WorldWideScience

Sample records for boundary layer separation

  1. Experimental studies on transitional separated boundary layers

    OpenAIRE

    Serna Serrano, José

    2013-01-01

    Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and...

  2. Measurements of a Separating Turbulent Boundary Layer.

    Science.gov (United States)

    1980-04-01

    the uncertainties of most of the dominant terms are less than 30% 40% at many points. In general, the terms involving derivatives with re spect to y...34 DISA Information, no. 13, pp. 29-33. Perry, A.E. and Schofield, W.H. 1973 "Mean Velocity and Shear Stress Distribu- tions in Turbulent Boundary Layers

  3. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    Science.gov (United States)

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  4. Streaming effect of wall oscillation to boundary layer separation

    Science.gov (United States)

    Wu, X. H.; Wu, J. Z.; Wu, J. M.

    1991-01-01

    This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.

  5. Decomposition Methods For a Piv Data Analysis with Application to a Boundary Layer Separation Dynamics

    Directory of Open Access Journals (Sweden)

    Václav URUBA

    2010-12-01

    Full Text Available Separation of the turbulent boundary layer (BL on a flat plate under adverse pressure gradient was studied experimentally using Time-Resolved PIV technique. The results of spatio-temporal analysis of flow-field in the separation zone are presented. For this purpose, the POD (Proper Orthogonal Decomposition and its extension BOD (Bi-Orthogonal Decomposition techniques are applied as well as dynamical approach based on POPs (Principal Oscillation Patterns method. The study contributes to understanding physical mechanisms of a boundary layer separation process. The acquired information could be used to improve strategies of a boundary layer separation control.

  6. Numerical investigation of the boundary layer separation in chemical oxygen iodine laser

    Science.gov (United States)

    Huai, Ying; Jia, Shuqin; Wu, Kenan; Jin, Yuqi; Sang, Fengting

    2017-11-01

    Large eddy simulation is carried out to model the flow process in a supersonic chemical oxygen iodine laser. Unlike the common approaches relying on the tensor representation theory only, the model in the present work is an explicit anisotropy-resolving algebraic Subgrid-scale scalar flux formulation. With an accuracy in capturing the unsteady flow behaviours in the laser. Boundary layer separation initiated by the adverse pressure gradient is identified using Large Eddy Simulation. To quantify the influences of flow boundary layer on the laser performance, the fluid computations coupled with a physical optics loaded cavity model is developed. It has been found that boundary layer separation has a profound effect on the laser outputs due to the introduced shock waves. The F factor of the output beam decreases to 10% of the original one when the boundary transit into turbulence for the setup depicted in the paper. Because the pressure is always greater on the downstream of the boundary layer, there will always be a tendency of boundary separation in the laser. The results inspire designs of the laser to apply positive/passive control methods avoiding the boundary layer perturbation.

  7. Knuckleball and Flying Disk: Boundary Layer Transitions, Separations and Vortex Wakes in Sports Aerodynamics

    Science.gov (United States)

    Higuchi, Hiroshi; Kiura, Toshiro; Goto, Yuichiro; Hiramoto, Riho

    2001-11-01

    In spite of their popularity, flow structures over common baseball and flying disks have not been studied in detail. A slowly rotating baseball is subject to erratic flight paths, and is known as a knuckleball. In the present experiment, the characteristic of force acting on a baseball was obtained and the velocity vector field near the surface of the ball and the wake were measured with the DPIV technique. The seam triggered the boundary layer transition or caused the boundary layer separation itself. The laminar/turbulent boundary layer separations were identified with specific ball orientations. Corresponding three-dimensional wake pattern and the side force result in unpredictable trajectories. In the second part of the talk, flow physics regarding a spin-stabilized flying disk is addressed. The roll-up of trailing vortices was visualized in detail and their vorticity field was measured with the DPIV. The vortical flow over the disk produced flow reattachment at a very high angle of attack. The boundary layer at low angles of attack was affected by the surface motion with asymmetric boundary layer transitions as evidenced by the flow visualization and the hot wire survey. The flow separation and attachment on the underside cavity were also affected by the rotation.

  8. Boundary layer separation method for recycling of sodium ions from industrial wastewater.

    Science.gov (United States)

    Petho, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-12-01

    The most effective technological solution for waste treatment is recycling. We have developed a new method for the treatment of industrial wastewaters and have called it the boundary layer separation method (BLSM). We have used the phenomenon that, on the surface of an electrically charged electrode, ions can be enriched in the boundary layer, as compared with the inside of the phase. The essence of the method is that, with an appropriately chosen velocity, the boundary layer can be removed from the wastewater, and the boundary layer, which is rich in ions, can be recycled. The BLSM can be executed as a cyclic procedure. The capacitance of the boundary layer was examined. The best mass transport can be achieved with the use of 1000 and 1200 mV polarization potentials in the examined system, with its value being 1200 mg/m2 per cycle. The necessary operation times were determined by the examination of the velocity of the electrochemical processes. When using 1000 mV polarization potential, the necessary adsorption time is at least 25 seconds, and the desorption time at least 300 seconds. The advantage of the procedure is that it does not use dangerous chemicals, only inert electrodes. The drawback is that it is not selective to ions, the achievable separation in one step is low, and the hydrogen that emerges during the electrolysis might be dangerous.

  9. Effects of boundary-layer separation controllers on a desktop fume hood.

    Science.gov (United States)

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-02

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).

  10. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  11. Separation length in high-enthalpy shock/boundary-layer interaction

    OpenAIRE

    Davis, Jean-Paul; Sturtevant, Bradford

    2000-01-01

    Experiments were performed in the T5 Hypervelocity Shock Tunnel to investigate nonequilibrium real-gas effects on separation length using a double-wedge geometry and nitrogen test gas. Local external flow conditions were estimated by computing the inviscid nonequilibrium flow field. A new scaling parameter was developed to approximately account for wall temperature effects on separation length for a laminar nonreacting boundary layer and arbitrary viscosity law. A classification was introduce...

  12. Turbine blade boundary layer separation suppression via synthetic jet: An experimental and numerical study

    Science.gov (United States)

    Bernardini, C.; Carnevale, M.; Manna, M.; Martelli, F.; Simoni, D.; Zunino, P.

    2012-10-01

    The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200, 000 and Re = 70, 000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control — separated boundary layer interaction for the aforementioned Reynolds numbers.

  13. Separation control in a hypersonic shock wave / turbulent boundary-layer interaction

    Science.gov (United States)

    Schreyer, Anne-Marie; Bermejo-Moreno, Ivan; Kim, Jeonglae; Urzay, Javier

    2016-11-01

    Hypersonic vehicles play a key role for affordable access to space. The associated flow fields are strongly affected by shock wave/turbulent boundary-layer interactions, and the inherent separation causes flow distortion and low-frequency unsteadiness. Microramp sub-boundary layer vortex generators are a promising means to control separation and diminish associated detrimental effects. We investigate the effect of a microramp on the low-frequency unsteadiness in a fully separated interaction. A large eddy simulation of a 33 ∘ -compression-ramp interaction was performed for an inflow Mach number of 7.2 and a Reynolds number based on momentum thickness of Reθ = 3500 , matching the experiment of Schreyer et al. (2011). For the control case, we introduced a counter-rotating vortex pair, as induced by a single microramp, into the boundary layer through the inflow conditions. We applied a dynamic mode decomposition (DMD) on both cases to identify coherent structures that are responsible for the dynamic behavior. Based on the DMD, we discuss the reduction of the separation zone and the stabilization of the shock motion achieved by the microramp, and contribute to the description of the governing mechanisms. Pursued during the 2016 CTR Summer Program at Stanford University.

  14. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    Peter Busche

    2012-10-01

    Full Text Available A sensor concept for detection of boundary layer separation (flow separation, stall and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor’s position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle. Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow and even negative flow values (back flow for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  15. Direct Numerical Simulation of an Adverse Pressure Gradient Turbulent Boundary Layer at the Verge of Separation

    Science.gov (United States)

    Kitsios, Vassili; Atkinson, Callum; Sillero, Juan; Guillem, Borrell; Gungor, Ayse; Jimenéz, Javier; Soria, Julio

    2014-11-01

    We investigate the structure of an adverse pressure gradient (APG) turbulent boundary layer (TBL) at the verge of separation. The intended flow is generated via direct numerical simulation (DNS). The adopted DNS code was previously developed for a zero pressure gradient TBL. Here the farfield boundary condition (BC) is modified to generate the desired APG flow. The input parameters required for the APG BC are initially estimated from a series of Reynolds Averaged Navier-Stokes simulations. The BC is implemented into the DNS code with further refinement of the BC performed. The behaviour of the large scale dynamics is illustrated via the extraction of coherent structures from the DNS using analysis of the velocity gradient tensor and vortex clustering techniques. The authors acknowledge the research funding from the Australian Research Council and European Research Council, and the computational resources provided by NCI and PRACE.

  16. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    Science.gov (United States)

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  17. The effects of laser plasma discharge on a separating boundary layer

    Science.gov (United States)

    Browne, Kevin Patrick

    Modification of the separation and drag characteristics of a laminar airfoil using a remotely located high-power laser was experimentally investigated in a low speed, low-turbulence wind tunnel. It was proposed that pulsed laser energy could be used to cause a disturbance in the boundary layer of a laminar airfoil thus modifying the flow by inducing a cross exchange of momentum within the boundary layer. The result is a unique zero net mass flux and zero net momentum flux actuator for delaying separation. A 500 mm chord length laminar airfoil was designed and fabricated to closely emulate in the wind tunnel the flight characteristics of a Cessna 177 at cruise speed. At zero degrees angle of attack the airfoil was determined to have an incipient laminar separation bubble on its lifting surface between 67 and 80% chord. By focusing the collimated laser beam emitted from a 900mW Q-switched YAG laser a strong plasma pulse was generated from the optical breakdown of the air. The plasma was focused to a location approximately 2 mm in front of the airfoil. High temperature plasma produced by each pulse generates a shockwave and volume of heated turbulent air which interacts with the airfoil and travels along its lifting surface. Particle Image Velocimetry (PIV) system was used as the primary data collection method. Determining the effects of the plasma on the flow over the airfoil requires measuring the behavior deep within the boundary layer which is typically less than 2 mm thick. Custom optics were used to capture flow behavior in a 6 mm x 6 mm field of view along the centerline of the airfoil. The PIV system was electronically triggered by the plasma laser. By varying the trigger delay time a range of data captured the onset, peak and decay of the plasma with fine spatial resolution. Results of this investigation show that a burst of turbulence generated by the pulsed plasma exchanges significant momentum between the freestream and the incipient separation bubble

  18. Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    Science.gov (United States)

    Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)

    2005-01-01

    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very

  19. Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer

    Science.gov (United States)

    Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo

    2017-11-01

    Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.

  20. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    Science.gov (United States)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  1. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  2. Measurement of corner separation zone response on a compression ramp to plasma actuation within the hypersonic boundary layer

    Science.gov (United States)

    Hedlund, Brock E.; Houpt, Alec W.; Gordeyev, Stanislav V.; Leonov, Sergey B.

    2017-10-01

    This study was performed to characterize the dominant frequencies present in the boundary layer uptsream of and in the corner separation zone of a compression surface in Mach 4.5 flow and to determine a control effect of transient plasma actuation on the boundary layer. Schlieren imaging was used to distinguish the corner separation zone for 20°, 25°, and 30° compression ramps mounted on flat plates. Spectra of the natural disturbances present in the boundary layer and separation zone were gathered using a high-speed Shack-Hartmann wavefront sensor and surface mounted PCBTM pressure sensors while varying flow parameters by adjusting total pressure, temperature, and ramp angle. Shallow cavity discharge plasma actuators were used as a high-frequency localized thermal forcing mechanism of the boundary layer. The plasma effect was negligible for forcing frequencies (50 kHz) below the natural dominant frequency (~55-80 kHz). High frequency perturbations that can promote the transition to turbulence were amplified when the plasma forcing frequency (100 kHz) was higher than the natural dominant frequency (~55-80 kHz). This technique can potentially be used for active control of hypersonic boundary layer transition and the supersonic flow structure on the compression surface.

  3. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  4. Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties.

    Science.gov (United States)

    Kim, Younggy; Walker, W Shane; Lawler, Desmond F

    2012-05-01

    In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Modifications of the law of the wall and algebraic turbulence modelling for separated boundary layers

    Science.gov (United States)

    Baldwin, B. S.; Maccormack, R. W.

    1976-01-01

    Various modifications of the conventional algebraic eddy viscosity turbulence model are investigated for application to separated flows. Friction velocity is defined in a way that avoids singular behavior at separation and reattachment but reverts to the conventional definition for flows with small pressure gradients. This leads to a modified law of the wall for separated flows. The effect on the calculated flow field of changes in the model that affect the eddy viscosity at various distances from the wall are determined by (1) switching from Prandtl's form to an inner layer formula due to Clauser at various distances from the wall, (2) varying the constant in the Van Driest damping factor, (3) using Clauser's inner layer formula all the way to the wall, and (4) applying a relaxation procedure in the evaluation of the constant in Clauser's inner layer formula. Numerical solutions of the compressible Navier-Stokes equations are used to determine the effects of the modifications. Experimental results from shock-induced separated flows at Mach numbers 2.93 and 8.45 are used for comparison. For these cases improved predictions of wall pressure distribution and positions of separation and reattachment are obtained from the relaxation version of the Clauser inner layer eddy viscosity formula.

  6. Thermal separation in near-axis boundary layers with intense swirl

    Science.gov (United States)

    Herrada, M. A.; Pérez-Saborid, M.; Barrero, A.

    1999-12-01

    Swirling flows have a wide range of applications and exhibit a variety of interesting features. Gas cooling near the axis in these flows, the so-called Ranque-Hilsch effect, is one of them. To gain insight into this phenomenon, we have analyzed the thermal, near-axis boundary layer of a gas jet driven by a class of conical inviscid quasi-incompressible flows whose axial and azimuthal velocity components, w and v, and stagnation temperature, Tt, behave near the axis as w=W0rm-2,v=LW0rm-2, and Tt-Tr=T0r2(m-2), where z and r are the axial and radial coordinates, L is the Squire number directly related to the swirl strength, m is any real number such as 1⩽mRanque-Hilsch effect) when the effect of both heat conduction and the work done by viscous forces are taken into account. It is also found that there exists an optimum value Lop for which the cooling effect reaches a sharp maximum and that small deviations of L from Lop reduce drastically the cooling effect. The appropriate tuning of Lop can be dramatically important for the efficient operation of Ranque-Hilsch tubes. The influence of the Prandtl number and the rest of the parameters of the problem has been also considered.

  7. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  8. Development of a boundary-layer-type solver based on simultaneous iteration technique for axisymmetric separated flows

    Science.gov (United States)

    Halim, A. A. M.

    A boundary-layer-type solver is developed for the numerical solution of axisymmetric separated flows. A new fully implicit coupling scheme for the viscous and inviscid regions is demonstrated. This fully implicit coupling technique is similar to the work of Carter, Veldman, and an extension of an earlier work of Halim and Hafez. A comparison is made for the convergence rate using this new fully implicit coupling technique and the semiimplicit coupling of Halim and Hafez. Numerical results using the fully implicit coupling are obtained for laminar incompressible separated flows, including a boattail and a series of trough geometries. Also, the near-wake flow problem is considered using the present formulation. A clear conclusion of this investigation is that the present scheme using the fully implicit coupling method converges at a faster rate than the semiimplicit coupling and the partially parabolized Navier-Stokes (PPNS) procedures.

  9. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  10. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  11. Boundary layer thickness effect on boattail drag

    Science.gov (United States)

    Blaha, B. J.; Chamberlain, R.; Bober, L. J.

    1976-01-01

    A combined experimental and analytical program was conducted to investigate the effects of boundary layer changes on the flow over high angle boattail nozzles. The tests were run on an isolated axisymmetric sting mounted model. Various boattail geometries were investigated at high subsonic speeds over a range of boundary layer thicknesses. In general, boundary layer effects were small at speeds up to Mach 0.8. However, at higher speeds significant regions of separated flow were present on the boattail. When separation was present large reductions in boattail drag resulted with increasing boundary layer thickness. The analysis predicts both of these trends.

  12. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  13. Superfluid Boundary Layer.

    Science.gov (United States)

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  14. Stochastic rocket dynamics under random nozzle side loads: Ornstein-Uhlenbeck boundary layer separation and its coarse grained connection to side loading and rocket response

    CERN Document Server

    Keanini, R G; Tkacik, Peter T; Weggel, David C; Knight, P Douglas

    2011-01-01

    A long-standing, though ill-understood problem in rocket dynamics, rocket response to random, altitude-dependent nozzle side-loads, is investigated. Side loads arise during low altitude flight due to random, asymmetric, shock-induced separation of in-nozzle boundary layers. In this paper, stochastic evolution of the in-nozzle boundary layer separation line, an essential feature underlying side load generation, is connected to random, altitude-dependent rotational and translational rocket response via a set of simple analytical models. Separation line motion, extant on a fast boundary layer time scale, is modeled as an Ornstein-Uhlenbeck process. Pitch and yaw responses, taking place on a long, rocket dynamics time scale, are shown to likewise evolve as OU processes. Stochastic, altitude-dependent rocket translational motion follows from linear, asymptotic versions of the full nonlinear equations of motion; the model is valid in the practical limit where random pitch, yaw, and roll rates all remain small. Comp...

  15. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  16. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  17. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  18. Stochastic rocket dynamics under random nozzle side loads: Ornstein-Uhlenbeck boundary layer separation and its coarse grained connection to side loading and rocket response

    Energy Technology Data Exchange (ETDEWEB)

    Keanini, R.G.; Srivastava, N.; Tkacik, P.T. [Department of Mechanical Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Weggel, D.C. [Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Knight, P.D. [Mitchell Aerospace and Engineering, Statesville, North Carolina 28677 (United States)

    2011-06-15

    A long-standing, though ill-understood problem in rocket dynamics, rocket response to random, altitude-dependent nozzle side-loads, is investigated. Side loads arise during low altitude flight due to random, asymmetric, shock-induced separation of in-nozzle boundary layers. In this paper, stochastic evolution of the in-nozzle boundary layer separation line, an essential feature underlying side load generation, is connected to random, altitude-dependent rotational and translational rocket response via a set of simple analytical models. Separation line motion, extant on a fast boundary layer time scale, is modeled as an Ornstein-Uhlenbeck process. Pitch and yaw responses, taking place on a long, rocket dynamics time scale, are shown to likewise evolve as OU processes. Stochastic, altitude-dependent rocket translational motion follows from linear, asymptotic versions of the full nonlinear equations of motion; the model is valid in the practical limit where random pitch, yaw, and roll rates all remain small. Computed altitude-dependent rotational and translational velocity and displacement statistics are compared against those obtained using recently reported high fidelity simulations [Srivastava, Tkacik, and Keanini, J. Appl. Phys. 108, 044911 (2010)]; in every case, reasonable agreement is observed. As an important prelude, evidence indicating the physical consistency of the model introduced in the above article is first presented: it is shown that the study's separation line model allows direct derivation of experimentally observed side load amplitude and direction densities. Finally, it is found that the analytical models proposed in this paper allow straightforward identification of practical approaches for: (i) reducing pitch/yaw response to side loads, and (ii) enhancing pitch/yaw damping once side loads cease. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  20. Numerical and Experimental Modelling of Transition in a Separated Boundary Layer on the NACA63A421 Airfoil

    Directory of Open Access Journals (Sweden)

    Miroslav ĎURIŠ

    2010-12-01

    Full Text Available The article deals with design and numerical calculation of a variable test section for small supersonic wind tunnel. The supersonic wind tunnel is designed to be driven by a supersonic ejector. The test section, which is in focus, is considered to by placed on its suction inlet. Schlieren method will be used to investigate the flow within. The purpose of the test section is to demonstrate effects, which occur in supersonic flows, e.g. shock waves, interactions of shock waves with boundary layers etc. Proper demonstration of such phenomenon requires different conditions gained within test section. Internal parts of the device are designed to be interchangeable or variable to provide this capability. The work deals with investigation and design of construction of the variable test section. Consequently, shape of the supersonic inlet nozzles for chosen Mach numbers are carried out. Methods of characteristics and CFD are employed to manage this task. The construction of the test section and obtained numerical results are presented.

  1. A global climatology of boundary layer ventilation

    Science.gov (United States)

    McNamara, David; Plant, Robert; Belcher, Stephen

    2013-04-01

    The general circulation pattern of the Earth's atmosphere is well known, however there has been relatively little effort to quantify the climatological effects of the buffer zone known as the atmospheric boundary layer. Turbulent motions in the atmospheric boundary layer act to mix the layer along with its constituent pollutants, below a temperature inversion which separates it from the free troposphere. Exchanges between the boundary layer and free troposphere can occur through the mechanisms of convection, isentropic uplift, and coastal and orographic venting. In particular the rate at which pollutants are removed from the atmosphere can be different depending on whether or not they are resident within the boundary layer or the free troposphere. Thus the limiting factor on the concentrations of, for example, certain eg NOx, pollutants in the free troposphere will be the rate at which they are vented from the boundary layer. A global climatology (spanning 10 years between 1995 and 2005) of boundary layer venting is presented here using the ERA-interim dataset which has a grid scale resolution of 0.7 degrees x 0.7 degrees. The boundary layer height is first calculated using a bulk Richardson number method and then an associated vertical velocity is found by linearly interpolating between the two model levels either side of the boundary layer height. This value along with the change in height of the boundary layer over a 3 hour period is used to give an estimate of the rate of venting. The climatology of this rate allows us to describe and quantify the areas of the globe that are responsible for boundary layer entrainment and boundary layer venting, which could be used as a basis for further comparisons with other suitable datasets. We will also present results for the climatology of the boundary layer height itself. [possibly? That could be attractive for a BL audience anyway] Furthermore we will present and discuss results from a method designed to isolate the

  2. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  3. The laminar boundary layer equations

    CERN Document Server

    Curle, N

    2017-01-01

    Thorough introduction to boundary layer problems offers an ordered, logical presentation accessible to undergraduates. The text's careful expositions of the limitations and accuracy of various methods will also benefit professionals. 1962 edition.

  4. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Science.gov (United States)

    Popelka, Lukas; Kuklova, Jana; Simurda, David; Souckova, Natalie; Matejka, Milan; Uruba, Vaclav

    2012-04-01

    Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  5. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Directory of Open Access Journals (Sweden)

    Matejka Milan

    2012-04-01

    Full Text Available Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  6. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  7. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  8. Tropical cyclone boundary layer shocks

    OpenAIRE

    Slocum, Christopher J.; Williams, Gabriel J.; Taft, Richard K.; Wayne H. Schubert

    2014-01-01

    This paper presents numerical solutions and idealized analytical solutions of axisymmetric, $f$-plane models of the tropical cyclone boundary layer. In the numerical model, the boundary layer radial and tangential flow is forced by a specified pressure field, which can also be interpreted as a specified gradient balanced tangential wind field $v_{\\rm gr}(r)$ or vorticity field $\\zeta_{\\rm gr}(r)$. When the specified $\\zeta_{\\rm gr}(r)$ field is changed from one that is radially concentrated i...

  9. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  10. Clidar Mountain Boundary Layer Case Studies

    Directory of Open Access Journals (Sweden)

    Sharma Nimmi C. P.

    2016-01-01

    Full Text Available A CCD Camera Lidar system called the CLidar system images a vertically pointing laser from the side with a spatially separated CCD camera and wide angle optics. The system has been used to investigate case studies of aerosols in mountain boundary layers in in the times following sunset. The aerosols detected by the system demonstrate the wide variation of near ground aerosol structure and capabilities of the CLidar system.

  11. RACORO Continental Boundary Layer Cloud Investigations: 3. Separation of Parameterization Biases in Single-Column Model CAM5 Simulations of Shallow Cumulus

    Science.gov (United States)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-01-01

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.

  12. A barotropic planetary boundary layer

    Science.gov (United States)

    Yordanov, D.; Syrakov, D.; Djolov, G.

    1983-04-01

    The temperature and wind profiles in the planetary boundary layer (PBL) are investigated. Assuming stationary and homogeneous conditions, the turbulent state in the PBL is uniquely determined by the external Rossby number and the stratification parameters. In this study, a simple two-layer barotropic model is proposed. It consists of a surface (SL) and overlying Ekman-type layer. The system of dynamic and heat transfer equations is closed using K theory. In the SL, the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer, it is constant. Analytical solutions for the wind and temperature profiles in the PBL are obtained. The SL and thermal PBL heights are properly chosen functions of the stratification so that from the solutions for wind and temperature, the PBL resistance laws can be easily deduced. The internal PBL characteristics necessary for the calculation (friction velocity, angle between surface and geostrophic winds and internal stratification parameter) are presented in terms of the external parameters. Favorable agreement with experimental data and model results is demonstrated. The simplicity of the model allows it to be incorporated in large-scale weather prediction models as well as in the solution of various other meteorological problems.

  13. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  14. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness...

  15. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar

  16. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.

    2005-01-01

    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...

  17. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  18. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  19. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 1. On the modeling of electrical boundary layer (electrode layer) and derivation of atmospheric electrical profiles, eddy diffusion coeffcient and scales of electrode layer. Madhuri N Kulkarni. Volume 119 Issue 1 February 2010 pp 75-86 ...

  20. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  1. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    Science.gov (United States)

    Sarlak, H.; Sørensen, J. N.; Mikkelsen, R.

    2012-09-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically required for such problems.

  2. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  3. Page 1 Shock-wave-turbulent-boundary-layer interaction & its ...

    Indian Academy of Sciences (India)

    shock .. rehabilitation shock with a turbulent boundary phase asºn: phase layer: M., + 1.47 (from Seddon. p x / So 1960). al 1977). Figures 16 and 17 show some of the important features of the separated flow and the surface pressure distributions as observed by Seddon (1960). The strong normal shock wave bifurcates near ...

  4. Unsteady turbulent boundary layers in swimming rainbow trout.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  5. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  6. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    Science.gov (United States)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  7. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  8. Diagnosis of boundary-layer circulations.

    Science.gov (United States)

    Beare, Robert J; Cullen, Michael J P

    2013-05-28

    Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.

  9. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    Abstract. Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ulti- mately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a 'by-pass' route is more ...

  10. Numerical methods for hypersonic boundary layer stability

    Science.gov (United States)

    Malik, M. R.

    1990-01-01

    Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.

  11. Boundary layer thickness effect on boattail drag. [wind tunnel tests for drag reduction

    Science.gov (United States)

    Blaha, B. J.; Chamberlin, R.; Bober, L. J.

    1976-01-01

    A combined experimental and analytical program has been conducted at the NASA Lewis Research Center, to investigate the effects of boundary layer changes on the flow over high angle boattail nozzles. The tests were run on an isolated axisymmetric sting mounted model. Various boattail geometries were investigated at high subsonic speeds over a range of boundary layer thicknesses. In general, boundary layer effects were small at speeds up to Mach 0.8. However, at higher speeds significant regions of separated flow were present on the boattail. When separation was present large reductions in boattail drag resulted with increasing boundary layer thickness. The analysis predicts both of these trends.

  12. Viscous drag reduction in boundary layers

    Science.gov (United States)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  13. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    Science.gov (United States)

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  14. Turbulent dispersion in cloud-topped boundary layers

    NARCIS (Netherlands)

    Verzijlbergh, R.A.; Jonker, H.J.J.; Heus, T.; Vilà-Guerau de Arellano, J.

    2009-01-01

    Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary

  15. 2007 Program of Study: Boundary Layers

    Science.gov (United States)

    2008-06-01

    zero. The stream function multiplied by the boundary layer thickness is negligible close to the right hand side. This gives, for we = we(y), 0 = xewe ...δsψx(0)− δ3mψ (0). (2) The first derivative of ψ is zero at the left boundary due to the no slip condition. This gives 0 = xewe + δ3mψ (0), (3...which means that the vorticity inserted by the Ekman pumping must be dissipated by the sublayer. We verify that (1.20) is a solution to Eq. 3 xewe

  16. Analysis of differential infrared thermography for boundary layer transition detection

    Science.gov (United States)

    Gardner, A. D.; Eder, C.; Wolf, C. C.; Raffel, M.

    2017-09-01

    This paper presents an analysis of the differential infrared thermography (DIT) technique, a contactless method of measuring the unsteady movement of the boundary layer transition position on an unprepared surface. DIT has been shown to measure boundary layer transition positions which correlate well with those from other measurement methods. In this paper unsteady aerodynamics from a 2D URANS solution are used and the resulting wall temperatures computed. It is shown that the peak of the temperature difference signal correlates well with the boundary layer transition position, but that the start and end of boundary layer transition cannot be extracted. A small systematic time-lag cannot be reduced by using different surface materials, but the signal strength can be improved by reducing the heat capacity and heat transfer of the surface layer, for example by using a thin plastic coating. Reducing the image time separation used to produce the difference images reduces the time-lag and also the signal level, thus the optimum is when the signal to noise ratio is at the minimum which can be evaluated.

  17. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers

    Science.gov (United States)

    Choudhari, Meelan; Streett, Craig L.

    1990-01-01

    The process by which the boundary layer internalizes the environmental disturbances in the form of instability waves is known as the boundary-layer receptivity. The paper discusses the importance of receptivity in transition research. The receptivity scenario for three-dimensional and high-speed boundary layers is examined. It is found that, while receptivity mechanisms present in the low-speed case are also operative in these complex flows, certain uniquely 'compressible' receptivity mechanisms may come into play as well. Both numerical, and where convenient, asymptotic procedures are utilized to develop quantitative predictions of the localized generation of a variety of instability types (Tollmien-Schlichting, inflectional, higher modes, crossflow vortices) in boundary layer flows relevant to the National Aero-Space Plane (NASP).

  18. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  19. Boundary Layer Transition Results From STS-114

    Science.gov (United States)

    Berry, Scott A.; Horvath, Thomas J.; Cassady, Amy M.; Kirk, Benjamin S.; Wang, K. C.; Hyatt, Andrew J.

    2006-01-01

    The tool for predicting the onset of boundary layer transition from damage to and/or repair of the thermal protection system developed in support of Shuttle Return to Flight is compared to the STS-114 flight results. The Boundary Layer Transition (BLT) Tool is part of a suite of tools that analyze the aerothermodynamic environment of the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time of transition onset is predicted to help determine the proper aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against flight data. Computed local boundary layer edge conditions provided the means to correlate the experimental results and then to extrapolate to flight. During STS-114, the BLT Tool was utilized and was part of the decision making process to perform an extravehicular activity to remove the large gap fillers. The role of the BLT Tool during this mission, along with the supporting information that was acquired for the on-orbit analysis, is reviewed. Once the large gap fillers were removed, all remaining damage sites were cleared for reentry as is. Post-flight analysis of the transition onset time revealed excellent agreement with BLT Tool predictions.

  20. Boundary-layer theory. 9. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, Hermann [Technische Univ. Braunschweig (Germany). Inst. fuer Stroemungsmechanik; Gersten, Klaus [Bochum Univ. (Germany). Lehrstuhl fuer Thermodynamik und Stroemungsmechanik

    2017-03-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  1. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  2. Electrostatic Separation Of Layers In Thermal Insulation

    Science.gov (United States)

    Bhandari, Pradeep

    1995-01-01

    Layers in multilayer insulation charged to keep them separated by electrostatic repulsion, eliminating need for spacer nets. Removal of spacer nets reduces conduction of heat between layers. Insulation in question type used to slow leakage of heat into Dewar flasks containing liquid helium. Proposal originally applied to insulation in cryogenic cooling subsystems of infrared-detector systems in outer space, also appears applicable to small panels of insulation for terrestrial cryogenic equipment, provided layers contained in evacuated spaces and weight of each layer small fraction of electrostatic force upon it.

  3. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  4. Conference on Boundary and Interior Layers : Computational and Asymptotic Methods

    CERN Document Server

    Stynes, Martin; Zhang, Zhimin

    2017-01-01

    This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed diffe...

  5. Turbulence structures in a strongly decelerated boundary layer

    Science.gov (United States)

    Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.

    2014-11-01

    The characteristics of three-dimensional intense Reynolds shear stress structures (Qs) are presented from a direct numerical simulation of an adverse pressure gradient boundary layer at Reθ = 1500 -2175. The intense Q2 (ejections) and Q4 (sweeps) structures separate into two groups: wall-attached and wall-detached structures. In the region where turbulent activity is maximal, between 0 . 2 δ and 0 . 6 δ , 94 % of the structures are detached structures. In comparison to canonical wall flows, the large velocity defect turbulent boundary layers are less efficient in extracting turbulent energy from the mean flow. There is, furthermore, much less turbulence activity and less velocity coherence near the wall. Additionally, the wall-detached structures are more frequent and carry a much larger amount of Reynolds shear stress. Funded in part by ITU, NSERC of Canada, and Multiflow program of the ERC.

  6. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer

    2005-01-01

    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  7. Optimal Growth in Hypersonic Boundary Layers

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  8. Flow Visualization in Supersonic Turbulent Boundary Layers.

    Science.gov (United States)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  9. Exploring Isothermal Layers in the Stable Atmospheric Boundary Layer

    Science.gov (United States)

    Wilkins, Joseph

    2011-03-01

    Simulating the stable atmospheric boundary-layer presents a significant challenge to numerical models due to the interactions of several processes with widely varying scales. The goal of this project is to more clearly define the cause of isothermal layers observed during the Meteorological Experiment in Arizona's Meteor Crater and to test the National Taiwan University/Purdue University (NTU/P) model in stable environments with complex terrain. The NTU/P model is able to utilize the actual terrain data with minimal smoothing for stability. We have found that isothermal profiles can be generated by the standing wave that develops due to weak wind flowing over the crater. However, the horizontal heterogeneity is greater than observed. Continued effort will explore enhancing horizontal mixing due to turbulence and radiative transfer. Louis Stokes Alliances for Minority Participation Program, Summer Research Opportunities Program.

  10. HIFiRE-5 Boundary Layer Transition and HIFiRE-1 Shock Boundary Layer Interaction

    Science.gov (United States)

    2015-10-01

    ballistic trajectory , with no active attitude control. The elliptic cone test article remained attached to the second stage booster at all times...Page Figure 1 Rollup of Boundary-layer into Streamwise Vortex on 2:1 Sharp Elliptic Cone, Similar to HIFiRE-5 (from Ref...Bulge of 2:1 Elliptic Cone13 ..............6 Figure 4 Photograph of Model

  11. Role of residual layer and large-scale phenomena on the evolution of the boundary layer

    NARCIS (Netherlands)

    Blay, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Coster, de O.; Faloona, I.; Garrouste, O.; Hartogensis, O.K.

    2012-01-01

    Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed.

  12. Helicity in the atmospheric boundary layer

    Science.gov (United States)

    Kurgansky, Michael; Koprov, Boris; Koprov, Victor; Chkhetiani, Otto

    2017-04-01

    An overview is presented of recent direct field measurements at the Tsimlyansk Scientific Station of A.M. Obukhov Institute of Atmospheric Physics in Moscow of turbulent helicity (and potential vorticity) using four acoustic anemometers positioned, within the atmospheric surface-adjacent boundary layer, in the vertices of a rectangular tetrahedron, with an approximate 5 m distance between the anemometers and a 5.5 m elevation of the tetrahedron base above the ground surface (Koprov, Koprov, Kurgansky and Chkhetiani. Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol.51, 565-575). The same ideology was applied in a later field experiment in Tsimlyansk with the tetrahedron's size of 0.7 m and variable elevation over the ground from 3.5 to 25 m. It is illustrated with examples of the statistical distribution of instantaneous (both positive and negative) turbulent helicity values. A theory is proposed that explains the measured mean turbulent helicity sign, including the sign of contribution to helicity from the horizontal and vertical velocity & vorticity components, respectively, and the sign of helicity buoyant production term. By considering a superposition of the classic Ekman spiral solution and a jet-like wind profile that mimics a shallow breeze circulation over a non-uniformly heated Earth surface, a possible explanation is provided, why the measured mean turbulent helicity sign is negative. The pronounced breeze circulation over the Tsimlyansk polygon which is located nearby the Tsimlyansk Reservoir was, indeed, observed during the measurements period. Whereas, essentially positive helicity is injected into the boundary layer from the free atmosphere in the Northern Hemisphere.

  13. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    Science.gov (United States)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  14. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows

    Directory of Open Access Journals (Sweden)

    Kazutaka Yanase

    2016-12-01

    Full Text Available The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L (mean±s.d.; N=6], swimming at 1.6±0.09 L s−1 (N=6 in an experimental flow channel (Reynolds number, Re=4×105 with medium turbulence (5.6% intensity were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, lx=71±8 mm, N=3, and lx=110±13 mm, N=4, respectively were approximated by a laminar boundary layer model, the Falkner−Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (lx=163±22 mm, N=3. The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment.

  15. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2016-12-15

    The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s -1 (N=6) in an experimental flow channel (Reynolds number, Re=4×10 5 ) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, l x =71±8 mm, N=3, and l x =110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner-Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (l x =163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. © 2016. Published by The Company of Biologists Ltd.

  16. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  17. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary layer is enforced...... through the whole domain, without wind turbines included, while the body forces that are required to maintain that flow field is calculated. The body forces are then stored and applied on the domain through the simulation of wind turbine and the boundary layer shape will be modified based on the turbine...

  18. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    Science.gov (United States)

    2016-12-16

    AFRL-AFOSR-UK-TR-2017-0007 Boundary - layer bypass transition over large-scale bodies Pierre Ricco UNIVERSITY OF SHEFFIELD, DEPARTMENT OF PSYCHOLOGY...REPORT TYPE Final 3. DATES COVERED (From - To) 01 Sep 2013 to 31 Aug 2016 4. TITLE AND SUBTITLE Boundary - layer bypass transition over large-scale...shape of the streamwise velocity profile compared to the flat-plate boundary layer . The research showed that the streamwise wavenumber plays a key role

  19. Methods and results of boundary layer measurements on a glider

    Science.gov (United States)

    Nes, W. V.

    1978-01-01

    Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.

  20. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of the...

  1. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of...

  2. Vortex properties in turbulent boundary layers

    Science.gov (United States)

    Gao, Qi; Saikrishnan, Neelakantan; Ortiz-Duenas, Cecilia; Longmire, Ellen

    2008-11-01

    Swirl strength was used to identify vortices in turbulent boundary layers. Dual-plane PIV data at Reτ 1100 with coarser (Ganapathisubramani et al., 2006) and finer resolution (Saikrishnan et al., 2007) as well as DNS data at Reτ=590 (Moser et al., 1999) and Reτ=934 (del álamo et al., 2004) were analyzed. A new core-combination algorithm was developed to improve identification of in- and out-of-plane vortices. Core orientation was determined by the eigenvector of the velocity gradient tensor, and core radii were characterized. The effects of wall normal location, Reynolds number, and spatial resolution were studied. In general, the PDF of swirl magnitude is affected by both in- and out-of-plane spatial resolution as well as the wall normal location. Scaling of swirl will be discussed in the presentation. The results show that, in the logarithmic region, the mean angle between the eigenvector and the vorticity vector decreases and the mean core radius increases with wall normal distance. Joint PDFs show linear increases in circulation with core radius, as well as correlations between core inclination angle and circulation. Convection velocities of strong cores are typically smaller than the local mean velocity.

  3. Boundary-layer effects in droplet splashing.

    Science.gov (United States)

    Riboux, Guillaume; Gordillo, José Manuel

    2017-07-01

    A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity V exceeds the so-called critical velocity for splashing, i.e., when V>V^{*}. Under these circumstances, the very thin liquid sheet, which is ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it. Subsequently, the growth of capillary instabilities breaks the toroidal rim bordering the ejecta into smaller droplets, violently ejected radially outward, provoking the splash [G. Riboux and J. M. Gordillo, Phys. Rev. Lett. 113, 024507 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.024507. In this contribution, the effect of the growth of the boundary layer is included in the splash model presented in Phys. Rev. Lett. 113, 024507 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.024507, obtaining very good agreement between the measured and the predicted values of V^{*} for wide ranges of liquid and gas material properties, atmospheric pressures, and substrate wettabilities. Our description also modifies the way at when the liquid sheet is first ejected, which can now be determined in a much more straightforward manner than that proposed in Phys. Rev. Lett. 113, 024507 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.024507.

  4. Motion of particles in a thermal boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Agrawal, Y.; Cheng, R.K.; Robben, F.; Talbot, L.

    1978-06-15

    In the course of using laser Doppler velocimetry to study combustion in a thermal boundary layer, the particle count rate was found to decrease abruptly to zero inside the boundary layer. Experimental and theoretical investigation of this phenomenon was carried out. The motion of the particles may be due to the combined effects of thermophoresis and radiative heating.

  5. Hundred years of the boundary layer – Some aspects

    Indian Academy of Sciences (India)

    2005-08-02

    Aug 2, 2005 ... at the Third International Congress of Mathematics held in Heidelberg and published in the. Proceedings of the Congress ..... Work on boundary layers is going on in many organizations in India. The above ... Rao G N V 1967 The law of the wall in thick axisymmetric turbulent boundary layers. J. Appl. Mech.

  6. Numerical Simulation of tsunami-scale wave boundary layers

    NARCIS (Netherlands)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scale waves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations,

  7. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.

    2010-01-01

    This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion...

  8. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    moisture) or substances originating from the sur- face. It is usually flatter than the boundary layer, but fills the whole ABL in the deep convective boundary layers ..... Wea. Rev. 92 235–242. Holzworth G C 1967 Mixing depths, wind speeds and air pollution potential for selected locations in the United. States; J. Appl. Meteorol.

  9. Coupled wake boundary layer model of wind-farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2015-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. This model couples the traditional, industry-standard wake model approach with a “top-down” model for the overall wind-farm boundary layer structure. The wake model

  10. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... winds underpredict the turning of the wind and the boundary-layer winds in general....

  11. Marine boundary layer simulation and verification during BOBMEX ...

    Indian Academy of Sciences (India)

    Abstract. A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available ...

  12. Numerical simulation of the marine boundary layer characteristics ...

    Indian Academy of Sciences (India)

    A one-dimensional multi- level atmospheric boundary layer with TKE- closure scheme is employed to study the marine boundary layer characteristics. In this study two synoptic situations are chosen: one represents an active convection case and the other a suppressed convection. In the present article the marine ...

  13. The psychological boundary of nurses separating professional and maternal roles

    OpenAIRE

    Laušmanová, Alexandra

    2007-01-01

    Author: Alexandra Laušmanová Institute: Institute of social medicine FM CU in Hradec Králové Nursing department Title: The Psychological Boundary of Nurses separating Professional and Maternal Roles Supervisor: Bc. Eva Prchalová Number of pages: 131 Number of attachments: 4 Year of defense: 2007 Keywords: psychological boundary, social role, family, child needs, psychological strain on nurses, work conditions of nurses, realistic options in compatibility of professional and parent role This b...

  14. Linear stability analysis of interactions between mixing layer and boundary layer flows

    Directory of Open Access Journals (Sweden)

    Fengjun LIU

    2017-08-01

    Full Text Available The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed. The mixing layers include wake, shear layer and their combination. The mean velocity profile of confluent flow is taken as a superposition of a hyperbolic and exponential function to model a mixing layer and the Blasius similarity solution for a flat plate boundary layer. The stability equation of confluent flow was solved by using the global numerical method. The unstable modes associated with both the mixing and boundary layers were identified. They are the boundary layer mode, mixing layer mode 1 (nearly symmetrical mode and mode 2 (nearly anti-symmetrical mode. The interactions between the mixing layer stability and the boundary layer stability were examined. As the mixing layer approaches the boundary layer, the neutral curves of the boundary layer mode move to the upper left, the resulting critical Reynolds number decreases, and the growth rate of the most unstable mode increases. The wall tends to stabilize the mixing layer modes at low frequency. In addition, the mode switching behavior of the relative level of the spatial growth rate between the mixing layer mode 1 and mode 2 with the velocity ratio is found to occur at low frequency.

  15. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  16. Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control

    Science.gov (United States)

    Vyas, Manan A.; Hirt, Stefanie M.; Anderson, Bernhard H.

    2012-01-01

    Hybrid flow control, a combination of micro-ramps and micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Full factorial, a design of experiments (DOE) method, was used to develop a test matrix with variables such as inter-ramp spacing, ramp height and chord length, and micro-jet injection flow ratio. A total of 17 configurations were tested with various parameters to meet the DOE criteria. In addition to boundary-layer measurements, oil flow visualization was used to qualitatively understand shock induced flow separation characteristics. The flow visualization showed the normal shock location, size of the separation, path of the downstream moving counter-rotating vortices, and corner flow effects. The results show that hybrid flow control demonstrates promise in reducing the size of shock boundary-layer interactions and resulting flow separation by means of energizing the boundary layer.

  17. Infrared imaging and tufts studies of boundary layer flow regimes on a NACA 0012 airfoil

    Science.gov (United States)

    Gartenberg, Ehud; Roberts, A. Sidney, Jr.; Mcree, Griffith J.

    1989-01-01

    A study of boundary-layer flow regimes on a NACA 0012 airfoil from zero angle of attack up to separation is presented. The boundary-layer transition from the laminar to the turbulent regime and the onset of the separation were detected by surface thermography of the airfoil performed with an infrared imaging system. The findings were compared with observations of aluminum-foil tufts visible with the infrared imaging system. This arrangement allows the infrared imaging system to assume the dual role of flow regime detection through surface thermography and flow visualization through the observation of the aluminum-foil tufts. Ultimately the temperature history on an uncontaminated surface could provide an interpretation of the state of boundary-layer flow. Separation studies performed on the NACA 0012 airfoil showed that aluminum foil tufts can be observed with infrared imaging systems.

  18. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value...

  19. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  20. Effect of externally generated turbulence on wave boundary layer

    DEFF Research Database (Denmark)

    Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.

    2003-01-01

    This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...

  1. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  2. Size distributions of boundary-layer clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  3. Influences on the Height of the Stable Boundary Layer as seen in LES

    Energy Technology Data Exchange (ETDEWEB)

    Kosovic, B; Lundquist, J

    2004-06-15

    Climate models, numerical weather prediction (NWP) models, and atmospheric dispersion models often rely on parameterizations of planetary boundary layer height. In the case of a stable boundary layer, errors in boundary layer height estimation can result in gross errors in boundary-layer evolution and in prediction of turbulent mixing within the boundary layer.

  4. Reactive boundary layers in metallic rolling contacts

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, John

    2016-05-01

    more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates

  5. Viscous boundary layers in rotating fluids driven by periodic flows

    Science.gov (United States)

    Bergstrom, R. W.; Cogley, A. C.

    1976-01-01

    The paper analyzes the boundary layers formed in a rotating fluid by an oscillating flow over an infinite half plate, with particular attention paid to the effects of unsteadiness, the critical latitude effect and the structure of the solution to the boundary layer equations at resonance. The Navier-Stokes boundary layer equations are obtained through an asymptotic expansion with the incorporation of the Rossby and Ekman numbers and are analyzed as the sum of a nonlinear steady solution and a linearized unsteady solution. The solution is predominantly composed of two inertial wave vector components, one circularly polarized to the left and the other circularly polarized to the right. The problem considered here has relevance in oceanography and meteorology, with special reference to the unsteady atmospheric boundary layer.

  6. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i) ...

  7. Resistance Laws For Stable Baroclinic Boundary Layers Revisited

    Science.gov (United States)

    Zilitinkevich, S.; Baklanov, A.; Djolov, G.; Esau, I.

    An advanced theoretical model is proposed including the effects of the free-flow sta- bility and baroclinicity in the resistance law for stable boundary layers. Theoretical predictions are verified against LES and experimental data. This new development ex- plains low accuracy of all earlier resistance law formulation and opens up fresh oppor- tunities for improved parameterisation of stable boundary layers in general circulation models.

  8. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    Science.gov (United States)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  9. GLAS/ICESat L2 Global Planetary Boundary Layer & Elevated Aerosol Layer Heights V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 2 planetary boundary layer and elevated aerosol layer height data will be provided at a minimum of once per 4 seconds. Data granules will contain...

  10. GLAS/ICESat L2 Global Planetary Boundary Layer & Elevated Aerosol Layers (HDF5) V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 2 planetary boundary layer and elevated aerosol layer height data will be provided at a minimum of once per 4 seconds. Data granules will contain...

  11. Coherence of simulated atmospheric boundary-layer turbulence

    Science.gov (United States)

    Jiadong, Zeng; Zhiguo, Li; Mingshui, Li

    2017-12-01

    The coherences in a plane perpendicular to incoming flow are measured in wind tunnel simulations of atmospheric turbulent flow. The measured coherences are compared with analytical expressions tailored to field measurements and with theoretical coherence models which assume homogeneous turbulence and the von Kármán’s spectrum. The comparison indicates that the simulated atmospheric boundary layer flow is approximately horizontally homogeneous turbulence. Based on the above assumption and the systematic analysis of lateral coherence, it can be concluded that the lateral coherences of simulated atmospheric boundary turbulence can be determined accurately using the von Kármán spectrum and the turbulence parameters measured by a few measurement points. The measured results also show that the spatial characteristics of vertical coherences are closely related to the dimensionless parameter {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The vertical coherence at two heights can be roughly estimated by the ratio to {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The relationship between the phase angles of u-, v- and w-components and the vertical separation distance and the height from the ground is further analyzed. Finally, the roles of the type of land surface roughness, the height from the ground, the turbulence intensity and the integral length scale in lateral and vertical coherences are also discussed in this study.

  12. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  13. Boundary-Layer Linear Stability Theory

    Science.gov (United States)

    1984-06-01

    tae vela &ity profile ia a ft feaaa-’z-v layer» «alia* a 2D baaadary layer, depends oa the dlreetlea, there la a different atablllty prablea te eel...ooaataat-phaae llama are given In Fig. 12.7. Vortex lo. 11 la tne one that ooaes Froa tbe point souroe, aad it la the only one with as amplitude

  14. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    The profiles of atmospheric electric field and electrical conductivity are also derived and a new term named as electrode layer constant is ... electrical conductivity and thickness of electrode layer (Willett 1978). A new simple method ... variation of the coefficient of eddy diffusivity. In all his calculations he had assumed the ...

  15. Turbulent Boundary Layer at Large Re

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2016-03-01

    Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.

  16. Marine boundary-layer height estimated from the HIRLAM model

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2002-01-01

    -number estimates based on output from the operational numerical weather prediction model HIRLAM (a version of SMHI with a grid resolution of 22.5 km x 22.5 km). For southwesterly winds it was found that a relatively large island (Bornholm) lying 20 km upwind of the measuring site influences the boundary...... to the measuring site is about 100 km and the Richardson methods reproduce the height of the marine boundary layer. This suggests that the HIRLAM model adequately resolves a water fetch of 100 km with respect to predictions of the height of the marine boundary layer....

  17. Sun–Earth connection: Boundary layer waves and auroras

    Indian Academy of Sciences (India)

    G S Lakhina et al. Figure 1. Schematics of the Earth's magnetosphere with various boundary layers. The plasma mantle, the exterior cusp, the entry layer, the .... The univer- sal time (UT), radial distance from the center of the earth (R ), magnetic latitude (λЕ), magnetic local time (MLT), and approximate L-shell value, are ...

  18. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, T.E.

    1979-06-01

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary.

  19. Organic light emitting device having multiple separate emissive layers

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI

    2012-03-27

    An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.

  20. A numerical simulation of longitudinal vortex in turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Lee, K.B. [Pusan National University, Pusan (Korea)

    2000-06-01

    This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data. (author). 12 refs., 12 figs.

  1. Definition of Turbulent Boundary-Layer with Entropy Concept

    Directory of Open Access Journals (Sweden)

    Zhao Rui

    2016-01-01

    Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.

  2. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo

    2011-01-01

    Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer...... is controlled by a combination of both downstream and upstream stability and surface roughness conditions. A model based on a diffusion analogy is able to predict the internal boundary layer height well. Modeling the neutral and long-term wind profile with a 3 layer linear interpolation scheme gives good...... results at Høvsøre. Based on a comparison with a numerical model and the measurements, the constants in the interpolation scheme are slightly adjusted, which yields an improvement for the description of the wind profile in the internal boundary layer....

  3. CFD-RANS analysis of the rotational effects on the boundary layer of wind turbine blades

    DEFF Research Database (Denmark)

    Carcangiu, Carlo Enrico; Sørensen, Jens Nørkær; Cambuli, Francesco

    2007-01-01

    of the output are proposed for the analyzed flow situations. The main features of the boundary layer flow are described, for both the rotating blade and the corresponding 2-D profiles. Computed pressure distributions and aerodynamic coefficients evidence less lift losses after separation in the 3-D rotating...

  4. Micro Ramps in Supersonic Turbulent Boundary Layers : An experimental and numerical study

    NARCIS (Netherlands)

    Sun, Z.

    2014-01-01

    The micro vortex generator (MVG) is used extensively in low speed aerodynamic problems and is now extended into the supersonic flow regime to solve undesired flow features that are associated with shock wave boundary layer interactions (SWBLI) such as flow separation and associated unsteadiness of

  5. Nature, theory and modelling of geophysical convective planetary boundary layers

    Science.gov (United States)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  6. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  7. LOLAS: an optical turbulence profiler in the atmospheric boundary layer with extreme altitude-resolution

    OpenAIRE

    Avila, R.; Aviles, J. L.; Wilson, R. W.; Chun, M.; Butterley, T.; Carrasco, E.

    2008-01-01

    We report the development and first results of an instrument called Low Layer Scidar (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude-resolution. The method is based on the Generalized Scidar (GS) concept, but unlike the GS instruments which need a 1- m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star...

  8. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  9. Boundary Layer Effects on Unsteady Airloads.

    Science.gov (United States)

    1981-02-01

    le It is ,io poble - however to repeat the cal- culation for additional cycles. 4. Vortex flows Two different types of 3-d separation described...period of the motion, sec C (x,t) instantaneous pressure coefficient p t time, sec C p,(x) first harmonic complex amplitude of the unsteady pressure...per radian U free-stream velocity, m/ sec c chord of wing, 0.5 m x distance along airfoil, m exp(-iwt) cos wt - i sin wt 1 complex amplitude of the

  10. The Atmospheric boundary layer over Arctic fjords

    Energy Technology Data Exchange (ETDEWEB)

    Kilpelaeinen, Tiina

    2011-07-01

    Arctic fjords represent one of the most challenging environments in the world for weather prediction and climate models. This is due to complex interactions between the large-scale weather conditions, land, sea, sea ice and surrounding topography consisting of mountains, valleys and glaciers. This thesis describes some special characteristics of the lowest part of the atmosphere over fjords in Svalbard. The main research topics are 1) the exchange of energy between the atmosphere and sea, 2) vertical structure of temperature, humidity and wind, 3) spatial variability of the meteorological variables and 4) identifying the main challenges for the weather prediction models. Kilpelaeinen has collected data using weather masts and tethered balloons at the coasts of fjords in Svalbard. In addition, she has made high-resolution simulations of the meteorological conditions over Svalbard fjords with a weather prediction model. Kilpelaeinens investigations show that the vertical profiles of temperature, humidity and wind over Arctic fjords are complex and therefore challenging for the weather prediction models to capture. Layers with a temperature and humidity increase with height are commonly found over Svalbard fjords, often even on multiple levels. A weather prediction model does not realistically capture these layers, which leads to fairly large errors in the modeled surface variables. Further, she found that a wind maximum at a low altitude is also a typical feature over Arctic fjords. The height of this wind maximum depends on the sea-ice conditions, being highest when sea ice is present. The thesis points out that due to the complex topography and the surface types (sea ice and water), spatial variability of meteorological variables within a fjord is very large and can reach levels comparable to the temporal variability. Hence, a high horizontal resolution in the order of 1 km is needed in the weather prediction models to realistically simulate all the significant

  11. Boundary layer effects on particle impaction and capture

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1984-01-01

    The inertial impaction and deposition of small particles on larger bodies with viscous boundary layers are considered theoretically, in a detailed comment on a paper by Menguturk et al. (1983). Topics addressed include cushion effects, the dimensionless groups corresponding to the diameter range (3-6 microns) examined by Menguturk et al. in a numerical example, analogous effects of particle-gas energy and mass exchange in boundary layers, and the combined effects of particle inertia and diffusion. It is argued that the inertial effects can be characterized in terms of a body, boundary-layer, or sublayer Stokes number. In a reply by Menguturk et al., the focus is on the application of the theoretical model to the erosion of blade surfaces in large gas turbines; the Stokes number is found to be of limited practical value in these cases, because the particle motion is not primarily normal to the blade surfaces.

  12. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...... duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow...

  13. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...... development was examined. Three VG geometries were investigated: rectangular, triangular and cambered. The various VG geometries tested are seen to produce different impacts on the boundary layer flow. Helical symmetry of the generated vortices is confirmed for all investigated VG geometries in this high...... Reynolds number boundary layer. From the parameters resulting from this analysis, it is observed at the most upstream measurement position that the rectangular and triangular VGs produce vortices of similar size, strength and velocity induction whilst the cambered VGs produce smaller and weaker vortices...

  14. Boundary-layer temperatures in high accretion rate cataclysmic variables

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, M.G.; Drew, J.E. (Oxford Univ. (UK). Dept. of Physics Oxford Univ. (UK). Dept. of Astrophysics)

    1991-04-01

    We use the Zanstra method to derive limits on boundary-layer temperatures in eclipsing dwarf novae during outburst and nova-like variables, using the observed He II {lambda}1640 and {lambda}4686 recombination lines. It is assumed that all the emission is produced in the wind rather than the accretion disc. This method constrains the boundary-layer temperatures to between 50 000 and 100 000 K depending on the degree of wind bipolarity. These estimates are lower than the T>or approx200 000 K predicted theoretically. Possible explanations include rapid rotation of the white dwarf and spreading of the boundary layer over the entire white-dwarf surface. (author).

  15. Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients

    Directory of Open Access Journals (Sweden)

    Donald M. McEligot

    2014-07-01

    Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.

  16. Laminar boundary layers with uniform shear cross flow

    Science.gov (United States)

    Weidman, Patrick

    2017-03-01

    Laminar boundary layers with fully developed uniform shear cross flows are considered. The first streamwise laminar flow is a Blasius boundary layer flow, the second is uniform shear flow over a semi-infinite plate, and the third is the flow induced by a power-law stretching surface. In the first two cases, the effect of streamwise plate motion is taken into account by the parameter λ. In each case, the similarity solutions reduce the governing boundary layer equations to a primary ordinary differential equation for the streamwise flow and a secondary linear equation coupled to the primary solution for the cross flow. It is found that an infinity of solutions exist in each problem and the unique solution in each case is found by applying the Glauert criterion. In some instances, a simple exact solution for the cross flow is presented. Results for the wall shear stresses and velocity profiles are given in graphical form.

  17. DNS of Turbulent Boundary Layers under Highenthalpy Conditions

    Science.gov (United States)

    Duan, Lian; Martín, Pino

    2010-11-01

    To study real-gas effects and turbulence-chemistry interaction, direct numerical simulations (DNS) of hypersonic boundary layers are conducted under typical hypersonic conditions. We consider the boundary layer on a lifting-body consisting of a flat plate at an angle of attack, which flies at altitude 30km with a Mach number 21. Two different inclined angles, 35^o and 8^o, are considered,representing blunt and slender bodies. Both noncatalytic and supercatalytic wall conditions are considered. The DNS data are studied to assess the validity of Morkovin's hypothesis, the strong Reynolds analogy, as well as the behaviors of turbulence structures under high-enthalpy conditions.Relative to low-enthalpy conditions [1], significant differences in typical scalings are observed. [4pt] [1] L. Duan and I. Beekman and M. P. Mart'in, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2: Effect of temperature, J. Fluid Mech. 655 (2010), 419-445.

  18. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    KAUST Repository

    SCHLEGEL, FABRICE

    2011-04-08

    Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press.

  19. Integral analysis of boundary layer flows with pressure gradient

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan; Klewicki, Joseph

    2017-09-01

    This Rapid Communication investigates boundary layer flows with a pressure gradient using a similarity/integral analysis of the continuity equation and momentum equation in the streamwise direction. The analysis yields useful analytical relations for Ve, the mean wall-normal velocity at the edge of the boundary layer, and for the skin friction coefficient Cf in terms of the boundary layer parameters and in particular βRC, the Rotta-Clauser pressure gradient parameter. The analytical results are compared with experimental and numerical data and are found to be valid. One of the main findings is that for large positive βRC (an important effect of an adverse pressure gradient), the friction coefficient is closely related to βRC as Cf∝1 /βRC , because δ /δ1,δ1/δ2=H , and d δ /d x become approximately constant. Here, δ is the boundary layer thickness, δ1 is the displacement thickness, δ2 is the momentum thickness, and H is the shape factor. Another finding is that the mean wall-normal velocity at the edge of the boundary layer is related to other flow variables as UeVe/uτ2=H +(1 +δ /δ1+H ) βRC , where Ue is the streamwise velocity at the edge of the boundary layer. At zero pressure gradient, this relation reduces to U∞V∞/uτ2=H , as recently derived by Wei and Klewicki [Phys. Rev. Fluids 1, 082401 (2016), 10.1103/PhysRevFluids.1.082401].

  20. Carbon vaporization into a nonequilibrium, stagnation-point boundary layer

    Science.gov (United States)

    Suzuki, T.

    1978-01-01

    The heat transfer to the stagnation point of an ablating carbonaceous heat shield, where both the gas-phase boundary layer and the heterogeneous surface reactions are not in chemical equilibrium, is examined. Specifically, the nonequilibrium changes in the mass fraction profiles of carbon species calculated for frozen flow are studied. A set of equations describing the steady-state, nonequilibrium laminar boundary layer in the axisymmetric stagnation region, over an ablating graphite surface, is solved, with allowance for the effects of finite rate of carbon vaporization.

  1. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  2. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  3. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.

    2017-03-28

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise

  4. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  5. An interactive boundary layer modelling methodology for aerodynamic flows

    CSIR Research Space (South Africa)

    Smith, L

    2013-01-01

    Full Text Available is used. The artificial compressibility formulation allows for a finite value of c2 to be used for incompressible flows, calculated as per Malan et al. (2002). 3.2. Boundary layer solution 7 To ensure numerical stability, the Crank... � Similarity coordinate � Momentum thickness m � * Kinetic energy thickness � Dynamic viscosity kg.m-1.s-1 � Density kg.m-3 � Shear stress N.m-2 Kinematic viscosity m2.s-1 Coordinate parallel to the boundary layer m...

  6. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  7. Investigation of Boundary Layer Structure by Dual-Plane PIV

    Science.gov (United States)

    Longmire, E. K.; Ganapathisubramani, B.; Marusic, I.

    2004-11-01

    Dual-plane PIV was employed in a turbulent boundary layer at Re_τ ˜ 1100 to study the nature of the vortical structures there. Laser sheets separated by 1 mm were aligned in streamwise-spanwise (x,y) planes, and the scattered light was captured by three cameras: two in a stereo configuration and one in a normal configuration. All velocity gradient components were determined for fields in the log (z^+ = 125) and outer (z/δ = 0.5) regions. Three-dimensional swirl strength was used to isolate vortex cores, and the vorticity direction of individual swirl centers was determined. Instantaneous fields in the log region reveal signatures of hairpin vortex packets consistent with previous results. The packets contain evidence of smaller hairpin heads embedded within the long low-speed regions surrounded by larger hairpins. The data set at z^+ = 125 yielded a most probable hairpin inclination angle of 32^rc and an average inclination angle of 57^rc. In the presentation, these results will be contrasted with those at z/δ = 0.5.

  8. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  9. The turbulent plasmasphere boundary layer and the outer radiation belt boundary

    Science.gov (United States)

    Mishin, Evgeny; Sotnikov, Vladimir

    2017-12-01

    We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.

  10. The Temporal Behavior of the Atmospheric Boundary Layer in Israel.

    Science.gov (United States)

    Dayan, Uri; Rodnizki, Jacob

    1999-06-01

    Upper-air measurements collected for three consecutive years (1987-89) from the Israel Meteorological Service permanent sounding site, in Beit-Dagan, Israel, enabled the temporal behavior of the atmospheric boundary layer over Israel to be characterized. Data analyzed consisted of the layer depth, the thermal gradient within the layer, and occurrence frequency of radiative and elevated inversions. To adequately represent the multiyear seasonal and diurnal behavior, the 3-yr databases were merged based on the tested hypothesis that the month sample in each individual year comes from the same population. The analysis shows that the depth of the radiative ground-based inversion, its frequency, as well as its thermal profile are maximal during spring and early summer. The upper-inversion layer is well defined during the summer, its lowest base (0.5-1 km MSL) indicating a sharp interface layer formed between the marine turbulent boundary layer at the shallow layer of the atmosphere and the subsiding downward motion caused by the subtropical high pressure system. During the other three seasons a significant temporal variation of the upper-inversion base is observed as a result of the frequent larger-scale synoptic weather systems. The diurnal variation of the mixed-layer depth is most evident during the summer because it is mainly governed by heat fluxes and the daily sea-breeze cycle that are most intensive then. Henceforth, the layer minimal depth, along the coast, usually occurs during late afternoon hours when the wind speed of the cool sea breeze reaches its minimal rate and heat fluxes dissipate rapidly, leading to a decrease of the marine turbulent boundary layer.

  11. Effects of coastal forcing on turbulence and boundary- layer structure

    Science.gov (United States)

    Strom, Linda Maria Viktoria

    Coastal mountains of significant elevation impose constraints for the surrounding flow. The aim of this study is to describe the modifications of the marine atmospheric boundary layer that occur offshore of the west coast of the United States. Aircraft measurements, up to 1000 km off the coast from two experiments, are used. This boundary layer is capped by a subsidence inversion, which slopes down toward the coast and produces large thermal winds. Low-level wind maxima (i.e. jets) are typical for these conditions, commonly a 40-50% increase relative to the 30 m wind speed. The effects of coastal forcing on low-level winds cancel in average when no regard is taken for position relative a cape or point. The variability of the low-level wind speed increases nevertheless significantly toward the coast, the standard deviation is +/-40% of the offshore value. The scale of the adjustment downstream of a cape or point is specifically addressed. Some measurements support a formulation of the coastal extent based on an inviscid shallow-water concept; mean variables (i.e. 30 m wind speed and boundary-layer depth) and turbulent parameters (i.e. dissipation and shear production of turbulent kinetic energy) vary in a uniform, predicted manner. The effects of coastal forcing on winds result in cold sea surface temperatures at the coast, due to upwelling. Stability becomes a function of offshore distance. Surface-layer turbulence statistics and spectra (and cospectra) of turbulence variables are presented. Across- and along-wind sampled spectra (and cospectra) show that large wind shear and shallow boundary layer affect the scales of the turbulence eddies. The relation between the standard deviations of wind components are affected. The turbulence appears to be non-local in some aspects, entrainment fluxes are proposed to be important due to a shallow boundary layer with a sharp, sloping inversion and a low-level jet.

  12. Understanding and prediction of stable atmospheric boundary layers over land

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2007-01-01

    The main objective of this thesis is to contribute to further understanding of the stable boundary layer (SBL) over land, and its representation in atmospheric models. A SBL develops during night due to radiative surface cooling. Observations in the SBL are difficult since many different physical

  13. On the marine atmospheric boundary layer characteristics over Bay ...

    Indian Academy of Sciences (India)

    Detailed measurements were carried out in the Marine Atmospheric Boundary Layer (MABL) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) which covered both Arabian Sea and Bay of Bengal during March to May 2006. In this paper, we present the meteorological observations made ...

  14. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  15. Influences of the boundary layer evolution on surface ozone ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 4. Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India. K K Reddy M Naja N Ojha P Mahesh S Lal. Volume 121 Issue 4 August 2012 pp 911-922 ...

  16. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.

    1995-01-01

    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins,

  17. Turbulent Boundary Layer on a Cylinder in Axial Flow

    Science.gov (United States)

    1988-09-29

    wall- norma 6caling or Rao’s wall-normal scaling. Other measurements of the mean velocity in a cylindrical boundary layer should be mentioned for...located near the wall at three azimuthal locations that w𔃽re 900 apa ,-t and at several streamwise spacings for flow conditions resulting in 8/a=8

  18. The collapse of turbulence in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiel, B J H; Clercx, H J H [Department of Physics, Eindhoven University of Technology (Netherlands); Moene, A F [Department of Meteorology and Air Quality, Wageningen University and Research Centre (Netherlands); Jonker, H J J, E-mail: b.j.h.v.d.wiel@tue.nl [Department of Multi-scale Pysics, Delft University of Technology (Netherlands)

    2011-12-22

    A well-known phenomenon in the atmospheric boundary layer is the fact that winds may become very weak in the evening after a clear sunny day. In these quiet conditions usually hardly any turbulence is present. Consequently this type of boundary layer is referred to as the quasi-laminar boundary layer. In spite of its relevance, the appearance of laminar boundary layers is poorly understood and forms a long standing problem in meteorological research. Here we investigate an analogue problem in the form of a stably stratified channel flow. The flow is studied with a simplified atmospheric model as well as with Direct Numerical Simulations. Both models show remarkably similar behaviour with respect to the mean variables such as temperature and wind speed. The similarity between both models opens new way for understanding and predicting the laminarization process. Mathematical analysis on the simplified model shows that relaminarization can be understood from the existence of a definite limit in the maximum sustainable heat flux under stably stratified conditions. This fascinating aspect will be elaborated in future work.

  19. Workshop on Coherent Structure of Turbulent Boundary Layers.

    Science.gov (United States)

    1978-11-01

    trying to investigate what you can visually determine within the boundary layer. In regard to the first of your questions, I am familiae with your work at...experiment like a nuclear physicist would do or you can do it in a more general fluid mechanical way. I just think I’ll leave it at that, interacting spots

  20. Response of neutral boundary-layers to changes of roughness

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Larsen, Søren Ejling; Mortensen, Niels Gylling

    1990-01-01

    When air blows across a change in surface roughness, an internal boundary layer (IBL) develops within which the wind adapts to the new surface. This process is well described for short fetches, > 1 km. However, few data exist for large fetches on how the IBL grows to become a new equilibrium boun...

  1. Thermal Internal Boundary Layer characteristics at a tropical coastal ...

    Indian Academy of Sciences (India)

    ... Prabha1 R Venkatesan2 Erich Mursch-Radlgruber3 G Rengarajan3 N Jayanthi4. Crop and Soil Sciences, University of Georgia, GA, USA. Health and Safety Division, SHINE Group, IGCAR, Kalpakkam, India 603 102. Boundary Layer Meteorology Division, Institut fuer Meteorologie und Physik (IMP-BOKU), Wien, Austria.

  2. Flow visualization of swept wing boundary layer transition

    NARCIS (Netherlands)

    Serpieri, J.; Kotsonis, M.

    2015-01-01

    In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of

  3. Atmospheric boundary layer evening transitions over West Texas

    Science.gov (United States)

    A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...

  4. Effects of mussel filtering activity on boundary layer structure

    NARCIS (Netherlands)

    Van Duren, L.A.; Herman, P.M.J.; Sandee, A.J.J.; Heip, C.H.R.

    2006-01-01

    The structure of the benthic boundary layer over a bed of mussels (Mytilus edulis) was investigated in a large racetrack flume. Flow was observed to be modified both by the physical roughness of the mussel bed and by the momentum input of the exhalent jets of the mussels. Particularly when the

  5. Radio wave propagation in the marine boundary layer

    National Research Council Canada - National Science Library

    Kukushkin, Alexander

    2004-01-01

    ... boundary layer. Two basic mathematical methods have been used, depending on the ease of obtaining a closed analytical solution: 1. 2. Expansion of the quantum-mechanical amplitude of the transition into a complete and orthogonal set of eigen functions of the continuous spectrum. The Feynman path integral. It is not intended to provide a full ste...

  6. The use of a wave boundary layer model in SWAN

    DEFF Research Database (Denmark)

    Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo

    2017-01-01

    A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...

  7. The role of boundary layer momentum advection in the mean ...

    Indian Academy of Sciences (India)

    A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known.

  8. Influence of micrometeorological features on coastal boundary layer ...

    Indian Academy of Sciences (India)

    Characteristics of aerosols in the Atmospheric Boundary Layer (ABL) obtained from a bistatic CW lidar at Trivandrum for the last one decade are used to investigate the role of ABL micro- meteorological processes in controlling the altitude distribution and size spectrum. The altitude structure of number density shows three ...

  9. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL), using balloon-borne GPS radiosonde data is presented. ABL has been characterized using vertical profiles of meteorological parameter. The gradient of virtual potential temperature (v) profile for the ...

  10. Analytical solution of the transpiration on the boundary layer flow ...

    African Journals Online (AJOL)

    An analysis is carried out to study the effects that blowing/injection and suction on the steady mixed convection or combined forced and free convection boundary layer flows over a vertical slender cylinder with a mainstream velocity and a wall surface temperature proportional to the axial distance along the surface of the ...

  11. Thermal Internal Boundary Layer characteristics at a tropical coastal ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    examined with the help of measurements carried out with a mini-SODAR (SOund Detection And ..... moisture upwards and periodic intrusion of mar- ..... Ocean System 2. 351–362. Kunhikrishnan P K, Gupta K S, Ramachandran R, Prakash. J W, Nair K N 1993 Study on thermal internal boundary layer structure over Thumba, ...

  12. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  13. Global instabilities and transient growth in Blasius boundary-layer ...

    Indian Academy of Sciences (India)

    We develop a hybrid of computational and theoretical approaches suited to study the fluid–structure interaction (FSI) of a compliant panel, flush between rigid upstream and downstream wall sections, with a Blasius boundary-layer flow. The ensuing linear-stability analysis is focused upon global instability and transient ...

  14. Conserved variable analysis of the marine boundary layer and air ...

    Indian Academy of Sciences (India)

    The present study is based on the observed features of the MBL (Marine Boundary Layer) during the Bay of Bengal and Monsoon Experiment (BOBMEX) - Pilot phase. Conserved Variable Analysis (CVA) of the conserved variables such as potential temperature, virtual potential temperature, equivalent potential temperature ...

  15. Mechanisms of boundary layer transition induced by isolated roughnes

    NARCIS (Netherlands)

    Ye, Q.

    2017-01-01

    Boundary layer transition is a relevant phenomenon in many aerodynamic and aero-thermodynamic problems and has been extensively investigated from the past century till recent times. Among the factors affecting the transition process, surface roughness plays a key role. When a roughness element with

  16. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  17. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    Science.gov (United States)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  18. Radionuclide separations using pillared layered materials

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, N.C.; Wade, K.L.; Morgan, D.M. [and others

    1998-12-31

    This is the final report of a two-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Pillared Layered Materials (PLMs) are layered inorganic ion exchangers propped apart by metal oxide pillars. PLMs have been synthesized to sorb strontium from liquid nuclear wastes. A study that compared over 60 sorbers for their ability to sorb strontium from Hanford simulants showed that PLMs were the best sorbers; strontium distribution coefficients ({sup Sr}K{sub d}) > 20000 mL/g were obtained. In addition, PLMs showed a high degree of selectivity for strontium over cesium, transition metals, lanthanides and actinides. The sorption of strontium is, however, inhibited by complexants (EDTA); {sup Sr}K{sub d} values drop to <20 mL/g when they are present. The most promising PLMs were the Cr, Ti, Zr, and Si pillared tantalum tungstate. The K{sub d} values for Sr{sup 2+} and Ba{sup 2+} show a strong pH dependence; K{sub d} values increase to >10{sup 4} above pH 12. The general surface complexation mechanism explains the sorption of these cations on PLMs.

  19. Linear segmentation algorithm for detecting layer boundary with lidar.

    Science.gov (United States)

    Mao, Feiyue; Gong, Wei; Logan, Timothy

    2013-11-04

    The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

  20. On the role of acoustic feedback in boundary-layer instability.

    Science.gov (United States)

    Wu, Xuesong

    2014-07-28

    In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which an acoustic feedback loop plays an essential role. The first concerns a subsonic boundary layer over a flat plate on which two well-separated roughness elements are present. A spatially amplifying Tollmien-Schlichting (T-S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave that propagates upstream and impinges on the upstream roughness to regenerate the T-S wave, thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that, at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to absolute instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns the supersonic 'twin boundary layers' that develop along two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the unconfined boundary layer. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Baroclinic Planetary Boundary Layer Model: Neutral and Stable Stratification Conditions

    Science.gov (United States)

    Yordanov, D.; Djolov, G.; Syrakov, D.

    1998-01-01

    The temperature and wind profiles in a baroclinic Planetary Boundary Layer (PBL) are investigated. Assuming stationarity, the turbulent state in the PBL at stable and neutral conditions is uniquely determined by the Rossby number, the external stratification parameter and two external baroclinic parameters. A simple two-layer baroclinic model is developed. It consists of a Surface Layer (SL) and overlying Ekman type layer. The system of dynamic and heat transfer equations is close using the K-theory. In SL the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer it is constant. The universal functions in the resistance, heat and humidity transfer laws can be deduced from the model. The internal PBL characteristics, necessary for the model calculations, are presented in terms of the external parameters. Favourable agreement of model results with experimental data is demonstrated.

  2. Boundary Layer Effect on Behavior of Discrete Models

    Directory of Open Access Journals (Sweden)

    Jan Eliáš

    2017-02-01

    Full Text Available The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  3. Boundary Layer Effect on Behavior of Discrete Models.

    Science.gov (United States)

    Eliáš, Jan

    2017-02-10

    The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson's ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  4. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  5. Simulation and optimal control of wind-farm boundary layers

    Science.gov (United States)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  6. A Thermal Plume Model for the Martian Convective Boundary Layer

    CERN Document Server

    Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn

    2013-01-01

    The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...

  7. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Arellano, de J.V.G.

    2013-01-01

    In Ouwersloot and Vila-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10. 1007/s10546-013-9816-z, 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab

  8. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  9. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2017-08-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  10. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  11. Lidar Scanning of Momentum Flux in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mann, Jakob; Courtney, Michael

    Momentum flux measurements are important for describing the wind profile in the atmospheric boundary layer, modeling the atmospheric flow over water, the accounting of exchange processes between air and sea, etc. It is also directly related to the friction velocity, which is a velocity scale...... required for wind engineering. Estimations of friction velocity over the sea can be performed by combining wind speed measurements, a sea roughness length formulation and the surface-layer wind profile, i.e. a bulk-derived method. This method was tested in Peña et al. (2008) by comparison with direct...

  12. Experimental investigation of localized disturbances in the straight wing boundary layer, generated by finite surface vibrations

    Science.gov (United States)

    Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.

    2017-10-01

    Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.

  13. Detection and Characterization of Boundary-Layer Transition in Flight at Supersonic Conditions Using Infrared Thermography

    Science.gov (United States)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).

  14. Page 1 Three Dimensional Boundary Layer on Yawed Semi-Infinite ...

    Indian Academy of Sciences (India)

    (i) Suction shifts the point of separation away from the leading edge and injection shifts it towards the leading edge, as is evident from the com- parison table given below: M 0 —1 --1. Jºs 0.127 0.181 0.0914. (ii) Suction increases the ratio k of the two boundary layer thicknesses and the skin friction, whereas injection ...

  15. Turbulent boundary layer under the control of different schemes

    Science.gov (United States)

    Qiao, Z. X.; Zhou, Y.; Wu, Z.

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  16. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow......, is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...

  17. Boundary-layer turbulence as a kangaroo process

    Science.gov (United States)

    Dekker, H.; de Leeuw, G.; Maassen van den Brink, A.

    1995-09-01

    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent ɛ (with ɛ-->∞ in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ~=0.58.

  18. Optimal control of wind turbines in a turbulent boundary layer

    Science.gov (United States)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  19. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where......, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds...

  20. Turbulent boundary layer under the control of different schemes.

    Science.gov (United States)

    Qiao, Z X; Zhou, Y; Wu, Z

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  1. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  2. Unsteady incompressible MHD boundary layer on porous aerofoil in high accelerating fluid flow

    Directory of Open Access Journals (Sweden)

    Ivanović Dečan J.

    2002-01-01

    Full Text Available The fluid, flowing past the surface, is incompressible and its electro-conductivity is constant. The present magnetic field is homogenous and perpendicular to the surface and through the porous contour the fluid has been injected or ejected. In order to study this problem, a polyparametric method known as generalized similarity method has been established. The corresponding equations of unsteady boundary layer, by introducing the appropriate variable transformations, momentum and energy equations and three similarity parameters sets, being transformed into generalized form. The numerical integration of the generalized equation with boundary conditions has been performed by means of the difference schemes and by using Tridiagonal Algorithm Method with iterations in the four parametric and twice localized approximation. So obtained generalized solutions are used to calculate the shear stress distribution in laminar-turbulent transition of unsteady boundary layer on porous high accelerating aerofoil. It's shown that for both in confuser and in diffuser regions the ejection of fluid postpones the boundary layer separation, and vice versa the fluid injection favors the separation. For both injection and ejection of fluid, the magnetic field increases the friction and postpones the laminar-turbulent transition.

  3. Measurement Science of the Intermittent Atmospheric Boundary Layer

    Science.gov (United States)

    2014-01-01

    investigate intermittency fluxes of clear-air radar reflectivity inthe atmospheric boundary layer, 2013 IEEE International Symposium on Antennas and...meridionally by 40 m), eight ultrasonic anemometers, two low-response thermometers, two low-response hygrometers, three quartz-crystal barometers, and...vertically spaced sonics can be used for post-facto calibration (Muschinski and Ayvazian, 2014) of relative biases in a pair of ultrasonic

  4. Scaling laws and turbulence closures for stable boundary layers

    Science.gov (United States)

    Zilitinkevich, S.; Esau, I.; Baklanov, A.; Djolov, G.

    2003-04-01

    This paper presents a recently developed theory of non-local turbulence in the stably stratified planetary boundary layers (PBLs): basic theoretical results, new LES code specifically designed for LES of stably stratified flows, and comparison of theoretical predictions with LES and experimental data. The paper includes improved formulations for the PBL depth and resistance laws and outlines an advanced turbulence closure accounting for the transport properties of internal gravity waves.

  5. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Teleman, Elena-Carmen; Silion, Radu; Axinte, Elena; Pescaru, Radu

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  6. Boundary Layer Study. Experimental Validation Test Plan. Phase 4

    Science.gov (United States)

    1990-11-01

    profile aceros the boundary layer. Also included are the measurement of surface properties including pressure, temperature, heat transfer rate, and...the sninplos charged either by fric~tion or byy exposure to passes. The. voimelor owWj is displayed As the turntabie rotates. the sample a corona . N...When the Corona -charginig arm inso.e arm. After about 150 seconlds aale ur rors introducec! by variationis among tost levied, 11 Is exiendead to the

  7. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    Science.gov (United States)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  8. Ozone in the Atlantic Ocean marine boundary layer

    OpenAIRE

    Patrick Boylan; Detlev Helmig; Samuel Oltmans

    2015-01-01

    Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL). Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurem...

  9. Combined Wave and Current Bottom Boundary Layers: A Review

    Science.gov (United States)

    2016-03-01

    wave mechanics for engineers and scientists. New Jersey: World Scientific . Dingler, J. R., and D. L. Inman. 1976. Wave-formed ripples in nearshore...sediment transport. New York: World Scientific . Papanicolaou, A. N., M. Elhakeem, G. Krallis, S. Prakash, and J. Edinger. 2008. Sediment transport...Boundary layers, Models, Near-shore processes, Review article , Sediment transport, Wave and current interaction 16. SECURITY CLASSIFICATION OF

  10. The curved kinetic boundary layer of active matter.

    Science.gov (United States)

    Yan, Wen; Brady, John F

    2018-01-03

    A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , D T is the Brownian translational diffusivity, τ R is the reorientation time and l = U 0 τ R is the swimmer's run length, with U 0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as J S λδ 2 /L, where J S is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ 2 /L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as F net /(n ∞ k s T s L 2 ) = f(λδ 2 /L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, k s T s = ζU 0 2 τ R /6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n ∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.

  11. Numerical Simulation of Roughness Induced Boundary Layer Transition

    Science.gov (United States)

    2016-03-30

    901-918. 18. ZHENG Yun, LI Hongyang, LIU Daxiang. “Application and Analysis of γ-Reθ Transition Model in Hypersonic Flow”, Journal of Propulsion ...making the simulated result more accurate. Xiao [25] used a three-equation k-ω- γ transition model to study hypersonic flow around single roughness...point RANS Approach”, Journal of Turbomachinery, 2004, 126(1):193-202. 14. FU Song, WANG Liang. “Simulation of Hypersonic Boundary-Layer Transition

  12. Review of Orbiter Flight Boundary Layer Transition Data

    Science.gov (United States)

    Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.

    2006-01-01

    In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.

  13. Dry intrusions: Lagrangian climatology and impact on the boundary layer

    Science.gov (United States)

    Raveh-Rubin, Shira; Wernli, Heini

    2017-04-01

    Dry air intrusions (DIs) are large-scale descending airstreams. A DI is typically referred to as a coherent airstream in the cold sector of an extratropical cyclone. Emerging evidence suggests that DIs are linked to severe surface wind gusts. However, there is yet no strict Lagrangian definition of DIs, and so their climatological frequency, dynamical characteristics as well as their seasonal and spatial distributions are unknown. Furthermore, the dynamical interaction between DIs and the planetary boundary layer is not fully understood. Here, we suggest a Lagrangian definition for DI air parcels, namely a minimum pressure increase along a trajectory of 400 hPa in 48 hours. Based on this criterion, the open questions are addressed by: (i) a novel global Lagrangian climatology for the ECMWF ERA-Interim reanalysis dataset for the years 1979-2014; (ii) a case study illustrating the interaction between DIs and the boundary layer. We find that DIs occur predominantly in winter. DIs coherently descend from the upper troposphere (their stratospheric origin is small), to the mid- and low levels, where they mix with their environment and diverge. Different physical characteristics typify DIs in the different regions and seasons. Finally, we demonstrate the different mechanisms by which DIs can destabilize the boundary layer and facilitate the formation of strong surface winds.

  14. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  15. Evidence for renoxification in the tropical marine boundary layer

    Science.gov (United States)

    Reed, Chris; Evans, Mathew J.; Crilley, Leigh R.; Bloss, William J.; Sherwen, Tomás; Read, Katie A.; Lee, James D.; Carpenter, Lucy J.

    2017-03-01

    We present 2 years of NOx observations from the Cape Verde Atmospheric Observatory located in the tropical Atlantic boundary layer. We find that NOx mixing ratios peak around solar noon (at 20-30 pptV depending on season), which is counter to box model simulations that show a midday minimum due to OH conversion of NO2 to HNO3. Production of NOx via decomposition of organic nitrogen species and the photolysis of HNO3 appear insufficient to provide the observed noontime maximum. A rapid photolysis of nitrate aerosol to produce HONO and NO2, however, is able to simulate the observed diurnal cycle. This would make it the dominant source of NOx at this remote marine boundary layer site, overturning the previous paradigm according to which the transport of organic nitrogen species, such as PAN, is the dominant source. We show that observed mixing ratios (November-December 2015) of HONO at Cape Verde (˜ 3.5 pptV peak at solar noon) are consistent with this route for NOx production. Reactions between the nitrate radical and halogen hydroxides which have been postulated in the literature appear to improve the box model simulation of NOx. This rapid conversion of aerosol phase nitrate to NOx changes our perspective of the NOx cycling chemistry in the tropical marine boundary layer, suggesting a more chemically complex environment than previously thought.

  16. Improving Wind-Ramp Forecasts in the Stable Boundary Layer

    Science.gov (United States)

    Jahn, David E.; Takle, Eugene S.; Gallus, William A.

    2017-06-01

    The viability of wind-energy generation is dependent on highly accurate numerical wind forecasts, which are impeded by inaccuracies in model representation of boundary-layer processes. This study revisits the basic theory of the Mellor, Yamada, Nakanishi, and Niino (MYNN) planetary boundary-layer parametrization scheme, focusing on the onset of wind-ramp events related to nocturnal low-level jets. Modifications to the MYNN scheme include: (1) calculation of new closure parameters that determine the relative effects of turbulent energy production, dissipation, and redistribution; (2) enhanced mixing in the stable boundary layer when the mean wind speed exceeds a specified threshold; (3) explicit accounting of turbulent potential energy in the energy budget. A mesoscale model is used to generate short-term (24 h) wind forecasts for a set of 15 cases from both the U.S.A. and Germany. Results show that the new set of closure parameters provides a marked forecast improvement only when used in conjunction with the new mixing length formulation and only for cases that are originally under- or over-forecast (10 of the 15 cases). For these cases, the mean absolute error (MAE) of wind forecasts at turbine-hub height is reduced on average by 17%. A reduction in MAE values on average by 26% is realized for these same cases when accounting for the turbulent potential energy together with the new mixing length. This last method results in an average reduction by at least 13% in MAE values across all 15 cases.

  17. Wave boundary layer over a stone-covered bed

    DEFF Research Database (Denmark)

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... and regular ping-pong balls the size 3.6cm in the other. The orbital-motion-amplitude-to-roughness ratio at the bed was rather small, in the range a/ks=0.6-3. The mean and turbulence properties of the boundary-layer flow were measured. Various configurations of the roughness elements were used in the ping...... for small values of a/ks. The results further show that the phase lead of the bed friction velocity over the surface elevation does not seem to change radically with a/ks, and found to be in the range 12°-23°. Furthermore the results show that the boundary-layer turbulence also is not extremely sensitive...

  18. Large-Eddy Simulation of Shock-Wave Boundary Layer Interaction and its Control Using Sparkjet

    Science.gov (United States)

    Yang, Guang; Yao, Yufeng; Fang, Jian; Gan, Tian; Lu, Lipeng

    2016-06-01

    Large-eddy simulation (LES) of an oblique shock-wave generated by an 8° sharp wedge impinging onto a spatially-developing Mach 2.3 turbulent boundary layer and their interactions has been carried out in this study. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20,000. The detailed numerical approaches are described and the inflow turbulence is generated using the digital filter method to avoid artificial temporal or streamwise periodicity. Numerical results are compared with the available wind tunnel PIV measurements of the same flow conditions. Further LES study on the control of flow separation due to the strong shock-viscous interaction is also conducted by using an active control actuator “SparkJet” concept. The single-pulsed characteristics of the control device are obtained and compared with the experiments. Instantaneous flowfield shows that the “SparkJet” promotes the flow mixing in the boundary layer and enhances its ability to resist the flow separation. The time and spanwise averaged skin friction coefficient distribution demonstrates that the separation bubble length is reduced by maximum 35% with the control exerted.

  19. Minnowbrook III: 2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows

    Science.gov (United States)

    LaGraff, John E. (Editor); Ashpis, David E. (Editor)

    2002-01-01

    This volume and its accompanying CD-ROM contain materials presented at the Minnowbrook III-2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows held at the Syracuse University Minnowbrook Conference Center, Blue Mountain Lake, New York, August 20-23, 2000. Workshop organizers were John E. LaGraff (Syracuse University), Terry V Jones (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of two earlier workshops: Minnowbrook I (1993) and Minnowbrook II (1997). The workshop was focused on physical understanding the late stage (final breakdown) boundary layer transition, separation, and effects of unsteady wakes with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the USA and abroad, and representatives from the gas-turbine industry and government laboratories. The physical mechanisms discussed included turbulence disturbance environment in turbomachinery, flow instabilities, bypass and natural transition, turbulent spots and calmed regions, wake interactions with attached and separated boundary layers, turbulence and transition modeling and CFD, and DNS. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The viewgraphs are included on the CD-ROM only. The workshop summary and the plenary-discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of transition, separated and unsteady flows in turbomachines.

  20. Combustion characteristics of methane hydrate in a laminar boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Katsuki, R.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Yokohama (Japan). Dept. of Mechanical Engineering; Takahashi, M.; Iwasaki, T.; Uchida, K. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    2008-07-01

    The combustion characteristics of methane hydrates in a laminar boundary layer were investigated in order to examine the flame propagation speed of methane hydrates. The experiments were performed under atmospheric pressure using methane hydrate crystals previously stored at a liquid-nitrogen temperature. A wind tunnel was used to form an air laminar boundary layer. The crystals were packed in an insulated rectangular cell to ensure that the hydrate layer was level with a horizontal flat plate. The surface of the dissociating hydrate crystals was ignited using a pilot flame at the downstream end of the hydrate crystals. Flame location was measured using a video camera. Results showed that after the flame was extinguished, the methane hydrate crystals were not completely dissociated. The flame was extinguished by an ice layer that had formed over the methane hydrate crystals. Propagation rates were measured in order to explore the relationship between the flame propagation rate and free-stream velocity. 8 refs., 2 tabs., 10 figs.

  1. On injection-ejection fluid influence through different accelerating porous surfaces on unsteady 2d incompressible boundary layer characteristics

    Directory of Open Access Journals (Sweden)

    Ivanović Dečan

    2005-01-01

    Full Text Available Through the porous contour in perpendicular direction, the fluid of the same properties as incompressible fluid in basic flow, has been injected or ejected with velocity who is a function of the contour longitudinal coordinate and time. The corresponding equations of unsteady boundary layer, by introducing the appropriate variable transformations, momentum and energy equations and two similarity parameters sets, are transformed into generalized form. These parameters are expressing the influence of the outer flow velocity, the injection or ejection velocity and the flow history in boundary layer, on the boundary layer characteristics. Obtained generalized solutions are used to calculate the distributions of velocity, and shear stress in laminar-turbulent transition of unsteady incompressible boundary layer on different porous contours: circular cylinder, thin elliptical cylinder and aerofoil, whose centers velocities changes in time as a degree functions. The ejection of fluid postpones the boundary layer separation, i.e. laminar-turbulent transition, and vice versa the injection of fluid favors the separation. Boundary layer characteristics are found directly, no further numerical integration of momentum equation.

  2. Proceedings of the 17th and 18th NAL Workshops on Investigation and Control of Boundary-Layer Transition

    OpenAIRE

    National Aerospace Laboratory; 航空宇宙技術研究所

    1996-01-01

    The following topics were discussed: vortex shedding, laminar boundary layer measurement, vortex ring, turbulent flow measurement, high Reynolds number turbulence, pulsed flow, boundary layer instability, Ekman boundary layer, sound receptivity, Tollmien-Schlichting wave in supersonic boundary layer, flow field instability, turbulent flow pattern, vorticity distribution in shear flow, turbulence wedge, streamwise vortex mixing, thermal convection, oblique wave generation in boundary layer, in...

  3. Modelling the Arctic Stable boundary layer and its coupling to the surface

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2006-01-01

    The impact of coupling the atmosphere to the surface energy balance is examined for the stable boundary layer, as an extension of the first GABLS (GEWEX Atmospheric Boundary-Layer Study) one-dimensional model intercomparison. This coupling is of major importance for the stable boundary-layer

  4. Thermographic analysis of turbulent non-isothermal water boundary layer

    CERN Document Server

    Znamenskaya, Irina A

    2015-01-01

    The paper is devoted to the investigation of the turbulent water boundary layer in the jet mixing flows using high-speed infrared (IR) thermography. Two turbulent mixing processes were studied: a submerged water jet impinging on a flat surface and two intersecting jets in a round disc-shaped vessel. An infrared camera (FLIR Systems SC7700) was focused on the window transparent for IR radiation; it provided high-speed recordings of heat fluxes from a thin water layer close to the window. Temperature versus time curves at different points of water boundary layer near the wall surface were acquired using the IR camera with the recording frequency of 100 Hz. The time of recording varied from 3 till 20 min. The power spectra for the temperature fluctuations at different points on the hot-cold water mixing zone were calculated using the Fast Fourier Transform algorithm. The obtained spectral behavior was compared to the Kolmogorov "-5/3 spectrum" (a direct energy cascade) and the dual-cascade scenario predicted for...

  5. Investigation of Materials for Boundary Layer Control in a Supersonic Wind Tunnel

    Science.gov (United States)

    Braafladt, Alexander; Lucero, John M.; Hirt, Stefanie M.

    2013-01-01

    During operation of the NASA Glenn Research Center 15- by 15-Centimeter Supersonic Wind Tunnel (SWT), a significant, undesirable corner flow separation is created by the three-dimensional interaction of the wall and floor boundary layers in the tunnel corners following an oblique-shock/ boundary-layer interaction. A method to minimize this effect was conceived by connecting the wall and floor boundary layers with a radius of curvature in the corners. The results and observations of a trade study to determine the effectiveness of candidate materials for creating the radius of curvature in the SWT are presented. The experiments in the study focus on the formation of corner fillets of four different radii of curvature, 6.35 mm (0.25 in.), 9.525 mm (0.375 in.), 12.7 mm (0.5 in.), and 15.875 mm (0.625 in.), based on the observed boundary layer thickness of 11.43 mm (0.45 in.). Tests were performed on ten candidate materials to determine shrinkage, surface roughness, cure time, ease of application and removal, adhesion, eccentricity, formability, and repeatability. Of the ten materials, the four materials which exhibited characteristics most promising for effective use were the heavy body and regular type dental impression materials, the basic sculpting epoxy, and the polyurethane sealant. Of these, the particular material which was most effective, the heavy body dental impression material, was tested in the SWT in Mach 2 flow, and was observed to satisfy all requirements for use in creating the corner fillets in the upcoming experiments on shock-wave/boundary-layer interaction.

  6. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  7. Characteristics of vortex packets in a boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen; Marusic, Ivan

    2002-11-01

    Stereo PIV was used to measure all three velocity components in streamwise-spanwise (x-y) planes of a turbulent boundary layer at Re_τ = 1060. Datasets were obtained in the log layer and beyond. The vector fields in the log layer (z^+ = 92 and 150, z - wall normal direction) revealed signatures of vortex packets similar to those found by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged along the x direction. These regions also generated substantial Reynolds shear stress (-uw), sometimes as high as 40U_τ^2. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to the total -uw while occupying less than 5% of the total area in the log layer. Beyond the log layer (z^+ = 198, 530), the spatial organization into packets breaks down. Instead, large individual vortex cores and spanwise strips of positive and negative wall-normal velocity were observed. Supported by NSF (ACI-9982774, CTS-9983933).

  8. Numerical investigation on boundary layer control through moving surface in NACA 0012 airfoil

    Science.gov (United States)

    Islam, Md. Sadiqul; Hakim, Shaik Merkatur; Ali, Mohammad; Islam, Md. Quamrul

    2017-06-01

    This study focuses on the drag reduction by reducing adverse pressure gradient and delaying the flow separation of 2D NACA 0012 airfoil by moving surface through numerical simulation. Two particular cases are considered here. When `single moving surface' is considered, only one moving surface of 10% of the chord length(c) is placed at upper surface of the airfoil starting from 0.05c to 0.15c. When `double moving surface' is considered, one moving surface of 10% of the chord length is placed at upper surface starting from 0.05c to 0.15c and one moving surface of same size is placed at lower surface from 0.05c to 0.15c. Momentum injection into the flow field moves the separation of boundary layer in the vicinity of trailing edge of the airfoil. By momentum injection through single moving surface with the surface velocity twice the free stream velocity and for different angle of attack it is possible to reduce the average drag coefficient by 23.9%. And for same condition with double moving surface it is possible to reduce the average drag coefficient by 25.9%. For moving surface boundary condition, boundary-layer separation is delayed along the chord length on the upper surface of the airfoil.

  9. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.

    2013-01-01

    Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared

  10. Boundary layer polarization and voltage in the 14 MLT region

    Science.gov (United States)

    Lundin, R.; Yamauchi, M.; Woch, J.; Marklund, G.

    1995-05-01

    Viking midlatitude observations of ions and electrons in the postnoon auroral region show that field-aligned acceleration of electrons and ions with energies up to a few kiloelectron volts takes place. The characteristics of the upgoing ion beams and the local transverse electric field observed by Viking indicate that parallel ion acceleration is primarily due to a quasi-electrostatic field-aligned acceleration process below Viking altitudes, i.e., below 10,000-13,500 km. A good correlation is found between the maximum upgoing ion beam energy and the depth of the local potential well determined by the Viking electric field experiment within dayside 'ion inverted Vs.' The total transverse potential throughout the entire region near the ion inverted Vs. is generally much higher than the field-aligned potential and may reach well above 10 kV. However, the detailed mapping of the transverse potential out to the boundary layer, a fundamental issue which remains controversial, was not attempted here. An important finding in this study is the strong correlation between the maximum up going ion beam energy of dayside ion inverted Vs and the solar wind velocity. This suggests a direct coupling of the solar wind plasma dynamo/voltage generator to the region of field-aligned particle acceleration. The fact that the center of dayside ion inverted Vs coincide with convection reversals/flow stagnation and upward Birkeland currents on what appears to be closed field lines (Woch et al., 1993), suggests that field-aligned potential structures connect to the inner part of an MHD dyanmo in the low-latitude boundary layer. Thus the Viking observations substantiate the idea of a solar wind induced boundary layer polarization where negatively charged perturbations in the postnoon sector persistently develops along the magnetic field lines, establishing accelerating potential drops along the geomagnetic field lines in the 0.5-10 kV range.

  11. Modelling wave-boundary layer interaction for wind power applications

    Science.gov (United States)

    Jenkins, A. D.; Barstad, I.; Gupta, A.; Adakudlu, M.

    2012-04-01

    Marine wind power production facilities are subjected to direct and indirect effects of ocean waves. Direct effects include forces due to wave orbital motions and slamming of the water surface under breaking wave conditions, corrosion and icing due to sea spray, and the effects of wave-generated air bubbles. Indirect effects include include the influence of waves on the aerodynamic sea-surface roughness, air turbulence, the wind velocity profile, and air velocity oscillations, wave-induced currents and sediment transport. Field observations within the boundary layers from floating measurement may have to be corrected to account for biases induced as a result of wave-induced platform motions. To estimate the effect of waves on the atmospheric boundary layer we employ the WRF non-hydrostatic mesoscale atmosphere model, using the default YSU planetary boundary layer (PBL) scheme and the WAM spectral wave model, running simultaneously and coupled using the open-source coupler MCEL which can interpolate between different model grids and timesteps. The model is driven by the WRF wind velocity at 10 m above the surface. The WRF model receives from WAM updated air-sea stress fields computed from the wind input source term, and computes new fields for the Charnock parameter and marine surface aerodynamic roughness. Results from a North Atlantic and Nordic Seas simulation indicate that the two-way coupling scheme alters the 10 metre wind predicted by WRF by up to 10 per cent in comparison with a simulation using a constant Charnock parameter. The changes are greatest in developing situations with passages of fronts, moving depressions and squalls. This may be directly due to roughness length changes, or may be due to changes in the timing of front/depression/squall passages. Ongoing work includes investigating the effect of grid refinement/nesting, employing different PBL schemes, and allowing the wave field to change the direction of the total air-sea stress.

  12. Secondary flows in turbulent boundary layers over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2018-01-01

    Direct numerical simulations of turbulent boundary layers over longitudinal surface roughness are performed to investigate the impact of the surface roughness on the mean flow characteristics related to counter-rotating large-scale secondary flows. By systematically changing the two parameters of the pitch (P) and width (S) for roughness elements in the ranges of 0.57 ≤P /δ ≤2.39 and 0.15 ≤S /δ ≤1.12 , where δ is the boundary layer thickness, we find that the size of the secondary flow in each case is mostly determined by the value of P - S, i.e., the valley width, over the ridge-type roughness. However, the strength of the secondary flows on the cross-stream plane relative to the flow is increased when the value of P increases or when the value of S decreases. In addition to the secondary flows, additional tertiary and quaternary flows are observed both above the roughness crest and in the valley as the values of P and S increase further. Based on an analysis using the turbulent kinetic energy transport equation, it is shown that the secondary flow over the ridge-type roughness is both driven and sustained by the anisotropy of turbulence, consistent with previous observations of a turbulent boundary layer over strip-type roughness [Anderson et al., J. Fluid Mech. 768, 316 (2015), 10.1017/jfm.2015.91]. Careful inspection of the turbulent kinetic energy budget reveals that the opposite rotational sense of the secondary flow between the ridge- and strip-type roughness elements is primarily attributed to the local imbalance of energy budget created by the strong turbulent transport term over the ridge-type roughness. The active transport of the kinetic energy over the ridge-type roughness is closely associated with the upward deflection of spanwise motions in the valley, mostly due to the roughness edge.

  13. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  14. Earth's magnetosphere formed by the low-latitude boundary layer

    CERN Document Server

    Heikkila, W J

    2011-01-01

    The author argues that, after five decades of debate about the interactive of solar wind with the magnetosphere, it is time to get back to basics. Starting with Newton's law, this book also examines Maxwell's equations and subsidiary equations such as continuity, constitutive relations and the Lorentz transformation; Helmholtz' theorem, and Poynting's theorem, among other methods for understanding this interaction. Includes chapters on prompt particle acceleration to high energies, plasma transfer event, and the low latitude boundary layer More than 200 figures illustrate the text Includes a color insert.

  15. The Physics of Boundary-Layer Aero-Optic Effects

    Science.gov (United States)

    2012-09-01

    Mach-number-dependent function, )(1 ∞ MF for the modified model Eq. (23) and [ ] 2/3 222 2 )/(12 11)( − ∞∞∞∞       − − += UUrMMMF c γ for the...model Eq. (20). To calculate )(1 ∞ MF from (24), experimentally-measured velocity profiles for a M = 0.5 boundary layer were used; Figure 17 shows the...Optical Engineering: The Design of Optical Systems, McGraw- Hill, NY, 1966, Chap. 3, pp. 49-71. [16] S. Gordeyev, E. Jumper, T. Ng and A. Cain , "Aero

  16. Injection-induced turbulence in stagnation-point boundary layers

    Science.gov (United States)

    Park, C.

    1984-01-01

    A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.

  17. Effects of compressibility on boundary-layer turbulence

    Science.gov (United States)

    Acharya, M.

    1976-01-01

    A series of turbulence measurements in a subsonic compressible turbulent boundary-layer flow in the Mach number range of 0.1 to 0.7 is described. Measurements include detailed surveys of the turbulence intensities and Reynolds shear stresses, and other quantities such as the turbulent kinetic energy. These data are examined to bring out the effects of compressibility and show that the stream-wise and transverse fluctuations and the turbulent shear stress follow a universal scaling law. A preliminary attempt is made to examine some of the assumptions made in turbulence models commonly used in numerical codes for the calculation of compressible flows.

  18. Control of Boundary Layers for Aero-optical Applications

    Science.gov (United States)

    2015-06-23

    Tunnel ( TWT ) facility located in Hessert Laboratory for Aerospace Research at the University of 8 Notre Dame. The TWT is composed of an inlet...4.2 Results One set of measurements were conducted in the Hessert Transonic Wind Tunnel ( TWT ) at the University of Notre Dame. The total length...Boundary Layer Wall Heating Conditions Facility V∞ [m/s] M δ [cm] Reθ ΔT [K] fsamp [kHz] Caltech MWT 9.4 0.03 2.7 1,700 21 30 ND TWT 64.8 0.18 1.2

  19. Numerical simulation of convective boundary layer above polynyas and leads.

    Science.gov (United States)

    Debolskiy, Andrey; Stepanenko, Victor

    2013-04-01

    Arctic region is very important as one of drivers for global atmosphere circulation. Meanwhile, results of modern global atmospheric models, both climatic and weather forecasting differs significantly from each other and observations in this region. One of the reasons for these uncertainties can be inaccurate simulation of ice and snow cover distribution, which accuracy depends in turn on variety of factors. Among others, appropriate parameterizations of atmospheric boundary layer over inhomogeneous surface, not explicitly resolved at the atmospheric model grid, can decrease these inaccuracies. The main objective of these parameterizations is to calculate surface heat and water vapor fluxes, averaged over the whole model cell. However, due to great differences in structure of boundary layers formed over cold ice and relatively warm open water, which cause nonlinear dependencies,the parameterizations suggested to the moment can hardly be regarded as applicable for "complete" set of synoptic scenarios . The present paper attempts to improve standard mosaic method of flux aggregation, which is still common in climate models [1]. The main idea is to derive heat fluxes using data from numerical experiments, explicitly reproducing most of sub grid (for global models) turbulence motions spectra, and compare with fluxes calculated using mosaic method implying the part of model domain to be a global model cell. The study is based on idealized high resolution (~10 m) experiments with typically observed surface parameters (temperature and roughness), ice-open water distribution, initial temperature and wind profiles distribution included in Large Eddy Simulation model of Insitute of Numerical Mathematics RAS [2],[3]. Analysis of other boundary layer characteristics such as its height, eddy diffusivity profiles, kinetic energy is presented. The modeling results are compared with field experiments' data gathered at White Sea. References: 1. V.M. Stepanenko, P.M. Miranda, V

  20. Hypersonic boundary layer stabilization by using a wavy surface

    Science.gov (United States)

    Kirilovskiy, S. V.; Poplavskaya, T. V.

    2017-10-01

    Numerical simulation of hypersonic (M∞=6) flow and evolution of disturbances on a smooth plate and a shallow grooved plate was performed by solving two-dimensional Navier– Stokes equations. Computational soft-ware verification was conducted by comparison with existing data of pressure pulsations on plates surface. It was showed that wavy surface significantly decrease pressure pulsations on plate surface and does not increase the value of mean heat fluxes. Data about effect of wavy surfaces with different form on the disturbances intensity in hypersonic boundary layer was obtained.

  1. Calculation of boundary layers near the stagnation point of an oscillating airfoil

    Science.gov (United States)

    Cebeci, T.; Carr, L. W.

    1983-01-01

    The results of an investigation of boundary layers close to the stagnation point of an oscillating airfoil are reported. Two procedures for generating initial conditions, the characteristics box scheme and a quasi-static approach, were investigated, and the quasi-static approach was shown to be appropriate provided the initial region was far from any flow separation. With initial conditions generated in this way, the unsteady boundary layer equations were solved for the flow in the leading edge region of a NACA 0012 airfoil oscillating from 0 to 5 deg. Results were obtained for both laminar and turbulent flow, and, in the latter case, the effect of transition was assessed by specifying its occurrence at different locations. The results demonstrate the validity of the numerical scheme and suggest that the procedures should be applied to calculation of the entire flow around oscillating airfoils.

  2. Nanodiamonds in the Younger Dryas boundary sediment layer.

    Science.gov (United States)

    Kennett, D J; Kennett, J P; West, A; Mercer, C; Hee, S S Que; Bement, L; Bunch, T E; Sellers, M; Wolbach, W S

    2009-01-02

    We report abundant nanodiamonds in sediments dating to 12.9 +/- 0.1 thousand calendar years before the present at multiple locations across North America. Selected area electron diffraction patterns reveal two diamond allotropes in this boundary layer but not above or below that interval. Cubic diamonds form under high temperature-pressure regimes, and n-diamonds also require extraordinary conditions, well outside the range of Earth's typical surficial processes but common to cosmic impacts. N-diamond concentrations range from approximately 10 to 3700 parts per billion by weight, comparable to amounts found in known impact layers. These diamonds provide strong evidence for Earth's collision with a rare swarm of carbonaceous chondrites or comets at the onset of the Younger Dryas cool interval, producing multiple airbursts and possible surface impacts, with severe repercussions for plants, animals, and humans in North America.

  3. Interactions between the thermal internal boundary layer and sea breezes

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)

    1997-10-01

    In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)

  4. Characteristics of vortex packets in turbulent boundary layers

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan

    2003-03-01

    Stereoscopic particle image velocimetry (PIV) was used to measure all three instantaneous components of the velocity field in streamwise spanwise planes of a turbulent boundary layer at Re[tau]=1060 (Re[theta]=2500). Datasets were obtained in the logarithmic layer and beyond. The vector fields in the log layer (z+=92 and 150) revealed signatures of vortex packets similar to those proposed by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged in the streamwise direction. These regions also generated substantial Reynolds shear stress, sometimes as high as 40 times [minus sign]uw. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to [minus sign]uw while occupying only 4% of the total area at z+=92. At z+=150, these patches occupied 4.5% of the total area while contributing 25% to [minus sign]uw. Beyond the log layer (z+=198 and 530), the spatial organization into packets is seen to break down.

  5. Orientation and circulation of vortices in a turbulent boundary layer

    Science.gov (United States)

    Gao, Qi; Ortiz-Dueñas, Cecilia; Longmire, Ellen

    2007-11-01

    The strengths of individual vortices are important in determining the generation and development of surrounding vortices in turbulent boundary layers. The dual-plane PIV data at z^+ = 110 and z/δ = 0.53 in a turbulent boundary layer at Reτ=1160 obtained by Ganapathisubramani et al. (2006) were investigated. 3D swirl strength was used to identify vortex cores. The eigenvector of the velocity gradient tensor was used to determine the orientation of each core, and the resulting eigenvector direction was compared with the average vorticity direction. Circulation of the cores was calculated using the vorticity vector only and using the vorticity vector projected onto the eigenvector. The probability distribution of the angle between the eigenvector and the vorticity vector indicated a peak at 15-20 degrees. The eigenvector angle distributions indicate that at z^+=110, more hairpin legs cross the measurement plane while at z/δ = 0.53, more heads are evident. Details of the orientation and circulation distributions will be discussed in the presentation.

  6. Recovery of vortex packet organization in perturbed turbulent boundary layers

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen K.

    2017-10-01

    Turbulent boundary layers with R eτ=2500 were perturbed by an array of cylinders projecting outward from the wall, and the flow organization downstream was investigated at multiple measurement heights in the logarithmic region. Two array heights were considered: H =0.2 δ , extending through the log region and H =δ , extending to the top of the boundary layer. Results from instantaneous PIV in wall-parallel planes and a vortex packet identification algorithm clearly showed a bottom-up mechanism for packet recovery downstream of the H =δ array, even though streamwise velocity statistics remained strongly perturbed. In contrast, some indications of top-down recovery were observed for the flow perturbed by the shorter H =0.2 δ (H+=500 ) array. In this case, however, packet structures closer to the wall at z+=125 remained altered beyond the end of the measurement domain 7δ downstream of the cylinders even though streamwise velocity statistics relaxed nearly to the unperturbed values.

  7. Competing disturbance amplification mechanisms in two-fluid boundary layers

    Science.gov (United States)

    Saha, Sandeep; Page, Jacob; Zaki, Tamer

    2015-11-01

    The linear stability of boundary layers above a thin wall film of lower viscosity is analyzed. Appropriate choice of the film thickness and viscosity excludes the possibility of interfacial instabilities. Transient amplification of disturbances is therefore the relevant destabilizing influence, and can take place via three different mechanisms in the two-fluid configuration. Each is examined in detail by solving an initial value problem whose initial condition comprises a pair of appropriately chosen eigenmodes from the discrete, continuous and interface modes. Two regimes are driven by the lift-up mechanism: (i) The response to a streamwise vortex and (ii) the normal vorticity generated by a stable Tollmien-Schlichting wave. Both are damped due to the film. The third regime is associated with the wall-normal vorticity that is generated by the interface displacement. It can lead to appreciable streamwise velocity disturbances in the near-wall region at relatively low viscosity ratios. The results demonstrate that a wall film can stabilize the early linear stages of boundary-layer transition, and explain the observations from the recent nonlinear direct numerical simulations of this configuration by Jung & Zaki (J. Fluid Mech., vol 772, 2015, 330-360).

  8. Characteristics of turbulent boundary layer flow over algal biofilm

    Science.gov (United States)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew

    2015-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.

  9. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  10. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  11. Geostrophic convective turbulence: The effect of boundary layers

    CERN Document Server

    Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef

    2014-01-01

    This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...

  12. Dynamics of Under Ice Boundary Layers Below Floating Ice Shelves

    Science.gov (United States)

    Shaw, W. J.; Stanton, T. P.

    2016-02-01

    Pine Island Glacier (PIG), a major outlet stream of the Western Antarctic Ice Sheet, has dramatically thinned and accelerated in recent decades. It is believed that a weakening of the floating portion of the glacier, known as the ice shelf, due to increased ocean thermal forcing is a primary cause of the observed increasing discharge of PIG. In order to better understand the controls on the exchange of heat between the PIG shelf and the underlying ocean cavity, a numerical model, MITgcm, has been configured to study the dynamics of the sloping, meltwater-forced, buoyant boundary layer below the ice shelf A 2-D approximation allows for high vertical resolution that resolves well the under shelf ocean boundary layer. We are particularly interested in the dynamical balance between buoyancy along the sloping ice shelf base, drag, and entrainment/detrainment and the associated feedback of basal melting of the ice shelf. Numerical results will be compared to in-situ observations obtained through a field campaign in 2013.

  13. Analytical investigation of boundary layer growth and swirl intensity decay rate in a pipe

    Energy Technology Data Exchange (ETDEWEB)

    Maddahian, Reza; Kebriaee, Azadeh; Farhanieh, Bijan; Firoozabadi, Bahar [Sharif University of Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of)

    2011-04-15

    In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed that the free vortex velocity profile can better predict the boundary layer parameters in the entrance region than in the forced one. Also, effects of pressure gradient inside the boundary layer is investigated and showed that if pressure gradient is ignored inside the boundary layer, results deviate greatly from the experimental data. (orig.)

  14. CONVECTIVE HEAT AND MASS TRANSFER IN THE COMBUSTION OF CHEMICALLY ACTIVE SUBSTANCES IN THE BOUNDARY LAYER ON A POROUS SURFACE.

    Science.gov (United States)

    COOLING, *POROUS MATERIALS), (*HEAT TRANSFER, *COMBUSTION), (* MASS TRANSFER , COMBUSTION), CONVECTION(HEAT TRANSFER), GAS FLOW, INJECTION, CHEMICAL REACTIONS, LAMINAR BOUNDARY LAYER, TURBULENT BOUNDARY LAYER, THERMAL INSULATION, USSR

  15. Computation of Three-Dimensional Boundary Layers Including Separation

    Science.gov (United States)

    1987-02-01

    COUSTEIX J. "Calcul des lignes de courant a partir des pressions parietales sur un corps fusele " - La Recherche Aerospatiale N" 1984-3 GLEYZES C., COUSTEIX...34Calcul des lignes de courant ä partir des pressions parietales sur un corps fusele " La Recherche Aerospatiale N° 1984-3 (1984) 4-23 /64/ /65/ /66

  16. Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade

    Science.gov (United States)

    Simoni, D.; Ubaldi, M.; Zunino, P.; Ampellio, E.

    2016-06-01

    The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions. Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.

  17. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control

    Directory of Open Access Journals (Sweden)

    Yang Guang

    2016-06-01

    Full Text Available The efficiency and mechanism of an active control device “SparkJet” and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The numerical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were systematically validated against the available wind tunnel particle image velocimetry (PIV measurements of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator “SparkJet” was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resistant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.

  18. Codimension three bifurcation of streamline patterns close to a no-slip wall: A topological description of boundary layer eruption

    DEFF Research Database (Denmark)

    Balci, Adnan; Andersen, Morten; Thompson, M. C.

    2015-01-01

    A vortex close to a no-slip wall gives rise to the creation of new vorticity at the wall. This vorticity may organize itself into vortices that erupt from the separated boundary layer. We study how the eruption process in terms of the streamline topology is initiated and varies in dependence of t...

  19. Numerical and experimental investigation of multiple shock wave/turbulent boundary layer interactions in a rectangular duct

    Science.gov (United States)

    Dutton, J. C.; Carroll, B. F.

    1988-01-01

    Multiple shock wave/turbulent boundary layer interactions in constant or nearly constant area supersonic duct flows occur in a variety of devices including scramjet inlets, gas ejectors, and supersonic wind tunnels. For sufficiently high duct exit pressures, a multiple shock wave/turbulent boundary layer interaction or shock train may form in the duct and cause a highly nonuniform, and possibly unsteady, flow at the duct exit. In this report, the mean flow characteristics of two shock train interactions, one with an initial Mach number of 2.5 the other at Mach 1.6, are investigated using spark Schlieren photography, surface oil flow visualization, and mean wall pressure measurements. The Mach 2.5 interaction was oblique and asymmetric in nature. A large separation occurs after the first oblique shock. The top and bottom wall boundary layer separation has been investigated, revealing that the shape of the reattachment lines and surface flow patterns for the two separation regions are quite different. This oblique shock flow pattern occurs in a neurally stable fashion with each type of opposing separation region alternately existing on either the top or bottom wall during the course of a run. A small scale unsteadiness in the shock train location, with movement on the order of a boundary layer thickness, is also observed.

  20. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities

  1. Boundary-layer turbulence modeling and vorticity dynamics: I. A kangaroo-process mixing model of boundary-layer turbulence

    Science.gov (United States)

    Dekker, H.; de Leeuw, G.; van den Brink, A. Maassen

    A nonlocal turbulence transport theory is presented by means of a novel analysis of the Reynolds stress, inter alia involving the construct of a sample path space and a stochastic hypothesis. An analytical sampling rate model (satisfying exchange) and a nonlinear scaling relation (mapping the path space onto the boundary layer) lead to an integro-differential equation for the mixing of scalar densities, which represents fully-developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process. The underlying near-wall behavior (i.e. for y +→0) of fluctuating velocities fully agrees with recent direct numerical simulations. The model involves a scaling exponent ɛ, with ɛ→∞ in the diffusion limit. For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ≈0.58. The significance of ɛ as a turbulence Cantor set dimension (in the logarithmic profile region, i.e. for y +→∞) is discussed.

  2. A Lagrangian Study of Southeast Pacific Boundary Layer Clouds

    Science.gov (United States)

    Painter, Gallia

    concentration which extend far offshore into regions of normally very clean cloud. We use Lagrangian trajectories to investigate the source of the high droplet concentrations of the mesoscale "hooks", and evaluate whether boundary layer transport of coastal pollutants alone can account for their extent. We find that boundary layer trajectories past 85 W do not pass sufficiently close to the coastline to explain high aerosol concentrations offshore.

  3. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    Science.gov (United States)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.

    2012-01-01

    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. The data files can be found on a supplemental CD.

  4. Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition

    Science.gov (United States)

    LaGraff, John E. (Editor)

    2007-01-01

    This volume contains materials presented at the Minnowbrook I-1993 Workshop on End-Stage Boundary Layer Transition, held at the Syracuse University Minnowbrook Conference Center, New York, from August 15 to 18, 1993. This volume was previously published as a Syracuse University report edited by John E. LaGraff. The workshop organizers were John E. LaGraff (Syracuse University), Terry V. Jones (Oxford University), and J. Paul Gostelow (University of Technology, Sydney). The workshop focused on physical understanding of the late stages of transition from laminar to turbulent flows, with the specific goal of contributing to improving engineering design of turbomachinery and wing airfoils. The workshop participants included academic researchers from the United States and abroad, and representatives from the gas-turbine industry and U.S. government laboratories. To improve interaction and discussions among the participants, no formal papers were required. The physical mechanisms discussed were related to natural and bypass transition, wake-induced transition, effects of freestream turbulence, turbulent spots, hairpin vortices, nonlinear instabilities and breakdown, instability wave interactions, intermittency, turbulence, numerical simulation and modeling of transition, heat transfer in boundary-layer transition, transition in separated flows, laminarization, transition in turbomachinery compressors and turbines, hypersonic boundary-layer transition, and other related topics. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The workshop summary and the plenary discussion transcript clearly outline future research needs.

  5. Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer

    Science.gov (United States)

    Sutherland, G.; Christensen, K. H.; Ward, B.

    2014-03-01

    It is expected that surface gravity waves play an important role in the dynamics of the ocean surface boundary layer (OSBL), quantified with the turbulent Langmuir number (La=u*/us0, where u* and us0 are the friction velocity and surface Stokes drift, respectively). However, simultaneous measurements of the OSBL dynamics along with accurate measurements of the wave and atmospheric forcing are lacking. Measurements of the turbulent dissipation rate ɛ were collected using the Air-Sea Interaction Profiler (ASIP), a freely rising microstructure profiler. Two definitions for the OSBL depth are used: the mixed layer derived from measurements of density >(hρ>), and the mixing layer >(hɛ>) determined from direct measurements of ɛ. When surface buoyancy forces are relatively small, ɛ∝La-2 only near the surface with no dependency on La at mid-depths of the OSBL when using hρ as the turbulent length scale. However, if hɛ is used then the dependence of ɛ with La-2 is more uniform throughout the OSBL. For relatively high destabilizing surface buoyancy forces, ɛ is proportional to the ratio of the OSBL depth against the Langmuir stability length LL. During destabilizing conditions, the mixed and mixing layer depths are nearly identical, but we have relatively few measurements under these conditions, rather than any physical implications. Observations of epsilon are compared with the OSBL regime diagram of Belcher et al. (2012) and are generally within an order of magnitude, but there is an improved agreement if hɛ is used as the turbulent length scale rather than hρ.

  6. Transition in oblique shock/boundary layer interactions at Mach 5.92

    Science.gov (United States)

    Dwivedi, Anubhav; Shrestha, Prakash; Hildebrand, Nathaniel; Nichols, J. W.; Jovanovic, M. R.; Candler, G. V.

    2016-11-01

    We use the compressible flow solver US3D to perform DNS of an oblique shock wave interacting with a laminar boundary layer over an adiabatic flat plate at Mach 5 . 92 . Simulations are repeated with different spanwise extents. The adverse pressure gradient created by the shock causes the boundary layer to separate, leading to the formation of a recirculation bubble downstream. We consider interactions of various strengths by varying the shock angle. A sufficiently strong interaction causes the flow to become 3 - D , unsteady and eventually transition to turbulence. We observe long streamwise streaks downstream of the reattachment point which eventually break into turbulence. In the present work, we characterize the spatio-temporal dynamics of the unsteady separation bubble and these streaks using Fourier analysis and Sparsity Promoting Dynamic Mode Decomposition. To investigate the origin of these streaks we also analyze the role of linear Görtler instability resulting from the curvature of the streamlines induced by the separation bubble. Supported by ONR, Grant No. N00014-15-1-2522.

  7. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  8. Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers

    Science.gov (United States)

    Ahn, B-K.; Graham, W. R.; Rizzi, S. A.

    2004-01-01

    As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.

  9. Radiative transfer in a polluted urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  10. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  11. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  12. Shock Wave Turbulent Boundary Layer Interaction in Hypersonic Flow

    Science.gov (United States)

    1975-06-01

    WORDS (Conllnum on rtvmf tldm II nocfmry Td Idmnllly by block number) Turbulent boundary layers Skin friction, heat transfer and pressure High... tD t{> • y rp < J -o ill ... |i| ;| ilh |I ti i llii ffPtffin i ini I ! til. ;■ ; ’ ! ’ : in •■•: \\1’. T ill j i i i...III [lii 5 ft" t H "H— im BJITT i’i 1 i Mt- B ianj ii ( !l!l Mi IF Ii ig| M»-H J , ■*« J J j 1JJ J 4^ Ul CD S D Z V) D -I O z > Ul QC

  13. Boundary layer height estimation by sodar and sonic anemometer measurements

    Energy Technology Data Exchange (ETDEWEB)

    Contini, D; Cava, D; Martano, P; Donateo, A; Grasso, F M [CNR - Istituto di Scienze dell' Atmosfera e del Clima, U. O. di Lecce Str. Prv. Lecce-Monteroni km 1.2, 73100, Lecce (Italy)], E-mail: d.contini@isac.cnr.it

    2008-05-01

    In this paper an analysis of different methods for the calculation of the boundary layer height (BLH) using sodar and ultrasonic anemometer measurements is presented. All the methods used are based on single point surface measurements. In particular the automatic spectral routine developed for Remtech sodar is compared with the results obtained with the parameterization of the vertical velocity variance, with the calculation of a prognostic model and with a parameterization based on horizontal velocity spectra. Results indicate that in unstable conditions the different methods provide similar pattern, with BLH relatively low, even if the parameterization of the vertical velocity variance is affected by a large scatter that limits its efficiency in evaluating the BLH. In stable nocturnal conditions the performances of the Remtech routine are lower with respect to the ones in unstable conditions. The spectral method, applied to sodar or sonic anemometer data, seems to be the most promising in order to develop an efficient routine for BLH determination.

  14. Hydromagnetic free convection currents effects on boundary layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Kwanza, J.K., E-mail: kwanzakioko@yahoo.co [Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi (Kenya); Marigi, E.M.; Kinyanjui, M. [Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi (Kenya)

    2010-06-15

    In this study we discuss an unsteady free convection MHD flow past semi-infinite vertical porous plate. We have considered the flow in the presence of a strong magnetic field and therefore the electromagnetic force is very large. This brings in the phenomenon of Hall and Ion-slip currents. The effects of these two parameters together with that of viscous dissipation and radiation absorption among others on velocity, temperature and concentration profiles are presented. The profiles are presented graphically. As the partial differential equations governing this problem are highly non-linear they are solved numerically by a finite difference method. It is found that in presence of heating of the plate by free convection current the velocity boundary layer thickness decreases.

  15. Human convective boundary layer and its impact on personal exposure

    DEFF Research Database (Denmark)

    Licina, Dusan

    in inaccurate exposure prediction. This highlights the importance of a detailed understanding of the complex air movements that take place in the vicinity of the human body and their impact on personal exposure. The two objectives of the present work are: (i) to examine the extent to which the room air...... temperature, ventilation flow, body posture, clothing insulation/design, table positioning and chair design affect the airflow characteristics (velocity, turbulence and temperature) around the human body; and (ii) to examine the pollution distribution within the human convective boundary layer (CBL....../s in front of the seated manikin. Dressing the nude manikin in a thin-tight clothing ensemble reduced the peak velocity in the breathing zone by 17%, and by 40% for a thick-loose ensemble. A lack of hair on the head increased the peak velocity from 0.17 to 0.187 m/s. Apart from their thermal insulation...

  16. Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction

    Science.gov (United States)

    Teh, E.-J.; Johansen, C. T.

    2016-11-01

    Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.

  17. Spatially Developing Secondary Instabilities in Compressible Swept Airfoil Boundary Layers

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.

    2011-01-01

    Two-dimensional eigenvalue analysis is used on a massive scale to study spatial instabilities of compressible shear flows with two inhomogeneous directions. The main focus of the study is crossflow dominated swept-wing boundary layers although the methodology can also be applied to study other type of flows, such as the attachment-line flow. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed, namely, fixing the spatial growth direction unambiguously through a non-orthogonal formulation of the linearized disturbance equations. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined.

  18. Rapid cycling of reactive nitrogen in the marine boundary layer.

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  19. The Stokes boundary layer for a thixotropic or antithixotropic fluid

    KAUST Repository

    McArdle, Catriona R.

    2012-10-01

    We present a mathematical investigation of the oscillatory boundary layer in a semi-infinite fluid bounded by an oscillating wall (the so-called \\'Stokes problem\\'), when the fluid has a thixotropic or antithixotropic rheology. We obtain asymptotic solutions in the limit of small-amplitude oscillations, and we use numerical integration to validate the asymptotic solutions and to explore the behaviour of the system for larger-amplitude oscillations. The solutions that we obtain differ significantly from the classical solution for a Newtonian fluid. In particular, for antithixotropic fluids the velocity reaches zero at a finite distance from the wall, in contrast to the exponential decay for a thixotropic or a Newtonian fluid.For small amplitudes of oscillation, three regimes of behaviour are possible: the structure parameter may take values defined instantaneously by the shear rate, or by a long-term average; or it may behave hysteretically. The regime boundaries depend on the precise specification of structure build-up and breakdown rates in the rheological model, illustrating the subtleties of complex fluid models in non-rheometric settings. For larger amplitudes of oscillation the dominant behaviour is hysteretic. We discuss in particular the relationship between the shear stress and the shear rate at the oscillating wall. © 2012 Elsevier B.V.

  20. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the

  1. Investigation of turbulent boundary layer structures using Tomographic PIV

    Science.gov (United States)

    Saikrishnan, Neelakantan; Longmire, Ellen; Wieneke, Bernd

    2008-11-01

    Tomographic particle image velocimetry (TPIV) data were acquired in the logarithmic region of a zero pressure gradient turbulent boundary layer flow at friction Reynolds number Reτ = 1160. Experiments were conducted in a suction type wind tunnel seeded with olive oil particles of diameter ˜ 1μm. The volume of interest was illuminated by two Nd:YAG laser beams expanded with appropriate optics into sheets of 8mm thickness in the wall-normal direction (z). Images were acquired by four 2k x 2k pixel cameras, and correlation of reconstructed fields provided the full velocity gradient tensor in a volume of 0.7δ x 0.7δ x 0.07δ, which resolved the region z^+ = 70-150 in the log layer. Various vortex identification techniques, such as Galilean decomposition and iso-surfaces of two- and three-dimensional swirl, were utilized to visualize and analyze the eddy structures present in instantaneous fields. The results of the present study will be compared to results from earlier experimental studies that relied on planar PIV data only to identify vortices and vortex packets as well as from a direct numerical simulation of fully developed channel flow at comparable Reτ.

  2. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  3. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Science.gov (United States)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  4. Coherent structures of a self-similar adverse pressure gradient turbulent boundary layer

    Science.gov (United States)

    Sekimoto, Atsushi; Kitsios, Vassili; Atkinson, Callum; Jiménez, Javier; Soria, Julio

    2016-11-01

    The turbulence statistics and structures are studied in direct numerical simulation (DNS) of a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL). The self-similar APG-TBL at the verged of separation is achieved by a modification of the far-field boundary condition to produce the desired pressure gradient. The turbulence statistics in the self-similar region collapse by using the scaling of the external velocity and the displacement thickness. The coherent structures of the APG-TBL are investigated and compared to those of zero-pressure gradient case and homogeneous shear flow. The support of the ARC, NCI and Pawsey SCC funded by the Australian and Western Australian governments as well as the support of PRACE funded by the European Union are gratefully acknowledged.

  5. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    Science.gov (United States)

    2014-06-01

    boundary-layer flow with gas injection 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Alexander V. Fedorov ...distribution unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander V. Fedorov * and Vitaly G. Soudakov...Laminar Flow, AGARD Report Number 709, 1984. 2. Fedorov , A., “Transition and Stability of High-Speed Boundary Layers,” Annu. Rev. Fluid Mech., Vol

  6. Boundary layer friction of solvate ionic liquids as a function of potential.

    Science.gov (United States)

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  7. HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS- HYPERSONIC INTERNATIONAL FLIGHT RESEARCH EXPERIMENTATION 5 (HIFIRE-5) AND CIRCULAR CONE

    Science.gov (United States)

    2016-10-01

    AFRL-RQ-WP-TR-2017-0098 HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS - HYPERSONIC INTERNATIONAL FLIGHT RESEARCH EXPERIMENTATION 5 (HiFIRE-5...DATES COVERED (From - To) October 2016 Interim 01 April 2015 – 13 June 2016 4. TITLE AND SUBTITLE HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS...during fiscal year 2016. The objective of this task is to better understand boundary layer transition in hypersonic flowfields with spanwise

  8. On the application of mixed-layer theory to the stratocumulus-topped boundary layer

    Science.gov (United States)

    Zhang, Yunyan

    In this dissertation, we explore the applicability of mixed-layer theory to represent stratocumulus-topped boundary layer (STBL). Mixed-layer theory is used to study the STBL diurnal cycle. Our results show that the diurnal evolution of cloud thickness is sensitive to the entrainment efficiency. Specifically with low entrainment efficiencies, the cloud thickness evolution is in a better agreement with observations. We explain these effects through a consideration of the equilibrium state of cloud boundaries and their adjustment timescales. The susceptibility of cloud albedo to droplet number density dominates the entrainment effects. This suggests that estimates of aerosol indirect effects from stratocumulus clouds will not be particularly sensitive to the way entrainment is represented in large-scale models. The low-cloud amount (LCA) is diagnosed based on the equilibrium solutions of the mixed-layer model (MLM). ECMWF Reanalysis (ERA-40) data serve as large-scale boundary conditions. Results are compared to the International Satellite Cloud Climatology Project D2 data, especially in light of the relationship between the LCA and the lower-troposphere stability (LTS). Our results show that the synoptic variability in divergence contributes to LCA climatology. This climatology reproduced from MLM is more sensitive to processes that redistribute the mass field as compared to heat and moisture. Other large-scale conditions contribute to LCA depending on their correlation with the LTS and the strength of the LTS signal in individual regions. An autoregressive noise model is proposed to represent the synoptic variability in divergence based on analysis of ERA-40 data. Using this model, the equilibrium cloud fraction is shown as a function of the mean divergence value, the noise level, and the noise autocorrelation time scale. Mixed-layer model with such noise produces a reasonable comparison to observations in LCA climatology. An interaction rule is specified based on

  9. Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe

    Science.gov (United States)

    Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff

    2017-06-01

    We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.

  10. Numerical Study of a Boundary Layer Bleedfor a Rocket-Based Combined-Cycle Inlet in Ejector Mode

    Science.gov (United States)

    Shi, Lei; He, Guoqiang; Qin, Fei; Wei, Xianggeng

    2014-12-01

    Fully integrated numerical simulations were performed for a ready-made central strut-based rocket-based combined-cycle (RBCC) engine operating in ejector mode, and the applicability of using a boundary layer bleed in the RBCC inlet designed for supersonic speeds was investigated in detail. The operational mechanism of the boundary layer bleed and its effects on the RBCC inlet and the engine under different off-design conditions in ejector mode were determined. The boundary layer bleed played different roles in the RBCC inlet for different flight regimes. When the RBCC engine took off, some air was entrained into the inlet through the bleed block, thereby inducing significant flow separation and a low-speed vortex, which deteriorated the inner flow and reduced the entraining air mass flow rate: thus, the total pressure loss increased and extra drag was exerted on the inlet. In the low subsonic regime, the bleed block had almost no impact on the RBCC engine and its inlet. However, as the RBCC engine accelerated into a high subsonic flight regime, the boundary layer bleed had a clearly positive effect, comprehensively improving the performance of the RBCC inlet. A boundary layer bleed operation strategy for the RBCC inlet in ejector mode was also developed in this study.

  11. Plasmons in spatially separated double-layer graphene nanoribbons

    Science.gov (United States)

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  12. Plasmons in spatially separated double-layer graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Mehran, E-mail: mh-bagheri@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19835-63113 (Iran, Islamic Republic of); Bahrami, Mousa [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, 08860 Castelldefels (Barcelona) (Spain)

    2014-05-07

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  13. Large biogenic contribution to boundary layer O3-CO regression slope in summer

    Science.gov (United States)

    Cheng, Ye; Wang, Yuhang; Zhang, Yuzhong; Chen, Gao; Crawford, James H.; Kleb, Mary M.; Diskin, Glenn S.; Weinheimer, Andrew J.

    2017-07-01

    Strong correlation between O3 and CO was observed during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) aircraft experiment in July 2011 over the Washington-Baltimore area. The observed correlation does not vary significantly with time or altitude in the boundary layer. The observations are simulated well by a regional chemical transport model. We analyze the model results to understand the factors contributing to the observed O3-CO regression slope, which has been used in past studies to estimate the anthropogenic O3 production amount. We trace separately four different CO sources: primary anthropogenic emissions, oxidation of anthropogenic volatile organic compounds, oxidation of biogenic isoprene, and transport from the lateral and upper model boundaries. Modeling analysis suggests that the contribution from biogenic isoprene oxidation to the observed O3-CO regression slope is as large as that from primary anthropogenic CO emissions. As a result of decrease of anthropogenic primary CO emissions during the past decades, biogenic CO from oxidation of isoprene is increasingly important. Consequently, observed and simulated O3-CO regression slopes can no longer be used directly with an anthropogenic CO emission inventory to quantify anthropogenic O3 production over the United States. The consistent enhancement of O3 relative to CO observed in the boundary layer, as indicated by the O3-CO regression slope, provides a useful constraint on model photochemistry and emissions.

  14. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  15. CFD simulation of neutral ABL flows; Atmospheric Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong Zhang

    2009-04-15

    This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z{sub 0}). In a CFD simulation of ABL flow, the mean wind velocity profile is generally described with either a logarithmic equation by the presence of aerodynamic roughness length z{sub 0} or an exponential equation by the presence of exponent. As indicated by some former researchers, the disagreement between wall function model and ABL velocity profile description will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D could do. In this paper, a new near wall treatment function is designed, which, in some degree, can correct the horizontal gradients problem. Based on the corrected model constants and near wall treatment function, a simulation of Askervein Hill is carried out. The wind condition is neutrally stratified ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results are reported. (au)

  16. Heterogeneous evaporation across a turbulent internal boundary layer

    Science.gov (United States)

    Shahraeeni, Ebrahim; Vanderborght, Jan; Vereecken, Harry

    2014-05-01

    In local evaporation from sufficiently uniform and large surfaces, horizontal advection close to the changes in surface condition is not significant. Under natural condition, this assumption is often invalid and horizontal inhomogeneity is important. When partially saturated air flows from a uniform dry land surface over a wet surface, all lower boundary conditions of transport equations change abruptly. Also surface humidity and roughness are likely to be different from their upwind values. Due to these changes, the velocity profile and turbulence structure of the airflow must readjust. The vertical profiles are no longer in equilibrium and the horizontal gradients do not equal to zero. When there is more than one of these changes in the domain of interest, the interaction between different patches with a contrast in roughness, temperature or surface water content is also important. Rigorous experimental and numerical analysis of turbulent transfer of mass and momentum in the so-called internal boundary layer (the region affected by such step changes in surface condition) is the aim of this work. A combination of numerical simulations using in-house codes and commercial softwares and experimental measurements in the environmental wind tunnel is performed. We are specifically interested in correct depiction of roughness, in a more accurate representation of the turbulent velocity profile and in a better description of turbulent diffusion close to the interface. A series of simplifying assumptions in the classical representation of this problem are investigated and a sensitivity analysis is performed to identify the contribution of neglected terms. We are also interested in the parameterization of the heat and mass exchange processes for the case with different wet patches in a background of dry soil, which is of interest in several field scale applications.

  17. Numerical study on dynamic characteristics for sharp opening procedure of boundary-layer suction slot

    Science.gov (United States)

    He, Yubao; Yin, Hang; Huang, Hongyan; Yu, Daren

    2017-08-01

    Based on the sharp forward of shock train and taking the forthcoming unstart for a background, the dynamic characteristics for sharp opening procedure of boundary-layer suction slot are investigated numerically using the dynamic mesh technique. Results indicate that the climbing path of shock train with the complex background waves exhibits a sharp and slow forward state at different time. The compression waves in the primary shock sweep the trailing edge of the separation bubble, and the recirculation within the shock train is communicated with the separation bubble, which reveals that the flow is in a critical state and is about to be unstart at the subsequent time. Furthermore, the dynamic pattern for sharp opening procedure of boundary-layer suction slot can be classified into four distinct stages, namely, the formation of the jet plume without suction mass loss, the formation of the barrier shock with suction mass loss characterized by gradient increase and subsequent two oscillations, the evolution of the barrier shock and jet plume with suction mass loss that ramps up via a series of discrete step increases, and the formation of the stable structure accompanied by the linear suction mass loss.

  18. Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    Science.gov (United States)

    Chapman, Keith; Glauser, Mark

    1996-01-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using

  19. Boundary-layer height detection with a ceilometer at a coastal site in western Denmark

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Hansen, Aksel Walle

    with those from turbulence measurements of a wind lidar and the two methods are in good agreement. It is found that detecting the boundary-layer height from turbulence kinetic energy considerations with the wind lidar is not recommendable for detecting the boundary layer height during the presence of clouds......One year of data from ceilometer measurements is used to estimate the atmospheric boundary-layer height at the coastal site Høvsøre in western Denmark. The atmospheric boundary-layer height is a fundamental parameter for the evaluation of the wind speed profile, and an essential parameter...... in atmospheric transport- and dispersion models. A new method of filtering clouds from the ceilometer data is presented. This allows for the inclusion of more than half of the data in the subsequent analysis, as the presence of clouds would otherwise complicate the boundary-layer height estimations. The boundary...

  20. The vertical structure of the boundary layer around compact objects

    Science.gov (United States)

    Hertfelder, Marius; Kley, Wilhelm

    2017-09-01

    Context. Mass transfer due to Roche lobe overflow leads to the formation of an accretion disk around a weakly magnetized white dwarf (WD) in cataclysmic variables. At the inner edge of the disk, the gas comes upon the surface of the WD and has to get rid of its excess kinetic energy in order to settle down on the more slowly rotating outer stellar layers. This region is known as the boundary layer (BL). Aims: In this work we investigate the vertical structure of the BL, which is still poorly understood. We shall provide details of the basic structure of the two-dimensional (2D) BL and how it depends on parameters such as stellar mass and rotation rate, as well as the mass-accretion rate. We further investigate the destination of the disk material and compare our results with previous one-dimensional (1D) simulations. Methods: We solve the 2D equations of radiation hydrodynamics in a spherical (r-ϑ) geometry using a parallel grid-based code that employs a Riemann solver. The radiation energy is considered in the two-temperature approach with a radiative flux given by the flux-limited diffusion approximation. Results: The BL around a non-rotating WD is characterized by a steep drop in angular velocity over a width of only 1% of the stellar radius, a heavy depletion of mass, and a high temperature ( 500 000 K) as a consequence of the strong shear. Variations in Ω∗,M∗, and Ṁ influence the extent of the changes of the variables in the BL but not the general structure. Depending on Ω∗, the disk material travels up to the poles or is halted at a certain latitude. The extent of mixing with the stellar material also depends on Ω∗. We find that the 1D approximation matches the 2D data well, apart from an underestimated temperature.

  1. Shallow marine cloud topped boundary layer in atmospheric models

    Science.gov (United States)

    Janjic, Zavisa

    2017-04-01

    A common problem in many atmospheric models is excessive expansion over cold water of shallow marine planetary boundary layer (PBL) topped by a thin cloud layer. This phenomenon is often accompanied by spurious light precipitation. The "Cloud Top Entrainment Instability" (CTEI) was proposed as an explanation of the mechanism controlling this process in reality thereby preventing spurious enlargement of the cloudy area and widely spread light precipitation observed in the models. A key element of this hypothesis is evaporative cooling at the PBL top. However, the CTEI hypothesis remains controversial. For example, a recent direct simulation experiment indicated that the evaporative cooling couldn't explain the break-up of the cloudiness as hypothesized by the CTEI. Here, it is shown that the cloud break-up can be achieved in numerical models by a further modification of the nonsingular implementation of the Mellor-Yamada Level 2.5 turbulence closure model (MYJ) developed at the National Centers for Environmental Prediction (NCEP) Washington. Namely, the impact of moist convective instability is included into the turbulent energy production/dissipation equation if (a) the stratification is stable, (b) the lifting condensation level (LCL) for a particle starting at a model level is below the next upper model level, and (c) there is enough turbulent kinetic energy so that, due to random vertical turbulent motions, a particle starting from a model level can reach its LCL. The criterion (c) should be sufficiently restrictive because otherwise the cloud cover can be completely removed. A real data example will be shown demonstrating the ability of the method to break the spurious cloud cover during the day, but also to allow its recovery over night.

  2. Is the boundary layer of an ionic liquid equally lubricating at higher temperature?

    Science.gov (United States)

    Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W

    2016-04-07

    Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.

  3. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  4. Experimental investigation of vortex properties in a turbulent boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan

    2006-05-01

    Dual-plane particle image velocimetry experiments were performed in a turbulent boundary layer with Reτ=1160 to obtain all components of the velocity gradient tensor. Wall-normal locations in the logarithmic and wake region were examined. The availability of the complete gradient tensor facilitates improved identification of vortex cores and determination of their orientation and size. Inclination angles of vortex cores were computed using statistical tools such as two-point correlations and joint probability density functions. Also, a vortex identification technique was employed to identify individual cores and to compute inclination angles directly from instantaneous fields. The results reveal broad distributions of inclination angles at both locations. The results are consistent with the presence of many hairpin vortices which are most frequently inclined downstream at an angle of 45∘ with the wall. According to the probability density functions, a relatively small percentage of cores are inclined upstream. The number density of forward leaning cores decreases from the logarithmic to the outer region while the number density of backward-leaning cores remains relatively constant. These trends, together with the correlation statistics, suggest that the backward-leaning cores are part of smaller, weaker structures that have been distorted and convected by larger, predominantly forward-leaning eddies associated with the local shear.

  5. Study of turbulent boundary layer structures using Tomographic PIV

    Science.gov (United States)

    Gao, Qi; Longmire, Ellen; Ortiz-Duenas, Cecilia

    2009-11-01

    Tomographic-PIV was applied to investigate vortical structures in the logarithmic region of turbulent boundary layers. Measurements were performed in a water channel facility with δ 110 mm for Reτ 2400 and 2900. Laser sheets with thickness up to 7mm were aligned parallel to the bounding surface. Four cameras with 2k x 2k pixels were placed in a rectangular array facing the measurement volume with tilt angle ˜30 to the wall normal direction. Magnification was ˜0.05 mm/pixel. The resulting measurement volumes were 0.8δ x 0.8δ in the streamwise and spanwise directions and 0.065δ or 120 viscous units in the wall-normal direction. Correlations were performed on 64^3 voxel volumes with 75% overlap yielding a vector spacing of 25^3 viscous units. The data were probed using swirl strength and direction as well as convection velocity to identify and characterize relatively large scale eddies and structures within the volumes. The results will be discussed and compared with results at similar wall-normal locations in lower Reynolds number DNS channel (Reτ=590, 934 of Moser et al., 1999 and del 'Alamo et al., 2004) and wind tunnel (Reτ=1160) flows.

  6. Nonmethane hydrocarbon chemistry in the remote marine boundary layer

    Science.gov (United States)

    Donahue, Neil M.; Prinn, Ronald G.

    1990-01-01

    A photochemical model of the remote marine boundary layer (MBL) is presented, with focus placed on the role of reactive nonmethane hydrocarbons (NMHC). A wide range of NMHC air-sea fluxes with various relative distributions of NMHC regions are considered. In particular, the flux magnitude at which NMHC emissions become significant, and then dominant, players in MBL chemistry is identified. Emphasis is placed on diurnal variability, diurnal ozone variations and sensitivity to NMHC emission fluxes, to CO, O3, H2O, and UV light, and to kinetics and isometric composition. Model runs indicate that, in the range consistent with current observations, the NMHCs may either dominate MBL chemistry, or simply be contributors at the 10-percent level. These model runs also show that existing observations of NMHCs in ocean water find them to scarce for fluxes from bulk-flux air-sea gas exchange models to be consistent with the fluxes needed in the proposed model to maintain the lowest observed MBL NMHC.

  7. Numerical analysis and optimization of boundary layer suction on airfoils

    Directory of Open Access Journals (Sweden)

    Shi Yayun

    2015-04-01

    Full Text Available Numerical approach of hybrid laminar flow control (HLFC is investigated for the suction hole with a width between 0.5 mm and 7 mm. The accuracy of Menter and Langtry’s transition model applied for simulating the flow with boundary layer suction is validated. The experiment data are compared with the computational results. The solutions show that this transition model can predict the transition position with suction control accurately. A well designed laminar airfoil is selected in the present research. For suction control with a single hole, the physical mechanism of suction control, including the impact of suction coefficient and the width and position of the suction hole on control results, is analyzed. The single hole simulation results indicate that it is favorable for transition delay and drag reduction to increase the suction coefficient and set the hole position closer to the trailing edge properly. The modified radial basis function (RBF neural network and the modified differential evolution algorithm are used to optimize the design for suction control with three holes. The design variables are suction coefficient, hole width, hole position and hole spacing. The optimization target is to obtain the minimum drag coefficient. After optimization, the transition delay can be up to 17% and the aerodynamic drag coefficient can decrease by 12.1%.

  8. The decay of wake vortices in the convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F.; Gerz, T.; Frech, M.; Doernbrack, A.

    2000-03-01

    The decay of three wake vortex pairs of B-747 aircraft in a convectively driven atmospheric boundary layer is investigated by means of large-eddy simulations (LES). This situation is considered as being hazardous as the updraft velocities of a thermal may compensate the induced descent speed of the vortex pair resulting in vortices stalled in the flight path. The LES results, however, illustrate that (i) the primary rectilinear vortices are rapidly deformed on the scale of the alternating updraft and downdraft regions; (ii) parts of the vortices stay on flight level but are quickly eroded by the enhanced turbulence of an updraft; (iii) longest living sections of the vortices are found in regions of relatively calm downdraft flow which augments their descent. Strip theory calculations are used to illustrate the temporal and spatial development of lift and rolling moments experienced by a following medium weight class B-737 aircraft. Characteristics of the respective distributions are analysed. Initially, the maximum rolling moments slightly exceed the available roll control of the B-737. After 60 seconds the probability of rolling moments exceeding 50% of the roll control, a value which is considered as a threshold for acceptable rolling moments, has decreased to 1% of its initial probability. (orig.)

  9. Effect of free-stream turbulence on boundary layer transition.

    Science.gov (United States)

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    Science.gov (United States)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  11. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...... spectral ranges,including the spectral gap, are revisited. Following the seasonal peak at 1 yr−1, the frequency spectrum f S( f ) increases with f +1 and gradually reaches a peak at about 0.2 day−1. From this peak to about 1 hr−1, the spectrum f S( f ) decreases with frequency with a −2 slope...

  12. Meteodrones - Meteorological Planetary Boundary Layer Measurements by Vertical Drone Soundings

    Science.gov (United States)

    Lauer, Jonas; Fengler, Martin

    2017-04-01

    As of today, there is a gap in the operational data collection of meteorological observations in the Planetary Boundary Layer (PBL). This lack of spatially and temporally reliable knowledge of PBL conditions and energy fluxes with the surface causes shortcomings in the prediction of micro- and mesoscale phenomena such as convection, temperature inversions, local wind systems or fog. The currently used remote sensing instruments share the drawback of only partially covering necessary variables. To fill this data gap, since 2012, Meteomatics has been developing a drone measurement system, the Meteodrone, to measure the parameters wind speed, wind direction, dewpoint, temperature and air pressure of the PBL up to 1.5 km above ground. Both the data quality and the assimilation into a regional numerical weather model could be determined in several pilot studies. Besides, a project in cooperation with the NSSL (National Severe Storms Laboratory) was launched in October 2016 with the goal of capturing pre-convective conditions for improved severe storm forecasts in Oklahoma. Also, related measurements, such as air pollution measurements in the Misox valley to determine LDSP values, were successfully conducted. The main goal of the project is the operational data collection of PBL measurements and the assimilation of this data into regional numerical weather forecast models. Considering the high data quality indicated in all conducted studies as well as the trouble-free execution, this goal is both worthwhile and realistic.

  13. Computational modeling of unsteady loads in tidal boundary layers

    Science.gov (United States)

    Alexander, Spencer R.

    As ocean current turbines move from the design stage into production and installation, a better understanding of oceanic turbulent flows and localized loading is required to more accurately predict turbine performance and durability. In the present study, large eddy simulations (LES) are used to measure the unsteady loads and bending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LES model captures currents due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism. Probability density functions, means, and variances of unsteady loads are calculated, and further statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point correlations, and velocity structure functions. The simulations show that waves and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast, boundary layer stability and wind speeds were shown to have minimal impact on the strength of off- axis turbine loads. It is shown both analytically and using simulation results that either transverse velocity structure functions or two-point transverse velocity spatial correlations are good predictors of unsteady loading in tidal channels.

  14. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  15. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    Science.gov (United States)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  16. An Aircraft Investigation of a Convective Boundary Layer Over Lake Michigan

    Science.gov (United States)

    1989-05-01

    convective boundary layer and the capping inversion, as a result of the exchange of air parcels between the inversion and boundary layer. Figure 1.2...une nappe liquids transportant de la chaleur par convection en regime permanent. Ann. Chim. Phys., 23, 62-144. Braham, R.R., and R.D. Kelly, 1982

  17. Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto

  18. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  19. Quantum boundary layer: a non-uniform density distribution of an ideal gas in thermodynamic equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, A. [Energy Institute, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)]. E-mail: sismanal@itu.edu.tr; Ozturk, Z.F. [Energy Institute, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Firat, C. [Energy Institute, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)

    2007-02-19

    Density distribution of an ideal Maxwellian gas confined in a finite domain is not uniform even in thermodynamic equilibrium. Near to the boundaries, there is a layer in which the density goes to zero. Existence of this boundary layer explains the shape and size dependence of the thermodynamic quantities in nano scale.

  20. Motion of a sphere in an oscillatory boundary layer: an optical ...

    Indian Academy of Sciences (India)

    Shankar Ghosh

    2006-11-12

    Introduction. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based study. Shankar Ghosh. November 12, 2006. Tata Institute of Fundamental Research. Co-workers : S. Bhattacharya and Prerna Sharma. Shankar Ghosh. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based ...

  1. Shooting method for solution of boundary-layer flows with massive blowing

    Science.gov (United States)

    Liu, T.-M.; Nachtsheim, P. R.

    1973-01-01

    A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.

  2. On boundary layer flow of a sisko fluid over a stretching sheet | Khan ...

    African Journals Online (AJOL)

    In this paper, the steady boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet is investigated. The Sisko fluid model, which is combination of power-law and Newtonian fluids in which the fluid may exhibit shear thinning/thickening behaviors, is considered. The boundary layer equations are derived ...

  3. Early Warning Signals for Regime Transition in the Stable Boundary Layer : A Model Study

    NARCIS (Netherlands)

    van Hooijdonk, I.G.S.; Moene, A. F.; Scheffer, M.; Clercx, H. J H; van de Wiel, B.J.H.

    2017-01-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically

  4. Marine boundary layer investigations in the False Bay, supported by optical refraction and scintillation measurements

    NARCIS (Netherlands)

    Jong, A.N. de; Eijk, A.M.J. van; Benoist, K.W.; Gunter, W.H.; Vrahimis, G.; October, F.J.

    2011-01-01

    Knowledge on the marine boundary layer is of importance for the prediction of the optical image quality obtained from long range targets. One property of the boundary layer, that can be studied rather easily by means of optical refraction measurements, is the vertical temperature profile. This

  5. Efficient modelling of aerodynamic flows in the boundary layer for high performance computing

    CSIR Research Space (South Africa)

    Smith, L

    2011-01-01

    Full Text Available A unique technique to couple boundary-layer solutions with an inviscid solver is introduced. The boundary-layer solution is obtained using the two-integral method to solve displacement thickness with Newton’s method, at a fraction of the cost of a...

  6. Numerical experiments in the stability of leading edge boundary layer flow. A two-dimensional study

    NARCIS (Netherlands)

    Theofilis, Vassilios; Theofilis, V.

    1993-01-01

    A numerical study is performed in order to gain insight to the stability of the infinite swept attachment line boundary layer. The basic flow is taken to be of the Hiemenz class with an added cross-flow giving rise to a constant thickness boundary layer along the attachment line. The full

  7. LOLAS: an optical turbulence profiler in the atmospheric boundary layer with extreme altitude resolution

    Science.gov (United States)

    Avila, R.; Avilés, J. L.; Wilson, R. W.; Chun, M.; Butterley, T.; Carrasco, E.

    2008-07-01

    We report the development and first results of an instrument called Low Layer SCIDAR (Scintillation Detection and Ranging) (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude resolution. The method is based on the Generalized SCIDAR (GS) concept, but unlike the GS instruments which need a 1-m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude resolution. Using a 200-arcsec-separation double star, we have obtained turbulence profiles with unprecedented 12-m resolution. The system incorporates necessary novel algorithms for autoguiding, autofocus and image stabilization. The results presented here were obtained at Mauna Kea Observatory. They show LOLAS capabilities but cannot be considered as representative of the site. A forthcoming paper will be devoted to the site characterization. The instrument was built as part of the Ground Layer Turbulence Monitoring Campaign on Mauna Kea for Gemini Observatory.

  8. Planetary boundary layer and circulation dynamics at Gale Crater, Mars

    Science.gov (United States)

    Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier

    2018-03-01

    The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace gas content within the crater. Our results show that the average time when the PBL height is deeper than the crater rim increases and decreases with the same rate and pattern as Curiosity's observations of the line-of-sight of dust within the crater and that the season when maximal (minimal) mixing is produced is Ls 225°-315° (Ls 90°-110°). Thus the diurnal and seasonal variability of the PBL depth seems to be the driver of the changes in the local dust content within the crater. A comparison with the available methane measurements suggests that changes in the PBL depth may also be one of the factors that accounts for the observed variability, with the model results pointing towards a local source to the north of the MSL site. The interaction between regional and local flows at Gale Crater is also investigated assuming that the meridional wind, the dynamically important component of the horizontal wind at Gale, anomalies with respect to the daily mean can be approximated by a sinusoidal function as they typically oscillate between positive (south to north) and negative (north to south) values that correspond to upslope/downslope or downslope/upslope regimes along the crater rim and Mount Sharp slopes and the dichotomy boundary. The smallest magnitudes are found in the northern crater floor in a region that

  9. Computer program to calculate three-dimensional boundary layer flows over wings with wall mass transfer

    Science.gov (United States)

    Mclean, J. D.; Randall, J. L.

    1979-01-01

    A system of computer programs for calculating three dimensional transonic flow over wings, including details of the three dimensional viscous boundary layer flow, was developed. The flow is calculated in two overlapping regions: an outer potential flow region, and a boundary layer region in which the first order, three dimensional boundary layer equations are numerically solved. A consistent matching of the two solutions is achieved iteratively, thus taking into account viscous-inviscid interaction. For the inviscid outer flow calculations, the Jameson-Caughey transonic wing program FLO 27 is used, and the boundary layer calculations are performed by a finite difference boundary layer prediction program. Interface programs provide communication between the two basic flow analysis programs. Computed results are presented for the NASA F8 research wing, both with and without distributed surface suction.

  10. Advances in Unsteady Boundary Layer Transition Research, Part II: Experimental Verification

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research into the unsteady boundary layer transition modeling and its validation. This, Part II, deals with the results of an inductive approach based on comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under periodic unsteady wake flow, in which the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  11. Current Challenges in Understanding and Forecasting Stable Boundary Layers over Land and Ice

    Directory of Open Access Journals (Sweden)

    Gert-Jan eSteeneveld

    2014-10-01

    Full Text Available Understanding and prediction of the stable atmospheric boundary layer is challenging. Many physical processes come into play in the stable boundary layer, i.e. turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent and gravity wave drag. The development of robust stable boundary-layer parameterizations for weather and climate models is difficult because of the multiplicity of processes and their complex interactions. As a result, these models suffer from biases in key variables, such as the 2-m temperature, boundary-layer depth and wind speed. This short paper briefly summarizes the state-of-the-art of stable boundary layer research, and highlights physical processes that received only limited attention so far, in particular orographically-induced gravity wave drag, longwave radiation divergence, and the land-atmosphere coupling over a snow-covered surface. Finally, a conceptual framework with relevant processes and particularly their interactions is proposed.

  12. Picard iterations of boundary-layer equations. [in singular-perturbation analysis of flightpath optimization problems

    Science.gov (United States)

    Ardema, M. D.; Yang, L.

    1985-01-01

    A method of solving the boundary-layer equations that arise in singular-perturbation analysis of flightpath optimization problems is presented. The method is based on Picard iterations of the integrated form of the equations and does not require iteration to find unknown boundary conditions. As an example, the method is used to develop a solution algorithm for the zero-order boundary-layer equations of the aircraft minimum-time-to-climb problem.

  13. Boundary layer models for calving marine outlet glaciers

    Science.gov (United States)

    Schoof, Christian; Davis, Andrew D.; Popa, Tiberiu V.

    2017-10-01

    We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010) based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.

  14. Boundary layer models for calving marine outlet glaciers

    Directory of Open Access Journals (Sweden)

    C. Schoof

    2017-10-01

    Full Text Available We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010 based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.

  15. Modelling wall pressure fluctuations under a turbulent boundary layer

    Science.gov (United States)

    Doisy, Yves

    2017-07-01

    The derivation of the wave vector-frequency (w-f) spectrum of wall pressure fluctuations below a turbulent boundary layer developed over a rigid flat plate is re-considered. The Lighthill's equation for pressure fluctuations is derived in a frame of reference fix with respect to the plate, at low Mach numbers, and transformed into the convected frame moving with the flow. To model the source terms of the Lighthill equation, it is assumed that in the inertial range, the turbulence is locally isotropic in the convected frame. The w-f spectrum of isotropic turbulence is obtained from symmetry considerations by extending the isotropy to space time, based on the concept of sweeping velocity. The resulting solution for the pressure w-f spectrum contains a term (the mean shear-turbulence term) which does not fulfill the Kraichnan Philipps theorem, due to the form of the selected turbulent velocity spectrum. The viscous effects are accounted for by a cut-off depending on wall distance; this procedure allows extending the model beyond the inertial range contribution. The w-f pressure spectrum is derived and compared to the experimental low wavenumber data of Farabee and Geib (1991) [8] and Bonness et al. (2010) [5], for which a good agreement is obtained. The derived expression is also compared to Chase theoretical model Chase (1987) [6] and found to agree well in the vicinity of the convective ridge of the subsonic domain and to differ significantly both in supersonic and subsonic low wavenumber limits. The pressure spectrum derived from the model and its scaling are discussed and compared to experimental data and to the empirical model of Goody (2002) [23], which results from the compilation of a large set of experimental data. Very good agreement is obtained, except at vanishing frequencies where it is claimed that the experimental results lack of significance due to the limited size of the experimental facilities. This hypothesis supported by the results obtained from

  16. Wall Effect on the Convective-Absolute Boundary for the Compressible Shear Layer

    Science.gov (United States)

    Robinet, Jean-Christophe; Dussauge, Jean-Paul; Casalis, Grégoire

    The linear stability of inviscid compressible shear layers is studied. When the layer develops at the vicinity of a wall, the two parallel flows can have a velocity of the same sign or of opposite signs. This situation is examined in order to obtain first hints on the stability of separated flows in the compressible regime. The shear layer is described by a hyperbolic tangent profile for the velocity component and the Crocco relation for the temperature profile. Gravity effects and the superficial tension are neglected. By examining the temporal growth rate at the saddle point in the wave-number space, the flow is characterized as being either absolutely unstable or convectively unstable. This study principally shows the effect of the wall on the convective-absolute transition in compressible shear flow. Results are presented, showing the amount of the backflow necessary to have this type of transition for a range of primary flow Mach numbers M1 up to 3.0. The boundary of the convective-absolute transition is defined as a function of the velocity ratio, the temperature ratio and the Mach number. Unstable solutions are calculated for both streamwise and oblique disturbances in the shear layer.

  17. Boundary Layer Receptivity to Three-Dimensional Freestream Disturbances at Two-Dimensional Roughness

    Science.gov (United States)

    Dietz, Anthony; Sheehan, Daniel; Davis, Sanford (Technical Monitor)

    1997-01-01

    The receptivity of a laminar boundary layer to an isolated three-dimensional convected disturbance is investigated in a low-speed wind tunnel experiment. The disturbance is created by the short-duration pulsed displacement of a small low-aspect-ratio wing located upstream of a flat plate. The height of the wing is set so that the convected disturbance grazes the edge of the flat-plate boundary layer. A receptivity site is provided by a two-dimensional roughness strip on the surface of the plate. The different propagation speeds of acoustic, convected and instability waves cause the various wave packets from the pulsed displacement to arrive at a downstream measurement station at different times, separating the phenomena and allowing them to be studied independently. Ensemble- averaged measurements are made with and without roughness on the plate. Preliminary analysis of the measurements suggest the presence of a two-dimensional T-S wave packet arising from an interaction between an acoustic wave and the roughness, and a three-dimensional T-S wave packet arising from an interaction between the localized convected disturbance and the roughness strip. The growth rates and spatial characteristics of the disturbances and the instability wave packets are measured as they propagate downstream.

  18. Confinement effects in shock/turbulent-boundary-layer interaction through wall-modeled LES

    Science.gov (United States)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Bodart, Julien; Helmer, David; Eaton, John

    2016-11-01

    Wall-modeled large-eddy simulations (WMLES) are used to investigate three-dimensional effects imposed by lateral confinement on the interaction of oblique shock waves impinging on turbulent boundary layers (TBLs) developed along the walls of a nearly-square duct. A constant Mach number, M = 2 . 05 , of the incoming air stream is considered, with a Reynolds number based on the incoming turbulent boundary layer momentum thickness Reθ 14 , 000 . The strength of the impinging shock is varied by increasing the height of a compression wedge located at a constant streamwise location that spans the top wall of the duct at a 20° angle. Simulation results are first validated with particle image velocimetry (PIV) experimental data obtained at several vertical planes. Emphasis is placed on the study of the instantaneous and time-averaged structure of the flow for the stronger-interaction case, which shows mean flow reversal. By performing additional spanwise-periodic simulations, it is found that the structure and location of the shock system and separation bubble are significantly modified by the lateral confinement. Low-frequency unsteadiness and downstream evolution of corner flows are also investigated. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  19. Effect of Boundary Layer Thickness on Secondary Structures in a Short Inlet Curved Duct

    Science.gov (United States)

    Gartner, Jeremy; Amitay, Michael

    2013-11-01

    The flow pattern in short ducts with aggressive curvature can lead in some cases to an asymmetric flow field. In the current work, a two dimensional honeycomb mesh was added upstream of the curved duct to create a pressure drop across it, and therefore an increased velocity deficit in the boundary layer profile. This velocity deficit led to a stronger streamwise separation, overcoming the flow mechanisms that result in the asymmetric flowfield. Experiments were conducted at M = 0.2, 0.44 and 0.58 in an expanding aggressive duct with square cross section with an area ratio of 1.27. Pressure data, together with Particle Image Velocimetry (PIV), verify the symmetry of the incoming flow field. Steady pressure distributions along the lower surface of the curved duct were obtained, as well as steady and time dependent total pressure distributions at the aerodynamic interface plane, enabling the analysis of the flow characteristics throughout the duct length. The effect of inserting a honeycomb was tested by increasing its height from 0 to 2.2 times the baseline flow boundary layer thickness upstream of the curve. Crosstream flow symmetry was achieved for specific geometrical configurations with a negligible decrease in the pressure recovery.

  20. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    Science.gov (United States)

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  1. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    1988-07-01

    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  2. Implementation of a correction factor for the Pohlhausen laminar boundary layer applied on the CEVA curved wall jet model

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2013-09-01

    Full Text Available Curved wall jets have many technical applications, ranging from aeronautical circulation controlled wings to micro-fluidics and cryogenics. This paper addresses the issue of correctly estimating the boundary layer separation for laminar curved wall jets. For this, the Pohlhausen model was used in conjunction with the CEVA wall jet model with a semi-empirical modification which increases the accuracy for very thin jets. The method is therefore a mix of analytical equations with curve fitted experimental data in order to produce a simple yet effective way of estimating the boundary layer velocity profile along the curved wall. In order to cross-check the results, Newman’s empirical equation – which only provides a separation location but no information regarding the velocity profile - for boundary layer separation was used with good results. The hereby model could be used as a pre-design tool for rapid assessment of aeronautical high-lift applications such as Upper Surface Blown (USB or entrainment wings.

  3. Boundary layer photochemistry during a total solar eclipse

    Directory of Open Access Journals (Sweden)

    Peter Fabian

    2001-05-01

    Full Text Available Simultaneous measurements of radiation, photolysis frequencies, O3, CO, OH, PAN and NOx species were carried out in the boundary layer, along with pertinent meteorological parameters, under total solar eclipse conditions. This experiment performed at about 34 solar zenith angle and noontime conditions thus provided a case study about the interactions between radiation and photochemistry under fast ''day-night'' and ''night-day'' transitions, at high solar elevation. The results reveal a close correlation of photolysis frequencies jO(1D and jNO2with the UV radiation flux. All three parameters show, due to the decreasing fraction of direct radiation at shorter wavelengths, much weaker cloud shading effects than global solar radiation. NO and OH concentrations decrease to essentially zero during totality. Subsequently, NO and OH concentrations increased almost symmetrically to their decrease preceding totality. The NO/NO2 ratio was proportional to jNO2over 30 min before and after totality indicating that the partitioning of NOx species is determined by jNO2. Simple box model simulations show the effect of reduced solar radiation on the photochemical production of O3 and PAN. WÄhrend der totalen Sonnenfinsternis am 11. August 1999 wurden simultane und kontinuierliche Messungen von O3, CO, OH, PAN and NOx, Strahlung, Photolysefrequenzen und relevanten meteorologischen Parametern durchgefÜhrt. Dieses Experiment, durchgefÜhrt etwa am Mittag, bei 34 Zenithwinkel der Sonne, ermöglichte die Untersuchung der Interaktion von Strahlung und Photochemie fÜr schnelle Tag-Nacht und Nacht-Tag-ÜbergÄnge bei hohem Sonnenstand. Die Ergebnisse zeigen eine enge Korrelation der Photolysefrequenzen jO(1D und jNO2 mit dem UV-Strahlungsfluss. Alle drei Parameter zeigen, wegen des abnehmenden Anteils direkter Sonnenstrahlung bei kurzen WellenlÄngen, erheblich geringere AbschwÄchung durch Wolken als die Globalstrahlung. NO und OH gehen wÄhrend der

  4. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    Science.gov (United States)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating

  5. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  6. Advances in Unsteady Boundary Layer Transition Research, Part I: Theory and Modeling

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research that deal with the unsteady boundary layer transition modeling and its validation. A new unsteady boundary layer transition model was developed based on a universal unsteady intermittency function. It accounts for the effects of periodic unsteady wake flow on the boundary layer transition. To establish the transition model, an inductive approach was implemented; the approach was based on the results of comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under a periodic unsteady wake flow, where the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  7. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    Science.gov (United States)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  8. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary.

    Science.gov (United States)

    Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M P; Asensio, Maria C; Batzill, Matthias

    2017-02-06

    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.

  9. A micro-meteorological experiment in the atmospheric boundary layer in Highveld region

    Energy Technology Data Exchange (ETDEWEB)

    Esau, I N; Zilitinkevich, S S [G.C. Rieber Climate Institute of Nansen Environmental and Remote Sensing Center, Thoermohlensgate 47, 5006, Bergen (Norway); Djolov, G; Rautenbach, C J deW, E-mail: igor.ezau@nersc.n [University of Pretoria (South Africa)

    2010-08-15

    Meteorology of the planetary boundary layer (PBL) is to large extent determined by turbulent processes. Those processes and their interaction with surface properties are not well understood. The processes over heterogeneous land surfaces are understood even less. To progress in the understanding simultaneous observations with a network of meteorological stations are needed. A joint project between Norwegian and South African research foundations funded a micrometeorological experiment in the Highveld area of the South Africa (MMEH). The experiment has been organized to collect data from 5 automatic meteorological stations placed at 7 km to 23 km separation distances from each other. The data were collected continuously over 2 years. This paper presents the idea, the theoretical background and the organization of the MMEH.

  10. A micro-meteorological experiment in the atmospheric boundary layer in Highveld region

    Science.gov (United States)

    Esau, I. N.; Zilitinkevich, S. S.; Djolov, G.; deW Rautenbach, C. J.

    2010-08-01

    Meteorology of the planetary boundary layer (PBL) is to large extent determined by turbulent processes. Those processes and their interaction with surface properties are not well understood. The processes over heterogeneous land surfaces are understood even less. To progress in the understanding simultaneous observations with a network of meteorological stations are needed. A joint project between Norwegian and South African research foundations funded a micrometeorological experiment in the Highveld area of the South Africa (MMEH). The experiment has been organized to collect data from 5 automatic meteorological stations placed at 7 km to 23 km separation distances from each other. The data were collected continuously over 2 years. This paper presents the idea, the theoretical background and the organization of the MMEH.

  11. Unsteady Mixed Convection Boundary Layer from a Circular Cylinder in a Micropolar Fluid

    Directory of Open Access Journals (Sweden)

    Anati Ali

    2010-01-01

    Full Text Available Most industrial fluids such as polymers, liquid crystals, and colloids contain suspensions of rigid particles that undergo rotation. However, the classical Navier-Stokes theory normally associated with Newtonian fluids is inadequate to describe such fluids as it does not take into account the effects of these microstructures. In this paper, the unsteady mixed convection boundary layer flow of a micropolar fluid past an isothermal horizontal circular cylinder is numerically studied, where the unsteadiness is due to an impulsive motion of the free stream. Both the assisting (heated cylinder and opposing cases (cooled cylinder are considered. Thus, both small and large time solutions as well as the occurrence of flow separation, followed by the flow reversal are studied. The flow along the entire surface of a cylinder is solved numerically using the Keller-box scheme. The obtained results are compared with the ones from the open literature, and it is shown that the agreement is very good.

  12. Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data

    Science.gov (United States)

    Caicedo, Vanessa; Rappenglück, Bernhard; Lefer, Barry; Morris, Gary; Toledo, Daniel; Delgado, Ruben

    2017-04-01

    Three algorithms for estimating the boundary layer heights are assessed: an aerosol gradient method, a cluster analysis method, and a Haar wavelet method. Over 40 daytime clear-sky radiosonde profiles are used to compare aerosol backscatter boundary layer heights retrieved by a Vaisala CL31 ceilometer. Overall good agreement between radiosonde- and aerosol-derived boundary layer heights was found for all methods. The cluster method was found to be particularly sensitive to noise in ceilometer signals and lofted aerosol layers (48.8 % of comparisons), while the gradient method showed limitations in low-aerosol-backscatter conditions. The Haar wavelet method was demonstrated to be the most robust, only showing limitations in 22.5 % of all observations. Occasional differences between thermodynamically and aerosol-derived boundary layer heights were observed.

  13. Geologic Basin Boundaries (Basins_GHGRP) GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes...

  14. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers

    Science.gov (United States)

    Stock, H. W.

    1978-01-01

    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  15. Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor

    Science.gov (United States)

    Hirt, Stefanie M.; Arend, David J.; Wolter, John D.

    2017-01-01

    The test section of the 8- by 6-Foot Supersonic Wind Tunnel at NASA Glenn Research Center was modified to produce the test conditions for a boundary-layer-ingesting propulsor. A test was conducted to measure the flow properties in the modified test section before the propulsor was installed. Measured boundary layer and freestream conditions were compared to results from computational fluid dynamics simulations of the external surface for the reference vehicle. Testing showed that the desired freestream conditions and boundary layer thickness could be achieved; however, some non-uniformity of the freestream conditions, particularly the total temperature, were observed.

  16. Marine boundary layer wind structure over the Bay of Bengal during MONEX79

    Energy Technology Data Exchange (ETDEWEB)

    SethuRaman, S.

    1981-01-01

    A marine boundary layer experiment was conducted at Digha, West Bengal, India, to determine the role of the atmospheric boundary layer on the Bay of Bengal cyclogenesis. The boundary layer experiment at Digha consisted of three main components: (1) a 10 m micrometeorological tower at the beach with instruments to observe turbulent fluxes of heat and momentum over the ocean; (2) a weather station that continuously recorded mean parameters; and (3) pilot balloon observations to a height of about 1000 m. The purpose of this paper is to discuss some of the preliminary results obtained through the analysis of the data.

  17. Boundary layer and fundamental problems of hydrodynamics (compatibility of a logarithmic velocity profile in a turbulent boundary layer with the experience values)

    Science.gov (United States)

    Zaryankin, A. E.

    2017-11-01

    The compatibility of the semiempirical turbulence theory of L. Prandtl with the actual flow pattern in a turbulent boundary layer is considered in this article, and the final calculation results of the boundary layer is analyzed based on the mentioned theory. It shows that accepted additional conditions and relationships, which integrate the differential equation of L. Prandtl, associating the turbulent stresses in the boundary layer with the transverse velocity gradient, are fulfilled only in the near-wall region where the mentioned equation loses meaning and are inconsistent with the physical meaning on the main part of integration. It is noted that an introduced concept about the presence of a laminar sublayer between the wall and the turbulent boundary layer is the way of making of a physical meaning to the logarithmic velocity profile, and can be defined as adjustment of the actual flow to the formula that is inconsistent with the actual boundary conditions. It shows that coincidence of the experimental data with the actual logarithmic profile is obtained as a result of the use of not particular physical value, as an argument, but function of this value.

  18. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    Science.gov (United States)

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  19. The Modelling of Particle Resuspension in a Turbulent Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan

    2011-10-20

    uncorrelated curve-fitted model. In view of recent numerical data for lift and drag forces in turbulent boundary layers, the lift and drag we have con sidered and the impact of these data on predictions made by the non-Gaussian R'n'R model are compared with those based on O'Neill formula. The results indicate that, in terms of the long-term resuspension fraction, the difference is minor. It is concluded that as the particle size decreases the L and B method will lead to less-and-less long-term resuspension. Finally the ultimate model that has been developed in this work is a hybrid version of the R'n'R model adapted for application to multilayer deposits based on the Friess and Yadigaroglu multilayer approach. The deposit is modelled in several overlying layers where the coverage effect (masking) of the deposit layers has been studied; in the first instance a monodisperse deposit with a coverage ratio factor was modelled where this was subsequently replaced by the more general case of a polydisperse deposit with a particle size distribution.

  20. Computational methods for investigation of surface curvature effects on airfoil boundary layer behavior

    Directory of Open Access Journals (Sweden)

    Xiang Shen

    2017-03-01

    Full Text Available This article presents computational algorithms for the design, analysis, and optimization of airfoil aerodynamic performance. The prescribed surface curvature distribution blade design (CIRCLE method is applied to a symmetrical airfoil NACA0012 and a non-symmetrical airfoil E387 to remove their surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analysis is used to investigate the effects of curvature distribution on aerodynamic performance of the original and modified airfoils. An inviscid–viscid interaction scheme is introduced to predict the positions of laminar separation bubbles. The results are compared with experimental data obtained from tests on the original airfoil geometry. The computed aerodynamic advantages of the modified airfoils are analyzed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 results in a larger laminar separation bubble at lower angles of attack and lower Reynolds numbers. It also affects the inherent performance of the airfoil at higher Reynolds numbers. It is shown that at relatively high angles of attack, a continuous slope-of-curvature distribution reduces the skin friction by suppressing both laminar and turbulent separation, and by delaying laminar-turbulent transition. It is concluded that the surface curvature distribution has significant effects on the boundary layer behavior and consequently an improved curvature distribution will lead to higher aerodynamic efficiency.

  1. Variable separation for time fractional advection-dispersion equation with initial and boundary conditions

    Directory of Open Access Journals (Sweden)

    Zhang Sheng

    2016-01-01

    Full Text Available In this paper, variable separation method combined with the properties of Mittag-Leffler function is used to solve a variable-coefficient time fractional advection-dispersion equation with initial and boundary conditions. As a result, a explicit exact solution is obtained. It is shown that the variable separation method can provide a useful mathematical tool for solving the time fractional heat transfer equations.

  2. New-particle formation events in a continental boundary layer: first results from the SATURN experiment

    Directory of Open Access Journals (Sweden)

    F. Stratmann

    2003-01-01

    Full Text Available During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.

  3. Coastal Stratocumulus-Topped Boundary Layers and the Role of Cloud-Top Entrainment

    National Research Council Canada - National Science Library

    Eleuterio, Daniel

    2004-01-01

    ...) to accurately forecast the height and structure of the Marine Boundary Layer (MBL) in the coastal zone is analyzed and compared to surface and aircraft observations from the Dynamics and Evolution of Coastal Stratus (DECS...

  4. Turbulence Models: Data from Other Experiments: Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers

    Data.gov (United States)

    National Aeronautics and Space Administration — Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers. This web page provides data from experiments that may be useful for the validation of turbulence...

  5. Study of the blowing impact on a hot turbulent boundary layer using Thermal Large Eddy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, G. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France); INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Husson, S. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Bataille, F. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France)], E-mail: Francoise.Daumas-Bataille@univ-perp.fr; Ducros, F. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France)

    2008-12-15

    We investigate Thermal Large Eddy Simulation in a complex case using Trio U. We develop a thermal turbulent inflow condition based on parallel flows in order to simulate a turbulent thermal boundary layer. This inflow condition is tested with a turbulent channel flow. We show that it produces fine profiles for velocity and temperature. Later, this inlet condition is used in the case of blowing through a porous plate. Two different blowing regimes are studied: the classical turbulent boundary layer and the blown off boundary layer. Comparisons show that we obtain similar experimental and numerical profiles (Brillant, G., Husson, S., Bataille, F., 2008. Experimental study of the blowing impact on a hot turbulent boundary layer. International Journal of Heat and Mass Transfer 51 (7-8), 1996-2005.). We finish with additional results obtained only through numerical simulations.

  6. Control Parameters for Boundary-Layer Instabilities in Unsteady Shock Interactions

    Directory of Open Access Journals (Sweden)

    LaVar King Isaacson

    2012-01-01

    Full Text Available This article presents the computation of a set of control parameters for the deterministic prediction of laminar boundary-layer instabilities induced by an imposed unsteady shock interaction. The objective of the study is exploratory in nature by computing a supersonic flight environment for flow over a blunt body and the deterministic prediction of the spectral entropy rates for the boundary layer subjected to an unsteady pressure disturbance. The deterministic values for the spectral entropy rate within the instabilities are determined for each control parameter. Computational results imply that the instabilities are of a span-wise vortex form, that the maximum vertical velocity wave vector components are produced in the region nearest the wall and that extended transient coherent structures are produced in the boundary layer at a vertical location slightly below the mid-point of the boundary layer.

  7. Turbulence Models: Shock Boundary Layer Interaction at M=2.05

    Data.gov (United States)

    National Aeronautics and Space Administration — Exp: Shock Boundary Layer Interaction at M=2.05. This web page provides data from experiments that may be useful for the validation of turbulence models. This...

  8. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, Andrey V. [Siberian Branch of the Russian Academy of Science, Novosibirsk (Russian Federation); Jung, Kwang Hyo; Chun, Ho Hwan; Lee, Inwon [Pusan National University, Busan (Korea, Republic of)

    2007-03-15

    In this study, experimental investigations were made regarding the effect of riblets on the streak instability in boundary layer. The streak instability is now regarded as a major source of the self-regeneration mechanism for the hairpin type coherent structures in turbulent boundary layer flow. Thus, it is important to control the instability to suppress the drag-inducing vortical structure in terms of drag reduction. Toward enhancing the measurement accuracy and spatial resolution, an enlarged version of riblets was applied to a streak which was artificially induced by a microwing in a laminar boundary layer. It is found that the riblets have attenuation effect on the streak instability, i.e., to reduce the spanwise velocity gradient of the quasi-streamwise streak in boundary layer.

  9. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, Andrey V. [Siberian Branch of the Russian Academy of Science, Novosibirsk (Russian Federation); Jung, Kwang Hyo; Chun, Ho Hwan; Lee, In Won [Pusan National University, Busan (Korea, Republic of)

    2007-01-15

    In this study, experimental investigations were made regarding the effect of riblets on the streak instability in boundary layer. The streak instability is now regarded as a major source of the self-regeneration mechanism for the hairpin type coherent structures in turbulent boundary layer flow. Thus, it is important to control the instability to suppress the drag-inducing vortical structure in terms of drag reduction. Toward enhancing the measurement accuracy and spatial resolution, an enlarged version of riblets was applied to a streak which was artificially induced by a microwing in a laminar boundary layer. It is found that the riblets have attenuation effect on the streak instability, i.e., to reduce the spanwise velocity gradient of the quasi-streamwise streak in boundary layer

  10. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  11. Global Stability Analysis of a Roughness Wake in a Falkner–Skan–Cooke Boundary Layer

    National Research Council Canada - National Science Library

    Brynjell-Rahkola, Mattias; Schlatter, Philipp; Hanifi, Ardeshir; Henningson, Dan S

    2015-01-01

    ..., FOI, SE-164 90 Stockholm, SwedenAbstractA global stability analysis of a Falkner–Skan–Cooke boundary layer with distributed three-dimensional surface roughness is per-formed using hig...

  12. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    National Research Council Canada - National Science Library

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L; O’Connor, Ewan J; Hogan, Robin J; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-01-01

    .... The need for improved long-term but comprehensive measurements at a marine low-cloud site motivated the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL; www.arm .gov/sites/amf/grw...

  13. A fast Linear Complementarity Problem (LCP) solver for separating fluid-solid wall boundary Conditions

    DEFF Research Database (Denmark)

    Andersen, Michael; Abel, Sarah Maria Niebe; Erleben, Kenny

    2017-01-01

    We address the task of computing solutions for a separating fluid-solid wall boundary condition model. We present an embarrassingly parallel, easy to implement, fluid LCP solver.We are able to use greater domain sizes than previous works have shown, due to our new solver. The solver exploits matrix...

  14. The Azimuthally Averaged Boundary Layer Structure of a Numerically Simulated Major Hurricane

    Science.gov (United States)

    2015-08-14

    Williams et al., 2013; Williams, 2015; Slocum et al., 2014]. Other work argues that a quasi-linear generaliza- tion of Ekman theory suffices for obtaining...secondary eyewall formation and evolution [cf. Williams et al., 2013; Williams, 2015; Slocum et al., 2014]. 4.2. Boundary Layer Dynamics Figures 3–5...September, Mon. Weather Rev., 142, 3–28. Slocum , C. J., G. J. Williams, R. K. Taft, and W. H. Schubert (2014), Tropical cyclone boundary layer shocks

  15. Assessment of CFD Modeling Capability for Hypersonic Shock Wave Boundary Layer Interactions

    Science.gov (United States)

    2015-11-30

    RUTGERS UNIVERSITY Final Technical Report ONR Grant N00014-14-1-0827 Assessment of CFD Modeling Capability for Hypersonic Shock Wave Boundary...Layer Interactions 30 November 2015 Doyle Knight Dept Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey 98 Brett...30 September 2015 4. TITLE AND SUBTITLE Assessment of CFD Modeling Capability for Hypersonic Shock Wave Boundary Layer Interactions 5a. CONTRACT

  16. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection (Briefing Charts)

    Science.gov (United States)

    2014-06-01

    boundary-layer flow with gas injection 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Alexander V. Fedorov ...Release; Distribution Unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander Fedorov and Vitaly Soudakov Moscow...Dispersion relation from WKB analysis*,**: *Guschin, V.R., & Fedorov , A.V., Fluid Dynamics, Vol. 24, No.1, 1989 **Guschin, V.R., & Fedorov , A.V., NASA

  17. Study of stable atmospheric boundary layer characterization over highveld region of South Africa

    CSIR Research Space (South Africa)

    Luhunga, P

    2011-09-01

    Full Text Available ATMOSPHERIC BOUNDARY LAYER CHARACTERIZATION OVER HIGHVELD REGION OF SOUTH AFRICA Philbert Luhunga1, 2, 3, George Djolov1, Venkataraman Sivakumar1,4,5 1 University of Pretoria, Department of Geography Geoinformatics and Meterology, Lynnwood road, 0001.... INTRODUCTION The stable atmospheric boundary layer (SBL) study over the Highveld South Africa has a special relevance, since it has the majority of the electric power generating plants located in this region. SBL is characterized by a steady wind near...

  18. Numerical Experiments in Error Control for Sound Propagation Using a Damping Layer Boundary Treatment

    Science.gov (United States)

    Goodrich, John W.

    2017-01-01

    This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].

  19. Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98) : a report

    NARCIS (Netherlands)

    Cuxart, J.; Yague, C.; Morales, G.; Terradelles, E.; Orbe, J.; Calvo, J.; Vilu-Guerau, de J.; Soler, M.R.; Infante, C.; Buenestado, P.; Espinalt, A.; Jorgensem, H.E.

    2000-01-01

    This paper describes the Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98), which took place over the northern Spanish plateau comprising relatively flat grassland, in September 1998. The main objectives of the campaign were to study the properties of the mid-latitude stable boundary

  20. Long-Wave Instability of Advective Flows in Inclined Layer with Solid Heat Conductive Boundaries

    CERN Document Server

    Sagitov, R V

    2011-01-01

    We investigate the stability of the steady convective flow in a plane tilted layer with ideal thermal conductivity of solid boundaries in the presence of uniform longitudinal temperature gradient. Analytically found the stability boundary with respect to the long-wave perturbations, find the critical Grashof number for the most dangerous among them of even spiral perturbation.

  1. Robust Controller for Turbulent and Convective Boundary Layers

    National Research Council Canada - National Science Library

    Speyer, Jason L; Kim, J. John

    2006-01-01

    Linear feedback controllers and estimators have been designed from the governing equations of a channel flow, linearized about the laminar mean flow, and a layer of heated fluid, linearized about the no-motion state...

  2. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  3. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Calderón-Muñoz, Williams R. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Energy Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Salas, Eduardo A. [CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Vargas-Uscategui, Alejandro [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Duarte-Mermoud, Manuel A. [Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Department of Electrical Engineering, Universidad de Chile, Av. Tupper 2007, Santiago (Chile)

    2016-03-15

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  4. Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study

    Science.gov (United States)

    van Hooijdonk, I. G. S.; Moene, A. F.; Scheffer, M.; Clercx, H. J. H.; van de Wiel, B. J. H.

    2017-02-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin-Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.

  5. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    Science.gov (United States)

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  6. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  7. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  8. Improved boundary layer height measurement using a fuzzy logic method: Diurnal and seasonal variabilities of the convective boundary layer over a tropical station

    Science.gov (United States)

    Allabakash, S.; Yasodha, P.; Bianco, L.; Venkatramana Reddy, S.; Srinivasulu, P.; Lim, S.

    2017-09-01

    This paper presents the efficacy of a "tuned" fuzzy logic method at determining the height of the boundary layer using the measurements from a 1280 MHz lower atmospheric radar wind profiler located in Gadanki (13.5°N, 79°E, 375 mean sea level), India, and discusses the diurnal and seasonal variations of the measured convective boundary layer over this tropical station. The original fuzzy logic (FL) method estimates the height of the atmospheric boundary layer combining the information from the range-corrected signal-to-noise ratio, the Doppler spectral width of the vertical velocity, and the vertical velocity itself, measured by the radar, through a series of thresholds and rules, which did not prove to be optimal for our radar system and geographical location. For this reason the algorithm was tuned to perform better on our data set. Atmospheric boundary layer heights obtained by this tuned FL method, the original FL method, and by a "standard method" (that only uses the information from the range-corrected signal-to-noise ratio) are compared with those obtained from potential temperature profiles measured by collocated Global Positioning System Radio Sonde during years 2011 and 2013. The comparison shows that the tuned FL method is more accurate than the other methods. Maximum convective boundary layer heights are observed between 14:00 and 15:00 local time (LT = UTC + 5:30) for clear-sky days. These daily maxima are found to be lower during winter and postmonsoon seasons and higher during premonsoon and monsoon seasons, due to net surface radiation and convective processes over this region being more intense during premonsoon and monsoon seasons and less intense in winter and postmonsoon seasons.

  9. Interaction Between Aerothermally Compliant Structures and Boundary-Layer Transition in Hypersonic Flow

    Science.gov (United States)

    Riley, Zachary Bryce

    The use of thin-gauge, light-weight structures in combination with the severe aero-thermodynamic loading makes reusable hypersonic cruise vehicles prone to fluid-thermal-structural interactions. These interactions result in surface perturbations in the form of temperature changes and deformations that alter the stability and eventual transition of the boundary layer. The state of the boundary layer has a significant effect on the aerothermodynamic loads acting on a hypersonic vehicle. The inherent relationship between boundary-layer stability, aerothermodynamic loading, and surface conditions make the interaction between the structural response and boundary-layer transition an important area of study in high-speed flows. The goal of this dissertation is to examine the interaction between boundary layer transition and the response of aerothermally compliant structures. This is carried out by first examining the uncoupled problems of: (1) structural deformation and temperature changes altering boundary-layer stability and (2) the boundary layer state affecting structural response. For the former, the stability of boundary layers developing over geometries that typify the response of surface panels subject to combined aerodynamic and thermal loading is numerically assessed using linear stability theory and the linear parabolized stability equations. Numerous parameters are examined including: deformation direction, deformation location, multiple deformations in series, structural boundary condition, surface temperature, the combined effect of Mach number and altitude, and deformation mode shape. The deformation-induced pressure gradient alters the boundary-layer thickness, which changes the frequency of the most-unstable disturbance. In regions of small boundary-layer growth, the disturbance frequency modulation resulting from a single or multiple panels deformed into the flowfield is found to improve boundary-layer stability and potentially delay transition. For the

  10. Separating, replacing, intersecting: The influence of context on the construction of the medical-nursing boundary.

    Science.gov (United States)

    Liberati, Elisa Giulia

    2017-01-01

    The distribution of work, knowledge, and responsibilities between doctors and nurses is a longstanding object of interest for medical sociologists. Whereas the strategies through which nurses and doctors construct their professional boundary have been thoroughly examined, little is known about why the regulation of the medical-nursing boundary varies across care settings. In the article, I argue that this gap in knowledge can be attributed to insufficient examination of the 'negotiation context', namely the features of the social and organisational environment that directly affect doctor-nurse boundary negotiations. Adopting a negotiated order perspective, and drawing data from a hospital ethnography, the article describes the different ways of constructing the medical-nursing boundary (separating, replacing, and intersecting) which were observed in three different care settings (a neurology ward, a neurosurgical ward, and an intensive care unit). Constant comparison of the observed interactional patterns led to the identification of three factors that significantly affected the construction of the medical-nursing boundary, specifically: patients' state of awareness, the type of clinical approach adopted by nurses and doctors, and the level of acuity on the ward. The article advances our knowledge of the medical-nursing boundary by shedding light on its flexible and contextual nature and by adding further nuance to the boundary-blurring/boundary-reinforcing dichotomy. New features of the 'negotiation context' are identified that enable more convincing explanations of why the medical-nursing boundary varies across care settings. Finally, the study advances the negotiated order theory by offering a framework for considering the structural differences that shape local negotiations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Velocity Spectra in the Unstable Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Højstrup, Jørgen

    1982-01-01

    Models for velocity spectra of all three components in the lower half of the unstable PBL are presented. The model spectra are written as a sum of two parts, nS(n) = A(fi, z/zi)w*2 + B(f, z/zi)u*02, a mixed layer part with a stability dependence, and a surface layer part without stability...... dependence and with negligible influence of z/zi in B in the surface layer; A is independent of z/zi for the horizontal components. The model agrees very well with data for variances, peak frequencies and spectra from the Kansas and Minnesota experiments. Requirements for models of spectra in the upper half...

  12. Exact semi-separation of variables in waveguides with non-planar boundaries

    Science.gov (United States)

    Athanassoulis, G. A.; Papoutsellis, Ch. E.

    2017-05-01

    Series expansions of unknown fields Φ =∑φn Zn in elongated waveguides are commonly used in acoustics, optics, geophysics, water waves and other applications, in the context of coupled-mode theories (CMTs). The transverse functions Zn are determined by solving local Sturm-Liouville problems (reference waveguides). In most cases, the boundary conditions assigned to Zn cannot be compatible with the physical boundary conditions of Φ, leading to slowly convergent series, and rendering CMTs mild-slope approximations. In the present paper, the heuristic approach introduced in Athanassoulis & Belibassakis (Athanassoulis & Belibassakis 1999 J. Fluid Mech. 389, 275-301) is generalized and justified. It is proved that an appropriately enhanced series expansion becomes an exact, rapidly convergent representation of the field Φ, valid for any smooth, non-planar boundaries and any smooth enough Φ. This series expansion can be differentiated termwise everywhere in the domain, including the boundaries, implementing an exact semi-separation of variables for non-separable domains. The efficiency of the method is illustrated by solving a boundary value problem for the Laplace equation, and computing the corresponding Dirichlet-to-Neumann operator, involved in Hamiltonian equations for nonlinear water waves. The present method provides accurate results with only a few modes for quite general domains. Extensions to general waveguides are also discussed.

  13. Space-time measurements in a shock wave/turbulent boundary layer interaction

    Science.gov (United States)

    Schreyer, Anne-Marie; Dupont, Pierre

    2014-11-01

    We study a reflected shock interaction with separation at Mach 2, contributing to a better understanding of rocket engine nozzle flows. The flow field contains a wide range of characteristic frequencies between O (100) Hz for the oscillation of the reflected shock and O (100) kHz for the turbulent microscales. To explain the origin and interdependence of the physical phenomena in the interaction, we need access to the spatio-temporal links. We thus require a measurement technique allowing the resolution of the entire frequency range while also providing sufficient spatial resolution and a large field of view. Our newly developed Dual-PIV system satisfies these requirements. First measurements with this system in an interaction flow field were performed in the continuous hypo-turbulent wind-tunnel at IUSTI at a momentum thickness Reynolds number of Reθ = 5024 and a deflection angle of θ = 8 .75° . We present a detailed characterization of the flow field including turbulence measurements. From measurements at a range of temporal delays, we determined autocorrelations at crucial points in the flow field (incoming boundary layer, mixing layer, relaxation zone). From these, spatio-temporal information like the integral scales and the convection velocity are deduced. This work received financial support by the CNES within the research program ATAC and also the ANR within the program DECOMOS. This support is gratefully acknowledged.

  14. On the problem of Plasma Sheet Boundary Layer identification from plasma moments in Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    E. E. Grigorenko

    2012-09-01

    Full Text Available The problem of identification of the interface region between the lobe and the Plasma Sheet (PS – the Plasma Sheet Boundary Layer (PSBL – using ion moments and magnetic field data often arises in works devoted to statistical studies of various PSBL phenomena. Our experience in the identification of this region based on the analysis of ion velocity distribution functions demonstrated that plasma parameters, such as the ion density and bulk velocity, the plasma beta or the dynamic pressure vary widely depending on the state of magnetotail activity. For example, while field-aligned beams of accelerated ions are often observed propagating along the lobeward edge of the PSBL there are times when no signatures of these beams could be observed. In the last case, a spacecraft moving from the lobe region to the PS registers almost isotropic PS-like ion velocity distribution. Such events may be classified as observations of the outer PS region. In this paper, we attempt to identify ion parameter ranges or their combinations that result in a clear distinction between the lobe, the PSBL and the adjacent PS or the outer PS regions. For this we used 100 crossings of the lobe-PSBL-PS regions by Cluster spacecraft (s/c made in different periods of magnetotail activity. By eye inspection of the ion distribution functions we first identify and separate the lobe, the PSBL and the adjacent PS or outer PS regions and then perform a statistical study of plasma and magnetic field parameters in these regions. We found that the best results in the identification of the lobe-PSBL boundary are reached when one uses plasma moments, namely the ion bulk velocity and density calculated not for the entire energy range, but for the energies higher than 2 keV. In addition, we demonstrate that in many cases the plasma beta fails to correctly identify and separate the PSBL and the adjacent PS or the outer PS regions.

  15. Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development

    NARCIS (Netherlands)

    Heerwaarden, van C.C.; Vilà-Guerau de Arellano, J.; Moene, A.F.; Holtslag, A.A.M.

    2009-01-01

    The influence of dry-air entrainment on surface heat fluxes and the convective boundary-layer (CBL) properties is studied for vegetated land surfaces, using a mixed-layer CBL model coupled to the Penman¿Monteith equation under a wide range of conditions. In order to address the complex behaviour of

  16. Formulation of a Prototype Coupled Atmospheric and Oceanic Boundary Layer Model.

    Science.gov (United States)

    1982-12-01

    layers. The approach will be to compare observed evolutions in the oceanic and atmospheric boundary layers with predictions from bulk modelo wherein...a very complex subject and is beyond the scope of this paper. An excellent review of this sub- ject has beer. published by Fairall (1981). An

  17. A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2013-01-01

    Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.

  18. Control of shock-wave boundary layer interaction using steady micro-jets

    Science.gov (United States)

    Verma, S. B.; Manisankar, C.; Akshara, P.

    2015-09-01

    An experimental investigation was conducted to control the amplitude of shock unsteadiness associated with the interaction induced by a cylindrical protuberance on a flat plate in a Mach 2.18 flow. The control was applied in the form of an array of steady micro air-jets of different configurations with variation in pitch and skew angle of the jets. The effect of air-jet supply pressure on control was also studied. Each of the micro-jet configurations was placed 20 boundary layer thicknesses upstream of the leading edge of the cylinder. The overall interaction is seen to get modified for all control configurations and shows a reduction in both separation- and bow-shock strengths and in triple-point height. A significant reduction in the peak rms value is also observed in the intermittent region of separation for each case. For pitched jets placed in a zig-zag configuration, good control effectiveness is achieved at control pressures similar to the stagnation pressure of the freestream. At higher control pressures, however, their obstruction component increases and if these jets are not spaced sufficiently far apart, the effectiveness of their control begins to drop due to the beginning of spanwise jet-to-jet interaction. On the other hand, pitching or skewing the jets to reduces the obstruction component considerably which at lower control pressures shows lower effectiveness. But at higher control pressure, the effectiveness of these configurations continues to increase unlike the pitched jets.

  19. An Experimental Investigation of the Boundary Layer under Pack Ice

    Science.gov (United States)

    1975-01-01

    Layer- Under Pack Ice- 6. PERFORMING ORG. REPORT NUMBER 7. AU.THOR(s) -8. CONTRACT OR GRANT’NUMBER(r) ’ eMiles -G. McPhee N-00014-67-A-0103-0021 .N-00014... nolds number the range of the spectrum in which dissipation occurs is locally Isotropic and depends only on the viscosity, v, and the energy

  20. Dynamics, thermodynamics, radiation, and cloudiness associated with cumulus-topped marine boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, Virendra P. [Argonne National Lab. (ANL), Argonne, IL (United States); Miller, Mark [Rutgers Univ., New Brunswick, NJ (United States)

    2016-11-01

    The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur at temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.

  1. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed...... which includes Vd and an effective surface source strength, Si, which is a function of the true surface source strength, Si, and the particle transport properties below the reference height. The general expression for the surface flux is incorporated into a dynamic mixed layer model of the type...... developed by Davidson et al. (1983). This three layer model (diffusion sublayer, turbulent surface layer and mixed layer) is applied to an open ocean marine regime where boundary layer advection is ignored. The aerosol concentration in the boundary layer is considered to consist of sea salt particles...

  2. Effects of Refractive Index and Diffuse or Specular Boundaries on a Radiating Isothermal Layer

    Science.gov (United States)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Equilibrium temperatures of an absorbing-emitting layer were obtained for exposure to incident radiation and with the layer boundaries either specular or diffuse. For high refractive indices the surface condition can influence the radiative heat balance if the layer optical thickness is small. Hence for a spectrally varying absorption coefficient the layer temperature is affected if there is significant radiative energy in the spectral range with a small absorption coefficient. Similar behavior was obtained for transient radiative cooling of a layer where the results are affected by the initial temperature and hence the fraction of energy radiated in the short wavelength region where the absorption coefficient is small. The results are a layer without internal scattering. If internal scattering is significant, the radiation reaching the internal surface of a boundary is diffused and the effect of the two different surface conditions would become small.

  3. Numerical modeling of the boundary layer Ekman using explicit algebraic turbulence model

    Science.gov (United States)

    Kurbatskii, Albert; Kurbatskaya, Lyudmila

    2017-10-01

    Modeling turbulence is an important object of environmental sciences for describing an essential turbulent transport of heat and momentum in the boundary layer of the atmosphere. The many turbulence model used in the simulation of flows in the environment, based on the concept of eddy viscosity, and buoyancy effects are often included in the expression for the turbulent fluxes through empirical functions, based on the similarity theory of Monin-Obukhov, fair, strictly speaking, only in the surface layer. Furthermore, significant progress has been made in recent years in the development broader than standard hypothesis turbulent viscosity models for the eddy diffusivity momentum and heat, as a result of the recording of differential equations for the Reynolds stresses and vector turbulent heat flux in a weakly-equilibrium approximation, which neglects advection and the diffusion of certain dimensionless quantities. Explicit algebraic model turbulent Reynolds stresses and heat flux vector for the planetary boundary layer is tested in the neutral atmospheric boundary layer over the homogeneous rough surface. The present algebraic model of turbulence built on physical principles RANS (Reynolds Average Navier Stokes) approach for stratified turbulence uses three prognostic equations and shows correct reproduction of the main characteristics of the Ekman neutral planetary boundary layer (PBL): the components average of wind velocity, the angle of wind turn, turbulence statistics. Test calculations shows that this turbulence model can be used for the purposeful researches of the atmospheric boundary layer for solving of various problems of the environment.

  4. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (II)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further downstream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall. (author). 21 refs., 12 figs.

  5. Numerical modelling of heat transfer in the layer of viscous incompressible liquid with free boundaries

    Directory of Open Access Journals (Sweden)

    Rezanova Ekaterina

    2017-01-01

    Full Text Available The dynamics of a viscous incompressible liquid layer and the temperature distribution in it are investigated numerically in three-dimensional case. The planar layer with free boundaries under condition of zero gravity is studied on the basis of the special class of exact solutions of the Navier-Stokes equations. The thermocapillary forces and additional tangential stresses on the boundaries caused by the environment are taken into account. The influence of additional tangential stresses on the layer dynamics and heat distribution is studied.

  6. Free surface simulation of a two-layer fluid by boundary element method

    Directory of Open Access Journals (Sweden)

    Weoncheol Koo

    2010-09-01

    Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.

  7. An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid-structure interaction problems

    Science.gov (United States)

    Farhat, Charbel; Lakshminarayan, Vinod K.

    2014-04-01

    Embedded Boundary Methods (EBMs) for Computational Fluid Dynamics (CFD) are usually constructed in the Eulerian setting. They are particularly attractive for complex Fluid-Structure Interaction (FSI) problems characterized by large structural motions and deformations. They are also critical for flow problems with topological changes and FSI problems with cracking. For all of these problems, the alternative Arbitrary Lagrangian-Eulerian (ALE) methods are often unfeasible because of the issue of mesh crossovers. However for viscous flows, Eulerian EBMs for CFD do not track the boundary layers around dynamic rigid or flexible bodies. Consequently, the application of these methods to viscous FSI problems requires either a high mesh resolution in a large part of the computational fluid domain, or adaptive mesh refinement. Unfortunately, the first option is computationally inefficient, and the second one is labor intensive. For these reasons, an alternative approach is proposed in this paper for maintaining all moving boundary layers resolved during the simulation of a turbulent FSI problem using an EBM for CFD. In this approach, which is simple and computationally reasonable, the underlying non-body-fitted mesh is rigidly translated and/or rotated in order to track the rigid component of the motion of the dynamic obstacle. Then, the flow computations away from the embedded surface are performed using the ALE framework, and the wall boundary conditions are treated by the chosen Eulerian EBM for CFD. Hence, the solution of the boundary layer tracking problem proposed in this paper can be described as an ALE implementation of a given EBM for CFD. Its basic features are illustrated with the Large Eddy Simulation using a non-body-fitted mesh of a turbulent flow past an airfoil in heaving motion. Its strong potential for the solution of challenging FSI problems at reasonable computational costs is also demonstrated with the simulation of turbulent flows past a family of

  8. Doppler Profiler and Radar Observations of Boundary Layer Variability during the Landfall of Tropical Storm Gabrielle.

    Science.gov (United States)

    Knupp, Kevin R.; Walters, Justin; Biggerstaff, Michael

    2006-01-01

    Detailed observations of boundary layer structure were acquired on 14 September 2001, prior to and during the landfall of Tropical Storm Gabrielle. The Mobile Integrated Profiling System (MIPS) and the Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) were collocated at the western Florida coastline near Venice, very close to the wind center at landfall. Prior to landfall, the boundary layer was rendered weakly stable by a long period of evaporational cooling and mesoscale downdrafts within extensive stratiform precipitation that started 18 h before landfall. The cool air mass was expansive, with an area within the 23°C surface isotherm of about 50 000 km2. East-northeasterly surface flow transported this cool air off the west coast of Florida, toward the convergent warm core of the Gabrielle, and promoted the development of shallow warm and cold fronts that were prominent during the landfall phase.Airflow properties of the boundary layer around the coastal zone are examined using the MIPS and SMART-R data. Wind profiles exhibited considerable temporal variability throughout the period of observations. The stable offshore flow within stratiform precipitation exhibited a modest jet that descended from about 600 to 300 m within the 20-km zone centered on the coastline. In contrast, the onshore flow on the western side of the wind center produced a more turbulent boundary layer that exhibited a well-defined top varying between 400 and 1000 m MSL. The horizontal variability of each boundary layer is examined using high-resolution Doppler radar scans at locations up to 15 km on either side of the coastline, along the mean flow direction of the boundary layer. These analyses reveal that transitions in boundary layer structure for both the stable and unstable regimes were most substantial within 5 km of the coastline.

  9. Multi-layer statistical gravity on the boundary

    Science.gov (United States)

    Mandrin, Pierre A.

    2017-08-01

    Starting from an important research path, we consider gravity as a collective phenomenon governed by statistical mechanics. While previous studies have focussed on the thermodynamic heat flow across a 2d-horizon as perceived by a single, accelerated observer, we evaluate here the number of microscopic states arising for multiple observers perceiving multiple horizons within foliations of the boundary of a space-time region. This yields a temperature-independent, Boltzmann-type “entropy” which is equivalent to the boundary action and which we call m-entropy. According to its statistical interpretation, the m-entropy distribution as a function of the gravitational field is maximum when Einstein’s Field Equations hold. However, if the number of “atoms of space” is small, Einstein’s Equations do not hold and no sharp geometry can be defined. On the other hand, the transition probability of microstates can be computed and can be interpreted as processes of a (alternative) model of quantum space-time.

  10. The Influence of Boundary Layer Parameters on Interior Noise

    Science.gov (United States)

    Palumbo, Daniel L.; Rocha, Joana

    2012-01-01

    Predictions of the wall pressure in the turbulent boundary of an aerospace vehicle can differ substantially from measurement due to phenomena that are not well understood. Characterizing the phenomena will require additional testing at considerable cost. Before expending scarce resources, it is desired to quantify the effect of the uncertainty in wall pressure predictions and measurements on structural response and acoustic radiation. A sensitivity analysis is performed on four parameters of the Corcos cross spectrum model: power spectrum, streamwise and cross stream coherence lengths and Mach number. It is found that at lower frequencies where high power levels and long coherence lengths exist, the radiated sound power prediction has up to 7 dB of uncertainty in power spectrum levels with streamwise and cross stream coherence lengths contributing equally to the total.

  11. Micro-actuators for Turbulent Boundary Layer Control

    Science.gov (United States)

    Lee, Conrad; Colmenero, Gerardo; Goldstein, David; Wu, Kevin; Breuer, Kenneth

    2003-11-01

    We present direct numerical simulations and experiments on micro-jet control of a turbulent channel flow. The simulation code is pseudo-spectral and uses a virtual surface approach (immersed boundaries created with body forces) to model arrays of individually controlled rectangular slots in a doubly-periodic domain. Flush-mounted sensors are positioned either upstream (to detect gradients of streamwise vorticity) or directly over the actuators (to detect wall-normal velocity). The results emphasize the differences between earlier simulations using continuously variable blowing and suction and what is physically attainable using discrete actuators and sensors. Results show small drag reductions occur with the discrete actuators. Comparisons are made with physical experiments designed to closely match the simulations. Here, arrays of flush-mounted actuators force a low-Reynolds number turbulent channel flow in response to upstream-mounted shear sensors. The response of the flow is measured using PIV.

  12. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    cost than e.g. using large-eddy simulations. The developed ABL model is successfully validated using a range of different test cases with increasing complexity. Data from several large scale field campaigns, wind tunnel experiments, and previous numerical simulations is presented and compared against...... model results. A method is developed how to simulate the time-dependant non-neutral ABL flow over complex terrain: a precursor simulation is used to specify unsteady inlet boundary conditions on complex terrain domains. The advantage of the developed RANS model framework is its general applicability....... All implementations in the ABL model are tuning free, and except for standard site specific input parameters, no additional model coefficients need to be specified before the simulation. In summary the results show that the implemented modifications are applicable and reproduce the main flow...

  13. Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction

    Science.gov (United States)

    Campbell, Charles H.; King, Rudolph A.; Kergerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.

    2010-01-01

    Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon the framework of correlation techniques that have been in use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. The basic tenets that guided the formulation and implementation of the Orbiter Return To Flight boundary layer transition prediction capability will be reviewed as a recommended format for future empirical correlation efforts. The validity of this approach has since been demonstrated by very favorable comparison of recent entry flight testing performed with the Orbiter Discovery, which will be graphically summarized. These flight data can provide a means to validate discrete protuberance engineering correlation approaches as well as high fidelity prediction methods to higher confidence. The results of these Orbiter engineering and flight test activities only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information-related to the Orbiter empirical boundary layer transition

  14. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    Science.gov (United States)

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  15. Experimental Investigation of Subsonic Turbulent Boundary Layer Flow Over a Wall-Mounted Axisymmetric Hill

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2016-01-01

    An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data

  16. Overview of Boundary Layer Transition Research in Support of Orbiter Return To Flight

    Science.gov (United States)

    Berry, Scott A.; Horvath, Thomas J.; Greene, Francis A.; Kinder, Gerald R.; Wang, K. C.

    2006-01-01

    A predictive tool for estimating the onset of boundary layer transition resulting from damage to and/or repair of the thermal protection system was developed in support of Shuttle Return to Flight. The boundary layer transition tool is part of a suite of tools that analyze the aerothermodynamic environment to the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time (and thus Mach number) at transition onset is predicted to help define the aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local thermal protection system and structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against select flight data. Computed local boundary layer edge conditions were used to correlate the results, specifically the momentum thickness Reynolds number over the edge Mach number and the boundary layer thickness. For the initial Return to Flight mission, STS-114, empirical curve coefficients of 27, 100, and 900 were selected to predict transition onset for protuberances based on height, and cavities based on depth and length, respectively.

  17. Model Simulations of the Arctic Atmospheric Boundary Layer from the SHEBA Year

    Energy Technology Data Exchange (ETDEWEB)

    Tjernstroem, Michael; Zagar, Mark; Svensson, Gunilla [Stockholm Univ. (Sweden). Dept. of Meteorology

    2004-06-01

    We present Arctic atmospheric boundary-layer modeling with a regional model COAMPSTM, for the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Model results are compared to soundings, near-surface measurements and forecasts from the ECMWF model. The near-surface temperature is often too high in winter, except in shorter periods when the boundary layer was cloud-capped and well-mixed due to cloud-top cooling. Temperatures are slightly too high also during the summer melt season. Effects are too high boundary-layer moisture and formation of too dense stratocumulus, generating a too deep well-mixed boundary layer with a cold bias at the simulated boundary-layer top. Errors in temperature and therefore moisture are responsible for large errors in heat flux, in particular in solar radiation, by forming these clouds. We conclude that the main problems lie in the surface energy balance and the treatment of the heat conduction through the ice and snow and in how low-level clouds are treated.

  18. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2X10{sup 5} and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase- and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer. (author). 22 refs., 9 figs.

  19. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  20. Heat and Moisture Transport in the Atmospheric Boundary Layer.

    Science.gov (United States)

    1987-01-05

    upwind profile is linea , then it follows from (4. 1Oa) that, if the variation of wind speed over the hill height is small, i.e. (4.23a) HdU,’dz /U(0) o 1...Foldvick (1962), S -S (2.6a) or algebraically : S - SO (h m/Z) where N0 and U are the values at the height hm of the mid- dle layer, and hi is the vertical...systern does not present problems either by hand or by mac hine or b\\ ., n. -hic algebra program, such as MAKCYMA. Our first goal following the Interim I

  1. MHD Effect on Unsteady Mixed Convection Boundary Layer Flow past a Circular Cylinder with Constant Wall Temperature

    Science.gov (United States)

    Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.

    2017-09-01

    Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.

  2. Characteristics of the nocturnal boundary layer inferred from ozone measurements onboard a Zeppelin airship

    Science.gov (United States)

    Rohrer, Franz; Li, Xin; Hofzumahaus, Andreas; Ehlers, Christian; Holland, Frank; Klemp, Dieter; Lu, Keding; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The nocturnal boundary layer (NBL) is a sublayer within the planetary boundary layer (PBL) which evolves above solid land each day in the late afternoon due to radiation cooling of the surface. It is a region of several hundred meters thickness which inhibits vertical mixing. A residual and a surface layer remain above and below the NBL. Inside the surface layer, almost all direct emissions of atmospheric constituents take place during this time. This stratification lasts until the next morning after sunrise. Then, the heating of the surface generates a new convectionally mixed layer which successively eats up the NBL from below. This process lasts until shortly before noon when the NBL disappears completely and the PBL is mixed convectionally. Ozone measurements onboard a Zeppelin airship in The Netherlands, in Italy, and in Finland are used to analyse this behaviour with respect to atmospheric constituents and consequences for the diurnal cycles observed in the surface layer, the nocturnal boundary layer, and the residual layer are discussed.

  3. Towards grid-converged wall-modeled LES of atmospheric boundary layer flows

    Science.gov (United States)

    Yellapantula, Shashank; Vijayakumar, Ganesh; Henry de Frahan, Marc; Churchfield, Matthew; Sprague, Michael

    2017-11-01

    Accurate characterization of incoming atmospheric boundary layer (ABL) turbulence is a critical factor in improving accuracy and predictive nature of simulation of wind farm flows. Modern commercial wind turbines operate in the log layer of the ABL that are typically simulated using wall-modeled large-eddy simulation (WMLES). One of the long-standing issues associated with wall modeling for LES and hybrid RANS-LES for atmospheric boundary layers is the over-prediction of the mean-velocity gradient, commonly referred to as log-layer mismatch. Kawai and Larsson in 2012, identified under-resolution of the near-wall region and the incorrect information received by the wall model as potential causes for the log-layer mismatch in WMLES of smooth-wall boundary-layer flows. To solve the log layer mismatch issue, they proposed linking the wall model to the LES solution at a physical of height of ym, instead of the first grid point. In this study, we extend their wall modeling approach to LES of the rough-wall ABL to investigate issues of log-layer mismatch and grid convergence. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  4. Special Course on Shock-Wave/Boundary-Layer Interactions in Supersonic and Hypersonic Flows (Interactions entre Ondes de Choc et Couches Limites dans les Ecoulements Supersoniques et Hpersoniques).

    Science.gov (United States)

    1993-08-01

    controversy over the seman- convergence line. With increasing shock strength, Fig. tics of the word "separation," the literature cited thus 6b, the separation...discussed and compared to the turbulent flow counterpart and finally areas where additional work is *Associate Profesor needed will be identified. T22...scale structures in the channel as in the physical layout. The characteris- upstream boundary layer which are convected tics of the ensembles were further

  5. An Experimental Investigation of Forced Mixing of a Turbulent Boundary Layer in an Annular Diffuser. Ph.D. Thesis - Ohio State Univ.; [for boundary layer control

    Science.gov (United States)

    Shaw, R. J.

    1979-01-01

    The forced mixing process of a turbulent boundary layer in an axisymmetric annular diffuser using conventional wing-like vortex generators was studied. Flow field measurements were made at four axial locations downstream of the vortex generators. At each axial location, a total of 25 equally spaced profiles were measured behind three consecutive vortex generators which formed two pairs of vortex generators. Hot film anemometry probes measured the boundary layer turbulence structure at the same locations where pressure measurements were made. Both single and cross film probes were used. The diffuser turbulence data was teken only for a nominal inlet Mach number of 0.3. Three vortex generator configurations were tested. The differences between configurations involved changes in size and relative vortex generator positions. All three vortex generator configurations tested provided increases in diffuser performance. Distinct differences in the boundary layer integral properties and skin friction levels were noted between configurations. The axial turbulence intensity and Reynolds stress profiles measured displayed similarities in trends but differences in levels for the three configurations.

  6. On the dynamic behavior of composite panels under turbulent boundary layer excitations

    Science.gov (United States)

    Ciappi, E.; De Rosa, S.; Franco, F.; Vitiello, P.; Miozzi, M.

    2016-03-01

    In this work high Mach number aerodynamic and structural measurements acquired in the CIRA (Italian Aerospace Research Center) transonic wind tunnel and the models used to analyze the response of composite panels to turbulent boundary layer excitation are presented. The two investigated panels are CFRP (Carbon Fiber-Reinforced Polymer) composite plates and their lay-up is similar to configurations used in aeronautical structures. They differ only for the presence of an embedded viscoelastic layer. The experimental set-up has been designed to reproduce a pressure fluctuations field beneath a turbulent boundary layer as close as possible to those in flight. A tripping system, specifically conceived to this aim for this facility, has been used to generate thick turbulent boundary layers at Mach number values ranging between 0.4 and 0.8. It is shown that the designed setup provides a realistic representation of full scale size pressure spectra in the frequency range of interest for the noise component inside the fuselage, generated by turbulent boundary layer. The significant role of the viscoelastic layer at reducing panel's response is detailed and discussed. Finally, it is demonstrated that at high Mach number the aeroelastic effect cannot be neglected when analyzing the panel response, especially when composite materials are considered.

  7. Summertime PAN on boundary layer over the Northern Pacific Ocean

    Science.gov (United States)

    Song, D.; Lee, S.; Lee, G.; Rhee, T. S.

    2012-12-01

    As a part of SHIPPO ( Shipborne Pole to Pole Observation), peroxyacetyl nitrate (PAN) and NO2 have been measured at aboard the R/V Araon during the ship track from Inchon, South Korea to Norm, Alaska, USA from July 14th to 30th, 2012. PAN and NO2 were sampled every 2 minute by a fast chromatograph with luminol-based chemiluminescence detection. In order to assure their detections in remote background airs, we successfully reduced random noise mainly from PMT using ensemble averaging from the 2 min chromatograms in each one hour time interval. With this post-processing analysis, we were able to lower detection limits to 0.01 ppbv and 0.04 ppbv for PAN and NO2, respectively. The preliminary results indicate that the background values ranged from the below the detection limit to 0.37 ppbv (average of 0.06 ppbv) for PAN and 2.05 ppbv (average of 0.24 ppbv) for NO2. It was confirmed that PAN was significant portions of reactive nitrogens in remote marine boundary airs. Occasional enhancements of PAN and NO2 were mainly attributed to the air masses originated from nearby source regions in the Northestern Asia and influenced by ships exhausts. We were able to observe the shifting of equilibrium between PAN and NO2 according to air temperature changes in very clean air masses.

  8. Experimental investigation of separated shear layer from a leading ...

    Indian Academy of Sciences (India)

    Soc. 38: 747–770. Lin J C M and Pauley L L 1996 Low-Reynolds-number separation on an airfoil. AIAA J. 34(8): 1570–1577. McAuliffe B R and Yaras M I 2005 Separation-bubble-transition measurements on a low-Re airfoil using particle image velocimetry. Proceedings of ASME Turbo Expo, Paper No. GT2005-68663.

  9. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    Science.gov (United States)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  10. The biogeochemical sulfur cycle in the marine boundary layer over the Northeast Pacific Ocean

    Science.gov (United States)

    Bates, T. S.; Johnson, J. E.; Quinn, P. K.; Goldan, P. D.; Kuster, W. C.

    1990-01-01

    The major components of the marine boundary layer biogeochemical sulfur cycle were measured simultaneously onshore and off the coast of Washington State, U.S.A. during May 1987. Seawater dimethysulfide (DMS) concentrations on the continental shelf were strongly influenced by coastal upwelling. Concentration further offshore were typical of summer values (2.2 nmol/l) at this latitude. Although seawater DMS concentrations were high on the biologically productive continental shelf (2-12 nmol/l), this region had no measurable effect on atmospheric DMS concentrations. Atmospheric DMS concentrations (0.1-12 nmol/l), however, were extremely dependent upon wind speed and boundary layer height. Although there appeared to be an appreciable input of nonsea-salt sulfate to the marine boundary layer from the free troposphere, the local flux of DMS from the ocean to the atmosphere was sufficient to balance the remainder of the sulfur budget.

  11. Investigation of large-scale structures in turbulent boundary layers using PIV in multiple planes

    Science.gov (United States)

    Marusic, Ivan; Hutchins, Nick; Ganapathisubramani, Bharathram; Hambleton, Will; Longmire, Ellen

    2004-11-01

    Stereo-PIV measurements were made on multiple planes in a turbulent boundary layer, including inclined cross-stream planes at ±45^rc to the streamwise direction, together with streamwise-wall-normal and streamwise-spanwise planes. The results show clear evidence of large-scale organization with long streamwise low-momentum zones consistent with the scenario of spatially coherent packets of hairpin vortices in the logarithmic region of the flow. Statistical correlation analysis across the boundary layer indicates the occurrence of a distinct two-regime behavior, in which streamwise-velocity-fluctuation correlation contours either appear to be coupled to the buffer region, or decoupled from it. The demarkation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall-wake description of turbulent boundary layers.

  12. Assessment of a transitional boundary layer theory at low hypersonic Mach numbers

    Science.gov (United States)

    Shamroth, S. J.; Mcdonald, H.

    1972-01-01

    An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.

  13. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    A numerical model coupling the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equationswith two-equation k−ω turbulence closure is presented and used to simulate a variety of turbulent wave boundary layer processes. The hydrodynamic model is additionally coupled...... of a number of local factors important within cross-shore wave boundary layer and sediment transport dynamics. The hydrodynamic model is validated for both hydraulically smooth and rough conditions, based on wave friction factor diagrams and boundary layer streaming profiles, with the results in excellent...... agreement with experimental and/or previous numerical work. The sediment transport model is likewise validated against oscillatory tunnel experiments involving both velocity-skewed and acceleration-skewed flows, as well as against measurements beneath real progressive waves.Model capabilities are exploited...

  14. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    Science.gov (United States)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  15. Marine boundary layer and turbulent fluxes over the Baltic Sea: Measurements and modelling

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2002-01-01

    km x 2 km) model, and the operational numerical weather prediction model HIRLAM (grid resolution of 22.5 km x 22.5 km). For southwesterly winds it was found that a relatively large island (Bornholm) lying 20-km upwind of the measuring site influences the boundary-layer height. In this situation...... of the grid resolution of the HIRLAM model and therefore poorly resolved. For northerly winds, the water fetch to the measuring site is about 100 km. Both models reproduce the characteristics of the height of the marine boundary layer. This suggests that the HIRLAM model adequately resolves a water fetch...... of 100 km with respect to predictions of the height of the marine boundary layer....

  16. Fuselage Boundary Layer Ingestion Propulsion Applied to a Thin Haul Commuter Aircraft for Optimal Efficiency

    Science.gov (United States)

    Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.

    2016-01-01

    Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.

  17. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities.

    Science.gov (United States)

    Ward, G P; Lovelock, R K; Murray, A R J; Hibbins, A P; Sambles, J R; Smith, J D

    2015-07-24

    We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.

  18. Effect of Pressure Gradients on Plate Response and Radiation in a Supersonic Turbulent Boundary Layer

    Science.gov (United States)

    Frendi, Abdelkader

    1997-01-01

    Using the model developed by the author for zero-pressure gradient turbulent boundary layers, results are obtained for adverse and favorable pressure gradients. It is shown that when a flexible plate is located in an adverse pressure gradient area, it vibrates more than if it were in a favorable pressure gradient one. Therefore the noise generated by the plate in an adverse pressure gradient is much greater than that due to the plate in a favorable pressure gradient. The effects of Reynolds number and boundary layer thickness are also analyzed and found to have the same effect in both adverse and favorable pressure gradient cases. Increasing the Reynolds number is found to increase the loading on the plate and therefore acoustic radiation. An increase in boundary layer thickness is found to decrease the level of the high frequencies and therefore the response and radiation at these frequencies. The results are in good qualitative agreement with experimental measurements.

  19. Experimental study on the effect of unsteadiness on boundary layer development on a linear turbine cascade

    Energy Technology Data Exchange (ETDEWEB)

    Schobeiri, M.T. [Texas A and M Univ., College Station (United States). Turbomachinery Performance Lab.; Pappu, K. [Texas A and M Univ., College Station (United States). Turbomachinery Performance Lab.

    1997-08-01

    The results from an experimental investigation of unsteady boundary layer behavior on a linear turbine cascade are presented in this paper. To perform a detailed study on unsteady cascade aerodynamics and heat transfer, a new large-scale, high-subsonic research facility for simulating the periodic unsteady flow has been developed. It is capable of sequentially generating up to four different unsteady inlet flow conditions that lead to four different passing frequencies, wake structures, and freestream turbulence intensities. For a given Reynolds number, two different unsteady wake formations are utilized. Detailed unsteady boundary layer velocity. turbulence intensity, and pressure measurements are performed along the suction and pressure surfaces of one blade. The results display the transition and development of the boundary layer, ensemble-averaged velocity, and turbulence intensity. (orig.). With 11 figs., 1 tab.

  20. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2011-02-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  1. Statistical structure and scaling behaviors of spanwise vorticity in smooth-wall turbulent boundary layers

    Science.gov (United States)

    Klewicki, Joseph; Morrill-Winter, Caleb; Marusic, Ivan

    2014-11-01

    Within the canonical turbulent boundary layer the spanwise component of vorticity, ωz, is the only component that has a non-negligible mean value. For this and other reasons, the motions bearing ωz play a central role in boundary layer dynamics. A compact four element (`Foss-style') hotwire probe was used to acquire well-resolved ωz fluctuation time series over an unprecedented Reynolds number range, 1 , 500 behaviors of the statistical moments and frequency spectra of the ωz fluctuations, and further explores the self-similarity between the mean and rms profiles seen at low Reynolds number. The observed ωz behaviors are discussed relative to mean dynamical structure and the asymptotic properties of the boundary layer vorticity field. The support of the Australian Research Council and the National Science Foundation are gratefully acknowledged.

  2. Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-12-01

    Full Text Available The boundary layer flow of a viscous incompressible fluid toward a porous nonlinearly stretching sheet is considered in this analysis. Velocity slip is considered instead of no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equation corresponding to the momentum equation into nonlinear ordinary differential equation. Numerical solution of this equation is obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter.

  3. Modelization of a large wind farm, considering the modification of the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, A.; Gomez-Elvira, R. [Univ. Politecnica de Madrid, Mecanica de Fluidos, E.T.S.I. Industriales, Madrid (Spain); Frandsen, S.; Larsen, S.E. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A method is presented to adapt existing models of wind farms to very large ones that may affect the whole planetary boundary layer. An internal boundary layer is considered that starts developing at the leading edge of the farm until it reaches, sufficiently far downstream, the top of the planetary boundary layer, and a new equilibrium region is reached. The wind farm is simulated by an artificial roughness that is function of the turbine spacing, drag and height. From this model the flow conditions are calculated at a certain reference height and then are used as boundary conditions for a numerical code used to model a wind farm. Three-dimensional effects are considered by applying appropriate conditions at the sides of the farm. Calculations are carried out to estimate the energy production in large wind farms, and it is found that additional losses due to modification of the planetary boundary layer may be of importance for wind farms of size larger than about 100 km. (au)

  4. MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition

    Science.gov (United States)

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688

  5. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Science.gov (United States)

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  6. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  7. Improved boundary layer heat transfer calculations near a stagnation point

    Science.gov (United States)

    Ahn, Kyung Hwan

    1990-01-01

    A thermal design of a solar receiver has been developed for the solutions of problems involving phase-change thermal energy storage and natural convection loss. Two dimensional axisymmetrical solidification and melting of materials contained between two concentric cylinders of finite length has been studied for thermal energy storage analysis. For calculation of free convection loss inside receiver cavity, two dimensional axisymmetrical, laminar, transient free convection including radiation effects has been studied using integral/finite difference method. Finite difference equations are derived for the above analysis subject to constant or variable material properties, initial conditions, and boundary conditions. The validity of the analyses has been substantiated by comparing results of the present general method with available analytic solutions or numerical results reported in the literature. Both explicit and implicit schemes are tested in phase change analysis with different number of nodes ranging from 4 to 18. The above numerical methods have been applied to the existing solar receiver analyzing computer code as additional subroutines. The results were computed for one of the proposed Brayton cycle solar receiver models running under the actual environmental conditions. Effect of thermal energy storage on the thermal behavior of the receiver has been estimated. Due to the thermal energy storage, about 65% reduction on working gas outlet temperature fluctuation has been obtained; however, maximum temperature of thermal energy storage containment has been increased about 18%. Also, effect of natural convection inside a receiver cavity on the receiver heat transfer has been analyzed. The finding indicated that thermal stratification occurs during the sun time resulting in higher receiver temperatures at the outlet section of the gas tube, and lower temperatures at the inlet section of the gas tube when compared with the results with no natural convection. Due

  8. An Inverse Boundary-Layer Method for Compressible Laminar and Turbulent Flows

    Science.gov (United States)

    1975-04-08

    Comparison of calculated and expo.rimental results for the flow 5300. (a) Velocity profiles and externa ~l velocity distribution. 294 3.0 H 2.0 1.00 INVERSE ...TR-75-1le 4 TITLE Te’ YtPuI Q REPCIRT e, PF!OO C V fL AN INVERSE BOUNDARY-LAYER METHOD FOR Final Technical Report COMPR~ESSIBLE LAMINAR AND TURBULENT...19 KEY WORDS (Conhin. on r-.e8e aide It neceober) md identify by block -. 51 Inverse boundary layers Lamiulnar flows NATIONAL TECHN’ICAL Turbuent fows

  9. Accuracy and convergence of a finite element algorithm for turbulent boundary layer flow

    Science.gov (United States)

    Soliman, M. O.; Baker, A. J.

    1981-08-01

    The Galerkin-Weighted Residuals formulation is employed to derive an implicit finite element solution algorithm for the nonlinear parabolic partial differential equation system governing turbulent boundary layer flow. Solution accuracy and convergence with discretization refinement are quantized in several error norms using linear and quadratic basis functions. Richardson extrapolation is used to isolate integration truncation error in all norms, and Newton iteration is employed for all equation solutions performed in double-precision. The mathematical theory supporting accuracy and convergence concepts for linear elliptic equations appears extensible to the nonlinear equations characteristic of turbulent boundary layer flow.

  10. Transition Prediction for the Boundary Layer of Yawed Circular Cylinder with e^N Method

    OpenAIRE

    跡部, 隆; 山本, 稀義; 伊藤, 信毅; Takashi, ATOBE; Kiyoshi, YAMAMOTO; Nobutake, ITOH; 航技研; 航技研; 航技研; National Aerospace Laboratory; National Aerospace Laboratory; National Aerospace Laboratory

    2000-01-01

    A numerical code for prediction of laminar-turbulent transition of boundary layer is developed with e^N method, and applied to the flow around a yawed circular cylinder. The velocity profile of the boundary layer is obtained by Navier-Stokes code, and stability analysis is done by Orr-Sommerfeld equation. In this code the integral path, which arises in the calculation of N factor, is determined by the use of complex characteristic equations. The accuracy of this code is examined by comparison...

  11. Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism

    Science.gov (United States)

    Malik, M. R.; Balakumar, P.

    1993-01-01

    In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.

  12. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Luhunga, P; Djolov, G [University of Pretoria (South Africa); Esau, I, E-mail: george.djolov@up.ac.z

    2010-08-15

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II 'Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes'. The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  13. Boundary layer flow of micropolar fluids past an impulsively started infinite vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youn-Jea [School of Mechanical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746 (Korea, Republic of); Kim, Kwang-Su [SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746 (Korea, Republic of)

    2007-02-15

    Transient free convective boundary layer flow of micropolar fluids past an impulsively started infinite vertical plate is investigated. The transformed dimensionless governing equations for the flow, microrotation and heat transfer characteristics are solved by using the Laplace transform technique. In particular, the relevant solution of the coupled governing equations was found with the second kind of the Volterra integral equation. The obtained results concerning velocity, microrotation and temperature across the boundary layer are illustrated graphically for different values of the parameters entering into the problem under consideration and the dependence of the flow and temperature fields from these parameters is discussed.

  14. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    Science.gov (United States)

    Luhunga, P.; Esau, I.; Djolov, G.

    2010-08-01

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II "Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes". The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  15. The Spatial Development of the Magnetospheric Low-Latitude Boundary Layer

    Science.gov (United States)

    Manuel, John R.

    The low-latitude boundary layer (LLBL) comprises a large fraction of the magnetospheric boundary layer making it a potentially important site for transport of mass, momentum and energy from the high-speed magnetosheath plasma into the magnetosphere. I have examined, by computer simulation, the processes involved in the spatial development of a 6.4 R_{rm E} (Earth radii) long section of the dayside LLBL from a thin and laminar boundary layer to a broad and turbulent one capable of significant transport. The computer simulation developed for this purpose is based on the full set of ideal magnetohydrodynamic (MHD) equations that govern the dynamics of most magnetospheric plasmas and uses a two-dimensional nonperiodic simulation geometry to permit the realistic downstream development of the boundary layer. Simulations started from several realistic initial conditions all exhibit the formation of a LLBL that broadens with downstream distance, from an upstream thickness of 0.12 R_{E} to as much as ~0.7 R_{E } downstream, and reproduces many of the observed boundary layer characteristics. The broadening occurs through the action of Reynold and Maxwell stresses generated by the Kelvin-Helmholtz (KH) instability in the boundary layer which deposit momentum and energy into the LLBL. The KH instability also transports mass into the LLBL by mixing plasma across the boundary layer through continuous vortex roll-ups and mergings and also appears capable of aiding diffusive transport processes by steepening density gradients at the magnetopause enough to trigger any of a number of possible diffusion processes. Simulations have also shown that the downstream development of the boundary layer may be slowed and possibly stopped in the presence of a flow-aligned component of the magnetosheath magnetic field. For example, for a magnetosheath magnetic field which is initialized to tilt 30 ^circ away from perpendicular to the flow, the KH instability still develops, but fails to

  16. A bottom-landing water sampling system for the benthic boundary layer

    Science.gov (United States)

    Bale, A. J.; Barrett, C. D.

    A novel water sampling device which enables vertical profiles of water samples to be obtained within the benthic boundary layer in shelf sea waters is described. A maximum of ten samples spread over 2 m immediately above the seabed can be obtained on each deployment. The design of the sample bottles minimizes disturbances to particle aggregates and positive displacement sampling ensures that the samples are representative of the environment. Suspended-solids profiles sampled in the benthic boundary layer over 15-hour period at a station in the English Channel are presented to demonstrate the utility of the system.

  17. Longitudinal dispersion of heavy particles in an oscillating tunnel and application to wave boundary layers

    DEFF Research Database (Denmark)

    Kirca, V. S. Ozgur; Sumer, B. Mutlu; Steffensen, Michael

    2016-01-01

    is studied numerically, using a random-walk particle model with the input data for the mean and turbulence characteristics of the wave boundary layer picked up from a transitional two-equation k–ω Reynolds averaged Navier–Stokes model and plugged in the random-walk model. First, the flowmodel is validated...... are found to be in general agreement both qualitatively and quantitatively. In the last part of the study, an example application of the present model for fine sand dispersing in a wave boundary layer under storm conditions is given....

  18. Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy

    Directory of Open Access Journals (Sweden)

    C. Messager

    2016-01-01

    Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.

  19. Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs

    DEFF Research Database (Denmark)

    Larkum, Anthony W.D.; Koch, Eva-Maria W.; Kühl, Michael

    2003-01-01

    : the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 µm under moderate flow (~0.08 m s-1......The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations...

  20. Boundary Layer Measurements of the NACA0015 and Implications for Noise Modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    to measure the velocity profiles and turbulence characteristics in the boundary layer near the trailing edge of the airfoil. The measured boundary layer data are presented in this report and compared with CFD results. A relative good agreement is observed, though a few discrepancies also appear. Comparisons...... of surface pressure fluctuations spectra are used to analyze and improve trailing edge noise modeling by the so-called TNO model. Finally, a pair of hot-wires were placed on each side of the trailing edge in order to measure the radiated trailing edge noise. However, there is no strong evidence...

  1. Application of the perturbation iteration method to boundary layer type problems.

    Science.gov (United States)

    Pakdemirli, Mehmet

    2016-01-01

    The recently developed perturbation iteration method is applied to boundary layer type singular problems for the first time. As a preliminary work on the topic, the simplest algorithm of PIA(1,1) is employed in the calculations. Linear and nonlinear problems are solved to outline the basic ideas of the new solution technique. The inner and outer solutions are determined with the iteration algorithm and matched to construct a composite expansion valid within all parts of the domain. The solutions are contrasted with the available exact or numerical solutions. It is shown that the perturbation-iteration algorithm can be effectively used for solving boundary layer type problems.

  2. Boundary-layer transition on a plate subjected to simultaneous spanwise and chordwise pressure gradients

    Science.gov (United States)

    Boldman, D. R.; Brinich, P. F.

    1974-01-01

    The boundary-layer transition on a short plate was studied by means of the china-clay visual technique. The plate model was mounted in a wind tunnel so that it was subjected to small simultaneous spanwise and chordwise pressure gradients. Results of the experimental study, which was performed at three subsonic velocities, indicated that the transition pattern was appreciably curved in the spanwise direction but quite smooth and well behaved. Reasonable comparisons between predictions of transition and experiment were obtained from two finite-difference two-dimensional boundary-layer calculation methods which incorporated transition models based on the concept of a transition intermittency factor.

  3. Boundary layer suction through rectangular orifices: effects of aspect ratio and orientation

    Science.gov (United States)

    Van Buren, T.; Smits, A. J.; Amitay, M.

    2017-07-01

    The flow field generated by suction through a rectangular orifice within a laminar boundary layer is investigated using stereoscopic particle image velocimetry. For orifice aspect ratios of 6, 12, and 18, the impact of suction on the surrounding flow field appears to be self-similar, scaling with aspect ratio and suction velocity. Changing the orifice pitch angle had almost no impact on the surrounding boundary layer, but, as expected, changing the skew angle significantly altered the extent of the suction impact on the flow field.

  4. DENSITY AND VELOCITY MEASUREMENTS IN TURBULENT HE-AIR BOUNDARY LAYERS

    Directory of Open Access Journals (Sweden)

    A SOUDANI

    2003-06-01

    Full Text Available A turbulent  boundary layer with large density variations has been generated by tangential injection of air or helium Into a boundary layer of air-helium mixture. Instrumentation based on thermo- anemometry has been successfully developed for the investigation of this flow  Analysis or the mean and fluctuating density fields shows that the flow is mainly governed by the ratio of the injection to the external velocity and that the density ratio plays a secondary role in the mixing processes. However, a sight enhancement of turbulent activity is observed when helium is injected.

  5. DNS of actuator disk arrays in Ekman boundary layers. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, R.; Coleman, G.N. [Southampton Univ. (United Kingdom); Spalart, P.R. [Boeing Commercial Airplanes, Seattle, WA (United States)

    2012-07-01

    The power output of large wind farms is limited by the downward flux of kinetic energy through the atmospheric boundary layer, as ultimately all available power at turbine altitude is exhausted. This becomes relevant when the power extracted per unit area is sufficiently large, and the atmospheric boundary layer is significantly affected by the wind farm. Such coupling is therefore relevant to the design of farms, in terms of the spacing between turbines (typically roughly 5 diameters) and their resistance level (as compared with the Betz setting). (orig.)

  6. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    , in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI......) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves...

  7. Estimating of turbulent velocity fluctuations in boundary layer with pressure gradient by Smoke Image Velocimetry

    Science.gov (United States)

    Mikheev, N. I.; Goltsman, A. E.; Saushin, I. I.

    2017-11-01

    The results of the experimental estimating of the velocity profiles and turbulent pulsations in the boundary layer for adverse and favorable pressure gradients are presented. The profiles of characteristics based on the dynamics of two-component instantaneous velocity vector fields measured by the field optical method of Smoke Image Velocimetry are estimated. The measurements are performed with a large spatial and temporal resolution, the measurement results are relevant for estimating the terms of the conservation equation of turbulent energy in the boundary layer and for improving semiempirical turbulence models.

  8. Research of the boundary layer with an adverse pressure gradient by the Smoke Image Velocimetry method

    Science.gov (United States)

    Mikheev, N. I.; Saushin, I. I.; Goltsman, A. E.

    2017-09-01

    The results of an experimental evaluation of velocity profiles, turbulent pulsations, generation and dissipation of turbulent energy in a nonequilibrium boundary layer under the adverse pressure gradient are presented. The profiles of characteristics are estimated by means of the field dynamics of the two-component instantaneous velocity vectors measured by the optical method Smoke Image Velocimetry. The opportunities of using the field measurement method SIV to study the spatial evolution of small-scale characteristics in a boundary layer with a pressure gradient have been showed.

  9. Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan

    2018-01-01

    This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.

  10. Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions

    CERN Document Server

    Bernardini, Matteo; Pirozzoli, Sergio; Grasso, Francesco

    2016-01-01

    Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock-wave/turbulent boundary layer interactions at freestream Mach number $2.28$ and shock angle of the wedge generator $\\varphi = 8^{\\circ}$. Five values of the wall-to-recovery-temperature ratio ($T_w/T_r$) are considered, corresponding to cold, adiabatic and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, that produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, and the maximum values of thermal and dynamic loads are found in the case of cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by ...

  11. CLOUD-MAP Field Campaign Measurements of the Earth's Lower Boundary Layer

    Science.gov (United States)

    Foster, Nicholas; Avery, Alyssa; Jacob, Jamey

    2016-11-01

    CLOUD-MAP (Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics) is a 4 year, 4 university collaboration to develop capabilities that will allow meteorologists and atmospheric scientists to use unmanned aircraft as a common, useful everyday tool. Currently, we know that systems can be used for meteorological measurements, but they are far from being practical or robust for everyday field diagnostics by the average meteorologist or scientist. In particular, UAS are well suited for the lower atmosphere, namely the lower boundary layer that has a large impact on the atmosphere and where much of the weather phenomena begin. A sensor set called MDASS (Meteorological Data Acquisition Sonde System) was developed and used to collect and transmit live data necessary for developing such forecasts as well as be usable on multiple platforms ranging from fixed-wing and multi-rotor UAVs to rockets. The data transmitted from MDASS is viewed and stored on a ground control station via LabVIEW in a program developed for real-time data analysis. Results from the first CLOUD-MAP are presented. The campaign resulted in nearly 250 unmanned aircraft flights of 12 separate platforms over a 3 day period, collecting meteorological data at 3 different sites.

  12. Validation of a multi-sensor hotwire probe for boundary layer enstrophy measurements

    Science.gov (United States)

    Zimmerman, Spencer; Morrill-Winter, Caleb; Klewicki, Joseph

    2016-11-01

    A multi-sensor hotwire probe capable of measuring the velocity and vorticity vectors has been designed and implemented in a turbulent boundary layer with the goal of educing the means by which the associated momentum transport is maintained under increasing scale separation between the velocity and vorticity fields with increasing Reynolds number. The capacity of this sensor to accurately measure each component of velocity and vorticity is first evaluated via synthetic experiment. The three-dimensional velocity field from the DNS of Sillero et al. is used to compute effective cooling for each sensor element, and the resulting signals are interpreted via two-dimensional calibration surfaces such as would be used to process physical experimental data. Results from this virtual validation experiment are presented and suggest the sensor is capable of resolving key features of the velocity and vorticity fields at physically achievable spatial resolutions. Results from measurements collected at the Flow Physics Facility (FPF) at the University of New Hampshire are presented alongside these projections and exhibit very good agreement in trend, but with some differences in magnitude. The support of the Australian Research Council and the National Science Foundation is gratefully acknowledged.

  13. Convection of wall shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark

    2017-11-01

    The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  14. Evaluation of Low-Cost Multi-Hole Probes for Atmospheric Boundary Layer Investigation

    Science.gov (United States)

    Azartash-Namin, Solmoz; Jacob, Jamey; Canter, Caleb; Bailey, Sean; Cloud-Map Team

    2017-11-01

    Low-cost multi-hole probes (MHPs) for atmospheric boundary layer (ABL) studies are investigated. Probes are designed using rapid prototyping methods through FDM, SLA, and other techniques for evaluation through calibration testing and comparison with probes manufactured through more traditional methods. Each probe is tested and validated to develop calibration curves and PIV is used to examine the flow field around the probe during both attached and separated conditions. Standard non-nulling calibration and data reduction methods were used showing performance characteristics of each probe. Impact of probe tip geometry and internal duct arrangements are examined. Multiple geometries, including hemispherical and pyramid, as well as multiple sizes are evaluated for both accuracy and sensitivity. Of the two primary geometric designs evaluated, the hemisphere 5HPs produced the most symmetric calibration curves with linearity between +/-25° . Further issues related to optimized probe designs, manufacturing quality consistency, and sensor development are discussed. A custom weather data sensor package has been developed for flight testing in ABL studies and preliminary results are presented. Supported in part by National Science Foundation Award Numbers 1351411 and 1539070.

  15. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    Science.gov (United States)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-01-01

    Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.

  16. Random vibration analysis of axially compressed cylindrical shells under turbulent boundary layer in a symplectic system

    Science.gov (United States)

    Li, Yuyin; Zhang, Yahui; Kennedy, David

    2017-10-01

    A random vibration analysis of an axially compressed cylindrical shell under a turbulent boundary layer (TBL) is presented in the symplectic duality system. By expressing the cross power spectral density (PSD) of the TBL as a Fourier series in the axial and circumferential directions, the problem of structures excited by a random distributed pressure due to the TBL is reduced to solving the harmonic response function, which is the response of structures to a spatial and temporal harmonic pressure of unit magnitude. The governing differential equations of the axially compressed cylindrical shell are derived in the symplectic duality system, and then a symplectic eigenproblem is formed by using the method of separation of variables. Expanding the excitation vector and unknown state vector in symplectic space, decoupled governing equations are derived, and then the analytical solution can be obtained. In contrast to the modal decomposition method (MDM), the present method is formulated in the symplectic duality system and does not need modal truncation, and hence the computations are of high precision and efficiency. In numerical examples, harmonic response functions for the axially compressed cylindrical shell are studied, and a comparison is made with the MDM to verify the present method. Then, the random responses of the shell to the TBL are obtained by the present method, and the convergence problems induced by Fourier series expansion are discussed. Finally, influences of the axial compression on random responses are investigated.

  17. Stability analysis of Boundary Layer in Poiseuille Flow Through A Modified Orr-Sommerfeld Equation

    CERN Document Server

    Monwanou, A V; Orou, J B Chabi; 10.5539/apr.v4n4p138

    2013-01-01

    For applications regarding transition prediction, wing design and control of boundary layers, the fundamental understanding of disturbance growth in the flat-plate boundary layer is an important issue. In the present work we investigate the stability of boundary layer in Poiseuille flow. We normalize pressure and time by inertial and viscous effects. The disturbances are taken to be periodic in the spanwise direction and time. We present a set of linear governing equations for the parabolic evolution of wavelike disturbances. Then, we derive modified Orr-Sommerfeld equations that can be applied in the layer. Contrary to what one might think, we find that Squire's theorem is not applicable for the boundary layer. We find also that normalization by inertial or viscous effects leads to the same order of stability or instability. For the 2D disturbances flow ($\\theta=0$), we found the same critical Reynolds number for our two normalizations. This value coincides with the one we know for neutral stability of the k...

  18. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  19. Experimental investigation of separated shear layer from a leading ...

    Indian Academy of Sciences (India)

    ... of enhanced receptivity of perturbations leading to the development of significant unsteadiness and three-dimensional motions in the second-half of the bubble. The onset of separation, transition and the point of reattachment are identified for varying angles of attack and pressure gradients imposed by tail flap deflections.

  20. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    Science.gov (United States)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.