box Modelling of Flow in Sewer Systems with State Dependent Diffusion

    DEFF Research Database (Denmark)

    Breinholt, Anders; Thordarson, Fannar Örn; Møller, Jan Kloppenborg

    2011-01-01

    flow prediction limits, because the observation noise is proportionally scaled with the modelled output. Finally it is concluded that a state proportional diffusion term best and adequately describes the one-step flow prediction uncertainty, and a proper description of the system noise is important......Generating flow forecasts with uncertainty limits from rain gauge inputs in sewer systems require simple models with identifiable parameters that can adequately describe the stochastic phenomena of the system. In this paper, a simple grey-box model is proposed that is attractive for both....... It is shown that an additive diffusion noise term description leads to a violation of the physical constraints of the system, whereas a state dependent diffusion noise avoids this problem and should be favoured. It is also shown that a logarithmic transformation of the flow measurements secures positive lower...

  15. Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model

    Energy Technology Data Exchange (ETDEWEB)

    Seshasayanan, K [Laboratoire de Physique Statistique, CNRS UMR 8550, École Normale Supérieure, F-75005 Paris (France); Manneville, P, E-mail: paul.manneville@polytechnique.edu [Laboratoire d’Hydrodynamique, CNRS UMR7646, École Polytechnique, F-91128, Palaiseau (France)

    2015-06-15

    On its way to turbulence, plane Couette flow–the flow between counter-translating parallel plates–displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier–Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for spatiotemporal dynamics in the plane of the flow. Truncating this set beyond the lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at the cruder effective wall-normal resolution. Perspectives opened by this approach are discussed. (paper)

  16. A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica.

    Science.gov (United States)

    Mordvintsev, Dmitry Y; Polyak, Yakov L; Kuzmine, Dmitry A; Levtsova, Olga V; Tourleigh, Yegor V; Kasheverov, Igor E

    2006-01-01

    Short- and long-chain alpha-neurotoxins from snake venoms are potent blockers of nicotinic acetylcholine receptors (nAChRs). Short alpha-neurotoxins consist of 60-62 amino acid residues and include 4 disulfide bridges, whereas long alpha-neurotoxins have 66-75 residues and 5 disulfides. The spatial structure of these toxins is built by three loops, I-III "fingers," confined by four disulfide bridges; the fifth disulfide of long-chain alpha-neurotoxins is situated close to the tip of central loop II. An accurate knowledge of the mode of alpha-neurotoxin-nAChR interaction is important for rational design of new nAChR agonists and antagonists for medical purposes. Ideas on the topography of toxin-nAChR complexes were based until recently on nAChR interactions with selectively labeled alpha-neurotoxins, mutations in toxins, nAChR, or both. Recently, crystal structures have been solved for the Torpedo marmorata nAChR (4A[Unwin, 2005]) and for the acetylcholine-binding protein (AChBP) complexed with mollusk alpha-conotoxin (2.4 A[Celie et al., 2005]) or alpha-cobratoxin, long-chain alpha-neurotoxin (4 A [Bourne et al., 2005]). However, there were no angstrom-resolution models for complexes of short-chain alpha-neurotoxins. Here, we report the model of the Torpedo californica nAChR extracellular domain complexed to a short-chain alpha-neurotoxin II (NTII) from Naja oxiana cobra venom.

  17. An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes

    Science.gov (United States)

    Hund, S J; Antaki, J F

    2011-01-01

    Transport phenomena of platelets and white blood cells (WBCs) are fundamental to the processes of vascular disease and thrombosis. Unfortunately, the dilute volume occupied by these cells is not amenable to fluid-continuum modeling, and yet the cell count is large enough that modeling each individual cell is impractical for most applications. The most feasible option is to treat them as dilute species governed by convection and diffusion; however, this is further complicated by the role of the red blood cell (RBC) phase on the transport of these cells. We therefore propose an extended convection–diffusion (ECD) model based on the diffusive balance of a fictitious field potential, Ψ, that accounts for the gradients of both the dilute phase and the local hematocrit. The ECD model was applied to the flow of blood in a tube and between parallel plates in which a profile for the RBC concentration field was imposed and the resulting platelet concentration field predicted. Compared to prevailing enhanced-diffusion models that dispersed the platelet concentration field, the ECD model was able to simulate a near-wall platelet excess, as observed experimentally. The extension of the ECD model depends only on the ability to prescribe the hematocrit distribution, and therefore may be applied to a wide variety of geometries to investigate platelet-mediated vascular disease and device-related thrombosis. PMID:19809124

  18. Statistical resolution limit for the multidimensional harmonic retrieval model: hypothesis test and Cramér-Rao Bound approaches

    Directory of Open Access Journals (Sweden)

    El Korso Mohammed

    2011-01-01

    Full Text Available Abstract The statistical resolution limit (SRL, which is defined as the minimal separation between parameters to allow a correct resolvability, is an important statistical tool to quantify the ultimate performance for parametric estimation problems. In this article, we generalize the concept of the SRL to the multidimensional SRL (MSRL applied to the multidimensional harmonic retrieval model. In this article, we derive the SRL for the so-called multidimensional harmonic retrieval model using a generalization of the previously introduced SRL concepts that we call multidimensional SRL (MSRL. We first derive the MSRL using an hypothesis test approach. This statistical test is shown to be asymptotically an uniformly most powerful test which is the strongest optimality statement that one could expect to obtain. Second, we link the proposed asymptotic MSRL based on the hypothesis test approach to a new extension of the SRL based on the Cramér-Rao Bound approach. Thus, a closed-form expression of the asymptotic MSRL is given and analyzed in the framework of the multidimensional harmonic retrieval model. Particularly, it is proved that the optimal MSRL is obtained for equi-powered sources and/or an equi-distributed number of sensors on each multi-way array.

  19. Cramer-RAO lower bounds for sinusoidal models from Topex/Poseidon data in the Indian Ocean

    Science.gov (United States)

    Arias Ballesteros, M.; Medina, C.; Alonso del Rosario, J. J.; Villares-Durán, P.; Gómez-Enri, J.; Catalán Pérez-Urquiola, M.; Labrador Costero, I.

    2007-10-01

    The Cramer-Rao lower bound (CRLB) for the estimations of the cosine and sine amplitudes of multi-tone sinusoidal model is derived and applied on TOPEX/Poseidon satellite altimetry data sets covering the Indian Ocean. The CRLB depends on the variance of the White Gaussian Noise that it is computed by Modern Parametric Autoregressive Adaptative Spectral Analysis. Determining CRLB parameters it is possible to establish the minimal error associated to any model built to work in the study area what improves the intrinsic bias of the generated time series. The noise that appears in the altimetric data depends strongly on the errors from the atmospheric and geophysical corrections, so the role of the inverted barometer and tidal corrections are also analyzed. The results is summarized as: a) the spatial structure of the order of the parametric model considering the application or not of the above corrections and its relationship to the surface dynamical system of currents in Indian Ocean; b) the spatial structure of the variance of the WGN in the area and its meaning; c) the CRLB for the Geoid's estimators and the CRLB for the estimators of the semiannual and annual waves.

  20. Influence of the scattering and absorption coefficients on homogeneous room simulations that use a diffusion equation model.

    Science.gov (United States)

    Navarro, Juan M; Escolano, José; Cobos, Maximo; López, José J

    2013-03-01

    The diffusion equation model was used for room acoustic simulations to predict the sound pressure level and the reverberation time. The technical literature states that the diffusion equation method accurately models the late portion of the room impulse response if the energy is sufficiently scattered. This work provides conclusions on the validity of the diffusion equation model for rooms with homogeneous dimensions in relation to the scattering coefficients of the boundaries. A systematic evaluation was conducted out to determine the ranges of the absorption and scattering coefficient values that result in low noticeable differences between the predictions from a geometrical acoustic model and those from the diffusion equation model.