WorldWideScience

Sample records for boundary-layer cloud study

  1. A Lagrangian Study of Southeast Pacific Boundary Layer Clouds

    Science.gov (United States)

    Painter, Gallia

    concentration which extend far offshore into regions of normally very clean cloud. We use Lagrangian trajectories to investigate the source of the high droplet concentrations of the mesoscale "hooks", and evaluate whether boundary layer transport of coastal pollutants alone can account for their extent. We find that boundary layer trajectories past 85 W do not pass sufficiently close to the coastline to explain high aerosol concentrations offshore.

  2. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  3. Second-moment budgets in cloud topped boundary layers: A large-eddy simulation study

    Science.gov (United States)

    Heinze, Rieke; Mironov, Dmitrii; Raasch, Siegfried

    2015-06-01

    A detailed analysis of second-order moment budgets for cloud topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated—one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. Approximations to the ensemble-mean budgets of the Reynolds-stress components, of the fluxes of two quasi-conservative scalars, and of the scalar variances and covariance are computed by averaging the LES data over horizontal planes and over several hundred time steps. Importantly, the subgrid scale contributions to the budget terms are accounted for. Analysis of the LES-based second-moment budgets reveals, among other things, a paramount importance of the pressure scrambling terms in the Reynolds-stress and scalar-flux budgets. The pressure-strain correlation tends to evenly redistribute kinetic energy between the components, leading to the growth of horizontal-velocity variances at the expense of the vertical-velocity variance which is produced by buoyancy over most of both CTBLs. The pressure gradient-scalar covariances are the major sink terms in the budgets of scalar fluxes. The third-order transport proves to be of secondary importance in the scalar-flux budgets. However, it plays a key role in maintaining budgets of TKE and of the scalar variances and covariance. Results from the second-moment budget analysis suggest that the accuracy of description of the CTBL structure within the second-order closure framework strongly depends on the fidelity of parameterizations of the pressure scrambling terms in the flux budgets and of the third-order transport terms in the variance budgets. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  4. Size distributions of boundary-layer clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  5. RACORO long-term, systematic aircraft observations of boundary layer clouds

    Energy Technology Data Exchange (ETDEWEB)

    Vogelmann, A.M.; McFarquhar, G.; Ogren, J.; Turner, D. D.; Comstock, J. M.; Feingold, G.; Long, C. N.; Jonsson, H. H.; Bucholtz, A.; Collins, D. R.; Diskin, G.; Gerber, H.; Lawson, R. P.; Woods, R. K.; Hubbe, J.; Tomlinson, J.; Schmid, B.

    2010-06-27

    Our knowledge of boundary layer cloud processes is insufficient to resolve pressing scientific problems. Boundary layer clouds often have liquid-water paths (LWPs) less than 100 gm{sup 2}, which are defined here as being 'thin' Clouds with Low Optical Water Depths (CLOWD). This type of cloud is common globally, and the Earth's radiative energy balance is particularly sensitive to small changes in their optical properties. However, it is difficult to retrieve accurately their cloud properties via remote sensing because they are tenuous and often occur in partly cloudy skies. This interferes with our ability to obtain the routine, long-term statistics needed to improve their representation in climate models. To address this problem, in-situ data are needed to investigate cloud processes and to evaluate and refine existing retrieval algorithms. Coordinated by the ARM Aerial Facility (AAF), the Routine AAF CLOWD Optical Radiative Observations (RACORO) field campaign conducted long-term, systematic flights in boundary layer, liquid-water clouds over the ARM Southern Great Plains (SGP) site between 22 January and 30 June 2009. This was the first time that a long-term aircraft campaign was undertaken for systematic in-situ sampling of cloud properties. Using the CIRPAS Twin Otter aircraft equipped with a comprehensive set of instruments to measure solar and thermal radiation, cloud microphysics, aerosol properties and atmospheric state, the RACORO team logged an unprecedented 59 flights and 259 research hours above the SGP site. Data gathered during the RACORO campaign will provide researchers with a statistically relevant data set of boundary-layer cloud and aerosol properties for future study. These data can be used to validate retrieval algorithms and support process studies and model simulations of boundary layer clouds and, in particular, CLOWD-type clouds. In addition to cloud observations, complementary clear-sky flight patterns were conducted to map

  6. Analysis of pressure-strain and pressure gradient-scalar covariances in cloud-topped boundary layers: A large-eddy simulation study

    Science.gov (United States)

    Heinze, Rieke; Mironov, Dmitrii; Raasch, Siegfried

    2016-03-01

    A detailed analysis of the pressure-scrambling terms (i.e., the pressure-strain and pressure gradient-scalar covariances) in the Reynolds-stress and scalar-flux budgets for cloud-topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated — one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. The pressure-scrambling terms are decomposed into contributions due to turbulence-turbulence interactions, mean velocity shear, buoyancy, and Coriolis effects. Commonly used models of these contributions, including a simple linear model most often used in geophysical applications and a more sophisticated two-component-limit (TCL) nonlinear model, are tested against the LES data. The decomposition of the pressure-scrambling terms shows that the turbulence-turbulence and buoyancy contributions are most significant for cloud-topped boundary layers. The Coriolis contribution is negligible. The shear contribution is generally of minor importance inside the cloudy layers, but it is the leading-order contribution near the surface. A comparison of models of the pressure-scrambling terms with the LES data suggests that the more complex TCL model is superior to the simple linear model only for a few contributions. The linear model is able to reproduce the principal features of the pressure-scrambling terms reasonably well. It can be applied in the second-order turbulence modeling of cloud-topped boundary layer flows, provided some uncertainties are tolerated.

  7. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  8. A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    Science.gov (United States)

    Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.

    2012-01-01

    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c) 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.

  9. Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary

    Institute of Scientific and Technical Information of China (English)

    魏奉思; 刘睿; 范全林; 冯学尚

    2003-01-01

    Based on the analysis of the boundaries of 70 magnetic clouds from 1967 to 1998, and relatively complete spacecraft observations, it is indicated that the magnetic cloud boundaries are boundary layers formed through the interaction between the magnetic clouds and the ambient medium. Most of the outer boundaries of the layers, with relatively high proton temperature, density and plasma β, are magnetic reconnection boundaries, while the inner boundaries, with low proton temperature, proton density and plasma β, separate the main body of magnetic clouds, which has not been affected by the interaction, from the boundary layers. The average time scale of the front boundary layer is 1.7 h and that of the tail boundary layer 3.1 h. It is also found that the magnetic probability distribution function undergoes significant changes across the boundary layers. This new definition, supported by the preliminary numerical simulation in principle, could qualitatively explain the observations of interplanetary magnetic clouds, and could help resolve the controversy in identifying the boundaries of magnetic clouds. Our concept of the boundary layer may provide some understanding of what underlies the observations, and a fresh train of thought in the interplanetary dynamics research.

  10. Plasma structures inside boundary layers of magnetic clouds

    Institute of Scientific and Technical Information of China (English)

    WEI Fengsi; FENG Xueshang; YANG Fang; ZHONG Dingkun

    2004-01-01

    We analyze the plasma structures for 50 magnetic cloud boundary layers (BLs) which were observed by the spacecraft WIND from February, 1995 to June 2003. Main discoveries are: (ⅰ) The BL is a non-pressure balanced structure, its total pressure, PT,L, (the thermal pressure, Pth,L, plus the magnetic pressure, PM,L) is generally less than the total pressure PT,S and PT,C of the front solar wind (SW) and the following magnetic clouds (MC), respectively. The rising of the Pth,L inside the BLs is often not enough to compensate the declining of PM,L; (ⅱ) The ratio of electron and proton temperatures, (Te/Tp)L, inside the BLs is offen less than (Te/Tp)s and (Te/Tp)c in the SW and the MC, respectively, because the heating of proton is more obvious than that of electron; and (ⅲ) The reversal jet is observed in 80% BLs investigated, in which the reversal jets from all of three directions (±Vx, ±Vy, ±Vz), were observed in ≈25% BLs. These basic characteristics could be associated with a possible magnetic reconnection process inside the BLs. The results above suggest that the cloud BL owns the plasma structures different from those in the SW and MC. It is a manifestation for the existing significant dynamic interaction between the magnetic cloud and the solar wind.

  11. Statistical Analyses of Satellite Cloud Object Data From CERES. Part 4; Boundary-layer Cloud Objects During 1998 El Nino

    Science.gov (United States)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce A.; Parker, Lindsay

    2006-01-01

    Three boundary-layer cloud object types, stratus, stratocumulus and cumulus, that occurred over the Pacific Ocean during January-August 1998, are identified from the CERES (Clouds and the Earth s Radiant Energy System) single scanner footprint (SSF) data from the TRMM (Tropical Rainfall Measuring Mission) satellite. This study emphasizes the differences and similarities in the characteristics of each cloud-object type between the tropical and subtropical regions and among different size categories and among small geographic areas. Both the frequencies of occurrence and statistical distributions of cloud physical properties are analyzed. In terms of frequencies of occurrence, stratocumulus clouds dominate the entire boundary layer cloud population in all regions and among all size categories. Stratus clouds are more prevalent in the subtropics and near the coastal regions, while cumulus clouds are relatively prevalent over open ocean and the equatorial regions, particularly, within the small size categories. The largest size category of stratus cloud objects occurs more frequently in the subtropics than in the tropics and has much larger average size than its cumulus and stratocumulus counterparts. Each of the three cloud object types exhibits small differences in statistical distributions of cloud optical depth, liquid water path, TOA albedo and perhaps cloud-top height, but large differences in those of cloud-top temperature and OLR between the tropics and subtropics. Differences in the sea surface temperature (SST) distributions between the tropics and subtropics influence some of the cloud macrophysical properties, but cloud microphysical properties and albedo for each cloud object type are likely determined by (local) boundary-layer dynamics and structures. Systematic variations of cloud optical depth, TOA albedo, cloud-top height, OLR and SST with cloud object sizes are pronounced for the stratocumulus and stratus types, which are related to systematic

  12. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds

    Science.gov (United States)

    Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.

    2016-04-01

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

  13. Seasonal Simulations of the Planetary Boundary Layer and Boundary-Layer Stratocumulus Clouds with a General Circulation Model.

    Science.gov (United States)

    Randall, David A.; Abeles, James A.; Corsetti, Thomas G.

    1985-04-01

    The UCLA general circulation model (GCM) has been used to simulate the seasonally varying planetary boundary layer (PBL), as well as boundary-layer stratus and stratocumulus clouds. The PBL depth is a prognostic variable of the GCM, incorporated through the use of a vertical coordinate system in which the PBL is identified with the lowest model layer.Stratocumulus clouds are assumed to occur whenever the upper portion of the PBL becomes saturated, provided that the cloud-top entrainment instability does not occur. As indicated by Arakawa and Schubert, cumulus clouds are assumed to originate at the PBL top, and tend to make the PBL shallow by drawing on its mass.Results are presented from a three-year simulation, starting from a 31 December initial condition obtained from an earlier run with a different version of the model. The simulated seasonally varying climates of the boundary layer and free troposphere are realistic. The observed geographical and seasonal variations of stratocumulus cloudiness are fairly well simulated. The simulation of the stratocumulus clouds associated with wintertime cold-air outbreaks is particularly realistic. Examples are given of individual events. The positions of the subtropical marine stratocumulus regimes are realistically simulated, although their observed frequency of occurrence is seriously underpredicted. The observed summertime abundance of Arctic stratus clouds is also underpredicted.In the GCM results, the layer cloud instability appears to limit the extent of the marine subtropical stratocumulus regimes. The instability also frequently occurs in association with cumulus convection over land.Cumulus convection acts as a very significant sink of PBL mass throughout the tropics, and over the midlatitude continents in summer.Three experiments have been performed to investigate the sensitivity of the GCM results to aspects of the PBL and stratocumulus parameterizations. For all three experiments, the model was started from 1

  14. Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2008-12-01

    Full Text Available Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength spectral range which is characterized by ice and water absorption. While IS analyzes the spectral slope of the reflectance in this wavelength range, IS utilizes a principle component analysis (PCA of the spectral reflectance. A third ice index IA is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance.

    Radiative transfer simulations show that IS, IP and IA range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index IS and the PCA ice index IP are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index IA is mainly dominated by the uppermost cloud layer (τ<1.5. Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will

  15. Boundary-layer control by electric fields: A feasibility study

    OpenAIRE

    Mendes, R. Vilela; Dente, J. A.

    1997-01-01

    A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boun...

  16. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hsin-Yuan; Hall, Alex

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while

  17. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R. [Univ. of Washington, Seattle, WA (United States)

    2016-01-01

    The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiative cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.

  18. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Heerwaarden, van C.C.; Lelieveld, J.

    2012-01-01

    Cumulus clouds in the atmospheric boundary layer play a key role in the hydrologic cycle, in the onset of severe weather by thunderstorms and in modulating Earth’s reflectivity and climate1. How these clouds respond to climate change, in particular over land, and how they interact with the carbon cy

  19. Increasing CO2 suppresses boundary-layer clouds in temperate climates

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Heerwaarden, van C.C.; Lelieveld, J.

    2012-01-01

    Cumulus clouds in the atmospheric boundary layer play a key role in the hydrologic cycle, in the onset of severe weather by thunderstorms, and in modulating the Earth's reflectivity and climate. How these clouds respond to climate change, in particular over land, and how they interact with the carbo

  20. Boundary-layer control by electric fields A feasibility study

    CERN Document Server

    Mendes, R V

    1998-01-01

    A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.

  1. A parametric study of adverse pressure gradient turbulent boundary layers

    International Nuclear Information System (INIS)

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  2. “Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    Energy Technology Data Exchange (ETDEWEB)

    Ferrare, Richard [NASA Langley Research Center, Hampton, VA (United States); Turner, David [National Oceanic and Atmospheric Administration (NOAA) National Severe Storms Lab., Norman, OK (United States)

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  3. DNS Study on Physics of Late Boundary Layer Transition

    CERN Document Server

    Liu, Chaoqun

    2014-01-01

    This paper serves as a review of our recent new DNS study on physics of late boundary layer transition. This includes mechanism of the large coherent vortex structure formation, small length scale generation and flow randomization. The widely spread concept vortex breakdown to turbulence,which was considered as the last stage of flow transition, is not observed and is found theoretically incorrect. The classical theory on boundary layer transition is challenged and we proposed a new theory with five steps, i.e. receptivity, linear instability, large vortex formation, small length scale generation, loss of symmetry and randomization to turbulence. We have also proposed a new theory about turbulence generation. The new theory shows that all small length scales (turbulence) are generated by shear layer instability which is produced by large vortex structure with multiple level vortex rings, multiple level sweeps and ejections, and multiple level negative and positive spikes near the laminar sub-layers.Therefore,...

  4. Numerical studies on laminar-turbulent transition in boundary layers

    International Nuclear Information System (INIS)

    Laminar-turbulent transition in flat-plate boundary layers is investigated by direct numerical solution of the full Navier-Stokes equations. Both forced transition (in parallel Blasius flow excited by a vibrating ribbon) and natural transition (in a decelerating boundary layer) are studied. In both cases, an initial state containing random noise is employed to eliminate bias in selecting unstable waves. In the simulations of ribbon-induced transition, close agreement with experiments (Saric et al. (1984)) is obtained for low-amplitude two-dimensional Tollmien-Schlichting waves-producing subharmonic breakdown (C- or H-type). For high amplitudes, a mixture of subharmonic and fundamental structures is observed. Clear-cut fundamental breakdown (K-type) is never obtained. In the simulation of the early stages of natural transition in a decelerating boundary layer, two-dimensional and/or slightly oblique waves initially grow due to the inflectional instability. When they become strong enough, they initiate a secondary instability leading to three dimensional distortion and Λ vortices, in good agreement with experiments (Gad-el-Hak et al. (1984)). The tips of the Λ vortices are rarely aligned with the flow direction, and that they appear locally in apace. A simple wave-interference model accounting for these features of natural transition has been developed. It suggests that multiple waves are active in the secondary instability, and that they are determined by unpredictable initial disturbances. The later stages of transition in a decelerating boundary layer were also studied with higher numerical resolution. The naturally-born Λ vortices undergo breakdown processes similar to those of ribbon-induced Λ vortices. Conversely, this justifies the conventional approach to study laminar-turbulent transition-the vibrating-ribbon technique

  5. Boundary Layer

    Science.gov (United States)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  6. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  7. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O’Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-03-01

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.

  8. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    Directory of Open Access Journals (Sweden)

    A. H. Berner

    2013-07-01

    Full Text Available A large-eddy simulation (LES coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of

  9. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Univ. of Oklahoma, Norman, OK (United States); NOAA National Severe Storms Lab., Norman, OK (United States); Ferrare, Richard [NASA Langley Research Center, Hampton, VA (United States)

    2015-01-13

    The systematic and routine measurements of aerosol, water vapor, and clouds in the vertical column above the Atmospheric Radiation Measurement (ARM) sites from surface-based remote sensing systems provides a unique and comprehensive data source that can be used to characterize the boundary layer (i.e., the lowest 3 km of the atmosphere) and its evolution. New algorithms have been developed to provide critical datasets from ARM instruments, and these datasets have been used in long-term analyses to better understand the climatology of water vapor and aerosol over Darwin, the turbulent structure of the boundary layer and its statistical properties over Oklahoma, and to better determine the distribution of ice and aerosol particles over northern Alaska.

  10. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE

    Directory of Open Access Journals (Sweden)

    Mikhail Ovchinnikov

    2011-06-01

    Full Text Available An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE. Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associated with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel

  11. Low cloud investigations for project FIRE: Island studies of cloud properties, surface radiation, and boundary layer dynamics. A simulation of the reflectivity over a stratocumulus cloud deck by the Monte Carlo method. M.S. Thesis Final Report

    Science.gov (United States)

    Ackerman, Thomas P.; Lin, Ruei-Fong

    1993-01-01

    The radiation field over a broken stratocumulus cloud deck is simulated by the Monte Carlo method. We conducted four experiments to investigate the main factor for the observed shortwave reflectively over the FIRE flight 2 leg 5, in which reflectivity decreases almost linearly from the cloud center to cloud edge while the cloud top height and the brightness temperature remain almost constant through out the clouds. From our results, the geometry effect, however, did not contribute significantly to what has been observed. We found that the variation of the volume extinction coefficient as a function of its relative position in the cloud affects the reflectivity efficiently. Additional check of the brightness temperature of each experiment also confirms this conclusion. The cloud microphysical data showed some interesting features. We found that the cloud droplet spectrum is nearly log-normal distributed when the clouds were solid. However, whether the shift of cloud droplet spectrum toward the larger end is not certain. The decrease of number density from cloud center to cloud edges seems to have more significant effects on the optical properties.

  12. Using GPS Radio Occultation to study polar boundary layer properties

    Science.gov (United States)

    Ganeshan, M.; Wu, D. L.

    2015-12-01

    The sensitivity of GPS RO refractivity to moisture and temperature variations in polar regions is explored using radiosonde observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. A retrieval algorithm for the boundary layer inversion height and surface-based inversion (SBI) frequency is developed for dry atmospheric conditions (total precipitable water < 3.6 mm) that typically exist during polar winter, as well as in high-latitude, elevated regions such as eastern Antarctica and central Greenland. The algorithm is applied to the high-resolution refractivity profiles obtained over the polar Arctic region using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) dataset for the period 2006-2013. The method is found useful for capturing the spatiotemporal variability in Arctic inversion properties. For the Arctic Ocean, the spatial patterns show a minimum inversion height (maximum SBI frequency) over the ice-covered Pacific sector similar to that observed in past studies. Monthly evolution of the inversion characteristics suggests a surface temperature control in the multi-year sea ice region, with the peak in SBI frequency occurring during the transition period from winter to spring. For central Greenland, the seasonal peak in SBI frequency occurs during winter. The diurnal variability in SBI frequency is forced mainly by solar heating, consistent with past observations. Despite some limitations, the RO refractivity profile is found quite useful for monitoring the Arctic boundary layer, and is able to capture the interannual variability of inversion characteristics.

  13. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere

    Science.gov (United States)

    Vila-Guerau Arellano, J.; Vanheerwaarden, C.; Lelieveld, J.

    2013-12-01

    We will present and discuss a conceptual modelling framework that can facilitate the understanding of the interactions between land processes and atmospheric boundary layer dynamics/chemistry at diurnal scales. This framework has been successful applied to the interpretation of field experiments, but also to identify the non-linear relations that occur at larger spatial and temporal scales. We will then discuss in depth the link between shallow cumulus and vegetation exchange of water and carbon dioxide. Cumulus clouds in the atmospheric boundary layer play a key role in the hydrologic cycle, in the onset of severe weather by thunderstorms, and in modulating the Earth's reflectivity and climate. How these clouds respond to climate change, in particular over land, and how they interact with the carbon cycle is poorly understood. It is expected that as a consequence of rising atmospheric CO2 the plant stomata will close leading to lower latent heat fluxes and higher sensible heat fluxes. During the presentation, we will show that this causes a decline in boundary layer cloud formation in middle latitudes. This could be partly counteracted by the greater ability of a warmer atmosphere to take up water and by a growth in biomass due to CO2 fertilization. Our results are based on a new soil-water-atmosphere-plant model supported by comprehensive observational evidence, from which we identify the dominant atmospheric responses to plant physiological processes. They emphasize the intricate connection between biological and physical aspects of the climate system and the relevance of short-term and small-scale processes in establishing this connection

  14. Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20 S during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. S. Bretherton

    2010-06-01

    Full Text Available Multiplatform airborne, ship-based, and land-based observations from 16 October–15 November 2008 during the VOCALS Regional Experiment (REx are used to document the typical structure of the Southeast Pacific stratocumulus-topped boundary layer and lower free troposphere on a transect along 20° S between the coast of Northern Chile and a buoy 1500 km offshore. Strong systematic gradients in clouds, precipitation and vertical structure are modulated by synoptically and diurnally-driven variability. The boundary layer is generally capped by a strong (10–12 K, sharp inversion. In the coastal zone, the boundary layer is typically 1 km deep, fairly well mixed, and topped by thin, nondrizzling stratocumulus with haccumulation-mode aerosol and cloud droplet concentrations exceeding 200 cm−3. Far offshore, the boundary layer depth is typically deeper (1600 m and more variable, and the vertical structure is usually decoupled. The offshore stratocumulus typically have strong mesoscale organization, much higher peak liquid water paths, extensive drizzle, and cloud droplet concentrations below 100 cm−3, sometimes with embedded pockets of open cells with lower droplet concentrations. The lack of drizzle near the coast is not just a microphysical response to high droplet concentrations; smaller cloud depth and liquid water path than further offshore appear comparably important.

    Moist boundary layer air is heated and mixed up along the Andean slopes, then advected out over the top of the boundary layer above adjacent coastal ocean regions. Well offshore, the lower free troposphere is typically much drier. This promotes strong cloud-top radiative cooling and stronger turbulence in the clouds offshore. In conjunction with a slightly cooler free troposphere, this may promote stronger entrainment that maintains the deeper boundary layer seen offshore.

    Winds from ECMWF and NCEP operational analyses have an rms

  15. Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20° S during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. S. Bretherton

    2010-11-01

    Full Text Available Multiplatform airborne, ship-based, and land-based observations from 16 October–15 November 2008 during the VOCALS Regional Experiment (REx are used to document the typical structure of the Southeast Pacific stratocumulus-topped boundary layer and lower free troposphere on a~transect along 20° S between the coast of Northern Chile and a buoy 1500 km offshore. Strong systematic gradients in clouds, precipitation and vertical structure are modulated by synoptically and diurnally-driven variability. The boundary layer is generally capped by a strong (10–12 K, sharp inversion. In the coastal zone, the boundary layer is typically 1 km deep, fairly well mixed, and topped by thin, nondrizzling stratocumulus with accumulation-mode aerosol and cloud droplet concentrations exceeding 200 cm−3. Far offshore, the boundary layer depth is typically deeper (1600 m and more variable, and the vertical structure is usually decoupled. The offshore stratocumulus typically have strong mesoscale organization, much higher peak liquid water paths, extensive drizzle, and cloud droplet concentrations below 100 cm−3, sometimes with embedded pockets of open cells with lower droplet concentrations. The lack of drizzle near the coast is not just a microphysical response to high droplet concentrations; smaller cloud depth and liquid water path than further offshore appear comparably important.

    Moist boundary layer air is heated and mixed up along the Andean slopes, then advected out over the top of the boundary layer above adjacent coastal ocean regions. Well offshore, the lower free troposphere is typically much drier. This promotes strong cloud-top radiative cooling and stronger turbulence in the clouds offshore. In conjunction with a slightly cooler free troposphere, this may promote stronger entrainment that maintains the deeper boundary layer seen offshore.

    Winds from ECMWF and NCEP operational analyses have an rms

  16. Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Qing; Kahn, Brian; Xiao, Heng; Schreier, Mathias; Fetzer, E. J.; Teixeira, J.; Suselj, Kay

    2013-08-16

    Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared with numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.

  17. Observations of boundary layer, mixed-phase and multi-layer Arctic clouds with different lidar systems during ASTAR 2007

    Directory of Open Access Journals (Sweden)

    A. Lampert

    2009-07-01

    Full Text Available During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR, which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar and with an airborne elastic lidar. An increase in low-level (cloud tops below 2.5 km cloud cover from 51% to 65% was observed above Ny-Ålesund during the time of the ASTAR campaign. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a pre-condensation layer was observed at an altitude of 2 km. The layer consisted of small droplets with a high number concentration (around 300 cm−3 at low temperatures (−30°C. Observations of a boundary layer mixed-phase cloud by airborne lidar were evaluated with the measurements of concurrent airborne in situ and spectral solar radiation sensors. Two detailed observations of multiply layered clouds in the free troposphere are presented. The first case was composed of various ice layers with different optical properties detected with the Raman lidar, the other case showed a mixed-phase double layer and was observed by airborne lidar.

    The analysis of these four cases confirmed that lidar data provide information of the whole range from subvisible to optically thick clouds. Despite the attenuation of the laser signal in optically thick clouds and multiple scattering effects, information on the geometrical boundaries of liquid water clouds were obtained. Furthermore, the dominating phase of the clouds' particles in the layer closest to the lidar system could be retrieved.

  18. Retrieving co-occurring cloud and precipitation properties of warm marine boundary layer clouds with A-Train data

    Science.gov (United States)

    Mace, Gerald G.; Avey, Stephanie; Cooper, Steven; Lebsock, Matthew; Tanelli, Simone; Dobrowalski, Greg

    2016-04-01

    In marine boundary layer (MBL) clouds the formation of precipitation from the cloud droplet distribution in the presence of variable aerosol plays a fundamental role in determining the coupling of these clouds to their environment and ultimately to the climate system. Here the degree to which A-Train satellite measurements can diagnose simultaneously occurring cloud and precipitation properties in MBL clouds is examined. Beginning with the measurements provided by CloudSat and Moderate Resolution Imaging Spectroradiometer (including a newly available microwave brightness temperature from CloudSat), and a climatology of MBL cloud properties from past field campaigns, an assumption is made that any hydrometeor volume could contain both cloud droplet and precipitation droplet modes. Bayesian optimal estimation is then used to derive atmospheric states by inverting a measurement vector carefully accounting for uncertainties due to instrument noise, forward model error, and assumptions. It is found that in many cases where significant precipitation coexists with cloud, due to forward model error driven by uncertainties in assumptions, the uncertainty in retrieved cloud properties is greater than the variance in the prior climatology. It is often necessary to average several thousand (hundred) precipitating (weakly precipitating) profiles to obtain meaningful information regarding the properties important to microphysical processes. Regardless, if such process level information is deemed necessary for better constraining predictive models of the climate system, measurement systems specifically designed to accomplish such retrievals must be considered for the future.

  19. WIND observations of plasma waves inside the magnetic cloud boundary layers

    Institute of Scientific and Technical Information of China (English)

    WEI Fengsi; ZHONG Dingkun; FENG Xueshang; YANG Fang; LIU Rui

    2005-01-01

    Based on the WIND observational data for the plasma waves from thermal noise receptor (TNR) working on the frequency 4―256 kHz and the solar wind and the magnetic fields, we analyze the plasma wave activities in the 60 magnetic cloud's boundary layers (BLs) and find that there are often various plasma wave activities in the BLs, which are different from those in the adjacent solar wind (SW) and the magnetic clouds (MC). The basic characteristics are that: (1) the enhancement of the Langmuir wave near the electronic plasma frequency (fpe) is a dominant wave activity, which occupies 75% investigated samples; (2) the events enhanced both in the langmuir and ion acustic (f < fpe) waves are about 60% of investigated samples; (3) broadband, continuous enhancement events in the plasma wave activities were observed in the whole frequency band of TNR, and about 30% of the 60 samples, however, were not observed in the SW and the MC investigated events; (4) although the ratio of the temperatures between the electon and proton, Te/Tp≤1, the ion caustic wave enhancement activities are still often observed in the BLs, which makes it difficult to ex-plain them by the traditional plasma theory. New results reported in this paper further show that the magnetic cloud's BL is an important dynamic structure, which could provide useful diagnosis for understanding the cloud's BL physics and could expand a space developing space plasma wave theory.

  20. The VOCALS Regional Experiment: Aerosol-Cloud-Precipitation Interactions in Marine Boundary Layer Cloud

    Science.gov (United States)

    Wood, R.

    2012-12-01

    Robert Wood, C.S. Bretherton, C. R. Mechoso, R. A. Weller, B. J. Huebert, H. Coe, B. A. Albrecht, P. H. Daum, D. Leon, A. Clarke, P. Zuidema, C. W. Fairall, G. Allen, S. deSzoeke, G. Feingold, J. Kazil, S. Yuter, R. George, A. Berner, C. Terai, G. Painter, H. Wang, M. Wyant, D. Mechem The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) is an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific (SEP), a region dominated by strong coastal upwelling, extensive cold SSTs, and home to the largest subtropical stratocumulus deck on Earth. VOCALS-REx took place during October and November 2008 and involved five research aircraft, two ships and two surface sites in northen Chile. A central theme of VOCALS-REx is the improved understanding of links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties. In this presentation, we will present a synthesis of results from VOCALS-REx focusing on the following questions: (a) how are aerosols, clouds and precipitation inter-related in the SEP region? (b) what microphysical-macrophysical interactions are necessary for the formation and maintenance of open cells? (c) how do cloud and MBL properties change across the strong microphysical gradients from the South American coast to the remote ocean?

  1. The dual microphysical behavior of Namibia-Angola marine boundary layer clouds regime during the biomass-burning season

    Science.gov (United States)

    Painemal, D.; Kato, S.

    2013-12-01

    Transport of biomass burning aerosols off the coast of Namibia/Angola has drawn increasing interest due to its strong direct radiative effect and the potential dynamical feedbacks between the atmospheric circulation, cloud cover, and the solar absorbing aerosol layer. Here, we study the less explored link between boundary layer variability, cloud microphysics, and aerosol layer. In this investigation, we make use of satellite observations from A-Train constellation, to describe a unique dual microphysical behavior of the Namibia/Angola cloud regime. The dataset for this investigation consists of collocated retrievals from AMSR-E, MODIS, CERES, and CALIOP during the biomass season of July to September of 2006, and June to September of 2007 through 2010. We find a distinctive correlation between AMSR-E liquid water path (LWP) and cloud effective radius (re, 3.7 μm-based retrieval), with positive correlations, south of 5o S (r >0.4) and negative ones north of 5o S when they are computed for cloudy scenes only. We investigate further this feature, by analyzing the dependence of the cloud properties on variations in the cloud top height (HT). LWP correlates positively with HT (r >0.4) throughout the domain, and is consistent with adiabatic calculations made with HT and lifting condensation level. The correlation between re and HT is negative north of 5oS (r0.4), indicating that re becomes smaller when the aerosol layer remains closer to the cloud top, independent of the aerosol optical depth. Furthermore, we will show an evidence of the Twomey effect and albedo susceptibility associated with changes in re.

  2. Experimental study of the boundary layer over an airfoil in plunging motion

    Institute of Scientific and Technical Information of China (English)

    F. Rasi Marzabadi; M. R. Soltani

    2012-01-01

    This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions.It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer.The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake.The experiments were conducted at Reynolds numbers of 0.42 × 106 to 0.84 × 106 and the reduced frequency was varied from 0.01 to 0.1 1.The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases.For the static tests,boundary layer transition occurred through a laminar separation bubble.By increasing the angle of attack,disturbances and the transition location moved toward the leading edge.For the dynamic tests,earlier transition occurred with increasing rather than decreasing effective angle of attack.The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer.By increasing the reduced frequency,the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack,but the quasi skin friction coefficient was decreased.

  3. Experimental study of the boundary layer over an airfoil in plunging motion

    Science.gov (United States)

    Marzabadi, F. Rasi; Soltani, M. R.

    2012-04-01

    This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions. It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer. The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake. The experiments were conducted at Reynolds numbers of 0.42×106 to 0.84 × 106 and the reduced frequency was varied from 0.01 to 0.11. The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases. For the static tests, boundary layer transition occurred through a laminar separation bubble. By increasing the angle of attack, disturbances and the transition location moved toward the leading edge. For the dynamic tests, earlier transition occurred with increasing rather than decreasing effective angle of attack. The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer. By increasing the reduced frequency, the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack, but the quasi skin friction coefficient was decreased.

  4. Studies of stability of blade cascade suction surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin

    2007-01-01

    Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.

  5. Large Eddy Simulation and Study of the Urban Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    苗世光; 蒋维楣

    2004-01-01

    Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.

  6. Ground-Based Cloud and Atmospheric Boundary Layer Observations for the Project: High Definition Clouds and Precipitation for Advancing Climate Prediction, HD(CP)2

    Science.gov (United States)

    Hirsikko, A.; Ebell, K.; Ulrich, U.; Schween, J. H.; Bohn, B.; Görsdorf, U.; Leinweber, R.; Päschke, E.; Baars, H.; Seifert, P.; Klein Baltink, H.

    2014-12-01

    The German research initiative ''High Definition Clouds and Precipitation for advancing Climate Prediction, HD(CP)2'' aims for an improved representation of clouds and precipitation in climate models. Model development and its evaluation require comprehensive observational datasets. A specific work package was established to create uniform and documented observational datasets for the HD(CP)2 data base. Datasets included ground-based remote-sensing (Doppler lidars, ceilometers, microwave radiometers, and cloud radars) and in-situ (meteorological and radiation sensors) measurements. Four supersites (Jülich ObservatorY for Cloud Evolution (JOYCE), Lindenberg Meteorological Observatory - Richard Assmann Observatory (RAO), and Leipzig Aerosol and Cloud Remote Observations System (LACROS) in Germany, and Cabauw experimental site for atmospheric research (Cesar) in the Netherlands) are finalizing the operational procedures to provide quality controlled (and calibrated if possible) remote-sensing and in-situ observations, retrievals on atmospheric boundary layer state (e.g. winds, mixing layer height, humidity and temperature), and cloud macro and micro physical properties with uncertainty estimations or at least quality flags. During the project new processing and retrieval methods were developed if no commonly agreed or satisfying methods were available. Especially, large progress was made concerning uncertainty estimation and automated quality control. Additionally, the data from JOYCE are used in a radiative closure studies under cloudy conditions to evaluate retrievals of cloud properties. The current status of work progress will be presented.

  7. Study of effect of a smooth hump on hypersonic boundary layer instability

    Science.gov (United States)

    Park, Donghun; Park, Seung O.

    2016-05-01

    Effect of a two-dimensional smooth hump on linear instability of hypersonic boundary layer is studied by using parabolized stability equations. Linear evolution of mode S over a hump is analyzed for Mach 4.5 and 5.92 flat plate and Mach 7.1 sharp cone boundary layers. Mean flow for stability analysis is obtained by solving the parabolized Navier-Stokes equations. Hump with height smaller than local boundary layer thickness is considered. The case of flat plate and sharp cone without the hump are also studied to provide comparable data. For flat plate boundary layers, destabilization and stabilization effect is confirmed for hump located at upstream and downstream of synchronization point, respectively. Results of parametric studies to examine the effect of hump height, location, etc., are also given. For sharp cone boundary layer, stabilization influence of hump is also identified for a specific range of frequency. Stabilization influence of hump on convective instability of mode S is found to be a possible cause of previous experimental observations of delaying transition in hypersonic boundary layers.

  8. Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations

    Directory of Open Access Journals (Sweden)

    M. Jähn

    2015-08-01

    Full Text Available Large eddy simulations (LES are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ~ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength and wind shear. Comparisons of LES model output with wind lidar data show similarities in the formation of the daytime convective plume and the mean vertical wind structure.

  9. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  10. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    Science.gov (United States)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  11. Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific coastal marine stratocumulus during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2011-05-01

    Full Text Available Aircraft observations made off the coast of northern Chile in the Southeastern Pacific (20° S, 72° W; named Point Alpha from 16 October to 13 November 2008 during the VAMOS Ocean-Cloud-Atmosphere-Land Study-Regional Experiment (VOCALS-REx, combined with meteorological reanalysis, satellite measurements, and radiosonde data, are used to investigate the boundary layer (BL and aerosol-cloud-drizzle variations in this region. The BL at Point Alpha was typical of a non-drizzling stratocumulus-topped BL on days without predominately synoptic and meso-scale influences. The BL had a depth of 1140 ± 120 m, was well-mixed and capped by a sharp inversion. The wind direction generally switched from southerly within the BL to northerly above the inversion. The cloud liquid water path (LWP varied between 15 g m−2 and 160 g m−2. From 29 October to 4 November, when a synoptic system affected conditions at Point Alpha, the cloud LWP was higher than on the other days by around 40 g m−2. On 1 and 2 November, a moist layer above the inversion moved over Point Alpha. The total-water specific humidity above the inversion was larger than that within the BL during these days. Entrainment rates (average of 1.5 ± 0.6 mm s−1 calculated from the near cloud-top fluxes and turbulence (vertical velocity variance in the BL at Point Alpha appeared to be weaker than those in the BL over the open ocean west of Point Alpha and the BL near the coast of the northeast Pacific.

    The accumulation mode aerosol varied from 250 to 700 cm−3 within the BL, and CCN at 0.2 % supersaturation within the BL ranged between 150 and 550 cm−3. The main aerosol source at Point Alpha was horizontal advection within the BL from south. The average cloud droplet number concentration ranged between 80 and 400 cm−3, which was consistent with the satellite-derived values. The relationship of cloud droplet

  12. In situ study of particle growth in convective eddies of the planetary boundary layer

    Science.gov (United States)

    Alföldy, B.; Groma, V.; Börcsök, E.; Nagy, A.; Czitrovszky, A.; Török, S.

    2011-11-01

    A measurement flight was performed by a motorglider equipped with an aerosol size spectrometer and nano-particle counter over a large area in the rural vicinity of Budapest, Hungary. The flight was carried out in the early afternoon under unstable air dynamical conditions in August 2010. These conditions allowed flying in glider mode, with the engine switched off, using thermal lifts for altitude gain. A significant part of the flight was spent in thermals that allow studying how the atmospheric dynamics acts on the particle formation. It was found that hygroscopic growth affects the particle size distribution in the 30-500 nm interval. In the 30-280 nm interval, the growth rate was found to be similar to that of ammonium sulphate particles. Indirect signs of cloud droplet formation were found during cloud cross, as a concentration drop in size bins fallen in the 280-400 nm size range. In three thermal lifts significantly higher ultrafine particle concentration (30 < d < 280 nm) was measured, with decreased average diameter. The results support the supposition that convective eddies in the boundary layer affect the aerosol composition via hygroscopic growth and secondary particle formation.

  13. Properties of cloud condensation nuclei (CCN) in the trade wind marine boundary layer of the Eastern Caribbean Sea

    Science.gov (United States)

    Kristensen, T. B.; Müller, T.; Kandler, K.; Benker, N.; Hartmann, M.; Prospero, J. M.; Wiedensohler, A.; Stratmann, F.

    2015-11-01

    Cloud optical properties in the trade winds over the Eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN) concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL) in the Eastern Caribbean, in order to assess the respective roles of organic species, long-range transported mineral dust, and sea salt particles. Measurements were carried out in June-July 2013, on the East Coast of Barbados and included CCN number concentrations, particle number size distributions, as well as off-line analysis of sampled particulate matter (PM) and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX). During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2-0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt, and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulphate species and organic compounds.

  14. Properties of cloud condensation nuclei (CCN) in the trade wind marine boundary layer of the western North Atlantic

    Science.gov (United States)

    Kristensen, Thomas B.; Müller, Thomas; Kandler, Konrad; Benker, Nathalie; Hartmann, Markus; Prospero, Joseph M.; Wiedensohler, Alfred; Stratmann, Frank

    2016-03-01

    Cloud optical properties in the trade winds over the eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN) concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL) in the tropical western North Atlantic, in order to assess the respective roles of inorganic sulfate, organic species, long-range transported mineral dust and sea-salt particles. Measurements were carried out in June-July 2013, on the east coast of Barbados, and included CCN number concentrations, particle number size distributions and offline analysis of sampled particulate matter (PM) and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX). During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2-0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulfate species and organic compounds.

  15. Properties of cloud condensation nuclei (CCN in the trade wind marine boundary layer of the Eastern Caribbean Sea

    Directory of Open Access Journals (Sweden)

    T. B. Kristensen

    2015-11-01

    Full Text Available Cloud optical properties in the trade winds over the Eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL in the Eastern Caribbean, in order to assess the respective roles of organic species, long-range transported mineral dust, and sea salt particles. Measurements were carried out in June–July 2013, on the East Coast of Barbados and included CCN number concentrations, particle number size distributions, as well as off-line analysis of sampled particulate matter (PM and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM in combination with energy-dispersive X-ray spectroscopy (EDX. During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2–0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt, and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulphate species and organic compounds.

  16. Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings

    Directory of Open Access Journals (Sweden)

    H. Pietersen

    2014-07-01

    Full Text Available We study the disturbances of CBL dynamics due to large-scale atmospheric contributions for a representative day observed during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST campaign. We first reproduce the observed boundary-layer dynamics by combining the Dutch Atmospheric Large-Eddy Simulation (DALES model with a mixed-layer theory based model. We find that by only taking surface and entrainment fluxes into account, the boundary-layer height is overestimated by 70%. If we constrain our numerical experiments with the BLLAST comprehensive data set, we are able to quantify the contributions of advection of heat and moisture, and subsidence. We find that subsidence has a clear diurnal pattern. Supported by the presence of a nearby mountain range, this pattern suggests that not only synoptic scales exert their influence on the boundary layer, but also mesoscale circulations. Finally, we study whether the vertical and temporal evolution of turbulent variables are influenced by these large-scale forcings. Our model results show good correspondence of the vertical structure of turbulent variables with observations. Our findings further indicate that when large-scale advection and subsidence are applied, the values for turbulent kinetic are lower than without these large-scale forcings. We conclude that the prototypical CBL can still be used as a valid representation of the boundary-layer dynamics near regions characterized by complex topography and small-scale surface heterogeneity, provided that surface- and large-scale forcings are well characterized.

  17. Airship measurements of aerosol size distributions, cloud droplet spectra, and trace gas concentrations in the marine boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Frick, G.M.; Hoppel, W.A. (Naval Research Lab., Washington, DC (United States))

    1993-11-01

    The use of an airship as a platform to conduct atmospheric chemistry, aerosol, and cloud microphysical research is described, and results from demonstration flights made off the Oregon coast are presented. The slow speed of the airship makes it an ideal platform to do high-spatial resolution profiling both vertically and horizontally, and to measure large aerosol and cloud droplet distributions without the difficulties caused by high-speed aircraft sampling. A unique set of data obtained during the demonstration flights show the effect that processing marine boundary layer aerosol through stratus clouds has on the aerosol size distribution. Evidence of new particle formation (nucleation of particles) was also observed on about half the days on which flights were made. 11 refs., 9 figs., 1 tab.

  18. Optical properties of mixed phase boundary layer clouds observed from a tethered balloon platform in the Arctic

    International Nuclear Information System (INIS)

    A tethered balloon system was used to collect data on radiometric and cloud microphysical properties for mixed phase boundary layer clouds, consisting of ice crystals and liquid water droplets during a May-June 2008 experimental campaign in Ny-Alesund, Norway, located high in the Arctic at 78.9oN, 11.9oE. The balloon instrumentation was controlled and powered from the ground making it possible to fly for long durations and to profile clouds vertically in a systematic manner. We use a radiative transfer model to analyze the radiometric measurements and estimate the optical properties of mixed-phase clouds. The results demonstrate the ability of instruments deployed on a tethered balloon to provide information about optical properties of mixed-phase clouds in the Arctic. Our radiative transfer simulations show that cloud layering has little impact on the total downward irradiance measured at the ground as long as the total optical depth remains unchanged. In contrast, the mean intensity measured by an instrument deployed on a balloon depends on the vertical cloud structure and is thus sensitive to the altitude of the balloon. We use the total downward irradiance measured by a ground-based radiometer to estimate the total optical depth and the mean intensity measured at the balloon to estimate the vertical structure of the cloud optical depth.

  19. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  20. Experimental and theoretical study of the atmospheric boundary layer over the paris area

    International Nuclear Information System (INIS)

    This thesis studied the urban boundary layer dynamic behaviour over the Paris area by comparing urban (Paris) and suburban (Palaiseau) dynamic data such as lidars, sodars, sonic anemometers. All the data were obtained during the ECLAP experiment, specifically performed to characterize the differences between a city and its near environment. (author)

  1. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B

    Directory of Open Access Journals (Sweden)

    G. C. Roberts

    2010-02-01

    Full Text Available Measurements of cloud condensation nuclei (CCN, aerosol size distributions, and submicron aerosol composition were made as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B campaign during spring 2006. Measurements were conducted from an aircraft platform over the Northeastern Pacific and Western North America with a focus on how the transport and evolution of Asian pollution across the Pacific Ocean affected CCN properties. A broad range of air masses were sampled and here we focus on three distinct air mass types defined geographically: the Pacific free troposphere (FT, the marine boundary layer (MBL, and the polluted continental boundary layer in the California Central Valley (CCV. These observations add to the few observations of CCN in the FT. CCN concentrations showed a large range of concentrations between air masses, however CCN activity was similar for the MBL and CCV (κ~0.2–0.25. FT air masses showed evidence of long-range transport from Asia and CCN activity was consistently higher than for the boundary layer air masses. Bulk chemical measurements predicted CCN activity reasonably well for the CCV and FT air masses. Decreasing trends in κ with organic mass fraction were observed for the combination of the FT and CCV air masses and can be explained by the measured soluble inorganic chemical components. Changes in hygroscopicity associated with differences in the non-refractory organic composition were too small to be distinguished from the simultaneous changes in inorganic ion composition in the FT and MBL, although measurements for the large organic fractions (0.6–0.8 found in the CCV showed values of the organic fraction hygroscopicity consistent with other polluted regions (κorg~0.1–0.2. A comparison of CCN-derived κ (for particles at the critical diameter to TDMA-derived κ (for particles at 100 nm diameter showed similar trends, however the CCN-derived κ values were significantly

  2. Observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    Directory of Open Access Journals (Sweden)

    M. Schäfer

    2015-01-01

    Full Text Available Based on airborne spectral imaging observations three-dimensional (3-D radiative effects between Arctic boundary layer clouds and ice floes have been identified and quantified. A method is presented to discriminate sea ice and open water in case of clouds from imaging radiance measurements. This separation simultaneously reveals that in case of clouds the transition of radiance between open water and sea ice is not instantaneously but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of sea ice – open water boundaries, while the nadir radiance above dark surfaces is enhanced compared to situations with clouds located above horizontal homogeneous surfaces. With help of the observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge. This affected distance Δ L was found to depend on both, cloud and sea ice properties. For a ground overlaying cloud in 0–200 m altitude, increasing the cloud optical thickness from τ = 1 to τ = 10 decreases Δ L from 600 to 250 m, while increasing cloud base altitude or cloud geometrical thickness can increase Δ L; Δ L(τ = 1/10 = 2200 m/1250 m for 500–1000 m cloud altitude. To quantify the effect for different shapes and sizes of the ice floes, various albedo fields (infinite straight ice edge, circles, squares, realistic ice floe field were modelled. Simulations show that Δ L increases by the radius of the ice floe and for sizes larger than 6 km (500–1000 m cloud altitude asymptotically reaches maximum values, which corresponds to an infinite straight ice edge. Furthermore, the impact of these 3-D-radiative effects on retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30% in retrievals of cloud optical thickness and effective radius reff, respectively. With help of

  3. Arctic low-level boundary layer clouds: in-situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the cloud top layer

    Directory of Open Access Journals (Sweden)

    M. Klingebiel

    2014-06-01

    Full Text Available Aircraft borne optical in-situ size distribution measurements were performed within Arctic boundary layer clouds, with a special emphasis on the cloud top layer, during the VERtical Distribution of Ice in Arctic Clouds (VERDI campaign. The observations were carried out within a joint research activity of seven German institutes to investigate Arctic boundary layer-, mixed-phase clouds in April and May 2012. An instrumented Basler BT-67 research aircraft operated out of Inuvik over the Mackenzie River delta and the Beaufort Sea in the Northwest Territories of Canada. Besides the cloud particle and hydrometeor size spectrometers the aircraft was equipped with instrumentation for aerosol, radiation and other parameters. Inside the cloud, droplet size distributions with monomodal shapes were observed for predominantly liquid-phase Arctic stratocumulus. With increasing altitude inside the cloud the droplet mean diameters grew from 10 μm to 20 μm. In the upper transition zone (i.e. adjacent to the cloud-free air aloft changes from monomodal to bimodal droplet size distributions were observed. It is shown that droplets of both modes co-exist in the same (small air volume and the bimodal shape of the measured size distributions cannot be explained as an observational artifact caused by accumulating two droplet populations from different air volumes. The formation of a second size mode can be explained by (a entrainment and activation/condensation of fresh aerosol particles, or (b by differential evaporation processes occurring with cloud droplets engulfed in different eddies. Activation of entrained particles seemed a viable possibility as a layer of dry Arctic enhanced background aerosol was detected directly above the stratus cloud might form a second mode of small cloud droplets. However, theoretical considerations and a model simulation revealed that, instead, turbulent mixing and evaporation of larger droplets most likely are the main reasons for

  4. Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study

    Science.gov (United States)

    Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando

    2013-02-01

    Thermal stability changes the properties of the turbulent atmospheric boundary layer, and in turn affects the behaviour of wind-turbine wakes. To better understand the effects of thermal stability on the wind-turbine wake structure, wind-tunnel experiments were carried out with a simulated convective boundary layer (CBL) and a neutral boundary layer. The CBL was generated by cooling the airflow to 12-15 °C and heating up the test section floor to 73-75 °C. The freestream wind speed was set at about 2.5 m s-1, resulting in a bulk Richardson number of -0.13. The wake of a horizontal-axis 3-blade wind-turbine model, whose height was within the lowest one third of the boundary layer, was studied using stereoscopic particle image velocimetry (S-PIV) and triple-wire (x-wire/cold-wire) anemometry. Data acquired with the S-PIV were analyzed to characterize the highly three-dimensional turbulent flow in the near wake (0.2-3.2 rotor diameters) as well as to visualize the shedding of tip vortices. Profiles of the mean flow, turbulence intensity, and turbulent momentum and heat fluxes were measured with the triple-wire anemometer at downwind locations from 2-20 rotor diameters in the centre plane of the wake. In comparison with the wake of the same wind turbine in a neutral boundary layer, a smaller velocity deficit (about 15 % at the wake centre) is observed in the CBL, where an enhanced radial momentum transport leads to a more rapid momentum recovery, particularly in the lower part of the wake. The velocity deficit at the wake centre decays following a power law regardless of the thermal stability. While the peak turbulence intensity (and the maximum added turbulence) occurs at the top-tip height at a downwind distance of about three rotor diameters in both cases, the magnitude is about 20 % higher in the CBL than in the neutral boundary layer. Correspondingly, the turbulent heat flux is also enhanced by approximately 25 % in the lower part of the wake, compared to that

  5. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  6. Analytic Study of Magnetohydrodynamic Flow and Boundary Layer Control Over a Wedge

    Institute of Scientific and Technical Information of China (English)

    M. Chandrasekar; S. Baskaran

    2008-01-01

    A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes unifying the theoretical requirements of technical, environmental and biological sciences is employed to study the effects of uniform suction and injection on MHD flow adjacent to an isothermal wedge with pressure gradient in the presence of a transverse magnetic field. The velocity distribution inside the boundary layer has been considered as a simple polynomial function and the variational principle is formulated. The Euler-Lagrange equation is reduced to a simple polynomial equation in terms of momentum boundary layer thickness. The velocity profiles, displacement thickness and the coefficient of skin friction are calculated for various values of wedge angle parameter m, magnetic parameter ε and suction/injection parameter H. The present results are compared with known available results and the comparison is found to be satisfactory. The present study establishes high accuracy of results obtained by this variational technique.

  7. The role of subsidence in a weakly unstable marine boundary layer: a case study

    DEFF Research Database (Denmark)

    Mazzitelli, I. M.; Cassol, M.; Miglietta, M.M.; Rizza, U.; Sempreviva, Anna Maria; Lanotte, A.S.

    2014-01-01

    constant, and does not exhibit the diurnal cycle characteristic of boundary layers over land. A case study, during summer, showing an anomalous development of the mixed layer under unstable and nearly neutral atmospheric conditions, is selected in the campaign. Subsidence is identified as the main physical...... within it. By analyzing wind and scalar spectra, the role of subsidence is further investigated and a more complete interpretation of the experimental results emerges....

  8. Technique for studying ablation-products transport in supersonic boundary layers by using PLIF of naphthalene

    Science.gov (United States)

    Combs, C. S.; Lochman, B. J.; Clemens, N. T.

    2016-05-01

    A technique is developed that uses planar laser-induced fluorescence (PLIF) of sublimated gas-phase naphthalene to visualize the transport of ablation products in a high-speed turbulent boundary layer. The naphthalene is molded into a rectangular insert that is mounted flush with the floor of a Mach 5 wind tunnel, where the test gas is air. The naphthalene fluorescence is excited with 266 nm laser light, and broadband detection of the emitted light is used. Using spectroscopic data from a previous study and a first-order approximation for the mean temperature profile across the boundary layer, naphthalene PLIF images collected in a Mach 5 turbulent boundary layer are converted into two-dimensional fields of naphthalene mole fraction with an instantaneous uncertainty of ±20 %. These quantitative naphthalene PLIF images in the Mach 5 boundary layer reveal large-scale naphthalene vapor structures that are regularly ejected out to wall distances of approximately y/ δ = 0.6 for a field of view that spans 3 δ-5 δ downstream of the trailing edge of the naphthalene insert. The magnitude of the calculated naphthalene mole fraction in these structures at y/ δ = 0.2 ranges from approximately 1 to 6 % of the saturation mole fraction at the wind tunnel recovery temperature and static pressure. Mean mole fraction profiles taken at different streamwise locations collapse into one "universal" mole fraction profile when properly normalized and are in agreement with previous scalar dispersion measurements. The results indicate that PLIF of sublimating naphthalene can be an effective tool for studying scalar transport in supersonic and hypersonic flows.

  9. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    Science.gov (United States)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-08-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  10. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B

    Directory of Open Access Journals (Sweden)

    G. C. Roberts

    2010-07-01

    Full Text Available Measurements of cloud condensation nuclei (CCN, aerosol size distributions, and submicron aerosol composition were made as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B campaign during spring 2006. Measurements were conducted from an aircraft platform over the northeastern Pacific and western North America with a focus on how the transport and evolution of Asian pollution across the Pacific Ocean affected CCN properties. A broad range of air masses were sampled and here we focus on three distinct air mass types defined geographically: the Pacific free troposphere (FT, the marine boundary layer (MBL, and the polluted continental boundary layer in the California Central Valley (CCV. These observations add to the few observations of CCN in the FT. CCN concentrations showed a large range of concentrations between air masses, however CCN activity was similar for the MBL and CCV (κ~0.2–0.25. FT air masses showed evidence of long-range transport from Asia and CCN activity was consistently higher than for the boundary layer air masses. Bulk chemical measurements predicted CCN activity reasonably well for the CCV and FT air masses. Decreasing trends in κ with organic mass fraction were observed for the combination of the FT and CCV air masses and can be explained by the measured soluble inorganic chemical components. Changes in hygroscopicity associated with differences in the non-refractory organic composition were too small to be distinguished from the simultaneous changes in inorganic ion composition in the FT and MBL, although measurements for the large organic fractions (0.6–0.8 found in the CCV showed values of the organic fraction hygroscopicity consistent with other polluted regions (κorg~0.1–0.2. A comparison of CCN-derived κ (for particles at the critical diameter to H-TDMA-derived κ (for particles at 100 nm diameter showed similar trends, however the CCN-derived κ values were significantly

  11. Transport of ozone by turbulence and clouds in an urban boundary layer

    International Nuclear Information System (INIS)

    The turbulent fluxes of ozone and latent and sensible heat are computed from fast-response measurements made abroard a National Oceanic and Atmospheric Administration aircraft over downtown Philadelphia and the surrounding suburbs during the afternoon and evening of August 22, 1979. In the afternoon the ozone flux at a height of 200 m is downward throughout the region with the largest magnitude (-2(ppb)m s-1) occurring over the urban center. During the afternoon at both 200 m and a few hundred meters below cloud base, the horizontal profile of mean ozone concentration peaks at 130 ppb over the urban core with values of the order of 90 ppb to the southeast and northwest. The urban ozone condentration at 200 m decreases to 35 ppb by early evening. The normalized variances and spectra of vertical velocity, temperature, and ozone show little change with height or location in the urban center and northwest suburbs during the afternoon in good agreement with normalized statistics obtained over rural terrain (Kaimal et al., 1976); Lenshow et al., 1980). Data from a cloud penetration by the aircraft is used to estimate a mean updraft velocity of 4 m s-1 and an updraft area of approximately 1 km3. The flux of ozone due to the mean motion in the updraft is 2 orders of magnitude larger than the turbulent eddy fluxes within the cloud

  12. Energetic Electrons Associated with Magnetic Reconnection in the Magnetic Cloud Boundary Layer

    International Nuclear Information System (INIS)

    Here is reported in situ observation of energetic electrons (∼100-500 keV) associated with magnetic reconnection in the solar wind by the ACE and Wind spacecraft. The properties of this magnetic cloud driving reconnection and the associated energetic electron acceleration problem are discussed. Further analyses indicate that the electric field acceleration and Fermi-type mechanism are two fundamental elements in the electron acceleration processes and the trapping effect of the specific magnetic field configuration maintains the acceleration status that increases the totally gained energy.

  13. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: Analysis of Results from the ARM Mobile Facility Deployment to the Azores (2009/2010)

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert [University of Washington, Dept of Atmos Sci

    2013-05-31

    The project focuses upon dataset analysis and synthesis of datasets from the AMF deployment entitled “Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP‐MBL)” at Graciosa Island in the Azores. Wood is serving a PI for this AMF deployment.

  14. Boundary-Layer and Air Quality Study at “Station Nord” in Greenland

    DEFF Research Database (Denmark)

    Batchvarova, Ekaterina; Gryning, Sven-Erik; Skov, Henrik;

    2014-01-01

    Knowledge on the forcing mechanisms (meteorological and chemical) that come into play in the Arctic environment is highly uncertain. We analyse data from measurements and mesoscale meteorological modelling for periods in summer 2011 and winter 2011/2012 to elucidate the boundary-layer features at...... conditions. Thus, in sum-mer the deviations of modeled from measured values of temperature and humidity near the surface are larger compared to winter. We found that the underestima-tion of temperature near the ground is larger at clear sky compared to cloudy conditions; and the underestimation reached up to...... height 1-1,5 km at clear sky and up to the first 100 m for the cloudy days. The measured wind speed profiles showed high variability, while the modeled were smoothed. During summer the modeled wind speed was close to or larger than the measured without clear indi-cation for the role of clouds. In winter...

  15. Boundary-layer and air quality study at “Station Nord” in Greenland

    DEFF Research Database (Denmark)

    Batchvarova, Ekaterina; Gryning, Sven-Erik; Skov, Henrik;

    2013-01-01

    Knowledge on the forcing mechanisms (meteorological and chemical) that come into play in the Arctic environment is highly uncertain. We analyse data from measurements and mesoscale meteorological modelling for periods in summer 2011 and winter 2011/2012 to elucidate the boundary-layer features at...... conditions. Thus, in sum-mer the deviations of modeled from measured values of temperature and humidity near the surface are larger compared to winter. We found that the underestima-tion of temperature near the ground is larger at clear sky compared to cloudy conditions; and the underestimation reached up to...... height 1-1,5 km at clear sky and up to the first 100 m for the cloudy days. The measured wind speed profiles showed high variability, while the modeled were smoothed. During summer the modeled wind speed was close to or larger than the measured without clear indi-cation for the role of clouds. In winter...

  16. A model study of mixing and entrainment in the horizontally evolving atmospheric convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)

    1997-10-01

    We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)

  17. The atmospheric boundary layer evening transitions: an observational and numerical study from two different datasets

    Science.gov (United States)

    Sastre, Mariano; Yagüe, Carlos; Román-Cascón, Carlos; Maqueda, Gregorio; Ander Arrillaga, Jon

    2015-04-01

    In this work we study the temporal evolution of the Atmospheric Boundary Layer (ABL) along the transition period from a diurnal typical convection to a nocturnal more frequently stable situation. This period is known as late afternoon or evening transition, depending on the specific definitions employed by different authors [1]. In order to obtain a proper characterization, we try to learn whether or not the behaviour of these transitional boundary layers is strongly dependent on local conditions. To do so, two sets of evening transitions are studied from data collected at two different experimental sites. These locations correspond to research facilities named CIBA (Spain) and CRA (France), which are the places where atmospheric field campaigns have been conducted during the last years, such as CIBA2008 and BLLAST 2011, respectively. In order to get comparable situations, we focus especially on transitions with weak synoptic forcing, and consider daily astronomical sunset as a reference time. A statistical analysis on main parameters related to the transition is carried out for both locations, and the average behaviour is shown as well as extreme values according to the timing. A similar pattern in the qualitative evolution of many variables is found. Nevertheless, several relevant differences in the progress of key variables are obtained too. Moisture, both from the soil and the air, is thought to have great relevance in explaining many of the differences found between the two sites. Some case studies are explored, focusing on the role played by the atmospheric turbulence. Complementary, numerical experiments are also performed using the Weather Research and Forecast (WRF) mesoscale model, in order to test the role of humidity, by artificially varying it in some of the simulations. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10931-10960.

  18. Study of cross-spectra of velocity components and temperature series in a nocturnal boundary layer

    Science.gov (United States)

    Maqueda, Gregorio; Sastre, Mariano; Viñas, Carmen; Viana, Samuel; Yagüe, Carlos

    2010-05-01

    The main characteristic of the Planetary Boundary Layer is the turbulent flow that can be understood as the motions of many superimposed eddies with different scales, which are very irregular and produce mixing among the atmospheric properties. Spectral analysis is a widely used statistical tool to know the size of eddies into the flow. The Turbulent Kinetic Energy is split in fractions for each scale of eddy by mean the power spectrum of the wind velocity components. Also, the fluctuation of the other variables as temperature, humidity, gases concentrations or material particles presents in the atmosphere can be divided according to the importance of different scales in a similar way than the wind. A Cross-spectrum between two time series is used in meteorology to know their correlation in frequency space. Specially, coespectrum, or real part of cross-spectrum, amplitud and coherence give us many information about the low or high correlation between two variables in a particular frecuency or scale (Stull, 1988). In this work we have investigated cross-spectra of velocity components and temperature measured along the summer 2009 at the CIBA, Research Centre for the Lower Atmosphere, located in Valladolid province (Spain), which is on a quite flat terrain (Cuxart et al., 2000; Viana et al., 2009). In these experimental dataset, among other instrumentation, two sonic anemometers (20 Hz, sampling rate) at 1.5 m and 10 m height are available. Cross-spectra between variables of the two levels, specially, wind vertical component and sonic temperature, under stable stratification are studied in order to improve the knowledge of the proprieties of the momentum and heat fluxes near the ground in the PBL. Nevertheless, power spectral of horizontal components of the wind, at both levels, have been also analysed. The spectra and cross-spectra were performed by mean the Blackman-Tukey method, widely utilised in the time series studies (Blackman & Tukey, 1958) and, where it is

  19. Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific near-coastal marine stratocumulus during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2011-09-01

    Full Text Available Aircraft observations made off the coast of northern Chile in the Southeastern Pacific (20° S, 72° W; named Point Alpha from 16 October to 13 November 2008 during the VAMOS Ocean-Cloud- Atmosphere-Land Study-Regional Experiment (VOCALS-REx, combined with meteorological reanalysis, satellite measurements, and radiosonde data, are used to investigate the boundary layer (BL and aerosol-cloud-drizzle variations in this region. On days without predominately synoptic and meso-scale influences, the BL at Point Alpha was typical of a non-drizzling stratocumulus-topped BL. Entrainment rates calculated from the near cloud-top fluxes and turbulence in the BL at Point Alpha appeared to be weaker than those in the BL over the open ocean west of Point Alpha and the BL near the coast of the northeast Pacific. The cloud liquid water path (LWP varied between 15 g m−2 and 160 g m−2. The BL had a depth of 1140 ± 120 m, was generally well-mixed and capped by a sharp inversion without predominately synoptic and meso-scale influences. The wind direction generally switched from southerly within the BL to northerly above the inversion. On days when a synoptic system and related mesoscale costal circulations affected conditions at Point Alpha (29 October–4 November, a moist layer above the inversion moved over Point Alpha, and the total-water mixing ratio above the inversion was larger than that within the BL. The accumulation mode aerosol varied from 250 to 700 cm−3 within the BL, and CCN at 0.2 % supersaturation within the BL ranged between 150 and 550 cm−3. The main aerosol source at Point Alpha was horizontal advection within the BL from south. The average cloud droplet number concentration ranged between 80 and 400 cm−3. While the mean LWP retrieved from GOES was in good agreement with the in situ measurements, the GOES-derived cloud droplet effective radius tended to be larger than that from the

  20. A Numerical Study of Sea-Spray Aerosol Motion in a Coastal Thermal Internal Boundary Layer

    Science.gov (United States)

    Liang, Tinghao; Yu, Xiping

    2016-08-01

    A three-dimensional large-eddy simulation model is applied to the study of sea-spray aerosol transport, dispersion and settling in the coastal thermal internal boundary layer (IBL) formed by cool airflow from the open sea to the warm land. An idealized situation with constant inflow from the ocean and constant heat flux over the coastal land is considered. The numerical results confirm that the thickness of the coastal thermal IBL increases with the distance from the coastline until the outer edge of the IBL penetrates into the capping inversion layer. The thickness increases also with time until a fully-developed thermal boundary layer is formed. In addition, the thickness of the coastal thermal IBL increases more rapidly when the heat flux over the land is greater. Existence of large-scale eddies within the thermal IBL is identified and the turbulence intensity within the thermal IBL is also found to be significantly higher than that above. It is also indicated that the vertical position of the maximum concentration does not occur at the surface but increases as sea-spray aerosols are transported inland. The vertical position of the maximum flux of sea-spray aerosols within the coastal thermal IBL is shown to coincide with that of the maximum vertical velocity fluctuations when the coastal thermal IBL is fully developed with increased distance in the airflow direction.

  1. Sensitivity analysis of the boundary layer height on idealised cities (model study)

    Energy Technology Data Exchange (ETDEWEB)

    Schayes, G. [Univ. of Louvain, Louvain-la-Neuve (Belgium); Grossi, P. [Joint Research Center, Ispra (Italy)

    1997-10-01

    The behaviour of the typical diurnal variation of the atmospheric boundary layer (ABL) over cities is a complex function of very numerous environmental parameters. Two types of geographical situations have been retained: (i) inland city only surrounded by uniform fields, (ii) coastal city, thus influenced by the sea/land breeze effect. We have used the three-dimensional Thermal Vorticity-mode Mesoscale (TVM) model developed jointly by the UCL (Belgium) and JRC (Italy). In this study it has been used in 2-D mode allowing to perform many sensitivity runs. This implies that a kind of infinitely wide city has been effectively stimulated, but this does not affect the conclusions for the ABL height. The sensibility study has been performed for two turbulence closure schemes, for various assumptions for the ABL height definition in the model, and for a selected parameter, the soil water content. (LN)

  2. Velocity Boundary Layer Analysis of a Flat Plate Heat Exchanger in Laminar Flow: A Case Study

    Directory of Open Access Journals (Sweden)

    M. Mirdrikvand

    2012-01-01

    Full Text Available In this article, a behavioral analysis of velocity boundary layer in a flat plate heat exchanger in laminar flow condition through CFD simulation using FLUENT software is done. The main objective of this study is to determine the velocity vectors between the flat plates of the heat exchanger. In addition, wake occurrence, differences of velocity at different surfaces between plates, angles of velocity vectors and the effect of wake phenomenon on the shear stresses exerted on the plates are discussed in detail. The study graphically illustrates results based on fluid’s behavior by a 3D and 2D simulation with air and water as cold and hot streams that affect plate’s situation and its hydro dynamical operations. Consequently, some important design features regarding wake point occurrence and pressure loss are investigated. In addition, eddy current and reverse flows in the wake area and the angles of the velocity vectors are described.

  3. Study of the overturning length scales at the Spanish planetary boundary layer

    Science.gov (United States)

    López, Pilar; Cano, José L.

    2016-03-01

    The focus of this paper is to analyse the behaviour of the maximum Thorpe displacement (dT)max and the Thorpe scale LT at the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 and 950 m for the different field campaigns. The Thorpe scale LT ranges between 0.2 and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). We analyse the relationship between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms.

  4. An Experimental Study of the Statistical Scaling of Turbulent Surface Pressure in the Atmospheric Boundary Layer

    Science.gov (United States)

    Lyons, G. W.; Murray, N. E.

    2015-12-01

    Turbulence in the atmospheric boundary layer (ABL) produces fluctuations in the static pressure. The instantaneous pressure at a point depends on an integral over the entire flow; therefore, the effects from turbulence far aloft may be felt at the earth's surface. The statistics of fluctuating pressure at the surface have been studied extensively in the context of wall-bounded engineering-type flows. At best, these neutral flows are a special case of the thermally-stratified ABL, but relatively few experimental studies have considered pressure at the ground under various stability conditions. Here the scaling of pressure statistics at the surface, particularly the spectral density, is reported over a range of convective and stable conditions for both inner and outer turbulence parameters. Measurements of turbulent surface pressure were made using low-frequency microphones buried flush to the ground in a field near Laramie, Wyoming. Simultaneous measurements from three near-surface sonic anemometers and a 50-meter wind tower give estimates of the mean surface-layer parameters. The normalization of the pressure spectrum with the inner scales collapses the spectra along the high-frequency viscous power-law band. The wall shear stress, Obukhov length, L, and horizontal integral scale, λ, are identified as outer scaling parameters for the surface pressure spectrum from an integral solution employing a Monin-Obukhov-similar profile and a simple model of inhomogeneous surface-layer turbulence. Normalization with the outer scales collapses the spectra at low frequencies. Spectral scaling also reveals trends with λ/L in the low-frequency region for both convective and stable boundary layers.

  5. A Modeling Study of Boundary Layer Wind Flow over Tehran Region during a High Pollution Episode

    Directory of Open Access Journals (Sweden)

    H. Malakooti

    2014-01-01

    Full Text Available The influence of a mega-city on the atmospheric boundary layer wind field was examined in the complex-terrain, semi-arid Tehran region using the Pennsylvania State University/National Center for Atmospheric Research fifth-generation Mesoscale Model (MM5 during a high pollution period. In addition, model sensitivity studies were conducted to evaluate the performance of the urban canopy and urban soil model "SM2-U (3D" parameterization on the wind field. The topographic flows and urban effects were found to play important roles in modulating the wind field, and the urbanized areas exerted important local effects on the boundary layer meteorology. An emission inventory of heat generation was developed and updated for 2005 in this work. By using a detailed methodology, we calculated spatial and temporal distributions of the anthropogenic heat flux (Qf for Tehran during 2005. Wintertime Qf is found larger than summertime Qf, which reflects the importance of heating emissions from buildings and traffic during cold and warm periods respectively. Different urban parameterizations were used as a tool to investigate the modifications induced by the presence of an urban area in the area of interest. It is found that, for local meteorological simulations, the drag-force approach (DA coupled with an urban soil model (SM2-U is preferable to the roughness approach (RA coupled with a slab soil model. The comparisons indicated that the most important features of the wind field, in urban areas are well reproduced by the DA-SM2-U configuration with the anthropogenic heat flux being taken into account. This modeling option showed that the suburban part of the city is dominated by topographic flows whereas the center and south of Tehran are more affected by urban heat island (UHI forcing especially during the night in studied episodes.

  6. Large Eddy Simulation study of fully developed thermal wind-turbine array boundary layers

    Science.gov (United States)

    Meneveau, Charles; Calaf, Marc; Parlange, Marc B.

    2010-05-01

    It is well known that when wind turbines are deployed in large arrays, their efficiency decreases due to complex interactions among themselves and with the atmospheric boundary layer (ABL). For wind farms whose length exceeds the height of the ABL by over an order of magnitude, a "fully developed" flow regime can be established. In this asymptotic regime, changes in the stream-wise direction can be neglected and the relevant exchanges occur in the vertical direction. Such a fully developed wind-turbine array boundary layer (WTABL) has recently been studied using Large Eddy Simulations (LES) under neutral stability conditions (Calaf et al. Physics of Fluids 22, 2010). Related wind-tunnel experiments on the WTABL are reported in Cal et al., J. Renewable and Sustainable Energy 2, 2010). The simulations showed the existence of two log-laws, one above and one below the wind turbine region. These results confirm basic assumptions made in prior work by Frandsen (J. Wind Eng. Ind. Aerodyn. 39, 1992) and Frandsen et al. (Wind Energy 9, 2006), and have enabled the development of more accurate parameterizations of the effective roughness scale for a wind farm. Now, a suite of Large Eddy Simulations, in which wind turbines are also modeled using the classical "drag disk" concept are performed but for non-neutral conditions. The aim is to study the effects of different thermal ABL stratifications, and thus to better understand the efficiency and characteristics of large wind farms and the associated land-atmosphere interactions for realistic atmospheric flow regimes. Such studies help to unravel the physics involved in extensive aggregations of wind turbines, allowing us to design better wind farm arrangements. By considering various turbine loading factors, surface roughness values and different atmospheric stratifications, it is possible to analyze the influence of these on the induced surface roughness, and the sensible heat roughness length. These last two can be used to

  7. Physical modeling of the atmospheric boundary layer for wind energy and wind engineering studies

    Science.gov (United States)

    Taylor-Power, Gregory; Turner, John; Wosnik, Martin

    2015-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W6.0m, H2.7m, L=72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL): the stable, unstable, and neutral ABL. The neutral ABL is characterized by a zero potential temperature gradient, which is readily achieved in the FPF by operating when air and floor temperatures are close to equal. The stable and unstable ABLs have positive and negative vertical temperature gradients, respectively, which are more difficult to simulate without direct control of air or test section floor temperature. The test section floor is a 10 inch thick concrete cement slab and has significant thermal mass. When combined with the diurnal temperature variation of the ambient air, it is possible to achieve vertical temperature gradients in the test section, and produce weakly stable or weakly unstable boundary layer. Achievable Richardson numbers and Obukhov lengths are estimated. The different boundary layer profiles were measured, and compared to theoretical atmospheric models. Supported by UNH Hamel Center for Undergraduate Research SURF.

  8. A Study On Atmospheric Boundary-Layer Characteristics At Anand, India Using Lsp Experimental Data Sets

    Science.gov (United States)

    Satyanarayana, A. N. V.; Lykossov, V. N.; Mohanty, U. C.

    An attempt is made to study the planetary boundary layer (PBL) characteristics during the winter period at Anand (22.4°N, 72.6°E), a semi-arid region, which is located in the western part of India. A one-dimensional turbulent kinetic energy (TKE) closure model is used for the study. The structure of the PBL,which consists of profiles of zonal and meridional components of wind,potential temperature and specific humidity, is simulated. A one-dimensional soil heat and moisture transport parameterization scheme is incorporated for the accurate representation of the energy exchange processes at the soil-atmosphere interface. The diurnal variation of fluxes of sensible heat, latent heat, shortwave radiation, net radiation and soil flux, soil temperature at different depths, Richardson number and TKE at the height of the constant flux layer is studied. The model predictions are compared with the available observations obtained from a special Land Surface Processes (LSP) experiment.

  9. Experimental Study of the EM Transmission Properties of the Marine Atmospheric Boundary Layer

    Science.gov (United States)

    Hristov, T.; Friehe, C.; Anderson, K.

    2003-04-01

    The propagation of electro-magnetic signals over the ocean is primarily affected by atmospheric refraction and scattering from the rough ocean surface. Wave-guides (also known as refractive ducts) occurring in the first tens of meters above the sea surface have been modeled extensively, as they influence communications. However, discrepancies between models and measurements have been detected. Here we study experimentally the structure of the atmospheric refractive index and the ocean surface statistics, pertinent to EM signals scattering. The structure and the dynamics the marine atmospheric boundary layer is profoundly affected by the ocean surface waves, which deform the mean wind flow streamlines. In the presence of gradients of the atmospheric humidity and temperature, the deformation of the streamlines displaces the sheared profiles of these quantities and leads to wave-induced fluctuations of the atmospheric refractive index. As a result, radio and optical signals propagating over the ocean encounter a semi-periodic refractive structure, which along with the turbulence can degrade signal's energy. The wave-induced fluctuations of the refractive index are unique to the oceanic environment. Their structure function does not follow the power 2/3 scaling law, valid for turbulent fluctuations, and thus their influence should be studied separately. We analyze data of atmospheric turbulence, humidity, temperature, and sea surface temperature and waves from the Rough Evaporation Duct experiment, conducted in part from the instrument platform FLIP in the open ocean North of Oahu, Hawaii.

  10. AFM study of hydrodynamics in boundary layers around micro- and nanofibers

    CERN Document Server

    de Baubigny, Julien Dupré; Mortagne, Caroline; Devailly, Clémence; Acharige, Sébastien Kosgodagan; Laurent, Justine; Steinberger, Audrey; Salvetat, Jean-Paul; Aimé, Jean-Pierre; Ondarçuhu, Thierry

    2016-01-01

    The description of hydrodynamic interactions between a particle and the surrounding liquid, down to the nanometer scale, is of primary importance since confined liquids are ubiquitous in many natural and technological situations. In this paper, we combine three non-conventional atomic force microscopes to study hydrodynamics around micro- and nano-cylinders. These complementary methods allow the independent measurement of the added mass and friction terms over a large range of probe sizes, fluid viscosities and solicitation conditions. A theoretical model based on an analytical description of the velocity field around the probe shows that the friction force depends on a unique parameter, the ratio of the probe radius to the thickness of the viscous boundary layer. We demonstrate that the whole range of experimental data can be gathered in a master curve which is well reproduced by the model. This validates the use of these AFM modes for a quantitative study of nano-hydrodynamics, and opens the way to the inve...

  11. Aerodynamic wake study: oscillating model wind turbine within a turbulent boundary layer

    Science.gov (United States)

    Feist, Christopher J.

    An experimental investigation on the aerodynamic wake behind a pitching and/or heaving model wind turbine was performed. The study was split into two quasi-coupled phases; the first phase characterized the motion of an offshore floating wind turbine subjected to linear wave forcing, the second phase replicated specific motion cases, which were driven by results from phase I, on a model wind turbine within a turbulent boundary layer. Wake measurements were made in an effort to quantify fluctuations in the flow associated with the motion of the turbine. Weak differences were observed in the mean, streamwise velocity and turbulent fluctuations between the static and oscillating turbine cases. These weak differences were a result of opposing trends in the velocity quantities based on turbine motion phases. The wake oscillations created by the turbine motion was characteristic of a 2D wave (with convection in the x plane and amplitude in the z plane) with a relatively small amplitude as compared to urms..

  12. Numerical study of the anode boundary layer in atmospheric pressure arc discharges

    Science.gov (United States)

    Semenov, I. L.; Krivtsun, I. V.; Reisgen, U.

    2016-03-01

    The anode boundary layer in atmospheric pressure arc discharges is studied numerically on the basis of the hydrodynamic (diffusion) equations for plasma components. The governing equations are formulated in a unified manner without the assumptions of thermal equilibrium, ionization equilibrium or quasi-neutrality. For comparison, a quasi-neutral model of the anode layer is also considered. The numerical computations are performed for an argon arc at typical values of the current density in anode layers (500-2000 A cm-2). The results of numerical modelling show that the common collisionless model of the sheath fails to describe the sheath region for the problem under consideration. For this reason, a detailed analysis of the anode sheath is performed using the results of unified modelling. In addition, the distributions of plasma parameters in the anode layer are analysed and the basic characteristics of the layer (anode voltage drop, sheath voltage drop, anode layer thickness, sheath thickness, heat flux to the anode) are calculated. Our results are found to be in good agreement with the existing theoretical predictions and experimental data. The dependence of the anode layer characteristics on the current density is also discussed.

  13. VARIATIONS OF SOLAR ELECTRON AND PROTON FLUX IN MAGNETIC CLOUD BOUNDARY LAYERS AND COMPARISONS WITH THOSE ACROSS THE SHOCKS AND IN THE RECONNECTION EXHAUSTS

    International Nuclear Information System (INIS)

    The magnetic cloud boundary layer (BL) is a dynamic region formed by the interaction of the magnetic cloud (MC) and the ambient solar wind. In the present study, we comparatively investigate the proton and electron mean flux variations in the BL, in the interplanetary reconnection exhaust (RE), and across the MC-driven shock by using the Wind data from 1995 to 2006. In general, the proton flux has higher increments at lower energy bands compared with the ambient solar wind. Inside the BL, the core electron flux increases quasi-isotropically and the increments decrease monotonously with energy from ∼30% (at 18 eV) to ∼10% (at 70 eV); the suprathermal electron flux usually increases in either parallel or antiparallel direction; the correlation coefficient of electron flux variations in parallel and antiparallel directions changes sharply from ∼0.8 below 70 eV to ∼0 above 70 eV. Similar results are also found for RE. However, different phenomena are found across the shock where the electron flux variations first increase and then decrease with a peak increment (>200%) near 100 eV. The correlation coefficient of electron flux variations in parallel and antiparallel directions is always around 0.8. The similar behavior of flux variations in BL and RE suggests that reconnection may commonly occur in BL. Our work also implies that the strong energy dependence and direction selectivity of electron flux variations, which were previously thought to have not enough relevance to magnetic reconnection, could be considered as an important signature of solar wind reconnection in the statistical point of view.

  14. Statistics of Absolute and Relative Dispersion in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study

    NARCIS (Netherlands)

    Dosio, A.; Vilà-Guerau de Arellano, J.

    2006-01-01

    The influence of the different scales of turbulent motion on plume dispersion in the atmospheric convective boundary layer (CBL) is studied by means of a large-eddy simulation (LES). In particular, the large-scale (meandering) and small-scale (relative diffusion) contributions are separated by analy

  15. An Observational Study of the Structure of the Nocturnal Boundary Layer

    DEFF Research Database (Denmark)

    Mahrt, Larry; Heald, R. C.; Lenschow, D. H.; Stankov, B. B.; Troen, Ib

    1980-01-01

    In an effort to describe the basic vertical structure of the nocturnal boundary layer, observations from four experiments are analyzed. During the night, the depth of significant cooling appears to increase with time while the depth of the turbulence and height of the low level wind maximum tend ...

  16. Numerical study of wingtip shed vorticity reduction by wing Boundary Layer Control

    Science.gov (United States)

    Posada, Jose Alejandro

    Wingtip vortex reductions have been obtained by Boundary Layer Control application to an AR=1.5 rectangular wing using a NACA 0012 airfoil. If wingtip shed vorticity could be reduced significantly, then so would induced drag resulting in improved cruise fuel economy. Power savings would be even more impressive at low flight speed or in climb. A two dimensional wing produces lift without wingtip vorticity. Its bound vorticity, Gamma, equals the contour integral of the boundary layer vorticity gamma or Gamma = ∮gamma · dl. Where the upper and lower boundary layers meet at the cusped TE, their local static pressure pu=pl then the boundary layer outer edge inviscid velocity Vupper=Vlower and gammalower=-gamma upper. This explains the 2-D wing self cancellation of the upper and lower surface boundary layer vorticity when they meet upon shedding at the trailing edge. In finite wings, the presence of spanwise pressure gradients near the wing tips misaligns gammalower and gammaupper at the wingtip TE preventing the upper and lower surface boundary layers from completely canceling each other. To prevent them from generating wing tip vortices, the local boundary layers need to be captured in suction slots. Once vorticity is captured, it can be eliminated by viscous mixing prior to venting over board. The objective of this dissertation was to use a commercial Computational Fluid Dynamics code (Fluent) to search for the best configuration to locate BLC suction slots to capture non-parallel boundary layer vorticity prior to shedding near the wingtips. The configuration selected for running the simulations was tested by trying to duplicate a 3D wing for which sufficient experimental and computational models by others are available. The practical case selected was done by Chow et al in the 32 x 48 in. low speed wind tunnel at the Fluid Mechanics Laboratory of NASA Ames Research Center, and computationally analyzed by Dacles-Mariani et al, and Khim and Rhee. The present

  17. Unsteady boundary layer studies on ultra-high-lift low-pressure turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Hodson, H. [Cambridge Univ. (United Kingdom). Whittle Lab.; Harvey, N. [Rolls-Royce plc., Derby (United Kingdom). Turbine Systems

    2005-09-15

    The unsteady boundary layer development on the suction surface of two ultra-high-lift low-pressure (LP) turbine blades, known as T106C and U2, was investigated to further understand the loss reduction mechanism, which is integral to optimize the blade design in unsteady flow. The T106C profile is a mid-loaded ultra-high-lift LP turbine blade. Owing to the strong local adverse pressure gradient, the laminar boundary layer on the suction surface separates shortly after the suction side peak velocity. The turbulence within the incoming wakes cannot induce transition around the separation point because of the low receptivity of the laminar boundary layer. This allows the wake's negative jet to induce roll-up vortex, which reduces the benefits of the wake-induced transition. The wake-turbulence induced transition, which occurs downstream of the separation point, helps the separated boundary layer to reattach earlier. Owing to its mid-loaded nature, a large portion of the suction surface is covered by the reattached turbulent flow, which also contributes to the high profile loss. Therefore, LP turbine blades designed to make best use of unsteady flow effects should be aft-loaded. The ultra-high-lift blade U2 is an aft-loaded profile. Furthermore, the mild local adverse pressure gradient after the suction side peak velocity allows the laminar boundary layer to further develop before separation and results in a local Re {theta} of about 250 at separation. Therefore, the turbulence in the passing wake is able to induce transition close to the separation point. The earlier wake-induced transition and calmed region significantly reduce the size of the separation bubble. Furthermore, the earlier occurrence of wake-turbulence induced transition prevents the wake's negative jet from generating roll-up vortex, which also leads to lower losses. (author)

  18. Boundary Layer under Oscillatory Wave

    OpenAIRE

    Mohammad Bagus Adityawan; Hitoshi Tanaka

    2011-01-01

    Turbulence due to wave motion and propagation is a very important aspect in sediment transport modeling. The boundary layer characteristic during the process will highly influence the sediment transport mechanism at the bottom. 1D model approach has been widely used to assess the turbulent boundary layer. However, the need for a more detailed model leads to the development of a more sophisticated models. This study presents a 2D turbulent model using k-ω equation to approach the turbulent bou...

  19. Numerical Study of Thermal Boundary Layer on a Continuous Moving Surface in Power Law Fluids

    Institute of Scientific and Technical Information of China (English)

    Hao ZHANG; Xinxin ZHANG; Liancun ZHENG

    2007-01-01

    This paper investigates flow and heat transfer of power law fluids on a continuous moving surface. The temperature distribution is obtained numerically by considering the effect of the power law viscosity on thermal diffusivity and the characteristics of the flow and heat transfer are analyzed. The results show that the distribution of the thermal boundary layer depends not only on the velocity ratio parameter of the plate, but also on the power law index and Prandtl number of fluids.

  20. A numerical study of shock wave/boundary layer interaction in a supersonic compressor cascade

    International Nuclear Information System (INIS)

    A numerical analysis of shock wave boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristic upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-ω and Shear Stress Transport (SST) models were numerically stables. However, the k-ω model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation

  1. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2008-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transform...

  2. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transfo...

  3. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aer...

  4. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, Andreas; Hasselbach, Jan; Lauer, Peter; Baumann, Robert; Franke, Klaus; Gurk, Christian; Schlager, Hans; Weingartner, Ernest

    2008-01-01

    International audience Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airb...

  5. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    International audience Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by ai...

  6. Study on the atmospheric boundary layer and its influence on regional air quality over the Pearl River delta

    OpenAIRE

    Wu, M.(Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America); Wu, D.; Fan, Q.; B. M. Wang; Li, H W; S. J. Fan

    2013-01-01

    To study the structure of atmospheric boundary layer (ABL) and its influence on regional air quality over the Pearl River delta (PRD), two ABL intensive observations were conducted at Panyu (urban station) and Xinken (non-urban station, near estuary) of PRD during October 2004 and July 2006, respectively. Based on the ABL intensive observation data analysis, the typical weather condition type associated with poor air quality over PRD could be summarized into two kinds: the warmed perio...

  7. A study of the dilution potential of the planetary boundary layer over India and adjoining oceans using radon measurements

    International Nuclear Information System (INIS)

    A comparison is made of the dilution potential of the Planetary Boundary Layer (PBI) at surface and high altitude locations in India and over the oceans of the Arabian Sea, Bay of Bengal region, using radon as a tracer. The significant difference in the diffusive properties of the PBL at these locations and their variations through the seasons are discussed and the use of these studies for plant siting pointed out. (author)

  8. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-03-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the “well-mixed cloud thickness”, defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling. In the deeper boundary layers observed well offshore, there was frequently nearly 100% boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  9. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  10. Parameterization of Land Surface Processes to Study Boundary Layer Characteristics over a Semiarid Region in Northwest India.

    Science.gov (United States)

    Satyanarayana, A. N. V.; Lykossov, V. N.; Mohanty, U. C.; Machul'Skaya, E. E.

    2003-04-01

    The atmospheric boundary layer and land surface processes play a crucial role and affect large-scale phenomena such as monsoons. A comprehensive soil-vegetation parameterization scheme has been developed to understand the complex interaction of the transfer processes, such as heat and moisture within the atmospheric surface layer and the active land layer. In this scheme, attention is given to the accurate representation of soil heat and moisture by considering all three states of water and their phase transitions. This scheme is incorporated in a one-dimensional multilevel boundary layer model for accurate representation of energy exchange processes to study the boundary layer characteristics. Numerical experiments are carried out with this model using special datasets obtained from the Land Surface Processes Experiment (LASPEX-97) at Anand (22.4°N, 72.6°E), a semiarid region of the state of Gujarat in northwest India. For this study, a dry simulation in February 1997 and a wet situation in July 1997 are considered. The model-simulated temporal variation of the fluxes of sensible heat, latent heat, and net radiation and soil temperatures are compared with the available observations. The results suggest that this model is suitable for better representation of land surface processes and the PBL in large-scale atmospheric models.

  11. Comparison of Marine Boundary Layer Cloud Properties from CERES-MODIS Edition 4 and DOE ARM AMF Measurements at the Azores

    Science.gov (United States)

    Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny

    2014-01-01

    Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km×30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R(sup 2) = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km× 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 micrometers is 1.3 micrometers larger than that from the ARM retrievals (12.8 micrometers), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm( exp -2) less than its ARM counterpart (114.2 gm( exp-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50

  12. Numerical Study on Mechanism of Small Vortex Generation in Boundary Layer Transition

    CERN Document Server

    Lu, Ping

    2014-01-01

    The small vortex generation is a key issue of the mechanism for late flow transition and turbulence generation. It was widely accepted that small length vortices were generated by large vortex breakdown. According to our recent DNS, we find that the hairpin vortex structure is very stable and never breaks down to small pieces. On the other hand, we recognize that there are strong positive spikes besides the ring neck in the spanwise direction. The strongly positive spikes are caused by second sweeps which are generated by perfectly circular and perpendicularly standing vortex rings. The second sweep brings energy from the invisid region downdraft to the bottom of the boundary layers, which generates high shear layers around the positive spikes.Since the high shear layer is not stable, all small length scales (turbulence) are generated around high shear layers especially near the wall surface (bottom of boundary layers). This happens near the ring neck in the streamwise direction and besides the original vorte...

  13. Numerical Study of Broadband Disturbance Development in APG Boundary Layer Flow

    Science.gov (United States)

    Chen, Weijia; Chen, Jim; Lo, Edmond

    2014-03-01

    A numerical model is developed with combined compact difference methods to simulation boundary layer transition problems. The model is used to investigate the formation and development of coherent structures in late stage of a laminar-turbulent transition initiated by a two-dimensional Tollmien-Schlichting (TS) wave and initially weak broadband disturbances. The numerical simulation closely follows the conditions in the experiments by Borodulin (2006). The boundary layer base flow has an Adverse Pressure Gradient (APG) with Hartree parameter βH = - 0.115. The instantaneous flow structures are visualized, which demonstrate results comparable with experiments. Interaction between the TS wave and broadband disturbances leads to the formation of Λ-vortices, Ω-vortices, and ring-like vortices. In comparison with those in classical transition paths, i.e., fundamental and subharmonic resonances, these structures are distributed in a random order and have distorted shapes. However, their local evolution properties are qualitatively similar with those in classical transition paths. The authors thank Nanyang Techonological Univerisity for funding support.

  14. Boundary layer stability and Arctic climate change: a feedback study using EC-Earth

    Energy Technology Data Exchange (ETDEWEB)

    Bintanja, R.; Linden, E.C. van der; Hazeleger, W. [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)

    2012-12-15

    Amplified Arctic warming is one of the key features of climate change. It is evident in observations as well as in climate model simulations. Usually referred to as Arctic amplification, it is generally recognized that the surface albedo feedback governs the response. However, a number of feedback mechanisms play a role in AA, of which those related to the prevalent near-surface inversion have received relatively little attention. Here we investigate the role of the near-surface thermal inversion, which is caused by radiative surface cooling in autumn and winter, on Arctic warming. We employ idealized climate change experiments using the climate model EC-Earth together with ERA-Interim reanalysis data to show that boundary-layer mixing governs the efficiency by which the surface warming signal is 'diluted' to higher levels. Reduced vertical mixing, as in the stably stratified inversion layer in Arctic winter, thus amplifies surface warming. Modelling results suggest that both shortwave - through the (seasonal) interaction with the sea ice feedback - and longwave feedbacks are affected by boundary-layer mixing, both in the Arctic and globally, with the effect on the shortwave feedback dominating. The amplifying effect will decrease, however, with climate warming because the surface inversion becomes progressively weaker. We estimate that the reduced Arctic inversion has slowed down global warming by about 5% over the past 2 decades, and we anticipate that it will continue to do so with ongoing Arctic warming. (orig.)

  15. Large-eddy simulation of ship tracks in the collapsed marine boundary layer: a case study from the Monterey Area Ship Track experiment

    Directory of Open Access Journals (Sweden)

    A. H. Berner

    2014-09-01

    Full Text Available For the first time, a large-eddy simulation (LES coupled to a bulk aerosol scheme is used to simulate an aircraft-sampled ship track. The track was formed by the M/V Sanko Peace on 13 June 1994 in a shallow drizzling boundary layer with high winds but very low background aerosol concentrations (10 cm−3. A Lagrangian framework is used to simulate the evolution of a short segment of track as it is advected away from the ship for eight hours (a downwind distance exceeding 570 km. Using aircraft observations for initialization, good agreement is obtained between the simulated and observed features of the ambient boundary layer outside the track, including the organization of cloud into mesoscale rolls. After eight hours, a line of aerosol is injected to start the ship track. The simulation successfully reproduces the significant albedo enhancement and suppression of drizzle observed within the track. The aerosol concentration within the track dilutes as it broadens due to turbulent mixing. A sensitivity study shows the broadening rate strongly depends on the alignment between the track and the wind-aligned boundary layer rolls, as satellite images of ship tracks suggest. Entrainment is enhanced within the simulated track, but the observed 100 m elevation of the ship track above the surrounding layer is not simulated, possibly because the LES quickly sharpens the rather weak observed inversion. Liquid water path within the simulated track increases with time even as the ambient liquid water path is decreasing. The albedo increase in the track from liquid water and cloud fraction enhancement (second indirect effect eventually exceeds that from cloud droplet number increases (first indirect or Twomey effect. In a sensitivity study with a higher initial ambient aerosol concentration, stronger ship track aerosol source, and much weaker drizzle, there is less liquid water inside the track than outside for several hours downwind, consistent with

  16. DNS Study for the origin of the flow Randomization in Late Boundary Layer Transition

    CERN Document Server

    Thapa, Manoj; Liu, Chaoqun

    2014-01-01

    This paper is devoted to the investigation of the origin and mechanism of randomization in late boundary layer transition over a flat plate without pressure gradient. The flow randomization is a crucial phase before flow transition to the turbulent state. According to existing literatures, the randomization was caused by the big background noises and non-periodic spanwise boundary conditions. It was assumed that the large ring structure is affected by background noises first, and then the change of large ring structure affects the small length scales quickly, which directly leads to randomization and formation of turbulence. However, by careful analysis of our high order DNS results, we believe that the internal instability of multiple ring cycles structure is the main reason. What we observed is that randomization begins when the third cycle overlaps the first and second cycles. A significant asymmetric phenomenon is originated from the second cycle in the middle of both streamwise and spanwise directions. M...

  17. Modeling the feedback between aerosol and boundary layer processes: a case study in Beijing, China.

    Science.gov (United States)

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu

    2016-02-01

    Rapid development has led to frequent haze in Beijing. With mountains and sea surrounding Beijing, the pollution is found to be influenced by the mountain-plain breeze and sea-land breeze in complex ways. Meanwhile, the presence of aerosols may affect the surface energy balance and impact these boundary layer (BL) processes. The effects of BL processes on aerosol pollution and the feedback between aerosol and BL processes are not yet clearly understood. Thus, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to investigate the possible effects and feedbacks during a haze episode on 23 September 2011. Influenced by the onshore prevailing wind, sea-breeze, and upslope breeze, about 45% of surface particulate matter (PM)2.5 in Beijing are found to be contributed by its neighbor cities through regional transport. In the afternoon, the development of upslope breeze suppresses the growth of BL in Beijing by imposing a relatively low thermal stable layer above the BL, which exacerbates the pollution. Two kinds of feedback during the daytime are revealed as follows: (1) as the aerosols absorb and scatter the solar radiation, the surface net radiation and sensible heat flux are decreased, while BL temperature is increased, resulting in a more stable and shallower BL, which leads to a higher surface PM2.5 concentration in the morning and (2) in the afternoon, as the presence of aerosols increases the BL temperature over plains, the upslope breeze is weakened, and the boundary layer height (BLH) over Beijing is heightened, resulting in the decrease of the surface PM2.5 concentration there. PMID:26490909

  18. Numerical Study of Winter Urban Boundary Layer Structure over Beijing Area

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoli; BI Baogui; LI Zechun

    2005-01-01

    Based on the successful simulation of a typical winter urban boundarylayer (UBL) process over Beijing area during the Beijing City Air Pollution Experiment (BECAPEX) in 2001 by the use of MM5 coupled with urban canopy parameterization, a series of simulation experiments are performed to investigate the effects of urban influence, surrounding terrain, and different extent of urbanization on urban boundary layer structures over Beijing area. The results of factor separation experiments of urban influence indicate that the total effect of urban influence, which is the synthetic effect of urban infrastructure on thermal and dynamic structures of atmosphere, is responsible for the formation of main UBL features over Beijing area. Meanwhile, the relative importance of thermal and mechanical factors of urban infrastructure and interaction between thermal and mechanical factors for the formation and evolution of UBL over the Beijing area are also explored. The results show that, during nighttime, mechanical factors are responsible for main characteristics of nocturnal urban boundary layer such as elevated inversion layer over downtown area,smaller wind speed and stronger turbulent kinetic energy (TKE) and its behavior with peak at the top of canopy layer, whereas in the daytime, thermal factors play dominant role in the structure of UBL, such as the intensity of mixed layer and temperature in the lower atmosphere in urban area. The interaction between mechanical and thermal factors plays an important role in the formation and evolution of UBL, but its specific characteristics of mechanisms are complex. The results of surrounding terrain experiment show that terrain surrounding Beijing area not only determines the characteristic of prevailing airflow over Beijing area, but also has obvious effect on thermal structure of UBL, such as the distribution of elevated inversion and urban heat island, and makes them with special localization feature. The results of different extent

  19. An observational study of the evolution of the atmospheric boundary-layer over Cabo Frio, Brazil

    Directory of Open Access Journals (Sweden)

    S. H. Franchito

    2007-08-01

    Full Text Available The effect of coastal upwelling on the evolution of the atmospheric boundary layer (ABL in Cabo Frio (Brazil is investigated. For this purpose, radiosounding data collected in two experiments made during the austral summer (upwelling case and austral winter (no upwelling case are analysed. The results show that during the austral summer, cold waters that crop up near the Cabo Frio coast favour the formation of an atmospheric stable layer, which persists during the upwelling episode. Due to the low SSTs, the descending branch of the sea-breeze circulation is located close to the coast, inhibiting the development of a mixed layer mainly during the day. At night, with the reduction of the land-sea thermal contrast the descending motion is weaker, allowing a vertical mixing. The stable ABL favours the formation of a low level jet, which may also contribute to the development of a nocturnal atmospheric mixed layer. During the austral winter, due to the higher SSTs observed near the coast, the ABL is less stable compared with that in the austral summer. Due to warming, a mixed layer is observed during the day. The observed vertical profiles of the zonal winds show that the easterlies at low levels are stronger in the austral summer, indicating that the upwelling modulates the sea-breeze signal, thus confirming model simulations.

  20. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    Science.gov (United States)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  1. The daytime boundary layer in the Inn Valley - A model evaluation study with high-quality turbulence measurements

    Science.gov (United States)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana

    2016-04-01

    Atmospheric processes associated with complex terrain include various phenomena on the meso- and microscale, which contribute significantly to the local weather in mountainous areas of the Earth. One of the most prominent and well-known boundary-layer phenomena in mountainous terrain is the daytime valley wind circulation, which is very pronounced on clear-sky days with weak synoptic forcing. We use several chosen "valley wind days" in the Inn Valley, Austria, as case studies for the evaluation of the performance of the NWP model COSMO on a horizontal resolution of 1.1 km with a focus on boundary-layer processes and turbulent exchange. The overall goal is to evaluate the model setup and to investigate whether the model's physics schemes (initially developed for horizontally homogeneous and flat surroundings) are suitable for truly complex terrain. We evaluate the model by using measurements from the so-called "i-Box" located in the Inn Valley. The i-Box consists of six core sites that are located at representative locations in the Inn Valley, and two remote sensing systems (wind Lidar and HATPRO passive T/RH profiler) in the city of Innsbruck. The long-term data set provides a data pool of high-resolution velocity variances, turbulence variables, radiation, soil moisture, and vertical profiles of temperature, humidity, and wind in the lower troposphere, which allows a process-oriented analysis. A special focus is laid on the daytime valley boundary layer and its interaction with the developing up-valley wind. Vertical cross-sections show that the valley wind has an asymmetric structure, hence, the i-Box stations show a high spatial variability. While the station on the valley bottom and on the south-facing slope are clearly under the strong influence of the valley wind, the two stations on the north-facing slope are rather dominated by slope flows. We find that the valley wind has a strong (indirect) influence on the development of the local turbulence kinetic

  2. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Mabood, F., E-mail: mabood1971@yahoo.com [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia); Khan, W.A., E-mail: wkhan_2000@yahoo.com [Department of Mechanical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Ismail, A.I.M., E-mail: izani@cs.usm.my [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2015-01-15

    The MHD laminar boundary layer flow with heat and mass transfer of an electrically conducting water-based nanofluid over a nonlinear stretching sheet with viscous dissipation effect is investigated numerically. This is the extension of the previous study on flow and heat transfer of a nanofluid over nonlinear stretching sheet (Rana and Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 212–226). The governing equations are reduced to nonlinear ordinary differential equations using suitable similarity transformation. The effects of the governing parameters on dimensionless quantities like velocity, temperature, nanoparticle concentration, friction factor, local Nusselt, and Sherwood numbers are explored. It is found that the dimensionless velocity decreases and temperature increases with magnetic parameter, and the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters. - Highlights: • MHD flow of nanofluid and heat transfer over a nonlinear stretching sheet has not been studied yet. • Numerical solutions are computed with Runge–Kutta Fehlberg fourth–fifth order method. • Previous published results can be obtained from present study. • Reduced Nusselt and Sherwood numbers decrease with magnetic parameter.

  3. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  4. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  5. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Science.gov (United States)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dpemissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  6. An experimental study on laminar-turbulent transition at high free-stream turbulence in boundary layers with pressure gradients

    Directory of Open Access Journals (Sweden)

    Chernoray Valery

    2012-04-01

    Full Text Available We report here the results of a study on measurements and prediction of laminar-turbulent transition at high free-stream turbulence in boundary layers of the airfoil-like geometries with presence of the external pressure gradient changeover. The experiments are performed for a number of flow cases with different flow Reynolds number, turbulence intensity and pressure gradient distributions. The results were then compared to numerical calculations for same geometries and flow conditions. The experiments and computations are performed for the flow parameters which are typical for turbomachinery applications and the major idea of the current study is the validation of the turbulence model which can be used for such engineering applications.

  7. A Study of the Stable Boundary Layer Based on a Single-Column K-Theory Model

    Science.gov (United States)

    Sorbjan, Zbigniew

    2012-01-01

    We document numerical experiments with a single-column, high-resolution model of the stable boundary layer. The model resolves the logarithmic layer, and does not require inverting the Monin-Obukhov similarity functions in order to calculate the surface fluxes. The turbulence closure is based on the K-theory approach, with a new form of stability functions of the Richardson number, evaluated by using the Surface Heat Budget of the Arctic Ocean (SHEBA) and the Cooperative Atmosphere-Surface Exchange Study (CASES-99) data. A comparison with two, high-resolution large-eddy simulation models shows very good agreement. The reported numerical experiments test the effects of shear, surface cooling, the Coriolis parameter, subsidence, and baroclinicity. The time evolution of the drag coefficient, the heat-transfer coefficient, and the cross-isobar angle is also evaluated.

  8. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2008-12-01

    Full Text Available Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25-29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28-30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region.

  9. Interferometric and numerical study of the temperature field in the boundary layer and heat transfer in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Lucic, Anita; Emans, Maximilian; Mayinger, Franz; Zenger, Christoph

    2004-04-01

    An interferometric study and a numerical simulation are presented of the combined process of the bulk turbulent convection and the dynamic of a vapor bubble which is formed in the superheated boundary layer of a subcooled flowing liquid, in order to determine the heat transfer to the flowing subcooled liquid. In this investigation focus has been given on a single vapor bubble at a defined cavity site to provide reproducible conditions. In the experimental study single bubbles were generated at a single artificial cavity by means of a CO{sub 2}-laser as a spot heater at a uniformly heated wall of a vertical rectangular channel with water as the test fluid. The experiments were performed at various degrees of subcooling and mass flow rates. The bubble growth and the temporal decrease of the bubble volume were captured by means of the high-speed cinematography. The thermal boundary layer and the temperature field at the phase-interface between fluid and bubble were visualized by means of the optical measurement method holographic interferometry with a high temporal and spatial resolution, and thus the local and temporal heat transfer could be quantified. The experimental results form a significant data basis for the description of the mean as well as the local heat transfer as a function of the flow conditions. According to the experimental configuration and the obtained data the numerical simulations were performed. A numerical method has been developed to simulate the influence of single bubbles on the surrounding fluid which is based on a Lagrangian approach to describe the motion of the bubbles. The method is coupled to a large-eddy simulations by the body force term which is locally evaluated based on the density field. The obtained experimental data correspond well with the numerical predictions, both of which demonstrate the thermo- and fluiddynamic characteristics of the interaction between the vapor bubble and the subcooled liquid.

  10. Using Remotely Piloted Aircraft System to Study the Evolution of the Boundary Layer Related to Fog Events

    Science.gov (United States)

    Roberts, G. C.; Cayez, G.; Ronflé-Nadaud, C.; Albrand, M.; Dralet, J. P.; Momboisse, G.; Nicoll, K.; Seity, Y.; Bronz, M.; Hattenberger, G.; Gorraz, M.; Bustico, A.

    2014-12-01

    Over the past decade, the scientific community has embraced the use of RPAS (remotely piloted aircraft system) as a tool to improve observations of the Earth's surface and atmospheric phenomena. The use of small RPAS (Remotely Piloted Aircraft System) in atmospheric research has increased because of their relative low-cost, compact size and ease of operation. Small RPAS are especially adapted for observing the atmospheric boundary layer processes at high vertical and temporal resolution. To this end, CNRM, ENAC, and ENM have developed the VOLTIGE (Vecteurs d'Observation de La Troposphere pour l'Investigation et la Gestion de l'Environnement) program to study the life cycle of fog with multiple, small RPAS. The instrumented RPAS flights have successfully observed the evolution of the boundary layer and dissipation of fog events. In addition, vertical profiles from the RPAS have been compared with Météo France forecast models, and the results suggest that forecast models may be improved using high resolution and frequent in-situ measurements. Within the VOLTIGE project, a flying-wing RPAS with four control surfaces was developed to separate elevator and aileron controls in order to reduce the pitch angle envelope and improve turbulence and albedo measurements. The result leads to a small RPAS with the capability of flying up to two hours with 150 grams of payload, while keeping the hand-launch capability as a constraint for regular atmospheric research missions. High frequency data logging has been integrated into the main autopilot in order to synchronize navigation and payload measurements, as well as allowing an efficient sensor-based navigation. The VOLTIGE program also encourages direct participation of students on the advancement of novel observing systems for atmospheric sciences, and provides a step towards deploying small RPAS in an operational network. VOLTIGE is funded by the Agence Nationale de Recherche (ANR-Blanc 2012) and supported by Aerospace

  11. A study of the stable boundary layer in strong gap flows in northwest Greenland using a research aircraft

    Science.gov (United States)

    Heinemann, Günther; Drüe, Clemens

    2016-04-01

    Gap flows and the stable boundary layer (SBL) were studied in northwest Greenland during the aircraft-based experiment IKAPOS (Investigation of Katabatic winds and Polynyas during Summer) in June 2010. The measurements were performed using the research aircraft POLAR 5 of Alfred Wegener Institute (AWI, Bremerhaven). Besides navigational and basic meteorological instrumentation, the aircraft was equipped with radiation and surface temperature sensors, two laser altimeters, and video and digital cameras. In order to determine turbulent heat and momentum fluxes, POLAR 5 was instrumented with a turbulence measurement system collecting data on a nose boom with a sampling rate of 100 Hz. In the area of the Nares Strait a stable, but fully turbulent boundary layer with strong winds of 15 m s-1 to 20 m s-1 was found during conditions of relatively warm synoptically induced northerly winds through the Nares Strait. Strong surface inversions were present in the lowest 100 m to 200 m. As a consequence of channeling effects a well-pronounced low-level jet (LLJ) system was documented. The channeling process is consistent with gap flow theory and can be shown to occur at the topographic gap between Greenland and Canada represented by the Smith Sound. While the flow through the gap and over the surrounding mountains leads to the lowering of isotropic surfaces and the acceleration of the flow, the strong turbulence associated with the LLJ leads to the development of an internal thermal SBL past the gap. Turbulence statistics in this fully turbulent SBL can be shown to follow the local scaling behaviour.

  12. Stability studies of wakes and boundary layer flows at flat and spatial disturbances; Stabilitaetsuntersuchungen von Grenzschicht- und Nachlaufstroemungen bei ebenen und raeumlichen Stoerungen

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Helmut

    2013-08-01

    The author of the book under consideration reports on a calculation of areas of instability for laminar boundary layers at a delayed flow without gradients, at an accelerated incompressible (and compressible) flow as well as heated and cooled wall. The calculation is based on a non-linearized perturbation differential equation. Stability studies of wakes delivered vortex frequencies of the most energetic oscillations as characteristic frequencies. A boundary layer flow already deformed by planar flows is unstable with respect to spatial interference and fanned. Then the regions of instability of the laminar flow are greatly expanded. The calculated wavelengths of the longitudinal vortex can be compared with measured values in the boundary layer flows and wakes in order to explain the flow phenomena occurring in cascades.

  13. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2008-05-01

    Full Text Available Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel−1 by number for non-volatile particles and 174±43 mg (kg fuel−1 by mass for Black Carbon (BC. Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  14. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2007-10-01

    Full Text Available Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel−1 by number for non-volatile particles and 174±43 mg (kg fuel−1 by mass for Black Carbon (BC. Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  15. The Numerical Simulation of a Tracer-Release Field Project to Study Motion within the Nocturnal Boundary Layer

    Science.gov (United States)

    Werth, D. W.; Leclerc, M. Y.; Buckley, R.; Parker, M.; Kurzeja, R.; Duarte, H. F.; Zhang, G.; Durden, D.

    2009-12-01

    The Savannah River National Laboratory (SRNL), Brookhaven National Laboratory (BNL), the University of Georgia (UGA), and the National Oceanic and Atmospheric Administration (NOAA) conducted a regional tracer experiment to study the nocturnal behavior of CO2 in the vicinity of an instrumented tall tower during two nights on May 11th and 12th, 2009. The experiment consisted of a release of five perfluorocarbon tracer (PFTs) compounds in twelve unique locations in Aiken County, South Carolina. Intensive meteorological measurements including in-situ turbulence were made in conjunction with the release and sampling of the PFTs. A 300m tower was also used to collect data from higher levels, allowing us to determine the extent to which the tracer was mixed vertically. Lagrangian plume simulations performed during the experiment demonstrated transport over distances of >8 km, and correlated well with in situ sampling. The area was characterized by heavy vegetation cover, and carbon dioxide concentrations were also monitored in an effort to determine how respiration and advection affect CO2 levels in the stable layer. Tracer release locations were carefully selected via a fine-scale mesoscale modeling study of similar nights. The purpose of these experiments was to provide data that will be used to increase the understanding of the terrestrial carbon budget, especially with respect to nocturnal boundary layer (NBL) phenomena such as low level jets and breaking gravity waves. Using these data, a simulation of the motion of the tracer within the boundary layer was developed using the Regional Atmospheric Modeling System (RAMS) mesoscale model coupled to a tracer model. The RAMS model was also coupled to the Simple Biosphere (SiB) vegetation model, which allowed for the simulation of the release of carbon dioxide into the NBL. The simulation results are used to validate the NBL hypothesis of CO2 monitoring, by which the release of CO2 can be correlated with the accumulation

  16. A NUMERICAL STUDY ON A MULTI-LAYERVEGETATION BOUNDARY-LAYER MODEL

    Institute of Scientific and Technical Information of China (English)

    ZengXinmin; ZhaoMing; SuBingkai

    1999-01-01

    It's well-known that the ecosystem can greatly influence both the local climate and the general circulation. On the numerical study of the turbulence in and above forest canopies, a lot of significant studies have been done, in which vegetation models based on ‘K-theory'are wide-

  17. Description of the atmospheric circulation in the boundary layer over a tropical island: Case study of Guadeloupe Archipelago

    Science.gov (United States)

    Plocoste, Thomas; Dorville, Jean-François; Jacoby-Koaly, Sandra; Roussas, André

    2016-04-01

    Over past two decades the use of atmospheric sounding methods as Sodars, Lidar equipped drones increased sharply. Compare to weather balloon, these modern methods allow measure of profile at constant heights during long period. There are few studies using this type of equipment in tropical climates and lesser on small island. Wind regime on island of diameter less than 50 km are mostly considered as oceanic. Many author consider that thermal effect are negligible in land. But recent observations and simulations show importance of the thermal circulation at small- and meso- scales particularly in atmospheric pollution process. Up to 2009 no wind profile data were available continuously to study atmospheric circulation in Guadeloupe Archipelago (GA) which is one of the islands of the Lesser Antilles Arc. In first approximation wind was evaluated based on measures done at the most upwind island of the GA for many application as wind power and atmospheric pollution. From 2009 to 2012 a measurement campaign of the Atmospheric Boundary Layer (ABL) have been performed by the University of Antilles (UA) in GA. To assess effects of dynamic of ABL on air quality in sub urban area, particularly during the sunset and sunrise, UA monitored two sites with a weather station and a doppler sodar (REMTECH PAO). Both sites are close to the sea with one in a coastal area and the other in an open landfill surrounded by densely populated building and a mangrove swamp. Thermal and chemical measurements with a portable mass spectrometer were made in the vicinity of the landfill and showed the existence of urban heat islands. This study presents the first Doppler Sodar long measurements campaign in GA. Statistical analysis of the three year of doppler sodar data (i.e. wind components and its fluctuations) allow to identified and characterized the complex circulations on the two sites in the ABL between 25 and 500m above the sea level. Orographic and thermal effects due to urban area were

  18. Experimental study of boundary layers formation by thin film colorimetric interferometry

    Institute of Scientific and Technical Information of China (English)

    MartinHartl; IvanKrupka; MiroslavLiska

    2001-01-01

    Thin film colorimetric interferometry was applied to the preliminary study of boundarylayers formation for a several liquids of known molecular structure that have been previously stud-ied by the force balance method. This technique intended for the study of very thin lubrication filmsdown to a few nanometers in a point contact between a steel ball and a transparent disk combinespowerful film thickness mapping capabilities with high accuracy. Central and minimum film thick-ness as well as film shape in the dependence on rolling speed was studied for hexadecane, oc-tamethylcyclotetrasiloxane (OMCTS) and n-tetradecane. Results are compared with data obtainedfrom surface force apparatus measurements. OMCTS and n-tetradecane were found to formboundary films that result in a considerable enhancement in film thickness at slow speeds.

  19. Studies of the Combined Effects of Roughness and Reynolds Number in Turbulent Boundary Layers

    Science.gov (United States)

    Mehdi, Faraz; Klewicki, Joseph

    2010-11-01

    Mehdi, Klewicki & White [Physica D 239(2010)] provide evidence from existing studies that the prevalent scheme for classifying roughness regimes is likely to be incomplete. To further pursue these findings, more data are required, and for this purpose, additional rough-wall experiments are being performed. We report on our studies of the combined roughness-Reynolds number problem conducted in a 8m long wind-tunnel. The roughness considered is the randomly distributed type and introduced in the form of 24-grit sandpaper and pea gravel. The primary measurement tool is two-component LDV. The basis of the analysis is the mean equation of dynamics. In this regard, the length scale defining where the mean dynamics become dominated by inertia is of central importance.

  20. Study of pollutant transport in surface boundary layer by generalized integral transform technique

    International Nuclear Information System (INIS)

    A theoretical study was developed to obtain solutions of the atmospheric diffusion equation for various point source, considering radioactive decay and axial diffusion, under neutral atmospheric conditions. It was used an algebraic turbulence model available in the literature, based on Monin-Obukhov similarity theory, for the representation of the turbulent transport in the vertical direction, in the longitudinal directions was considered a constant mass eddy diffusivity . The bi-dimensional transient partial differential equation, representative of the physical phenomena, was transformed into a coupled one-dimensional transient equation system by applying the Generalized Integral Transform Technique. The coupled system was solved numerically using a subroutine based in the lines method. In order to evaluate the computational algorithm were analyzed some representative physical situations. (author)

  1. An LES study of pollen dispersal from isolated populations: Effects of source size and boundary-layer scaling

    Science.gov (United States)

    Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.

    2008-11-01

    A framework to simulate pollen dispersal in the atmospheric boundary layer based on the large eddy simulation technique is developed. Pollen is represented by a continuum concentration field and is evolved following an advection-diffusion equation including a gravitational settling term. The approach is validated against classical data on point-source releases and our own field data for a natural ragweed field. The LES is further used as a tool to investigate the effect of source size on the patterns of pollen ground deposition, an issue of fundamental importance in the development of policies for genetically modified crops. The cross-wind integrated deposition is shown to scale with the pollen boundary-layer height at the trailing edge of the field and a simple practical expression based on the development of the pollen boundary layer is proposed to scale results from small test fields to realistic agricultural conditions.

  2. Boundary-layer linear stability theory

    Science.gov (United States)

    Mack, L. M.

    1984-06-01

    Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer

  3. Boundary-layer linear stability theory

    Science.gov (United States)

    Mack, L. M.

    1984-01-01

    Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer

  4. Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe Roscoff coastal study

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2010-03-01

    Full Text Available This paper presents a summary of the measurements made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe coastal study in Roscoff on the North West coast of France throughout September 2006. It was clearly demonstrated that iodine-mediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I2, by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I2. The heterogeneous macroalgal I2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques.

    Apparent particle emission fluxes were associated with an enhanced apparent depositional flux of ozone, consistent with both a direct O3 deposition to macroalgae and involvement of O3 in iodine photochemistry and subsequent particle formation below the measurement height. The magnitude of the particle formation events was observed to be greatest at the lowest tides with the highest concentrations of ultrafine particles growing to the largest sizes, probably by the condensation of anthropogenically-formed condensable material. At such sizes the particles should be able to act as cloud condensation nuclei at reasonable atmospheric supersaturations.

  5. Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe Roscoff coastal study

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2009-12-01

    Full Text Available This paper presents a summary of the measurements that were made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe coastal study in Roscoff on the North West coast of France. It was clearly demonstrated that iodine-mediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I2, by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I2. The heterogeneous macroalgal I2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques.

    Apparent particle emission fluxes were associated with an enhanced apparent depositional flux of ozone, consistent with both a direct O3 deposition to macroalgae and involvement of O3 in iodine photochemistry and subsequent particle formation below the measurement height. The magnitude of the particle formation events was observed to be greatest at the lowest tides with higher concentrations of ultrafine particles growing to much larger sizes, probably by the condensation of anthropogenically-formed condensable material. At such sizes the particles should be able to act as cloud condensation nuclei at reasonable atmospheric supersaturations.

  6. Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He's Homotopy Perturbation Method

    International Nuclear Information System (INIS)

    The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.

  7. Study of Diurnal Cycle Variability of Planetary Boundary Layer Characteristics over the Red Sea and Arabian Peninsula

    KAUST Repository

    Li, Weigang

    2012-07-01

    This work is aimed at investigating diurnal cycle variability of the planetary boundary layer characteristics over the Arabian Peninsula and the Red Sea region. To fulfill this goal the downscaling simulations are performed using Weather Research and Forecasting (WRF) model. We analyze planetary boundary layer height, latent and sensible heat fluxes, and surface air temperature. The model results are compared with observations in different areas, for different seasons, and for different model resolutions. The model results are analyzed in order to better quantify the diurnal cycle variability over the Arabian Peninsula and the Red Sea. The specific features of this region are investigated and discussed.

  8. Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: a flash flood case study in the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    M. Zampieri

    2005-01-01

    Full Text Available The 'Montserrat-2000' severe flash flood event which occurred over Catalonia on 9 and 10 June 2000 is analyzed. Strong precipitation was generated by a mesoscale convective system associated with the development of a cyclone. The location of heavy precipitation depends on the position of the cyclone, which, in turn, is found to be very sensitive to various model characteristics and initial conditions. Numerical simulations of this case study using the hydrostatic BOLAM and the non-hydrostatic MOLOCH models are performed in order to test the effects of different formulations of the boundary layer parameterization: a modified version of the Louis (order 1 model and a custom version of the E-ℓ (order 1.5 model. Both of them require a diagnostic formulation of the mixing length, but the use of the turbulent kinetic energy equation in the E-ℓ model allows to represent turbulence history and non-locality effects and to formulate a more physically based mixing length. The impact of the two schemes is different in the two models. The hydrostatic model, run at 1/5 degree resolution, is less sensitive, but the quantitative precipitation forecast is in any case unsatisfactory in terms of localization and amount. Conversely, the non-hydrostatic model, run at 1/50 degree resolution, is capable of realistically simulate timing, position and amount of precipitation, with the apparently superior results obtained with the E-ℓ parameterization model.

  9. Experimental and theoretical study of the atmospheric boundary layer over the paris area; Etude experimentale et theorique de la couche limite atmospherique en agglomeration parisienne

    Energy Technology Data Exchange (ETDEWEB)

    Menut, L

    1997-12-15

    This thesis studied the urban boundary layer dynamic behaviour over the Paris area by comparing urban (Paris) and suburban (Palaiseau) dynamic data such as lidars, sodars, sonic anemometers. All the data were obtained during the ECLAP experiment, specifically performed to characterize the differences between a city and its near environment. (author)

  10. On the Structure and Adjustment of Inversion-Capped Neutral Atmospheric Boundary-Layer Flows: Large-Eddy Simulation Study

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.

    2014-01-01

    A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphas...

  11. Boundary layer physics over snow and ice

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2008-07-01

    Full Text Available Observations of the unique chemical environment over snow and ice in recent decades, particularly in the polar regions, have stimulated increasing interest in the boundary layer processes that mediate exchanges between the ice/snow interface and the atmosphere. This paper provides a review of the underlying concepts and examples from recent field studies in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP that focus on processes linking halogens to the depletion of boundary layer ozone in coastal environments, mercury transport and deposition, snow photochemistry, and related snow physics. In this context, observational approaches, stable boundary layer behavior, the effects of a weak or absent diurnal cycle, and transport and mixing over the heterogeneous surfaces characteristic of coastal ocean environments are of particular relevance.

  12. Defining the Entrainment Zone in Stratocumulus-topped Boundary Layers

    Science.gov (United States)

    Wang, Q.; Zhou, M.; Kalogiros, J. A.; Lenschow, D. H.; Dai, C.; Wang, S.

    2010-12-01

    The presence of an entrainment zone near the top of the stratocumulus-topped boundary layers has been identified by many early studies. However, the definition of the entrainment zone was rather vague. We have examined the fine vertical variations of cloud liquid water content, wind, temperature and humidity near the stratocumulus top and developed a new method to identify the entrainment zone objectively. Aircraft measurements from various field projects in stratocumulus-topped boundary layers are used, taking advantage of the fast sampling capability of many of the aircraft sensors. Because of the inhomogeneous mixing of two air masses with distinctively different thermodynamic properties, the magnitude of temperature perturbations within the entrainment zone is significantly larger than those above or below. This characteristics is used to define the upper and lower boundaries of the entrainment zone using a wavelet spectra analyses. The definition of the entrainment zone is further evaluated by the presence of a linear mixing line through mixing line analyses. Various other interfaces at the cloud top are also examined, including the cloud interface, temperature interface (inversion), and moisture interface. The heights of these interfaces are examined relative to the height of the entrainment zone. This study also systematically revealed the presence of turbulence above the local cloud top and/or above the entrainment zone. Wind shear near the cloud top is one possible source that generated local turbulence. Other potential sources of turbulence will also be discussed.

  13. Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: a case study of Nanjing, China

    Science.gov (United States)

    Chen, Lei; Zhang, Meigen; Wang, Yongwei

    2016-08-01

    The Weather Research and Forecasting (WRF) model, configured with a single-layer urban canopy model, was employed to investigate the influence of urbanization on boundary layer meteorological parameters during a long-lasting heat wave. This study was conducted over Nanjing city, East China, from 26 July to 4 August 2010. The impacts of urban expansion and anthropogenic heat (AH) release were simulated to quantify their effects on 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed and heat stress index. Urban sprawl increased the daily 2-m temperature in urbanized areas by around 1.6 °C and decreased the urban diurnal temperature range (DTR) by 1.24 °C. The contribution of AH release to the atmospheric warming was nearly 22 %, but AH had little influence on the DTR. The urban regional mean surface wind speed decreased by about 0.4 m s-1, and this decrease was successfully simulated from the surface to 300 m. The influence of urbanization on 2-m water vapor mixing ratio was significant over highly urbanized areas with a decrease of 1.1-1.8 g kg-1. With increased urbanization ratio, the duration of the inversion layer was about 4 h shorter, and the lower atmospheric layer was less stable. Urban heat island (UHI) intensity was significantly enhanced when synthesizing both urban sprawl and AH release and the daily mean UHI intensity increased by 0.74 °C. Urbanization increased the time under extreme heat stress (about 40 %) and worsened the living environment in urban areas.

  14. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    2012-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  15. Boundary Layer Heights from CALIOP

    Science.gov (United States)

    Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.

    2012-12-01

    This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.

  16. Experimental and modeling study of the impact of vertical transport
    processes from the boundary-layer on the variability and the budget of
    tropospheric ozone

    OpenAIRE

    Colette, Augustin

    2005-01-01

    Closing the tropospheric ozone budget requires a better understanding of the role of transport processes from the major reservoirs: the planetary boundary layer and the stratosphere. Case studies lead to the identification of mechanisms involved as well as their efficiency. However, their global impact on the budget must be addressed on a climatological basis. The defense is thus divided in two parts.First, we present case studies based on ozone LIDAR measurements performed during the ESCOMPT...

  17. Statistical study of transient plasma structures in magnetotail lobes and plasma sheet boundary layer: Interball-1 observations

    Directory of Open Access Journals (Sweden)

    E. E. Grigorenko

    the generation mechanisms of these transient structures are briefly discussed in the concluding part of the paper.

    Key words. Magnetospheric physics (magnetotail; magnetotail boundary layers; plasma sheet

  18. The effect of unsteady and baroclinic forcing on predicted wind profiles in Large Eddy Simulations: Two case studies of the daytime atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik;

    2013-01-01

    and in relevant atmospheric fields (e.g. temperature) that occur at larger scales must be imposed through boundary conditions or as external forcing. In this work we study the influence of such variations on the wind profile in Large Eddy Simulations of daytime atmospheric boundary layers, by comparing....... The applied domain-scale pressure gradient and its height- and time-dependence are estimated from LIDAR measurements of the wind speed above the atmospheric boundary layer in the Høvsøre case, and from radio soundings and a network of ground-based pressure sensors in the Hamburg case. In the two case studies......-scale subsidence and advection, tend to reduce agreement with measurements, relative to the Høvsøre case. The Hamburg case illustrates that measurements of the surface pressure gradient and relatively infrequent radio soundings alone are not sufficient for accurate estimation of a height- and time...

  19. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2016-05-01

    Full Text Available In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs. Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES. To do this, we use a previously-validated LES framework in which an actuator line model (ALM is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as N c / R , where N is the number of blades, c is the chord length and R is the rotor radius and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the

  20. Study on the atmospheric boundary layer and its influence on regional air quality over the Pearl River delta

    Directory of Open Access Journals (Sweden)

    M. Wu

    2013-03-01

    Full Text Available To study the structure of atmospheric boundary layer (ABL and its influence on regional air quality over the Pearl River delta (PRD, two ABL intensive observations were conducted at Panyu (urban station and Xinken (non-urban station, near estuary of PRD during October 2004 and July 2006, respectively. Based on the ABL intensive observation data analysis, the typical weather condition type associated with poor air quality over PRD could be summarized into two kinds: the warmed period before cold front (WPBCF and the subsidence period controlled by tropical cyclone (SPCTC. Two typical polluted cases (affected by WPBCF and SPCTC, respectively and one clean (not-polluted case were chosen for detail analysis. It was found that the continuously low or calm ground wind would lead to pollutant accumulation. The local circulation, such as sea–land breezes and heat–island circulation, played an important role in these polluted cases. The recirculation was significant in polluted cases; steady transport occurred in the clean case. Ventilation index (VI was quite different between polluted cases and the clean case: in WPBCF cases, the peak VI was from 184 to 3555 m2 s−1; on SPCTC days, the peak VI was from 1066 to 4363 m2 s−1; on the clean day, the peak VI was 10 885 m2 s−1 and much larger than all polluted cases. The 24-h average VI on polluted days was from 169 to 2858 m2 s−1 and also much smaller than that of the clean day. VI is a good reference index for pollution judgment. The peak mixing heights were smaller than 700 m in WPBCF cases, and were smaller than 800 m in SPCTC cases. During WPBCF polluted case, only surface inversion layer appeared. In the period of land breeze, surface inversion layer height was about 50 m, but in the period of sea breeze, surface inversion layer height would increase, and reach the maximum height, which was about 600 m. During SPCTC polluted case, there were several inversion layers that appeared at different

  1. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid......Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM...

  2. A laboratory study of heterogeneous reactions relevant to the atmospheric boundary layer: soot as a reactive substrate

    OpenAIRE

    Stadler, Dominik; Rossi, Michel,

    2005-01-01

    The present work deals with two subjects. The interaction of NO2 and HONO with different types of soot are examined in the first part whereas in the second part an experimental set-up is presented which has been built in order to measure the kinetics of the degradation of organic compounds by OH radicals. Both soot particles as well as NO2 are mainly produced by fossil fuel and biomass burning. The two species are therefore ubiquitous in the atmospheric boundary layer where they may react wit...

  3. A laboratory study of heterogeneous reactions relevant to the atmospheric boundary layer: soot as a reactive substrate

    OpenAIRE

    Stadler, Dominik

    2000-01-01

    The present work deals with two subjects. The interaction of NO2 and HONO with different types of soot are examined in the first part whereas in the second part an experimental set-up is presented which has been built in order to measure the kinetics of the degradation of organic compounds by OH radicals. Both soot particles as well as NO2 are mainly produced by fossil fuel and biomass burning. The two species are therefore ubiquitous in the atmospheric boundary layer where they may react wit...

  4. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    Science.gov (United States)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  5. A STUDY ON NUMERICAL METHOD OF NAVIER-STOKES EQUATION AND NON-LINEAR EVOLUTION OF THE COHERENT STRUCTURES IN A LAMINAR BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    LU Chang-gen; CAO Wei-dong; QIAN Jian-hua

    2006-01-01

    A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-uniform meshes in x and y directions are developed respectively. With the Fourier spectral expansion in the spanwise direction, three-dimensional N-S equation are converted to a system of two-dimensional equations. The third-order mixed explicit-implicit scheme is employed for time integration. The treatment of the three-dimensional non-reflecting outflow boundary conditions is presented, which is important for the numerical simulations of the problem of transition in boundary layers, jets, and mixing layer. The numerical results indicate that high accuracy, stabilization and efficiency are achieved by the proposed numerical method. In addition, a theory model for the coherent structure in a laminar boundary layer is also proposed, based on which the numerical method is implemented to the non-linear evolution of coherent structure. It is found that the numerical results of the distribution of Reynolds stress, the formation of high shear layer, and the event of ejection and sweeping, match well with the observed characteristics of the coherent structures in a turbulence boundary layer.

  6. A Numerical Study of Sea Breeze and Spatiotemporal Variation in the Coastal Atmospheric Boundary Layer at Hainan Island, China

    Science.gov (United States)

    Huang, Qian-Qian; Cai, Xu-Hui; Song, Yu; Kang, Ling

    2016-06-01

    Numerical simulations of sea breezes and the coastal atmospheric boundary layer (ABL) at Hainan Island, China during summer and winter are discussed. The different behaviour of sea breezes and the ABL on the leeward and windward sides of the island are examined, and it is found that offshore flows are more likely to create a strong sea-breeze signature, whereas the process of sea-breeze development under onshore flows is difficult to capture. At the location where the sea-breeze signal is remarkable, the height of the coastal ABL displays an abnormal decrease, corresponding to a transitional point from a continental ABL to a thermal internal boundary layer (TIBL) formed under sea-breeze conditions. This is corroborated by the sudden increase in the water vapour mixing ratio and/or wind speed, indicating the arrival of the sea breeze. Regarding the spatial distribution, the TIBL height decreases abruptly just ahead of the sea-breeze front, and above the cold air mass. When the sea-breeze front occurs with a raised head, a cold air mass is separated from the sea-breeze flow and penetrates inland. This separation is attributed to the interaction between the sea breeze and valley breeze, while the dry airflow entraining to the sea-breeze flow may also partially contribute to this air mass separation.

  7. Numerical study of oscillating boundary layer flow over a flat plate using k–kL–ω turbulence model

    International Nuclear Information System (INIS)

    Highlights: • Oscillating boundary layer flow over infinite flat plate at rest simulated using k–kL–ω turbulence model. • Simulation conducted for flow regimes ranging from fully laminar flow to fully turbulent flow. • Results predicted by k–kL–ω model compare very well with experimental and LES model results. • The k–kL–ω model is able to accurately predict the onset of transition for intermittently turbulent flow regime. -- Abstract: Oscillating boundary layer flow over an infinite flat plate at rest was simulated using the k–kL–ω turbulence model for a Reynolds number range of 32 ⩽ Reδ ⩽ 10,000 ranging from fully laminar flow to fully turbulent flow. The k–kL–ω model was validated by comparing the predictions with LES results and experimental results for intermittently turbulent and fully turbulent flow regimes. The good agreement obtained between the k–kL–ω model prediction with the experimental and LES results indicate that the k–kL–ω model is able to accurately simulate transient intermittently turbulent flow and as well as accurately predict the onset of turbulence for such oscillatory flows

  8. Case studies using GOES infrared data and a planetary boundary layer model to infer regional scale variations in soil moisture. M.S. Thesis

    Science.gov (United States)

    Rose, F. G.

    1983-01-01

    Modeled temperature data from a one-dimensional, time-dependent, initial value, planetary boundary layer model for 16 separate model runs with varying initial values of moisture availability are applied, by the use of a regression equation, to longwave infrared GOES satellite data to infer moisture availability over a regional area in the central U.S. This was done for several days during the summers of 1978 and 1980 where a large gradient in the antecedent precipitation index (API) represented the boundary between a drought area and a region of near normal precipitation. Correlations between satellite derived moisture availability and API were found to exist. Errors from the presence of clouds, water vapor and other spatial inhomogeneities made the use of the measurement for anything except the relative degree of moisture availability dubious.

  9. Modeling the urban boundary layer

    Science.gov (United States)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  10. Study of Near-Surface Models in Large-Eddy Simulations of a Neutrally Stratified Atmospheric Boundary Layer

    Science.gov (United States)

    Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.

    2004-01-01

    Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.

  11. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  12. The Boundary Layer Interaction with Shock Wave and Expansion Fan

    Institute of Scientific and Technical Information of China (English)

    MaratA.Goldfeld; RomanV.Nestoulia; 等

    2000-01-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented.They include the study of the shock wave and /or expansion fan action upon the boundary layer,boundary layer sepqartion and its relaxation.Complex events of paired interactions and the flow on compression convex-concave surfaces were studied.The posibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented.Different model configurations for wide range conditions were investigated.Comparison of results for different interactions was carried out.

  13. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  14. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiao-Ming, E-mail: xhu@ou.edu [Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, OK 73072 (United States); Ma, ZhiQiang, E-mail: zqma@ium.cn [Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089 (China); Lin, Weili [Key Laboratory for Atmospheric Chemistry, Center for Atmospheric Watch and Services, Chinese Academy of Meteorological Sciences, Beijing, 100081 (China); Zhang, Hongliang; Hu, Jianlin [Department of Civil and Environmental Engineering, University of California, Davis, CA 95616 (United States); Wang, Ying; Xu, Xiaobin [Key Laboratory for Atmospheric Chemistry, Center for Atmospheric Watch and Services, Chinese Academy of Meteorological Sciences, Beijing, 100081 (China); Fuentes, Jose D. [Department of Meteorology, Pennsylvania State University, University Park, PA 16802 (United States); Xue, Ming [Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, OK 73072 (United States)

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (∼ 1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O{sub 3} pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. - Highlights: • Low mixed layer exacerbates air pollution over the North China Plain (NCP) • Warm advection from the Loess

  15. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study

    International Nuclear Information System (INIS)

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (∼ 1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. - Highlights: • Low mixed layer exacerbates air pollution over the North China Plain (NCP) • Warm advection from the Loess Plateau

  16. Milli-DPIV studies of a boundary-layer-based flow-control system for a transonic cascade

    Science.gov (United States)

    Estevadeordal, Jordi; Copenhaver, William

    2002-11-01

    A flow-control system for a high-turning-stator cascade is investigated using Digital Particle Image Velocimetry (DPIV). The system employs small (millimetric) blowing cavities and suction holes in the blades. Velocity measurements on these small areas and at the thin boundary layer during blowndown tests are necessary for verifying the flow-control device performance and also for yielding details of the flow very near the blade. The millimetric size of the viewing areas prevents the direct application of standard DPIV since the laser thickness is typically greater than the hole size and because regular optics cannot be used in a standard manner for viewing very small areas. Issues related to volumetric illumination, fiber-optic delivery, particle-seeding image size, scattering direction, optical focusing, and speckle and glare reduction are explored. An advantage of making measurements in small areas is that high resolution can be accomplished with regular 1k x 1k CCD sensors (e.g., 1000 pix/mm). This also makes it feasible to use digital-holography approaches for measuring velocities in small volumes and micro-volumes.

  17. Study of the thermal internal boundary layer during sea-breeze events in the complex coastal area of Marseille

    Science.gov (United States)

    Calmet, Isabelle; Mestayer, Patrice

    2016-02-01

    A revisit of two sea-breeze episodes is presented, based on higher spatial resolution large eddy simulations (LES) of the lower atmosphere over the coastal area of Marseille and measurements obtained during the June 2001 experimental campaign UBL-ESCOMPTE. The focus is on the development of thermal internal boundary layers (TIBL) over a complex topography: the dynamic and thermal mechanisms that contribute to the TIBL growth and its further degeneration into a convective mixed layer, the respective influences of the coast shape, the large-scale flow above and the local low-level slope flows. The high-resolution LES permits exploring the potential temperature and turbulent kinetic energy fields in relation with the evolution of TIBL depth and heat fluxes along representative streamlines. Several theoretical TIBL depth models are further compared to the LES-deduced inversion height and other parameters, leading to a discussion of the relationships between the values of these parameters, the respective influences of the governing physical phenomena, and the TIBL behaviour. A threshold value of 0.35 is proposed for the friction velocity to convective velocity scale ratio u */ w * between the two regimes where the TIBL is either dominated by dynamical kinetic energy production or controlled by buoyancy.

  18. Thick diffusion limit boundary layer test problems

    International Nuclear Information System (INIS)

    We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)

  19. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  20. Experimental and modeling study of the impact of vertical transport processes from the boundary-layer on the variability and the budget of tropospheric ozone

    International Nuclear Information System (INIS)

    Closing the tropospheric ozone budget requires a better understanding of the role of transport processes from the major reservoirs: the planetary boundary layer and the stratosphere. Case studies lead to the identification of mechanisms involved as well as their efficiency. However, their global impact on the budget must be addressed on a climatological basis. This manuscript is thus divided in two parts. First, we present case studies based on ozone LIDAR measurements performed during the ESCOMPTE campaign. This work consists in a data analysis investigation by means of a hybrid - Lagrangian study involving: global meteorological analyses, Lagrangian particle dispersion computation, and mesoscale, chemistry - transport, and Lagrangian photochemistry modeling. Our aim is to document the amount of observed ozone variability related to transport processes and, when appropriate, to infer the role of tropospheric photochemical production. Second, we propose a climatological analysis of the respective impact of transport from the boundary-layer and from the tropopause region on the tropospheric ozone budget. A multivariate analysis is presented and compared to a trajectography approach. Once validated, this algorithm is applied to the whole database of ozone profiles collected above Europe during the past 30 years in order to discuss the seasonal, geographical and temporal variability of transport processes as well as their impact on the tropospheric ozone budget. The variability of turbulent mixing and its impact on the persistence of tropospheric layers will also be discussed. (author)

  1. Mathematical Study of Laminar Boundary Layer Flow and Heat Transfer of Tangenthyperbolic Fluid Pasta Vertical Porous Plate with Biot Number Effects

    Directory of Open Access Journals (Sweden)

    Ramachandra Prasad

    2016-01-01

    Full Text Available In this article, we investigate the nonlinear steady boundary layer flow and heat transfer of an incompressible Tangent Hyperbolicnon-Newtonian fluid from a vertical porous plate. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We, the power law index (n, Prandtl number (Pr, Biot number (, and dimensionless local suction parameter(on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, Skin friction and Nusselt number (heat transfer rate are reduced with increasing Weissenberg number (We, whereas, temperature is enhanced. Increasing power law index (n enhances velocity and Nusselt number (heat transfer rate but temperature and Skin friction decrease. An increase in the Biot number ( is observed to enhance velocity, temperature, local skin friction and Nusselt number. An increasing Prandtl number, Pr, is found to decrease both velocity, temperature and skin friction but elevates heat transfer rate (Nusselt number. The study is relevant to chemical materials processing applications.

  2. Statistical study of the location and size of the electron edge of the Low-Latitude Boundary Layer as observed by Cluster at mid-altitudes

    Directory of Open Access Journals (Sweden)

    Y. V. Bogdanova

    2006-10-01

    Full Text Available The nature of particle precipitations at dayside mid-altitudes can be interpreted in terms of the evolution of reconnected field lines. Due to the difference between electron and ion parallel velocities, two distinct boundary layers should be observed at mid-altitudes between the boundary between open and closed field lines and the injections in the cusp proper. At lowest latitudes, the electron-dominated boundary layer, named the "electron edge" of the Low-Latitude Boundary Layer (LLBL, contains soft-magnetosheath electrons but only high-energy ions of plasma sheet origin. A second layer, the LLBL proper, is a mixture of both ions and electrons with characteristic magnetosheath energies. The Cluster spacecraft frequently observe these two boundary layers. We present an illustrative example of a Cluster mid-altitude cusp crossing with an extended electron edge of the LLBL. This electron edge contains 10–200 eV, low-density, isotropic electrons, presumably originating from the solar wind halo population. These are occasionally observed with bursts of parallel and/or anti-parallel-directed electron beams with higher fluxes, which are possibly accelerated near the magnetopause X-line. We then use 3 years of data from mid-altitude cusp crossings (327 events to carry out a statistical study of the location and size of the electron edge of the LLBL. We find that the equatorward boundary of the LLBL electron edge is observed at 10:00–17:00 magnetic local time (MLT and is located typically between 68° and 80° invariant latitude (ILAT. The location of the electron edge shows a weak, but significant, dependence on some of the external parameters (solar wind pressure, and IMF BZ- component, in agreement with expectations from previous studies of the cusp location. The latitudinal extent of the electron edge has been estimated using new multi-spacecraft techniques. The Cluster tetrahedron crosses the electron and ion boundaries of

  3. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8 J

  4. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    K. Toyota

    2004-01-01

    Full Text Available A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry to investigate photochemical interactions between volatile organic compounds (VOCs and reactive halogen species in the marine boundary layer (MBL. Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2 initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO and alkenes (especially C3H6 are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl

  5. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    K. Toyota

    2003-09-01

    Full Text Available A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry to investigate photochemical interactions between volatile organic compounds (VOCs and reactive halogen species in the marine boundary layer (MBL. Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit treatment of oxidative degradation of up to C3-hydrocarbons CH4, C2H6, C3H8, C2H4, C3H6, and C2H2 initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in the formation of halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO and alkenes (especially C3H6 are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. On the other hand, the reaction between Br atoms and C2H2 is unimportant for determining the degree of bromine activation in the

  6. Submarine design optimization using boundary layer control

    OpenAIRE

    Christopher L Warren

    1997-01-01

    Several hull designs are studied with parametric based volume and area estimates to obtain preliminary hull forms. The volume and area study includes the effects of technologies which manifest themselves in the parametric study through stack length requirements. Subsequently, the hull forms are studied using a Reynolds Averaged Navier Stokes analysis coupled with a vortex lattice propeller design code. Optimization is done through boundary layer control analysis and through studies on the eff...

  7. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    Science.gov (United States)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  8. Boundary-layer theory for blast waves

    Science.gov (United States)

    Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.

    1975-01-01

    It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

  9. Magnetic activity in accretion disc boundary layers

    Science.gov (United States)

    Armitage, Philip J.

    2002-03-01

    We use three-dimensional magnetohydrodynamic simulations to study the structure of the boundary layer between an accretion disc and a non-rotating, unmagnetized star. Under the assumption that cooling is efficient, we obtain a narrow but highly variable transition region in which the radial velocity is only a small fraction of the sound speed. A large fraction of the energy dissipation occurs in high-density gas adjacent to the hydrostatic stellar envelope, and may therefore be reprocessed and largely hidden from view of the observer. As suggested by Pringle, the magnetic field energy in the boundary layer is strongly amplified by shear, and exceeds that in the disc by an order of magnitude. These fields may play a role in generating the magnetic activity, X-ray emission and outflows in disc systems where the accretion rate is high enough to overwhelm the stellar magnetosphere.

  10. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    Energy Technology Data Exchange (ETDEWEB)

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  11. Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study

    Science.gov (United States)

    Chamorro, Leonardo P.; Porté-Agel, Fernando

    2010-09-01

    Wind-tunnel experiments were carried out to study turbulence statistics in the wake of a model wind turbine placed in a boundary-layer flow under both neutral and stably stratified conditions. High-resolution velocity and temperature measurements, obtained using a customized triple wire (cross-wire and cold wire) anemometer, were used to characterize the mean velocity, turbulence intensity, turbulent fluxes, and spectra at different locations in the wake. The effect of the wake on the turbulence statistics is found to extend as far as 20 rotor diameters downwind of the turbine. The velocity deficit has a nearly axisymmetric shape, which can be approximated by a Gaussian distribution and a power-law decay with distance. This decay in the near-wake region is found to be faster in the stable case. Turbulence intensity distribution is clearly non-axisymmetric due to the non-uniform distribution of the incoming velocity in the boundary layer. In the neutral case, the maximum turbulence intensity is located above the hub height, around the rotor tip location and at a distance of about 4-5.5 rotor diameters, which are common separations between wind turbines in wind farms. The enhancement of turbulence intensity is associated with strong shear and turbulent kinetic energy production in that region. In the stable case, the stronger shear in the incoming flow leads to a slightly stronger and larger region of enhanced turbulence intensity, which extends between 3 and 6 rotor diameters downwind of the turbine location. Power spectra of the streamwise and vertical velocities show a strong signature of the turbine blade tip vortices at the top tip height up to a distance of about 1-2 rotor diameters. This spectral signature is stronger in the vertical velocity component. At longer downwind distances, tip vortices are not evident and the von Kármán formulation agrees well with the measured velocity spectra.

  12. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  13. Sea Breezes over the Red Sea: Affect of topography and interaction with Desert Convective Boundary Layer

    Science.gov (United States)

    Khan, Basit A.; Stenchikov, Georgiy; Abualnaja, Yasser

    2014-05-01

    Thermodynamic structure of sea-breeze, its interaction with coastal mountains, desert plateau and desert convective boundary layer have been investigated in the middle region of the Red Sea around 25°N, at the Western coast of Saudi Arabia. Sea and land breeze is a common meteorological phenomenon in most of the coastal regions around the world. Sea-Breeze effects the local meteorology and cause changes in wind speed, direction, cloud cover and sometimes precipitation. The occurrence of sea-breeze, its intensity and landward propagation are important for wind energy resource assessment, load forecasting for existing wind farms, air pollution, marine and aviation applications. The thermally induced mesoscale circulation of sea breeze modifies the desert Planetary Boundary Layer (PBL) by forming Convective Internal Boundary Layer (CIBL), and propagates inland as a density current. The leading edge of the denser marine air rapidly moves inland undercutting the hot and dry desert air mass. The warm air lifts up along the frontal boundary and if contains enough moisture a band of clouds is formed along the sea breeze front (SBF). This study focuses on the thermodynamic structure of sea-breeze as it propagates over coastal rocky mountain range of Al-Sarawat, east of the Red Sea coast, and the desert plateau across the mountain range. Additional effects of topographical gaps such as Tokar gap on the dynamics of sea-land breezes have also been discussed. Interaction of SBF with the desert convective boundary layer provide extra lifting that could further enhance the convective instability along the frontal boundary. This study provides a detailed analysis of the thermodynamics of interaction of the SBF and convective internal boundary layer over the desert. Observational data from a buoy and meteorological stations have been utilized while The Advanced Research WRF (ARW) modeling system has been employed in real and 2D idealized configuration.

  14. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  15. Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng; Sun, Ruiyu N.; Han, J.

    2014-09-23

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.

  16. Beta limitation of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    A model has earlier been proposed for a boundary layer which separates a cloud of matter from one of antimatter in a magnetized ambiplasma. In this model steady pressure equilibrium ceases to exist when a certain beta limit is exceeded. The latter is defined as the ratio between the ambiplasma and magnetic field pressures which balance each other in the boundary layer. Thus, at an increasing density, the high-energy particles created by annihilation within the layer are 'pumped up' to a pressure which cannot be balanced by a given magnetic field. The boundary layer then 'disrupts'. The critical beta limit thus obtained falls within the observed parameter ranges of galaxies and other large cosmical objects. Provided that the considered matter-antimatter balance holds true, this limit is thus expected to impose certain existence conditions on matter-antimatter boundary layers. Such a limitation may apply to certain cosmical objects and cosmological models. The maximum time scale for the corresponding disruption development has been estimated to be in the range from about 10-4 to 102 seconds for boundary layers at ambiplasma particle densities in the range from 104 to 10-2 m-3, respectively. (author)

  17. Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013

    Science.gov (United States)

    Ye, Xinxin; Song, Yu; Cai, Xuhui; Zhang, Hongsheng

    2016-01-01

    Air quality is significantly influenced by the synoptic, regional and local meteorological conditions. This study aims at elucidating the relation between synoptic flow patterns and low visibility events of haze and fog over the North China Plain (NCP), and the contribution of synoptic flow patterns and boundary layer structure to the severe haze events over the NCP in January 2013. Nine synoptic flow types are statistically identified over the Northern China for autumn and winter of 2004-2014. The flow types with high pressure to the northeast of the NCP (NEH, type 8), weak low pressure band (L-, type 5), high pressure to the southeast (SHE, type 4), and high pressure to the north (NH, type 6) are associated with high occurrence frequencies of low visibility events (48.3%, 42.0%, 37.2%, and 36.7%). The meteorological conditions of these flow patterns reveal synergistic contribution of weak wind and high relative humidity (RH) to low visibility. Quantitative measures for dispersion conditions (recirculation, ventilation, and stagnation) suggest undesirable ventilation and frequent stagnation of the flow types 9 (EH, high pressure to the east), 4, 5, and 8. In January 2013 three regional haze episodes are identified from the distribution of visibility over the NCP, i.e., 10-16 January (EP 1), 22-24 January (EP 2), and 28 January-1 February (EP 3), which were largely associated with the flow types 5, 8, 4, and 9. Coverage of the hazy area exhibited northward expansion in the EP 2 and EP 3 when the RH increased. The abnormally high RH could be attributed to the flow type 6 (NH), which has the highest frequency of precipitation (13.7%) and RH among the nine flow types, and occurred more frequently in that month than in January 2004-2014. The simulation results indicate the evolution of the planetary boundary layer and southerly advection, which was responsible for the high RH and persistent temperature inversion that contributed to the long-lasting haze events.

  18. Observation studies on the influence of atmospheric boundary layer characteristics associate with air quality in dry season over the Pearl River Delta, China

    Science.gov (United States)

    Fan, Shaojia; Wu, Meng; Li, Haowen; Liao, Zhiheng; Fan, Qi; Zhu, Wei

    2016-04-01

    The characteristics of atmospheric boundary layer (ABL) is the very important factors influence on air quality in dry season over the Pearl River Delta (PRD), China. Based on the sounding data at six stations (Xinken,Dongguan, Sanshui, Nanhai, Shunde, and Heshan) which obtained from three times ABL experiments carried in dry season over PRD, the influence of wind and temperature vertical structure to the air quality over PRD has been studied with wind and temperature profiles, inversion layer, recirculation factor (RF), atmospheric boundary layer height (ABLH) and ventilation index (VI). It was found that the vertical wind of PRD could be divided in typical three layers according two wind shears appeared in 800 m and 1300 m. The thickness of calm or lower wind speed layer in pollution days was 500-1000m thicker than that of clean days, and its last time also much longer than that of clean days. The frequency of surface inversion in pollution days was about 35%,the mean thickness was about 100 m. With the influence of sea breeze, the frequency and thickness of surface inversion layer at Xinken station was a little lower than that in inland. Influenced by sea-land breezes and urban heat-island circulation, the RF of pollution days in coastal and urban area was quite smaller than that of clean days. During sea-land breezes days, the pollutants would be transported back to inland in nighttime with the influence of sea breeze, and resulted in 72.7% sea-land breezes was pollution days. The evolution of ABL was very typical in PRD during dry season. In pollution days, daily ABLH in PRD was lower than 500 m, daily VI was about 500-1500 m2/s. In clean days, daily VI was much larger than 2500 m2/s. An improved conceptual model of ABL influence on poor air quality and the parameters of the ABL characteristics associate with poor air quality in dry season over PRD had been summarized.

  19. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... in the boundary layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary...... based on the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [2] while having the advantage of resolving the wall layer with a coarser grid than a typical required grid size for such problems. LES simulations are...

  20. Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF

    Science.gov (United States)

    Ma, Yuanyuan; Yang, Yi; Hu, Xiao-Ming; Gan, Ruhui

    2015-10-01

    Although sudden nocturnal warming events near the earth's surface in Australia and the United States have been examined in previous studies, similar events observed occasionally over the Loess Plateau of Northwest China have not yet been investigated. The factors that lead to these warming events in such areas with their unique topography and climate remain not clear. To understand the formation mechanisms and associated thermal and dynamical features, a nocturnal warming event recorded in Gansu Province (northwest of the Loess Plateau) in June 2007 was investigated by using observations and model simulations with the Weather Research and Forecasting (WRF) model. Observations showed that this near-surface warming event lasted for 4 h and the temperature increased by 2.5°C. During this event, a decrease in humidity occurred simultaneously with the increase of temperature. The model simulation showed that the nocturnal warming was caused mainly by the transport of warmer and drier air aloft downward to the surface through enhanced vertical mixing. Wind shear played an important role in inducing the elevated vertical mixing, and it was enhanced by the continuous development of the atmospheric baroclinicity, which converted more potential energy to kinetic energy.

  1. Theoretical investigation on shocklets in compressible boundary layers

    Institute of Scientific and Technical Information of China (English)

    袁湘江; 刘智勇; 沈洁; 李国良

    2014-01-01

    By the shock relationships, the wavy characteristics and the forming condi-tions of a shock wave are analyzed. The wavy characteristics of an Euler system are stud-ied theoretically. The present research focuses on the wavy characteristics of Tollmien-Schlichting (T-S) waves, the excitation conditions of shocklets in compressible boundary layers, and the viscous effect on shock. The possibility of existence of shocklets in the compressible boundary layer and the physical mechanism of formation are theoretically interpreted.

  2. A study of the effect of a boundary layer profile on the dynamic response and acoustic radiation of flat panels. Ph.D. Thesis - Virginia Univ.

    Science.gov (United States)

    Mixson, J. S.

    1973-01-01

    The response of a thin, elastic plate to a harmonic force which drives the plate from below and a compressible air stream with a viscous boundary layer flowing parallel to the upper surface along the length was investigated. Equations governing the forced response of the coupled plate-aerodynamic system are derived along with appropriate boundary conditions. Calculations of basic solution parameters for a linear velocity profile and for a Blasius profile showed that the same system response could be obtained from each profile if appropriate values of boundary layer thickness were chosen for each profile.

  3. Self-similar magnetohydrodynamic boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2010-10-15

    The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.

  4. Modelling turbulent spots in swept boundary layers

    International Nuclear Information System (INIS)

    Highlights: • A linear perturbation method can capture the important flow features within a turbulent spot. • The horseshoe vortex in the perturbed velocity field is the dominant flow feature. • Sweep leads to skewing of the turbulent spot and calmed region. • The effects of pressure gradient are generally reduced by sweep. -- Abstract: A computational technique is presented for determining the fully 3-d viscid unsteady perturbation to a non-developing laminar swept boundary layer. For zero pressure gradient, unswept boundary layers, the perturbation method reveals a strongly three dimensional flow within the turbulent spot and its associated calmed region which is very similar to that observed in experiments and full DNS calculations. The perturbation method cannot predict turbulent motion but nevertheless provides a simple yet accurate means of studying and understanding the development of turbulent spot geometry. The most influential flow feature is the horseshoe vortex observed in the fluctuation velocity field, which is responsible for delivering the fluid found in the calmed region between its trailing legs. The upwards flow around the outer periphery of the vortex is also responsible for delivering low momentum fluid to the spot, but additional high momentum fluid also enters the spot from its rear through the downward sweeping motion of fluid between the vortex legs. The effect of an adverse streamwise pressure gradient is to increase the size of the spot and calmed region whereas a favourable pressure gradient has the opposite effect. When sweep is introduced to the boundary layer the spot is skewed for all non-zero pressure gradients, but the changes in size of the spot and calmed region due to pressure gradient are reduced. For favourable pressure gradients the skew increases monotonically with sweep, but this is not the case for adverse pressure gradients where the effect of sweep is more complex

  5. Microgravity Effects on Plant Boundary Layers

    Science.gov (United States)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  6. Dynamic Boundary Layer Properties in Turbulent Thermal Convection

    Science.gov (United States)

    Xia, Ke-Qing; Har Cheung, Yin; Sun, Chao

    2004-11-01

    We report an experimental study on the properties of the velocity and temperature boundary layers in turbulent thermal convection in a rectangular-shaped box over a range of Rayleigh numbers and at a constant Prandtl number. Velocity components both parallel and perpendicular to the conducting plate are measured simultaneously using the PIV technique. Our results show that, for the given geometry of the cell, the velocity boundary layer at the conduction plate is of a Blasius type, i.e. the boundary layer thickness δv scales with the Reynolds number Re as δv ˜ Re-1/2. The measurement further reveals that, at the velocity boundary layer, the turbulent (Reynolds) shear tress becomes larger than the viscous shear stress when Ra reaches 1-2×10^10, indicating that the boundary layer becomes turbulent for Ra >10^10. The viscous dissipation rate calculated based on the measured velocity field shows that it is dominated by contribution from the bulk over that from the boundary layer.

  7. Structure and Growth of the Marine Boundary Layer

    Science.gov (United States)

    Mccumber, M.

    1984-01-01

    LANDSAT visible imagery and a one-dimensional Lagrangian boundary layer model were used to hypothesize the nature and the development of the marine boundary layer during a winter episode of strong seaward cold air advection. Over-water heating and moistening of the cold, dry continental air is estimable from linear relations involving horizontal gradients of the near-surface air temperature and humidity. A line of enhanced convection paralleling the Atlantic U.S. coast from south of New York Bay to the vicinity of Virginia Beach, VA was attributed to stronger convergence at low levels. This feature was characterized as a mesoscale front. With the assistance of a three-dimensional mesoscale boundary layer model, initialized with data obtained from the MASEX, the marine boundary layer can be mapped over the entire Atlantic coastal domain and the evolution of the boundary layer can be studied as a function of different characteristics of important surface level forcings. The effects on boundary layer growth due to the magnitude and pattern of sea surface temperature, to the shape of the coastline, and to atmospheric conditions, such as the orientation of the prevailing wind are examined.

  8. Numerical and experimental study of the load of an object due to the effects of a flow field in the atmospheric boundary layer

    Czech Academy of Sciences Publication Activity Database

    Michalcová, V.; Kuznetsov, Sergeii; Pospíšil, S.

    2014-01-01

    Roč. 8, č. 1 (2014), s. 135-140. ISSN 1998-0159 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0060 Institutional support: RVO:68378297 Keywords : atmospheric boundary layer ABL * bluff body * CFD * ELES * SAS * wind tunnel Subject RIV: JM - Building Engineering http://www.naun.org/cms.action?id=7632

  9. Cumulative ozone effect on canopy stomatal resistance and the impact on boundary layer dynamics and CO2 assimilation at the diurnal scale: A case study for grassland in the Netherlands

    Science.gov (United States)

    Super, Ingrid; Vilà-Guerau de Arellano, Jordi; Krol, Maarten C.

    2015-07-01

    Biological, chemical, and dynamical processes occurring at the surface strongly interact at diurnal scales. Therefore, this study examines the seasonal ozone impact on stomatal resistance, surface energy balance, boundary layer dynamics, and CO2 assimilation at this (sub)diurnal scale under changing conditions. We combine a seasonal canopy resistance module with a surface-boundary layer model that solves the diurnal evolution of dynamical and chemical variables in a well-mixed, convective boundary layer. The model is constrained with observations from Cabauw (Netherlands) for the dry year 2003, representing a well-mixed boundary layer at midlatitudes over water-stressed grassland. To quantify the ozone impact, the Cumulative Uptake of Ozone is calculated over a growing season, which gives an estimate of the reduction in stomatal aperture and photosynthesis. From a sensitivity analysis with mixed-layer temperature and soil moisture content we conclude that drought is the dominant factor that determines the surface energy partitioning and limits CO2 assimilation. Although drought causes stomatal closure, the results indicate that ozone damage, nevertheless, occurs. A second sensitivity analysis with CO2 and ozone shows that ozone damage causes an increase in stomatal resistance of up to 40% under high ozone levels and that CO2-induced stomatal closure limits ozone damage. The impact on boundary layer development through the effect of CO2 and ozone on the stomatal resistance is much smaller. At the diurnal scale soil moisture influences the surface energy partitioning, which affects the entrainment of ozone-rich air. Due to ozone damage, the CO2 assimilation flux is reduced by about 15%.

  10. A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign

    Science.gov (United States)

    Xia, Geng; Zhou, Liming; Freedman, Jeffrey M.; Roy, Somnath Baidya; Harris, Ronald A.; Cervarich, Matthew Charles

    2016-04-01

    Recent studies using satellite observations show that operational wind farms in west-central Texas increase local nighttime land surface temperature (LST) by 0.31-0.70 °C, but no noticeable impact is detected during daytime, and that the diurnal and seasonal variations in the magnitude of this warming are likely determined by those in the magnitude of wind speed. This paper further explores these findings by using the data from a year-long field campaign and nearby radiosonde observations to investigate how thermodynamic profiles and surface-atmosphere exchange processes work in tandem with the presence of wind farms to affect the local climate. Combined with satellite data analyses, we find that wind farm impacts on LST are predominantly determined by the relative ratio of turbulence kinetic energy (TKE) induced by the wind turbines compared to the background TKE. This ratio explains not only the day-night contrast of the wind farm impact and the warming magnitude of nighttime LST over the wind farms, but also most of the seasonal variations in the nighttime LST changes. These results indicate that the diurnal and seasonal variations in the turbine-induced turbulence relative to the background TKE play an essential role in determining those in the magnitude of LST changes over the wind farms. In addition, atmospheric stability determines the sign and strength of the net downward heat transport as well as the magnitude of the background TKE. The study highlights the need for better understanding of atmospheric boundary layer and wind farm interactions, and for better parameterizations of sub-grid scale turbulent mixing in numerical weather prediction and climate models.

  11. Boundary Layer Flow Over a Moving Wavy Surface

    Science.gov (United States)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a

  12. Study of the effect of wind speed on evaporation from soil through integrated modeling of atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan; Illangasekare, Tissa

    2013-04-01

    The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change, the movement of green house gases such as possible leaking of sequestered CO2 and the accurate detection of buried objects such as landmines. Soil moisture distribution in the shallow subsurface becomes a critical factor in all these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary

  13. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.;

    2005-01-01

    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...

  14. Cyclone separator having boundary layer turbulence control

    International Nuclear Information System (INIS)

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator

  15. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank with an ...

  16. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  17. Cyclone separator having boundary layer turbulence control

    Science.gov (United States)

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  18. A DNS study on the effects of convex streamwise curvature on coherent structures in a temporally-developing turbulent boundary layer with supercritical water

    International Nuclear Information System (INIS)

    Highlights: • Numerically simulated forced-convection turbulent flow over convex-curved surface. • Analyzed effects of curvature and supercritical thermal state on heat transfer. • Near-wall streaks spaced farther apart due to curvature-induced radial equilibrium. • Curvature and supercritical effects on turbulence are of comparable magnitude. -- Abstract: Direct numerical simulation (DNS) results are used to establish the effect of convex streamwise curvature on the development of turbulent boundary layers, and the effect of such curvature on the forced-convection heat transfer variations observed at certain supercritical thermodynamic states. The results illustrate the stabilizing effects of this flow geometry through modification of the structure and distribution of hairpin-like vortical flow structures in the boundary layer. Furthermore, enhancement of convective heat transfer realized at a particular heat flux-to-mass flux ratio with the working fluid at a supercritical state is observed to be reduced by the stabilizing effect of convex surface curvature

  19. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    Directory of Open Access Journals (Sweden)

    Meraj Mustafa

    Full Text Available The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.

  20. Lie Group Method for Studying the Heat Generation Effect on Freeconvection Laminar Boundary-layer Flow Over a Vertical Flat Plate

    OpenAIRE

    Abd-el-Malek, MB; Badran, NA; Hassan, HS; Abbas, HH

    2015-01-01

    The nonlinear equations of heat and mass transfer in two-dimensional free-convection, laminar, boundary layer flow of a viscous incompressible fluid over a vertical plate with thermophoresis and heat generation effect have been considered. We apply Lie-group method for determining symmetry reductions of partial differential equations. Liegroup method starts out with a general infinitesimal group of transformations under which the given partial differential equations are inva...

  1. Importance of the surface reaction OH + Cl− on sea salt aerosol for the chemistry of the marine boundary layer – a model study

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2006-01-01

    Full Text Available The reaction of the hydroxyl radical with chloride on the surface of sea salt aerosol producing gas phase Cl2 and particulate OH− and its implications for the chemistry of the marine boundary layer under coastal, remote, and very remote conditions have been investigated with a numerical model. This reaction had been suggested by Laskin et al. (2003 to play a major role in the sulfur cycle in the marine boundary layer by increasing the sulfate production in sea salt by O3 oxidation due to the additional production of alkalinity in the particle. Based on literature data a new "best estimate" for the rate coefficient of the reaction was deduced and applied, showing that the additional initial sulfate production by this reaction is less than 1%, therefore having only a minor impact on sulfate production. Even though the gas phase concentration of Cl2 increased strongly in the model, the concentration of Cl radicals increased by less than 5% for the "best guess" case. Additional feedbacks between the cycles of chlorine and sulfur in the marine boundary layer are discussed as well as a two-stage acidification of large fresh sea salt aerosol.

  2. A study on turbulence transportation and modification of Spalart–Allmaras model for shock-wave/turbulent boundary layer interaction flow

    Directory of Open Access Journals (Sweden)

    Ma Li

    2014-04-01

    Full Text Available It is of great significance to improve the accuracy of turbulence models in shock-wave/boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development of turbulent kinetic energy in impinging shock-wave/turbulent boundary layer interaction flow at Mach 2.25 is analyzed based on the data of direct numerical simulation (DNS. It is found that the turbulent kinetic energy is amplified by strong shear in the separation zone and the adverse pressure gradient near the separation point. The pressure gradient was non-dimensionalised with local density, velocity, and viscosity. Spalart–Allmaras (S–A model is modified by introducing the non-dimensional pressure gradient into the production term of the eddy viscosity transportation equation. Simulation results show that the production and dissipation of eddy viscosity are strongly enhanced by the modification of S–A model. Compared with DNS and experimental data, the wall pressure and the wall skin friction coefficient as well as the velocity profile of the modified S–A model are obviously improved. Thus it can be concluded that the modification of S–A model with the pressure gradient can improve the predictive accuracy for simulating the shock-wave/turbulent boundary layer interaction.

  3. Variability of Atmospheric Boundary Layer height over the tropical oceans - A study using atmospheric refractivity profiles from multi campaign in-situ and satellite radio occultation data.

    Science.gov (United States)

    Santosh, M.

    2016-07-01

    Atmospheric Boundary Layer (ABL) over the tropical oceans controls and regulates the influx of water vapour into the free atmosphere due to evaporation. The availability of in situ data for determining the ABL characteristics over tropical oceans are limited to different ship based campaigns and hence restricted in spatial and temporal coverage. For ABL studies the Radio Occultation (RO) based satellite data over tropical oceans have good temporal and spatial coverage but limited in temporal and spatial resolution. Atmospheric refractivity profiles are extensively used in many studies to determine the ABL height from both platforms. The present study attempts to use the advantages in both in-situ and satellite (RO) based data to quantify the variability in the ABL height over the tropical oceans. All studies done so far to identify the ABL height from RO derived refractivity profiles rely extensively on the detection of the minimum refractivity gradient (MRG) below ~6 km along with additional threshold criteria. This leads to an over estimation of ABL heights especially in presence of strong subsidence inversion caused by local/ mesoscale/ synoptic scale processes where the MRG lies significantly above the ABL. The present study attempts to quantify this over estimation using atmospheric refractivity profiles derived from thermo-dynamical parameters from radiosonde ascents over the tropical ocean, suggests an improved method of ABL detection and quantifies the variability so deduced. Over 1000 radiosonde ascents from four ship cruises conducted during DYNAMO 2011 field campaign over the tropical Indian Ocean are used for the purpose. ABL heights determined from radiosonde data using traditional methods (using virtual potential temperature and specific humidity) are compared with those identified from simulated atmospheric refractivity profiles from same data (using prevalent methods for RO) to quantify the over estimation. A new method of ABL detection from

  4. Stabilization of boundary layer streaks by plasma actuators

    International Nuclear Information System (INIS)

    A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien–Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier–Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow. (paper)

  5. Radicals in the marine boundary layer during NEAQS 2004: a model study of day-time and night-time sources and sinks

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2008-09-01

    Full Text Available This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5 in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average.

    The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5N2O5>1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15% of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS.

  6. Atmospheric boundary layer over steep surface waves

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil A.; Druzhinin, Oleg; Kandaurov, Alexander A.; Ermakova, Olga S.; Ezhova, Ekaterina V.; Esau, Igor; Zilitinkevich, Sergej

    2014-08-01

    Turbulent air-sea interactions coupled with the surface wave dynamics remain a challenging problem. The needs to include this kind of interaction into the coupled environmental, weather and climate models motivate the development of a simplified approximation of the complex and strongly nonlinear interaction processes. This study proposes a quasi-linear model of wind-wave coupling. It formulates the approach and derives the model equations. The model is verified through a set of laboratory (direct measurements of an airflow by the particle image velocimetry (PIV) technique) and numerical (a direct numerical simulation (DNS) technique) experiments. The experiments support the central model assumption that the flow velocity field averaged over an ensemble of turbulent fluctuations is smooth and does not demonstrate flow separation from the crests of the waves. The proposed quasi-linear model correctly recovers the measured characteristics of the turbulent boundary layer over the waved water surface.

  7. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    Science.gov (United States)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  8. The inner core thermodynamics of the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.

    2016-02-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ ), specific humidity (q), and reversible equivalent potential temperature (θ _e ) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  9. The mesoscale moisture variability and its impact on the energy transfer through the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Frech, M.

    1998-01-01

    The impact of mesoscale moisture variability on the vertical energy transfer through a pre-frontal boundary layer is studied with NOPEX aircraft data. The moisture variability relates to a cold front which passed the area 2 1/2 hours after the observations. We find a density front ahead of the cold front. The large vertical divergence of the turbulent moisture flux in the surface layer is partly related to this moisture variability. Large scale horizontal advection contributes to the observed vertical turbulent flux divergence. The estimated horizontal mesoscale advection term in the budget of sensible heat and moisture is on average small but locally it can be large. This term acts to re-distribute moisture in the boundary layer and leads to sub-grid variations of relative humidity which is an important parameter for boundary layer cloud models. The distinct spatial variations of specific humidity are mainly related to synoptic forcing and not to heterogeneity in the surface energy balance. (orig.)

  10. Two case studies on the interaction of large-scale transport, mesoscale photochemistry, and boundary-layer processes on the lower tropospheric ozone dynamics in early spring

    Directory of Open Access Journals (Sweden)

    S. Brönnimann

    Full Text Available The vertical distribution of ozone in the lower troposphere over the Swiss Plateau is investigated in detail for two episodes in early spring (February 1998 and March 1999. Profile measurements of boundary-layer ozone performed during two field campaigns with a tethered balloon sounding system and a kite are investigated using regular aerological and ozone soundings from a nearby site, measurements from monitoring stations at various altitudes, backward trajectories, and synoptic analyses of meteorological fields. Additionally, the effect of in situ photochemistry was estimated for one of the episodes employing the Metphomod Eulerian photochemical model. Although the meteorological situations were completely different, both cases had elevated layers with high ozone concentrations, which is not untypical for late winter and early spring. In the February episode, the highest ozone concentrations of 55 to 60 ppb, which were found at around 1100 m asl, were partly advected from Southern France, but a considerable contribution of in situ photochemistry is also predicted by the model. Below that elevation, the local chemical sinks and surface deposition probably overcompensated chemical production, and the vertical ozone distribution was governed by boundary-layer dynamics. In the March episode, the results suggest that ozone-rich air parcels, probably of stratospheric or upper tropospheric origin, were advected aloft the boundary layer on the Swiss Plateau.

    Key words. Atmospheric composition and structure (pollution – urban and regional; troposphere – composition and  chemistry – Meteorology and atmospheric dynamics (mesoscale meteorology

  11. Visualisation of Boundary Layer Separation and Flow Control on Airfoils and Bodies in Wind-Tunnel and In-Flight Studies

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, M.; Uruba, Václav; Součková, Natálie; Zelený, L.; Krejčiřík, P.

    Nice: University of Franche-Comté and Institut FEMTO-ST, 2008 - (Prenel, J.; Bailly, Y.), s. 157-157 ISBN 0-9533991-8-4. [International Symposium on Flow Visualization ISFV /13./ French Congress on Visualization in Fluid Mechanics FLUVISU /12./. Nice (FR), 01.07.2008-04.07.2008] R&D Projects: GA MŠk(CZ) 1M06031; GA ČR GA101/08/1112; GA AV ČR IAA2076403 Institutional research plan: CEZ:AV0Z2076919 Keywords : flow control * boundary layer * transition * separation Subject RIV: BK - Fluid Dynamics

  12. Multiscale Covariability of Surface Wind, Humidity and Temperature in the Subtropical Marine Boundary Layer

    Science.gov (United States)

    Fildier, Benjamin; Collins, William

    2016-04-01

    Trade cumulus and stratocumulus clouds in oceanic subtropical regions are sources of much uncertainty in current global climate model (GCM) simulations. Errors in low cloud fraction and rain amounts are a result of inadequate parameterizations for describing the small-scale boundary layer processes specific to the convective and cloud-formation dynamics of those regions. While most cloud parameterization techniques do consider sub-grid scale variability in specific humidity (q), the significant fluctuations in temperature (T) and wind speed (u) in the boundary layer are still often neglected. In order to better acknowledge the interactions of these fields with cloud and convection, understanding their codependence seems crucial. For example, using the negative correlations between T and q on large scales has helped to improve cloud parameterizations, and wind shear is known to modulate cloud layer decoupling and affect the liquid water path (LWP). While numerous studies document the spatial properties of T , q and u independently through power spectra and multifractal analyses, the covariation between these three variables and their spatial increments - and how these relationships change across spatial scales - has not been adequately and quantitatively characterized. The present work focuses on the spatial covariability and multiscale coupling between fluctuations in q, T and u in the marine boundary layer and seeks to understand which pieces of information are required for better predicting LWP on a variety of scales from a few tens to a few hundred kms. We use remote-sensing measurements of thermodynamic variables from MODIS and surface wind estimates from QuikSCAT. The scale-by-scale covariability of two variables is quantified through their Fourier and wavelet cross spectra, using Haar wavelets; these spectra permit the calculation of multiscale coupling exponents when appropriate. Results from this study are threefold: (1) we quantify the contributions of

  13. Behaviour of tracer diffusion in simple atmospheric boundary layer models

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2007-10-01

    Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with boundary layer measurements of polar NOx. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The simple model presented captures the essence of the evolution of a trace gas released at the surface, and thereby provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.

  14. Theoretical skin-friction law in a turbulent boundary layer

    International Nuclear Information System (INIS)

    We study transitional and turbulent boundary layers using a turbulent velocity profile equation recently derived from the Navier-Stokes-alpha and Leray-alpha models. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of cfmax=0.0063 for turbulent velocity profiles. A two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers

  15. Boundary layer for non-newtonian fluids on curved surfaces

    International Nuclear Information System (INIS)

    By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author)

  16. Response of neutral boundary-layers to changes of roughness

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Larsen, Søren Ejling; Mortensen, Niels Gylling;

    1990-01-01

    stratification, and the surface roughness is the main parameter. The analysis of wind data and two simple models, a surface layer and a planetary boundary layer (PBL) model, are described. Results from both models are discussed and compared with data analysis. Model parameters have been evaluated and the model......When air blows across a change in surface roughness, an internal boundary layer (IBL) develops within which the wind adapts to the new surface. This process is well described for short fetches, > 1 km. However, few data exist for large fetches on how the IBL grows to become a new equilibrium...... boundary layer where again the drag laws can be used to estimate the surface wind. To study this problem, data have been sampled for two years from four 30-m meteorological masts placed from 0 to 30 km inland from the North Sea coast of Jutland in Denmark. The present analysis is limited to neutral...

  17. LDV measurements of turbulent baroclinic boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Neuwald, P.; Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany); Kuhl, A.L. [Lawrence Livermore National Lab., El Segundo, CA (United States)

    1993-07-01

    Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.

  18. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    Directory of Open Access Journals (Sweden)

    Junya Uchida

    2010-12-01

    Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.

  19. Lagrangian analysis of the laminar flat plate boundary layer

    CERN Document Server

    Gabr, Mohammad

    2016-01-01

    The leading edge flow properties has been a singularity to the Blasius laminar boundary layer equations, by applying the Lagrangian approach the leading edge velocity profiles of the laminar boundary layer over a flat plate are studied. Experimental observations as well as the theoretical analysis show an exact Gaussian distribution curve as the original starting profile of the laminar flow. Comparisons between the Blasius solution and the Gaussian curve solution are carried out providing a new insight into the physics of the laminar flow.

  20. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  1. Marine boundary layer simulation and verification during BOBMEX-Pilot using NCMRWF model

    Indian Academy of Sciences (India)

    Swati Basu

    2000-06-01

    A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available observations. The diurnal variation of various surface fields are also studied. The impact of non-local closure scheme for the boundary layer parameterisation is seen in simulation of the flow pattern as well as on the boundary layer structure over the oceanic region.

  2. Optimizing EDMF parameterization for stratocumulus-topped boundary layer

    Science.gov (United States)

    Jones, C. R.; Bretherton, C. S.; Witek, M. L.; Suselj, K.

    2014-12-01

    We present progress in the development of an Eddy Diffusion / Mass Flux (EDMF) turbulence parameterization, with the goal of improving the representation of the cloudy boundary layer in NCEP's Global Forecast System (GFS), as part of a multi-institution Climate Process Team (CPT). Current GFS versions substantially under-predict cloud amount and cloud radiative impact over much of the globe, leading to large biases in the surface and top of atmosphere energy budgets. As part of the effort to correct these biases, the CPT is developing a new EDMF turbulence scheme for GFS, in which local turbulent mixing is represented by an eddy diffusion term while nonlocal shallow convection is represented by a mass flux term. The sum of both contributions provides the total turbulent flux. Our goal is for this scheme to more skillfully simulate cloud radiative properties without negatively impacting other measures of weather forecast skill. One particular challenge faced by an EDMF parameterization is to be able to handle stratocumulus regimes as well as shallow cumulus regimes. In order to isolate the behavior of the proposed EDMF parameterization and aid in its further development, we have implemented the scheme in a portable MATLAB single column model (SCM). We use this SCM framework to optimize the simulation of stratocumulus cloud top entrainment and boundary layer decoupling.

  3. The study of the effect of the surface wave on turbulent stably-stratified boundary layer air-flow by direct numerical simulation

    Science.gov (United States)

    Druzhinin, Oleg; Troitskaya, Yliya; Zilitinkevich, Sergej

    2015-04-01

    Detailed knowledge of the interaction of surface water waves with the wind flow is of primary importance for correct parameterization of turbulent momentum and heat fluxes which define the energy and momentum transfer between the atmosphere and hydrosphere. The objective of the present study is to investigate the properties of the stably stratified turbulent boundary-layer (BL) air-flow over waved water surface by direct numerical simulation (DNS) at a bulk Reynolds number varying from 15000 to 80000 and the surface-wave slope up to ka = 0.2. The DNS results show that the BL-flow remains in the statistically stationary, turbulent regime if the Reynolds number (ReL) based on the Obukhov length scale and friction velocity is sufficiently large (ReL > 100). In this case, mean velocity and temperature vertical profiles are well predicted by log-linear asymptotic solutions following from the Monin-Obukhov similarity theory provided the velocity and temperature roughness parameters, z0U and z0T, are appropriately prescribed. Both z0U and z0T increase for larger surface-wave slope. DNS results also show that turbulent momentum and heat fluxes and turbulent velocity and temperature fluctuations are increased for larger wave slope (ka) whereas the mean velocity and temperature derivatives remain practically the same for different ka. Thus, we conclude that the source of turbulence enhancement in BL-flow are perturbations induced by the surface wave, and not the shear instability of the bulk flow. On the other hand, if stratification is sufficiently strong, and the surface-wave slope is sufficiently small, the BL-flow over waved surface relaminarizes in the bulk of the domain. However, if the surface-wave slope exceeds a threshold value, the velocity and temperature fluctuations remain finite in the vicinity of the critical-layer level, where the surface-wave phase velocity coincides with the mean flow velocity. We call this new stably-stratified BL-flow regime observed in

  4. Role of boundary layer processes on the mixed layer CO2-budget

    OpenAIRE

    D. Pino; Vilà-Guerau de Arellano, J.

    2010-01-01

    The diurnal and vertical variability of temperature, humidity and specially CO2 in the atmospheric boundary layer is studied by combining detailed observations taken at Cabauw (The Netherlands), Large-Eddy simulations (LES) and mixed layer theory. The research focus on the role played by the entrainment and other boundary layer driven processes on the distribution and diurnal evolution of CO2 in the boundary layer. The relative importance of this entrained air to ventilate CO2 will be analyze...

  5. Nature, theory and modelling of geophysical convective planetary boundary layers

    Science.gov (United States)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  6. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used t...

  7. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo;

    2011-01-01

    Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer is...

  8. Boundary layer physics over snow and ice

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2007-06-01

    Full Text Available A general understanding of the physics of advection and turbulent mixing within the near surface atmosphere assists the interpretation and predictive power of air chemistry theory. The theory of the physical processes involved in diffusion of trace gas reactants in the near surface atmosphere is still incomplete. Such boundary layer theory is least understood over snow and ice covered surfaces, due in part to the thermo-optical properties of the surface. Polar boundary layers have additional aspects to consider, due to the possibility of long periods without diurnal forcing and enhanced Coriolis effects.

    This paper provides a review of present concepts in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP.

  9. Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.

  10. DNS of compressible turbulent boundary layer around a sharp cone

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh- order up-wind biased finite difference scheme and sixth-order central difference scheme. The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch. The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer. Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow. The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations. The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied. The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.

  11. DNS of compressible turbulent boundary layer around a sharp cone

    Institute of Scientific and Technical Information of China (English)

    LI XinLiang; FU DeXun; MA YanWen

    2008-01-01

    Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme.The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch.The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer,Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow.The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations,The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied.The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.

  12. On the growth of turbulent regions in laminar boundary layers

    Science.gov (United States)

    Gad-El-hak, M.; Riley, J. J.; Blackwelder, R. F.

    1981-01-01

    Turbulent spots evolving in a laminar boundary layer on a nominally zero pressure gradient flat plate are investigated. The plate is towed through an 18 m water channel, using a carriage that rides on a continuously replenished oil film giving a vibrationless tow. Turbulent spots are initiated using a solenoid valve that ejects a small amount of fluid through a minute hole on the working surface. A novel visualization technique that utilizes fluorescent dye excited by a sheet of laser light is employed. Some new aspects of the growth and entrainment of turbulent spots, especially with regard to lateral growth, are inferred from the present experiments. To supplement the information on lateral spreading, a turbulent wedge created by placing a roughness element in the laminar boundary layer is also studied both visually and with probe measurements. The present results show that, in addition to entrainment, another mechanism is needed to explain the lateral growth characteristics of a turbulent region in a laminar boundary layer. This mechanism, termed growth by destabilization, appears to be a result of the turbulence destabilizing the unstable laminar boundary layer in its vicinity. To further understand the growth mechanisms, the turbulence in the spot is modulated using drag-reducing additives and salinity stratification.

  13. The collapse of turbulence in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiel, B J H; Clercx, H J H [Department of Physics, Eindhoven University of Technology (Netherlands); Moene, A F [Department of Meteorology and Air Quality, Wageningen University and Research Centre (Netherlands); Jonker, H J J, E-mail: b.j.h.v.d.wiel@tue.nl [Department of Multi-scale Pysics, Delft University of Technology (Netherlands)

    2011-12-22

    A well-known phenomenon in the atmospheric boundary layer is the fact that winds may become very weak in the evening after a clear sunny day. In these quiet conditions usually hardly any turbulence is present. Consequently this type of boundary layer is referred to as the quasi-laminar boundary layer. In spite of its relevance, the appearance of laminar boundary layers is poorly understood and forms a long standing problem in meteorological research. Here we investigate an analogue problem in the form of a stably stratified channel flow. The flow is studied with a simplified atmospheric model as well as with Direct Numerical Simulations. Both models show remarkably similar behaviour with respect to the mean variables such as temperature and wind speed. The similarity between both models opens new way for understanding and predicting the laminarization process. Mathematical analysis on the simplified model shows that relaminarization can be understood from the existence of a definite limit in the maximum sustainable heat flux under stably stratified conditions. This fascinating aspect will be elaborated in future work.

  14. Passive Control of Supersonic Rectangular Jets through Boundary Layer Swirl

    Science.gov (United States)

    Han, Sang Yeop; Taghavi, Ray R.; Farokhi, Saeed

    2013-06-01

    Mixing characteristics of under-expanded supersonic jets emerging from plane and notched rectangular nozzles are computationally studied using nozzle exit boundary layer swirl as a mean of passive flow control. The coupling of the rectangular jet instability modes, such as flapping, and the swirl is investigated. A three-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) code with shock adaptive grids is utilized. For plane rectangular nozzle with boundary layer swirl, the flapping and spanwise oscillations are captured in the jet's small and large dimensions at twice the frequencies of the nozzles without swirl. A symmetrical oscillatory mode is also observed in the jet with double the frequency of spanwise oscillation mode. For the notched rectangular nozzle with boundary layer swirl, the flapping oscillation in the small jet dimension and the spanwise oscillation in the large jet dimension are observed at the same frequency as those without boundary layer swirl. The mass flow rates in jets at 11 and 8 nozzle heights downstream of the nozzles increased by nearly 25% and 41% for the plane and notched rectangular nozzles respectively, due to swirl. The axial gross thrust penalty due to induced swirl was 5.1% for the plane and 4.9% for the notched rectangular nozzle.

  15. Characterization of internal boundary layer capacitors

    International Nuclear Information System (INIS)

    Internal boundary layer capacitors were characterized by scanning transmission electron microscopy and by microscale electrical measurements. Data are given for the chemical and physical characteristics of the individual grains and boundaries, and their associated electric and dielectric properties. Segregated internal boundary layers were identified with resistivities of 1012-1013 Ω-cm. Bulk apparent dielectric constants were 10,000-60,000. A model is proposed to explain the dielectric behavior in terms of an equivalent n-c-i-c-n representation of ceramic microstructure, which is substantiated by capacitance-voltage analysis

  16. Two perspectives on the coupled carbon, water and energy exchange in the planetary boundary layer

    Science.gov (United States)

    Combe, M.; Vilà-Guerau de Arellano, J.; Ouwersloot, H. G.; Jacobs, C. M. J.; Peters, W.

    2015-01-01

    Understanding the interactions between the land surface and the atmosphere is key to modelling boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat and CO2 in a cropland-atmosphere system at the diurnal and local scale. To that end, we couple an atmospheric mixed-layer model (MXL) to two land-surface schemes developed from two different perspectives: while one land-surface scheme (A-gs) simulates vegetation from an atmospheric point of view, the other (GECROS) simulates vegetation from a carbon-storage point of view. We calculate surface fluxes of heat, moisture and carbon, as well as the resulting atmospheric state and boundary-layer dynamics, over a maize field in the Netherlands, on a day for which we have a rich set of observations available. Particular emphasis is placed on understanding the role of upper-atmosphere conditions like subsidence in comparison to the role of surface forcings like soil moisture. We show that the atmospheric-oriented model (MXL-A-gs) outperforms the carbon storage-oriented model (MXL-GECROS) on this diurnal scale. We find this performance is partly due to the difference of scales at which the models were made to run. Most importantly, this performance strongly depends on the sensitivity of the modelled stomatal conductance to water stress, which is implemented differently in each model. This sensitivity also influences the magnitude of the surface fluxes of CO2, water and heat (surface control) and subsequently impacts the boundary-layer growth and entrainment fluxes (upper atmosphere control), which alter the atmospheric state. These findings suggest that observed CO2 mole fractions in the boundary layer can reflect strong influences of both the surface and upper-atmosphere conditions, and the interpretation of CO2 mole fraction variations depends on the assumed land-surface coupling. We illustrate this with a sensitivity

  17. Two perspectives on the coupled carbon, water, and energy exchange in the planetary boundary layer

    Directory of Open Access Journals (Sweden)

    M. Combe

    2014-04-01

    Full Text Available Understanding the interactions between the land surface and the atmosphere is key to model boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat, and CO2 in a cropland–atmosphere system at the diurnal and local scale. We thereto couple an atmospheric mixed-layer model (MXL to two land-surface schemes, developed from two different perspectives: while one land-surface scheme (A-gs simulates vegetation from an atmospheric point of view, the other (GECROS simulates vegetation from a carbon-storage point of view. We calculate surface fluxes of heat, moisture and carbon, as well as the resulting atmospheric state and boundary-layer dynamics, over a maize field in the Netherlands, for a day on which we have a rich set of observations available. Particular emphasis is placed on understanding the role of upper atmosphere conditions like subsidence, in comparison to the role of surface forcings like soil moisture. We show that the atmospheric-oriented model (MXL-A-gs outperforms the carbon storage-oriented model (MXL-GECROS on this diurnal scale. This performance strongly depends on the sensitivity of the modelled stomatal conductance to water stress, which is implemented differently in each model. This sensitivity also influences the magnitude of the surface fluxes of CO2, water and heat (surface control, and subsequently impacts the boundary-layer growth and entrainment fluxes (upper atmosphere control, which alter the atmospheric state. These findings suggest that observed CO2 mole fractions in the boundary layer can reflect strong influences of both the surface and upper atmospheric conditions, and the interpretation of CO2 mole fraction variations depends on the assumed land-surface coupling. We illustrate this with a sensitivity analysis where increased subsidence, typical for periods of drought, can induce a change of 12 ppm in

  18. 边界层流动的非平行稳定性研究%Studies of nonparallel stability of boundary layer

    Institute of Scientific and Technical Information of China (English)

    夏浩; 唐登斌; 陆昌根

    2001-01-01

    采用极为有效的抛物化稳定性方程(PSE)方法研究边界层的非平行稳定性。并利用抛物线坐标变换、有限远延拓外边界条件、及流向和法向全差分的数值方法,对不同频率的二维Tollmien-Schlichting波的非平行稳定性进行了计算和分析。计算结果与Orr-Sommerfeld方程(OSE)的解以及谱配置方法的PSE结果作了详细的比较,得到了满意的结果。%In this article the nonparallel stability of the boundary layer is investigated effectively by using the parabolized stability equations (PSE). With the coordinate transformation, the finitely expanded out-boundary condition,and the finite difference technique in both x-coordinate and y-coordinate, the evolution of Tollmien-Schlichting waves are presented which are comparable with the Orr-Sommerfeld equations (OSE) results and PSE results by spectral method.

  19. Aerosol chemistry and vertical mixing in the planetary boundary layer: insights on the relevant role of nitrate from case studies in Milan (Italy)

    Science.gov (United States)

    Curci, Gabriele

    2015-04-01

    Observations of the aerosol vertical profile reveal the formation of elevated aerosol layers within and above the planetary boundary layer (PBL). Those layers may have chemical composition significantly different from that observed near the ground, and the knowledge about the role they play in the budget of the ground-level particulate matter is still incomplete. Here we investigate this aspect combining chemical and physical aerosol measurements with WRF/Chem model simulations. The observations were collected in the Milan urban area (Northern Italy) during summer of 2007 and winter of 2008. We find that an important player in shaping the upper aerosol layers is particulate nitrate, which may reach higher values in the upper PBL (up to 30% of the aerosol mass) than the lower. The nitrate formation process is predicted to be largely driven by the relative humidity vertical profile, that may trigger efficient aqueous nitrate formation when exceeding the ammonium nitrate deliquescence point. Secondary PM2.5 produced in the upper half of the PBL may contribute up to 7-8 μg m-3 (or 25%) to ground level concentrations on hourly basis. A large potential role is also found to be played by the residual aerosol layer above the PBL, which may occasionally contribute up to 10-12 μg m-3(or 40%) to hourly ground level PM2.5 concentrations during the morning.

  20. Problems of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    This paper outlines the problems of the quasi-steady matter-antimatter boundary layers discussed in Klein-Alfven's cosmological theory, and a crude model of the corresponding ambiplasma balance is presented: (i) at interstellar particle densities, no well-defined boundary layer can exist in presence of neutral gas, nor can such a layer be sustained in an unmagnetized fully ionized ambiplasma. (ii) Within the limits of applicability of the present model, sharply defined boundary layers are under certain conditions found to exist in a magnetized ambiplasma. Thus, at beta values less than unity, a steep pressure drop of the low-energy components of matter and antimatter can be balanced by a magnetic field and the electric currents in the ambiplasma. (iii) The boundary layer thickness is of the order of 2x0 approximately 10/BT0sup(1/4) meters, where B is the magnetic field strength in MKS units and T0 the characteristic temperature of the low-energy components in the layer. (Auth.)

  1. DYNAMICS OF A BOUNDARY LAYER SEPARATION

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Knob, Martin

    2009-01-01

    Roč. 16, č. 1 (2009), s. 29-38. ISSN 1802-1484 R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * triple-deck theory * Time-Resolved PIV Subject RIV: BK - Fluid Dynamics

  2. Analysis of Laminar Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    R. Yesman

    2012-01-01

    Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flow processes in a boundary layer.The presented dependences can be used for practical calculations while power carriers of various application are moving in the channels of heat and power devices. 

  3. A note on turbulent spots over a rough bed in wave boundary layers

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This study is a continuation of the investigation of turbulent spots in wave boundary layers over a smooth wall reported by Carstensen et al. [J. Fluid Mech. 646, 169–206 (2010)]. The present paper summarises the results of an experimental investigation of turbulent spots in wave boundary layers ...

  4. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    NARCIS (Netherlands)

    Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.

    2012-01-01

    We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod

  5. The structures of the atmospheric boundary layer in the Yellow Sea summer fog-a comparison study with the spring fog

    Science.gov (United States)

    Zhang, S.-P.; Ren, Z.-P.; Yang, Y.-Q.; Wang, X.-G.; Xu, X.-L.

    2010-07-01

    The Yellow Sea is a highly foggy area in spring-summer (April to July) seasons. A Yellow Sea fog case occurred on July 7-11, 2008 is investigated by the data from the sea buoy stations, high-resolution digital sounding instruments and other observations and from a three-dimensional mesoscale model (WRF). Espcially, the boundary layer structure are analyzed and simulated, and the comparison is made between the summer fog case and a spring fog case in May 2-3, 2008. The results are as follows (1) In summer fog, the marine atmospheric boundary layer (MABL) is less stable (almost no temperature inversion)than that in spring fog and the summer fog is thicker in elevation due to the development of turbulence and plenty of moisture supply advected by the East Asian summer monsoon in the low level of the MABL; whereas in spring fog the MABL is very stable with pronounced temperature inversion and the moisture is mainly transported by a shallow local anticyclone in the Yellow Sea surface and traped close to a very low level, thus leading to thin fog. (2) In summer, the southerly air column in the MABL is of similar physical features since it comes from the southern ocean, producing the less vertical gradient both in temperature and in humidity (no obvious dry layer). In contrast, in spring the southerly sea surface air is cooling gradualy as it passes the cold Yellow Sea, but the air at about 950 hPa is westerly from inland that is dry and warm by the increased solar radiation, thus forming temerature inversion and evident dry layer over the sea. (3) The surface air temperature (SAT) is obviously higher than the sea surface temperature (SST) in the process of the summer fog, and the SAT does not derease or even increase in the fog, which is related to the weaker long wave radiation at the fog top and the huge amount of latent heat; while in spring sea fog the SAT decreases rapidly and is even lower than the SST in the peak phase of the fog due to strong long wave radiation

  6. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model

    Science.gov (United States)

    Piazza, Marie; Terray, Laurent; Boé, Julien; Maisonnave, Eric; Sanchez-Gomez, Emilia

    2016-03-01

    A high-resolution global atmospheric model is used to investigate the influence of the representation of small-scale North Atlantic sea surface temperature (SST) patterns on the atmosphere during boreal winter. Two ensembles of forced simulations are performed and compared. In the first ensemble (HRES), the full spatial resolution of the SST is maintained while small-scale features are smoothed out in the Gulf Stream region for the second ensemble (SMTH). The model shows a reasonable climatology in term of large-scale circulation and air-sea interaction coefficient when compared to reanalyses and satellite observations, respectively. The impact of small-scale SST patterns as depicted by differences between HRES and SMTH shows a strong meso-scale local mean response in terms of surface heat fluxes, convective precipitation, and to a lesser extent cloudiness. The main mechanism behind these statistical differences is that of a simple hydrostatic pressure adjustment related to increased SST and marine atmospheric boundary layer temperature gradient along the North Atlantic SST front. The model response to small-scale SST patterns also includes remote large-scale effects: upper tropospheric winds show a decrease downstream of the eddy-driven jet maxima over the central North Atlantic, while the subtropical jet exhibits a significant northward shift in particular over the eastern Mediterranean region. Significant changes are simulated in regard to the North Atlantic storm track, such as a southward shift of the storm density off the coast of North America towards the maximum SST gradient. A storm density decrease is also depicted over Greenland and the Nordic seas while a significant increase is seen over the northern part of the Mediterranean basin. Changes in Rossby wave breaking frequencies and weather regimes spatial patterns are shown to be associated to the jets and storm track changes.

  7. Clear-air radar observations of the atmospheric boundary layer

    Science.gov (United States)

    Ince, Turker

    2001-10-01

    This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation

  8. Wind farm performance in conventionally neutral atmospheric boundary layers with varying inversion strengths

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2014-06-01

    In this study we consider large wind farms in a conventionally neutral atmospheric boundary layer. In large wind farms the energy extracted by the turbines is dominated by downward vertical turbulent transport of kinetic energy from the airflow above the farm. However, atmospheric boundary layers are almost always capped by an inversion layer which slows down the entrainment rate and counteracts boundary layer growth. In a suite of large eddy simulations the effect of the strength of the capping inversion on the boundary layer and on the performance of a large wind farm is investigated. For simulations with and without wind turbines the results indicate that the boundary layer growth is effectively limited by the capping inversion and that the entrainment rate depends strongly on the inversion strength. The power output of wind farms is shown to decrease for increasing inversions.

  9. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  10. Global stability analysis of axisymmetric boundary layers

    CERN Document Server

    Vinod, N

    2016-01-01

    This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...

  11. Analytic prediction for planar turbulent boundary layers

    CERN Document Server

    Chen, Xi

    2016-01-01

    Analytic predictions of mean velocity profile (MVP) and streamwise ($x$) development of related integral quantities are presented for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific predictions are the friction velocity $u_\\tau$: ${ U_e/u_\\tau }\\approx 2.22\\ln Re_x+2.86-3.83\\ln(\\ln Re_x)$; the boundary layer thickness $\\delta_e$: $x/\\delta_e \\approx 7.27\\ln Re_x-5.18-12.52\\ln(\\ln Re_x)$; the momentum thickness Reynolds number: $Re_x/Re_\\theta=4.94[{(\\ln {{\\mathop{\\rm Re}\

  12. Boundary Layer Turbulence Index: Progress and Recent Developments

    CERN Document Server

    Pryor, Kenneth L

    2008-01-01

    A boundary layer turbulence index (TIBL) product has been developed to assess the potential for turbulence in the lower troposphere, generated using RUC-2 numerical model data. The index algorithm approximates boundary layer turbulent kinetic energy by parameterizing vertical wind shear, responsible for mechanical production of TKE, and kinematic heat flux, parameterized by the vertical temperature lapse rate and responsible for buoyant production of TKE. Validation for the TIBL product has been conducted for selected nonconvective wind events during the 2008 winter season over the Idaho National Laboratory mesonet domain. This paper presents studies of four significant wind events between December 2007 and February 2008 over southeastern Idaho. Based on the favorable results highlighted from validation statistics and in the case studies, the RUC TIBL product has demonstrated operational utility in assessing turbulence hazards to low-flying aircraft and ground transportation, and in the assessment of wildfire...

  13. DYNAMICS OF A BOUNDARY LAYER SEPARATION

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav

    Budapest : University of Technology and Economics , 2009, s. 268-275. ISBN 978-963-420-985-0. [Conference on Modelling Fluid Flow CMFF'09. Budapest (HU), 09.09.2009-12.09.2009] R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * dynamics * separation * POPs Subject RIV: BK - Fluid Dynamics

  14. Numerical Simulation of the Atmospheric Boundary Layer

    Czech Academy of Sciences Publication Activity Database

    Bauer, Petr

    Praha : Česká technika - nakladatelství ČVUT, 2006 - (Ambrož, P.; Masáková, Z.), s. 11-18 [Doktorandské dny 2006. Katedra matematiky FJFI ČVUT, Praha (CZ), 10.11.2006-24.11.2006] Institutional research plan: CEZ:AV0Z20760514 Keywords : atmospheric boundary layer * numerical simulation * finite element method Subject RIV: DI - Air Pollution ; Quality

  15. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    N Vinod; Rama Govindarajan

    2005-03-01

    Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.

  16. Dynamical analysis of separated boundary layer flow

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav

    Berlin : Technische Universität Berlin, 2009. s. 1-2 ISBN N. [Nonlinear Normal Modes, Dimension Reduction and Localization in Vibrating Systems. 27.09.2009-02.10.2009, Frascati (Rome)] R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * separation * dynamics Subject RIV: BK - Fluid Dynamics

  17. Diagnostic analysis of turbulent boundary layer data by a trivariate Lagrangian partitioning method

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, P.T. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-31

    The rapid scientific and technological advances in meteorological theory and modeling predominantly have occurred on the large (or synoptic) scale flow characterized by the extratropical cyclone. Turbulent boundary layer flows, in contrast, have been slower in developing both theoretically and in accuracy for several reasons. There are many existing problems in boundary layer models, among them are limits to computational power available, the inability to handle countergradient fluxes, poor growth matching to real boundary layers, and inaccuracy in calculating the diffusion of scalar concentrations. Such transport errors exist within the boundary layer as well as into the free atmosphere above. This research uses a new method, which can provide insight into these problems, and ultimately improve boundary layer models. There are several potential applications of the insights provided by this approach, among them are estimation of cloud contamination of satellite remotely sensed surface parameters, improved flux and vertical transport calculations, and better understanding of the diurnal boundary layer growth process and its hysteresis cycle.

  18. Boundary-layer cumulus over heterogeneous landscapes: A subgrid GCM parameterization. Final report, December 1991--November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.B. [Univ. of British Columbia, Vancouver (Canada). Dept. of Geography; Tripoli, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Atmospheric & Oceanic Sciences

    1996-01-08

    The authors developed single-column parameterizations for subgrid boundary-layer cumulus clouds. These give cloud onset time, cloud coverage, and ensemble distributions of cloud-base altitudes, cloud-top altitudes, cloud thickness, and the characteristics of cloudy and clear updrafts. They tested and refined the parameterizations against archived data from Spring and Summer 1994 and 1995 intensive operation periods (IOPs) at the Southern Great Plains (SGP) ARM CART site near Lamont, Oklahoma. The authors also found that: cloud-base altitudes are not uniform over a heterogeneous surface; tops of some cumulus clouds can be below the base-altitudes of other cumulus clouds; there is an overlap region near cloud base where clear and cloudy updrafts exist simultaneously; and the lognormal distribution of cloud sizes scales to the JFD of surface layer air and to the shape of the temperature profile above the boundary layer.

  19. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  20. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Elena-Carmen Teleman; Radu Silion; Elena Axinte; Radu Pescaru

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  1. Interaction between surface and atmosphere in a convective boundary layer /

    OpenAIRE

    Garai, Anirban

    2013-01-01

    Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on t...

  2. Glyoxal observations in the global marine boundary layer

    OpenAIRE

    Mahajan, Anoop S.; Prados-Roman, Cristina; Hay, Timothy D.; Lampel, Johannes; Pöhler, Denis; Groβmann, Katja; Tschritter, Jens; Frieß, Udo; Platt, Ulrich; Johnston, Paul; Kreher, Karin; Wittrock, Folkard; Burrows, John P; Plane, John M. C.; Saiz-Lopez, Alfonso

    2014-01-01

    Glyoxal is an important intermediate species formed by the oxidation of common biogenic and anthropogenic volatile organic compounds such as isoprene, toluene and acetylene. Although glyoxal has been shown to play an important role in urban and forested environments, its role in the open ocean environment is still not well understood, with only a few observations showing evidence for its presence in the open ocean marine boundary layer (MBL). In this study, we report observations of glyoxal f...

  3. Behaviour of tracer diffusion in simple atmospheric boundary layer models

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2006-12-01

    Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with measurements of polar photogenic NO and NO2. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The relatively simple model provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.

  4. Leading-edge effects on boundary-layer receptivity

    Science.gov (United States)

    Gatski, Thomas B.; Kerschen, Edward J.

    1990-01-01

    Numerical calculations are presented for the incompressible flow over a parabolic cylinder. The computational domain extends from a region upstream of the body downstream to the region where the Blasius boundary-layer solution holds. A steady mean flow solution is computed and the results for the scaled surface vorticity, surface pressure and displacement thickness are compared to previous studies. The unsteady problem is then formulated as a perturbation solution starting with and evolving from the mean flow. The response to irrotational time harmonic pulsation of the free-stream is examined. Results for the initial development of the velocity profile and displacement thickness are presented. These calculations will be extended to later times to investigate the initiation of instability waves within the boundary-layer.

  5. Surface fluxes and convective boundary layer instability in summer over harvested wheat fields in Oklahoma

    Science.gov (United States)

    Li, W.; Barros, A. P.

    2008-05-01

    Vertical profiles of wind, pressure, air temperature and humidity up to 500 m obtained from measurements by a tethersonde system were used in combination with upper level temperature and humidity soundings from Rapid Update Cycle (RUC), to calculate Convective Available Potential Energy (CAPE) in an unstable boundary layer. The surface fluxes of sensible and latent heat were also calculated based on turbulent similarity theory for the atmospheric surface layer. The measurements were performed during the Cloud and Land Surface Interaction Campaign (CLASIC) June 2007 that includes pre-storm and post-storm conditions for a record monthly rainfall in excess of 300 mm at the site. The daytime trajectories of the surface layer in the Relative-Humidity and Bowen Ratio phase-space are consistent with the rainfall and aridity attractors in previous studies, with strong decrease in the post-storm periods. The decrease of Bowen ratio was the result of a strong decrease in the magnitude of sensible heat fluxes. The latent heat fluxes in the post-storm environment were not significantly different from the pre-storm environment, which is explained by a significant decrease in the net radiation. High soil moisture and increased moisture in boundary layer in the post-storm environment led to sustained low-level instability and daily evening showers. The diurnal cycle of potential temperature and specific humidity during the duration of the field campaign with an emphasis on conditions before and after one major rainy event are also discussed in this study.

  6. Iodine monoxide in the Western Pacific marine boundary layer

    Directory of Open Access Journals (Sweden)

    K. Großmann

    2012-10-01

    Full Text Available A latitudinal cross-section and vertical profiles of iodine monoxide (IO are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E through the Western Pacific to Townsville, Australia (19° S, 146° E in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S, IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I2 is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.

  7. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  8. Using UAV's to Measure the Urban Boundary Layer

    Science.gov (United States)

    Jacob, R. L.; Sankaran, R.; Beckman, P. H.

    2015-12-01

    The urban boundary layer is one of the most poorly studied regions of the atmospheric boundary layer. Since a majority of the world's population now lives in urban areas, it is becoming a more important region to measure and model. The combination of relatively low-cost unmanned aerial vehicles and low-cost sensors can together provide a new instrument for measuring urban and other boundary layers. We have mounted a new sensor and compute platform called Waggle on an off-the-shelf XR8 octo-copter from 3DRobotics. Waggle consists of multiple sensors for measuring pressure, temperature and humidity as well as trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. A single board computer running Linux included in Waggle on the UAV allows in-situ processing and data storage. Communication of the data is through WiFi or 3G and the Waggle software can save the data in case communication is lost during flight. The flight pattern is a deliberately simple vertical ascent and descent over a fixed location to provide vertical profiles and so flights can be confined to urban parks, industrial areas or the footprint of a single rooftop. We will present results from test flights in urban and rural areas in and around Chicago.

  9. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    Science.gov (United States)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  10. Estimates of North American summertime planetary boundary layer depths derived from space-borne lidar

    Science.gov (United States)

    McGrath-Spangler, Erica L.; Denning, A. Scott

    2012-08-01

    The planetary boundary layer (PBL) mediates exchanges of energy, moisture, momentum, carbon, and pollutants between the surface and the atmosphere. This paper is a first step in producing a space-based estimate of PBL depth that can be used to compare with and evaluate model-based PBL depth retrievals, inform boundary layer studies, and improve understanding of the above processes. In clear sky conditions, space-borne lidar backscatter is frequently affected by atmospheric properties near the PBL top. Spatial patterns of 5-year mean mid-day summertime PBL depths over North America were estimated from the CALIPSO lidar backscatter and are generally consistent with model reanalyses and AMDAR (Aircraft Meteorological DAta Reporting) estimates. The rate of retrieval is greatest over the subtropical oceans (near 100%) where overlying subsidence limits optically thick clouds from growing and attenuating the lidar signal. The general retrieval rate over land is around 50% with decreased rates over the Southwestern United States and regions with high rates of convection. The lidar-based estimates of PBL depth tend to be shallower than aircraft estimates in coastal areas. Compared to reanalysis products, lidar PBL depths are greater over the oceans and areas of the boreal forest and shallower over the arid and semiarid regions of North America.

  11. Out On The Ice (OOTI): Studies of Bromine Monoxide (BrO) and ozone (O3) in the Arctic and Sub-Arctic Marine Boundary Layer by Multiple Axis Differential Optical Absorption Spectroscopy (MAXDOAS): Local Emissions or Transport Processes?

    Science.gov (United States)

    Netcheva, S.; Bottenheim, J. W.; Staebler, R. M.; Steffen, A.

    2009-12-01

    BrO is an important tropospheric trace gas species in the marine boundary layer with potentially harmful effects on the polar environment. It changes the atmospheric oxidizing capacity by altering normally O3 dominating oxidation pathways via a series of autocatalytic heterogeneous O3 destroying reactions. There have been many reports of elevated BrO concentrations in the Polar atmospheric boundary layer by ground based and satellite DOAS measurements since the first positive identification by Hausmann and Platt in 1994 at Alert, Canada. Satellite acquired data revealed that enhanced tropospheric BrO concentrations in the spring are a widespread, reoccurring phenomena in the polar regions, and that they are possibly linked to the spatial distribution of first year sea ice. While the main source of bromine in the marine boundary layer is clearly sea salt, the processes of migration from the ocean surface to the air, and mechanisms of activation, are not fully understood. Conceivably these processes operate on a much smaller spatial scale than satellite measurements suggest In a study under the OASIS-Canada program funded by the Canadian Federal Program Office for the International Polar Year, ground based measurements of BrO and O3 over the ice of the Arctic Ocean and Hudson Bay, were compared with concurrent BrO satellite measurements, ice conditions, back trajectory and meteorological surface analyses to identify BrO source regions and to estimate the influence of transport on the evolution of enhanced BrO events. Conducting measurements directly on ice surfaces enabled us to improve the understanding of the chemistry involved because we could directly target reactive halogen emission and try to assess the role of various ocean surfaces during halogen activation and propagation. Some of the recorded events were characterised by fast decreases of O3 during the night, which clearly indicates transport rather than local chemistry. Other events required more

  12. Boundary-layer turbulent processes and mesoscale variability represented by numerical weather prediction models during the BLLAST campaign

    Science.gov (United States)

    Couvreux, Fleur; Bazile, Eric; Canut, Guylaine; Seity, Yann; Lothon, Marie; Lohou, Fabienne; Guichard, Françoise; Nilsson, Erik

    2016-07-01

    This study evaluates the ability of three operational models, with resolution varying from 2.5 to 16 km, to predict the boundary-layer turbulent processes and mesoscale variability observed during the Boundary Layer Late-Afternoon and Sunset Turbulence (BLLAST) field campaign. We analyse the representation of the vertical profiles of temperature and humidity and the time evolution of near-surface atmospheric variables and the radiative and turbulent fluxes over a total of 12 intensive observing periods (IOPs), each lasting 24 h. Special attention is paid to the evolution of the turbulent kinetic energy (TKE), which was sampled by a combination of independent instruments. For the first time, this variable, a central one in the turbulence scheme used in AROME and ARPEGE, is evaluated with observations.In general, the 24 h forecasts succeed in reproducing the variability from one day to another in terms of cloud cover, temperature and boundary-layer depth. However, they exhibit some systematic biases, in particular a cold bias within the daytime boundary layer for all models. An overestimation of the sensible heat flux is noted for two points in ARPEGE and is found to be partly related to an inaccurate simplification of surface characteristics. AROME shows a moist bias within the daytime boundary layer, which is consistent with overestimated latent heat fluxes. ECMWF presents a dry bias at 2 m above the surface and also overestimates the sensible heat flux. The high-resolution model AROME resolves the vertical structures better, in particular the strong daytime inversion and the thin evening stable boundary layer. This model is also able to capture some specific observed features, such as the orographically driven subsidence and a well-defined maximum that arises during the evening of the water vapour mixing ratio in the upper part of the residual layer due to fine-scale advection. The model reproduces the order of magnitude of spatial variability observed at

  13. Two Dimensional Boundary Layer Growth with Suction

    Directory of Open Access Journals (Sweden)

    Krishna Lal

    1970-07-01

    Full Text Available The boundary layer equations for the unsteady fluid flow with constant suction velocity have been worked out for the impulsive motion of a circular cylinder in the form V(t=A exp (Ct where A and C are certain constants. The stream function has been expanded in terms of some functions X/sub 0/(s where s is a function of y coordinate. The phase angles for various terms have been calculated, and variations shown graphically for large and small frequency of oscillations, where the oscillatory motion is obtained on replacing C by iw.

  14. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  15. Impacts of sea spray on the boundary layer structure of Typhoon Imbudo

    Institute of Scientific and Technical Information of China (English)

    TANG Jie; LI Weibiao; CHEN Shumin; WANG Lei

    2013-01-01

    High winds in a typhoon over the ocean can produce substantial amounts of spray in the lower part of the atmospheric boundary layer, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the consequent effects on the boundary layer structure and the evolution of the typhoon are largely unknown. The focus of this paper is on the role of sea spray on the storm intensity and the structure of the atmospheric boundary layer. The case study is Typhoon Imbudo in July 2003. The results show that sea spray tends to intensify storms by increasing the sea surface heat fluxes. Moreover, the effects of sea spray are mainly felt in boundary layer. Spray evaporation causes the atmospheric boundary layer to experience cooling and moistening. Sea spray can cause significant effects on the structure of boundary layer. The boundary-layer height over the eyewall area east to the center of Typhoon Imbudo was increased with a maximum up to about 550 m due to sea spray, which is closely related with the enhancements of the heat fluxes, upward motions, and horizontal winds in this region due to sea spray.

  16. Numerical simulation of the marine boundary layer characteristics over the Bay of Bengal as revealed by BOBMEX-98 Pilot experiment

    Indian Academy of Sciences (India)

    A N V Satyanarayana; U C Mohanty; N V Sam; Swati Basu; V N Lykossov

    2000-06-01

    An attempt has been made to study the marine boundary layer characteristics over Bay of Bengal using BOBMEX (Bay of Bengal and Monsoon Experiment) pilot experiment data sets, which was conducted between 23rd October and 12th November 1998 on board ORV Sagar Kanya. A one-dimensional multi- level atmospheric boundary layer with TKE- closure scheme is employed to study the marine boundary layer characteristics. In this study two synoptic situations are chosen: one represents an active convection case and the other a suppressed convection. In the present article the marine boundary layer charac- teristics such as temporal evolution of turbulent kinetic energy, height of the boundary layer and the air- sea exchange processes such as sensible and latent heat fluxes, drag coefficient for momentum are simulated during both active and suppressed convection. Marine boundary layer height is estimated from the vertical profiles of potential temperature using the stability criterion. The model simulations are compared with the available observations.

  17. Stabilization of the hypersonic boundary layer by finite-amplitude streaks

    Science.gov (United States)

    Ren, Jie; Fu, Song; Hanifi, Ardeshir

    2016-02-01

    Stabilization of two-dimensional disturbances in hypersonic boundary layer flows by finite-amplitude streaks is investigated using nonlinear parabolized stability equations. The boundary-layer flows at Mach numbers 4.5 and 6.0 are studied in which both first and second modes are supported. The streaks considered here are driven either by the so-called optimal perturbations (Klebanoff-type) or the centrifugal instability (Görtler-type). When the streak amplitude is in an appropriate range, i.e., large enough to modulate the laminar boundary layer but low enough to not trigger secondary instability, both first and second modes can effectively be suppressed.

  18. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer

    2005-01-01

    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  19. Changes of Urban Boundary Layer Thermodynamic Stability Induced by Heat Island Effect and Their Influences on Precipitation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the characteristics of the changes of the urban boundary layer thermodynamic stability induced by heat island effect and their influences on precipitation.[Method] Proceeding from the thermodynamic equation,the changes of urban boundary layer thermodynamic stability caused by the urban heat disturbance and the mean state of heat island effect were discussed.The influence of the changes of urban boundary layer thermodynamic stability on the precipitation was expounded.Combini...

  20. Turbulent Transport of 222-Rn and its Short-lived Daughters in Convective Boundary Layers

    OpenAIRE

    VINUESA JEAN; GALMARINI STEFANO

    2006-01-01

    222Rn is a natural radioactive compound with a half-life of 3.8 days. Because of its noble gas nature, it is a suitable tracer in studies of atmospheric boundary layers. Ground-based measurements and vertical distributions of 222Rn and its daughters have been extensively studied in the past, e.g., to characterize the turbulent properties of the atmospheric boundary layer, to perform regional and global circulation model benchmarking and to estimate regional surface flu...

  1. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer

    Science.gov (United States)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.

    1985-01-01

    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  2. Laboratory simulation of rotating atmospheric boundary layer flows over obstacles

    International Nuclear Information System (INIS)

    The present study fits in the frame of a research program concerning in general the dynamics of airflow in the atmospheric boundary layer and in particular the influence of terrestrial rotation on the movements of air masses interacting with natural extended obstacles (mountains). The experiment has been performed by the method of hydraulic simulation, using schematic models at reduced scale in a channel placed on a rotating platform. Only the case of a neutral atmosphere was considered; the wake of an obstacle with semi-circular section and the reciprocal interaction of two obstacles of this kind placed perpendicular to the flow were studied

  3. Modelling of the Evolving Stable Boundary Layer

    Science.gov (United States)

    Sorbjan, Zbigniew

    2014-06-01

    A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.

  4. Geometric invariance of compressible turbulent boundary layers

    Science.gov (United States)

    Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle

    2015-11-01

    A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.

  5. Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model

    Science.gov (United States)

    Liu, Kun; Chen, Qiying; Sun, Jian

    2015-10-01

    Cumulus convection is a key linkage between hydrological cycle and large-scale atmospheric circulation. Cumulus parameterization scheme is an important component in numerical weather and climate modeling studies. In the Global/Regional Assimilation and Prediction Enhanced System (GRAPES), turbulent mixing and diffusion approach is applied in its shallow convection scheme. This method overestimates the vertical transport of heat and moisture fluxes but underestimates cloud water mixing ratio over the region of stratocumulus clouds. As a result, the simulated low stratocumulus clouds are less than observations. To overcome this problem, a mass flux method is employed in the shallow convection scheme to replace the original one. Meanwhile, the deep convection scheme is adjusted correspondingly. This modification is similar to that in the US NCEP Global Forecast System (GFS), which uses the simplified Arakawa Schubert Scheme (SAS). The planetary boundary layer scheme (PBL) is also revised by considering the coupling between the PBL and stratocumulus clouds. With the modification of both the cumulus and PBL schemes, the GRAPES simulation of shallow convective heating rate becomes more reasonable; total amounts of stratocumulus clouds simulated over the eastern Pacific and their vertical structure are more consistent with observations; the underestimation of stratocumulus clouds simulated by original schemes is less severe with the revised schemes. Precipitation distribution in the tropics becomes more reasonable and spurious precipitation is effectively suppressed. The westward extension and northward movement of the western Pacific subtropical high simulated with the revised schemes are more consistent with Final Operational Global Analysis (FNL) than that simulated with the original schemes. The statistical scores for the global GRAPES forecast are generally improved with the revised schemes, especially for the simulation of geopotential height in the Northern

  6. Distributed Propulsion featuring Boundary Layer Ingestion Engines for the Blended Wing Body Subsonic Transport

    OpenAIRE

    Kok, H.J.M.; Voskuijl, M.; Van Tooren, M.J.L.

    2010-01-01

    The blended wing body aircraft is one of the promising contenders for the next generation large transport aircraft. This aircraft is particularly suitable for the use of boundary layer ingestion engines. Results published in literature suggest that it might be beneficial to have a large number of these engines (distributed propulsion). A conceptual design study is therefore performed to determine the potential benefits of boundary layer ingestion engines for a conventional number of engines i...

  7. Numerical simulations of two-fluid boundary layers beneath free-stream turbulence

    Science.gov (United States)

    Jung, Seo Yoon; Zaki, Tamer

    2011-11-01

    In two-fluid boundary layers, a wall-film is sheared by an external stream with different density and viscosity. As a result, the flow becomes prone to both shear and interfacial instabilities. In this study, the evolution of two-fluid boundary layers beneath free-stream vortical forcing is investigated using DNS. The simulations employ a conservative level-set technique in conjunction with a ghost fluid approach in order to capture a sharp interface. The wall film is less viscous than the outer flow, and its thickness is 10 % of that of the boundary layer at the inlet. The choice of viscosity ratio influences the spatial development of disturbances within the boundary layer. The spatial growth of instabilities is examined into the non-linear regime, which includes the region of breakdown to turbulence. We demonstrate that, at moderate levels of free-stream turbulence intensities, appropriate choice of the viscosity ratio can yield considerable transition delay.

  8. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 450 to 1350 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  9. A wavenumber-frequency spectral model for atmospheric boundary layers

    International Nuclear Information System (INIS)

    Motivated by the need to characterize power fluctuations in wind farms, we study spatio-temporal correlations of a neutral atmospheric boundary layer in terms of the joint wavenumber-frequency spectrum of the streamwise velocity fluctuations. To this end, we perform a theoretical analysis of a simple advection model featuring the advection of small- scale velocity fluctuations by the mean flow and large-scale velocity fluctuations. The model is compared to data from large-eddy simulations (LES). We find that the model captures the trends observed in LES, specifically a Doppler shift of frequencies due to the mean flow as well as a Doppler broadening due to random sweeping effects

  10. Planetary Boundary Layer Dynamics over Reno, Nevada in Summer

    Science.gov (United States)

    Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.

    2014-12-01

    Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.

  11. Direct numerical simulation of supersonic turbulent boundary layers

    Science.gov (United States)

    Guarini, Stephen

    The objectives of this research were to develop a method by which the spatially developing compressible turbulent boundary layer could be simulated using a temporally developing numerical simulation and to study the physics of the compressible turbulent boundary layer. We take advantage of the technique developed by Spalart (1987, 1988) for the incompressible case. In this technique, it is recognized that the boundary layer exhibits slow growth in the streamwise direction, so the turbulence can be treated as approximately homogeneous in this direction. The slow growth is accounted for with a coordinate transformation and a multiple scale analysis. The result is a modified system of equations (Navier-Stokes plus some extra terms, which we call "slow growth terms") that are homogeneous in both the streamwise and spanwise directions and represent the state of the boundary layer at a given streamwise location (or, equivalently, a given thickness). The compressible Navier-Stokes equations are solved using a mixed Fourier and B-spline "spectral" method. The dependent variables are expanded in terms of a Fourier representation in the horizontal directions and a B-spline representation in the wall-normal direction. In the wall-normal direction non-reflecting boundary conditions are used at the freestream boundary, and zero-heat-flux no-slip boundary conditions are used at the wall. This combination of splines and Fourier methods produces a very accurate numerical method. Mixed implicit/explicit time discretization is used. Results are presented for a case with a Mach number of 2.5, and a Reynolds number, based on momentum integral thickness and wall viscosity, of Rsb{thetasp'} = 840. The results show that the van Driest transformed velocity satisfies the incompressible scalings and a narrow logarithmic region is obtained. The results for the turbulence intensities compare well with the incompressible simulations of Spalart. Pressure fluctuations are found to be higher than

  12. Study of the effect of soil disturbance on vapor transport through integrated modeling of the atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Trautz, A.; Smits, K. M.; Cihan, A.; Wallen, B.

    2014-12-01

    Soil-water evaporation is one of the governing processes responsible for controlling water and energy exchanges between the land and atmosphere. Despite its wide relevance and application in many natural and manmade environments (e.g. soil tillage practices, wheel-track compaction, fire burn environments, textural layering and buried ordinances), there are very few studies of evaporation from disturbed soil profiles. The purpose of this study was to explore the effect of soil disturbance and capillary coupling on water distribution and fluxes. We modified a theory previously developed by the authors that allows for coupling single-phase (gas), two-component (air and water vapor) transfer in the atmosphere and two-phase (gas, liquid), two-component (air and water vapor) flow in porous media at the REV scale under non-isothermal, non-equilibrium conditions to better account for the hydraulic and thermal interactions within the media. Modeling results were validated and compared using precision data generated in a two-dimensional soil tank consisting of a loosely packed soil surrounded by a tightly packed soil. The soil tank was outfitted with an array of sensors for the measurement of wind velocity, soil and air temperature, relative humidity, soil moisture, and weight. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process in heterogeneous soils with good accuracy. Evaporation from a heterogeneous soil consisting of a loose and tight packing condition is larger than the homogeneous equivalent systems. Liquid water is supplied from the loosely packed soil region to the tightly packed soil regions, sustaining a longer Stage I evaporation in the tightly packed regions with overall greater evaporation rate than uniform homogeneous packing. In contrast, lower evaporation rates from the loosely packed regions are observed due to a limited liquid water supply resulting from capillary flow to the

  13. A Cautionary Note on the Thermal Boundary Layer Similarity Scaling for the Turbulent Boundary Layer

    CERN Document Server

    Weyburne, David

    2016-01-01

    Wang and Castillo have developed empirical parameters for scaling the temperature profile of the turbulent boundary layer flowing over a heated wall in the paper X. Wang and L. Castillo, J. Turbul., 4, 1(2003). They presented experimental data plots that showed similarity type behavior when scaled with their new scaling parameters. However, what was actually plotted, and what actually showed similarity type behavior, was not the temperature profile but the defect profile formed by subtracting the temperature in the boundary layer from the temperature in the bulk flow. We show that if the same data and same scaling is replotted as just the scaled temperature profile, similarity is no longer prevalent. This failure to show both defect profile similarity and temperature profile similarity is indicative of false similarity. The nature of this false similarity problem is discussed in detail.

  14. Radiative instabilities of atmospheric jets and boundary layers

    International Nuclear Information System (INIS)

    Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author)

  15. Statistical study of global cloud microphysics using A-Train satellites

    Science.gov (United States)

    Zeng, S.; Trepte, C. R.; Winker, D. M.; Riedi, J.; Hu, Y.

    2012-12-01

    Observations from A-train provide valuable new information on the vertical structure of clouds and their properties over the globe. Advanced cloud retrievals have been developed using combined measurements using active remote sensing instruments from CALIPSO (lidar) and CloudSat (radar) and passive visible and infrared sensors from MODIS, PARASOL, and CALIPSO to provide improved estimates of cloud extinction coefficients, cloud liquid/ice water content, cloud droplet number concentrations and other water cloud physical properties. One of the surprise discoveries from these new and innovative A-Train cloud retrievals is that the droplet number concentrations for water clouds over the open ocean are very low (around 20 per cc) in contrast to values closer to 100 per cc used in many weather and climate models. These lower droplet concentrations can have profound implications on the ability to form clouds in the marine boundary layer and their precipitation rates. In this study, we will introduce the basic concept of cloud droplet number concentration retrievals using CALIPSO and A-train measurements, evaluate their uncertainties, and present new global statistics of on the their distribution and temporal variation. We will also explore examples of possible aerosol/cloud interactions using these observations together with back-trajectory analysis.

  16. Delaying natural transition of a boundary layer using smooth steps

    CERN Document Server

    Xu, Hui; Sherwin, Spencer J

    2015-01-01

    The boundary layer flow over a smooth forward-facing stepped plate is studied with particular emphasis on the delay of the transition to turbulence. The interaction between the Tollmien-Schlichting (T-S) waves and the base flow over a single/two forward facing smooth steps is conducted by linear analysis indicating the amplitude of the T-S waves are attenuated in the boundary layer over a single smooth plate. Furthermore, we show that two smooth forward facing steps give rise to a further reduction of the amplitude of the T-S waves. A direct numerical simulation (DNS) is performed for the two smooth forward steps correlating favourably with the linear analysis and showing that for the investigated parameters, the K-type transition is inhibited whereas the turbulence onset of the H-type transition is postponed albeit not suppressed. Transition is indeed delayed and drag reduced for both these transition scenarios suggesting smooth forward facing steps could be leveraged as a passive flow control strategy to de...

  17. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions.

    Science.gov (United States)

    Volino, Ralph John

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong (K = {nuover U_sp{infty} {2}}{dUinftyover dx} as high as 9times 10^{ -6}) acceleration. The high FSTI experiments are the main focus of the work. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. The high FSTI boundary layers undergo transition from a strongly disturbed non-turbulent state to a fully-turbulent state. Due to the stabilizing effect of strong acceleration, the transition zones are of extended length in spite of the high FSTI. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low FSTI, turbulent flow correlations, but remain well above laminar flow values. Mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. Turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. Turbulent transport is strongly suppressed below values in unaccelerated turbulent boundary layers. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Octant analysis shows a fundamental difference between transitional and fully-turbulent boundary layers. Transitional boundary layers are characterized by incomplete mixing compared to fully-turbulent boundary layers. Similar octant analysis results are observed in both low and high FSTI cases. Spectral analysis suggests that the non-turbulent zone of the high FSTI flow is dominated by large scale

  18. Local boundary layer scales in turbulent Rayleigh-Benard convection

    CERN Document Server

    Scheel, Janet D

    2014-01-01

    We compute fully local boundary layer scales in three-dimensional turbulent Rayleigh-Benard convection. These scales are directly connected to the highly intermittent fluctuations of the fluxes of momentum and heat at the isothermal top and bottom walls and are statistically distributed around the corresponding mean thickness scales. The local boundary layer scales also reflect the strong spatial inhomogeneities of both boundary layers due to the large-scale, but complex and intermittent, circulation that builds up in closed convection cells. Similar to turbulent boundary layers, we define inner scales based on local shear stress which can be consistently extended to the classical viscous scales in bulk turbulence, e.g. the Kolmogorov scale, and outer scales based on slopes at the wall. We discuss the consequences of our generalization, in particular the scaling of our inner and outer boundary layer thicknesses and the resulting shear Reynolds number with respect to Rayleigh number. The mean outer thickness s...

  19. Modelling Scalar Skewness in Cloudy Boundary Layers

    Science.gov (United States)

    Mironov, Dmitrii; Machulskaya, Ekaterina; Naumann, Ann Kristin; Seifert, Axel; Mellado, Juan Pedro

    2015-04-01

    Following the pioneering work of Sommeria and Deardorff (1977), statistical cloud schemes are widely used in numerical weather prediction (NWP) and climate models to parameterize the effect of shallow clouds on turbulent mixing and radiation fluxes. Statistical cloud schemes compute the cloud fraction, the amount of cloud condensate and the effect clouds on the buoyancy flux in a given atmospheric-model grid box. This is done with due regard for the sub-grid scale (SGS) fluctuations of temperature and humidity (and possibly the vertical velocity), thus providing an important coupling between cloudiness and the SGS mixing processes. The shape of the PDF of fluctuating fields is assumed, whereas the PDF moments should be provided to the cloud scheme as an input. For non-precipitation clouds, the mixing schemes are usually formulated in terms of quasi-conservative variable, e.g. the liquid (total) water potential temperature and the total water specific humidity. Then, the cloud schemes are conveniently cast in terms of the linearized saturation deficit, referred to as the "s" variable (Mellor 1977), that accounts for the combined effect of the two scalars. If a simple two-parameter single-Gaussian PDF is used, the only "turbulence" parameter to be provided to the cloud scheme is the variance of s. The single-Gaussian PDF ignores the skewed nature of SGS motions and fails to describe many important regimes, e.g. shallow cumuli. A number of more flexible skewed PDFs have been proposed to date. A three-parameter PDF, based on a double-Gaussian distribution and diagnostic relations between some PDF parameters derived from LES and observational data (Naumann et al. 2013), appears to be a good compromise between physical realism and computational economy. A crucial point is that the cloud schemes using non-Gaussian PDFs require the scalar skewness as an input. Using rather mild non-restrictive assumptions, we develop a transport equation for the s-variable triple

  20. Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    M. Tjernström

    2012-08-01

    Full Text Available Understanding the rapidly changing climate in the Arctic is limited by a lack of understanding of underlying strong feedback mechanisms that are specific to the Arctic. Progress in this field can only be obtained by process-level observations; this is the motivation for intensive ice-breaker-based campaigns such as the Arctic Summer Cloud-Ocean Study (ASCOS, described here. However, detailed field observations also have to be put in the context of the larger-scale meteorology, and short field campaigns have to be analysed within the context of the underlying climate state and temporal anomalies from this.

    To aid in the analysis of other parameters or processes observed during this campaign, this paper provides an overview of the synoptic-scale meteorology and its climatic anomaly during the ASCOS field deployment. It also provides a statistical analysis of key features during the campaign, such as key meteorological variables, the vertical structure of the lower troposphere and clouds, and energy fluxes at the surface. In order to assess the representativity of the ASCOS results, we also compare these features to similar observations obtained during three earlier summer experiments in the Arctic Ocean: the AOE-96, SHEBA and AOE-2001 expeditions.

    We find that these expeditions share many key features of the summertime lower troposphere. Taking ASCOS and the previous expeditions together, a common picture emerges with a large amount of low-level cloud in a well-mixed shallow boundary layer, capped by a weak to moderately strong inversion where moisture, and sometimes also cloud top, penetrate into the lower parts of the inversion. Much of the boundary-layer mixing is due to cloud-top cooling and subsequent buoyant overturning of the cloud. The cloud layer may, or may not, be connected with surface processes depending on the depths of the cloud and surface-based boundary layers and on the relative strengths of surface-shear and

  1. Numerical modeling of the transitional boundary layer over a flat plate

    Science.gov (United States)

    Ivanov, Dimitry; Chorny, Andrei

    2015-11-01

    Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.

  2. Application of sodar to interpret CO2 and CO profiles and their dependence on boundary layer structure

    International Nuclear Information System (INIS)

    The Boulder Atmospheric Observatory (BAO) tower was constructed and became operational in 1977. This 300-m tower, although originally supporting the development and improvement of ground-based remote sensing devices, has been used extensively in the study of the atmospheric boundary layer as well as plume dispersion and air quality. It was used in studies of the Denver Brown Cloud during the winters of 1987-1988 and 1996-1997. Located about 20 km east from the foothills of the Rocky Mountains, it is subject to a wide range of weather conditions ranging from night-time drainage winds with a low-level jet structure, to down-slope wind storms and upslope snow storms. During the summer of 2007, three levels of CO2 and CO gas sampling (at 22, 100, and 300 m) were added as the tower became part of the NOAA ESRL/Global Monitoring Division CO2 tall-tower network. The tower's location in complex terrain and its proximity to urban areas will provide a number of challenges in the interpretation of the data it provides. In this paper, we will describe some of the history of the tower in past air quality studies, examples of its complex meteorological setting and initial examples comparing diurnal variation in CO2 and CO with boundary layer depths and structure observed with an acoustic sounder

  3. O Shallow Cumulus Parameterization Schemes for General Circulation Model Planetary Boundary Layers

    Science.gov (United States)

    Li, Jui-Lin Frank

    Shallow non-precipitating cumulus clouds play an important role in atmospheric boundary layers and global energetics. It is very important that a shallow cumulus scheme should be able to represent these clouds under different kinds of weather in a GCM. The objectives of this study are to test different parameterization schemes recently used in GCMs, develop modified schemes based on them, and create a new cumulus eddy diffusion scheme. A one-dimensional PBL model representing small-scale turbulence and cumulus effects is used to perform a series of high resolution numerical integrations. Data sets for undisturbed quasi -steady tradewind conditions during BOMEX and ATEX are used for comparisons. The simulation of stronger cumulus regimes is achieved by increasing sea surface temperature and studying idealized cold air flow over a warmer sea. Dry turbulence diffusion is represented by either an explicit dry turbulent diffusion scheme (Louis, 1982) used in the ECMWF grid level model, or a nonlocal convective scheme proposed by Holtslag and Moeng (1991). The high vertical resolution (50m) PBL model is then integrated in time with several shallow cumulus parameterization schemes: a simple cumulus mass flux model, Betts-Miller adjustment (1986), simple K-theory (Tiedtke, 1984), modifications of each of them, and a new cumulus diffusion scheme, respectively. The modified cumulus mass flux scheme decreases cumulus mass flux linearly from the cloud base to mid-subcloud layer to represent cloud root effects. The modified Betts-Miller schemes are defined by considering subcloud layer adjustment and curved approximate reference profiles with a constraint of constant virtual potential temperature in the subcloud layer. A new cumulus diffusion scheme estimates the cumulus eddy diffusivities from entrained cloud available potential energy and formulates the nonlocal cumulus flux by coupling the cumulus-scale fluxes with large-scale dry thermals at the cloud base. The results show

  4. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  5. The impact of horizontal model grid resolution on the boundary layer structure over an idealized valley

    Science.gov (United States)

    Wagner, Johannes; Gohm, Alexander; Rotach, Mathias; Leukauf, Daniel; Posch, Christian

    2014-05-01

    The role of horizontal model grid resolution on the development of the daytime boundary layer over mountainous terrain is studied. A simple idealized valley topography with a cross-valley width of 20~km, a valley depth of 1.5~km and a constant surface heat flux forcing is used to generate upslope flows in a warming valley boundary layer. The goal of this study is to investigate differences in the upslope flow and boundary layer structure of the valley when its topography is either fully resolved, smoothed or not resolved by the numerical model. This is done by performing both large-eddy (LES) and kilometer-scale simulations with mesh sizes of 50, 1000, 2000, 4000, 5000 and 10000~m. In LES mode a valley inversion layer develops, which separates two vertically stacked circulation cells in an upper and lower boundary layer. These structures weaken with decreasing horizontal model grid resolution and change to a convective boundary layer similar to the one over an elevated flat plain when the valley is no longer resolved. Mean profiles of the LES run, which are obtained by horizontal averaging over the valley show a three-layer thermal structure and a secondary heat flux maximum at ridge height. Strong smoothing of the valley topography prevents the development of a valley inversion layer with stacked circulation cells and leads to higher valley temperatures due to smaller valley volumes. This investigation shows that a parameterization is needed in coarse resolution models to capture exchange processes over mountainous terrain.

  6. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  7. Spatially Developing Secondary Instabilities in Compressible Swept Airfoil Boundary Layers

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.

    2011-01-01

    Two-dimensional eigenvalue analysis is used on a massive scale to study spatial instabilities of compressible shear flows with two inhomogeneous directions. The main focus of the study is crossflow dominated swept-wing boundary layers although the methodology can also be applied to study other type of flows, such as the attachment-line flow. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed, namely, fixing the spatial growth direction unambiguously through a non-orthogonal formulation of the linearized disturbance equations. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined.

  8. Crosshatch roughness distortions on a hypersonic turbulent boundary layer

    Science.gov (United States)

    Peltier, S. J.; Humble, R. A.; Bowersox, R. D. W.

    2016-04-01

    The effects of periodic crosshatch roughness (k+ = 160) on a Mach 4.9 turbulent boundary layer (Reθ = 63 000) are examined using particle image velocimetry. The roughness elements generate a series of alternating shock and expansion waves, which span the entire boundary layer, causing significant (up to +50% and -30%) variations in the Reynolds shear stress field. Evidence of the hairpin vortex organization of incompressible flows is found in the comparative smooth-wall boundary layer case (Reθ = 47 000), and can be used to explain several observations regarding the rough-wall vortex organization. In general, the rough-wall boundary layer near-wall vortices no longer appear to be well-organized into streamwise-aligned packets that straddle relatively low-speed regions like their smooth-wall counterpart; instead, they lean farther away from the wall, become more spatially compact, and their populations become altered. In the lower half of the boundary layer, the net vortex swirling strength and outer-scaled Reynolds stresses increase relative to the smooth-wall case, and actually decrease in the outer half of the boundary layer, as ejection and entrainment processes are strengthened and weakened in these two regions, respectively. A spectral analysis of the data suggests a relative homogenizing of the most energetic scales near Λ = ˜ 0.5δ across the rough-wall boundary layer.

  9. Implementation of Turbulent Mixing over a Stratocumulus-Topped Boundary Layer and Its Impact in a GCM

    Institute of Scientific and Technical Information of China (English)

    Sun-Hee SHIN; Kyung-Ja HA

    2009-01-01

    The effect of a vertical diffusion scheme over a stratocumulus topped boundary layer (STBL) was investigated using the YONU AGCM (Yonsei University Atmospheric General Circulation Model).To consider the impact of clouds on the turbulence production,the turbulence mixing term,driven by radiative cooling at the cloud top,is implemented as an extended non-local diffusion scheme.In the model with this new scheme,the STBL parameterization significantly influences the lower atmosphere over the tropical and subtropical regions.Consideration of the turbulent mixing within the cloud layer leads to continuous stratocumulus formation.The cloud-top radiative cooling tends to favor more rapid entrainment and produces top-down turbulent mixing.This cooling develops a mixed layer without initiation of deep convection by surface fluxes.Variations in thermodynamical and dynamical features are produced by planetary boundary layer (PBL)cloud development.The simulated stratocumulus induces more mixing of heat and moisture due to the cloud forcing.Over STBL regions,the lower boundary layer bccomes warmer and drier.It also weakens vertical motion and zonal trade winds in the eastern Pacific,which indicates that stratocumulus cloud cover plays a role in weakening the Walker circulation;that is,cloud cover damps the tropical circulation.

  10. Wave boundary layer over a stone-covered bed

    DEFF Research Database (Denmark)

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu;

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... ping-pong ball experiments to study the influence of packing pattern, packing density, number of layers and surface roughness of the roughness elements. The results show that the friction factor seems to be not extremely sensitive to these factors. The results also show that the friction factor for...... extremely sensitive to the packing pattern, the packing density, the number of layers and the surface roughness of the roughness elements. There exists a steady streaming near the bed in the direction of wave propagation, in agreement with the existing work. The present data indicate that the steady...

  11. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  12. A Qualitative Description of Boundary Layer Wind Speed Records

    CERN Document Server

    Kavasseri, R G; Nagarajan, Radhakrishnan

    2006-01-01

    The complexity of the atmosphere endows it with the property of turbulence by virtue of which, wind speed variations in the atmospheric boundary layer (ABL) exhibit highly irregular fluctuations that persist over a wide range of temporal and spatial scales. Despite the large and significant body of work on microscale turbulence, understanding the statistics of atmospheric wind speed variations has proved to be elusive and challenging. Knowledge about the nature of wind speed at ABL has far reaching impact on several fields of research such as meteorology, hydrology, agriculture, pollutant dispersion, and more importantly wind energy generation. In the present study, temporal wind speed records from twenty eight stations distributed through out the state of North Dakota (ND, USA), ($\\sim$ 70,000 square-miles) and spanning a period of nearly eight years are analyzed. We show that these records exhibit a characteristic broad multifractal spectrum irrespective of the geographical location and topography. The rapi...

  13. Segregation in the Atmospheric Boundary Layer - A Discussion

    Science.gov (United States)

    Dlugi, Ralph; Berger, Martina; Zelger, Michael; Hofzumahaus, Andreas; Rohrer, Franz; Holland, Frank; Lu, Keding; Tsokankunku, Anywhere; Sörgel, Matthias; Kramm, Gerhard; Mölders, Nicole

    2016-04-01

    Segregation is a well known topic in technical chemistry and means an incomplete mixing of the reactants. Incomplete mixing reduces the rate of reaction which is of utmost importance in technical chemistry but has been payed less attention in atmospheric chemistry. Different observational and modelling studies on chemical reactions in the turbulent and convective atmospheric boundary layer are analysed for the influences of segregation in the systems NO ‑ NO2 ‑ O3 and OH + V OCs (with main focus on isoprene). Also some estimates on reactions like HO2 + NO (an important recycling mechanism for OH) will be given. Especially, different terms of the intensity of segregation IS (correlation coefficients, standard deviations of mixing ratios) are compared and are related to characteristics of the flow regimes, such as mixing conditions and Damköhler numbers. Also influences of fluctuations of actinic fluxes are discussed which influence the mostly photo chemically driven reactions that were investigated.

  14. Numerical analysis of the turbulent natural convection boundary layer

    International Nuclear Information System (INIS)

    It is considered to be one of options of nuclear fuel cycle policies in Japan to store spent fuel before reprocessing. Then we have to evaluate of the thermal integrity for dry type cask storage system. But the turbulent natural convection boundary layer is a flow with relatively large fluctuations of velocity and temperature at low velocity, and measurements of turbulent quantities near the wall are especially difficult. So, the turbulent structure has not been elucidated. On the other hand, numerical analyses of natural convection using turbulence models have been developed. However, there are not the models which are suitable for prediction of natural convection exactly, so it's effective to analyze of direct numerical simulation (DNS). The propose of this study is to simulate (DNS) for buoyant flow as economical as possible. We calculate two different grid size to investigate to numerical accuracy. (author)

  15. Atmospheric Boundary Layer Characteristics during BOBMEX-Pilot Experiment

    Indian Academy of Sciences (India)

    G S Bhat; S Ameenulla; M Venkataramana; K Sengupta

    2000-06-01

    The atmospheric boundary layer characteristics observed during the BOBMEX-Pilot experiment are reported. Surface meteorological data were acquired continuously through an automatic weather monitoring system and manually every three hours. High resolution radiosondes were launched to obtain the vertical thermal structure of the atmosphere. The study area was convectively active, the SSTs were high, surface air was warm and moist, and the surface air moist static energy was among the highest observed over the tropical oceans. The mean sea air temperature difference was about 1.25°C and the sea skin temperature was cooler than bucket SST by 0.5°C. The atmospheric mixed layer was shallow, fluctuated in response to synoptic conditions from 100 m to 900 m with a mean around 500 m.

  16. Rapid cycling of reactive nitrogen in the marine boundary layer

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L.; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S.; Apel, Eric C.; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N.; Ortega, John; Knote, Christoph

    2016-04-01

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A ‘renoxification’ process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth’s surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  17. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    , boundary layer thickness, turbulence, and bed shear stresses induced are systematically monitored and parameterised, under both hydraulically smooth and roughbed conditions. The results generally support a notion that the boundary layers induced by tsunami-scalewaves are both current-like, due...... layer properties beneath wind-waves maintain reasonable accuracy when extrapolated to full tsunami scales. Boundary layers driven by actual field-measured tsunami signals are likewise simulated, stemming from both the 2004 Indian Ocean as well as the 2011 Tohoku events. These results are reconciled...

  18. Linear Stability of the boundary layer under a solitary wave

    OpenAIRE

    Verschaeve, Joris C. G.; Pedersen, Geir K.

    2013-01-01

    A theoretical and numerical analysis of the linear stability of the boundary layer flow under a solitary wave is presented. In the present work, the nonlinear boundary layer equations are solved. The result is compared to the linear boundary layer solution in Liu et al. (2007) reveal- ing that both profiles are disagreeing more than has been found before. A change of frame of reference has been used to allow for a classical linear stability analysis without the need to redefine the notion of ...

  19. Coupled wake boundary layer model of wind-farms

    OpenAIRE

    Stevens, Richard J. A. M.; Gayme, Dennice F.; Meneveau, Charles

    2014-01-01

    We present and test the coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake model approach with a "top-down" model for the overall wind-farm boundary layer structure. This wake model captures the effect of turbine positioning, while the "top-down" portion of the model adds the interactions between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the mode...

  20. Reactive boundary layers in metallic rolling contacts

    International Nuclear Information System (INIS)

    thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates of the

  1. Boundary Layer Ignition of Hydrogen-Air Mixtures in Supersonic Flows

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Due to viscous heating spontaneous ignition of a supersonic flow of premixed combustible gases can occur in boundary layers.This process is studied numerically for a hyedrogen-air mixture in the case of a laminar boundary layer over a flat plate.In a previous study the main structure of the reacting flow was given as well as a first mapping of the ignition conditions versus boundary conditions.In the present work computations are performed in order to further specify the controlling mechanisms and parameters of such a boundary layer ignition.We emphasize more precisely i) the elementary steps of the chemical process which efectively control the ignition ii) the unusual role played by the equivalence ratio of the mixture iii) the influence of the Soret effect (species transport due to temperature gradients).

  2. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    Science.gov (United States)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  3. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    structural uncertainties is hard to reduce and this could be one of the reasons determining slow progress in narrowing the climate model uncertainty range over the last 30 years (Knutti and Hagerl, Nature Geoscience, 2008). One of the most prominent structural uncertainties in the ongoing transient climate change is related to poor understanding and hence incorrect modelling of the turbulent physics and dynamics processes in the planetary boundary layer. Nevertheless, the climate models continue to rely on physically incorrect boundary layer parameterizations (Cuxart et al., BLM, 2006), whose erroneous dynamical response in the climate models may lead to significant abnormalities in simulated climate. At present, international efforts in theoretical understanding of the turbulent mixing have resulted in significant progress in turbulence simulation, measurements and parameterizations. However, this understanding has not yet found its way to the climate research community. Vice versa, climate research is not usually addressed by the boundary layer research community. The gap needs to be closed in order to crucially complete the scientific basis of climate change studies. The focus of the proposed forum could be formulated as follows: The planetary boundary layer determines several key parameters controlling the Earth's climate system but being a dynamic sub-system, just a layer of turbulent mixing in the atmosphere/ocean, it is also controlled by the climate system and its changes. Such a dynamic relationship causes a planetary boundary layer feedback (PBL-feedback) which could be defined as the response of the surface air temperature on changes in the vertical turbulent mixing. The forum participants have discussed both climatological and fluid dynamic aspects of this response, in order to quantify their role in the Earth's transient heat uptake and its representation in climate models. The choice of the forum location and dates are motivated by the role of tropical oceans

  4. Measurements of Boundary Layer Structure at Fort Cobb During CLASIC, June 2007

    Science.gov (United States)

    Li, W.; Barros, A. P.; Kang, D. H.; Prat, O. P.; Shrestha, P.; Tao, K.; Giovannettone, J.; Munoz, F.; Patrick, W.; Peters-Lidard, C.; Jackson, T.

    2007-12-01

    A tethersonde system was deployed at Fort Cobb, Oklahoma during the Cloud and Land Surface Interaction Campaign (CLASIC) June 8-24 2007 with the objective of characterizing the diurnal cycle of lower boundary layer structure up to 500 m including wind, pressure, temperature, humidity as well as CO2 profiles over harvested wheat. One unique feature of this data set is that includes fair weather, pre-storm and post-storm conditions for a record monthly rainfall in Oklahoma, in excess of 300 mm at the site. Here, we discuss specifically the diurnal cycle of (potential temperature) and q (specific humidity) and overall boundary layer structure during the duration of the field campaign with an emphasis on conditions before and after one major rain event. Preliminary regional estimates of surface roughness and friction velocity, and sensible heat flux and latent heat flux are also presented.

  5. Boundary layer flow over a moving surface in a nanofluid with suction or injection

    Institute of Scientific and Technical Information of China (English)

    Norfifah Bachok; Anuar lshak; loan Pop

    2012-01-01

    An analysis is performed to study the heat transfer characteristcs of steady two-dimensional boundary layer flow past a moving permeable flat plate in a nanofluid.The effects of uniform suction and injection on the flow field and heat transfer characteristics are numerically studied by using an implicit finite difference method.It is found that dual solutions exist when the plate and the free stream move in the opposite directions.The results indicate that suction delays the boundary layer separation,while injection accelerates it.

  6. Evaluation of WRF Boundary Layer Profiles against Radiosoundings in Northern Greenland in winter conditions

    DEFF Research Database (Denmark)

    Kirova, Hristina; Batchvarova, Ekaterina; Gryning, Sven-Erik;

    2014-01-01

    The boundary-layer processes in High Arctic area are studied based on consecutive radiosoundings and numerical simulations with Weather Research and Forecasting (WRF) model version 3.3.1 during a late winter period. The measurements consist of about 30 radiosondings performed every 12 hours in...... WRF were performed using Mellor – Yamada – Janjic scheme for planetary boundary processes with corresponding Monin – Obukhov (Janjic Eta) the surface layer scheme and the Noah land surface model. The variability of the correlation coefficient with height for all studied meteorological fields...... - 500 m. The modelled boundary-layer height is compared to its expert evaluation from measurements....

  7. Mixed convection boundary layer flow over a vertical cylinder with prescribed surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)], E-mail: anuar_mi@ukm.my

    2009-05-15

    The steady mixed convection boundary layer flow along a vertical cylinder with prescribed surface heat flux is investigated in this study. The free stream velocity and the surface heat flux are assumed to vary linearly with the distance from the leading edge. Both the case of the buoyancy forces assisting and opposing the development of the boundary layer are considered. Similarity equations are derived, their solutions being dependent on the mixed convection parameter, the curvature parameter, as well as of the Prandtl number. Dual solutions are found to exist for both buoyancy assisting and opposing flows. It is also found that the boundary layer separation is delayed for a cylinder compared to a flat plate.

  8. Boundary Layer Transition over Blunt Hypersonic Vehicles Including Effects of Ablation-Induced Out-Gassing

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; White, Jeffery

    2011-01-01

    Computations are performed to study the boundary layer instability mechanisms pertaining to hypersonic flow over blunt capsules. For capsules with ablative heat shields, transition may be influenced both by out-gassing associated with surface pyrolysis and the resulting modification of surface geometry including the formation of micro-roughness. To isolate the effects of out-gassing, this paper examines the stability of canonical boundary layer flows over a smooth surface in the presence of gas injection into the boundary layer. For a slender cone, the effects of out-gassing on the predominantly second mode instability are found to be stabilizing. In contrast, for a blunt capsule flow dominated by first mode instability, out-gassing is shown to be destabilizing. Analogous destabilizing effects of outgassing are also noted for both stationary and traveling modes of crossflow instability over a blunt sphere-cone configuration at angle of attack.

  9. Fuselage Boundary Layer Ingestion Propulsion Applied to a Thin Haul Commuter Aircraft for Optimal Efficiency

    Science.gov (United States)

    Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.

    2016-01-01

    Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.

  10. Off-Body Boundary-Layer Measurement Techniques Development for Supersonic Low-Disturbance Flows

    Science.gov (United States)

    Owens, Lewis R.; Kegerise, Michael A.; Wilkinson, Stephen P.

    2011-01-01

    Investigations were performed to develop accurate boundary-layer measurement techniques in a Mach 3.5 laminar boundary layer on a 7 half-angle cone at 0 angle of attack. A discussion of the measurement challenges is presented as well as how each was addressed. A computational study was performed to minimize the probe aerodynamic interference effects resulting in improved pitot and hot-wire probe designs. Probe calibration and positioning processes were also developed with the goal of reducing the measurement uncertainties from 10% levels to less than 5% levels. Efforts were made to define the experimental boundary conditions for the cone flow so comparisons could be made with a set of companion computational simulations. The development status of the mean and dynamic boundary-layer flow measurements for a nominally sharp cone in a low-disturbance supersonic flow is presented.

  11. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    Directory of Open Access Journals (Sweden)

    J. Lauros

    2010-08-01

    Full Text Available We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere.

    Simulation of aerosol concentration inside the atmospheric boundary layer during nucleation days shows highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated suitability of our turbulent mixing scheme in reproducing most important characteristics of particle dynamics inside the atmospheric boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles at the lowest part of the atmospheric boundary layer.

  12. Near continuum boundary layer flows at a flat plate

    Directory of Open Access Journals (Sweden)

    Chunpei Cai

    2015-05-01

    Full Text Available The problem of boundary layer flows at a flat plate surface with velocity-slip and temperature-jump boundary conditions is analyzed. With the velocity slip conditions, there are multiple physical factors lumped together, and the boundary layer solutions significantly change their behaviors. The self-similarity in the solutions degenerates, however, the problem is still an ordinary differential equation which can be solved. Shooting methods are applied to solve the flowfield. The results include velocity and temperature for both the surface and flowfield. Unlike the traditional Blasius flat plate boundary layer solutions which are self-similar through all the plate boundary layer, the new solutions indicate that the front tip is actually a singularity point, especially at locations within one mean free path from the leading edge.

  13. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i) ...

  14. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  15. On Cauchy conditions for asymmetric mixed convection boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Amaouche, Mustapha [Laboratoire de Physique Theorique, Universite de Bejaia (Algeria); Kessal, Mohand [Departement Transport et Equipement Petrolier, Faculte des Hydrocarbures et de la Chimie, Universite de Boumerdes, 35000, Boumerdes (Algeria)

    2003-06-01

    The fundamental question of how and where does an asymmetric mixed convection boundary layer flow around a heated horizontal circular cylinder begin to develop is raised. We first transform the classical boundary layer equations by using an integral method of Karman-Pohlhausen type and obtain two coupled equations governing the evolutions of the dynamic and thermal boundary layers. Because of its global character, the implemented method allows to bypass the difficulty of downstream-upstream interactions. Cauchy conditions characterizing the starting of the boundary layers are found; they are obtained in a surprisingly simple manner for the limiting cases corresponding to Pr=1, Pr{yields}0 and Pr{yields}{infinity}. Otherwise, these conditions can be found by using a prediction correction algorithm. Some numerical experiments are finally performed in order to illustrate the theory. (authors)

  16. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent ...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value......The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...

  17. Numerical simulation of turbulent atmospheric boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Bennes, L.; Bodnar, T.; Kozel, K.; Sladek, I. [Czech Technical Univ., Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, P. [Universite Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques de l' Environment Terrestre

    2001-07-01

    The work deals with the numerical solution of viscous turbulent steady flows in the atmospheric boundary layer including pollution propagation. For its description we use two different mathematical models: - a model based on the Reynolds averaged Navier-Stokes equations for incompressible flows - a model based on a system of boundary layer equations. These systems are completed by two transport equations for the concentration of passive pollutants and the potential temperature in conservative form, respectively, and by an algebraic turbulence model. (orig.)

  18. Boundary Layer to a System of Viscous Hyperbolic Conservation Laws

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for nxn hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.

  19. Tropical boundary layer equilibrium in the last ice age

    Science.gov (United States)

    Betts, Alan K.; Ridgway, W.

    1992-01-01

    A radiative-convective boundary layer model is used to assess the effect of changing sea surface temperature, pressure, wind speed, and the energy export from the tropics on the boundary layer equilibrium equivalent potential temperature. It remains difficult to reconcile the observations that during the last glacial maximum (18,000 yr BP) the snowline on the tropical mountains fell 950 m, while the tropical sea surface temperatures fell only 1-2 K.

  20. Reactive boundary layers in metallic rolling contacts

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, John

    2016-05-01

    more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates

  1. Subtropical Low Cloud Response to a Warmer Climate in an Superparameterized Climate Model: Part I. Regime Sorting and Physical Mechanisms

    Directory of Open Access Journals (Sweden)

    Peter N Blossey

    2009-07-01

    Full Text Available The subtropical low cloud response to a climate with SST uniformly warmed by 2 K is analyzed in the SP- CAM superparameterized climate model, in which each grid column is replaced by a two-dimensional cloud-resolving model (CRM. Intriguingly, SP-CAM shows substantial low cloud increases over the subtropical oceans in the warmer climate. The paper aims to understand the mechanism for these increases. The subtropical low cloud increase is analyzed by sorting grid-column months of the climate model into composite cloud regimes using percentile ranges of lower tropospheric stability (LTS. LTS is observed to be well correlated to subtropical low cloud amount and boundary layer vertical structure. The low cloud increase in SP-CAM is attributed to boundary-layer destabilization due to increased clear-sky radiative cooling in the warmer climate. This drives more shallow cumulus convection and a moister boundary layer, inducing cloud increases and further increasing the radiative cooling. The boundary layer depth does not change substantially, due to compensation between increased radiative cooling (which promotes more turbulent mixing and boundary-layer deepening and slight strengthening of the boundary-layer top inversion (which inhibits turbulent entrainment and promotes a shallower boundary layer. The widespread changes in low clouds do not appear to be driven by changes in mean subsidence.
    In a companion paper we use column-mode CRM simulations based on LTS-composite profiles to further study the low cloud response mechanisms and to explore the sensitivity of low cloud response to grid resolution in SP-CAM.

  2. Adaptive Modelling of the Daily Behavior of the Boundary Layer Ozone in Macau

    OpenAIRE

    K. M. Chao; K. I. Hoi; K. V. Yuen; K. M. Mok

    2012-01-01

    The present study aims to develop an efficient dynamic statistical model to describe the daily behavior of boundary layer ozone in Macau. Four types of Kalman-filter-based models were proposed and applied to model the daily maximum of the 8 hr averaged ozone concentrations within a decade (2000–2009). First, the boundary layer ozone was modelled with the time-varying autoregressive model of order p, TVAR(p), which is a pure time series model hindcasting the ozone concentration by a weighted s...

  3. Unsteady compressible boundary layer flow over a circular cone near aplane of symmetry

    OpenAIRE

    Chamkha, AJ; Takhar, HS; G. Nath

    2005-01-01

    An analysis has been performed to study the unsteady laminar compressible boundary layer governing the hypersonic flow over a circular cone at an angle of attack near a plane of symmetry with either in flow or out flow in the presence of suction. The flow is assumed to be steady at time t= 0 and at t > 0 it becomes unsteady due to the time-dependent free stream velocity which varies arbitrarily with time. The nonlinear coupled parabolic partial differential equations under boundary layer a...

  4. Separation of a turbulent supersonic boundary layer with heat supply ahead of a flat step

    Science.gov (United States)

    Larin, O. B.; Levin, V. A.

    2015-05-01

    The influence of an electric discharge in a supersonic gas flow modeled by a heat source with a specified intensity and configuration on the development of a turbulent boundary layer ahead of a flat step is numerically studied. If the discharge power is sufficiently large, it is demonstrated that heat transfer to the wall does not affect the position of separation, which arises due to a non-zero shear stress on the body surface and is caused by the development of a reverse flow in the core of the boundary layer.

  5. Enhancing aerodynamic performances of a high-turning compressor cascade via boundary layer suction

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Experimental investigation was carried out to study the effect of suction positions and suction flow rates on the aerodynamic performance of a compressor cascade with a large camber angle. The ink-trace flow visualization was conducted and the flow fields of the cascade were also measured. Three types of boundary layer suction configurations are compared,i.e. the suction surface suction,the endwall suction and the compound suction. Experimental results show that the large amount of suction flow rate gains more losses reduction than the small amount for a certain proper suction configuration,but the speed of loss decline slows down as the suction flow rate goes on increasing. Boundary layer suction on the suction surface obviously enhances the ability of the boundary layer around the midspan to withstand the negative pressure gradient of the flow passage. The range of the suction surface corner is also decreased. If the suction slot locates in the corner separation region where severe separation has happened,the flow separation will be terminated at the slot and redevelop downstream. And boundary layer suction on the endwall mainly influences the endwall corner region in remarkably delaying,lessening and reorganizing the corner separation. While the whole flow field is remarkably improved at both midspan and the corner region in the compound suction schemes. At higher suction flow rates,the aerodynamic performance of the compressor cascade is better than that with boundary layer suction simply on the suction surface or on the endwall. When the suction flow rate is 1.5% of the inlet mass flow,the compound suction scheme achieves a maximum loss reduction of 17% compared with the cascade without boundary layer suction.

  6. Fluorescence Visualization of Hypersonic Flow Past Triangular and Rectangular Boundary-layer Trips

    Science.gov (United States)

    Danehy, Paul M.; Garcia, A. P.; Borg, Stephen E.; Dyakonov, Artem A.; Berry, Scott A.; Inman, Jennifer A.; Alderfer, David W.

    2007-01-01

    Planar laser-induced fluorescence (PLIF) flow visualization has been used to investigate the hypersonic flow of air over surface protrusions that are sized to force laminar-to-turbulent boundary layer transition. These trips were selected to simulate protruding Space Shuttle Orbiter heat shield gap-filler material. Experiments were performed in the NASA Langley Research Center 31-Inch Mach 10 Air Wind Tunnel, which is an electrically-heated, blowdown facility. Two-mm high by 8-mm wide triangular and rectangular trips were attached to a flat plate and were oriented at an angle of 45 degrees with respect to the oncoming flow. Upstream of these trips, nitric oxide (NO) was seeded into the boundary layer. PLIF visualization of this NO allowed observation of both laminar and turbulent boundary layer flow downstream of the trips for varying flow conditions as the flat plate angle of attack was varied. By varying the angle of attack, the Mach number above the boundary layer was varied between 4.2 and 9.8, according to analytical oblique-shock calculations. Computational Fluid Dynamics (CFD) simulations of the flowfield with a laminar boundary layer were also performed to better understand the flow environment. The PLIF images of the tripped boundary layer flow were compared to a case with no trip for which the flow remained laminar over the entire angle-of-attack range studied. Qualitative agreement is found between the present observed transition measurements and a previous experimental roughness-induced transition database determined by other means, which is used by the shuttle return-to-flight program.

  7. Effects of Thermochemical Nonequilibrium on Hypersonic Boundary-Layer Instability in the Presence of Surface Ablation or Isolated Two-Dimensional Roughness

    OpenAIRE

    Mortensen, Clifton

    2015-01-01

    The current understanding of the effects of thermochemical nonequilibrium on hypersonic boundary-layer instability still contains uncertainties, and there has been little research into the effects of surface ablation, or two-dimensional roughness, on hypersonic boundary-layer instability. The objective of this work is to study the effects of thermochemical nonequilibrium on hypersonic boundary-layer instability. More specifically, two separate nonequilibrium flow configurations are studied: 1...

  8. Experimental investigation of the flow over three d-type microgeometries for boundary layer control

    Science.gov (United States)

    Hildalgo Ardana, Pablo

    2008-04-01

    An experimental investigation of the flow over three microgeometries was conducted in order to study its boundary layer control capabilities. Drag reduction and boundary layer control are two of the most researched areas in fluid mechanics. The necessity of reducing drag over vehicles is imperative to reduce the power needed to move a vehicle, or to save millions of gallons of fuel; this can also contribute to a reduction of the emissions of pollutant gases to the atmosphere. It has been estimated that a reduction in drag of 1% on an airplane can save the airlines around 200,000 in fuel costs per airliner per year, and worldwide this could result in total savings in fuel of approximately 1 billion every year. This experimental research was inspired by fast swimming shark species and the denticles present on their skin. Among other purposes, these denticles have some hydrodynamic capabilities that are investigated in this experimental work. Replicas of the denticles of the Shortfin Mako shark (Isurus oxyrinchus), which is speculated to be the fastest swimming shark, have been fabricated and they were embedded on a flat plate. Two additional simplified models of the shark skin consisting of embedded cavities, a two-dimensional grooved surface and a squared sawtooth geometry, were also tested. Time-resolved digital particle image velocimetry (TR-DPIV) measurements were taken in order to characterize the cavity vortices formed inside the geometries, as well as velocity profile measurements to identify the stability of the boundary layer over the geometries. The cavity vortices introduce a partial slip condition into the flow which affects the stability of the boundary layer. The results indicate that the shark skin can work as a boundary layer control mechanism by delaying or inhibiting separation over the shark's body, thereby reducing pressure drag. The ribs on the front side of the shark skin denticles promoted secondary vorticity that was measured under both

  9. The atmospheric boundary layer over land and sea: Focus on the off-shore Southern Baltic and Southern North Sea region

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling

    Lecture notes for a short course on the ideal atmospheric boundary layer and its characteristics for different types of real boundary layers, aiming at a discussion of the coastal conditions at the Southern Baltic and North Sea region. The notes are aimed at young scientists (e.g. PhD students) t......) that study the physics of the atmospheric boundary layer with the purpose of applying this knowledge for remote sensing techniques within offshore wind energy....

  10. Modeling chemistry in and above snow at Summit, Greenland – Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer

    OpenAIRE

    Thomas, J.L.; Dibb, J. E.; L. G. Huey; Liao, J; Tanner, D.; Lefer, B; Glasow, R.; Stutz, J.

    2012-01-01

    The chemical composition of the boundary layer in snow covered regions is impacted by chemistry in the snowpack via uptake, processing, and emission of atmospheric trace gases. We use the coupled one-dimensional (1-D) snow chemistry and atmospheric boundary layer model MISTRA-SNOW to study the impact of snowpack chemistry on the oxidation capacity of the boundary layer. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the at...

  11. Modeling chemistry in and above snow at Summit, Greenland − Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer

    OpenAIRE

    Lefer, B; von Glasow, R.; Tanner, D.; Liao, J; L. G. Huey; Dibb, J. E.; Thomas, J.L.; Stutz, J.

    2012-01-01

    The chemical composition of the boundary layer in snow covered regions is impacted by chemistry in the snowpack via uptake, processing, and emission of atmospheric trace gases. We use the coupled one-dimensional (1-D) snow chemistry and atmospheric boundary layer model MISTRA-SNOW to study the impact of snowpack chemistry on the oxidation capacity of the boundary layer. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the atmosphere. Chemistr...

  12. Aerosols in the Convective Boundary Layer: Radiation Effects on the Coupled Land-Atmosphere System

    Science.gov (United States)

    Barbaro, E.; Vila-Guerau Arellano, J.; Ouwersloot, H. G.; Schroter, J.; Donovan, D. P.; Krol, M. C.

    2013-12-01

    We investigate the responses of the surface energy budget and the convective boundary-layer (CBL) dynamics to the presence of aerosols using a combination of observations and numerical simulations. A detailed observational dataset containing (thermo)dynamic variables observed at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions (IMPACT/EUCAARI) campaign is employed to design numerical experiments reproducing two prototype clear-sky days characterized by: (i) a well-mixed residual layer above a ground inversion and (ii) a continuously growing CBL. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, both coupled to a broadband radiative transfer code and a land-surface model, are used to study the impacts of aerosol scattering and absorption of shortwave radiation on the land-atmosphere system. We successfully validate our model results using the measurements of (thermo)dynamic variables and aerosol properties for the two different CBL prototypes studied here. Our findings indicate that in order to reproduce the observed surface energy budget and CBL dynamics, information of the vertical structure and temporal evolution of the aerosols is necessary. Given the good agreement between the LES and the MXL model results, we use the MXL model to explore the aerosol effect on the land-atmosphere system for a wide range of optical depths and single scattering albedos. Our results show that higher loads of aerosols decrease irradiance, imposing an energy restriction at the surface. Over the studied well-watered grassland, aerosols reduce the sensible heat flux more than the latent heat flux. As a result, aerosols increase the evaporative fraction. Moreover, aerosols also delay the CBL morning onset and anticipate its afternoon collapse. If also present above the CBL during the morning transition, aerosols maintain a persistent near

  13. Total Solar Eclipses and Atmospheric Boundary Layer Response

    Science.gov (United States)

    Stoev, A.; Stoeva, P.; Kuzin, S.

    2012-11-01

    The effect of three total solar eclipses on meteorological parameters is discussed in the paper. Measurements were conducted at the village of Ravnets,General Toshevo municipality, Bulgaria, 1999,in Manavgat, near Antalya, Turkey, 2006 and in Tian Huang Ping, China, 2009. The observed decrease of the sky illumination (incoming solar radiation) during the eclipses was proportional to the percentage of solar coverage. The after eclipse sky illumination level is due to the effect of the natural change of the solar elevation angle. For the 1999 TSE it did not regain its pre eclipse value, it has exactly the same value for the 2006 TSE, and, It is three times larger than the pre eclipse value for the 2009 TSE. This fact can be easily explained by the Local Time of the maximum of the eclipses: LT 13:12, LT 12:58, and LT 09:34, respectively. Measurements showed significant changes in the surface air temperature. The minimum of the air temperature during the 2009 TSE (Tmin=4.5°C) was measured 6 min after the end of the total phase. This minimal temperature drop and larger time lag can be explained with the huge artificial lake near the place of observation, which minimizes the temperature response due to its larger heat capacity. During the 1999 TSE, minimal temperature (Tmin=6.4°C) is measured 7 min 30 s after the total phase, and for the 2006 TSE (Tmin=5°C) - 5 min. It is in accordance with the fact that the temperature minima at residential/commercial stations occurred in general, before the minima at stations in agricultural terrains. In 2006 we were at the yard of the hotel, and in 1999 in the countryside. The wind velocity drops during the total phase as a result of the cooling and stabilization of the atmospheric boundary layer. The wind direction during the total phase changes and the wind begins to blow in the same direction as the direction of motion of the lunar shadow on the earth. Cirrus and cirrostratus clouds were observed during the 2006 total solar

  14. Thermal Boundary Layer in Flow due to an Exponentially Stretching Surface with an Exponentially Moving Free Stream

    OpenAIRE

    Krishnendu Bhattacharyya; Layek, G. C.

    2014-01-01

    A numerical investigation is made to study the thermal boundary layer for flow of incompressible Newtonian fluid over an exponentially stretching sheet with an exponentially moving free stream. The governing partial differential equations are transformed into self-similar ordinary differential equations using similarity transformations in exponential forms. Then those are solved numerically by shooting technique using Runge-Kutta method. The study reveals that the momentum boundary layer thic...

  15. A case study of CO2, CO and particles content evolution in the suburban atmospheric boundary layer using a 2-μm Doppler DIAL, a 1-μm backscatter lidar and an array of in-situ sensors

    International Nuclear Information System (INIS)

    A network of remote and in-situ sensors was deployed in a Paris suburb in order to evaluate the mesoscale evolution of the daily cycle of CO2 and related tracers in the atmospheric boundary layer (ABL) and its relation to ABL dynamics and nearby natural and anthropogenic sources and sinks. A 2-μ m heterodyne Doppler differential absorption lidar, which combines measurements of (1) structure of the atmosphere (2) radial velocity, and (3) CO2 differential absorption was a particularly unique element of the observational array. We analyse the differences in the diurnal cycle of CO, CO2, lidar reflectivity (a proxy for aerosol content) and H2O using the lidar, airborne measurements in the free troposphere and ground-based measurements made at two sites located few kilometres apart. We demonstrate that vertical mixing dominates the early morning drawdown of CO and aerosol content trapped in the former nocturnal layer but not the H2O and CO2 mixing ratio variations. Surface fluxes, vertical mixing and advection all contribute to the ABL CO2 mixing ratio decrease during the morning transition, with the relative importance depending on the rate and timing of ABL rise. We also show evidence that when the ABL is stable, small-scale (0.1-km vertical and 1-km horizontal) gradients of CO2 and CO are large. The results illustrate the complexity of inferring surface fluxes of CO2 from atmospheric budgets in the stable boundary layer. (authors)

  16. A case study of atmospheric boundary layer features during winter over a tropical inland station – Kharagpur (22.32°N, 87.32°E)

    Indian Academy of Sciences (India)

    Denny P Alappattu; P K Kunhikrishnan; Marina Aloysius; M Mohan

    2009-08-01

    The local weather and air quality over a region are greatly influenced by the atmospheric boundary layer (ABL) structure and dynamics. ABL characteristics were measured using a tethered balloon-sonde system over Kharagpur (22.32°N, 87.32°E, 40m above MSL), India, for the period 7 December 2004 to 30 December 2004, as a part of the Indian Space Research Organization– Geosphere Biosphere Program (ISRO–GBP) Aerosol Land Campaign II. High-resolution data of pressure, temperature, humidity, wind speed and wind direction were archived along with surface layer measurements using an automatic weather station. This paper presents the features of ABL, like ABL depth and nocturnal boundary layer (NBL) depth. The sea surface winds from Quikscat over the oceanic regions near the experiment site were analyzed along with the NCEP/NCAR reanalysis winds over Kharagpur to estimate the convergence of wind, moisture and vorticity to understand the observed variations in wind speed and relative humidity, and also the increased aerosol concentrations. The variation of ventilation coefficient (VC), a factor determining the air pollution potential over a region, is also discussed in detail.

  17. Exchanges in boundary layer and low troposphere and consequences on pollution of Fos-Berre-Marseille area (ESCOMPTE experiment)

    International Nuclear Information System (INIS)

    The aim of this study is to analyse the vertical structure of the low troposphere during the ESCOMPTE campaign in relation with transport and diffusion of pollutants. This analysis shows the difficulty to define a boundary layer. It allows us to highlight a complex superposition of several internal boundary layers, particularly near the coast. The study of the layer where pollution may be accumulated or diluted pointed out the fact that pollution is trapped near the surface, close to the coastline under sea-breeze conditions whereas it is advected over the mountains where the boundary layers are deeper. During sea-breeze conditions, the ozone concentration is paradoxically weak near the sources at the coastline (titration). Over the mountains, the strong developments of the boundary layers result in a mixing between the highly polluted low troposphere and the surface which enhances the ozone concentration. (author)

  18. Conserved variable analysis of the marine boundary layer and air-sea exchange processes using BOBMEX-pilot data sets

    Indian Academy of Sciences (India)

    N V Sam; U C Mohanty; A N V Satyanarayana

    2000-06-01

    The present study is based on the observed features of the MBL (Marine Boundary Layer) during the Bay of Bengal and Monsoon Experiment (BOBMEX) - Pilot phase. Conserved Variable Analysis (CVA) of the conserved variables such as potential temperature, virtual potential temperature, equivalent potential temperature, saturation equivalent potential temperature and specific humidity were carried out at every point of upper air observation obtained on board ORV Sagar Kanya. The values are estimated up to a maximum of 4 km to cover the boundary layer. The Marine Boundary Layer Height is estimated from the conserved thermodynamic profiles. During the disturbed period when the convective activity is observed, the deeper boundary layers show double mixing line structures. An attempt is also made to study the oceanic heat budget using empirical models. The estimated short-wave radiation flux compared well with the observations.

  19. Characteristics of the Boundary Layer Structure of Sea Fog on the Coast of Southern China

    Institute of Scientific and Technical Information of China (English)

    HUANG Huijun; LIU Hongnian; JIANG Weimei; HUANG Jian; MAO Weikang

    2011-01-01

    Using boundary layer data with regard to sea fog observed at the Science Experiment Base for Marine Meteorology at Bohe,Guangdong Province,the structure of the atmospheric boundary layer and the characteristics of the tops of the fog and the clouds were analyzed.In addition,the effects of advection,radiation,and turbulence during sea fog were also investigated.According to the stability definition of saturated,wet air,the gradient of the potential pseudo-equivalent temperature equal to zero was defined as the thermal turbulence interface.There is evidence to suggest that two layers of turbulence exist in sea fog.Thermal turbulence produced by long-wave radiation is prevalent above the thermal turbulence interface,whereas mechanical turbulence aroused by wind shear is predominant below the interface.The height of the thermal turbulence interface was observed between 180 m and 380 m.Three important factors are closely related to the development of the top of the sea fog:(1) the horizontal advection of the water vapor,(2) the long-wave radiation of the fog top,and (3) the movement of the vertical turbulence.Formation,development,and dissipation are the three possible phases of the evolution of the boundary-layer structure during the sea fog season.In addition,the thermal turbulence interface is the most significant turbulence interface during the formation and development periods; it is maintained after sea fog rises into the stratus layer.

  20. Numerical model simulations of boundary-layer dynamics during winter conditions

    DEFF Research Database (Denmark)

    Melas, D.; Persson, T.; Bruin, H. de;

    2001-01-01

    A mesoscale numerical model, incorporating a land-surface scheme based on Deardorffs' approach, is used to study the diurnal variation of the boundary layer structure and surface fluxes during four consecutive days with air temperatures well below zero, snow covered ground and changing synoptic f...

  1. Dispersion of a passive tracer in buoyancy- and shear-driven boundary layers

    NARCIS (Netherlands)

    Dosio, A.; Vilà-Guerau de Arellano, J.; Holtslag, A.A.M.; Builtjes, P.J.H.

    2003-01-01

    By means of finescale modeling [large-eddy simulation (LES)], the combined effect of thermal and mechanical forcing on the dispersion of a plume in a convective boundary layer is investigated. Dispersion of a passive tracer is studied in various atmospheric turbulent flows, from pure convective to a

  2. Effects on the Benthic Diffusive Boundary-Layer Imposed by Microelectrodes

    DEFF Research Database (Denmark)

    GLUD, RN; GUNDERSEN, JK; REVSBECH, NP; JØRGENSEN, BB

    1994-01-01

    Oxygen microgradients and fluxes were studied in a 0.3-0.6-mm-thick diffusive boundary layer (DBL) of aquatic sediments by the use of O2 microelectrodes with sensing tips of 5 mum. One microelectrode was introduced vertically from above while another was introduced along the same vertical axis fr...

  3. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.

    2013-01-01

    Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared im

  4. Diffusive boundary layers, photosynthesis, and respiration of the colony-forming plankton algae, Phaeocystis sp

    DEFF Research Database (Denmark)

    Ploug, H.; Stolte, W.; Epping, EHG;

    1999-01-01

    Diffusive boundary layers, photosynthesis, and respiration in Phaeocystis colonies were studied by the use of microelectrodes for oxygen and pH during a bloom in the Barents Sea, 1993, and in the Marsdiep, Dutch North Sea, 1994. The oxygen microenvironment of a Phaeocystis colony with a mean diam...

  5. Highly buoyant bent-over plumes in a boundary layer

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel B.

    2016-04-01

    Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.

  6. Turbulent boundary-layer structure of flows over freshwater biofilms

    Science.gov (United States)

    Walker, J. M.; Sargison, J. E.; Henderson, A. D.

    2013-12-01

    The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.

  7. Characteristics and structures in thermally-stratified turbulent boundary layer with counter diffusion gradient phenomenon

    International Nuclear Information System (INIS)

    Highlights: • We study the stably thermally-stratified turbulent boundary layer by means of DNS. • The counter diffusion phenomenon is discovered in both the velocity and thermal fields in our DNS. • The detailed turbulent statistics and structures in stably thermally-stratified turbulent boundary layer are discussed. • The anisotropy tensor, turbulent heat flux tensor, vortex structure, and fluctuation Reynolds shear stress are indicated. - Abstract: The objectives of this study are to investigate the counter diffusion phenomenon (CDP) in a stably thermally-stratified turbulent boundary layer by means of direct numerical simulation (DNS). In this study, four cases of stably thermally-stratified turbulent boundary layers are simulated to reproduce the CDP, in which two Reynolds numbers and four Richardson numbers are set. The CDP is discovered in both the velocity and thermal fields in three cases. DNS clearly shows the CDP, which indicates the negative sign of the Reynolds shear stress and the wall-normal turbulent heat flux with the positive sign of mean velocity and temperature gradients. The turbulent heat flux tensor is also shown in order to indicate the variation of the thermal field, in which the streamwise turbulent heat flux tensor maintains a high value even in the case of strong CDP occurrence. The relation between the vortex structure and the Reynolds shear stress fluctuation is shown, where the negative value of Reynolds shear stress fluctuation frequently appears around the vortex structure in the case of CDP occurrence

  8. Columnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study Part III: Preliminary results on physicochemical model performance using two "clean air mass" reference scenarios

    Directory of Open Access Journals (Sweden)

    O. Hellmuth

    2006-01-01

    Full Text Available In Paper I of four papers, a revised columnar high-order model to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL was proposed. In Paper II, the model capability to predict first-, second- and third-order moments of meteorological variables in the CBL was demonstrated using available observational data. In the present Paper III, the high-order modelling concept is extended to sulphur and ammonia chemistry as well as to aerosol dynamics. Based on the previous CBL simulation, a feasibility study is performed using two "clean air mass" scenarios with an emission source at the ground but low aerosol background concentration. Such scenarios synoptically correspond to the advection of fresh post-frontal air in an anthropogenically influenced region. The aim is to evaluate the time-height evolution of ultrafine condensation nuclei (UCNs and to elucidate the interactions between meteorological and physicochemical variables in a CBL column. The scenarios differ in the treatment of new particle formation (NPF, whereas homogeneous nucleation according to the classical nucleation theory (CNT is considered. The first scenario considers nucleation of a binary system consisting of water vapour and sulphuric acid (H2SO4 vapour, the second one nucleation of a ternary system additionally involving ammonia (NH3. Here, the two synthetic scenarios are discussed in detail, whereas special attention is payed to the role of turbulence in the formation of the typical UCN burst behaviour, that can often be observed in the surface layer. The intercomparison of the two scenarios reveals large differences in the evolution of the UCN number concentration in the surface layer as well as in the time-height cross-sections of first-order moments and double correlation terms. Although in both cases the occurrence of NPF bursts could be simulated, the burst characteristics and genesis of the bursts are completely different. It is demonstrated

  9. Predicting the flow & noise of a rotor in a turbulent boundary layer using an actuator disk -- RANS approach

    Science.gov (United States)

    Buono, Armand C.

    The numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent boundary layer (Configuration 3), were analyzed for a variety of advance ratios ranging from J = 0.48 to J =1.44. CFD results are shown to be in agreement with previous works and validated with experimental data of reverse flow occurring within the boundary layer above the flat plate upstream of a rotor in the Virginia Tech's Stability Wind Tunnel facility. Results from Configuration 3 will be used in future aero-acoustic computations.

  10. Influence of boundary-layer dynamics on pollen dispersion and viability

    Science.gov (United States)

    Arritt, Raymond W.; Viner, Brian J.; Westgate, Mark E.

    2013-04-01

    Adoption of genetically modified (GM) crops has raised concerns that GM traits can accidentally cross into conventional crops or wild relatives through the transport of wind-borne pollen. In order to evaluate this risk it is necessary to account both for dispersion of the pollen grains and environmental influences on pollen viability. The Lagrangian approach is suited to this problem because it allows tracking the environmental temperature and moisture that pollen grains experience as they travel. Taking advantage of this capability we have combined a high-resolution version of the WRF meteorological model with a Lagrangian particle dispersion model to predict maize pollen dispersion and viability. WRF is used to obtain fields of wind, turbulence kinetic energy, temperature, and humidity which are then used as input to the Lagrangian dispersion model. The dispersion model in turn predicts transport of a statistical sample of a pollen cloud from source plants to receptors. We also use the three-dimensional temperature and moisture fields from WRF to diagnose changes in moisture content of the pollen grains and consequent loss of viability. Results show that turbulent motions in the convective boundary layer counteract the large terminal velocity of maize pollen grains and lift them to heights of several hundred meters, so that they can be transported long distances before settling to the ground. We also found that pollen lifted into the upper part of the boundary layer remains more viable than has been inferred using surface observations of temperature and humidity. This is attributed to the thermal and moisture structure that typifies the daytime atmospheric boundary layer, producing an environment of low vapor pressure deficit in the upper boundary layer which helps maintain pollen viability.

  11. The stabilizing role of anisotropy in the free stream on boundary layer development

    Science.gov (United States)

    Frohnapfel, Bettina

    2005-11-01

    An experimental study on the transition of a flat plate boundary layer was conducted in the large wind tunnel of the chair of fluid dynamics (LSTM) in Erlangen, Germany. Although this is not an especially designed transition tunnel it was possible to maintain a stable laminar regime up to Rex=4x10^6, one of the highest transition Reynolds numbers achieved in a flat plate boundary layer. It is argued that this was possible due to a stabilizing effect originating from the high anisotropy level in the free stream disturbances that exists in the tunnel. Based on a statistical analysis of the dynamical equations for small axisymmetric disturbances, the influence of anisotropy on the dynamics of those disturbances in a laminar boundary layer was studied. The derived transition criterion is formulated in terms of a transition Reynolds number - based on intensity and Taylor length scale of the disturbances - that shows a dependency on the anisotropy level of the free stream disturbances. In this respect all available existing measurements on natural boundary layer transition at high Reynolds numbers were analyzed.

  12. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface

    International Nuclear Information System (INIS)

    An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented. The flow is permeated by an externally applied magnetic field normal to the plane of the flow. The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is significantly different from that of a stretching surface. It is found that the solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced values of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications. (fundamental areas of phenomenology(including applications))

  13. An automatic Planetary Boundary Layer height retrieval method with compact EZ backscattering Lidar

    Science.gov (United States)

    Loaec, S.; Sauvage, L.; Boquet, M.; Lolli, S.; Rouget, V.

    2009-09-01

    Bigger strongly urbanized cities in the world are often exposed to atmospheric pollution events. To understand the chemical and physical processes that are taking place in these areas it is necessary to describe correctly the Planetary Boundary Layer (PBL) dynamics and the PBL height evolution. For these proposals, a compact and rugged eye safe UV Lidar, the EZLIDAR™, was developed together by CEA/LMD and LEOSPHERE (France) to study and investigate structural and optical properties of clouds and aerosols and PBL time evolution. EZLIDAR™ has been validated by different remote and in-situ instruments as MPL Type-4 Lidar manufactured by NASA at ARM/SGP site or the LNA (Lidar Nuage Aerosol) at the Laboratoire de Metereologie Dynamique LMD (France) and during several intercomparison campaigns. EZLIDAR™ algorithm retrieves automatically the PBL height in real-time. The method is based on the detection of the slope of the signal linked to a sharp change in concentration of the aerosols. Once detected, the different layers are filtered on a 15mn sample and classified between nocturnal, convective or residual layer, depending on the time and date. This method has been validated against those retrieved by the algorithm STRAT from data acquired at IPSL, France, showing 95% of correlation. In this paper are presented the results of the intercomparison campaign that took place in Orleans, France and Mace Head, Ireland in the framework of ICOS (Integrated Carbon Observation System) project, where the EZ Lidar™ worked under all weather conditions, clear sky, fog, low clouds, during the whole month of October 2008. Moreover, thanks to its 3D scanning capability, the EZLIDAR was able to provide the variability of the PBL height around the site, enabling the scientists to estimate the flux intensities that play a key role in the radiative transfer budget and in the atmospheric pollutants dispersion.

  14. A new automatic Planetary Boundary Layers height detection and diurnal evolution with compact EZ Lidar

    Science.gov (United States)

    Loaec, S.; Boquet, M.,; Sauvage, L.; Lolli, S.; Rouget, V.

    2009-04-01

    Bigger strongly urbanized cities in the world are often exposed to atmospheric pollution events. To understand the chemical and physical processes that are taking place in these areas it is necessary to describe correctly the Planetary Boundary Layer (PBL) dynamics and the PBL height evolution. For these proposals, a compact and rugged eye safe UV Lidar, the EZLIDAR™, was developed together by CEA/LMD and LEOSPHERE (France) to study and investigate structural and optical properties of clouds and aerosols and PBL time evolution. EZLIDAR™ has been validated by different remote and in-situ instruments as MPL Type-4 Lidar manufactured by NASA at ARM/SGP site or the LNA (Lidar Nuage Aerosol) at the Laboratoire de Metereologie Dynamique LMD (France) and during several intercomparison campaigns. EZLIDAR™ algorithm retrieves automatically the PBL height in real-time. The method is based on the detection of the slope of the signal linked to a sharp change in concentration of the aerosols. Once detected, the different layers are filtered on a 15mn sample and classified between nocturnal, convective or residual layer, depending on the time and date. This method has been validated against those retrieved by the algorithm STRAT from data acquired at IPSL, France, showing 95% of correlation. In this paper are presented the results of the intercomparison campaign that took place in Orleans, France in the framework of ICOS (Integrated Carbon Observation System) project, where the EZ Lidar™ worked under all weather conditions, clear sky, fog, low clouds, during the whole month of October 2008. Moreover, thanks to its 3D scanning capability, the EZLIDAR was able to provide the variability of the PBL height around the site, enabling the scientists to estimate the flux intensities that play a key role in the radiative transfer budget and in the atmospheric pollutants dispersion.

  15. Particle motion inside Ekman and Bödewadt boundary layers

    Science.gov (United States)

    Duran Matute, Matias; van der Linden, Steven; van Heijst, Gertjan

    2014-11-01

    We present results from both laboratory experiments and numerical simulations of the motion of heavy particles inside Ekman and Bödewadt boundary layers. The particles are initially at rest on the bottom of a rotating cylinder filled with water and with its axis parallel to the axis of rotation. The particles are set into motion by suddenly diminishing the rotation rate and the subsequent creation of a swirl flow with the boundary layer above the bottom plate. We consider both spherical and non-spherical particles with their size of the same order as the boundary layer thickness. It was found that the particle trajectories define a clear logarithmic spiral with its shape depending on the different parameters of the problem. Numerical simulations show good agreement with experiments and help explain the motion of the particles. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.

  16. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu; Christensen, Erik Damgaard

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... overall (local) grid size. The results indicate that the large eddies develop in the resolved scale, corresponding to fluid with an effective viscosity decided by the sum of the kinematic and subgrid viscosity. Regarding case 2, the results are qualitatively in accordance with experimental findings....... Injection generally slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean...

  17. Localized travelling waves in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M

    2016-01-01

    We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.

  18. Bypass transition and spot nucleation in boundary layers

    CERN Document Server

    Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno

    2016-01-01

    The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  19. Wind Tunnel Simulation of the Atmospheric Boundary Layer

    Science.gov (United States)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2013-11-01

    To simulate the interaction of large Vertical Axis Wind Turbines (VAWT) with the Atmospheric Boundary Layer (ABL) in the laboratory, we implement a variant of Counihan's technique [Counihan 1969] in which a combination of a castellated barrier, elliptical vortex generators, and floor roughness elements is used to create an artificial ABL profile in a standard closed loop wind tunnel. To examine the development and formation of the artificial ABL hotwire and SPIV measurements were taken at various downstream locations with changes in wall roughness, wall type, and vortex generator arrangements. It was found possible to generate a boundary layer at Reθ ~106 , with a mean velocity that followed the 1/7 power law of a neutral ABL over rural terrain and longitudinal turbulence intensities and power spectra that compare well with the data obtained for high Reynolds number flat plate turbulent boundary layers [Hultmark et al. 2010]. Supported by Hopewell Wind Power Ltd., and the Princeton Grand Challenges Program.

  20. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya; G.C.Layek

    2011-01-01

    @@ An analysis is carried out to study a steady magnetohydrodynamic(MHD) boundary layer How of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel.The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls.The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls.The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations.The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model.The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls,even in the absence of a magnetic field.Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter.It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid.The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physical尔

  1. Time-dependent boundary-layer response in a propeller slipstream

    Science.gov (United States)

    Howard, Richard M.; Miley, Stan J.

    1989-01-01

    The time-dependent behavior of a wing boundary layer immersed in a propeller slipstream has been studied experimentally in wind-tunnel tests and in flight. Hot-wire anemometer measurements were made through the boundary layer for time-dependent, ensemble-average velocity and turbulence-intensity profiles at various chord locations. The boundary layer has a coherent, time-dependent cycle of transitional behavior, varying from a laminar to a turbulent-transitional state. Local drag coefficients determined from the velocity profiles for the freewheeling propeller case in flight show that the time-dependent drag in the propeller slipstream varies from the undisturbed laminar value to a value less than that predicted for fully turbulent flow. Local drag coefficients determined from the thrusting propeller case in the wind tunnel indicate that the effects of the slipstream are to enhance the stability of the boundary layer and to reduce the drag coefficient in the laminar portion of the cycle below its undisturbed laminar value.

  2. An investigation of the effects of the propeller slipstream on a wing boundary layer

    Science.gov (United States)

    Howard, Richard Moore

    1987-12-01

    The behavior of a wing boundary layer immersed in a propeller slipstream has been studied experimentally. Airfoil surface static pressure measurements were made for time-averaged effects, and time-dependent measurements were made with hot-film anemometer sensors for the determination of instantaneous velocities. Vertical boundary layer traverses were made at fixed chord locations for the determination of velocity profiles and for values of the turbulence intensity. The boundary layer has a coherent, time-dependent cycle of transitional behavior, varying from laminar to turbulent. This layer shows similarities to those disturbed by high levels of external flow turbulence and to those in a relaminarizing environment. Profile drag coefficients determined from the time-dependent ensemble-average velocity profiles for the freewheeling propeller case show the drag in the propeller slipstream varies from the undisturbed laminar value to a value less than that predicted for fully turbulent flow. Drag values determined from the low Reynolds number thrusting propeller case in the wind tunnel show that the effects of the slipstream are to enhance the stability of the boundary layer and to reduce the drag coefficient in the laminar portion of the slipstream cycle below its undisturbed value.

  3. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  4. Boundary layer plasmas as a source for high-latitude, early afternoon, auroral arcs

    International Nuclear Information System (INIS)

    Simultaneous measurements of hot boundary layer plasma from PROGNOZ-7 and particle precipitation from the TIROS/NOAA satellite in nearly magnetically conjugate regions have been used to study the dynamo process responsible for the formation of high latitude, early afternoon, auroral arcs. Characteristic for the PROGNOZ-7 observations in the dayside boundary layer at high latitudes is the frequent occurrence of regions with injected magnetosheath plasma embedded in a 'halo' of antisunward flowing magnetosphere plasma. The injected magnetosheath plasma have several features which indicate that it also acts as a local source of EMF in the boundary layer. The process resembles that of a local MHD dynamo driven by the excess drift velocity of the injected magnetosheath plasma relative to the background magnetospheric plasma. The dynamo region is capable of driving fielc-aligned currents that couple to the ionosphere, where the upward current is associated with the high latitude auroral arcs. We demonstrate that the large-scale morphology as well as the detailed data intercomparison between PROGNOZ-7 and TIROS-N both agree well with a local injection of magnetosheath plasma into the dayside boundary layer as the main dynamo process powering the high-latitude, early afternoon auroral arcs. (Author)

  5. The effect of a shear boundary layer on the stability of a capillary jet

    Science.gov (United States)

    Ganan-Calvo, Alfonso; Montanero, Jose M.; Herrada, Miguel A.

    2014-11-01

    The generic stabilization effect of a shear boundary layer over the free surface of a capillary jet is here studied from analytical (asymptotic), numerical and experimental approaches. In first place, we show the consistency of the proposed asymptotic analysis by a linear stability (numerical) analysis of the Navier-Stokes equations for a finite boundary layer thickness. We show how the convective-to-absolute instability transition departs drastically from the flat velocity profile case as the axial coordinate becomes closer to the origin of the boundary layer development. For large enough axial distances from that origin, Rayleigh's dispersion relation is recovered. A collection of experimental observations is analyzed from the perspective provided by these results. We propose a systematic framework to the dynamics of capillary jets issued from a nozzle, either by direct injection into a quiescent atmosphere or in a co-flow (e.g. gas flow-focused jets), which exhibit peculiarities now definitely attributable in first order to the formation of shear boundary layers. Partial support from the Ministry of Economy and Competitiveness, Junta de Extremadura, and Junta de Andalucia (Spain) through Grant Nos. DPI2010-21103, GR10047, P08-TEP-04128, and TEP-7465, respectively, is gratefully acknowledged.

  6. Characterization of an incipiently separated shock wave/turbulent boundary layer interaction

    Science.gov (United States)

    Schreyer, A.-M.; Dussauge, J.-P.; Krämer, E.

    2016-05-01

    The turbulence structure in a shock wave/turbulent boundary layer interaction at incipient separation was investigated in order to get insight into turbulence generation and amplification mechanisms in such flow fields. The flow along a two-dimensional 11.5° compression corner was studied experimentally at a Mach number of M=2.53 and with a momentum-thickness Reynolds number of Re_{θ }=5370 . From hot-wire boundary layer traverses and surface heat-flux density fluctuation measurements with the fast-response atomic layer thermopile, the turbulence structure and amplification was described. Space-time correlations of the mass-flux fluctuations across the boundary layer and the surface heat-flux density fluctuations were measured to further characterize the development of the turbulence structure across the interaction. The large-scale boundary layer structures are concealed by shock-related effects in the strongly disturbed shock-foot region. Shortly downstream, however, large-scale structures dominate the signal again, just as in the incoming flow. A mechanism explaining this behavior is suggested.

  7. Laminar and turbulent boundary layer separation control of Mako shark skin

    Science.gov (United States)

    Afroz, Farhana

    The Shortfin Mako shark (Isurus oxyrinchus) is one of the fastest swimmers in nature. They have an incredible turning agility and are estimated to achieve speeds as high as ten body lengths per second. Shark skin is known to contain flexible denticles or scales, capable of being actuated by the flow whereby a unique boundary layer control (BLC) method could reduce drag. It is hypothesized that shark scales bristle when the flow is reversed, and this bristling may serve to control flow separation by (1) inhibiting the localized flow reversal near the wall and (2) inducing mixing within the boundary layer by cavities formed between the scales that increases the momentum of the flow near the wall. To test this hypothesis, samples of Mako shark skin have been studied under various amounts of adverse pressure gradient (APG). These samples were collected from the flank region of a Shortfin Mako shark where the scales have the greatest potential for separation control due to the highest bristling angles. An easy technique for inducing boundary layer separation has been developed where an APG can be generated and varied using a rotating cylinder. Both the experimental and numerical studies showed that the amount of APG can be varied as a function of cylinder rotation speed or cylinder gap height for a wide range of Reynolds numbers. This method of generating an APG is used effectively for inducing both laminar and turbulent boundary layer separation over a flat plate. Laminar and turbulent boundary layer separation studies conducted over a smooth plate have been compared with the same setup repeated over shark skin. The time-averaged DPIV results showed that shark scale bristling controlled both laminar and turbulent boundary layer separation to a measurable extent. It shows that the shark scales cause an early transition to turbulence and reduce the degree of laminar separation. For turbulent separation, reverse flow near the wall and inside the boundary layer is

  8. Mesoscale (50-km) Boundary Layer Eddies in CASES-97

    Science.gov (United States)

    LeMone, M. A.; Grossman, R. L.; Yates, D.; Chen, F.; Ikeda, K.

    2001-05-01

    Boundery-layer eddies 50 km across are documented for the morning of 10 May 1997 during the Cooperative Atmosphere Surface Exchange Study (CASES-97). CASES-97 was held from 21 April to 21 May 1997, in the lower Walnut River Watershed in south central Kansas, to study the role of the heterogeneous surface in boundary-layer evolution. The eddies appear to be tied to terrain, with warm, upwelling air over the relatively high terrain that forms the eastern edge of the watershed, and downwelling air over the watershed. The winds on this day were 5 m/s out of the south, and there were strong horizontal contrasts in vegetation and surface fluxes, suggesting that surfact fluxes could also play a role. For comparison, we examine two other days for the presence of mesoscale eddies, 29 April (characterized by high horizontal heterogeneity of vegetation and 10 m/s southerlies), and 20 May (characterized by a uniformly green and moist surface with winds ENE at 7 m/s). 29 April had significant but rapidly-changing horizontal variability at scales greater than 10 km, but variability on 20 May was on scales less than 5 km. Estimates of the sensible heat budgets for the three days revealed a large residual for 10 May, the day with the mesoscale eddies. Calculation of the expected errors and reasonable corrections for bias errors and radiative heating did not account for the residual, leading to the hypothesis that the residual is associated with the mesoscale eddies.

  9. LAMINAR STABILITY ANALYSIS IN BOUNDARY LAYER FLOW

    Directory of Open Access Journals (Sweden)

    Mihaela CALUDESCU

    2009-09-01

    Full Text Available This study presents a numerical study concerning the flow control by suction and injection. The case study is over a symmetrical airfoil with suction and injection slots. The angle of attack is 3 degree with the Mach number 0.12.

  10. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    Science.gov (United States)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  11. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    periods of analysis, that under both barotropic and baroclinic conditions, the model predicts the gradient and geostrophic wind well, explaining for a particular case an 'unusual' backing of the wind. The observed conditions at the surface, on the other hand, explain the differences in wind veering. The......Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... simulated winds underpredict the turning of the wind and the boundary-layer winds in general....

  12. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  13. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  14. Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2015-06-01

    Under conventionally neutral conditions, the boundary layer is frequently capped by an inversion layer, which counteracts vertical entrainment of kinetic energy. Very large wind farms are known to depend on vertical entrainment to transport energy from above the farm towards the turbines. In this study, large eddy simulations of an infinite wind-turbine array in a conventionally neutral atmospheric boundary layer are performed. By carefully selecting the initial potential-temperature profile, the influence of the height and the strength of a capping inversion on the power output of a wind farm is investigated. Results indicate that both the height and the strength have a significant effect on the boundary layer flow, and that the height of the neutral boundary layer is effectively controlled by the capping inversion. In addition, it is shown that the vertical entrainment rate decreases for increasing inversion strength or height. In our infinite wind-farm simulations, varying the inversion characteristics leads to differences in power extraction on the order of 13% ± 0.2% (for increasing the strength from 2.5 to 10 K), and 31% ± 0.4% (for increasing the height from 500 to 1500 m). A detailed analysis of the mean kinetic-energy equation is included, showing that the variation in power extraction originates from the work done by the driving pressure gradient related to the boundary layer height and the geostrophic angle, while entrainment of kinetic energy from the free atmosphere does not play a significant role. Also, the effect of inversion strength on power extraction is energetically not related to different amounts of energy entrained, but explained by a difference in boundary layer growth, leading to higher boundary layers for lower inversion strengths. We further present a simple analytical model that allows to obtain wind-farm power output and driving power for the fully developed regime as function of Rossby number and boundary layer height.

  15. Geostrophic convective turbulence: The effect of boundary layers

    CERN Document Server

    Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef

    2014-01-01

    This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...

  16. Turbulence transition in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M; Veble, Gregor; Duguet, Yohann; Schlatter, Philipp; Henningson, Dan S; Eckhardt, Bruno

    2015-01-01

    We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures loc...

  17. Proper orthogonal decomposition of a decelerating turbulent boundary layer

    Science.gov (United States)

    Tutkun, Murat

    2010-11-01

    Our analysis is based only on streamwise component of velocity fluctuations since the data were simultaneously obtained using a hot-wire rake of 143 single wire probes. The experiment was carried out in the large wind tunnel of Laboratoire de M'ecanique de Lille whose test section is 20 m long, 2 m wide and 1 m high. A 2D bump was used to create converging-diverging flow inside the test section. The thickness of the boundary layer was 25 cm at the measurement location and Reynolds number based on momentum thickness, Reθ, was 17:100 for 10 m s-1 external free stream velocity measured before the bump. Eigenvalue distribution over POD modes shows that approximately 90% of turbulence kinetic energy due to streamwise fluctuations within the domain was captured by the first 5 POD modes. The first POD mode carried more than 45% of turbulence kinetic energy. Resulting eigenspectra are studied for different frequencies and spanwise Fourier indices in order to reduce the number of modes used in reconstructed velocity fields.

  18. Recommendations for Hypersonic Boundary Layer Transition Flight Testing

    Science.gov (United States)

    Berry, Scott A.; Kimmel, Roger; Reshotko, Eli

    2011-01-01

    Much has been learned about the physics underlying the transition process at supersonic and hypersonic speeds through years of analysis, experiment and computation. Generally, the application of this knowledge has been restricted to simple shapes like plates, cones and spherical bodies. However, flight reentry vehicles are in reality never simple. They typically are highly complex geometries flown at angle of attack so three-dimensional effects are very important, as are roughness effects due to surface features and/or ablation. This paper will review our present understanding of the physics of the transition process and look back at some of the recent flight test programs for their successes and failures. The goal of this paper is to develop rationale for new hypersonic boundary layer transition flight experiments. Motivations will be derived from both an inward look at what we believe constitutes a good flight test program as well as an outward review of the goals and objectives of some recent US based unclassified proposals and programs. As part of our recommendations, this paper will address the need for careful experimental work as per the guidelines enunciated years ago by the U.S. Transition Study Group. Following these guidelines is essential to obtaining reliable, usable data for allowing refinement of transition estimation techniques.

  19. Coupling between roughness and freestream acceleration in turbulent boundary layers

    Science.gov (United States)

    Yuan, Junlin; Piomelli, Ugo

    2015-11-01

    To explain various rough-wall flow responses to different types of free-stream conditions previously observed, we carried out a direct numerical simulation of a spatially developing turbulent boundary layer with freestream acceleration. Unlike the equilibrium (self-similar) accelerating scenario, where a strong acceleration leads to complete laminarization and lower friction, in the present non-equilibrium case the friction coefficient increases with acceleration, due to the faster near-wall acceleration than that of the freestream. At the same time, roughness reduces the near-wall time scale of the turbulence, preventing the acceleration from linearly stretching the near-wall eddies and freezing the turbulence intensity as in the smooth case. In addition, acceleration leads to similar decrease of mean-velocity logarithmic slope on rough and smooth walls; this allows a clear definition of the roughness function in a local sense. Interestingly, this roughness function correlates with the roughness Reynolds number in the same way as in self-similar or non-accelerating flows. This study may also help develop benchmark cases for evaluating rough-wall treatments for industrial turbulence models.

  20. Reactive chlorine chemistry in the boundary layer of coastal Antarctica

    Science.gov (United States)

    Zielcke, Johannes; Poehler, Denis; Friess, Udo; Hay, Tim; Eger, Philipp; Kreher, Karin; Platt, Ulrich

    2015-04-01

    A unique feature of the polar troposphere is the strong impact of halogen photochemistry, in which reactive halogen species are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. The source, however, as well as release and recycling mechanisms of these halogen species - for some species even abundances - are far from being completely known, especially of chlorine and iodine compounds. Here we present active long-path differential optical absorption spectroscopy (LP-DOAS) measurements conducted during austral spring 2012 at Ross Island, Antarctica, observing several species (BrO, O3, NO2, IO, ClO, OBrO, OClO, OIO, I2, CHOCHO, HCHO, HONO). For the first time, ClO was detected and quantified in the marine boundary layer of coastal Antarctica, with typical mixing ratios around 20 pptv and maxima around 50 pptv. Meteorological controls on the mixing ratio of ClO as well as the interplay with other halogen compounds will be discussed, such as the lack of observed OClO (< 1 pptv). The results seem to reflect previously in chamber studies observed dependences on ozone levels and solar irradiance.

  1. Improvement of Turbine Performance by Streamwise Boundary Layer Fences

    Directory of Open Access Journals (Sweden)

    M Govardhan

    2012-01-01

    Full Text Available In the present investigations, effect of streamwise end wall fences on the performance improvement of a turbine is studied. The fences with heights of 12 mm, 16 mm were attached normal to the end wall and at a half pitch away from the blades. A miniaturized pressure probe was traversed at the exit of the cascade from midspan to the end wall at 26 locations covering more points in the end wall region. For each spanwise location, the probe was traversed in the pitchwise direction for more than 25 points covering one blade pitch. The boundary layer fence near the end wall remains effective in changing the path of pressure side of leg of horseshoe and weaken the cross flow. The overturn in flow has reduced near the end wall when fences are incorporated while outside end wall and in loss core region, it underturns slightly as result of reduction in secondary loss. The total loss is reduced by 15%, 25% for fences of height 12 mm, and 16 mm respectively. The corresponding change was obtained in the drag and lift coefficients.

  2. Large-eddy simulation of an infinitely large wind farm in a stable atmospheric boundary layer

    Science.gov (United States)

    Lu, H.; Porté-Agel, F.

    2010-09-01

    When deployed as large arrays, wind turbines interact among themselves and with atmospheric boundary layer. To optimize their geometric arrangements, accurate knowledge of wind-turbine array boundary layer is of great importance. In this study, we integrated large eddy simulation with an actuator line technique, and used it to study the characteristics of wind-turbine wake in an idealized wind farm inside a stably stratified atmospheric boundary layer (SBL). The wind turbines, with a rotor diameter of 112m and a tower height of 119m, were placed in a well-known SBL turbulent case that has a boundary layer height of approximately 180m. The super-geostrophic nocturnal jet near the top of the boundary layer was eliminated due to the energy extraction and the enhanced mixing of momentum. Non-axisymmetric behavior of wake structure was observed in response to the non-uniform incoming turbulence, the Coriolis effects, and the rotational effects induced by blade motions. The turbulence intensity in the simulated turbine wakes was found to reach a maximum at the top-tip level and a downwind distance of approximately 3-5 rotor diameters from the turbines. The Coriolis effects caused a skewed spatial structure and drove certain amount of turbulent energy away from the center of the wake. The SBL height was increased, while the magnitudes of the surface momentum flux and the surface buoyancy flux were reduced by approximately 30%. The wind farm was also found to have a strong effect on area-averaged vertical turbulent fluxes of momentum and heat, which highlights the potential impact of wind farms on local meteorology.

  3. Effects on the atmospheric boundary layer of a solar eclipse in the Arctic

    Science.gov (United States)

    Sjöblom, Anna

    2010-05-01

    On 1 August 2008, a total solar eclipse took place in the Arctic and in Longyearbyen, the main settlement in the High Arctic archipelago of Svalbard (78° 13' N, 15° 37' E), the maximum solar coverage was 93%. The eclipse had a large impact on the atmospheric boundary layer and the local weather in general around Longyearbyen triggering a fog that lasted for three days. This fog grounded all air traffic to and from Svalbard and so in addition to the change in local weather, the eclipse also had economic and social consequences. Approximately 60% of Svalbard is covered with permanent ice and snow. Permafrost underlies most of the surface. In Longyearbyen, the midnight sun is present between 19 April and 23 August and so on the day of the eclipse the sun was about 30 degrees above the horizon at noon and 6 degrees above at midnight. A rare opportunity therefore occurred to study what happens when the sunlight is suddenly decreased after several months with no dark night. The maximum solar coverage at Longyearbyen took place at 10.41 Local Standard Time. The incoming shortwave radiation had then decreased from approximately 300 W m-2 before the start of the eclipse to 20 W m-2, i.e. less radiation than during a normal cloud free night at the same location at the same time of the year. Observations of turbulence and mean meteorological parameters were taken both over land and over a large fjord in the vicinity of Longyearbyen. In addition, cloud observations were recorded. Data have been analysed in detail from 31 July to 2 August, i.e., from one day before to one day after the eclipse. The simultaneous observations over land and over water showed that the atmospheric response was much faster and stronger over land than over water. Over land, the air temperature sank by 0.3-1.5°C, wind speed decreased, turbulent fluctuations were significantly reduced and the atmospheric stability changed from unstable to stable. Over the fjord, no clear minima in these parameters

  4. Cluster boundary layer measurements and optical observations at magnetically conjugate sites

    Directory of Open Access Journals (Sweden)

    J. Moen

    Full Text Available The Cluster spacecraft experienced several boundary layer encounters when flying outbound from the magnetosphere to the magnetosheath in the dusk sector on 14 January 2001. The dayside boundary layer was populated by magnetosheath electrons, but not with quite as high densities as in the magnetosheath itself. The Cluster ground track was calculated using the Tsyganenko-96 model which appears to be a strong tool for combining high-altitude satellite and ground observations, given that the solar wind conditions are known. This paper focuses on identifying auroral responses corresponding to boundary layer dynamics observed by Cluster. The first boundary layer encounter studied was a brief visit into a closed LLBL, most likely due to a boundary wave that travelled tailward over the spacecraft. A corresponding equatorward and eastward movement was seen in the post-noon aurora between Greenland and Svalbard. The second boundary encounter was in a high-latitude cusp, and occurred as a consequence of a transient reconfiguration of the cusp. The cusp expanded duskward over the spacecraft into the late post-noon sector. NOAA-12 probed the 16:30 MLT sector of this auroral activity, and measured a 1.4 keV electron beam located poleward of the 30 keV electron-trapping boundary. A sequence of three moving auroral forms emanating from this active region are likely candidates for flux transfer events. The auroral signatures are discussed in relation to earlier observations, and appear to be an example of accelerated electrons/discrete post-noon aurora on open magnetic field lines.

    Key words. Ionosphere (particle precipitation Magnetospheric physics (auroral phenomena; magnetopause, cusp and boundary layers

  5. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  6. Central Arctic atmospheric summer conditions during the Arctic Summer Cloud Ocean Study (ASCOS: contrasting to previous expeditions

    Directory of Open Access Journals (Sweden)

    M. Tjernström

    2012-02-01

    Full Text Available Understanding the rapidly changing climate in the Arctic is limited by a lack of understanding of underlying strong feedback mechanisms that are specific to the Arctic. Progress in this field can only be obtained by process-level observations; this is the motivation for intensive ice-breaker-based campaigns such as that described in this paper: the Arctic Summer Cloud-Ocean Study (ASCOS. However, detailed field observations also have to be put in the context of the larger-scale meteorology, and short field campaigns have to be analysed within the context of the underlying climate state and temporal anomalies from this.

    To aid in the analysis of other parameters or processes observed during this campaign, this paper provides an overview of the synoptic-scale meteorology and its climatic anomaly during the ASCOS field deployment. It also provides a statistical analysis of key features during the campaign, such as some key meteorological variables, the vertical structure of the lower troposphere and clouds, and energy fluxes at the surface. In order to assess the representativity of the ASCOS results, we also compare these features to similar observations obtained during three earlier summer experiments in the Arctic Ocean, the AOE-96, SHEBA and AOE-2001 expeditions.

    We find that these expeditions share many key features of the summertime lower troposphere. Taking ASCOS and the previous expeditions together, a common picture emerges with a large amount of low-level cloud in a well-mixed shallow boundary layer, capped by a weak to moderately strong inversion where moisture, and sometimes also cloud top, penetrate into the lower parts of the inversion. Much of the boundary-layer mixing is due to cloud-top cooling and subsequent buoyant overturning of the cloud. The cloud layer may, or may not, be connected with surface processes depending on the depths of the cloud and surface-based boundary layers and on the relative strengths of

  7. Two Phases of Coherent Structure Motions in Turbulent Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Hua; JIANG Nan

    2007-01-01

    Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.

  8. Boundary Layer on a Moving Wall with Suction and Injection

    Institute of Scientific and Technical Information of China (English)

    Anuar Ishak; Roslinda Nazar; Ioan Pop

    2007-01-01

    @@ We investigate the boundary-layer flow on a moving permeable plate parallel to a moving stream. The governing equations are solved numerically by a finite-difference method. Dual solutions are found to exist when the plate and the free stream move in the opposite directions.

  9. On the Effects of Surface Roughness on Boundary Layer Transition

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  10. CISM Course on Recent Advances in Boundary Layer Theory

    CERN Document Server

    1998-01-01

    Recent advances in boundary-layer theory have shown how modern analytical and computational techniques can and should be combined to deepen the understanding of high Reynolds number flows and to design effective calculation strategies. This is the unifying theme of the present volume which addresses laminar as well as turbulent flows.

  11. Linear Stability of the boundary layer under a solitary wave

    CERN Document Server

    Verschaeve, Joris C G

    2013-01-01

    A theoretical and numerical analysis of the linear stability of the boundary layer flow under a solitary wave is presented. In the present work, the nonlinear boundary layer equations are solved. The result is compared to the linear boundary layer solution in Liu et al. (2007) reveal- ing that both profiles are disagreeing more than has been found before. A change of frame of reference has been used to allow for a classical linear stability analysis without the need to redefine the notion of stability for this otherwise unsteady flow. For the linear stability the Orr-Sommerfeld equation and the parabolic stability equation were used. The results are compared to key results of inviscid stability theory and validated by means of a direct numerical simulation using a Legendre-Galerkin spectral ele- ment Navier-Stokes solver. Special care has been taken to ensure that the numerical results are valid. Linear stability predicts that the boundary layer flow is unstable for the entire parameter range considered, conf...

  12. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    International Nuclear Information System (INIS)

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary

  13. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F;

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  14. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.;

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  15. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.;

    2014-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  16. Numerical Modeling of the Evolving Stable Boundary Layer

    Science.gov (United States)

    Sorbjan, Z.

    2013-12-01

    A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.

  17. Turbulent spots detection during boundary layer by-pass transition

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Elsner, W.; Mazur, Oton; Uruba, Václav; Wysocki, M.

    -, č. 80 (2009), s. 16-19. ISSN N R&D Projects: GA AV ČR(CZ) IAA200760614; GA MŠk MEB050810 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent spot * boundary layer * by-pass transition * turbulent spot detection Subject RIV: BK - Fluid Dynamics

  18. Spatially developing turbulent boundary layer on a flat plate

    CERN Document Server

    Lee, J H; Hutchins, N; Monty, J P

    2012-01-01

    This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_\\tau \\approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would requ...

  19. The impact of European forests on cloud cover: an observation-based study

    Science.gov (United States)

    Teuling, Ryan; Melsen, Lieke; Vila-Guerau de Arellano, Jordi; van Heerwaarden, Chiel; Miralles, Diego; Taylor, Chris; Stegehuis, Annemiek; Fokke Meirink, Jan; Nabuurs, Gert-Jan

    2016-04-01

    The impact of temperate forests on their environment is still uncertain [1]. While forests generally have a lower albedo, the flux partitioning over forests and its relation to weather conditions is still poorly understood [2,3], complicating attempts to study impacts of forest cover on atmospheric conditions through modeling. Effects of land surface conditions on boundary-layer humidity and cloud formation can also be very non-linear [4]. Furthermore, the study of hydrological and climate impacts of temperate European forests is complicated because forests are strongly fragmented and often can be found on hilly terrain, making it impossible to attribute differences in for instance cloud cover or runoff directly to forest cover. Only few regions exist where forests can be found in absence of strong topography of a size large enough to result in near-equilibrium between the atmospheric boundary layer and local surface conditions. In this study, we analyse 10 years (2004-2013) of cloud cover observations from the Meteosat Second Generation satellite platform at a 15-minute temporal resolution. These observations come from a physically-based cloud product at the 6 km resolution [5], and a statistical cloud product based on the high-resolution visible imagery (1 km resolution). We focus on two regions in France where large forests are found which satisfy the following criteria: a) absence of strong topography, and b) presence of sharp contrast between forest and non-forest regions. Cloud occurrence is expressed by the fraction of the daytime that clouds are detected within a pixel. We find that in particular in summer and late summer, clouds are much more likely to occur over forest than over the surrounding non-forest land (difference in the order of 0.2). An opposite signal, but of much weaker magnitude, is found during springtime, when clouds are less likely to develop over forest. Difference in cloud occurrence is consistent with MODIS-derived differences in EVI

  20. A Case Study of the Mesoscale Disturbance Vortex in the Boundary Layer on the Meiyu Front%梅雨锋上边界层中尺度扰动涡旋的个例研究

    Institute of Scientific and Technical Information of China (English)

    沈杭锋; 章元直; 查贲; 陈勇明; 翟国庆

    2015-01-01

    运用实况自动站、高时空分辨率的雷达和数值模拟资料,对2009年7月24日的梅雨锋暴雨过程进行了分析,结果表明:(1)锋面南侧的暖区弱降水环境内,近地面的风场会有扰动涡旋出现,随着扰动涡旋趋于稳定和向上发展,降水迅速加强,形成短时暴雨,并伴随有大风出现。(2)偏西气流从边界层开始发展并加强为急流,在向东推进的过程中逐渐抬升,形成了一支从边界层倾斜入对流层低层的急流轴;而偏南气流与偏北风相遇之后,不仅形成风向的辐合和切变,而且在空间上被抬升,形成了一支斜升入流。(3)在近地面风场的切变和辐合作用下,锋生与辐合同步加强,边界层内的涡度也逐渐增强,由此带动了扰动的发生发展,扰动涡旋在边界层内率先形成,随后,在急流的东传和抬升影响下,扰动涡旋也逐步向东移动、向上发展。(4)近地面风速的加强、风向的辐合切变导致了扰动涡旋的发生和形成,并逐渐发展,这是边界层中尺度扰动涡旋发生发展的动力因子。%The heavy rainfall event along the Meiyu front on June 24, 2009 was analyzed using data from auto weather stations, high resolution radars, and simulations. The results show that several surface disturbance vortexes formed after the weak rainfall in the southern warm section of the Meiyu front. With the stabilizing and upward development of the disturbance vortex, a short duration rainstorm accompanied by gale occurred. After the strengthening and lifting of the westerly wind, a westerly jet formed with the jet axis between the planetary boundary layer and the low troposphere. Convergence and shear occurred after the southerly flow encountered the northerly wind. The southerly flow could have turned into convection through lifting by northerly wind. The vorticity of the planetary boundary layer increased gradually followed by

  1. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    Science.gov (United States)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach

  2. Observations of regional and local variability in the optical properties of maritime clouds

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado at Boulder/National Oceanic and Atmospheric Administration, Boulder, CO (United States); Fairall, C.W. [Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  3. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    Science.gov (United States)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  4. Planetary boundary layer height from CALIOP compared to radiosonde over China

    Science.gov (United States)

    Zhang, Wanchun; Guo, Jianping; Miao, Yucong; Liu, Huan; Zhang, Yong; Li, Zhengqiang; Zhai, Panmao

    2016-08-01

    Accurate estimation of planetary boundary layer height (PBLH) is key to air quality prediction, weather forecast, and assessment of regional climate change. The PBLH retrieval from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is expected to complement ground-based measurements due to the broad spatial coverage of satellites. In this study, CALIOP PBLHs are derived from combination of Haar wavelet and maximum variance techniques, and are further validated against PBLHs estimated from ground-based lidar at Beijing and Jinhua. Correlation coefficients between PBLHs from ground- and satellite-based lidars are 0.59 at Beijing and 0.65 at Jinhua. Also, the PBLH climatology from CALIOP and radiosonde are compiled over China during the period from 2011 to 2014. Maximum CALIOP-derived PBLH can be seen in summer as compared to lower values in other seasons. Three matchup scenarios are proposed according to the position of each radiosonde site relative to its closest CALIPSO ground tracks. For each scenario, intercomparisons were performed between CALIOP- and radiosonde-derived PBLHs, and scenario 2 is found to be better than other scenarios using difference as the criteria. In early summer afternoon over 70 % of the total radiosonde sites have PBLH values ranging from 1.6 to 2.0 km. Overall, CALIOP-derived PBLHs are well consistent with radiosonde-derived PBLHs. To our knowledge, this study is the first intercomparison of PBLH on a large scale using the radiosonde network of China, shedding important light on the data quality of initial CALIOP-derived PBLH results.

  5. A scaling analysis of the turbulent boundary-layer in a shallow urban lake

    Science.gov (United States)

    Mezemate, Yacine; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bonhomme, Céline; Soulignac, Frédéric; Lemaire, Bruno; Vinçon Leite, Brigitte

    2014-05-01

    The turbulent boundary-layer (TBL) has been the focus of countless experimental and numerical studies. Due to its complex nature the dynamics of the TBL are still far from being understood. Thus, to study, in particular the scaling properties of a TBL, we use a three-dimensional velocity time-series measured from an Acoustic Doppler Current Profiler(ADCP). The ADCP is particularly useful for analysing the TBL as it is able to measure the 3D velocity in the vertical, 127 cells over 3 meters. The ADCP is positioned next to a storm water discharge point at the bottom of a shallow urban lake in Créteil, a region in Paris. The positioning of the ADCP, in a stable, stratified lake, with a strong turbulent flow occurring close to the surface has given us a unique situation in which a turbulent bounded-layer can be analysed. Vertical profiles measured in the atmospheric boundary-layer are typically intrusive due to the requirement of masts and other complex measuring structures. Moreover atmospheric profilers are normally coarsely spaced in the vertical. In order to analyse the scaling properties of the velocity we compute its energy spectrum. In a log- log plot, if the velocity is scaling, the spectral exponent is its slope. It frequently that in the presence of a boundary-layer, a -1 spectral exponent is observed. Dimensional arguments suggest a -1 spectral exponent when the energy flux becomes dependent on the friction velocity instead of the length-scale. Due to the fine vertical spacing of the measurements we are not only able to observe a -1 spectral exponent, but observe a smooth transition from a free-stream turbulent regime (spectral exponent close to -5/3) to a boundary-layer -1 exponent. Because the transition shows such a strong a depth dependence we are able to propose a general model based on dynamical equations for the scaling exponent as a function of height. This generalised scaling boundary-layer model allows one to easily reproduce the turbulent

  6. Natural convection boundary layer with suction and mass transfer in a porous medium

    International Nuclear Information System (INIS)

    The free convection boundary layer flow with simultaneous heat and mass transfer in a porous medium is studied when the boundary wall moves in its own plane with suction. The study also incorporates chemical reaction for the very simple model of a binary reaction with Arrhenius activation energy. For large suction asymptotic approximate solutions are obtained for the flow variables for various values of the activation energy. (author). 10 refs, 2 figs

  7. Corner Separation Control by Boundary Layer Suction Applied to a Highly Loaded Axial Compressor Cascade

    OpenAIRE

    Yangwei Liu; Jinjing Sun; Lipeng Lu

    2014-01-01

    Control of corner separation has attracted much interest due to its improvement of performance and energy utilization in turbomachinery. Numerical studies have been performed under both design and off-design flow conditions to investigate the effects of boundary layer suction (BLS) on corner separation in a highly loaded compressor cascade. Two new BLS slot configurations are proposed and a total of five suction slot configurations were studied and compared. Averaged static pressure rise, exi...

  8. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    Directory of Open Access Journals (Sweden)

    M. Lothon

    2014-04-01

    decay from the surface throughout the whole boundary layer and evidenced the evolution of the turbulence characteristic lengthscales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.

  9. Minimum Wind Dynamic Soaring Trajectories under Boundary Layer Thickness Limits

    Science.gov (United States)

    Bousquet, Gabriel; Triantafyllou, Michael; Slotine, Jean-Jacques

    2015-11-01

    Dynamic soaring is the flight technique where a glider, either avian or manmade, extracts its propulsive energy from the non-uniformity of horizontal winds. Albatrosses have been recorded to fly an impressive 5000 km/week at no energy cost of their own. In the sharp boundary layer limit, we show that the popular image, where the glider travels in a succession of half turns, is suboptimal for travel speed, airspeed, and soaring ability. Instead, we show that the strategy that maximizes the three criteria simultaneously is a succession of infinitely small arc-circles connecting transitions between the calm and windy layers. The model is consistent with the recordings of albatross flight patterns. This lowers the required wind speed for dynamic soaring by over 50% compared to previous beliefs. In the thick boundary layer limit, energetic considerations allow us to predict a minimum wind gradient necessary for sustained soaring consistent with numerical models.

  10. Stereoscopic PIV measurement of boundary layer affected by DBD actuator

    Directory of Open Access Journals (Sweden)

    Procházka Pavel

    2016-01-01

    Full Text Available The effect of ionic wind generated by plasma actuator on developed boundary layer inside a narrow channel was investigated recently. Since the main investigated plane was parallel to the channel axis, the description of flow field was not evaluated credibly. This paper is dealing with cross-section planes downstream the actuator measured via 3D time-resolved PIV. The actuator position is in spanwise or in streamwise orientation so that ionic wind is blown in the same direction as the main flow or in opposite direction or perpendicularly. The interaction between boundary layer and ionic wind is evaluated for three different velocities of main flow and several parameters of plasma actuation (steady and unsteady regime, frequency etc.. Statistical properties of the flow are shown as well as dynamical behaviour of arising longitudinal vortices are discussed via phase-locked measurement and decomposition method.

  11. Construction of a Non-Equilibrium Thermal Boundary Layer Facility

    Science.gov (United States)

    Biles, Drummond; Ebadi, Alireza; Ma, Allen; White, Christopher

    2015-11-01

    A thermally conductive, electrically heated wall-plate forming the bottom wall of a wind tunnel has been constructed and validation tests have been performed. The wall-plate is a sectioned wall design, where each section is independently heated and controlled. Each section consists of an aluminum 6061 plate, an array of resistive heaters affixed to the bottom of the aluminum plate, and a calcium silicate holder used for thermal isolation. Embedded thermocouples in the aluminum plates are used to monitor the wall temperature and for feedback control of wall heating. The wall-plate is used to investigate thermal transport in both equilibrium and non-equilibrium boundary layers. The non-equilibrium boundary layer flow investigated is oscillatory flow produced by a rotor-stator mechanism placed downstream of the test section of the wind tunnel.

  12. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  13. Works on theory of flapping wing. [considering boundary layer

    Science.gov (United States)

    Golubev, V. V.

    1980-01-01

    It is shown mathematically that taking account of the boundary layer is the only way to develop a theory of flapping wings without violating the basic observations and mathematics of hydromechanics. A theory of thrust generation by flapping wings can be developed if the conventional downstream velocity discontinuity surface is replaced with the observed Karman type vortex streets behind a flapping wing. Experiments show that the direction of such vortices is the reverse of that of conventional Karman streets. The streets form by breakdown of the boundary layer. Detailed analysis of the movements of certain birds and insects during flight 'in place' is fully consistent with this theory of the lift, thrust and drag of flapping wings. Further directions for research into flight with flapping wings are indicated.

  14. Electrical properties of boundary layers of fatty acids

    Science.gov (United States)

    Deryagin, B. V.; Snitkovskii, M. M.

    1992-05-01

    Nonlinear current-voltage and coulomb-voltage characteristics with a hysteresis loop, which is peculiar to ferroelectrics, were observed in the boundary layers of individual saturated organic acids and oleic acid which have a domain structure and also an anomalously high conductivity which corresponds, in its order of magnitude, to the lower conductivity limit for metals. These effects are related with the formation of a volume space charge and by the cording of the current (formation of conductivity channels). The electrical properties of the boundary layers change in relation to the thickness: for subcritical thicknesses Ohm's Law is obeyed but for larger thicknesses strong field effects are observed. The thickness at which the system changes into the nonconducting stage has meaning as a physical characteristic of the system.

  15. On the Asymptotic Approach to Thermosolutal Convection in Heated Slow Reactive Boundary Layer Flows

    Directory of Open Access Journals (Sweden)

    Stanford Shateyi

    2008-01-01

    Full Text Available The study sought to investigate thermosolutal convection and stability of two dimensional disturbances imposed on a heated boundary layer flow over a semi-infinite horizontal plate composed of a chemical species using a self-consistent asymptotic method. The chemical species reacts as it diffuses into the nearby fluid causing density stratification and inducing a buoyancy force. The existence of significant temperature gradients near the plate surface results in additional buoyancy and decrease in viscosity. We derive the linear neutral results by analyzing asymptotically the multideck structure of the perturbed flow in the limit of large Reynolds numbers. The study shows that for small Damkohler numbers, increasing buoyancy has a destabilizing effect on the upper branch Tollmien-Schlichting (TS instability waves. Similarly, increasing the Damkohler numbers (which corresponds to increasing the reaction rate has a destabilizing effect on the TS wave modes. However, for small Damkohler numbers, negative buoyancy stabilizes the boundary layer flow.

  16. UNSTEADY BOUNDARY LAYER FLOW ALONG A STRETCHING CYLINDER AN ANALYTICAL SOLUTION

    Directory of Open Access Journals (Sweden)

    M. Y. Akl

    2014-01-01

    Full Text Available The axisymetric laminar boundary layer unsteady flow along a continuously stretching cylinder immersed in a viscous and incompressible fluid is studied. The governing partial boundary layer equations in cylindrical form are first transformed into ordinary differential equations these equations are solved analytically using the optimal modified Homotopy Asymptotic method in order to get a closed form solution for the dimensionless functions f and è. The main object of this study is to investigate the effect of an unsteady motion of a stretching cylinder on the flow and heat transfer characteristics such as surface skin friction and surface heat flux. These characteristics have a direct effect on the quality of the final product of the fiber manufacturing and extrusion processes. Considerable effects were found for the dynamic parameter (γ, the curvature parameter (ρ and the prandtl number (pr on the velocity and the heat transfer.

  17. Transport of gaseous pollutants by convective boundary layer around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    This study investigates the ability of the human convective boundary layer to transport pollution in a quiescent indoor environment. The impact of the source location in the vicinity of a human body is examined in relation to pollution distribution in the breathing zone and the thickness of the...... pollution boundary layer. The study, in addition, evaluates the effects of the room air temperature, table positioning, and seated body inclination. The human body is represented by a thermal manikin that has a body shape, size, and surface temperature that resemble those of a real person. The results show...... pollution emitted at the upper back or behind the chair. The results also indicate that a decrease in personal exposure to pollutants released from or around the human body increases the extent to which the pollution spreads to the surroundings. Reducing the room air temperature or backward body inclination...

  18. On the Stability of Three-Dimensional Boundary Layers. Pt. 2; Secondary Instability

    Science.gov (United States)

    Janke, Erik; Balakumar, Ponnampalam

    1999-01-01

    The secondary instability of three-dimensional incompressible boundary layers is studied using Floquet theory. Starting from the equilibrium solutions that we obtained from the PSE computations documented in Part 1, we investigate the region where a purely stationary crossflow disturbance saturates for its secondary instability characteristics utilizing developed global and local eigenvalue solvers that are based on the Implicitly Restarted Arnoldi Method, and a Newton-Raphson technique, respectively. The main focuses of this study are on the existence of multiple roots in the eigenvalue spectrum that could explain experimental observations of time-dependent occurrences of an explosive growth of traveling disturbances, on the routes by which high-frequency disturbances enter the boundary layer, as well as on gaining more information about threshold amplitudes for the growth of secondary disturbances.

  19. Simulation of aerosol substance transfer in the atmospheric boundary layer

    Science.gov (United States)

    Lezhenin, A. A.; Raputa, V. F.; Shlychkov, V. Ð. ń.

    2014-11-01

    A model for the reconstruction of the surface concentration of a heavy non-homogeneous substance transfered in the atmosphere is proposed. The model is used to simulate the snow surface contamination by benzo(a)pyren in the vicinity of Power Station-3 in the city of Barnaul. The effects of wind rotation in the atmospheric boundary layer on the field of long-term aerosol substance are assessed.

  20. Pressure gradient effect in natural convection boundary layers

    OpenAIRE

    Higuera Antón, Francisco; Liñán Martínez, Amable

    1993-01-01

    The high Grashof number laminar natural convection flow around the lower stagnation point of a symmetric bowl- shaped heated body is analyzed. A region is identified where the direct effect on the flow of the component of the buoyancy force tangential to the body surface is comparable to the indirect effect of the component normal to the surface, which acts through the gradient of the nonuniform pressure that it induces in the boundary layer. Analysis of this region provides a description ...

  1. Computation of 2D stratified flows in atmospheric boundary layer

    Czech Academy of Sciences Publication Activity Database

    Tauer, M.; Šimonek, J.; Kozel, Karel; Jaňour, Zbyněk

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2009 - (Jonáš, P.; Uruba, V.), s. 47-48 ISBN 978-80-87012-21-5. [Colloquium Fluid Dynamics 2009. Praha (CZ), 21.10.2009-23.10.2009] R&D Projects: GA ČR GA103/09/0977 Institutional research plan: CEZ:AV0Z20760514 Keywords : computation stratified flows * Navier-Stokes equations * atmospheric boundary layer Subject RIV: DG - Athmosphere Sciences, Meteorology

  2. Numerical solution of 2D flows in atmospheric boundary layer

    Czech Academy of Sciences Publication Activity Database

    Šimonek, J.; Tauer, J.; Kozel, K.; Jaňour, Zbyněk; Příhoda, Jaromír

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2008 - (Jonáš, P.; Uruba, V.), s. 51-52 ISBN 978-80-87012-14-7. [Colloquium FLUID DYNAMICS 2008. Praha (CZ), 22.10.2008-24.10.2008] R&D Projects: GA AV ČR 1ET400760405 Institutional research plan: CEZ:AV0Z20760514 Keywords : numerical simulation * atmospheric boundary layer * stratified flow Subject RIV: BK - Fluid Dynamics

  3. Flat Plate Boundary Layer Under Negative Pressure Gradient

    Czech Academy of Sciences Publication Activity Database

    Antoš, Pavel; Jonáš, Pavel; Procházka, Pavel P.; Skála, Vladislav

    Pretoria, South Africa: HEFAT, 2015 - (Meyer, J.), s. 251-253 ISBN 978-1-77592-108-0. [International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics : HEFAT 2015 /11./. SKUKUZA (ZA), 20.07.2015-23.07.2015] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : boundary layer in decelerating flow * adverse pressure gradient * hot-wire anemometry Subject RIV: BK - Fluid Dynamics

  4. Ozone in the Atlantic Ocean marine boundary layer

    OpenAIRE

    Patrick Boylan; Detlev Helmig; Samuel Oltmans

    2015-01-01

    Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL). Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurem...

  5. Grey zone simulations of the morning convective boundary layer development

    Science.gov (United States)

    Efstathiou, G. A.; Beare, R. J.; Osborne, S.; Lock, A. P.

    2016-05-01

    Numerical simulations of two cases of morning boundary layer development are conducted to investigate the impact of grid resolution on mean profiles and turbulent kinetic energy (TKE) partitioning from the large eddy simulation (LES) to the mesoscale limit. Idealized LES, using the 3-D Smagorinsky scheme, is shown to be capable of reproducing the boundary layer evolution when compared against measurements. However, increasing grid spacing results in the damping of resolved TKE and the production of superadiabatic temperature profiles in the boundary layer. Turbulence initiation is significantly delayed, exhibiting an abrupt onset at intermediate resolutions. Two approaches, the bounding of vertical diffusion coefficient and the blending of the 3-D Smagorinsky with a nonlocal 1D scheme, are used to model subgrid diffusion at grey zone resolutions. Simulations are compared against the coarse-grained fields from the validated LES results for each case. Both methods exhibit particular strengths and weaknesses, indicating the compromise that needs to be made currently in high-resolution numerical weather prediction. The blending scheme is able to reproduce the adiabatic profiles although turbulence is underestimated in favor of the parametrized heat flux, and the spin-up of TKE remains delayed. In contrast, the bounding approach gives an evolution of TKE that follows the coarse-grained LES very well, relying on the resolved motions for the nonlocal heat flux. However, bounding gives unrealistic static instability in the early morning temperature profiles (similar to the 3-D Smagorinsky scheme) because model dynamics are unable to resolve TKE when the boundary layer is too shallow compared to the grid spacing.

  6. Aerodynamic Optimization and Boundary Layer Control On Sailplane Wing Sections

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, Milan; Součková, Natálie

    Berlin: CEAS Council of European Aerospace Societies, 2007, s. 1763-1767. ISSN 0070-4083. [CEAS European Air and Space Conference /1./. Berlin (DE), 10.09.2007-13.09.2007] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA2076403; GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer control * sailplane wing section Subject RIV: BK - Fluid Dynamics

  7. Defects and boundary layers in non-Euclidean plates

    CERN Document Server

    Gemmer, John

    2012-01-01

    We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the F\\"oppl-von K\\'arm\\'an reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. We also investigate the scaling with thickness of boundary layers where the stretching energy is concentrated with decreasing thickness.

  8. Vortical Structures in a Boundary Layer Separation Region

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Sedlák, K.

    Plzeň : ZČU Plzeň, 2009 - (Žitek, P.; Milčák, P.; Krivánka, D.), s. 209-214 ISBN 978-80-7043-804-9. [Conference on Power System Engineering /8./. Plzeň (CZ), 18.06.2009] R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : vortex * boundary layer * separation Subject RIV: BK - Fluid Dynamics

  9. Experimental and modeling study of the impact of vertical transport processes from the boundary-layer on the variability and the budget of tropospheric ozone; Etude experimentale et numerique de l'influence des processus de transport depuis la couche-limite sur la variabilite et le bilan d'ozone tropospherique

    Energy Technology Data Exchange (ETDEWEB)

    Colette, A

    2005-12-15

    Closing the tropospheric ozone budget requires a better understanding of the role of transport processes from the major reservoirs: the planetary boundary layer and the stratosphere. Case studies lead to the identification of mechanisms involved as well as their efficiency. However, their global impact on the budget must be addressed on a climatological basis. This manuscript is thus divided in two parts. First, we present case studies based on ozone LIDAR measurements performed during the ESCOMPTE campaign. This work consists in a data analysis investigation by means of a hybrid - Lagrangian study involving: global meteorological analyses, Lagrangian particle dispersion computation, and mesoscale, chemistry - transport, and Lagrangian photochemistry modeling. Our aim is to document the amount of observed ozone variability related to transport processes and, when appropriate, to infer the role of tropospheric photochemical production. Second, we propose a climatological analysis of the respective impact of transport from the boundary-layer and from the tropopause region on the tropospheric ozone budget. A multivariate analysis is presented and compared to a trajectography approach. Once validated, this algorithm is applied to the whole database of ozone profiles collected above Europe during the past 30 years in order to discuss the seasonal, geographical and temporal variability of transport processes as well as their impact on the tropospheric ozone budget. The variability of turbulent mixing and its impact on the persistence of tropospheric layers will also be discussed. (author)

  10. Turbulent Boundary Layers in the Vicinity of Separation

    Science.gov (United States)

    Indinger, Thomas; Buschmann, Matthias H.; Gad-El-Hak, Mohamed

    2004-11-01

    There has been some controversy regarding the behavior of the mean velocity profile of turbulent boundary layers approaching separation. While a number of experiments show that the logarithmic law is sustained even under strong adverse-pressure-gradient and non-equilibrium conditions, other experiments and DNS results reveal that the mean velocity profile breaks down in the vicinity of separation. Measurements at TU Dresden of a decelerated, fully developed turbulent boundary layer over a smooth flat plate in a closed water channel show that the classical log law no longer describes the mean velocity in the overlap region after a certain fraction of the flow travels in the upstream direction. This finding is consistent with the physical explanation advanced by Dengel & Fernholz (J. Fluid Mech. 212, 1990) that the log law failure is caused by the first occurrence of reverse flow. Analyzing adverse-pressure-gradient turbulent boundary layer data from three independent groups, we demonstrate that the log law can be restored by replacing y^+ with a new variable depending both on the wall-normal coordinate and the reverse-flow parameter \\chi_w. This finding is of importance in cases where other complexities such as surface roughness or structured walls (riblets, dimples, etc.) are involved and a universal profile in inner variables is desired.

  11. Coupled wake boundary layer model of wind-farms

    CERN Document Server

    Stevens, Richard J A M; Meneveau, Charles

    2014-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...

  12. New insights into adverse pressure gradient boundary layers

    Science.gov (United States)

    George, William K.; Stanislas, Michel; Laval, Jean-Philippe

    2010-11-01

    In a recent paper Shah et al. 2010 (Proc. of the WALLTURB Meeting, 2009), Lille, FR, Springer, in press) documented a number of adverse pressure gradient flows (APG's), with and without wall curvature, where the turbulence intensity peak moved quite sharply away from the wall with increasing distance. They further suggested that this peak was triggered by the adverse pressure gradient and had its origin in an instability hidden in the turbulent boundary layer, developing soon after the change of sign of the pressure gradient. They then offered that this may explain the difficulties encountered up to now in finding a universal scaling for turbulent boundary layers. We build on these observations, and show that in fact there is clear evidence in the literature (in most experiments, both old and new) for such a development downstream of the imposition of an adverse pressure gradient. The exact nature of the evolution and the distance over which it occurs depends on the upstream boundary layer and the manner in which the APG is imposed. But far enough downstream the mean velocity profile in all cases becomes an inflectional point profile with the location of the inflection point corresponding quite closely to the observed peak in the streamwise turbulence intensity. This does not seem to have been previously noticed.

  13. Turbulent thermal boundary layers subjected to severe acceleration

    Science.gov (United States)

    Araya, Guillermo; Castillo, Luciano

    2013-11-01

    Favorable turbulent boundary layers are flows of great importance in industry. Particularly, understanding the mechanisms of quasi-laminarization by means of a very strong favorable streamwise pressure gradient is indeed crucial in drag reduction and energy management applications. Furthermore, due to the low Reynolds numbers involved in the quasi-laminarization process, abundant experimental investigation can be found in the literature for the past few decades. However, several grey zones still remain unsolved, principally associated with the difficulties that experiments encounter as the boundary layer becomes smaller. In addition, little attention has been paid to the heat transfer in a quasi-laminarization process. In this investigation, DNS of spatially-developing turbulent thermal boundary layers with prescribed very strong favorable pressure gradients (K = 4 × 10-6) are performed. Realistic inflow conditions are prescribed based on the Dynamic Multi-scale Approach (DMA) [Araya et al. JFM, Vol. 670, pp. 581-605, 2011]. In this sense the flow carries the footprint of turbulence, particularly in the streamwise component of the Reynolds stresses.

  14. Two-phase boundary layer prediction in upward boiling flow

    International Nuclear Information System (INIS)

    In the present work, the numerical modelling of the two-phase turbulent boundary layer in upward boiling flow was investigated. First, non-dimensional liquid velocity and temperature profiles in the two-phase boundary layer were validated on the one-dimensional section of a pipe with prescribed radial void fraction profiles. Simulations were performed on a fine grid with a commercial code CFX-5 using the k-ω turbulence model. A significant deviation of results from the analytical single-phase and two-phase wall functions from the literature was observed. Second, a wall boiling model in a vertical heated pipe was simulated (CFX-5) on the coarse grid. Here the prediction of the two-phase thermal boudary layer was compared to the experimental data, k-ω calculation on the fine grid and against the singlephase analytical wall function. Again a major deviation against single-phase temperature wall function was obtained. Presented analyses suggest that the existing analytical velocity and temperature wall functions cannot be valid for the boiling boundary layer with the high void fraction on the wall. (author)

  15. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    Directory of Open Access Journals (Sweden)

    C. L. Ryder

    2015-01-01

    Full Text Available The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1 the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL, (2 dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3 vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4 in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5 dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL, (6 airborne observations of a dust storm associated with a cold-pool (haboob issued from deep convection over the Atlas, (7 the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations and absorption properties between 2011 and 2012, (8 coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9 discrepancies between airborne coarse mode size distributions and AERONET sunphotometer

  16. Generation of a CALIPSO climatology of near-surface boundary layer aerosols for solar energy applications

    OpenAIRE

    Mancera Guevara, Diana R.

    2013-01-01

    Aerosols are highly variable in time and space. Along with water vapour they are the biggest contributors to extinction of radiation at Earth´s surface. As a consequence they affect the energy yield in CSP (Concentrated Solar Power) plants. This study aims to describe the presence of aerosols in the lowest portion of the Planet Boundary Layer in order to provide a starting point to characterize aerosol vertical profiles. This information might provide additional information useful for the ear...

  17. Dissipative Effects in Hydromagnetic Boundary Layer Nanofluid Flow past a Stretching Sheet with Newtonian Heating

    OpenAIRE

    Bhupesh Kumar Mahatha; Raj Nandkeolyar; Goutam Kumar Mahato; Precious Sibanda

    2016-01-01

    Two dimensional steady hydromagnetic boundary layer flow of a viscous, incompressible, and electrically conducting nanofluid past a stretching sheet with Newtonian heating, in the presence of viscous and Joule dissipations is studied. The transport equations include the combined effects of Brownian motion and thermophoresis. The governing nonlinear partial differential equations are transformed to a set of nonlinear ordinary differential equations which are then solved using Spect...

  18. Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid

    Directory of Open Access Journals (Sweden)

    Sufian Munawar

    2014-01-01

    Full Text Available This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0≤τ<∞. Flow properties of the viscoelastic fluid are discussed through graphs.

  19. On the Asymptotic Approach to Thermosolutal Convection in Heated Slow Reactive Boundary Layer Flows

    OpenAIRE

    Stanford Shateyi; Precious Sibanda; Motsa, Sandile S.

    2008-01-01

    The study sought to investigate thermosolutal convection and stability of two dimensional disturbances imposed on a heated boundary layer flow over a semi-infinite horizontal plate composed of a chemical species using a self-consistent asymptotic method. The chemical species reacts as it diffuses into the nearby fluid causing density stratification and inducing a buoyancy force. The existence of significant temperature gradients near the plate surface results in additional buoyancy and decrea...

  20. Impact of planetary boundary layer turbulence on model climate and tracer transport

    OpenAIRE

    E. L. McGrath-Spangler; A. Molod; Ott, L. E.; Pawson, S.

    2014-01-01

    Planetary boundary layer (PBL) processes are important for weather, climate, and tracer transport and concentration. One measure of the strength of these processes is the PBL depth. However, no single PBL depth definition exists and several studies have found that the estimated depth can vary substantially based on the definition used. In the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model, the PBL depth is particularly important ...

  1. Impact of planetary boundary layer turbulence on model climate and tracer transport

    OpenAIRE

    E. L. McGrath-Spangler; A. Molod; Ott, L. E.; Pawson, S.

    2015-01-01

    Planetary boundary layer (PBL) processes are important for weather, climate, and tracer transport and concentration. One measure of the strength of these processes is the PBL depth. However, no single PBL depth definition exists and several studies have found that the estimated depth can vary substantially based on the definition used. In the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model, the PBL depth is particularly important because it is u...

  2. 3D Water Vapor Field in the Atmospheric Boundary Layer Observed with Scanning Differential Absorption Lidar

    OpenAIRE

    Späth, F.; A. Behrendt; Muppa, S. K.; S. Metzendorf; A. Riede; V. Wulfmeyer

    2016-01-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) determines fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and spatial resolution of up to a few tens of meters. We present three case studies which show that this high resolution combined with 2- and 3-dimensional scans allows for new insights in the 3-dimensional structure of the water vapor field in the atmospheric boundary layer (ABL). In spring 2013, th...

  3. Pollution-enhanced reactive chlorine chemistry in the eastern tropical Atlantic boundary layer

    OpenAIRE

    Lawler, M J; B. D. Finley; Keene, W. C.; A. A. P. Pszenny; Read, K. A.; Von Glasow, R.; E. S. Saltzman

    2009-01-01

    This study examines atmospheric reactive chlorine chemistry at the Cape Verde Atmospheric Observatory in the eastern tropical Atlantic. During May–June, 2007, Cl2 levels ranged from below detection (∼2 ppt) to 30 ppt. Elevated Cl2 was associated with high HNO3 (40 to 120 ppt) in polluted continental outflow transported in the marine boundary layer (MBL) to the site. Lower Cl2 was observed in recently subsided air masses with multiday free tropospheric oceanic trajectories and in air containin...

  4. The behaviour of a compressible turbulent boundary layer under incipient separation conditions

    Science.gov (United States)

    Muck, K. C.; Smits, A. J.

    1984-01-01

    This paper presents an experimental study of a turbulent boundary-layer/shock-wave interaction. The interaction was generated by a two-dimensional compression corner, and the flow was on the point of separating. Measurements were made using both normal and inclined hot wires, and the data include measurements of the longitudinal mass-flow fluctuation intensity and the mass-weighted Reynolds shear stress.

  5. Measurement Techniques in Boundary Layer Wind Tunnel for Determination of the Loads on Plane Solar Collectors

    OpenAIRE

    Georgeta BĂETU; Axinte, Elena; Teleman, Carmen-Elena; Silion, Radu

    2013-01-01

    The measurement of fluctuating pressures is an important step in the determination of the wind loads acting on structures or parts of structures. The measurement techniques develop continuously, important improvements being the goal in order to provide solutions to various difficulties encountered in the acquisition or processing of wind data. In the case of experimental studies in boundary layer wind tunnel on scaled models, the pressure taps placed on the model surfaces is the most common m...

  6. Two-dimensional, time dependent simulation of the planetary boundary layer over a 48-hour period

    International Nuclear Information System (INIS)

    This report presents results of a two-dimensional time-dependent simulation of the planetary boundary layer for a 48-hour period. These calculations are a continuation and expansion of one-dimensional simulations of the planetary boundary layer as described previously. The time-dependent evolution of a weather situation was simulated. It could be demonstrated that the main features of local ventilation systems can be simulated correctly. Two case studies are presented to show qualitatively, how local circulation systems can be influenced. One case assumes introduction of a hypothetical city, the other case uses arbitrarily introduced coverage of the sky as a pertubrbation. The problems connected with the verification of two-dimensional simulations using experimental data are discussed. Furthermore, proposals for a methodology to solve problems of model verification are discussed. (Auth.)

  7. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in...... the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability...... (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics...

  8. Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

    Directory of Open Access Journals (Sweden)

    Zou Chang-Fang

    2015-07-01

    Full Text Available In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

  9. Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

    Science.gov (United States)

    Zou, Chang-Fang; Wang, De-Yu; Cai, Zhong-Hua

    2015-07-01

    In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

  10. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface

    Institute of Scientific and Technical Information of China (English)

    Chandaneswar Midya

    2012-01-01

    An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible Buid over a linearly shrinking surface is presented. The Row is permeated by an externally applied magnetic Geld normal to the plane of the flow. The equations governing the Row and concentration Reid are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is signiRcantly different from that of a stretching surface. It s found that te solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced vaJues of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications.%An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented.The flow is permeated by an externally applied magnetic field normal to the plane of the flow.The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables.Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall

  11. Longitudinal dispersion of heavy particles in an oscillating tunnel and application to wave boundary layers

    DEFF Research Database (Denmark)

    Kirca, V. S. Ozgur; Sumer, B. Mutlu; Steffensen, Michael;

    2016-01-01

    The present research aims at getting an understanding of the process of dispersion of surface sediment in an oscillatory boundary layer, which may represent an idealised case of, for example, a stockpile area where excavated sediment is stockpiled temporarily (or permanently). The process is...... studied numerically, using a random-walk particle model with the input data for the mean and turbulence characteristics of the wave boundary layer picked up from a transitional two-equation k–ω Reynolds averaged Navier–Stokes model and plugged in the random-walk model. First, the flowmodel is validated...... against experimental data in the literature. Then, the random-walk dispersion model is run for different oscillatory flow cases and for a number of steady flow cases for comparison. The primary sediment grains of concern are fine sediments (with low fall velocity), which would stay in suspension for most...

  12. Effect of low-frequency tones and turbulent-boundary-layer noise on annoyance

    Science.gov (United States)

    Shepherd, K. P.; Leatherwood, J. D.; Clevenson, S. A.

    1983-01-01

    A laboratory study was conducted to examine annoyance to combinations of low-frequency tones and turbulent-boundary-layer noise. A total of 240 sounds, containing tones in the range from 80 to 315 Hz, were rated by 108 test subjects in an anechoic chamber. The results indicated that tone penalties (defines as the failure of a noise metric to account for the presence of pure tones) are highly dependent on the choice of noise metric. A-weighted sound pressure level underpredicted annoyance by as much as the equivalent of 5 db and unweighted sound pressure level overpredicted by as much as the equivalent of db. Tone penalties were observed to be dependent on the shape of the turbulent boundary-layer noise spectrum.

  13. Three dimensional analysis of boundary layers in magnetohydrodynamic open channel flow

    International Nuclear Information System (INIS)

    The pumping of liquid metals through open channels by MHD effects can be applied to slag separation or continuous casting processes by the metallurgy industry. This study involves the analysis of the boundary layer structure of non-uniform open channel flow in a rectangular channel, with perfectly conducting sidewalls, an insulating bottom and a uniform magnetic field applied perpendicular to the bottom, the plane of which is sloped with respect to the horizontal. To supply the non-trivial three-dimensional sidewall boundary layer structure a boundary value problem is posed and reduced to two integral equations coupled in two unknowns. The twenty-four point Gauss-Legendre quadrature scheme used to represent the integrals, leads to a set of forty-eight simultaneous equations which is solved numerically for the unknowns. Once obtained, these unknowns are used in the numerical calculation of sample velocity profiles which illustrate and contrast MHD effects in open channel and closed duct flows

  14. Boundary Layer Ducting of Low-elevation GNSS Ocean Reflected Signals

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    the sea surface roughness, ocean wind and temperature, density and gradient of the water vapor profile in the boundary layer.The model for the sea surface roughness impedance, wind speed, and rms ocean wave-heightshow a stronger signal damping for a smoother ocean surfaces (sea state 0) compared to a......GNSS reflected signals are able to derive parameters as sea surface roughness, winds, waves,and heights from the spectral measurements. Coming satellite missions as, CYGNSS andGEROS, are focusing on GNSS ocean reflected measurements. Thus, simulation studies, highlighting the assumptions for the...... data retrievals and the precision and the accuracy, are of interest for assessing the observational data content.Simulations of the low-elevation ocean reflected GNSS signal reveal a ducting of the signalwhen applying a model of the boundary layer. This effect is presented during varying conditions of...

  15. Turbulent Suspension Mechanics in Sediment-Laden Boundary Layers

    Science.gov (United States)

    Kiger, K.

    2013-05-01

    Accurate prediction of benthic sediment transport is a challenging problem due the two-phase nature of the flow near the mobile bed, as well as the large difference in scales between the meso-scale flow and smaller-scale structures interacting with the sediment bed. Of particular importance is the parameterization of the physics at the bottom boundary. This requires estimation of key quantities such as effective bed stress and sediment flux based on the on the outer regional-scale velocity field. An appropriate turbulence/sediment parameterization is needed to specify the correct bottom momentum and sediment flux. Prior work has shown the shortcoming of standard models to properly predict such behavior, which is speculated to result from the dominant role played by large-scale coherent structures in the generation of the bed morphology, suspension of particulates, and important particle-fluid coupling effects. The goal of the current work is to elucidate such relationships through a combination of direct simulation and laboratory-scale experiment, the latter of which will be the primary focus of this paper. Specifically, two-phase PIV is used to provide a novel quantitative description of both phases, allowing for a detailed examination of the flow behavior and particle-turbulence coupling. Experiments were conducted in both a steady, fully-developed turbulent channel flow and an oscillatory boundary layer in order to examine the fundamental behaviour of the suspension and particle coupling mechanisms. The turbulent channel flow measurements indicated an increase in the effective wall stress due to the presence of the sediment on the order of 7%. The sediment suspension was directly correlated with the ejection dynamics of prototypical hairpin structures, but were found to settle back towards the bed in a manner uncorrelated with the fluid structure. In contrast, the measurements of the oscillatory flow reveal it to be dominated by alternating streaming motions and

  16. Seasonal analysis of the planetary boundary-layer afternoon and evening transition through observational measurements

    Science.gov (United States)

    Sastre, Mariano; Román-Cascón, Carlos; Yagüe, Carlos; Arrillaga, Jon A.; Maqueda, Gregorio

    2016-04-01

    From a typically convective diurnal situation to a stably stratified nocturnal one, the atmospheric boundary layer (ABL) experiences the so-called afternoon and evening transition. This period is complex to study due to the presence of many different forcings, usually weak and opposite [1]. In this work, the transitional processes are studied by using 6-year data from permanent instrumentation at CIBA, a research center located in the Spanish Northern plateau. These measurements include particulate matter (PM) and turbulent records. Certain variables display a twin pattern in their time evolution for all the seasons, only differing in their absolute values. On the contrary, the air specific humidity behaves differently for each season, which is distinct to the results from a previous study at a different location [2]. Besides, a common pattern of increasing PM values near sunset is found, with a number of influences playing a role in PM concentrations: stability, turbulence and ABL thickness among others. In particular, the competing thermal and mechanical turbulent effects result in PM concentration reduction (settling on the ground or being advected) or increase, depending in each case on the specific season and particle group. Furthermore, the relative importance of the bigger PM (between 2.5 and 10 μm) is linked to the wind minimum around sunset, especially during summer. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence, Atmos. Chem. Phys., 14, 10931-10960. [2] Wingo, S. M. and Knupp, K. R. (2015): Multi-platform observations characterizing the afternoon-to-evening transition of the planetary boundary layer in Northern Alabama, USA, Boundary-Layer Meteorol., 155, 29-53.

  17. Boundary layer effects on the vortex shedding in a Donaldson- type hydrofoil

    International Nuclear Information System (INIS)

    Fluid - Structure Interaction (FSI) phenomena is becoming a relevant study field for the design or revamping of hydropower plants. The generalized trend of increasing flow rates and reducing rotor blades/stay vanes thickness in order to improve the efficiency of the machine together with a major push from plant owners/operators for production flexibility (partial load operation is more common nowadays) make the FSI between the vortex shedding phenomenon and the vanes/blades of the machine an area of interest. From a design point of view, the machine structure has to resist all the hydrodynamic forces generated and maintain tension stresses under the fatigue limit to ensure a machine lifetime of several decades. To accomplish that goal, designers have to assure there is no presence of strong coupling phenomena (lock-in) between the vortex shedding frequency and the eigenfrequencies of the structure. As the vortex street is directly related to the state of the boundary layer along the hydrofoil, in this paper the effect of the boundary layer on the vortex shedding in a Donaldson-type hydrofoil is studied using Computational Fluid Dynamics (CFD). The development of the boundary layer along the Donaldson trailing edge hydrofoil chord is presented under lock-off conditions. The results are validated against previously obtained experimental results. Since the Donaldson trailing edge is non-symmetric, the boundary layer velocity profiles are reported for the suction and pressure side of the hydrofoil. In addition, the effect of the Donaldson trailing edge on laminar-to-turbulent transition on both sides of the hydrofoil is studied

  18. Characteristics of nocturnal coastal boundary layer in Ahtopol based on averaged SODAR profiles

    Science.gov (United States)

    Barantiev, Damyan; Batchvarova, Ekaterina; Novitzky, Mikhail

    2014-05-01

    The ground-based remote sensing instruments allow studying the wind regime and the turbulent characteristics of the atmosphere with height, achieving new knowledge and solving practical problems, such as air quality assessments, mesoscale models evaluation with high resolution data, characterization of the exchange processes between the surface and the atmosphere, the climate comfort conditions and the risk for extreme events, etc. Very important parameter in such studies is the height of the atmospheric boundary layer. Acoustic remote sensing data of the coastal atmospheric boundary layer were explored based on over 4-years continuous measurements at the meteorological observatory of Ahtopol (Bulgarian Southern Black Sea Coast) under Bulgarian - Russian scientific agreement. Profiles of 12 parameters from a mid-range acoustic sounding instrument type SCINTEC MFAS are derived and averaged up to about 600 m according filtering based on wind direction (land or sea type of night fowls). From the whole investigated period of 1454 days with 10-minute resolution SODAR data 2296 profiles represented night marine air masses and 1975 profiles represented the night flow from land during the months May to September. Graphics of averaged profiles of 12 SODAR output parameters with different availability of data in height are analyzed for both cases. A marine boundary-layer height of about 300 m is identified in the profiles of standard deviation of vertical wind speed (σw), Turbulent Kinetic Energy (TKE) and eddy dissipation rate (EDR). A nocturnal boundary-layer height of about 420 m was identified from the profiles of the same parameters under flows from land condition. In addition, the Buoyancy Production (BP= σw3/z) profiles were calculated from the standard deviation of the vertical wind speed and the height z above ground.

  19. LABLE: A multi-institutional, student-led, atmospheric boundary layer experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P.; Bonin, T. A.; Newman, J. F.; Turner, D. D.; Chilson, P. B.; Wainwright, C. E.; Blumberg, W. G.; Mishra, S.; Carney, M.; Jacobsen, E. P.; Wharton, Sonia; Newsom, Rob K.

    2015-10-23

    This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

  20. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.