WorldWideScience

Sample records for boundary integral formulation

  1. Approximate Formulation and Numerical Solution for Hypersingular Boundary Integral Equations in Plane Elasticity

    Institute of Scientific and Technical Information of China (English)

    马杭; 黄兴

    2003-01-01

    Based on the fact that the singular boundary integrals in the sense of Cauchy principal value can be represented approxi-mately by the mean values of two companion nearly singular boundary integrals, a vary general approach was developed in the paper.In the approach, the approximate formulation before discretization was constructed to cope with the difficulties encountered in the cor-ner treatment in the formulations of hypersingular boundary integral equations. This makes it possible to solve the hypersingular boundary integral equation numerically in a non-regularized form and in a local manner by using conforming C0 quadratic boundary ele-ments and standard Gaussian quadratures similar to those employed in the conventional displacement-BIE formulations. The approxi-mate formulation is very convenient to use because the corner information is comprised naturally in the representations of those ap-proximate integrals. Numerical examples in plane elasticity show that with the present approach, the compatible or better results can be achieved in comparison with those of the conventional BIE formulations.

  2. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.

    Science.gov (United States)

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals.

  3. Mixed direct-iterative methods for boundary integral formulations of continuum dielectric solvation models

    Energy Technology Data Exchange (ETDEWEB)

    Corcelli, S.A.; Kress, J.D.; Pratt, L.R.

    1995-08-07

    This paper develops and characterizes mixed direct-iterative methods for boundary integral formulations of continuum dielectric solvation models. We give an example, the Ca{sup ++}{hor_ellipsis}Cl{sup {minus}} pair potential of mean force in aqueous solution, for which a direct solution at thermal accuracy is difficult and, thus for which mixed direct-iterative methods seem necessary to obtain the required high resolution. For the simplest such formulations, Gauss-Seidel iteration diverges in rare cases. This difficulty is analyzed by obtaining the eigenvalues and the spectral radius of the non-symmetric iteration matrix. This establishes that those divergences are due to inaccuracies of the asymptotic approximations used in evaluation of the matrix elements corresponding to accidental close encounters of boundary elements on different atomic spheres. The spectral radii are then greater than one for those diverging cases. This problem is cured by checking for boundary element pairs closer than the typical spatial extent of the boundary elements and for those cases performing an ``in-line`` Monte Carlo integration to evaluate the required matrix elements. These difficulties are not expected and have not been observed for the thoroughly coarsened equations obtained when only a direct solution is sought. Finally, we give an example application of hybrid quantum-classical methods to deprotonation of orthosilicic acid in water.

  4. Computational model for short-fiber composites with eigenstrain formulation of boundary integral equations

    Institute of Scientific and Technical Information of China (English)

    MA Hang; XIA Li-wei; QIN Qing-hua

    2008-01-01

    A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations(BIE)and solved with the newly developed boundary point method(BPM).The model is closely derived from the concept of the equivalent inclusion of Eshelby tensors.Eigenstrains are iteratively determined for each short.fiber embedded in the matrix with various properties via the Eshelby tensors,which can be readily obtained beforehand either through analytical or numerical means.As unknown variables appear only on the boundary of the solution domain,the solution scale of the inhomogeneity problem with the model is greatly reduced.This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM.The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element(RVE),showing the validity and the effectiveness of the proposed computational modal and the solution procedure.

  5. A new boundary element formulation for two- and three-dimensional thermoelasticity using particular integrals

    Science.gov (United States)

    Henry, Donald P., Jr.; Banerjee, Prasanta K.

    1988-01-01

    New two- and three-dimensional BEM formulations are developed for steady-state and transient uncoupled thermoelasticity. These new procedures differ from previous work in that additional surface of volume integration is not required to incorporate thermal loads in the analysis. Instead, thermal body forces are introduced in the BEM system via particular integrals. The present formulation is implemented in a general-purpose multiregion system, and examples are presented to demonstrate the accuracy and versatility of the method.

  6. Influence of viscosity on the scattering of an air pressure wave by a rigid body: a regular boundary integral formulation

    Science.gov (United States)

    Homentcovschi, Dorel

    2008-01-01

    This paper gives a regular vector boundary integral equation for solving the problem of viscous scattering of a pressure wave by a rigid body. Firstly, single-layer viscous potentials and a generalized stress tensor are introduced. Correspondingly, generalized viscous double-layer potentials are defined. By representing the scattered field as a combination of a single-layer viscous potential and a generalized viscous double-layer potential, the problem is reduced to the solution of a vectorial Fredholm integral equation of the second kind. Generally, the vector integral equation is singular. However, there is a particular stress tensor, called pseudostress, which yields a regular integral equation. In this case, the Fredholm alternative applies and permits a direct proof of the existence and uniqueness of the solution. The results presented here provide the foundation for a numerical solution procedure. PMID:19865494

  7. 弹性平面问题超奇异边界积分方程的近似列式与数值求解%Approximate Formulation and Numerical Solution for Hypersingular Boundary Integral Equations in Plane Elasticity

    Institute of Scientific and Technical Information of China (English)

    马杭; 黄兴

    2003-01-01

    Based on the fact that the singular boundary integrals in the sense of Cauchy principal value can be represented approxi-mately by the mean values of two companion nearly singular boundary integrals, a vary general approach was developed in the paper.In the approach, the approximate formulation before discretization was constructed to cope with the difficulties encountered in the cor-ner treatment in the formulations of hypersingular boundary integral equations. This makes it possible to solve the hypersingularboundary integral equation numerically in a non-regularized form and in a local manner by using conforming C0 quadratic boundary ele-ments and standard Gaussian quadratures similar to those employed in the conventional displacement-BIE formulations. The approxi-mate formulation is very convenient to use because the corner information is comprised naturally in the representations of those ap-proximate integrals. Numerical examples in plane elasticity show that with the present approach, the compatible or better results canbe achieved in comparison with those of the conventional BIE formulations.

  8. A NOVEL BOUNDARY INTEGRAL EQUATION METHOD FOR LINEAR ELASTICITY--NATURAL BOUNDARY INTEGRAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    Niu Zhongrong; Wang Xiuxi; Zhou Huanlin; Zhang Chenli

    2001-01-01

    The boundary integral equation (BIE) of displacement derivatives is put at a disadvantage for the difficulty involved in the evaluation of the hypersingular integrals. In this paper, the operators δij and εij are used to act on the derivative BIE. The boundary displacements, tractions and displacement derivatives are transformed into a set of new boundary tensors as boundary variables. A new BIE formulation termed natural boundary integral equation (NBIE) is obtained. The NBIE is applied to solving two-dimensional elasticity problems. In the NBIE only the strongly singular integrals are contained. The Cauchy principal value integrals occurring in the NBIE are evaluated. A combination of the NBIE and displacement BIE can be used to directly calculate the boundary stresses. The numerical results of several examples demonstrate the accuracy of the NBIE.

  9. Equivalent boundary integral equations for plane elasticity

    Institute of Scientific and Technical Information of China (English)

    胡海昌; 丁皓江; 何文军

    1997-01-01

    Indirect and direct boundary integral equations equivalent to the original boundary value problem of differential equation of plane elasticity are established rigorously. The unnecessity or deficiency of some customary boundary integral equations is indicated by examples and numerical comparison.

  10. Closed Form Integration of Singular and Hypersingular Integrals in 3D BEM Formulations for Heat Conduction

    Directory of Open Access Journals (Sweden)

    A. Tadeu

    2012-01-01

    Full Text Available The evaluation of the singular and hypersingular integrals that appear in three-dimensional boundary element formulations for heat diffusion, in the frequency domain, is presented in analytical form. This improves computational efficiency and accuracy. Numerical integrations using existing techniques based on standard Gaussian integration schemes that incorporate an enormous amount of sampling points are used to verify the solutions of singular integrals. For the hypersingular integrals the comparison is evaluated by making use of an analytical solution that is valid for circular domains, combined with a standard Gaussian integration scheme for the remaining boundary element domain. Closed form solutions for cylindrical inclusions (with null temperatures and null heat fluxes prescribed on the boundary are then derived and used to validate the three-dimensional boundary element formulations.

  11. Spectral integration of linear boundary value problems

    CERN Document Server

    Viswanath, Divakar

    2012-01-01

    Spectral integration is a method for solving linear boundary value problems which uses the Chebyshev series representation of functions to avoid the numerical discretization of derivatives. It is occasionally attributed to Zebib (J. of Computational Physics vol. 53 (1984), p. 443-455) and more often to Greengard (SIAM J. on Numerical Analysis vol. 28 (1991), p. 1071-1080). Its advantage is believed to be its relative immunity to errors that arise when nearby grid points are used to approximate derivatives. In this paper, we reformulate the method of spectral integration by changing it in four different ways. The changes consist of a more convenient integral formulation, a different way to treat and interpret boundary conditions, treatment of higher order problems in factored form, and the use of piecewise Chebyshev grid points. Our formulation of spectral integration is more flexible and powerful as show by its ability to solve a problem that would otherwise take 8192 grid points using only 96 grid points. So...

  12. Critical Review of Path Integral Formulation

    CERN Document Server

    Fujita, Takehisa

    2008-01-01

    The path integral formulation in quantum mechanics corresponds to the first quantization since it is just to rewrite the quantum mechanical amplitude into many dimensional integrations over discretized coordinates $x_n$. However, the path integral expression cannot be connected to the dynamics of classical mechanics, even though, superficially, there is some similarity between them. Further, the field theory path integral in terms of many dimensional integrations over fields does not correspond to the field quantization. We clarify the essential difference between Feynman's original formulation of path integral in QED and the modern version of the path integral method prevailing in lattice field theory calculations, and show that the former can make a correct second quantization while the latter cannot quantize fields at all and its physical meaning is unknown.

  13. Calculation of multi frequency of Helmholtz boundary integral equation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhigao; HUANG Qibai

    2005-01-01

    The method using series expansion is presented, and the wavenumber is separated from fundamental solution of Helmholtz boundary element equation, then the system matrices dependent of wavenumber are the matrices series associated with wavenumber, and the astringency of the method is proved. The numerical results show that combined with the CHIEFmethod, the SECHIEF (Series Expansion Combined Helmholtz Integral Equation Formulation) method can not only provide uniqueness of solution and reduce the computational time but also give accurate results under the coarse elements.

  14. Boundary conditions: The path integral approach

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain); Clemente-Gallardo, J [BIFI, Universidad de Zaragoza, 50009 Zaragoza (Spain); Munoz-Castaneda, J M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain)

    2007-11-15

    The path integral approach to quantum mechanics requires a substantial generalisation to describe the dynamics of systems confined to bounded domains. Nonlocal boundary conditions can be introduced in Feynman's approach by means of boundary amplitude distributions and complex phases to describe the quantum dynamics in terms of the classical trajectories. The different prescriptions involve only trajectories reaching the boundary and correspond to different choices of boundary conditions of selfadjoint extensions of the Hamiltonian. One dimensional particle dynamics is analysed in detail.

  15. Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations

    CERN Document Server

    Seiler, Jennifer; Pollney, Denis; Rezzolla, Luciano

    2008-01-01

    We present a set of well-posed constraint-preserving boundary conditions for a first-order in time, second-order in space, harmonic formulation of the Einstein equations. The boundary conditions are tested using robust stability, linear and nonlinear waves, and are found to be both less reflective and constraint preserving than standard Sommerfeld-type boundary conditions.

  16. PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL

    Institute of Scientific and Technical Information of China (English)

    Hussein A.H. Salem

    2011-01-01

    In this article, we investigate the existence of Pseudo solutions for some frac- tional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.

  17. Boundary Value Problems With Integral Conditions

    Science.gov (United States)

    Karandzhulov, L. I.; Sirakova, N. D.

    2011-12-01

    The weakly perturbed nonlinear boundary value problems (BVP) for almost linear systems of ordinary differential equations (ODE) are considered. We assume that the nonlinear part contain an additional function, which defines the perturbation as singular. Then the Poincare method is not applicable. The problem of existence, uniqueness and construction of a solution of the posed BVP with integral condition is studied.

  18. Numerical quadrature for the approximation of singular oscillating integrals appearing in boundary integral equations

    Directory of Open Access Journals (Sweden)

    L. O. Fichte

    2006-01-01

    Full Text Available Boundary Integral Equation formulations can be used to describe electromagnetic shielding problems. Yet, this approach frequently leads to integrals which contain a singularity and an oscillating part. Those integrals are difficult to handle when integrated naivly using standard integration techniques, and in some cases even a very high number of integration nodes will not lead to precise results. We present a method for the numerical quadrature of an integral with a logarithmic singularity and a cosine oscillator: a modified Filon-Lobatto quadrature for the oscillating parts and an integral transformation based on the error function for the singularity. Since this integral can be solved analytically, we are in a position to verify the results of our investigations, with a focus on precision and computation time.

  19. The initial boundary value problem for free-evolution formulations of General Relativity

    CERN Document Server

    Hilditch, David

    2016-01-01

    We consider the initial boundary value problem for free-evolution formulations of general relativity coupled to a parametrized family of coordinate conditions that includes both the moving puncture and harmonic gauges. We concentrate primarily on boundaries that are geometrically determined by the outermost normal observer to spacelike slices of the foliation. We present high-order-derivative boundary conditions for the gauge, constraint violating and gravitational wave degrees of freedom of the formulation. Second order derivative boundary conditions are presented in terms of the conformal variables used in numerical relativity simulations. Using Kreiss-Agranovich-Metivier theory we demonstrate, in the frozen coefficient approximation, that with sufficiently high order derivative boundary conditions the initial boundary value problem can be rendered boundary stable. The precise number of derivatives required depends on the gauge. For a choice of the gauge condition that renders the system strongly hyperbolic...

  20. Formulation of Subgrid Variability and Boundary-Layer Cloud Cover in Large-Scale Models

    Science.gov (United States)

    2007-11-02

    soils have been specifically evaluated in terms of a van Genuchten formulation. The CAPS model was originally formulated for inclusion in large...terrestrial atmospheric boundary lay- ers, suitable for inclusion in large-scale models. The ABL mixing scheme (Troen and Mahrt, 1986) includes both...AFGL soil sodel (OSU-PL land-surface scheme) coupled to a boundary layer model developed by Jan Paegle, Univ. Utah. Ciudad Universitaria Pabellon 2

  1. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller

    2013-01-01

    The formulation presented in this paper is based on the Boundary Element Method (BEM) and implements Kirchhoff’s decomposition into viscous, thermal and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses ar...

  2. Parallel Higher-order Boundary Integral Electrostatics Computation on Molecular Surfaces with Curved Triangulation

    CERN Document Server

    Geng, Weihua

    2013-01-01

    In this paper, we present a parallel higher-order boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace linear solver such as GMRES. The molecular surfaces are first discretized with flat triangles and then converted to curved triangles with the assistance of normal information at vertices. To maintain the desired accuracy, four-point Gauss-Radau quadratures are used on regular triangles and sixteen-point Gauss-Legendre quadratures together with regularization transformations are applied on singular triangles. To speed up our method, we take advantage of the embarrassingly parallel feature of boundary integral formulation, and parallelize the schemes with the message passing interface (MPI) implementation. Numerical tests show significantly improved accuracy and convergence of the proposed higher-order boundary integral Poisson-Boltzmann (HOBI-PB) solver compared with bou...

  3. RADIATION BOUNDARY CONDITIONS FOR MAXWELL'S EQUATIONS: A REVIEW OF ACCURATE TIME-DOMAIN FORMULATIONS

    Institute of Scientific and Technical Information of China (English)

    Thomas Hagstrom; Stephen Lau

    2007-01-01

    We review time-domain formulations of radiation boundary conditions for Maxwell's equations, focusing on methods which can deliver arbitrary accuracy at acceptable computational cost. Examples include fast evaluations of nonlocal conditions on symmetric and general boundaries, methods based on identifying and evaluating equivalent sources, and local approximations such as the perfectly matched layer and sequences of local boundary conditions. Complexity estimates are derived to assess work and storage requirements as a function of wavelength and simulation time.

  4. NATURAL BOUNDARY INTEGRAL METHOD AND ITS NEW DEVELOPMENT

    Institute of Scientific and Technical Information of China (English)

    De-hao Yu

    2004-01-01

    In this paper, the natural boundary integral method, and some related methods, including coupling method of the natural boundary elements and finite elements, which is also called DtN method or the method with exact artificial boundary conditions, domain decomposition methods based on the natural boundary reduction, and the adaptive boundary element method with hyper-singular a posteriori error estimates, are discussed.

  5. A finite element-boundary integral method for cavities in a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.

  6. An Explicit Time-Domain Hybrid Formulation Based on the Unified Boundary Condition

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, N; Fasenfest, B J; White, D; Stowell, M; Jandhyala, V; Pingenot, J; Champagne, N J; Rockway, J D

    2007-02-28

    An approach to stabilize the two-surface, time domain FEM/BI hybrid by means of a unified boundary condition is presented. The first-order symplectic finite element formulation [1] is used along with a version of the unified boundary condition of Jin [2] reformulated for Maxwell's first-order equations in time to provide both stability and accuracy over the first-order ABC. Several results are presented to validate the numerical solutions. In particular the dipole in a free-space box is analyzed and compared to the Dirchlet boundary condition of Ziolkowski and Madsen [3] and to a Neuman boundary condition approach.

  7. Boundary conditions for the Einstein-Christoffel formulation of Einstein's equations

    Directory of Open Access Journals (Sweden)

    Douglas N. Arnold

    2007-02-01

    Full Text Available Specifying boundary conditions continues to be a challenge in numerical relativity in order to obtain a long time convergent numerical simulation of Einstein's equations in domains with artificial boundaries. In this paper, we address this problem for the Einstein-Christoffel (EC symmetric hyperbolic formulation of Einstein's equations linearized around flat spacetime. First, we prescribe simple boundary conditions that make the problem well posed and preserve the constraints. Next, we indicate boundary conditions for a system that extends the linearized EC system by including the momentum constraints and whose solution solves Einstein's equations in a bounded domain.

  8. Boundary integral method applied in chaotic quantum billiards

    CERN Document Server

    Li, B; Li, Baowen; Robnik, Marko

    1995-01-01

    The boundary integral method (BIM) is a formulation of Helmholtz equation in the form of an integral equation suitable for numerical discretization to solve the quantum billiard. This paper is an extensive numerical survey of BIM in a variety of quantum billiards, integrable (circle, rectangle), KAM systems (Robnik billiard) and fully chaotic (ergodic, such as stadium, Sinai billiard and cardioid billiard). On the theoretical side we point out some serious flaws in the derivation of BIM in the literature and show how the final formula (which nevertheless was correct) should be derived in a sound way and we also argue that a simple minded application of BIM in nonconvex geometries presents serious difficulties or even fails. On the numerical side we have analyzed the scaling of the averaged absolute value of the systematic error \\Delta E of the eigenenergy in units of mean level spacing with the density of discretization (b = number of numerical nodes on the boundary within one de Broglie wavelength), and we f...

  9. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses.

    Science.gov (United States)

    Cutanda-Henríquez, Vicente; Juhl, Peter Møller

    2013-11-01

    The formulation presented in this paper is based on the boundary element method (BEM) and implements Kirchhoff's decomposition into viscous, thermal, and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses are solved using extended boundary conditions that assume (i) negligible temperature fluctuations at the boundary and (ii) normal and tangential matching of the boundary's particle velocity. The proposed model does not require constructing a special mesh for the viscous and thermal boundary layers as is the case with the existing finite element method (FEM) implementations with losses. The suitability of this approach is demonstrated using an axisymmetrical BEM and two test cases where the numerical results are compared with analytical solutions.

  10. Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes

    Science.gov (United States)

    De Corato, M.; Slot, J. J. M.; Hütter, M.; D'Avino, G.; Maffettone, P. L.; Hulsen, M. A.

    2016-07-01

    In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation-dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.

  11. Cleansing Formulations That Respect Skin Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Russel M. Walters

    2012-01-01

    Full Text Available Surfactants in skin cleansers interact with the skin in several manners. In addition to the desired benefit of providing skin hygiene, surfactants also extract skin components during cleansing and remain in the stratum corneum (SC after rinsing. These side effects disrupt SC structure and degrade its barrier properties. Recent applications of vibrational spectroscopy and two-photon microscopy in skin research have provided molecular-level information to facilitate our understanding of the interaction between skin and surfactant. In the arena of commercial skin cleansers, technologies have been developed to produce cleansers that both cleanse and respect skin barrier. The main approach is to minimize surfactant interaction with skin through altering its solution properties. Recently, hydrophobically modified polymers (HMPs have been introduced to create skin compatible cleansing systems. At the presence of HMP, surfactants assemble into larger, more stable structures. These structures are less likely to penetrate the skin, thereby resulting in less aggressive cleansers and the integrity of the skin barrier is maintained. In this paper, we reviewed our recent findings on surfactant and SC interactions at molecular level and provided an overview of the HM technology for developing cleansers that respect skin barrier.

  12. The path integral formulation of climate dynamics.

    Directory of Open Access Journals (Sweden)

    Antonio Navarra

    Full Text Available The chaotic nature of the atmospheric dynamics has stimulated the applications of methods and ideas derived from statistical dynamics. For instance, ensemble systems are used to make weather predictions recently extensive, which are designed to sample the phase space around the initial condition. Such an approach has been shown to improve substantially the usefulness of the forecasts since it allows forecasters to issue probabilistic forecasts. These works have modified the dominant paradigm of the interpretation of the evolution of atmospheric flows (and oceanic motions to some extent attributing more importance to the probability distribution of the variables of interest rather than to a single representation. The ensemble experiments can be considered as crude attempts to estimate the evolution of the probability distribution of the climate variables, which turn out to be the only physical quantity relevant to practice. However, little work has been done on a direct modeling of the probability evolution itself. In this paper it is shown that it is possible to write the evolution of the probability distribution as a functional integral of the same kind introduced by Feynman in quantum mechanics, using some of the methods and results developed in statistical physics. The approach allows obtaining a formal solution to the Fokker-Planck equation corresponding to the Langevin-like equation of motion with noise. The method is very general and provides a framework generalizable to red noise, as well as to delaying differential equations, and even field equations, i.e., partial differential equations with noise, for example, general circulation models with noise. These concepts will be applied to an example taken from a simple ENSO model.

  13. Port Hamiltonian Formulation of Infinite Dimensional Systems II. Boundary Control by Interconnection

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the boundary control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system has been generalized to the distributed parameter and multi-variable case by ex

  14. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, van der Arjan J.; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the boundary control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system has been generalized to the distributed parameter and multivariable case by ext

  15. Thermal momentum distribution from path integrals with shifted boundary conditions

    CERN Document Server

    Giusti, Leonardo

    2011-01-01

    For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction, and (b) the ordinary partition function. In this form the generating function is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.

  16. Surface integral formulations for the design of plasmonic nanostructures.

    Science.gov (United States)

    Forestiere, Carlo; Iadarola, Giovanni; Rubinacci, Guglielmo; Tamburrino, Antonello; Dal Negro, Luca; Miano, Giovanni

    2012-11-01

    Numerical formulations based on surface integral equations (SIEs) provide an accurate and efficient framework for the solution of the electromagnetic scattering problem by three-dimensional plasmonic nanostructures in the frequency domain. In this paper, we present a unified description of SIE formulations with both singular and nonsingular kernel and we study their accuracy in solving the scattering problem by metallic nanoparticles with spherical and nonspherical shape. In fact, the accuracy of the numerical solution, especially in the near zone, is of great importance in the analysis and design of plasmonic nanostructures, whose operation critically depends on the manipulation of electromagnetic hot spots. Four formulation types are considered: the N-combined region integral equations, the T-combined region integral equations, the combined field integral equations and the null field integral equations. A detailed comparison between their numerical solutions obtained for several nanoparticle shapes is performed by examining convergence rate and accuracy in both the far and near zone of the scatterer as a function of the number of degrees of freedom. A rigorous analysis of SIE formulations and their limitations can have a high impact on the engineering of numerous nano-scale optical devices such as plasmon-enhanced light emitters, biosensors, photodetectors, and nanoantennas.

  17. Second-order domain derivative of normal-dependent boundary integrals

    KAUST Repository

    Balzer, Jonathan

    2010-03-17

    Numerous reconstruction tasks in (optical) surface metrology allow for a variational formulation. The occurring boundary integrals may be interpreted as shape functions. The paper is concerned with the second-order analysis of such functions. Shape Hessians of boundary integrals are considered difficult to find analytically because they correspond to third-order derivatives of an, in a sense equivalent, domain integral. We complement previous results by considering cost functions depending explicitly on the surface normal. The correctness and practicability of our calculations are verified in the context of a Newton-type shape reconstruction method. © 2010 Birkhäuser / Springer Basel AG.

  18. Geometric formulations and variational integrators of discrete autonomous Birkhoff systems

    Institute of Scientific and Technical Information of China (English)

    Liu Shi-Xing; Liu Chang; Guo Yong-Xin

    2011-01-01

    The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.

  19. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.

  20. Boundary integral methods for unsaturated flow

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.J.; McTigue, D.F.

    1990-12-31

    Many large simulations may be required to assess the performance of Yucca Mountain as a possible site for the nations first high level nuclear waste repository. A boundary integral equation method (BIEM) is described for numerical analysis of quasilinear steady unsaturated flow in homogeneous material. The applicability of the exponential model for the dependence of hydraulic conductivity on pressure head is discussed briefly. This constitutive assumption is at the heart of the quasilinear transformation. Materials which display a wide distribution in pore-size are described reasonably well by the exponential. For materials with a narrow range in pore-size, the exponential is suitable over more limited ranges in pressure head. The numerical implementation of the BIEM is used to investigate the infiltration from a strip source to a water table. The net infiltration of moisture into a finite-depth layer is well-described by results for a semi-infinite layer if {alpha}D > 4, where {alpha} is the sorptive number and D is the depth to the water table. the distribution of moisture exhibits a similar dependence on {alpha}D. 11 refs., 4 figs.,

  1. Surface free energy for systems with integrable boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Goehmann, Frank [Fachbereich C-Physik, Bergische Universitaet Wuppertal, 42097 Wuppertal (Germany); Bortz, Michael [Department of Theoretical Physics, Australian National University, Canberra ACT 0200 (Australia); Frahm, Holger [Institut fuer Theoretische Physik, Universitaet Hannover, 30167 Hannover (Germany)

    2005-12-16

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions.

  2. An Integrated Methodology for Emulsified Formulated Product Design

    DEFF Research Database (Denmark)

    Mattei, Michele

    significantly reduce both time and cost connected to product development by doing only the necessary experi- ments , and ensuring chances for innovation . The main contribution of this project i s the development of an integrated methodology for the design of emulsified formulated products. The methodology...... consists of three stages: the problem definition stage, the model - based design stage, and the experiment - based verification stage. In the probl em definition stage, the consumer needs are trans- lated into a set of target thermo - physical properties and into a list of categories of ingre- dients...... formulation are measured by means of tailor - made exp eriments. The formulation is then validated or, if necessary, re- fined thanks to a systematic list of action. The problem definition stage relies on a robust knowledge base, which needs to system- atically generate quantitative, useful input information...

  3. Perfectly-matched-layer boundary integral equation method for wave scattering in a layered medium

    CERN Document Server

    Lu, Wangtao; Qian, Jianliang

    2016-01-01

    For scattering problems of time-harmonic waves, the boundary integral equation (BIE) methods are highly competitive, since they are formulated on lower-dimension boundaries or interfaces, and can automatically satisfy outgoing radiation conditions. For scattering problems in a layered medium, standard BIE methods based on the Green's function of the background medium must evaluate the expensive Sommefeld integrals. Alternative BIE methods based on the free-space Green's function give rise to integral equations on unbounded interfaces which are not easy to truncate, since the wave fields on these interfaces decay very slowly. We develop a BIE method based on the perfectly matched layer (PML) technique. The PMLs are widely used to suppress outgoing waves in numerical methods that directly discretize the physical space. Our PML-based BIE method uses the Green's function of the PML-transformed free space to define the boundary integral operators. The method is efficient, since the Green's function of the PML-tran...

  4. Accurate computation of Galerkin double surface integrals in the 3-D boundary element method

    CERN Document Server

    Adelman, Ross; Duraiswami, Ramani

    2015-01-01

    Many boundary element integral equation kernels are based on the Green's functions of the Laplace and Helmholtz equations in three dimensions. These include, for example, the Laplace, Helmholtz, elasticity, Stokes, and Maxwell's equations. Integral equation formulations lead to more compact, but dense linear systems. These dense systems are often solved iteratively via Krylov subspace methods, which may be accelerated via the fast multipole method. There are advantages to Galerkin formulations for such integral equations, as they treat problems associated with kernel singularity, and lead to symmetric and better conditioned matrices. However, the Galerkin method requires each entry in the system matrix to be created via the computation of a double surface integral over one or more pairs of triangles. There are a number of semi-analytical methods to treat these integrals, which all have some issues, and are discussed in this paper. We present novel methods to compute all the integrals that arise in Galerkin fo...

  5. A spectral boundary integral equation method for the 2-D Helmholtz equation

    Science.gov (United States)

    Hu, Fang Q.

    1994-01-01

    In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the nonsmoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the nonsmoothness of the integral kernels in the spectral implementation. The present method is robust for a general boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. A numerical example of wave scattering is given in which the exponential accuracy of the present numerical method is demonstrated.

  6. Improved non-singular local boundary integral equation method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA)for the nodes on the global boundary, thus singularities will not occur in the new algorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore,when solving the Helmholtz problems, the modified basis functions with wave solutions areadapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.

  7. Discrete holomorphicity and integrability in loop models with open boundaries

    CERN Document Server

    de Gier, Jan; Rasmussen, Jorgen

    2012-01-01

    We consider boundary conditions compatible with discrete holomorphicity for the dilute O(n) and C_2^(1) loop models. In each model, for a general set of boundary plaquettes, multiple types of loops can appear. A generalisation of Smirnov's parafermionic observable is therefore required in order to maintain the discrete holomorphicity property in the bulk. We show that there exist natural boundary conditions for this observable which are consistent with integrability, that is to say that, by imposing certain boundary conditions, we obtain a set of linear equations whose solutions also satisfy the corresponding reflection equation. In both loop models, several new sets of integrable weights are found using this approach.

  8. Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems

    Science.gov (United States)

    Ivanyshyn Yaman, Olha; Le Louër, Frédérique

    2016-09-01

    This paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles.

  9. The generalized method of moments for electromagnetic integral equations: New formulations and applications

    Science.gov (United States)

    Dault, Daniel Lawrence

    The moment method is the predominant approach for the solution of electromagnetic boundary integral equations. Traditional moment method discretizations rely on the projection of solution currents onto basis sets that must satisfy strict continuity properties to model physical currents. The choice of basis sets is further restricted by the tight coupling of traditional functional descriptions to the underlying geometrical approximation of the scattering or radiating body. As a result, the choice of approximation function spaces and geometry discretizations for a given boundary integral equation is significantly limited. A quasi-meshless partition of unity based method called the Generalized Method of Moments (GMM) was recently introduced to overcome some of these limitations. The GMM partition of unity scheme affords automatic continuity of solution currents, and therefore permits the use of a much wider range of basis functions than traditional moment methods. However, prior to the work in this thesis, GMM was limited in practical applicability because it was only formulated for a few geometry types, could not be accurately applied to arbitrary scatterers, e.g. those with mixtures of geometrical features, and was not amenable to traditional acceleration methodologies that would permit its application to electrically large problems. The primary contribution of this thesis is to introduce several new GMM formulations that significantly expand the capabilities of the method to make it a practical, broadly applicable approach for solving boundary integral equations and overcoming the limitations inherent in traditional moment method discretizations. Additionally, several of the topics covered address continuing open problems in electromagnetic boundary integral equations with applicability beyond GMM. The work comprises five broad contributions. The first is a new GMM formulation capable of mixing both GMM-type basis sets and traditional basis sets in the same

  10. Derivation and implementation of the boundary integral formula for the convective acoustic wave equation in time domain.

    Science.gov (United States)

    Lee, Yong Woo; Lee, Duck Joo

    2014-12-01

    Kirchhoff's formula for the convective wave equation is derived using the generalized function theory. The generalized convective wave equation for a stationary surface is obtained, and the integral formulation, the convective Kirchhoff's formula, is derived. The formula has a similar form to the classical Kirchhoff's formula, but an additional term appears due to a moving medium effect. For convenience, the additional term is manipulated to a final form as the classical Kirchhoff's formula. The frequency domain boundary integral can be obtained from the current time domain boundary integral form. The derived formula is verified by comparison with the analytic solution of source in the uniform flow. The formula is also utilized as a boundary integral equation. Time domain boundary element method (BEM) analysis using the boundary integral equation is conducted, and the results show good agreement with the analytical solution. The formula derived here can be useful for sound radiation and scattering by arbitrary bodies in a moving medium in the time domain.

  11. On the formulation of open boundary conditions at the mouth of a bay

    Science.gov (United States)

    Greatbatch, Richard J.; Otterson, Timm

    1991-10-01

    We describe our experience in formulating open boundary conditions to apply at the mouth of a reduced-gravity model of a bay. Our objective is to find a way to calculate the response of the bay to wind forcing over the bay itself, without being concerned about the influence of regions beyond. We show that open boundaries from which Kelvin waves can propagate along the coast into the model domain ("upstream" boundaries) must be treated with care. We begin by considering an "upstream" boundary which runs perpendicular to the coast. We find that if a radiation condition is applied on such a boundary, then spurious Kelvin waves of near-inertial period can propagate in from the boundary and contaminate the solution in the interior of the model domain. Also, if there is Ekman transport at the "upstream" boundary away from (toward) the coast, then upwelling (downwelling) will occur indefinitely and completely swamp the model solution in the bay. This is similar to the solution we expect when the coastline is straight and extends to infinity in the "upstream" direction. However, it is not the same, since the rate of upwelling (downwelling) is roughly half the theoretical value for that case. For the problem of a bay we suggest that the way to deal with this is to extend the coastline out to sea on the "upstream" side of the mouth and apply a condition on the artificial stretch of the boundary which suppresses Kelvin wave propagation but is also not prohibitively reflective to outgoing Poincaré waves. For our problem a condition of zero normal gradient in interface displacement seems to be sufficient. This condition also captures reasonably well the near-inertial Kelvin waves that are generated by the northwest corner of the bay (which are a genuine part of the solution) as long as the other boundaries are sufficiently far from the bay. We have also experimented with using sponge layers rather than radiation conditions on the other boundaries. We find that sponging only

  12. Estimation of Soil Electrical Properties in a Multilayer Earth Model with Boundary Element Formulation

    Directory of Open Access Journals (Sweden)

    T. Islam

    2012-01-01

    Full Text Available This paper presents an efficient model for estimation of soil electric resistivity with depth and layer thickness in a multilayer earth structure. This model is the improvement of conventional two-layer earth model including Wenner resistivity formulations with boundary conditions. Two-layer soil model shows the limitations in specific soil characterizations of different layers with the interrelationships between soil apparent electrical resistivity (ρ and several soil physical or chemical properties. In the multilayer soil model, the soil resistivity and electric potential at any points in multilayer anisotropic soil medium are expressed according to the variation of electric field intensity for geotechnical investigations. For most soils with varying layers, multilayer soil resistivity profile is therefore more suitable to get soil type, bulk density of compacted soil and to detect anomalous materials in soil. A boundary element formulation is implemented to show the multilayer soil model with boundary conditions in soil resistivity estimations. Numerical results of soil resistivity ratio and potential differences for different layers are presented to illustrate the application, accuracy, and efficiency of the proposed model. The nobility of the research is obtaining multilayer soil characterizations through soil electric properties in near surface soil profile.

  13. Boundary Integral Equations and A Posteriori Error Estimates

    Institute of Scientific and Technical Information of China (English)

    YU Dehao; ZHAO Longhua

    2005-01-01

    Adaptive methods have been rapidly developed and applied in many fields of scientific and engineering computing. Reliable and efficient a posteriori error estimates play key roles for both adaptive finite element and boundary element methods. The aim of this paper is to develop a posteriori error estimates for boundary element methods. The standard a posteriori error estimates for boundary element methods are obtained from the classical boundary integral equations. This paper presents hyper-singular a posteriori error estimates based on the hyper-singular integral equations. Three kinds of residuals are used as the estimates for boundary element errors. The theoretical analysis and numerical examples show that the hyper-singular residuals are good a posteriori error indicators in many adaptive boundary element computations.

  14. A Regularized Boundary Element Formulation for Contactless SAR Evaluations within Homogeneous and Inhomogeneous Head Phantoms

    CERN Document Server

    Mitharwal, Rajendra

    2015-01-01

    This work presents a Boundary Element Method (BEM) formulation for contactless electromagnetic field assessments. The new scheme is based on a regularized BEM approach that requires the use of electric measurements only. The regularization is obtained by leveraging on an extension of Calderon techniques to rectangular systems leading to well-conditioned problems independent of the discretization density. This enables the use of highly discretized Huygens surfaces that can be consequently placed very near to the radiating source. In addition, the new regularized scheme is hybridized with both surfacic homogeneous and volumetric inhomogeneous forward BEM solvers accelerated with fast matrix-vector multiplication schemes. This allows for rapid and effective dosimetric assessments and permits the use of inhomogeneous and realistic head phantoms. Numerical results corroborate the theory and confirms the practical effectiveness of all newly proposed formulations.

  15. Comparison of iterative solvers for electromagnetic analysis of plasmonic nanostructures using multiple surface integral equation formulations

    CERN Document Server

    Gomez-Sousa, Hipolito; Martinez-Lorenzo, Jose Angel

    2015-01-01

    The electromagnetic behavior of plasmonic structures can be predicted after discretizing and solving a linear system of equations, derived from a continuous surface integral equation (SIE) and the appropriate boundary conditions, using a method of moments (MoM) methodology. In realistic large-scale optical problems, a direct inversion of the SIE-MoM matrix cannot be performed due to its large size, and an iterative solver must be used instead. This paper investigates the performance of four iterative solvers (GMRES, TFQMR, CGS, and BICGSTAB) for five different SIE-MoM formulations (PMCHWT, JMCFIE, CTF, CNF, and MNMF). Moreover, under this plasmonic context, a set of suggested guidelines are provided to choose a suitable SIE formulation and iterative solver depending on the desired simulation error and available runtime resources.

  16. APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    Vorona Yu.V.

    2015-12-01

    Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.

  17. Numerical simulation of boundary layers. Part 1: Weak formulation and numerical method

    Science.gov (United States)

    Spalart, P. R.

    1986-01-01

    A numerical method designed to solve the time-dependent, three-dimensional, incompressible Navier-Stokes equations in boundary layers is presented. The fluid domain is the half-space over a flat plate, and periodic conditions are applied in the horizontal directions. The discretization is spectral. The basis functions are divergence-free and a weak formulation of the momentum equation is used, which eliminates the pressure term. An exponential mapping and Jacobi polynomials are used in the semi-infinite direction, with the irrotational component receiving special treatment. Issues related to the accuracy, stability and efficiency of the method are discussed. Very fast convergence is demonstrated on some model problems with smooth solutions. The method has also been shown to accurately resolve the fine scales of transitional and turbulent boundary layers.

  18. Numerical solution of multiple hole problem by using boundary integral equation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper studies a numerical solution of multiple hole problem by using a boundary integral equation.The studied problem can be considered as a supposition of many single hole problems.After considering the interaction among holes,an algebraic equation is formulated,which is then solved by using an iteration technique.The hoop stress around holes can be finally determined. One numerical example is provided to check its accuracy.

  19. Implications of a wavepacket formulation for the nonlinear parabolized stability equations to hypersonic boundary layers

    Science.gov (United States)

    Kuehl, Joseph

    2016-11-01

    The parabolized stability equations (PSE) have been developed as an efficient and powerful tool for studying the stability of advection-dominated laminar flows. In this work, a new "wavepacket" formulation of the PSE is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening and results in disturbance saturation amplitudes consistent with experiment. A Mach 6 flared-cone example is presented. Support from the AFOSR Young Investigator Program via Grant FA9550-15-1-0129 is gratefully acknowledges.

  20. Isogeometric Analysis of Boundary Integral Equations

    Science.gov (United States)

    2015-04-21

    obtains high-order collocation methods based on superior approximation and numerical integration schemes and well-conditioned systems of linear algebraic ...matrices associated with the operators 12I+K and 1 2I−K ′. This construction results in well-conditioned linear algebraic systems [2], and it is superior ...for regularizing integral operators. As a result one obtains high-order collocation methods based on superior approximation and numerical integration

  1. The functional integral formulation of the Schrieffer-Wolff transformation

    Science.gov (United States)

    Zamani, Farzaneh; Ribeiro, Pedro; Kirchner, Stefan

    2016-06-01

    We revisit the Schrieffer-Wolff transformation and present a path integral version of this important canonical transformation. The equivalence between the low-energy sector of the Anderson model in the so-called local moment regime and the spin-isotropic Kondo model is usually established via a canonical transformation performed on the Hamiltonian, followed by a projection. Here we present a path integral formulation of the Schrieffer-Wolff transformation which relates the functional integral form of the partition function of the Anderson model to that of its effective low-energy model. The resulting functional integral assumes the form of a spin path integral and includes a geometric phase factor, i.e. a Berry phase. Our approach stresses the underlying symmetries of the model and allows for a straightforward generalization of the transformation to more involved models. It thus not only sheds new light on a classic problem, it also offers a systematic route of obtaining effective low-energy models and higher order corrections. This is demonstrated by obtaining the effective low-energy model of a quantum dot attached to two ferromagnetic leads.

  2. On approximation of nonlinear boundary integral equations for the combined method

    Energy Technology Data Exchange (ETDEWEB)

    Gregus, M.; Khoromsky, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1989-09-22

    The nonlinear boundary integral equations that arise in research of nonlinear magnetostatic problems are investigated in combined formulation on an unbounded domain. Approximations of the derived operator equations are studied based on the Galerkin method. The investigated boundary operators are strongly monotone, Lipschitz-continuous, potential and have a symmetrical Gateaux derivative. The error estimates of the Galerkin's approximation in Sobolev spaces of fractional powers are obtained using the above-mentioned properties of the operators, too. The problem has been studied on surfaces in two and three-dimensional spaces. We answer also some questions on convergence connected with the discretized systems of equations. 21 refs.

  3. Boundary conditions in conformal and integrable theories

    CERN Document Server

    Petkova, V B

    2000-01-01

    The study of boundary conditions in rational conformal field theories is not only physically important. It also reveals a lot on the structure of the theory ``in the bulk''. The same graphs classify both the torus and the cylinder partition functions and provide data on their hidden ``quantum symmetry''. The Ocneanu triangular cells -- the 3j-symbols of these symmetries, admit various interpretations and make a link between different problems.

  4. A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach

    Science.gov (United States)

    Kriegsmann, Gregory A.; Taflove, Allen; Umashankar, Koradar R.

    1987-01-01

    A new formulation of electromagnetic wave scattering by convex, two-dimensional conducting bodies is reported. This formulation, called the on-surface radiation condition (OSRC) approach, is based upon an expansion of the radiation condition applied directly on the surface of a scatterer. It is now shown that application of a suitable radiation condition directly on the surface of a convex conducting scatterer can lead to substantial simplification of the frequency-domain integral equation for the scattered field, which is reduced to just a line integral. For the transverse magnetic case, the integrand is known explicitly. For the transverse electric case, the integrand can be easily constructed by solving an ordinary differential equation around the scatterer surface contour. Examples are provided which show that OSRC yields computed near and far fields which approach the exact results for canonical shapes such as the circular cylinder, square cylinder, and strip. Electrical sizes for the examples are ka = 5 and ka = 10. The new OSRC formulation of scattering may present a useful alternative to present integral equation and uniform high-frequency approaches for convex cylinders larger than ka = 1. Structures with edges or corners can also be analyzed, although more work is needed to incorporate the physics of singular currents at these discontinuities. Convex dielectric structures can also be treated using OSRC.

  5. Calculation of Turbulent Boundary Layers Using the Dissipation Integral Method

    Institute of Scientific and Technical Information of China (English)

    MatthiasBuschmann

    1999-01-01

    This paper gives an introduction into the dissipation integral method.The general integral equations for the three-dimensional case are derved.It is found that for a practical calculation algorithm the integral monentum equation and the integral energy equation are msot useful.Using Two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown.Test cases for two-and three-dimensional boundary layers are analysed and discussed.The paper concludes with a discussion of the advantages and limits of dissipation integral methods.

  6. Diffraction of Elastic Waves in Fluid-Layered Solid Interfaces by an Integral Formulation

    Directory of Open Access Journals (Sweden)

    J. E. Basaldúa-Sánchez

    2013-01-01

    Full Text Available In the present communication, scattering of elastic waves in fluid-layered solid interfaces is studied. The indirect boundary element method is used to deal with this wave propagation phenomenon in 2D fluid-layered solid models. The source is represented by Hankel’s function of second kind and this is always applied in the fluid. Our method is an approximate boundary integral technique which is based upon an integral representation for scattered elastic waves using single-layer boundary sources. This approach is typically called indirect because the sources’ strengths are calculated as an intermediate step. In addition, this formulation is regarded as a realization of Huygens’ principle. The results are presented in frequency and time domains. Various aspects related to the different wave types that emerge from this kind of problems are emphasized. A near interface pulse generates changes in the pressure field and can be registered by receivers located in the fluid. In order to show the accuracy of our method, we validated the results with those obtained by the discrete wave number applied to a fluid-solid interface joining two half-spaces, one fluid and the other an elastic solid.

  7. A comparison of specularly reflective boundary conditions and rotationally invariant formulations for Discrete Ordinate Methods in axisymmetric geometries

    Science.gov (United States)

    Cai, Jian; Roy, Somesh; Modest, Michael F.

    2016-10-01

    In simulations of periodic or symmetric geometries, computational domains are reduced by imaginary boundaries that exploit the symmetry conditions. Two boundary conditions are proposed for Discrete Ordinate Methods to solve axisymmetric radiation problems. Firstly, a specularly reflective boundary condition similar to that is used in Photon Monte Carlo methods is developed for Discrete Ordinate Methods. Secondly, the rotational invariant formulation is revisited for axisymmetric wedge geometries. Correspondingly, a new rotationally invariant boundary condition specially designed for axisymmetric problems on wedge shape is proposed to enforce the rotational invariance properties possessed by the radiative transfer equation (RTE) but violated by three-dimensional conventional Discrete Ordinate Methods. Both boundary conditions have the advantage that the discretization and linear equation solution procedures of conventional three-dimensional DOM are not affected by changing to a reduced geometry. Consistency, accuracy and efficiency of the new boundary conditions are demonstrated by multiple numerical examples involving periodic symmetry and axisymmetry. A comparison between specularly reflective boundary conditions and the rotationally invariant formulation shows that the latter offers several advantages for wedge geometries. In other symmetry conditions, when the rotational invariant formulation is not applicable, specular reflective boundary conditions are still effective.

  8. Spatial integration of boundaries in a 3D virtual environment.

    Science.gov (United States)

    Bouchekioua, Youcef; Miller, Holly C; Craddock, Paul; Blaisdell, Aaron P; Molet, Mikael

    2013-10-01

    Prior research, using two- and three-dimensional environments, has found that when both human and nonhuman animals independently acquire two associations between landmarks with a common landmark (e.g., LM1-LM2 and LM2-LM3), each with its own spatial relationship, they behave as if the two unique LMs have a known spatial relationship despite their never having been paired. Seemingly, they have integrated the two associations to create a third association with its own spatial relationship (LM1-LM3). Using sensory preconditioning (Experiment 1) and second-order conditioning (Experiment 2) procedures, we found that human participants integrated information about the boundaries of pathways to locate a goal within a three-dimensional virtual environment in the absence of any relevant landmarks. Spatial integration depended on the participant experiencing a common boundary feature with which to link the pathways. These results suggest that the principles of associative learning also apply to the boundaries of an environment.

  9. NOVEL REGULARIZED BOUNDARY INTEGRAL EQUATIONS FOR POTENTIAL PLANE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yao-ming; L(U) He-xiang; WANG Li-min

    2006-01-01

    The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundaryintegral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems.With some numerical results, it is shown that the better accuracy and higher efficiency,especially on the boundary, can be achieved by the present system.

  10. Comparison of perfectly matched layer and multi-transmitting formula artificial boundary condition based on hybrid finite element formulation

    Institute of Scientific and Technical Information of China (English)

    LI Ning; XIE Li-li; ZHAI Chang-hai

    2007-01-01

    The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed.Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in corner and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.

  11. A GPU-accelerated Direct-sum Boundary Integral Poisson-Boltzmann Solver

    CERN Document Server

    Geng, Weihua

    2013-01-01

    In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up our method, we take advantage of the parallel nature of the boundary integral formulation and parallelize the schemes within CUDA shared memory architecture on GPU. The schemes use only $11N+6N_c$ size-of-double device memory for a biomolecule with $N$ triangular surface elements and $N_c$ partial charges. Numerical tests of these schemes show well-maintained accuracy and fast convergence. The GPU implementation using one GPU card (Nvidia Tesla M2070) achieves 120-150X speed-up to the implementation using one CPU (Intel L5640 2.27GHz). With our approach, solving PB equations on well-discretized molecular surfaces with up ...

  12. The integrated Earth System Model Version 1: formulation and functionality

    Energy Technology Data Exchange (ETDEWEB)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  13. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    KAUST Repository

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  14. The spectrum of boundary states in sine-Gordon model with integrable boundary conditions

    CERN Document Server

    Bajnok, Z; Takács, G; Tóth, G

    2002-01-01

    The bound state spectrum and the associated reflection factors are determined for the sine-Gordon model with arbitrary integrable boundary condition by closing the bootstrap. Comparing the symmetries of the bound state spectrum with that of the Lagrangian it is shown how one can "derive" the relationship between the UV and IR parameters conjectured earlier.

  15. Analytical Nonlocal Electrostatics Using Eigenfunction Expansions of Boundary-Integral Operators

    CERN Document Server

    Bardhan, Jaydeep P; Brune, Peter R

    2012-01-01

    In this paper, we present an analytical solution to nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for analytical calculations in separable geometries, we rederive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion layer and then a dilute electrolyte (modeled with the linearized Poisson--Boltzmann equation). Our main result, however, is an analytical method for calculating the reaction potential in a protein embedded in a nonlocal-dielectric solvent, the Lorentz model studied by Dogonadze and Kornyshev. The analytical method enables biophysicists to study the new nonlocal theory in a simple, computationally fast way; an open-source MATLAB implementatio...

  16. Numerical Evaluation of CPV Boundary Integrals with Symmetrical Quadrature Schemes

    Institute of Scientific and Technical Information of China (English)

    马杭; 徐凯宇

    2003-01-01

    Stemming from the definition of the Cauchy principal values (CPV) integrals, a newly developed symmetrical quadrature scheme was proposed in the paper for the accurate numerical evaluation of the singular boundary integrals in the sense of CPV encountered in the boundary element method. In the case of inner-element singularities, the CPV integrals could be evaluated in a straightforward way by dividing the element into the symmetrical part and the remainder(s). And in the case of end-singularities, the CPV integrals could be evaluated simply by taking a tangential distance transformation of the integrand after cutting out a symmetrical tiny zone around the singular point. In both cases, the operations are no longer necessary before the numerical implementation, which involves the dull routine work to separate out singularities from the integral kernels. Numerical examples were presented for both the two-and the three-dimensional boundary integrals in elasticity. Comparing the numerical results with those by other approaches demonstrates the feasibility and the effectiveness of the proposed scheme.

  17. The D(D3)-anyon chain: integrable boundary conditions and excitation spectra

    Science.gov (United States)

    Finch, Peter E.; Frahm, Holger

    2013-05-01

    Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z4 parafermion or a {M}_{(5,6)} minimal model.

  18. Optimal control problems for impulsive systems with integral boundary conditions

    Directory of Open Access Journals (Sweden)

    Allaberen Ashyralyev

    2013-03-01

    Full Text Available In this article, the optimal control problem is considered when the state of the system is described by the impulsive differential equations with integral boundary conditions. Applying the Banach contraction principle the existence and uniqueness of the solution is proved for the corresponding boundary problem by the fixed admissible control. The first and second variation of the functional is calculated. Various necessary conditions of optimality of the first and second order are obtained by the help of the variation of the controls.

  19. Surface integrals approach to solution of some free boundary problems

    Directory of Open Access Journals (Sweden)

    Igor Malyshev

    1988-01-01

    Full Text Available Inverse problems in which it is required to determine the coefficients of an equation belong to the important class of ill-posed problems. Among these, of increasing significance, are problems with free boundaries. They can be found in a wide range of disciplines including medicine, materials engineering, control theory, etc. We apply the integral equations techniques, typical for parabolic inverse problems, to the solution of a generalized Stefan problem. The regularization of the corresponding system of nonlinear integral Volterra equations, as well as local existence, uniqueness, continuation of its solution, and several numerical experiments are discussed.

  20. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.

    2009-08-19

    We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.

  1. Applications of the Kinetic Formulation for Scalar Conservation Laws with a Zero-Flux Type Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    Zhigang WANG; Yachun LI

    2012-01-01

    The authors are concerned with a zero-flux type initial boundary value problem for scalar conservation laws.Firstly,a kinetic formulation of entropy solutions is established.Secondly,by using the kinetic formulation and kinetic techniques,the uniqueness of entropy solutions is obtained.Finally,the parabolic approximation is studied and an error estimate of order η1/3 between the entropy solution and the viscous approximate solutions is established by using kinetic techniques,where ris the size of artificial viscosity.

  2. Integrated care in the daily work: coordination beyond organisational boundaries

    Directory of Open Access Journals (Sweden)

    Alexandra Petrakou

    2009-07-01

    Full Text Available Objectives: In this paper, integrated care in an inter-organisational cooperative setting of in-home elderly care is studied. The aim is to explore how home care workers coordinate their daily work, identify coordination issues in situ and discuss possible actions for supporting seamless and integrated elderly care at home. Method: The empirical findings are drawn from an ethnographic workplace study of the cooperation and coordination taking place between home care workers in a Swedish county. Data were collected through observational studies, interviews and group discussions. Findings: The paper identifies a need to support two core issues. Firstly, it must be made clear how the care interventions that are currently defined as ‘self-treatment’ by the home health care should be divided. Secondly, the distributed and asynchronous coordination between all care workers involved, regardless of organisational belonging must be better supported. Conclusion: Integrated care needs to be developed between organisations as well as within each organisation. As a matter of fact, integrated care needs to be built up beyond organisational boundaries. Organisational boundaries affect the planning of the division of care interventions, but not the coordination during the home care process. During the home care process, the main challenge is the coordination difficulties that arise from the fact that workers are distributed in time and/or space, regardless of organisational belonging. A core subject for future practice and research is to develop IT tools that reach beyond formal organisational boundaries and processes while remaining adaptable in view of future structure changes.

  3. New formulations on the finite element method for boundary value problems with internal/external boundary layers; Novas formulacoes de elementos finitos para problemas de valor de contorno com camadas limite interna/externa

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luis Carlos Martins

    1998-06-15

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  4. Revisit boundary conditions for the self-adjoint angular flux formulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    We revisit the boundary conditions for SAAF. We derived the equivalent parity variational form ready for coding up. The more rigorous approach of evaluating odd parity should be solving the odd parity equation coupled with the even parity. We proposed a symmetric reflecting boundary condition although neither positive definiteness nor even-odd decoupling is achieved. A simple numerical test verifies the validity of these boundary conditions.

  5. A boundary integral formalism for stochastic ray tracing in billiards

    CERN Document Server

    Chappell, David J

    2014-01-01

    Determining the flow of rays or particles driven by a force or velocity field is fundamental to modelling many physical processes, including weather forecasting and the simulation of molecular dynamics. High frequency wave energy distributions can also be approximated using flow or transport equations. Applications arise in underwater and room acoustics, vibro-acoustics, seismology, electromagnetics, quantum mechanics and in producing computer generated imagery. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain.

  6. A boundary integral formalism for stochastic ray tracing in billiards

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, David J. [School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS (United Kingdom); Tanner, Gregor [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2014-12-15

    Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain.

  7. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.

    Science.gov (United States)

    Bhattacharya, Amitabh; Kesarkar, Tejas

    2016-10-01

    A combination of finite difference (FD) and boundary integral (BI) methods is used to formulate an efficient solver for simulating unsteady Stokes flow around particles. The two-dimensional (2D) unsteady Stokes equation is being solved on a Cartesian grid using a second order FD method, while the 2D steady Stokes equation is being solved near the particle using BI method. The two methods are coupled within the viscous boundary layer, a few FD grid cells away from the particle, where solutions from both FD and BI methods are valid. We demonstrate that this hybrid method can be used to accurately solve for the flow around particles with irregular shapes, even though radius of curvature of the particle surface is not resolved by the FD grid. For dilute particle concentrations, we construct a virtual envelope around each particle and solve the BI problem for the flow field located between the envelope and the particle. The BI solver provides velocity boundary condition to the FD solver at "boundary" nodes located on the FD grid, adjacent to the particles, while the FD solver provides the velocity boundary condition to the BI solver at points located on the envelope. The coupling between FD method and BI method is implicit at every time step. This method allows us to formulate an O(N) scheme for dilute suspensions, where N is the number of particles. For semidilute suspensions, where particles may cluster, an envelope formation method has been formulated and implemented, which enables solving the BI problem for each individual particle cluster, allowing efficient simulation of hydrodynamic interaction between particles even when they are in close proximity. The method has been validated against analytical results for flow around a periodic array of cylinders and for Jeffrey orbit of a moving ellipse in shear flow. Simulation of multiple force-free irregular shaped particles in the presence of shear in a 2D slit flow has been conducted to demonstrate the robustness of

  8. Acoustic boundary element method formulation with treatment of nearly singular integrands by element subdivision

    DEFF Research Database (Denmark)

    Cutanda Henríquez, Vicente; Juhl, Peter Møller

    2008-01-01

    of the integrand or the whole method. On the other hand, it is also possible to refine or improve the numerical integration, and maintain the standard BEM formulation. In this paper a numerical technique based on element subdivision, previously proposed by the authors, is made more general to cover most cases...

  9. Constraint-Preserving Boundary Conditions for the Linearized Baumgarte-Shapiro-Shibata-Nakamura Formulation

    Directory of Open Access Journals (Sweden)

    Alexander M. Alekseenko

    2008-01-01

    the existence of the solution is proved using the properties of the reduced system. A treatment is proposed for the full nonlinear BSSN system to construct constraint-preserving boundary conditions without invoking the second order in time reduction. Energy estimates on the principal part of the BSSN system (which is first order in temporal and second order in spatial derivatives are obtained. Generalizations to the case of nonhomogeneous boundary data are proposed.

  10. A hybrid formulation to suppress the numerical oscillations caused by immersed moving boundaries

    Science.gov (United States)

    Luo, Haoxiang; Dai, Hu; Ferreira de Sousa, Paulo

    2009-11-01

    A family of immersed-boundary methods, based on the sharp-interface representation of the boundary and local interpolation/extrapolation, has been recently developed to handle complex and moving boundary problems encountered in biological flows. Implemented typically on structured meshes, these methods save the computational cost of grid generation and take advantage of efficient computations on structured grids. However, since some of the nodes near the immersed boundary do not have the regular finite-difference stencil available for discretizing the Navier-Stokes equation, a local interpolation or extrapolation scheme is often used to reconstruct the flow field around the nodes. The drawback of this approach is that when a non-stationary boundary moves across the mesh points, the change of the stencil for the solution reconstruction causes artificial oscillations in the pressure. To suppress the oscillations, we have introduced a set of hybrid nodes on which both the Navier-Stokes solution and flow reconstruction are sought, and they are weighted according to the distance to the immersed boundary. The method has been implemented in both two- and three-dimensional solvers to handle a class of biological locomotion problems including flow-structure interaction. The accuracy and capability of the solvers will be demonstrated.

  11. Formulating an Integrated Library Government Documents Collection Policy.

    Science.gov (United States)

    Hodge, Stanley P.; And Others

    1989-01-01

    Offers suggestions for developing a collection policy that promotes the integration of government documents into an academic library's overall collection management objectives. Steps described include selecting appropriate agencies, selecting appropriate levels of collection intensity, assigning intensity levels to agency materials, and adjusting…

  12. Least-Squares PN Formulation of the Transport Equation Using Self-Adjoint-Angular-Flux Consistent Boundary Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Vincent M. Laboure; Yaqi Wang; Mark D. DeHart

    2016-05-01

    In this paper, we study the Least-Squares (LS) PN form of the transport equation compatible with voids in the context of Continuous Finite Element Methods (CFEM).We first deriveweakly imposed boundary conditions which make the LS weak formulation equivalent to the Self-Adjoint Angular Flux (SAAF) variational formulation with a void treatment, in the particular case of constant cross-sections and a uniform mesh. We then implement this method in Rattlesnake with the Multiphysics Object Oriented Simulation Environment (MOOSE) framework using a spherical harmonics (PN) expansion to discretize in angle. We test our implementation using the Method of Manufactured Solutions (MMS) and find the expected convergence behavior both in angle and space. Lastly, we investigate the impact of the global non-conservation of LS by comparing the method with SAAF on a heterogeneous test problem.

  13. Numerical conformal mapping via a boundary integral equation with the adjoint generalized Neumann kernel

    OpenAIRE

    Nasser, Mohamed M. S.; Murid, Ali H. M.; Sangawi, Ali W. K.

    2013-01-01

    This paper presents a new uniquely solvable boundary integral equation for computing the conformal mapping, its derivative and its inverse from bounded multiply connected regions onto the five classical canonical slit regions. The integral equation is derived by reformulating the conformal mapping as an adjoint Riemann-Hilbert problem. From the adjoint Riemann-Hilbert problem, we derive a boundary integral equation with the adjoint generalized Neumann kernel for the derivative of the boundary...

  14. Solution of a Problem Linear Plane Elasticity with Mixed Boundary Conditions by the Method of Boundary Integrals

    Directory of Open Access Journals (Sweden)

    Nahed S. Hussein

    2014-01-01

    Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of …eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.

  15. A Formulation of Asymptotic and Exact Boundary Conditions Using Local Operators

    Science.gov (United States)

    Hagstrom, T.; Hariharan, S. I.

    1998-01-01

    In this paper we describe a systematic approach for constructing asymptotic boundary conditions for isotropic wave-like equations using local operators. The conditions take a recursive form with increasing order of accuracy. In three dimensions the recursion terminates and the resulting conditions are exact for solutions which are described by finite combinations of angular spherical harmonics. First, we develop the expansion for the two-dimensional wave equation and construct a sequence of easily implementable boundary conditions. We show that in three dimensions and analogous conditions are again easily implementable in addition to being exact. Also, we provide extensions of these ideas to hyperbolic systems. Namely, Maxwell's equations for TM waves are used to demonstrate the construction. Finally, we provide numerical examples to demonstrate the effectiveness of these conditions for a model problem governed by the wave equation.

  16. The Role of Ellipticity and Normality Assumptions in Formulating Live-Boundary Conditions in Elasticity.

    Science.gov (United States)

    1985-02-01

    UniversitA di Roma-Tor Vergata, 00173 Roma, Italy. ** Dipartimento di Matematica , UniversitA di Pisa, 56100 Pisa, Italy. ***Dipartimento di...Roma-Tor Vergata, 00173 Roma, Italy. ** Dipartimento di Matematica , Universith di Pisa, 56100 Pisa, Italy. ***Dipartimento di Ingegneria Aerospaziale...and boundary operator; ( ii ) to determine a set of conditions sufficient for self-adjointness; (iii) to state compatibility conditions on the data

  17. Integral equations and boundary-element solution for static potential in a general piece-wise homogeneous volume conductor

    CERN Document Server

    Stenroos, Matti

    2016-01-01

    Boundary element methods (BEM) are used for forward computation of bioelectromagnetic fields in multi-compartment volume conductor models. Most BEM approaches assume that each compartment is in contact with at most one external compartment. In this work, I present a general surface integral equation and BEM discretization that remove this limitation and allow BEM modeling of general piecewise-homogeneous medium. The new integral equation allows positioning of field points at junctioned boundary of more than two compartments, enabling the use of linear collocation BEM in such a complex geometry. A modular BEM implementation is presented for linear collocation and Galerkin approaches, starting from standard formulation. The approach and resulting solver are verified in three ways, including comparison to finite element method (FEM). In a two-compartment split-sphere model with two spaced monopoles, the results obtained with high-resolution FEM and the BEMs were almost identical (relative difference < 0.003).

  18. Integral equations and boundary-element solution for static potential in a general piece-wise homogeneous volume conductor

    Science.gov (United States)

    Stenroos, Matti

    2016-11-01

    Boundary element methods (BEM) are used for forward computation of bioelectromagnetic fields in multi-compartment volume conductor models. Most BEM approaches assume that each compartment is in contact with at most one external compartment. In this work, I present a general surface integral equation and BEM discretization that remove this limitation and allow BEM modeling of general piecewise-homogeneous medium. The new integral equation allows positioning of field points at junctioned boundary of more than two compartments, enabling the use of linear collocation BEM in such a complex geometry. A modular BEM implementation is presented for linear collocation and Galerkin approaches, starting from the standard formulation. The approach and resulting solver are verified in four ways, including comparisons of volume and surface potentials to those obtained using the finite element method (FEM), and the effect of a hole in skull on electroencephalographic scalp potentials is demonstrated.

  19. A Modeling of Photonic Crystal Fiber with a Boundary Integral Equations

    Science.gov (United States)

    Cho, Min Hyung; Cai, Wei; Her, Tsing-Hua; Lee, Youngpak

    2007-03-01

    A boundary integral equation (BIE) for the photonic crystal fiber is formulated using the free space Green's function and Huygen's principle. The BIE reduces the number of unknowns significantly and is flexible to handle the geometry of the fiber owing to its nature of the formulation. The real and imaginary parts of the propagating constant, which is related to the dispersion and the confinement loss of the fiber, are calculated as a function of wavelength for both the air-silica fiber and the photonic bandgap fiber by the root searching method. The numerical simulations show that the air-silica fiber guides the light according to the total internal reflection and that the photonic bandgap fiber guides the light based on the scattering from the Fabry-Perot-like high-index inclusion. As a consequence, the spectrum of photonic bandgap fiber shows the discontinuities, and the locations of discontinuities obtained with BIE are compared with the simple analytical model based on the AntiResonant Reflecting Optical Waveguide (ARROW) model suggested by Natalie et al.

  20. Formulation of a Prototype Coupled Atmospheric and Oceanic Boundary Layer Model.

    Science.gov (United States)

    1982-12-01

    layers. The approach will be to compare observed evolutions in the oceanic and atmospheric boundary layers with predictions from bulk modelo wherein...16.4 -. 004S 6.3 1100 276 iSi 8.2 £3.0 £5.2 16.4 -.0045 6.3 1130 278 M53 6.6 13.1 iS.2 14.1 -.0057 6.3 1200 279 iS3 5.0 £3.0 iS.2 14.1 -.00S7 5.7 1230

  1. Existence and Uniqueness Theorem of Fractional Mixed Volterra-Fredholm Integrodifferential Equation with Integral Boundary Conditions

    OpenAIRE

    Shayma Adil Murad; Hussein Jebrail Zekri; Samir Hadid

    2011-01-01

    We study the existence and uniqueness of the solutions of mixed Volterra-Fredholm type integral equations with integral boundary condition in Banach space. Our analysis is based on an application of the Krasnosel'skii fixed-point theorem.

  2. Geometric Conversion Approach for the Numerical Evaluation of Hypersingular and Nearly Hypersingular Boundary Integrals over Curved Surface Boundary Elements

    Institute of Scientific and Technical Information of China (English)

    马杭

    2002-01-01

    With the aid of the properties of the hypersingular kernels,a geometric conversion approach was presented in this paper.The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method.Based on the conversion,the hypersingularity in the boundary integrals could be lowered by one order,resulting in the simplification of the computer code.Moreover,an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case.The approach is simple to use,which can be inserted readily to computer code,thus getting rid of the dull routine deduction of formulae before the numerical implementatins,as the expressions of these kernels are in general complicated.The numerical examples were gien in three-dimensional elasticity,verifying the effectiveness of the proposed approach,which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.

  3. BOUNDARY INTEGRAL FORMULAS FOR ELASTIC PLANE PROBLEM OF EXTERIOR CIRCULAR DOMAIN

    Institute of Scientific and Technical Information of China (English)

    DONG Zheng-zhu; LI Shun-cai; YU De-hao

    2006-01-01

    After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and the convolutions, the boundary integral formula of the stress function is derived further. Then the stress function can be obtained directly by the integration of the stress function and its normal derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function is convenient to be used for solving the elastic plane problem of exterior circular domain.

  4. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob

    capability of the dynamics wake meandering model to a level where it is sufficiently mature to be applied in industrial applications and for an augmentation of the IEC-standard for wind turbine wake modelling. Based on a comparison of capabilities of the dynamic wake meandering model to the requirement...... of the wind industry, four areas were identified as high prioritizations for further research: 1. the turbulence distribution in a single wake 2. multiple wake deficits and build-up of turbulence over a row of turbines 3. the effect of the atmospheric boundary layer on wake turbulence and wake deficit...... as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry...

  5. EQUIVALENT BOUNDARY INTEGRAL EQUATIONS WITH INDIRECT VARIABLES FOR PLANE ELASTICITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    张耀明; 温卫东; 张作泉; 孙焕纯; 吕和祥

    2003-01-01

    The exact form of the exterior problem for plane elasticity problems was produced and fully proved by the variational principle. Based on this, the equivalent boundary integral equations (EBIE) with direct variables, which are equivalent to the original boundary value problem, were deduced rigorously. The conventionally prevailing boundary integral equation with direct variables was discussed thoroughly by some examples and it is shown that the previous results are not EBIE.

  6. Piloting and Path Integration within and across Boundaries

    Science.gov (United States)

    Mou, Weimin; Wang, Lin

    2015-01-01

    Three experiments investigated whether navigation is less efficient across boundaries than within boundaries. In an immersive virtual environment, participants learned objects' locations in a large room or a small room. Participants then pointed to the objects' original locations after physically walking a circuitous path without vision.…

  7. An Unsplit Convolutional-Perfectly-Matched-Layer Based Boundary Formulation for the Stratified Linearized Ideal MHD equations

    CERN Document Server

    Hanasoge, S M; Gizon, L

    2010-01-01

    Perfectly matched layers are a very efficient and accurate way to absorb waves in media. We present a stable convolutional unsplit perfectly matched formulation designed for the linearized stratified Euler equations. However, the technique as applied to the Magneto-hydrodynamic (MHD) equations requires the use of a sponge, which, despite placing the perfectly matched status in question, is still highly efficient at absorbing outgoing waves. We study solutions of the equations in the backdrop of models of linearized wave propagation in the Sun. We test the numerical stability of the schemes by integrating the equations over a large number of wave periods.

  8. Finite element formulation of unilateral boundary conditions for unsaturated flow in porous continua

    Science.gov (United States)

    Abati, A.; Callari, C.

    2014-06-01

    This paper presents the numerical resolution of unilateral boundary conditions able to effectively model several problems of unsaturated flow, as those involving rainfall infiltration and seepage faces. Besides the penalty technique, we also consider the novel regularization of these conditions by means of the more effective augmented Lagrangian method. The performance of the so-obtained finite element method is carefully investigated in terms of accuracy and ill-conditioning effects, including comparisons with analytical solutions and a complete identification of the analogies with the problem of frictionless contact. In this way, we provide a priori estimates of optimal and admissible ranges for the penalty coefficient as functions of permeability and spatial discretization. The proposed method and the estimated coefficient ranges are validated in further numerical examples, involving the propagation of a wetting front due to rainfall and the partial saturation of an aged concrete dam. These applications show that the proposed regularizations do not induce any detrimental effect on solution accuracy and on convergence rate of the employed Newton-Raphson method. Hence, the present approach should be preferred to the commonly used iterative switching between the imposed-flow and the imposed-pressure conditions, which often leads to spurious oscillations and convergence failures.

  9. Dynamics of correlations for integrable and non-integrable systems A two levels formulation of laws of nature

    CERN Document Server

    Prigogine, Ilya

    2002-01-01

    Hamiltonian systems can be classified according Poincaré into integrable and non-integrable systems. On the other hand, our previous work introduced a formulation of dynamics based on the evolution of correlations. It is shown that for integrable systems this method is equivalent to the diagonalisation problem of the Hamiltonian for integrable systems but our method can be easily extended to non-integrable systems through analytic continuation. This leads to a description of unstable dressed excited states, as well as to excitations for interacting fields. The mechanism of the formation of dressed objects will be analysed in terms of two different time scales. The analogy with these dissipative structures will be emphasized. We may distinguish two levels in the formulation of laws of nature. The first is in terms of Hamiltonian dynamics, the second, necessary for classes of non-integrable systems, The first is in terms of Hamiltonian dynamics, the second, necessary for classes of non-integrable systems, aris...

  10. Fast Integration of One-Dimensional Boundary Value Problems

    Science.gov (United States)

    Campos, Rafael G.; Ruiz, Rafael García

    2013-11-01

    Two-point nonlinear boundary value problems (BVPs) in both unbounded and bounded domains are solved in this paper using fast numerical antiderivatives and derivatives of functions of L2(-∞, ∞). This differintegral scheme uses a new algorithm to compute the Fourier transform. As examples we solve a fourth-order two-point boundary value problem (BVP) and compute the shape of the soliton solutions of a one-dimensional generalized Korteweg-de Vries (KdV) equation.

  11. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    Science.gov (United States)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating

  12. Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary

    Directory of Open Access Journals (Sweden)

    Fitkevich Maxim

    2016-01-01

    Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.

  13. Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish

    Energy Technology Data Exchange (ETDEWEB)

    Ochakovskaya, Oksana A [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)

    2013-02-28

    Sharp conditions are found describing the admissible rate of decrease of a nontrivial function whose integrals over all hyperbolic discs with fixed radius vanish. For the first time, the boundary behaviour of the function is investigated in a neighbourhood of a single point on the boundary of the domain of definition. Bibliography: 17 titles.

  14. Integrable boundary interaction in 3D target space: The “pillow-brane” model

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Sergei L., E-mail: sergei@physics.rutgers.edu [NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849 (United States); L.D. Landau Institute for Theoretical Physics, Chernogolovka, 142432 (Russian Federation); Zamolodchikov, Alexander B. [NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849 (United States); Institute for Information Transmission Problems, Moscow (Russian Federation)

    2013-08-21

    We propose a model of boundary interaction, with three-dimensional target space, and the boundary values of the field X∈R{sup 3} constrained to lay on a two-dimensional surface of the “pillow” shape. We argue that the model is integrable, and suggest that its exact solution is described in terms of certain linear ordinary differential equation.

  15. Algebraic Bethe Ansatz for O(2N) sigma models with integrable diagonal boundaries

    CERN Document Server

    Gombor, Tamas

    2015-01-01

    The finite volume problem of O(2N) sigma models with integrable diagonal boundaries on a finite interval is investigated. The double row transfer matrix is diagonalized by Algebraic Bethe Ansatz. The boundary Bethe Yang equations for the particle rapidities and the accompanying Bethe Ansatz equations are derived.

  16. Multiple integral representation for the trigonometric SOS model with domain wall boundaries

    CERN Document Server

    Galleas, W

    2011-01-01

    Using the dynamical Yang-Baxter algebra we derive a functional equation for the partition function of the trigonometric SOS model with domain wall boundary conditions. The solution of the equation is given in terms of a multiple contour integral.

  17. Existence and uniqueness of solutions for nonlinear hyperbolic fractional differential equation with integral boundary conditions

    OpenAIRE

    Brahim Tellab; Kamel Haouam

    2016-01-01

    In this paper, we investigate the existence and uniqueness of solutions for second order nonlinear fractional differential equation with integral boundary conditions. Our result is an application of the Banach contraction principle and the Krasnoselskii fixed point theorem.

  18. Numerical experiments using CHIEF to treat the nonuniqueness in solving acoustic axisymmetric exterior problems via boundary integral equations

    Directory of Open Access Journals (Sweden)

    Adel A.K. Mohsen

    2010-07-01

    Full Text Available The problem of nonuniqueness (NU of the solution of exterior acoustic problems via boundary integral equations is discussed in this article. The efficient implementation of the CHIEF (Combined Helmholtz Integral Equations Formulation method to axisymmetric problems is studied. Interior axial fields are used to indicate the solution error and to select proper CHIEF points. The procedure makes full use of LU-decomposition as well as the forward solution derived in the solution. Implementations of the procedure for hard spheres are presented. Accurate results are obtained up to a normalised radius of ka = 20.983, using only one CHIEF point. The radiation from a uniformly vibrating sphere is also considered. Accurate results for ka up to 16.927 are obtained using two CHIEF points.

  19. How to fold a spin chain: Integrable boundaries of the Heisenberg XXX and Inozemtsev hyperbolic models

    CERN Document Server

    Gomez, Alejandro De La Rosa; Regelskis, Vidas

    2016-01-01

    We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl(2) Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a "bottom-up" approach for constructing integrable boundaries and can be applied to any spin chain model.

  20. On the Structure of QFT in the Particle Picture of the Path Integral Formulation

    CERN Document Server

    Jackson, D M; Morales, A

    2008-01-01

    In quantum field theory the path integral is usually formulated in the wave picture, i.e., as a sum over field evolutions. This path integral is difficult to define rigorously because of analytic problems whose resolution may ultimately require knowledge of non-perturbative or even Planck scale physics. Alternatively, QFT can be formulated directly in the particle picture, namely as a sum over all multi-particle paths, i.e., over Feynman graphs. This path integral is well-defined, as a map between rings of formal power series. This suggests a program for determining which structures of QFT are provable for this path integral and thus are combinatorial in nature, and which structures are actually sensitive to analytic issues. For a start, we show that the fact that the Legendre transform of the sum of connected graphs yields the effective action is indeed combinatorial in nature and is thus independent of analytic assumptions. Our proof also leads to new methods for the efficient decomposition of Feynman graph...

  1. Quantum mechanics 1. Path-integral formulation and operator formalism; Quantenmechanik 1. Pfadintegralformulierung und Operatorformalismus

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Hugo [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik

    2012-11-01

    The first volume of this two-volume textbook gives a modern introduction to the quantum theory, which connects Feynman's path-integral formulation with the traditional operator formalism. In easily understandable form starting from the double-slit experiment the characteristic features and foundations of quantum theory are made accessible by means of the functional-integral approach. Just this approach makes a ''derivation'' of the Schroedinger equation from the principle of the interfering alternatives possible. In the following the author developes the traditional operator formulation of quantum mechanics, which is better suited for practical solution of elementary problems. However he then refers to the functional-integral approach, when this contributes to a better understanding. A further advance of this concept: The functional-integral approach facilitates essentially the later access to quantum field theory. The work is in like manner suited for the self-study as for the deepening accompanying of the course.

  2. Topology and boundary shape optimization as an integrated design tool

    Science.gov (United States)

    Bendsoe, Martin Philip; Rodrigues, Helder Carrico

    1990-01-01

    The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.

  3. A novel vector potential formulation of 3D Navier-Stokes equations with through-flow boundaries by a local meshless method

    Science.gov (United States)

    Young, D. L.; Tsai, C. H.; Wu, C. S.

    2015-11-01

    An alternative vector potential formulation is used to solve the Navier-Stokes (N-S) equations in 3D incompressible viscous flow problems with and without through-flow boundaries. Difficulties of the vector potential formulation include the implementation of boundary conditions for through-flow boundaries and the numerical treatment of fourth-order partial differential equations. The advantages on the other hand are the automatic satisfaction of the continuity equation; and pressure is decoupled from the velocity. The objective of this paper is to introduce the appropriate gauge and boundary conditions on the vector potential formulation by a localized meshless method. To handle the divergence-free property, a Coulomb gauge condition is enforced on the vector potential to ensure its existence and uniqueness mathematically. We further improve the algorithm to through-flow problems for the boundary conditions of vector potential by introducing the concept of Stokes' theorem. Based on this innovation, there is no need to include an additional variable to tackle the through-flow fields. This process will greatly simplify the imposition of boundary conditions by the vector potential approach. Under certain conditions, the coupled fourth-order partial differential equations can be easily solved by using this meshless local differential quadrature (LDQ) method. Due to the LDQ capability to deal with the high order differential equations, this algorithm is very attractive to solve this fourth-order vector potential formulation for the N-S equations as comparing to the conventional numerical schemes such as finite element or finite difference methods. The proposed vector potential formulation is simpler and has improved accuracy and efficiency compared to other pressure-free or pressure-coupled algorithms. This investigation can be regarded as the first complete study to obtain the N-S solutions by vector potential formulation through a LDQ method. Two classic 3D benchmark

  4. Extended displacement discontinuity boundary integral equation and boundary element method for cracks in thermo-magneto-electro-elastic media

    Science.gov (United States)

    Li, Yuan; Dang, HuaYang; Xu, GuangTao; Fan, CuiYing; Zhao, MingHao

    2016-08-01

    The extended displacement discontinuity boundary integral equation (EDDBIE) and boundary element method is developed for the analysis of planar cracks of arbitrary shape in the isotropic plane of three-dimensional (3D) transversely isotropic thermo-magneto-electro-elastic (TMEE) media. The extended displacement discontinuities (EDDs) include conventional displacement discontinuity, electric potential discontinuity, magnetic potential discontinuity, as well as temperature discontinuity across crack faces; correspondingly, the extended stresses represent conventional stress, electric displacement, magnetic induction and heat flux. Employing a Hankel transformation, the fundamental solutions for unit point EDDs in 3D transversely isotropic TMEE media are derived. The EDDBIEs for a planar crack of arbitrary shape in the isotropic plane of a 3D transversely isotropic TMEE medium are then established. Using the boundary integral equation method, the singularities of near-crack border fields are obtained and the extended stress field intensity factors are expressed in terms of the EDDs on crack faces. According to the analogy between the EDDBIEs for an isotropic thermoelastic material and TMEE medium, an analogical solution method for crack problems of a TMEE medium is proposed for coupled multi-field loadings. Employing constant triangular elements, the EDDBIEs are discretized and numerically solved. As an application, the problems of an elliptical crack subjected to combined mechanical-electric-magnetic-thermal loadings are investigated.

  5. A computational method for modeling arbitrary junctions employing different surface integral equation formulations for three-dimensional scattering and radiation problems

    CERN Document Server

    Gomez-Sousa, Hipolito; Martinez-Lorenzo, Jose Angel; Arias-Acuña, Marcos

    2015-01-01

    This paper presents a new method, based on the well-known method of moments (MoM), for the numerical electromagnetic analysis of scattering and radiation from metallic or dielectric structures, or both structure types in the same simulation, that are in contact with other metallic or dielectric structures. The proposed method for solving the MoM junction problem consists of two separate algorithms, one of which comprises a generalization for bodies in contact of the surface integral equation (SIE) formulations. Unlike some other published SIE generalizations in the field of computational electromagnetics, this generalization does not require duplicating unknowns on the dielectric separation surfaces. Additionally, this generalization is applicable to any ordinary single-scatterer SIE formulations employed as baseline. The other algorithm deals with enforcing boundary conditions and Kirchhoff's Law, relating the surface current flow across a junction edge. Two important features inherent to this latter algorit...

  6. The integral form of APS boundary conditions in the Bag Model

    CERN Document Server

    Abrikosov, A A; Wipf, Andreas

    2006-01-01

    We propose an integral form of Atiah-Patodi-Singer spectral boundary conditions (SBC) and find explicitly the integral projector onto SBC for the 3-dimensional spherical cavity. After discussion of a simple example we argue that the relation between the projector and fermion propagator is universal and stays valid independently of the bag form and space dimension.

  7. Existence and Uniqueness Theorem of Fractional Mixed Volterra-Fredholm Integrodifferential Equation with Integral Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Shayma Adil Murad

    2011-01-01

    Full Text Available We study the existence and uniqueness of the solutions of mixed Volterra-Fredholm type integral equations with integral boundary condition in Banach space. Our analysis is based on an application of the Krasnosel'skii fixed-point theorem.

  8. Shielding properties of a conducting bar calculated with a boundary integral method

    Directory of Open Access Journals (Sweden)

    L. O. Fichte

    2005-01-01

    Full Text Available A plane rectangular bar of conducting and permeable material is placed in an external low-frequency magnetic field. The shielding properties of this object are investigated by solving the given plane eddy current problem for the vector potential with the boundary integral equation method. The vector potential inside the rectangle is governed by Helmholtz' equation, which in our case is solved by separation. The solution is inserted into the remaining boundary integral equation for the exterior vector potential in the domain surrounding the bar. By expressing its logarithmic kernel as a Fourier integral the overall solution inside and outside the bar is calculated using analytical means only.

  9. RESTRICTED NONLINEAR APPROXIMATION AND SINGULAR SOLUTIONS OF BOUNDARY INTEGRAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Reinhard Hochmuth

    2002-01-01

    This paper studies several problems, which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1 ] are chosen as a starting point for characterizations of functions in Besov spaces B , (0,1) with 0<σ<∞ and (1+σ)-1<τ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.

  10. Elliptical vortex solutions, integrable Ermakov structure, and Lax pair formulation of the compressible Euler equations.

    Science.gov (United States)

    An, Hongli; Fan, Engui; Zhu, Haixing

    2015-01-01

    The 2+1-dimensional compressible Euler equations are investigated here. A power-type elliptic vortex ansatz is introduced and thereby reduction obtains to an eight-dimensional nonlinear dynamical system. The latter is shown to have an underlying integral Ermakov-Ray-Reid structure of Hamiltonian type. It is of interest to notice that such an integrable Ermakov structure exists not only in the density representations but also in the velocity components. A class of typical elliptical vortex solutions termed pulsrodons corresponding to warm-core eddy theory is isolated and its behavior is simulated. In addition, a Lax pair formulation is constructed and the connection with stationary nonlinear cubic Schrödinger equations is established.

  11. Topological Landau-Ginzburg formulation and integrable structure of 2d string theory

    CERN Document Server

    Hanany, A; Plesser, M R

    1994-01-01

    We construct a topological Landau-Ginzburg formulation of the two-dimensional string at the self-dual radius. The model is an analytic continuation of the $A_{k+1}$ minimal model to $k=-3$. We compute the superpotential and calculate tachyon correlators in the Landau-Ginzburg framework. The results are in complete agreement with matrix model calculations. We identify the momentum one tachyon as the puncture operator, non-negative momentum tachyons as primary fields, and negative momentum ones as descendants. The model thus has an infinite number of primary fields, and the topological metric vanishes on the small phase space when restricted to these. We find a parity invariant multi-contact algebra with irreducible contact terms of arbitrarily large number of fields. The formulation of this Landau-Ginzburg description in terms of period integral coincides with the genus zero $W_{1+\\infty}$ identities of two-dimensional string theory. We study the underlying Toda lattice integrable hierarchy in the Lax formulat...

  12. Formulation of an Integrated Community Based Disaster Management for Hydroelectric facilities: The Malaysia Case

    Science.gov (United States)

    Hijazzi, Norshamirra; Thiruchelvam, Sivadass; Sabri Muda, Rahsidi; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Ghazali, Azrul; Kamal Kadir, Ahmad; Hakimie, Hazlinda; Sahari, Khairul Salleh Mohamed; Hasini, Hasril; Mohd Sidek, Lariyah; Itam, Zarina; Fadhli Mohamad, Mohd; Razad, Azwin Zailti Abdul

    2016-03-01

    Dams, however significant their contributions are to the society, are not immune to failures and diminishing lifespan not unlike other structural elements in our infrastructure. Despite continuing efforts on design, construction, operation, and maintenance of dams to improve the safety of the dams, the possibility of unforeseen events of dam failures is still possible. Seeing that dams are usually integrated into close approximities with the community, dam failures may consequent in tremendous loss of lives and properties. The aims of formulation of Integrated Community Based Disaster Management (ICBDM) is to simulate evacuation modelling and emergency planning in order to minimize loss of life and property damages in the event of a dam-related disaster. To achieve the aim above, five main pillars have been identified for the formulation of ICBDM. A series of well-defined program inclusive of hydrological 2-D modelling, life safety modelling, community based EWS and CBTAP will be conducted. Finally, multiple parties’ engagement is to be carried out in the form of table top exercise to measure the readiness of emergency plans and response capabilities of key players during the state of a crisis.

  13. Behavior of boundary string field theory associated with integrable massless flow.

    Science.gov (United States)

    Fujii, A; Itoyama, H

    2001-06-04

    We put forward an idea that the boundary entropy associated with integrable massless flow of thermodynamic Bethe ansatz (TBA) is identified with tachyon action of boundary string field theory. We show that the temperature parametrizing a massless flow in the TBA formalism can be identified with tachyon energy for the classical action at least near the ultraviolet fixed point, i.e., the open string vacuum.

  14. Singularity Preserving Numerical Methods for Boundary Integral Equations

    Science.gov (United States)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  15. Generalized Taylor-Duffy Method for Efficient Evaluation of Galerkin Integrals in Boundary-Element Method Computations

    CERN Document Server

    Reid, M T Homer; White, Jacob K

    2013-01-01

    We present a generic technique, automated by computer-algebra systems and available as open-source software \\cite{scuff-em}, for efficient numerical evaluation of a large family of singular and nonsingular 4-dimensional integrals over triangle-product domains, such as those arising in the boundary-element method (BEM) of computational electromagnetism. To date, practical implementation of BEM solvers has often required the aggregation of multiple disparate integral-evaluation schemes to treat all of the distinct types of integrals needed for a given BEM formulation; in contrast, our technique allows many different types of integrals to be handled by the \\emph{same} algorithm and the same code implementation. Our method is a significant generalization of the Taylor--Duffy approach \\cite{Taylor2003,Duffy1982}, which was originally presented for just a single type of integrand; in addition to generalizing this technique to a broad class of integrands, we also achieve a significant improvement in its efficiency b...

  16. [Boundaries and integrity in the "Social Contract for Spanish Science", 1907-1939].

    Science.gov (United States)

    Gómez, Amparo

    2014-01-01

    This article analyzes the relationship between science and politics in Spain in the early 20th century from the perspective of the Social Contract for Science. The article shows that a genuine social contract for science was instituted in Spain during this period, although some boundary and integrity problems emerged. These problems are analyzed, showing that the boundary problems were a product of the conservative viewpoint on the relationship between science and politics, while the integrity problems involved the activation of networks of influence in the awarding of scholarships to study abroad. Finally, the analysis reveals that these problems did not invalidate the Spanish social contract for science.

  17. Integrating Sustainability into the Curriculum: Crossing Disciplinary Boundaries

    Science.gov (United States)

    Pushnik, J.

    2012-12-01

    The next generation will confront an increased number of global issues that interface the complexities of socioeconomic perspectives, environmental stability, poverty and development. Recently California State University Chico undertook a general education reform, providing a unique opportunity to craft a general education pathway to prepare students for these challenges by focusing a curriculum on sustainability. The Sustainability Pathway emphasizes a system thinking approach to help students understand and be able to address a set of problems involving the biosphere processes, human institutions and the economic vitality. The curriculum intentionally integrates courses from across the disciplines of natural sciences, social sciences, agriculture, engineering, economics, arts and humanities into a central focused theme of sustainability. The diverse backgrounds and academic focus of the participating faculty has necessitate the development of a common language and a cohesion within the curriculum. To address these needs a faculty learning community (FLC) was established to build on a common set of case studies. Three regional environmental water related issues were selected that had demonstrable socioeconomic, equity/ethical dimensions and environmental consequences. These case studies are Klamath River basin in northern California, the Bay-Delta project in the central part of the state and the Sultan Sea in southern California. Members of the FLC has contributed a perspective from their academic discipline which includes proposed reading lists, web based resources and PowerPoint presentations which are housed in common web- based resource repository. The pedagogical rational is to create linkages and cohesion among the courses in the curriculum by iteratively examining these case studies as basis for development of a multidisciplinary perspective as students progress through their general education.

  18. Correct Path-Integral Formulation of Quantum Thermal Field Theory in Coherent State Representation

    Institute of Scientific and Technical Information of China (English)

    SU Jun-Chen; ZHENG Fu-Hou

    2005-01-01

    The path-integral quantization of thermal scalar, vector, and spinor fields is performed newly in the coherent-state representation. In doing this, we choose the thermal electrodynamics and ψ4 theory as examples. By this quantization, correct expressions of the partition functions and the generating functionals for the quantum thermal electrodynamics and ψ4 theory are obtained in the coherent-state representation. These expressions allow us to perform analytical calculations of the partition functions and generating functionals and therefore are useful in practical applications. Especially, the perturbative expansions of the generating functionals are derived specifically by virtue of the stationary-phase method. The generating functionals formulated in the position space are re-derived from the ones given in the coherent-state representation.

  19. Unique Solution of a Coupled Fractional Differential System Involving Integral Boundary Conditions from Economic Model

    Directory of Open Access Journals (Sweden)

    Rui Li

    2013-01-01

    Full Text Available We study the existence and uniqueness of the positive solution for the fractional differential system involving the Riemann-Stieltjes integral boundary conditions , , , , , and , where , , and and are the standard Riemann-Liouville derivatives, and are functions of bounded variation, and and denote the Riemann-Stieltjes integral. Our results are based on a generalized fixed point theorem for weakly contractive mappings in partially ordered sets.

  20. Histone crosstalk directed by H2B ubiquitination is required for chromatin boundary integrity.

    Directory of Open Access Journals (Sweden)

    Meiji Kit-Wan Ma

    2011-07-01

    Full Text Available Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the setting of boundaries. The HS4 insulator element marks the 3' boundary of a heterochromatin region located upstream of the chicken β-globin gene cluster. Here we show that HS4 recruits the E3 ligase RNF20/BRE1A to mediate H2B mono-ubiquitination (H2Bub1 at this insulator. Knockdown experiments show that RNF20 is required for H2Bub1 and processive H3K4 methylation. Depletion of RNF20 results in a collapse of the active histone modification signature at the HS4 chromatin boundary, where H2Bub1, H3K4 methylation, and hyperacetylation of H3, H4, and H2A.Z are rapidly lost. A remarkably similar set of events occurs at the HSA/HSB regulatory elements of the FOLR1 gene, which mark the 5' boundary of the same heterochromatin region. We find that persistent H2Bub1 at the HSA/HSB and HS4 elements is required for chromatin boundary integrity. The loss of boundary function leads to the sequential spreading of H3K9me2, H3K9me3, and H4K20me3 over the entire 50 kb FOLR1 and β-globin region and silencing of FOLR1 expression. These findings show that the HSA/HSB and HS4 boundary elements direct a cascade of active histone modifications that defend the FOLR1 and β-globin gene loci from the pervasive encroachment of an adjacent heterochromatin domain. We propose that many gene loci employ H2Bub1-dependent boundaries to prevent heterochromatin spreading.

  1. Positive Solutions for Nonlinear Fractional Differential Equations with Boundary Conditions Involving Riemann-Stieltjes Integrals

    Directory of Open Access Journals (Sweden)

    Jiqiang Jiang

    2012-01-01

    Full Text Available We consider the existence of positive solutions for a class of nonlinear integral boundary value problems for fractional differential equations. By using some fixed point theorems, the existence and multiplicity results of positive solutions are obtained. The results obtained in this paper improve and generalize some well-known results.

  2. On preconditioning techniques for dense linear systems arising from singular boundary integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke [Univ. of Liverpool (United Kingdom)

    1996-12-31

    We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.

  3. Existence results for n-th order multipoint integral boundary-value problems of differential inclusions

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2013-09-01

    Full Text Available In this article we study the existence of solutions for n-th order differential inclusions with nonlocal integral boundary conditions. Our results are based on some classical fixed point theorems for multivalued maps. Some illustrative examples are discussed.

  4. N{sup ±}-integrals and boundary values of Cauchy-type integrals of finite measures

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, R. A., E-mail: aliyevrashid@hotmail.ru, E-mail: alievrashid@box.az [Baku State University (Azerbaijan)

    2014-07-31

    Let Γ be a simple closed Lyapunov contour with finite complex measure ν, and let G{sup +} be the bounded and G{sup −} the unbounded domains with boundary Γ. Using new notions (so-called N-integration and N{sup +}- and N{sup −}-integrals), we prove that the Cauchy-type integrals F{sup +}(z), z∈G{sup +}, and F{sup −}(z), z∈G{sup −}, of ν are Cauchy N{sup +}- and N{sup −}-integrals, respectively. In the proof of the corresponding results, the additivity property and the validity of the change-of-variable formula for the N{sup +}- and N{sup −}-integrals play an essential role. Bibliography: 21 titles. (paper)

  5. Formulation of a Lagrangian stochastic model of dispersion in the convective boundary layer with skewed turbulence conditions and vertical density gradient

    Science.gov (United States)

    cassiani, massimo; stohl, andreas; brioude, jerome

    2014-05-01

    The vertical gradient of air density has been included in a skewed probability density function formulation for turbulence in the convective boundary layer and the related drift term for Lagrangian stochastic particle modelling has been obtained based on the well-mixed condition. The formulation has been extended to include unsteady turbulence statistics. Tests were carried out to validate the model including consistency between forward and backward simulations and preservation of well-mixed state with unsteady conditions. The stationary state CBL drift term with density correction was incorporated in the FLEXPART/FLEXPART-WRF Lagrangian models. Currently only the steady state horizontally homogeneous drift term were included. To avoid numerical instability, using the steady homogenous drift in the presence of non-stationary and horizontally non-homogeneous conditions, a re-initialization procedure for particle velocity was used. The criteria for re-initialization and resulting errors were assessed.

  6. Multiple positive solutions for singular semipositone nonlinear integral boundary-value problems on infinite intervals

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-03-01

    Full Text Available In this article, we study the existence of multiple positive solutions for singular semipositone boundary-value problem (BVP with integral boundary conditions on infinite intervals. By using the properties of the Green's function and the Guo-Krasnosel'skii fixed point theorem, we obtain the existence of multiple positive solutions under conditions concerning the nonlinear functions. The method in this article can be used for a large number of problems. We illustrate the validity of our results with an example in the last section.

  7. Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates

    CERN Document Server

    Kitahara, M

    1985-01-01

    The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It pro

  8. POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

    Directory of Open Access Journals (Sweden)

    FAOUZI HADDOUCHI

    2015-11-01

    Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.

  9. A Novel Variational Formulation of Inverse Problem of Heat Conduction with Free Boundary on an Image Plane

    Institute of Scientific and Technical Information of China (English)

    Gao-LianLiu

    1996-01-01

    By introducing an image plane,the inverse heat conduction problem with free boundary is transformed into one with completely known boundary,which is much simpler to handle,as a by-product ,the classical Krichhoff's transformation for accounting for varialble conductivity is rederived and an invariance proerty of the inverse problem solution with respect to variable conductivity is indicated.Then a pair of complementary extremum principles are established on the image plane.providing a sound theoretical foundation for the Ritz's method and finite element method (FEM),An example solved by FEM is also given.

  10. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  11. Integrated stratigraphy and isotopic ages at the Berriasian-Valanginian boundary at Tlatlauquitepec (Puebla, Mexico)

    Science.gov (United States)

    López-Martínez, Rafael; Barragán, Ricardo; Bernal, Juan Pablo; Reháková, Daniela; Gómez-Tuena, Arturo; Martini, Michelangelo; Ortega, Carlos

    2017-04-01

    The integration of calpionellid biostratigraphy, microfacies analysis, Usbnd Pb geochronology, and strontium chemostratigraphy improves the definition of the Berriasian-Valanginian boundary in the Tlatlauquitepec area and validates the age of calpionellid zones from eastern Mexico in this interval. An age of 139.85 Ma derived from 87Sr/86Sr ratio within the base of Calpionellites Zone defines the Berriasian-Valanginian boundary. Additionally, the 134.0 ± 0.5 Ma Usbnd Pb age returned by zircon grains from a tuff level exposed at the top of the succession confirms the Valanginian age of the whole analyzed section. Microfacies analysis reveals sea level variations that can be coincident with the KVa1-KVa4 eustatic cycles. These new data suggest that calpionellid biostratigraphy represents the most useful tool for the definition of the Berriasian-Valanginian time boundary in central Mexico and its correlation with the rest of the Tethyan domain.

  12. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  13. Lagrangian Stochastic Modelling of Dispersion in the Convective Boundary Layer with Skewed Turbulence Conditions and a Vertical Density Gradient: Formulation and Implementation in the FLEXPART Model

    Science.gov (United States)

    Cassiani, Massimo; Stohl, Andreas; Brioude, Jerome

    2015-03-01

    A correction for the vertical gradient of air density has been incorporated into a skewed probability density function formulation for turbulence in the convective boundary layer. The related drift term for Lagrangian stochastic dispersion modelling has been derived based on the well-mixed condition. Furthermore, the formulation has been extended to include unsteady turbulence statistics and the related additional component of the drift term obtained. These formulations are an extension of the drift formulation reported by Luhar et al. (Atmos Environ 30:1407-1418, 1996) following the well-mixed condition proposed by Thomson (J Fluid Mech 180:529-556, 1987). Comprehensive tests were carried out to validate the formulations including consistency between forward and backward simulations and preservation of a well-mixed state with unsteady conditions. The stationary state CBL drift term with density correction was incorporated into the FLEXPART and FLEXPART-WRF Lagrangian models, and included the use of an ad hoc transition function that modulates the third moment of the vertical velocity based on stability parameters. Due to the current implementation of the FLEXPART models, only a steady-state horizontally homogeneous drift term could be included. To avoid numerical instability, in the presence of non-stationary and horizontally inhomogeneous conditions, a re-initialization procedure for particle velocity was used. The criteria for re-initialization and resulting errors were assessed for the case of non-stationary conditions by comparing a reference numerical solution in simplified unsteady conditions, obtained using the non-stationary drift term, and a solution based on the steady drift with re-initialization. Two examples of "real-world" numerical simulations were performed under different convective conditions to demonstrate the effect of the vertical gradient in density on the particle dispersion in the CBL.

  14. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Institute of Scientific and Technical Information of China (English)

    Ma Yanfeng; He Erming; Zeng Xianang; Li Junjie

    2016-01-01

    An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL) in a ‘‘semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the compu-tational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD) Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are signif-icant for these cases and the further data analysis confirms the validity and practicability of the cou-pled method.

  15. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Directory of Open Access Journals (Sweden)

    Ma Yanfeng

    2016-10-01

    Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.

  16. Retarded potentials and time domain boundary integral equations a road map

    CERN Document Server

    Sayas, Francisco-Javier

    2016-01-01

    This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices...

  17. General and efficient parallel approach of finite element-boundary integral-multilevel fast multipole algorithm

    Institute of Scientific and Technical Information of China (English)

    Pan Xiaomin; Sheng Xinqing

    2008-01-01

    A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finite-element-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finite-element method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor-mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.

  18. How California is mobilizing boundary chains to integrate science, policy and management for changing ocean chemistry

    Directory of Open Access Journals (Sweden)

    Ryan Meyer

    2015-01-01

    Full Text Available Boundary organizations play an important role in stabilizing interactions between science and nonscience. In this paper we focus on how boundary organizations not only serve a variety of actors across a complex science-policy landscape, but also actively shape that landscape over time through process, institution building, and partnership building. Some of these partnerships are with other boundary organizations, thus forming “boundary chains”. We draw on our experiences in convening the West Coast Ocean Acidification and Hypoxia Science Panel, an interdisciplinary group of scientists working to inform regional, state and federal responses to complex ecological, social and economic issues with rapidly evolving scientific understanding. From within a landscape already populated with a diverse set of institutions and actors focused on this issue, we illustrate how the Panel itself functions simultaneously at different positions within multiple boundary chains, mobilizing a variety of boundary organization partners to deliver on its mandate. In describing these arrangements, we show how political context and a shifting balance among credibility, legitimacy, and salience as near-term priorities have shaped both the posture and focus of the panel at different stages in its evolution. This case study suggests that boundary chains are necessary in order to advance the integration of science and decision making related to a complex emerging issue, especially at the scale of the North American West Coast. We also examine the nature of links among boundary organizations, and the kinds of benefits they confer upon individual actors, and upon the network as a whole. In some cases the benefit is through increased efficiency or reduced individual transaction costs. In others, the existence of linked chains may increase the power and value of individual interactions. In considering the issues of efficiency and transaction costs, we argue that it is

  19. Epitaxial integration of a nanoscale BiFeO3 phase boundary with silicon.

    Science.gov (United States)

    Liang, Wen-I; Peng, Chun-Yen; Huang, Rong; Kuo, Wei-Cheng; Huang, Yen-Chin; Adamo, Carolina; Chen, Yi-Chun; Chang, Li; Juang, Jenh-Yih; Schlom, Darrel G; Chu, Ying-Hao

    2016-01-21

    The successful integration of the strain-driven nanoscale phase boundary of BiFeO3 onto a silicon substrate is demonstrated with extraordinary ferroelectricity and ferromagnetism. The detailed strain history is delineated through a reciprocal space mapping technique. We have found that a distorted monoclinic phase forms prior to a tetragonal-like phase, a phenomenon which may correlates with the thermal strain induced during the growth process.

  20. A strongly-coupled immersed-boundary formulation for thin deforming surfaces, with application to elastic beams

    CERN Document Server

    Goza, Andres

    2016-01-01

    We present a strongly-coupled immersed-boundary method for flow-structure interaction problems involving thin deforming bodies. The method is stable for arbitrary choices of solid-to-fluid mass ratios and for large body motions. As with many strongly-coupled immersed-boundary methods, our method requires the solution of a nonlinear algebraic system at each time step. The system is solved through iteration, where the iterates are obtained by linearizing the system and performing a block LU factorization. This restricts all iterations to small-dimensional subsystems that scale with the number of discretization points on the immersed surface, rather than on the entire flow domain. Moreover, the iteration procedure we propose does not involve heuristic regularization parameters, and has converged in a small number of iterations for all problems we have considered. We derive our method for general deforming surfaces, and verify the method with two-dimensional test problems of geometrically nonlinear beams undergoi...

  1. A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation

    Science.gov (United States)

    Barucq, H.; Bendali, A.; Fares, M.; Mattesi, V.; Tordeux, S.

    2017-02-01

    A general symmetric Trefftz Discontinuous Galerkin method is built for solving the Helmholtz equation with piecewise constant coefficients. The construction of the corresponding local solutions to the Helmholtz equation is based on a boundary element method. A series of numerical experiments displays an excellent stability of the method relatively to the penalty parameters, and more importantly its outstanding ability to reduce the instabilities known as the "pollution effect" in the literature on numerical simulations of long-range wave propagation.

  2. A boundary integral approach to analyze the viscous scattering of a pressure wave by a rigid body

    Science.gov (United States)

    Homentcovschi, Dorel; Miles, Ronald N.

    2008-01-01

    The paper provides boundary integral equations for solving the problem of viscous scattering of a pressure wave by a rigid body. By using this mathematical tool uniqueness and existence theorems are proved. Since the boundary conditions are written in terms of velocities, vector boundary integral equations are obtained for solving the problem. The paper introduces single-layer viscous potentials and also a stress tensor. Correspondingly, a viscous double-layer potential is defined. The properties of all these potentials are investigated. By representing the scattered field as a combination of a single-layer viscous potential and a double-layer viscous potential the problem is reduced to the solution of a singular vectorial integral equation of Fredholm type of the second kind. In the case where the stress vector on the boundary is the main quantity of interest the corresponding boundary singular integral equation is proved to have a unique solution. PMID:18709178

  3. Singular integral equations boundary problems of function theory and their application to mathematical physics

    CERN Document Server

    Muskhelishvili, N I

    2011-01-01

    Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem

  4. The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise

    Science.gov (United States)

    Dunn, M. H.; Tweed, J.; Farassat, F.

    1999-01-01

    The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.

  5. On a difficulty in the formulation of initial and boundary conditions for eigenfunction expansion solutions for the start-up of fluid flow

    CERN Document Server

    Christov, Ivan C

    2013-01-01

    Most mathematics and engineering textbooks describe the process of "subtracting off" the steady state of a linear parabolic partial differential equation as a technique for obtaining a boundary-value problem with homogeneous boundary conditions that can be solved by separation of variables (i.e., eigenfunction expansions). While this method produces the correct solution for the start-up of the flow of, e.g., a Newtonian fluid between parallel plates, it can lead to erroneous solutions to the corresponding problem for a class of non-Newtonian fluids. We show that the reason for this is the non-rigorous enforcement of the start-up condition in the textbook approach, which leads to a violation of the principle of causality. Nevertheless, these boundary-value problems can be solved correctly using eigenfunction expansions, and we present the formulation that makes this possible (in essence, an application of Duhamel's principle). The solutions obtained by this new approach are shown to agree identically with thos...

  6. Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration.

    Directory of Open Access Journals (Sweden)

    Allen Cheung

    Full Text Available Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's "cognitive map", or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark information. In vivo recordings demonstrate that the rodent head direction (HD system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and--we conjecture--necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation

  7. Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration.

    Science.gov (United States)

    Cheung, Allen; Ball, David; Milford, Michael; Wyeth, Gordon; Wiles, Janet

    2012-01-01

    Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's "cognitive map", or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and--we conjecture--necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on

  8. A Local Integral Equation Formulation Based on Moving Kriging Interpolation for Solving Coupled Nonlinear Reaction-Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Kanittha Yimnak

    2014-01-01

    Full Text Available The meshless local Pretrov-Galerkin method (MLPG with the test function in view of the Heaviside step function is introduced to solve the system of coupled nonlinear reaction-diffusion equations in two-dimensional spaces subjected to Dirichlet and Neumann boundary conditions on a square domain. Two-field velocities are approximated by moving Kriging (MK interpolation method for constructing nodal shape function which holds the Kronecker delta property, thereby enhancing the arrangement nodal shape construction accuracy, while the Crank-Nicolson method is chosen for temporal discretization. The nonlinear terms are treated iteratively within each time step. The developed formulation is verified in two numerical examples with investigating the convergence and the accuracy of numerical results. The numerical experiments revealing the solutions by the developed formulation are stable and more precise.

  9. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  10. Explicit formulation of the J2-integral in anisotropic materials and its application in microcrack shielding problems

    Institute of Scientific and Technical Information of China (English)

    陈宜亨; 马浩

    1997-01-01

    The explicit formulation of the J2-integral in anisotropic bodies and its application in microcrack shielding problems are discussed. With analytical treatments and numerical examinations, it is proved that there is a redistribution law for the remote J-integral in a discrete model of microcrack shielding problems, i.e. the projected conservation law of the Jk-vector. In this law, the J2-integral which was disregarded by Herrmann (1981) is proved to be of the same significance as the J1-integral. It is also concluded that the two energy dissipative processes due to the mi crocrack damage, i. e. the reduction in the effective moduli and the release of residual stresses, can be described by using the dissipation of the remote J-integral spreading across the microcrack damage zone.

  11. ERROR ANALYSIS FOR A FAST NUMERICAL METHOD TO A BOUNDARY INTEGRAL EQUATION OF THE FIRST KIND

    Institute of Scientific and Technical Information of China (English)

    Jingtang Ma; Tao Tang

    2008-01-01

    For two-dimensional boundary integral equations of the first kind with logarithmic kernels,the use of the conventional boundary element methods gives linear systems with dense matrix.In a recent work [J.Comput.Math.,22 (2004),pp.287-298],it is demonstrated that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules.The numerical experiments also indicate that the proposed numerical methods require less computational time than the conventional ones while the formal rate of convergence can be preserved.The purpose of this work is to establish a stability and convergence theory for this fast numerical method.The stability analysis depends on a decomposition of the coefficient matrix for the collocation equation.The formal orders of convergence observed in the numerical experiments are proved rigorously.

  12. Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from SOV

    CERN Document Server

    Kitanine, N; Niccoli, G

    2014-01-01

    We solve the longstanding problem to define a functional characterization of the spectrum of the transfer matrix associated to the most general spin-1/2 representations of the 6-vertex reflection algebra for general inhomogeneous chains. The corresponding homogeneous limit reproduces the spectrum of the Hamiltonian of the spin-1/2 open XXZ and XXX quantum chains with the most general integrable boundaries. The spectrum is characterized by a second order finite difference functional equation of Baxter type with an inhomogeneous term which vanishes only for some special but yet interesting non-diagonal boundary conditions. This functional equation is shown to be equivalent to the known separation of variable (SOV) representation hence proving that it defines a complete characterization of the transfer matrix spectrum. The polynomial character of the Q-function allows us then to show that a finite system of equations of generalized Bethe type can be similarly used to describe the complete transfer matrix spectru...

  13. On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyev, M. Yu., E-mail: ignatievmu@info.sgu.ru [Saratov State University, Department of Mathematics (Russian Federation)

    2013-03-15

    This paper is concerned with the Korteweg-de Vries (KdV) equation on the semi-axis. The boundary value problem with inhomogeneous integrable boundary conditions is studied. We establish some characteristic properties of solutions of the problem. Also we construct a wide class of solutions of the problem using the inverse spectral method.

  14. MULTIPLICITY OF NONNEGATIVE SOLUTIONS TO SECOND-ORDER SINGULAR DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS IN BANACH SPACES

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper investigates the existence and multiplicity of nonnegative solutions to a singular nonlinear boundary value problem of second order differential equations with integral boundary conditions in a Banach space. The arguments are based on the construction of a nonempty bounded open convex set and fixed point index theory. Our nonlinearity possesses singularity and first derivative which makes it different with that in [10].

  15. Aero-optic analysis of anisotropic turbulent boundary layer by direct integration

    Science.gov (United States)

    Taylor, S.; Price, J.; Chen, C. P.; Pond, John E.; Sutton, G. W.

    2013-09-01

    Aero-optic aberrations that effect optical sensor performance and laser beam propagation, can be caused by changes in the index-of-refraction field as the optical wave traverses a compressible non-uniform, turbulent flowfield. Mean flowfield non-uniformities cause bore sight error and blurring and, if the mean flowfield is unsteady, jitter. Turbulence causes blurring and high frequency jitter. Blurring also causes the signal-to-noise ratio to decrease and image distortion, and adversely affects centroid location for precision tracking. The objective of this study is to develop an unified approach for whole-field aero-optics prediction using hybrid LES/RANS (Large Eddy Simulation/Reynolds Average Navier-Stokes) turbulence modeling in combination with a newly formulated optical Modulation Transfer Function (MTF). The whole field turbulence includes the near-vehicle boundary layer mean and turbulence, as well as far-field atmospheric turbulence. A flat plate compressible boundary layer case is used to demonstrate the methodology. the abstract two lines below author names and addresses.

  16. Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Gibliscemi (Sicily, Italy)

    NARCIS (Netherlands)

    Hilgen, F.J.; Krijgsman, W.; Raffi, I.; Turco, E.; Zachariasse, W.J.

    2002-01-01

    Results are presented of an integrated stratigraphic (calcareous plankton biostratigraphy, cyclostratigraphy and magnetostratigraphy) study of the Serravallian=Tortonian (S=T) boundary section of Monte Gibliscemi (Sicily, Italy). Astronomical calibration of the sedimentary cycles provides absolute a

  17. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    Science.gov (United States)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  18. TIME–HARMONIC BEHAVIOUR OF CRACKED PIEZOELECTRIC SOLID BY BOUNDARY INTEGRAL EQUATION METHOD

    Directory of Open Access Journals (Sweden)

    Rangelov Tsviatko

    2014-03-01

    Full Text Available Anti-plane cracked functionally graded finite piezoelectric solid under time-harmonic elecromechanical load is studied by a non-hypersingular traction boundary integral equation method (BIEM. Exponentially varying material properties are considered. Numerical solutions are obtained by using Mathematica. The dependance of the intensity factors (IF - mechanical stress intensity factor (SIF and electrical field intensity factor (FIF on the inhomogeneous material parameters, on the type and frequency of the dynamic load and on the crack position are analyzed by numerical illustrative examples

  19. Using MathCad to Evaluate Exact Integral Formulations of Spacecraft Orbital Heats for Primitive Surfaces at Any Orientation

    Science.gov (United States)

    Pinckney, John

    2010-01-01

    With the advent of high speed computing Monte Carlo ray tracing techniques has become the preferred method for evaluating spacecraft orbital heats. Monte Carlo has its greatest advantage where there are many interacting surfaces. However Monte Carlo programs are specialized programs that suffer from some inaccuracy, long calculation times and high purchase cost. A general orbital heating integral is presented here that is accurate, fast and runs on MathCad, a generally available engineering mathematics program. The integral is easy to read, understand and alter. The integral can be applied to unshaded primitive surfaces at any orientation. The method is limited to direct heating calculations. This integral formulation can be used for quick orbit evaluations and spot checking Monte Carlo results.

  20. RESEARCH ON THE COMPANION SOLUTION FOR A THIN PLATE IN THE MESHLESS LOCAL BOUNDARY INTEGRAL EQUATION METHOD

    Institute of Scientific and Technical Information of China (English)

    龙述尧; 熊渊博

    2004-01-01

    The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications.The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.

  1. Boundary integral equation methods and numerical solutions thin plates on an elastic foundation

    CERN Document Server

    Constanda, Christian; Hamill, William

    2016-01-01

    This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...

  2. Development and evaluation of matrix material formulations for potential integration into immunodiagnostic biosensors

    Science.gov (United States)

    Aminayi, Payam

    This study supports the development, characterization and optimization of biosensor material formulations for immunodiagnostic applications based on experimental findings and hypotheses by Wang and Wu [1, 2], and using a test-plate apparatus and thin-film design developed by Young [3]. (Abstract shortened by ProQuest.).

  3. Advanced boundary element methods in aeroacoustics and elastodynamics

    Science.gov (United States)

    Lee, Li

    In the first part of this dissertation, advanced boundary element methods (BEM) are developed for acoustic radiation in the presence of subsonic flows. A direct boundary integral formulation is first introduced for acoustic radiation in a uniform flow. This new formulation uses the Green's function derived from the adjoint operator of the governing differential equation. Therefore, it requires no coordinate transformation. This direct BEM formulation is then extended to acoustic radiation in a nonuniform-flow field. All the terms due to the nonuniform-flow effect are taken to the right-hand side and treated as source terms. The source terms result in a domain integral in the standard boundary integral formulation. The dual reciprocity method is then used to convert the domain integral into a number of boundary integrals. The second part of this dissertation is devoted to the development of advanced BEM algorithms to overcome the multi-frequency and nonuniqueness difficulties in steady-state elastodynamics. For the multi-frequency difficulty, two different interpolation schemes, borrowed from recent developments in acoustics, are first extended to elastodynamics to accelerate the process of matrix re-formation. Then, a hybrid scheme that retains only the merits of the two different interpolation schemes is suggested. To overcome the nonuniqueness difficulty, an enhanced CHIEF (Combined Helmholtz Integral Equation Formulation) method using a linear combination of the displacement and the traction boundary integral equations on the surface of a small interior volume is proposed. Numerical examples are given to demonstrate all the advanced BEM formulations.

  4. Hölder Continuity up to the Boundary of Minimizers for Some Integral Functionals with Degenerate Integrands

    Directory of Open Access Journals (Sweden)

    S. Bonafede

    2007-01-01

    Full Text Available We study qualitative properties of minimizers for a class of integral functionals, defined in a weighted space. In particular we obtain Hölder regularity up to the boundary for the minimizers of an integral functional of high order by using an interior local regularity result and a modified Moser method with special test function.

  5. Parallelization of the integral equation formulation of the polarizable continuum model for higher-order response functions

    Science.gov (United States)

    Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth

    2006-10-01

    We present a parallel implementation of the integral equation formalism of the polarizable continuum model for Hartree-Fock and density functional theory calculations of energies and linear, quadratic, and cubic response functions. The contributions to the free energy of the solute due to the polarizable continuum have been implemented using a master-slave approach with load balancing to ensure good scalability also on parallel machines with a slow interconnect. We demonstrate the good scaling behavior of the code through calculations of Hartree-Fock energies and linear, quadratic, and cubic response function for a modest-sized sample molecule. We also explore the behavior of the parallelization of the integral equation formulation of the polarizable continuum model code when used in conjunction with a recent scheme for the storage of two-electron integrals in the memory of the different slaves in order to achieve superlinear scaling in the parallel calculations.

  6. On the formulation, parameter identification and numerical integration of the EMMI model :plasticity and isotropic damage.

    Energy Technology Data Exchange (ETDEWEB)

    Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A. (University of Colorado, Boulder, CO)

    2006-01-01

    In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.

  7. Toward real-time high-fidelity simulation using integral boundary layer modeling

    CERN Document Server

    Marques, Alexandre; Larsson, Johan; Laskowski, Gregory; Bose, Sanjeeb

    2016-01-01

    One of the greatest challenges to using large-eddy simulations (LES) in engineering applications is the large number of grid points required near walls. To mitigate this issue, researchers often couple LES with a simplified model of the flow close to the wall, known as the wall model. One feature common to most wall models is that the first few (about 3) grid points must be located below the inviscid log-layer, and the grid must have near-isotropic resolution near the wall. Hence, wall-modeled LES may still require a large number of grid points in both the wall-normal and span-wise directions. Because of these requirements, wall-modeled LES is still unfeasible in many applications. We present a new formulation of wall-modeled LES that is being developed to address this issue. In this formulation, LES is used to solve only for the features of the velocity field that can be adequately represented on the LES grid. The effects of the unresolved features are captured by imposing an integral balance of kinetic ener...

  8. The contrast-source stress-velocity integral-equation formulation of three-dimensional time-domain elastodynamic scattering problems: A structured approach using tensor partitioning

    NARCIS (Netherlands)

    De Hoop, A.T.; Abubakar, A.; Habashy, T.M.

    2009-01-01

    The contrast-source stress-velocity integral-equation formulation of three-dimensional time-domain elastodynamic scattering problems is discussed. A novel feature of the formulation is a tensor partitioning of the relevant dynamic stress and the contrast source volume density of deformation rate. Th

  9. A stochastic regulator for integrated communication and control systems. I - Formulation of control law. II - Numerical analysis and simulation

    Science.gov (United States)

    Liou, Luen-Woei; Ray, Asok

    1991-01-01

    A state feedback control law for integrated communication and control systems (ICCS) is formulated by using the dynamic programming and optimality principle on a finite-time horizon. The control law is derived on the basis of a stochastic model of the plant which is augmented in state space to allow for the effects of randomly varying delays in the feedback loop. A numerical procedure for synthesizing the control parameters is then presented, and the performance of the control law is evaluated by simulating the flight dynamics model of an advanced aircraft. Finally, recommendations for future work are made.

  10. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  11. On Solution of the Integrable Initial Boundary Value Problem for KdV Equation on the Semi-axis

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyev, Mikhail Yurievich, E-mail: mikkieram@gmail.com [Saratov State University, Department of Mathematics (Russian Federation)

    2013-12-15

    This paper is concerned with the Korteweg-de Vries (KdV) equation on the right semi-axis. The initial boundary value problem with inhomogeneous integrable boundary conditions is studied. We show that, under some conditions on the initial data the problem has a solution and provide the procedure for constructing this solution. The procedure is based on the inverse spectral method and consists of several steps reducing to either solving some linear problems or calculations via some explicit formulas.

  12. Existence and Analytic Approximation of Solutions of Duffing Type Nonlinear Integro-Differential Equation with Integral Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Alsaedi Ahmed

    2009-01-01

    Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.

  13. Integrated and Consistent Active Control Formulation and Piezotransducer Position Optimization of Plate Structures considering Spillover Effects

    Directory of Open Access Journals (Sweden)

    Mojtaba Biglar

    2014-01-01

    Full Text Available This study addresses new formulation for active vibration control of plates by optimal locations of attached piezotransducers. Free vibrations are solved by Rayleigh-Ritz and transient by assumed modes methods. Optimal orientations of patches are determined by spatial controllability/observability, as well as residual modes to reduce spillover. These criteria are used to achieve optimal fitness function defined for genetic algorithm to find optimal locations. To control vibrations, negative velocity feedback control is designed. Results indicate that, by locating piezopatches at optimal positions, depreciation rate increases and amplitudes of vibrations reduce effectively. The effect of number of piezodevices is analyzed.

  14. Learning to cross boundaries: the integration of a health network to deliver seamless care.

    Science.gov (United States)

    van Wijngaarden, Jeroen D H; de Bont, Antoinette A; Huijsman, Robbert

    2006-12-01

    We analysed the development of an integrated network from a learning perspective to see how care givers from different organisations were able to cross the professional and organisational boundaries that existed between them to make sure patients receive the right care, at the right moment, in the right place. We show how through a process of collective learning social contacts between health professionals increased and improved. These professionals learned to speak each other's language, learned how other professionals and organisations work and learned to look at the care process from a network perspective instead of only from a professional or organisational perspective. Through this learning process, they also experienced the limitations of standardizing knowledge in criteria, protocols and rules, and the value of direct contact for sharing information and knowledge, to ensure continuity in care.

  15. A Family of Well-Clear Boundary Models for the Integration of UAS in the NAS

    Science.gov (United States)

    Munoz, Cesar A.; Narkawicz, Anthony; Chamberlain, James; Consiglio, Maria; Upchurch, Jason

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defines the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. For these models, algorithms that predict well-clear violations along aircraft current trajectories are provided. These algorithms are analogous to conflict detection algorithms but instead of predicting loss of separation, they predict whether well-clear violations will occur during a given lookahead time interval. Analytical techniques are used to study the properties and relationships satisfied by the models.

  16. Seamless Integration of Global Dirichlet-to-Neumann Boundary Condition and Spectral Elements for Transformation Electromagnetics

    CERN Document Server

    Yang, Zhiguo; Rong, Zhijian; Wang, Bo; Zhang, Baile

    2015-01-01

    In this paper, we present an efficient spectral-element method (SEM) for solving general two-dimensional Helmholtz equations in anisotropic media, with particular applications in accurate simulation of polygonal invisibility cloaks, concentrators and circular rotators arisen from the field of transformation electromagnetics (TE). In practice, we adopt a transparent boundary condition (TBC) characterized by the Dirichlet-to-Neumann (DtN) map to reduce wave propagation in an unbounded domain to a bounded domain. We then introduce a semi-analytic technique to integrate the global TBC with local curvilinear elements seamlessly, which is accomplished by using a novel elemental mapping and analytic formulas for evaluating global Fourier coefficients on spectral-element grids exactly. From the perspective of TE, an invisibility cloak is devised by a singular coordinate transformation of Maxwell's equations that leads to anisotropic materials coating the cloaked region to render any object inside invisible to observe...

  17. Image boundary extraction based on island model genetic algorithms for integrated circuit defect detection

    Institute of Scientific and Technical Information of China (English)

    PAN Zhong-liang; CHEN Ling

    2009-01-01

    The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments. When there are defects on a wafer, the defects may lead to the degradation of chip performance. It is necessary to design effective detection approaches for the defects in order to ensure the reliability of wafer. In this paper, a new method based on image boundary extraction is presented for the detection of defects on a wafer. The method uses island model genetic algorithms to perform the segmentation of wafer images, and gets the optimal threshold values. The island model genetic algorithm uses two distinct subpopulations, it is a coarse grain parallel model. The individuals migration can occur between the two subpopulations to share genetic materials. A lot of experimental results show that the defect detection method proposed in this paper can obtain the features of defects effectively.

  18. Connectivity as an alternative to boundary integral equations: Construction of bases

    Science.gov (United States)

    Herrera, Ismael; Sabina, Federico J.

    1978-01-01

    In previous papers Herrera developed a theory of connectivity that is applicable to the problem of connecting solutions defined in different regions, which occurs when solving partial differential equations and many problems of mechanics. In this paper we explain how complete connectivity conditions can be used to replace boundary integral equations in many situations. We show that completeness is satisfied not only in steady-state problems such as potential, reduced wave equation and static and quasi-static elasticity, but also in time-dependent problems such as heat and wave equations and dynamical elasticity. A method to obtain bases of connectivity conditions, which are independent of the regions considered, is also presented. PMID:16592522

  19. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  20. Prediction of metallic nano-optical trapping forces by finite element-boundary integral method.

    Science.gov (United States)

    Pan, Xiao-Min; Xu, Kai-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing

    2015-03-01

    The hybrid of finite element and boundary integral (FE-BI) method is employed to predict nano-optical trapping forces of arbitrarily shaped metallic nanostructures. A preconditioning strategy is proposed to improve the convergence of the iterative solution. Skeletonization is employed to speed up the design and optimization where iteration has to be repeated for each beam configuration. The radiation pressure force (RPF) is computed by vector flux of the Maxwell's stress tensor. Numerical simulations are performed to validate the developed method in analyzing the plasmonic effects as well as the optical trapping forces. It is shown that the proposed method is capable of predicting the trapping forces of complex metallic nanostructures accurately and efficiently.

  1. 3a micromagnetic solution by finite formulation

    Energy Technology Data Exchange (ETDEWEB)

    Giuffrida, C. [Politecnico di Torino, Dip. Ingegneria Elettrica, C.so Duca Abruzzi 24, I-10129 Turin (Italy); Ragusa, C. [Politecnico di Torino, Dip. Ingegneria Elettrica, C.so Duca Abruzzi 24, I-10129 Turin (Italy); Repetto, M. [Politecnico di Torino, Dip. Ingegneria Elettrica, C.so Duca Abruzzi 24, I-10129 Turin (Italy)]. E-mail: maurizio.repetto@polito.it

    2006-02-01

    In this paper, a method for the numerical solution of micromagnetic problems in 3D cases is presented. These problems require the solution of electromagnetic field coupled with Landau-Lifshitz-Gilbert equation, governing magnetization dynamics. Finite formulation of electromagnetic fields (FFEF) is used to compute the magnetostatic contribution to the effective field in terms of line integrals of magnetic vector potential, while integral boundary conditions are obtained computing magnetic scalar potential using magnetization values as source. Magnetization dynamics is evaluated by an implicit formulation. Results on benchmark configurations are shown.

  2. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid as a permeation enhancer

    Directory of Open Access Journals (Sweden)

    Mooranian A

    2014-09-01

    Full Text Available Armin Mooranian,1 Rebecca Negrulj,1 Nigel Chen-Tan,2 Gerald F Watts,3 Frank Arfuso,4 Hani Al-Salami11Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, 2Faculty of Science and Engineering, Curtin University, 3School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, 4School of Biomedical Science, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, AustraliaAbstract: The authors have previously designed, developed, and characterized a novel microencapsulated formulation as a platform for the targeted delivery of therapeutics in an animal model of type 2 diabetes, using the drug probucol (PB. The aim of this study was to optimize PB microcapsules by incorporating the bile acid deoxycholic acid (DCA, which has good permeation-enhancing properties, and to examine its effect on microcapsules’ morphology, rheology, structural and surface characteristics, and excipients’ chemical and thermal compatibilities. Microencapsulation was carried out using a BÜCHI-based microencapsulating system established in the authors’ laboratory. Using the polymer sodium alginate (SA, two microencapsulated formulations were prepared: PB-SA (control and PB-DCA-SA (test at a constant ratio (1:30 and 1:3:30, respectively. Complete characterization of the microcapsules was carried out. The incorporation of DCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained similar to control. In addition, PB-DCA-SA microcapsules showed good excipients’ compatibilities, which were supported by data from differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray studies, suggesting

  3. Preconditioning first and second kind integral formulations of the capacitance problem

    Energy Technology Data Exchange (ETDEWEB)

    Tausch, J.; White, J.

    1996-12-31

    Engineering programs which compute electrostatic capacitances for complicated arrangements of conductors commonly set up the electrostatic potential u as a superposition of surface carges {sigma} u(x) = {integral}{sub s}G(x, y){sigma}(y) dS(y). Where G(x, y) = {1/4}{pi}{vert_bar}x - y{vert_bar} is the Green`s function for the Laplacian in the three-space. For a specified potential on the conductor surface(s) S, this approach leads to an integral equation of the first kind on S for the charge density {sigma}. The capacitance is the net-charge on the conductors and is given by the surface integral of {sigma}.

  4. Uniqueness and Asymptotic Behavior of Positive Solutions for a Fractional-Order Integral Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Min Jia

    2012-01-01

    Full Text Available We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -tαx(t=f(t,x(t,x'(t,x”(t,…,x(n-2(t,  0integrals, A is a function of bounded variation, and dA can be a changing-sign measure. The existence, uniqueness, and asymptotic behavior of positive solutions to the singular nonlocal integral boundary value problem for fractional differential equation are obtained. Our analysis relies on Schauder's fixed-point theorem and upper and lower solution method.

  5. On the determination of phase boundaries via thermodynamic integration across coexistence regions

    Energy Technology Data Exchange (ETDEWEB)

    Abramo, Maria Concetta, E-mail: mcabramo@unime.it; Caccamo, Carlo, E-mail: caccamo@unime.it; Costa, Dino, E-mail: dcosta@unime.it; Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it; Malescio, Gianpietro, E-mail: malescio@unime.it; Munaò, Gianmarco, E-mail: gmunao@unime.it [Dipartimento di Fisica e di Scienze della Terra, Università degli Studi di Messina, Contrada Papardo, I-98166 Messina (Italy); Prestipino, Santi, E-mail: sprestipino@unime.it [Dipartimento di Fisica e di Scienze della Terra, Università degli Studi di Messina, Contrada Papardo, I-98166 Messina (Italy); CNR-IPCF, Viale F. Stagno d’Alcontres 37, I-98158 Messina (Italy)

    2015-06-07

    Specialized Monte Carlo methods are nowadays routinely employed, in combination with thermodynamic integration (TI), to locate phase boundaries of classical many-particle systems. This is especially useful for the fluid-solid transition, where a critical point does not exist and both phases may notoriously go deeply metastable. Using the Lennard-Jones model for demonstration, we hereby investigate on the alternate possibility of tracing reasonably accurate transition lines directly by integrating the pressure equation of state computed in a canonical-ensemble simulation with local moves. The recourse to this method would become a necessity when the stable crystal structure is not known. We show that, rather counterintuitively, metastability problems can be alleviated by reducing (rather than increasing) the size of the system. In particular, the location of liquid-vapor coexistence can exactly be predicted by just TI. On the contrary, TI badly fails in the solid-liquid region, where a better assessment (to within 10% accuracy) of the coexistence pressure can be made by following the expansion, until melting, of the defective solid which has previously emerged from the decay of the metastable liquid.

  6. Integrated exposure and dose modeling and analysis system. 1. Formulation and testing of microenvironmental and pharmacokinetic components

    Energy Technology Data Exchange (ETDEWEB)

    Georgopoulos, P.G.; Walia, A.; Roy, A.; Lioy, P.J. [Rutgers Univ. and Univ. of Medicine & Dentistry of New Jersey, Piscataway, NJ (United States)

    1997-01-01

    The conceptual and theoretical framework for a modular integrated Exposure and Dose Modeling and Analysis System (EDMAS) has been formulated, and its stepwise implementation and testing is currently in progress. This system aims to provide state-of-the art tools for performing integrated assessments of exposure and dose for individuals and populations. The integration of modeling components with each other as well as with available environmental, exposure, and toxicological databases in being accomplished with the use of computational tools that include interactive simulation environments, Geographical information Systems, and various data retrieval, management, statistical analysis, and visualization methods. This paper overviews the structure and modular nature of this integrated modeling system and focuses specifically on two of its components: (a) a hierarchy of physiologically based pharmacokinetic models (PBPKM), representing various levels of detail and sophistication, and (b) a family of microenvironmental models, that incorporate complex physical and chemical transformations. The deterministic implementation of these components is also presented here in two test applications: (i) a case study of benzene exposure indoors resulting from the volatilization of contaminated tap water and (ii) a case study of photochemical pollution infiltration indoors, in an office building environment. 77 refs., 6 figs., 2 tabs.

  7. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations

    Science.gov (United States)

    Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; Berndt, Markus; Garimella, Rao; Moulton, J. David; Svyatskiy, Daniil; Wilson, Cathy J.

    2016-08-01

    The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in the microtopography, physically the result of wind scour, is modeled phenomenologically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100 year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. These simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.

  8. INTERFACIAL CRACK ANALYSIS IN THREE-DIMENSIONAL TRANSVERSELY ISOTROPIC BI-MATERIALS BY BOUNDARY INTEGRAL EQUATION METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming-hao; LI Dong-xia; SHEN Ya-peng

    2005-01-01

    The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropie materials.

  9. A time integral formulation and algorithm for structural dynamics with nonlinear stiffness

    Institute of Scientific and Technical Information of China (English)

    Kaiping Yu; Jie Zhao

    2006-01-01

    A newly-developed numerical algorithm, which is called the new Generalized-α(G-α)method, is presented for solving structural dynamics problems with nonlinear stiffness. The traditional G-α method has undesired overshoot properties as for a class of α-method. In the present work, seven independent parameters are introduced into the single-step three-stage algorithmic formulations and the nonlinear internal force at every time interval is approximated by means of the generalized trapezoidal rule, and then the algorithm is implemented based on the finite difference theory. An analysis on the stability, accuracy, energy and overshoot properties of the proposed scheme is performed in the nonlinear regime. The values or the ranges of values of the seven independent parameters are determined in the analysis process. The computational results obtained by the new algorithm show that the displacement accuracy is of order two, and the acceleration can also be improved to a second order accuracy by a suitable choice of parameters. Obviously, the present algorithm is zerostable, and the energy conservation or energy decay can be realized in the high-frequency range, which can be regarded as stable in an energy sense. The algorithmic overshoot can be completely avoided by using the new algorithm without any constraints with respect to the damping force and initial conditions.

  10. Multi-hamiltonian formulation for a class of degenerate completely integrable systems

    CERN Document Server

    Bueken, P

    1994-01-01

    : Generalizing a construction of P. Vanhaecke, we introduce a large class of degenerate (i.e., associated to a degenerate Poisson bracket) completely integrable systems on (a dense subset of) the space \\R^{2d+n+1}, called the generalized master systems. It turns out that certain generalized master systems (with different Poisson brackets and different Hamiltonians) determine the same Hamiltonian vector fields (and are therefore different descriptions of the same Hamiltonian system), and that the Poisson brackets of these systems are compatible. Consequently, our class of generalized master systems actually consists of a (smaller) class of completely integrable systems, and our construction yields a multi-Hamiltonian structure for these systems. As an application, we construct a multi-Hamiltonian structure for the so-called master systems introduced by D. Mumford.

  11. Computation of the radiation Q of dielectric-loaded electrically small antennas in integral equation formulations

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2016-01-01

    A new technique for estimating the impedance frequency bandwidth of electrically small antennas loaded with magneto-dielectric material from a single-frequency simulation in a surface integral equation solver is presented. The estimate is based on the inverse of the radiation Q computed using newly...... derived expressions for the stored energy and the radiated power of arbitrary coupled electric and magnetic currents in free space....

  12. An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation

    Science.gov (United States)

    Yu, Jing; Ma, Wen-Xiu; Han, Jingwei; Chen, Shouting

    2017-02-01

    Based on a Lie super-algebra B(0, 1), an integrable generalization of the super AKNS iso-spectral problem is introduced and its corresponding generalized super AKNS hierarchy is generated. By making use of the super-trace identity (or the super variational identity), the resulting super soliton hierarchy can be put into a super bi-Hamiltonian form. A generalized super AKNS soliton hierarchy with self-consistent sources is also presented.

  13. Analysis of Water Conflicts across Natural and Societal Boundaries: Integration of Quantitative Modeling and Qualitative Reasoning

    Science.gov (United States)

    Gao, Y.; Balaram, P.; Islam, S.

    2009-12-01

    Water issues and problems have bewildered humankind for a long time yet a systematic approach for understanding such issues remain elusive. This is partly because many water-related problems are framed from a contested terrain in which many actors (individuals, communities, businesses, NGOs, states, and countries) compete to protect their own and often conflicting interests. We argue that origin of many water problems may be understood as a dynamic consequence of competition, interconnections, and feedback among variables in the Natural and Societal Systems (NSSs). Within the natural system, we recognize that triple constraints on water- water quantity (Q), water quality (P), and ecosystem (E)- and their interdependencies and feedback may lead to conflicts. Such inherent and multifaceted constraints of the natural water system are exacerbated often at the societal boundaries. Within the societal system, interdependencies and feedback among values and norms (V), economy (C), and governance (G) interact in various ways to create intractable contextual differences. The observation that natural and societal systems are linked is not novel. Our argument here, however, is that rigid disciplinary boundaries between these two domains will not produce solutions to the water problems we are facing today. The knowledge needed to address water problems need to go beyond scientific assessment in which societal variables (C, G, and V) are treated as exogenous or largely ignored, and policy research that does not consider the impact of natural variables (E, P, and Q) and that coupling among them. Consequently, traditional quantitative methods alone are not appropriate to address the dynamics of water conflicts, because we cannot quantify the societal variables and the exact mathematical relationships among the variables are not fully known. On the other hand, conventional qualitative study in societal domain has mainly been in the form of individual case studies and therefore

  14. Integrated stratigraphy of the Cenomanian-Turonian boundary interval: improving understanding of Oceanic Anoxic Events

    Science.gov (United States)

    Jarvis, Ian

    2014-05-01

    The Cenomanian-Turonian boundary (CTB) interval ~ 94 Ma represented a period of major global palaeoenvironmental change. Increasingly detailed multidisciplinary studies integrating sedimentological, palaeontological and geochemical data from multiple basins, are enabling the development of refined but complex models that aid understanding of the mechanisms driving changes in ocean productivity and climate. This paper reviews some of the exciting new developments in this field. Facies change characterizes the CTB interval in most areas. In the Chalk seas of northern Europe, a widespead hiatus was followed by the deposition of clay-rich organic-lean beds of the Plenus Marl and its equivalents, and then nodular chalks. In the North Sea basin and its onshore extension in eastern England and northern Germany, black shales of the Black Band (Blodøks Formation, Hasseltal Formation) occur. Similarly, in northern Tethys, a brief interval of black shale accumulation within a predominantly carbonate succession, is exemplified by the Niveau Thomel in the Vocontian Basin (SE France), and the Livello Bonarelli in Italy. Widespread deposition of organic-rich marine sediments during CTB times led to 12C depletion in surface carbon reservoirs (oceans, atmosphere, biosphere), and a large positive global δ13C excursion preserved in marine carbonates and both marine and terrestrial organic matter (Oceanic Anoxic Event 2). Significant biotic turnover characterises the boundary interval, and inter-regional correlation may be achieved at high resolution using integrated biostratigraphy employing macrofossils (ammonites, inoceramid bivalves), microfossils (planktonic foraminifera, dinoflagellate cysts) and calcareous nannofossils. Correlations can be tested against those based on comparison of δ13C profiles - carbon isotope chemostratigraphy, supplemented by oxygen isotope and elemental data. Interpretation of paired carbonate - organic matter δ13C data from multiple CTB sections

  15. Modeling for planetary boundaries: a network analysis of representations of complex human-environmental interactions in integrated global models

    Science.gov (United States)

    Friedrich, Johannes; Fetzer, Ingo; Cornell, Sarah

    2016-04-01

    The planetary boundaries framework is an approach to global sustainability that emphasises non-linear threshold behavior in anthropogenically perturbed Earth system processes. However, knowledge about the characteristics and positions of thresholds, and the scope for management of the boundaries is not well established. Global integrated models can help to improve this understanding, by reflecting the complex feedbacks between human and environmental systems. This study analyses the current state of integrated models with regard to the main processes identified as 'critical Earth system processes' in the planetary boundaries framework, and identifies gaps and suggests priorities for future improvements. Our approach involves creating a common ontology of model descriptions, and performing a network analysis on the state of system integration in models. The distinct clusters of specific biophysical and social-economic systems obviously has enabled progress in those specific areas of global change, but it now constrains analysis of important human-driven Earth system dynamics. The modeling process therefore has to be improved through technical integration, scientific gap-filling, and also changes in scientific institutional dynamics. Combined, this can advance model potentials that may help us to find sustainable pathways within planetary boundaries.

  16. Existence and Uniqueness of Solutions for the System of Nonlinear Fractional Differential Equations with Nonlocal and Integral Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Allaberen Ashyralyev

    2012-01-01

    Full Text Available In the present study, the nonlocal and integral boundary value problems for the system of nonlinear fractional differential equations involving the Caputo fractional derivative are investigated. Theorems on existence and uniqueness of a solution are established under some sufficient conditions on nonlinear terms. A simple example of application of the main result of this paper is presented.

  17. Gaussian-windowed frame based method of moments formulation of surface-integral-equation for extended apertures

    Energy Technology Data Exchange (ETDEWEB)

    Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il [Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Lomakin, V., E-mail: vlomakin@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2016-03-01

    Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii) furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.

  18. A hybrid boundary-integral/thin-sheet equation for subduction modelling

    Science.gov (United States)

    Xu, Bingrui; Ribe, Neil M.

    2016-09-01

    Subducting oceanic lithosphere is an example of a thin sheet-like object whose characteristic lateral dimension greatly exceeds its thickness. Here we exploit this property to derive a new hybrid boundary-integral/thin sheet (BITS) representation of subduction that combines in a single equation all the forces acting on the sheet: gravity, internal resistance to bending and stretching, and the tractions exerted by the ambient mantle. For simplicity, we limit ourselves to 2-D. We solve the BITS equations using a discrete Lagrangian approach in which the sheet is represented by a set of vertices connected by edges. Instantaneous solutions for the sinking speed of a slab attached to a trailing flat sheet obey a scaling law of the form V/VStokes = fct(St), where VStokes is a characteristic Stokes sinking speed and St is the sheet's flexural stiffness. Time-dependent solutions for the evolution of the sheet's shape and thickness show that these are controlled by the viscosity ratio between the sheet and its surroundings. An important advantage of the BITS approach is the possibility of generalizing the sheet's rheology, either to a viscosity that varies along the sheet or to a non-Newtonian shear-thinning rheology.

  19. Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope

    CERN Document Server

    Kotko, Piotr; Stasto, Anna M

    2016-01-01

    One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes. As shown in recent works using for example the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift of the Wilson line slope instead of shifting an external momentum. While the boundary integrals over the complex shift in BCFW procedure vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes.

  20. Practice of Improving Roll Deformation Theory in Strip Rolling Process Based on Boundary Integral Equation Method

    Science.gov (United States)

    Yuan, Zhengwen; Xiao, Hong; Xie, Hongbiao

    2014-02-01

    Precise strip-shape control theory is significant to improve rolled strip quality, and roll flattening theory is a primary part of the strip-shape theory. To improve the accuracy of roll flattening calculation based on semi-infinite body model, a new and more accurate roll flattening model is proposed in this paper, which is derived based on boundary integral equation method. The displacement fields of the finite length semi-infinite body on left and right sides are simulated by using finite element method (FEM) and displacement decay functions on left and right sides are established. Based on the new roll flattening model, a new 4Hi mill deformation model is established and verified by FEM. The new model is compared with Foppl formula and semi-infinite body model in different strip width, roll shifting value and bending force. The results show that the pressure and flattening between rolls calculated by the new model are more precise than other two models, especially near the two roll barrel edges.

  1. Hybrid Finite Element-Fast Spectral Domain Multilayer Boundary Integral Modeling of Doubly Periodic Structures

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Eibert; J.L. Volakis; Y.E. Erdemli

    2002-03-03

    Hybrid finite element (FE)--boundary integral (BI) analysis of infinite periodic arrays is extended to include planar multilayered Green's functions. In this manner, a portion of the volumetric dielectric region can be modeled via the finite element method whereas uniform multilayered regions can be modeled using a multilayered Green's function. As such, thick uniform substrates can be modeled without loss of efficiency and accuracy. The multilayered Green's function is analytically computed in the spectral domain and the resulting BI matrix-vector products are evaluated via the fast spectral domain algorithm (FSDA). As a result, the computational cost of the matrix-vector products is kept at O(N). Furthermore, the number of Floquet modes in the expansion are kept very few by placing the BI surfaces within the computational unit cell. Examples of frequency selective surface (FSS) arrays are analyzed with this method to demonstrate the accuracy and capability of the approach. One example involves complicated multilayered substrates above and below an inhomogeneous filter element and the other is an optical ring-slot array on a substrate several hundred wavelengths in thickness. Comparisons with measurements are included.

  2. Moving Towards Integrated Policy Formulation and Evaluation: The Green Economy Model

    Science.gov (United States)

    Bassi, Andrea M.

    2015-12-01

    The mainstreaming of concepts related to the Green Economy, an action-oriented approach to reach sustainable development, has increased demands for integrated models that can shed light on the complex relations existing across social, economic and environmental indicators. A gap exists, whereby our thinking is rapidly evolving, but the tools available are still in the vast majority of cases sectorial, leading to planning processes taking place in silos. To avoid the emergence of side effects, and anticipate future threats and opportunities, a more systemic approach is needed. The Green Economy Model (GEM) was created taking into account four main capitals and their interconnections: physical capital, human capital, social capital and natural capital. The application of GEM in 10 countries has shown its capability to coherently represent reality and generate results that can more effectively inform decision making.

  3. Moving Towards Integrated Policy Formulation and Evaluation: The Green Economy Model

    Directory of Open Access Journals (Sweden)

    Bassi Andrea M.

    2015-12-01

    Full Text Available The mainstreaming of concepts related to the Green Economy, an action-oriented approach to reach sustainable development, has increased demands for integrated models that can shed light on the complex relations existing across social, economic and environmental indicators. A gap exists, whereby our thinking is rapidly evolving, but the tools available are still in the vast majority of cases sectorial, leading to planning processes taking place in silos. To avoid the emergence of side effects, and anticipate future threats and opportunities, a more systemic approach is needed. The Green Economy Model (GEM was created taking into account four main capitals and their interconnections: physical capital, human capital, social capital and natural capital. The application of GEM in 10 countries has shown its capability to coherently represent reality and generate results that can more effectively inform decision making.

  4. An integral transform approach for a mixed boundary problem involving a flowing partially penetrating well with infinitesimal well skin

    Science.gov (United States)

    Chang, Chien-Chieh; Chen, Chia-Shyun

    2002-06-01

    A flowing partially penetrating well with infinitesimal well skin is a mixed boundary because a Cauchy condition is prescribed along the screen length and a Neumann condition of no flux is stipulated over the remaining unscreened part. An analytical approach based on the integral transform technique is developed to determine the Laplace domain solution for such a mixed boundary problem in a confined aquifer of finite thickness. First, the mixed boundary is changed into a homogeneous Neumann boundary by substituting the Cauchy condition with a Neumann condition in terms of well bore flux that varies along the screen length and is time dependent. Despite the well bore flux being unknown a priori, the modified model containing this homogeneous Neumann boundary can be solved with the Laplace and the finite Fourier cosine transforms. To determine well bore flux, screen length is discretized into a finite number of segments, to which the Cauchy condition is reinstated. This reinstatement also restores the relation between the original model and the solutions obtained. For a given time, the numerical inversion of the Laplace domain solution yields the drawdown distributions, well bore flux, and the well discharge. This analytical approach provides an alternative for dealing with the mixed boundary problems, especially when aquifer thickness is assumed to be finite.

  5. Integrable open-boundary conditions for the supersymmetric t-J model the quantum group invariant case

    CERN Document Server

    González-Ruiz, A

    1994-01-01

    We consider integrable open-boundary conditions for the supersymmetric t-J model commuting with the number operator $n$ and $S^{z}$. We find four families, each one depending on two arbitrary parameters. The associated eigenvalue problem is solved by generalizing the Nested Algebraic Bethe Ansatz of the quantum group invariant case (which is obtained as a special limit). For the quantum group invariant case the Bethe ansatz states are shown to be highest weights of $spl_{q}(2,1)$. We also discuss the relation between Sklyanin's method of constructing open boundary conditions and the one for the quantum group invariant case based on Markov traces.

  6. Formulation of an Integrated Model for Freshwater Resources Policy Evaluation in Jordan

    Science.gov (United States)

    Gorelick, S.; Yoon, J.; Gawel, E.; Klauer, B.; Klassert, C. J. A.; Sigel, K.; Tilmant, A.; Lachaut, T.; Avisse, N.; Harou, J. J.; Padula, S.; Mustafa, D.

    2014-12-01

    Jordan is one of the four water poorest countries in the world. It is a highly vulnerable arid region whose freshwater system is at a tipping point due to the confluence of severely limited water supplies, rapid population growth, refugee influxes, climate change and variability, internal and transboundary competition for shared freshwater resources, and institutional impediments. Our team is engaged in an interdisciplinary effort aimed at developing a new approach to evaluate policies that enhance sustainability of freshwater resource systems. Our work adopts a multi-agent modeling framework that incorporates institutional complexity to evaluate policy instruments for improving water security in Jordan. We are developing this model using a modular approach, integrating biophysical modules that simulate natural and engineered phenomena (e.g., groundwater-surface water flow, reservoir storage, network routing, salt balance, and crop yield) with human modules that represent behavior at multiple scales of decision making. The human modules adopt a multi-agent simulation approach, defining agents as autonomous decision-makers at the government, administrative, organizational, and user levels. Our goal is to construct a suite of policy intervention scenarios that will form the basis for analysis of freshwater sustainability. This work has benefitted from a strong working relationship with leaders of the water sector in Jordan. Our approach and the merit of the policy interventions should have significant transfer value to other water-stressed regions.

  7. Formulation of a strategy for monitoring control integrity in critical digital control systems

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  8. A Direct Approach to Determine the External Disturbing Gravity Field by Applying Green Integral with the Ground Boundary Value

    Directory of Open Access Journals (Sweden)

    TIAN Jialei

    2015-11-01

    Full Text Available By using the ground as the boundary, Molodensky problem usually gets the solution in form of series. Higher order terms reflect the correction between a smooth surface and the ground boundary. Application difficulties arise from not only computational complexity and stability maintenance, but also data-intensiveness. Therefore, in this paper, starting from the application of external gravity disturbance, Green formula is used on digital terrain surface. In the case of ignoring the influence of horizontal component of the integral, the expression formula of external disturbance potential determined by boundary value consisted of ground gravity anomalies and height anomaly difference are obtained, whose kernel function is reciprocal of distance and Poisson core respectively. With this method, there is no need of continuation of ground data. And kernel function is concise, and suitable for the stochastic computation of external disturbing gravity field.

  9. REDUCING DIMENSIONS OF DOMAIN INTEGRATION IN BOUNDARY ELEMENT METHOD%边界元法中区域积分的降维计算方法

    Institute of Scientific and Technical Information of China (English)

    袁政强; 祝家麟

    2002-01-01

    The main advantage of Boundary Element Method (BEM) is reducing the dimensions by one in performing calculation.When inhomogeneous term appears in the governing equation of the problem,the domain integral is inevitable excepting some special cases.The common way to perform the domain integral involves subdividing the domain into a series of subdomains over which a numberical integration formula or an analytical quadrature can be applied.This paper presents an alternative way to transform the domain integral over subdomains into equivalent boundary integrals on the boundary of each subdomain,so that all the integrals are performed on the boundary case.It makes the whole calculation of BEM reduced by one dimension really.

  10. R-matrix theory with Dirichlet boundary conditions for integrable electron waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hoshik [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States); Reichl, L E, E-mail: hoshik.lee@wm.ed, E-mail: reichl@physics.utexas.ed [Center for Complex Quantum Systems, University of Texas at Austin, Austin, TX 78712 (United States)

    2010-10-08

    R-matrix theory is used to compute transmission properties of a T-shaped electron waveguide and an electron waveguide-based rotation gate by using Dirichlet boundary conditions for reaction region basis states, even at interfaces with external leads. Such boundary conditions have been known to cause R-matrix convergence problems. We show that an R-matrix obtained using Dirichlet boundary conditions can be convergent for some cases. We also show that R-matrix theory can efficiently reproduce results that were obtained using far more computationally demanding methods such as mode matching techniques, tight-binding Green's function methods or the finite element methods.

  11. An efficient formulation of the coupled finite element-integral equation technique for solving large 3D scattering problems

    Science.gov (United States)

    Cwik, T.; Jamnejad, V.; Zuffada, C.

    1993-01-01

    It is often desirable to calculate the electromagnetic fields inside and about a complicated system of scattering bodies, as well as in their far-field region. The finite element method (FE) is well suited to solving the interior problem, but the domain has to be limited to a manageable size. At the truncation of the FE mesh one can either impose approximate (absorbing) boundary conditions or set up an integral equation (IE) for the fields scattered from the bodies. The latter approach is preferable since it results in higher accuracy. Hence, the two techniques can be successfully combined by introducing a surface that encloses the scatterers, applying a FE model to the inner volume and setting up an IE for the tangential fields components on the surface. Here the continuity of the tangential fields is used bo obtain a consistent solution. A few coupled FE-IE methods have recently appeared in the literature. The approach presented here has the advantage of using edge-based finite elements, a type of finite elements with degrees of freedom associated with edges of the mesh. Because of their properties, they are better suited than the conventional node based elements to represent electromagnetic fields, particularly when inhomogeneous regions are modeled, since the node based elements impose an unnatural continuity of all field components across boundaries of mesh elements. Additionally, our approach is well suited to handle large size problems and lends itself to code parallelization. We will discuss the salient features that make our approach very efficient from the standpoint of numerical computation, and the fields and RCS of a few objects are illustrated as examples.

  12. Positive Solutions for (n-1,1-Type Singular Fractional Differential System with Coupled Integral Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-01-01

    Full Text Available We study the positive solutions of the (n-1,1-type fractional differential system with coupled integral boundary conditions. The conditions for the existence of positive solutions to the system are established. In addition, we derive explicit formulae for the estimation of the positive solutions and obtain the unique positive solution when certain additional conditions hold. An example is then given to demonstrate the validity of our main results.

  13. Formulating an Integrated Intervention Programme: Reshaping the Brain-Behaviour Functioning of Children in Conflict with Law in India

    Directory of Open Access Journals (Sweden)

    Sanjukta Das

    2016-12-01

    Full Text Available Juvenile delinquency is a serious social concern, characterized by disturbance in executive functions, cognitive emotion regulation and aggression. The term 'children in conflict with the law' refers to any individual below the age of 16 years, who has come in contact with the justice system as a result of committing an illegal activity or being suspected of committing an illegal activity. It can be easily understood that the Children in Conflict with Law require rehabilitative measures while they are spending their formative years of life in Juvenile Justice Homes. Rehabilitation has particularly been the focus of corrections programs for Children in Conflict with Law. Research in different parts of the world has focused on various facets of psychotherapeutic intervention like Behaviour Therapy, Contingency management programme, Family Therapy, Music therapy etc. that have been effectively applied in separate formats on these children. It is often found that while implementing psychotherapeutic intervention programmes in practice, these have often not reached up to the extent of their wholistic betterment. This is also true in the Indian context where published research in this particular domain is sparse. To reach the aim of reducing or preventing future criminal behaviour, it is much necessary to strengthen and integrate the appropriate execution of existing psychotherapeutic intervention programmes for delinquency prevention. This paper aims to delineate the conceptual formulation of an Integrated Intervention Programme which is aimed at providing rehabilitation for Children in Conflict with Law. Itincludes Psycho-education, Music Therapy, Psychodrama and finally Cognitive Behaviour Therapy as well as Cognitive Retraining to enhance positivity, aid in self expression and better emotional regulation and promote adaptive executive functioning. Starting with the Group Therapy mode, the Programme will gradually move towards an individual format

  14. A well-conditioned integral-equation formulation for efficient transient analysis of electrically small microelectronic devices

    KAUST Repository

    Bagci, Hakan

    2010-05-01

    A hierarchically regularized coupled set of time-domain surface and volume electric field integral-equations (TD-S-EFIE and TD-V-EFIE) for analyzing electromagnetic wave interactions with electrically small and geometrically intricate composite structures comprising perfect electrically conducting surfaces and finite dielectric volumes is presented. A classically formulated coupled set of TD-S- and V-EFIEs is shown to be ill-conditioned at low frequencies owing to the hypersingular nature of the TD-S-EFIE. To eliminate low-frequency breakdown in marching-on-in-time solvers for these coupled equations, a hierarchical regularizer leveraging generalized RaoWiltonGlisson functions is applied to the TD-S-EFIE; no regularization is applied to the TD-V-EFIE as it is protected from low-frequency breakdown by an identity term. The resulting hierarchically regularized hybrid TD-S- and V-EFIE solver is applicable to the analysis of wave interactions with electrically small and densely meshed structures of arbitrary topology. The accuracy, efficiency, and applicability of the proposed solver are demonstrated by analyzing crosstalk in a six-port transmission line, radiation from a miniature radio-frequency identification antenna, and, plane-wave coupling onto a partially-shielded and fully loaded two-layer computer board. © 2006 IEEE.

  15. Consistent multi-time-point brain atrophy estimation from the boundary shift integral.

    Science.gov (United States)

    Leung, Kelvin K; Ridgway, Gerard R; Ourselin, Sébastien; Fox, Nick C

    2012-02-15

    Brain atrophy measurement is increasingly important in studies of neurodegenerative diseases such as Alzheimer's disease (AD), with particular relevance to trials of potential disease-modifying drugs. Automated registration-based methods such as the boundary shift integral (BSI) have been developed to provide more precise measures of change from a pair of serial MR scans. However, when a method treats one image of the pair (typically the baseline) as the reference to which the other is compared, this systematic asymmetry risks introducing bias into the measurement. Recent concern about potential biases in longitudinal studies has led to several suggestions to use symmetric image registration, though some of these methods are limited to two time-points per subject. Therapeutic trials and natural history studies increasingly involve several serial scans, it would therefore be useful to have a method that can consistently estimate brain atrophy over multiple time-points. Here, we use the log-Euclidean concept of a within-subject average to develop affine registration and differential bias correction methods suitable for any number of time-points, yielding a longitudinally consistent multi-time-point BSI technique. Baseline, 12-month and 24-month MR scans of healthy controls, subjects with mild cognitive impairment and AD patients from the Alzheimer's Disease Neuroimaging Initiative are used for testing the bias in processing scans with different amounts of atrophy. Four tests are used to assess bias in brain volume loss from BSI: (a) inverse consistency with respect to ordering of pairs of scans 12 months apart; (b) transitivity consistency over three time-points; (c) randomly ordered back-to-back scans, expected to show no consistent change over subjects; and (d) linear regression of the atrophy rates calculated from the baseline and 12-month scans and the baseline and 24-month scans, where any additive bias should be indicated by a non-zero intercept. Results

  16. OPERATOR-RELATED FORMULATION OF THE EIGENVALUE PROBLEM FOR THE BOUNDARY PROBLEM OF ANALYSIS OF A THREE-DIMENSIONAL STRUCTURE WITH PIECEWISE-CONSTANT PHYSICAL AND GEOMETRICAL PARAMETERS ALONGSIDE THE BASIC DIRECTION WITHIN THE FRAMEWORK OF THE DISCRETE-CON

    Directory of Open Access Journals (Sweden)

    Akimov Pavel Alekseevich

    2012-10-01

    Full Text Available The proposed paper covers the operator-related formulation of the eigenvalue problem of analysis of a three-dimensional structure that has piecewise-constant physical and geometrical parameters alongside the so-called basic direction within the framework of a discrete-continual approach (a discrete-continual finite element method, a discrete-continual variation method. Generally, discrete-continual formulations represent contemporary mathematical models that become available for computer implementation. They make it possible for a researcher to consider the boundary effects whenever particular components of the solution represent rapidly varying functions. Another feature of discrete-continual methods is the absence of any limitations imposed on lengths of structures. The three-dimensional problem of elasticity is used as the design model of a structure. In accordance with the so-called method of extended domain, the domain in question is embordered by an extended one of an arbitrary shape. At the stage of numerical implementation, relative key features of discrete-continual methods include convenient mathematical formulas, effective computational patterns and algorithms, simple data processing, etc. The authors present their formulation of the problem in question for an isotropic medium with allowance for supports restrained by elastic elements while standard boundary conditions are also taken into consideration.

  17. On the elastostatic significance of four boundary integrals involving biharmonic functions

    DEFF Research Database (Denmark)

    Christiansen, Søren

    1998-01-01

    of the four integrals and we find that it is related to the displacements of the elastic material: Single valued displacements are obtained provided that three of the integrals are zero. (The fourth integral does not provide further information.) It is already known from the classical literature that two...... of the integrals are related to single valued displacements, but the elastostatical significance of the third integral seems to be a new result. The method of investigation is unconventional: For "all possible" biharmonic functions, in polar coordinates, we determine stresses, strains, displacements etc. together...

  18. Significance of Strain in Formulation in Theory of Solid Mechanics

    Science.gov (United States)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    2003-01-01

    The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided the strain formulation or the field compatibility condition. The strain formulation was incomplete. The missing portion has been formulated and identified as the boundary compatibility condition (BCC). The BCC, derived through a variational formulation, has been verified through integral theorem and solution of problems. The BCC, unlike the field counterpart, do not trivialize when expressed in displacements. Navier s method and the stiffness formulation have to account for the extra conditions especially at the inter-element boundaries in a finite element model. Completion of the strain formulation has led to the revival of the direct force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The benefits from the new methods in elasticity, in finite element analysis, and in design optimization are discussed. Existing solutions and computer codes may have to be adjusted for the compliance of the new conditions. Complacency because the discipline is over a century old and computer codes have been developed for half a century can lead to stagnation of the discipline.

  19. Computation of Nonlinear Gravity Waves by a Desingularized Boundary Integral Method

    Science.gov (United States)

    1991-10-01

    and Whitham 1974). The I perturbation method has also been used in numerical calculations by researchers, for 3 example, Nakos & Sclavounos (1990) in...pulsating sources using fundamental solutions I satisfying a linear free surface boundary condition. Nakos and Sclavounos (1990) calculated the time...231-254. [561 Nakos , D.E. and Sclavounos, P.D. 1990 Ship motions by a three- dimensional Rankine panel method. Proc. 18th symp. on Naval Hydro

  20. An integer order approximation method based on stability boundary locus for fractional order derivative/integrator operators.

    Science.gov (United States)

    Deniz, Furkan Nur; Alagoz, Baris Baykant; Tan, Nusret; Atherton, Derek P

    2016-05-01

    This paper introduces an integer order approximation method for numerical implementation of fractional order derivative/integrator operators in control systems. The proposed method is based on fitting the stability boundary locus (SBL) of fractional order derivative/integrator operators and SBL of integer order transfer functions. SBL defines a boundary in the parametric design plane of controller, which separates stable and unstable regions of a feedback control system and SBL analysis is mainly employed to graphically indicate the choice of controller parameters which result in stable operation of the feedback systems. This study reveals that the SBL curves of fractional order operators can be matched with integer order models in a limited frequency range. SBL fitting method provides straightforward solutions to obtain an integer order model approximation of fractional order operators and systems according to matching points from SBL of fractional order systems in desired frequency ranges. Thus, the proposed method can effectively deal with stability preservation problems of approximate models. Illustrative examples are given to show performance of the proposed method and results are compared with the well-known approximation methods developed for fractional order systems. The integer-order approximate modeling of fractional order PID controllers is also illustrated for control applications.

  1. Gauss-Jacobi quadratures for weakly, strongly, hyper- and nearly-singular integrals in boundary integral equation methods for domains with sharp edges and corners

    Science.gov (United States)

    Tsalamengas, John L.

    2016-11-01

    We present Gauss-Jacobi quadrature rules in terms of hypergeometric functions for the discretization of weakly singular, strongly singular, hypersingular, and nearly singular integrals that arise in integral equation formulations of potential problems for domains with sharp edges and corners. The rules are tailored to weight functions with algebraic endpoint singularities of a fairly general form, thus allowing one to easily incorporate a wide class of domains into the analysis. Numerical examples illustrate the accuracy and stability of the proposed algorithms; it is shown that the same level of high accuracy can be achieved for any choice of the external variable. The usefulness of the method is exemplified by application to the solution of a singular integral equation that arises in time-harmonic electromagnetic scattering by either closed or open perfectly conducting cylindrical objects with edges and corners, such as polygon cylinders and bent strips. Some practical aspects concerning the role of nearby singularities in achieving a highly accurate solution of singular integral equations are, also, discussed.

  2. The Blurred Boundaries and Multiple Effects of European Integration and Globalisation

    DEFF Research Database (Denmark)

    Lynggaard, Kennet

    2015-01-01

    This chapter presents analytical strategies for the study of European integration and Globalisation in concert. This is an increasingly important as well as a highly diverse field of inquiry. The chapter presents a series of research clusters in various ways concerned with the fundamental questions...... of how European integration contribute to, and are effected by, globalisation. By means of concrete research examples the chapter discusses the advantages of the research strategies and tools typically applied on the area and the challenges we face in this regard. This includes discussions of top...

  3. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Aldawsari HM

    2015-01-01

    Full Text Available Hibah M Aldawsari,1 Shaimaa M Badr-Eldin,1,2 Gihan S Labib,1,3 Amal H El-Kamel3 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; 3Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt Abstract: Lemongrass oil (LGO is a volatile oil extracted from the leaves of Cymbopogon citratus that has become one of the most important natural oils in the pharmaceutical industry because of its diverse pharmacologic and clinical effects. However, LGO suffers from low aqueous solubility, which could lead to a reduced effect. Moreover, the instability of its major active constituent, citral, could lead to volatilization, reaction with other formulation ingredients, and consequently, skin irritation. To surmount these problems, this research aims to formulate lemongrass-loaded ethyl cellulose nanosponges with a topical hydrogel with an enhanced antifungal effect and decreased irritation. The minimal inhibitory concentration and minimal fungicidal concentration of LGO against Candida albicans strain ATC 100231, determined using the broth macrodilution method, were found to be 2 and 8 µL/mL, respectively. The emulsion solvent evaporation technique was used for the preparation of the nanosponges. The nanosponge dispersions were then integrated into carbopol hydrogels (0.4%. Nine formulations were prepared based on a 32 full factorial design employing the ethyl cellulose:polyvinyl alcohol ratio and stirring rate as independent variables. The prepared formulations were evaluated for particle size, citral content, and in vitro release. Results revealed that all the nanosponge dispersions were nanosized, with satisfactory citral content and sustained release profiles. Statistical analysis revealed that both ethyl cellulose:polyvinyl alcohol ratio and

  4. A LOCAL BOUNDARY INTEGRAL EQUATION[1mm]METHOD FOR THE ELASTICITY PROBLEM%弹性力学问题的局部边界积分方程方法

    Institute of Scientific and Technical Information of China (English)

    龙述尧; 许敬晓

    2000-01-01

    The basic concept and numerical implementation of a local boundaryintegral equation formulation for solving the elasticity problem havebeen presented in the present paper. It is a new truly meshless method,because the numerical implementation of the method leads to an efficientmeshless discrete model. The concept of a companion solution isintroduced, such that the traction terms would not appear in theintegrals over the local boundary after the modified integral kernel isused for all nodes whose local boundary s falls within theglobal boundary of the given problem; it uses the moving leastsquare approximations, and involves only boundary integration over alocal boundary centered at the node in question. It poses nodifficulties in satisfying essential boundary conditions, and leads to abanded and sparse system matrix. The undependence of the solution onthe size of the integral local boundary provides a great flexibilityin dealing with the numerical model of the elastic plane problems undervarious boundary conditions with arbitrary shapes. Convergence studiesin the numerical examples show that the present method possesses anexcellent rate of convergence and reasonably accurate results for boththe unknown displacement and strain energy, as the originalapproximated trial solutions have nice continuity and smoothness. Thenumerical results also show that using both linear and quadratic basesas well as spline and Gaussian weight functions in approximationfunctions can give quite accurate numerical results.   Compared with the conventional boundary element method based on the globalboundary integral equations, the present method is advantageous in thefollowing aspects:   i) No boundary and domain element needed to be constructed in the presentmethod, while it is necessary to discretize both the entire domain andits boundary for the conventional boundary element method in general. Thevolume and boundary integrals in the present method are evaluated onlyover small

  5. The role of boundary organizations in co-management: examining the politics of knowledge integration in a marine protected area in Belize

    Directory of Open Access Journals (Sweden)

    Noella J. Gray

    2016-08-01

    Full Text Available Marine protected areas (MPAs are an increasingly popular tool for management of the marine commons. Effective governance is essential if MPAs are to achieve their objectives, yet many MPAs face conflicts and governance challenges, including lack of trust and knowledge integration between fishers, scientists, and policy makers. This paper considers the role of a boundary organization in facilitating knowledge integration in a co-managed MPA, the Gladden Spit and Silk Cayes Marine Reserve in Belize. Boundary organizations can play an important role in resource management, by bridging the science-policy divide, facilitating knowledge integration, and enabling communication in conditions of uncertainty. Drawing on ethnographic research conducted in Belize, the paper identifies four challenges for knowledge integration. First, actors have divergent perspectives on whether and how knowledge is being integrated. Second, actors disagree on resource conditions within the MPA and how these should be understood. Third, in order to maintain accountability with multiple actors, including fishers, government, and funders, the boundary organization has promoted the importance of different types of knowledge for different purposes (science and fishers’ knowledge, rather than the integration of these. Finally, a lack of trust and uneven power relations make it difficult to separate knowledge claims from political claims. However, even if knowledge integration proves difficult, boundary organizations may still play an important role by maintaining accountability, providing space for conflicting understandings to co-exist, and ultimately for governance institutions to evolve.

  6. Integrated biostratigraphical and geochemical dataset towards the definition of the Norian/Rhaetian boundary

    Science.gov (United States)

    Callegaro, Sara; Rigo, Manuel; Chiaradia, Massimo; Nestola, Fabrizio; Marzoli, Andrea

    2010-05-01

    After Giordano et al. (2010) an important stratigraphic interval around the Norian/Rhaetian Boundary (NRB) is characterized by the coeval occurrences of the Tethyan conodont Misikella posthernsteini and the North American Epigondolella mosheri morphotype A at the base of radiolarian Propavicingula moniliformis A.Z. and the global disappearance of the bivalve genus Monotis. Looking for a global geochemical signal to better define the NRB, we have investigated the variations of 87Sr/86Sr isotopic ratio directly from biogenic conodont apatite, thus enhancing the previously existing dataset (e.g. Veizer et al., 1999; Korte et al., 2003). The global potential of the Sr isotope stratigraphy rests on the homogeneity of the 87Sr/86Sr in oceanic water, since the residence time of Sr in seawater (>106 yrs) is far longer than its mixing time (>103 years). Henceforth, any given point in time should be characterized by a unique value of 87Sr/86Sr worldwide (McArthur, 1998). In this view, we have analyzed by thermal ionization mass spectrometry (TIMS, University of Geneva, 1 external reproducibility <7 ppm) 17 new conodont samples from Tethyan sections and one from British Columbia terrains, straddling the NRB. Our results highlight a negative shift in Sr isotopic ratio from 0.70826 to 0.70774, in correspondence of the first appearance of Misikella posthernsteini at the base of the Rhaetian, in good agreement with the drop already observed by Korte et al. (2003). Following the new biostratigraphic calibrations, we suggest to consider the negative Sr isotopic shift as a potential global geochemical marker to identify the base of the Rhaetian Stage. References Giordano et al., 2010. New biostratigraphic constraints for the Norian/Rhaetian boundary: data from Lagonegro Basin, Southern Apennines, Italy. Lethaia, in press. Korte et al., 2003. Strontium isotope evolution of Late Permian and Triassic seawater. Geochimica et Cosmochimica Acta 67, 47-62. McArthur, 1998. Strontium

  7. Half-Baked Logo Microworlds as Boundary Objects in Integrated Design

    Directory of Open Access Journals (Sweden)

    Chronis KYNIGOS

    2007-10-01

    Full Text Available The paper addresses the problem of fragmentation of the communities involved in the design of digital media for education. It draws on the experience gained at the Educational Technology Lab in the design of Logo-based microworlds with three different platforms respectively based on component computing, 3D game engines and 3D navigation with a GIS. In this paper I use the term half-baked to describe a microworld which is explicitly designed to engage its users with changing it as the main aspect of their activity. I discuss this kind of microworld as a tool for integrated design involving people with diverse expertise and/or roles to communicate. These kinds of microworlds implicitly exist within the community, but they can be explicitly designed mediated and put to use in the role of facilitators for integrated design and development to enable a growing communication amongst researchers, technicians, teachers and students. A template for presenting microworlds which was constructed through the experience with four such integrated communities is used to describe for each respective case the design principles, the affordances, the histories of development and the variety of emergent microworlds.

  8. A Robust Multi-Scale Field-Only Formulation of Electromagnetic Scattering

    CERN Document Server

    Sun, Qiang; Chan, Derek Y C

    2016-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric, E and magnetic, H fields and with the scalar functions (r*E) and (r*H), the problem is cast as solving a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for E and H rather than working with surface currents as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero frequency or long wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically ...

  9. Control of Directional Macromolecular Trafficking Across Specific Cellular Boundaries: A Key to Integrative Plant Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There is now solid evidence that cell-to-cell trafficking of certain proteins and RNAs plays a critical role in trans-cellular regulation of gene expression to coordinate cellular differentiation and development. Such trafficking also is critical for viral infection and plant defense. The mechanisms of trafficking remain poorly understood. Although some proteins may move between cells by diffusion, many proteins and RNAs move in a highly regulated fashion. Regulation is likely achieved through interactions between distinct protein or RNA motifs and cellular factors. Some motifs and factors have been identified. One of the major focuses for future studies is to identify all motifs and their cognate factors and further elucidate their roles in trafficking between specific cells. With increasing information from such studies, we should be able to develop an understanding of the mechanisms that regulate trafficking of various proteins and RNAs across all and specific cellular boundaries. On the basis of such mechanistic knowledge, we can further investigate how the trafficking machinery has evolved to regulate developmental and physiological processes in a plant, how pathogens have co-evolved to use this machinery for systemic spread in a plant, and how plants use this machinery for counterdefense.

  10. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements.

  11. Four formulations of noncommutative quantum mechanics

    CERN Document Server

    Gouba, Laure

    2016-01-01

    Four formulations of noncommutative quantum mechanics are reviewed. These are the canonical, path-integral, Weyl-Wigner and systematic formulations. The four formulations are charaterized by a deformed Heisenberg algebra but differ in mathematical and conceptual overview.

  12. Discovering Plate Boundaries in Data-integrated Environments: Preservice Teachers' Conceptualization and Implementation of Scientific Practices

    Science.gov (United States)

    Sezen-Barrie, Asli; Moore, Joel; Roig, Cara E.

    2015-08-01

    Drawn from the norms and rules of their fields, scientists use variety of practices, such as asking questions and arguing based on evidence, to engage in research that will contribute to our understanding of Earth and beyond. In this study, we explore how preservice teachers' learn to teach scientific practices while teaching plate tectonic theory. In particular, our aim is to observe which scientific practices preservice teachers use while teaching an earth science unit, how do they integrate these practices into their lessons, and what challenges do they face during their first time teaching of an earth science content area integrated with scientific practices. The study is designed as a qualitative, exploratory case study of seven preservice teachers while they were learning to teach plate tectonic theory to a group of middle school students. The data were driven from the video records and artifacts of the preservice teachers' learning and teaching processes as well as written reflections on the teaching. Intertextual discourse analysis was used to understand what scientific practices preservice teachers choose to integrate into their teaching experience. Our results showed that preservice teachers chose to focus on four aspects of scientific practices: (1) employing historical understanding of how the theory emerged, (2) encouraging the use of evidence to build up a theory, (3) observation and interpretation of data maps, and (4) collaborative practices in making up the theory. For each of these practices, we also looked at the common challenges faced by preservice teachers by using constant comparative analysis. We observed the practices that preservice teachers decided to use and the challenges they faced, which were determined by what might have come as in their personal history as learners. Therefore, in order to strengthen preservice teachers' background, college courses should be arranged to teach important scientific ideas through scientific practices

  13. Boundary Element Method with Non—overlapping Domain Decomposition for Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    ZHUJialin; ZHANGTaiping

    2002-01-01

    A boundary element method based on non-overlapping domain decomposition method to solve the time-dependent diffusion equations is presented.The time-dependent fundamental solution is used in the formulation of boundary integrals and the time integratioin process always restarts from the initial time condition.The process of replacing the interface values,which needs a summation of boundary integrals related to the boundary values at previous time steps can be treated in parallel parallel iterative procedure,Numerical experiments demonstrate that the implementation of the present alogrithm is efficient.

  14. Conforming Discretizations of Boundary Element Solutions of the Electroencephalography Forward Problem

    CERN Document Server

    Rahmouni, Lyes; Cools, Kristof; Andriulli, Francesco P

    2016-01-01

    In this paper we present a new discretization strategy for the boundary element formulation of the Electroencephalography (EEG) forward problem. Boundary integral formulations, classically solved with the Boundary Element Method (BEM), are widely used in high resolution EEG imaging because of their recognized advantages in several real case scenarios. Unfortunately however, it is widely reported that the accuracy of standard BEM schemes is limited, especially when the current source density is dipolar and its location approaches one of the brain boundary surfaces. This is a particularly limiting problem given that during an high-resolution EEG imaging procedure, several EEG forward problem solutions are required for which the source currents are near or on top of a boundary surface. This work will first present an analysis of standardly discretized EEG forward problems, reporting on a theoretical issue of some of the formulations that have been used so far in the community. We report on the fact that several ...

  15. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    This article builds on the results obtained in the so-called Blurring Boundaries project which was undertaken at the Law Department, Copenhagen Business School, in the period from 2007 to 2009. It looks at the sustainability of the Danish welfare state in an EU law context and on the integration ...

  16. Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    . It consists of a fuel cell stack, a fuel processing subsystem, heat exchangers, and balance-of-plant components. The optimization methodology involves system optimization attempting to maximize the net electrical efficiency, and then by use of a mixed integer nonlinear programming (MINLP) problem formulation......, the heat exchange network (HEN) annual cost is minimized. The results show the high potential of the proposed model since high efficiencies are accomplished. The net electrical efficiency and total system efficiency, based on lower heating value (LHV), are 35.2% and 91.1%, respectively. The minimized total...

  17. Fractional Extensions of some Boundary Value Problems in Oil Strata

    Indian Academy of Sciences (India)

    Mridula Garg; Alka Rao

    2007-05-01

    In the present paper, we solve three boundary value problems related to the temperature field in oil strata - the fractional extensions of the incomplete lumped formulation and lumped formulation in the linear case and the fractional generalization of the incomplete lumped formulation in the radial case. By using the Caputo differintegral operator and the Laplace transform, the solutions are obtained in integral forms where the integrand is expressed in terms of the convolution of some auxiliary functions of Wright function type. A generalization of the Laplace transform convolution theorem, known as Efros’ theorem is widely used.

  18. Sensitive dependence of the coefficient of variation of interspike intervals on the lower boundary of membrane potential for the leaky integrate-and-fire neuron model.

    Science.gov (United States)

    Inoue, Junko; Doi, Shinji

    2007-01-01

    After the report of Softky and Koch [Softky, W.R., Koch, C., 1993. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334-350], leaky integrate-and-fire models have been investigated to explain high coefficient of variation (CV) of interspike intervals (ISIs) at high firing rates observed in the cortex. The purpose of this paper is to study the effect of the position of a lower boundary of membrane potential on the possible value of CV of ISIs based on the diffusional leaky integrate-and-fire models with and without reversal potentials. Our result shows that the irregularity of ISIs for the diffusional leaky integrate-and-fire neuron significantly changes by imposing a lower boundary of membrane potential, which suggests the importance of the position of the lower boundary as well as that of the firing threshold when we study the statistical properties of leaky integrate-and-fire neuron models. It is worth pointing out that the mean-CV plot of ISIs for the diffusional leaky integrate-and-fire neuron with reversal potentials shows a close similarity to the experimental result obtained in Softky and Koch [Softky, W.R., Koch, C., 1993. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334-350].

  19. The NURBS curves in modelling the shape of the boundary in the parametric integral equations systems for solving the Laplace equation

    Science.gov (United States)

    Zieniuk, Eugeniusz; Kapturczak, Marta; Sawicki, Dominik

    2016-06-01

    In solving of boundary value problems the shapes of the boundary can be modelled by the curves widely used in computer graphics. In parametric integral equations system (PIES) such curves are directly included into the mathematical formalism. Its simplify the way of definition and modification of the shape of the boundary. Until now in PIES the B-spline, Bézier and Hermite curves were used. Recent developments in the computer graphics paid our attention, therefore we implemented in PIES possibility of defining the shape of boundary using the NURBS curves. The curves will allow us to modeling different shapes more precisely. In this paper we will compare PIES solutions (with applied NURBS) with the solutions existing in the literature.

  20. CPV边界积分的对称数值求积法%Numerical Evaluation of CPV Boundary Integrals with Symmetrical Quadrature Schemes

    Institute of Scientific and Technical Information of China (English)

    马杭; 徐凯宇

    2003-01-01

    Stemming from the definition of the Cauchy principal values (CPV) integrals, a newly developed symmetrical quadrature scheme was proposed in the paper for the accurate numerical evaluation of the singular boundary integrals in the sense of CPV encountered in the boundary element method. In the case of inner-element singularities, the CPV integrals could be evaluated in a straightforward way by dividing the element into the symmetrical part and the remainder(s). And in the case of end-singularities, the CPV integrals could be evaluated simply by taking a tangential distance transformation of the integrand after cutting out a symmetrical tiny zone around the singular point. In both cases, the operations are no longer necessary before the numerical implementation, which involves the dull routine work to separate out singularities from the integral kernels. Numerical examples were presented for both the two-and the three-dimensional boundary integrals in elasticity. Comparing the numerical results with those by other approaches demonstrates the feasibility and the effectiveness of the proposed scheme.

  1. On the marine atmospheric boundary layer characteristics over Bay of Bengal and Arabian Sea during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB)

    Indian Academy of Sciences (India)

    Denny P Alappattu; D Bala Subrahamanyam; P K Kunhikrishnan; K M Somayaji; G S Bhat; R Venkatesan; C B S Dutt; A Bagavath Singh; V K Soni; A S Tripathi

    2008-07-01

    Detailed measurements were carried out in the Marine Atmospheric Boundary Layer (MABL) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) which covered both Arabian Sea and Bay of Bengal during March to May 2006. In this paper, we present the meteorological observations made during this campaign. The latitudinal variation of the surface layer turbulent fluxes is also described in detail.

  2. Marketing Mix Formulation for Higher Education: An Integrated Analysis Employing Analytic Hierarchy Process, Cluster Analysis and Correspondence Analysis

    Science.gov (United States)

    Ho, Hsuan-Fu; Hung, Chia-Chi

    2008-01-01

    Purpose: The purpose of this paper is to examine how a graduate institute at National Chiayi University (NCYU), by using a model that integrates analytic hierarchy process, cluster analysis and correspondence analysis, can develop effective marketing strategies. Design/methodology/approach: This is primarily a quantitative study aimed at…

  3. W-extended Kac representations and integrable boundary conditions in the logarithmic minimal models WLM(1,p)

    CERN Document Server

    Rasmussen, Jorgen

    2011-01-01

    We construct new Yang-Baxter integrable boundary conditions in the lattice approach to the logarithmic minimal model WLM(1,p) giving rise to reducible yet indecomposable representations of rank 1 in the continuum scaling limit. We interpret these W-extended Kac representations as finitely-generated W-extended Feigin-Fuchs modules over the triplet W-algebra W(p). The W-extended fusion rules of these representations are inferred from the recently conjectured Virasoro fusion rules of the Kac representations in the underlying logarithmic minimal model LM(1,p). We also introduce the modules contragredient to the W-extended Kac modules and work out the correspondingly-extended fusion algebra. Our results are in accordance with the Kazhdan-Lusztig dual of tensor products of modules over the restricted quantum universal enveloping algebra $\\bar{U}_q(sl_2)$ at $q=e^{\\pi i/p}$. Finally, polynomial fusion rings isomorphic with the various fusion algebras are determined, and the corresponding Grothendieck ring of charact...

  4. Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method.

    Science.gov (United States)

    Wang, Jingtao; Liu, Jinxia; Han, Junjie; Guan, Jing

    2013-02-08

    A boundary integral method is developed to investigate the effects of inner droplets and asymmetry of internal structures on rheology of two-dimensional multiple emulsion particles with arbitrary numbers of layers and droplets within each layer. Under a modest extensional flow, the number increment of layers and inner droplets, and the collision among inner droplets subject the particle to stronger shears. In addition, the coalescence or release of inner droplets changes the internal structure of the multiple emulsion particles. Since the rheology of such particles is sensitive to internal structures and their change, modeling them as the core-shell particles to obtain the viscosity equation of a single particle should be modified by introducing the time-dependable volume fraction Φ(t) of the core instead of the fixed Φ. An asymmetric internal structure induces an oriented contact and merging of the outer and inner interface. The start time of the interface merging is controlled by adjusting the viscosity ratio and enhancing the asymmetry, which is promising in the controlled release of inner droplets through hydrodynamics for targeted drug delivery.

  5. A STUDY ON THE WEIGHT FUNCTION OF THE MOVING LEAST SQUARE APPROXIMATION IN THE LOCAL BOUNDARY INTEGRAL EQUATION METHOD

    Institute of Scientific and Technical Information of China (English)

    LongShuyao; HuDe'an

    2003-01-01

    The meshless method is a new numerical technique presented in recent years .It uses the moving least square (MLS) approximation as a shape function . The smoothness of the MLS approximation is determined by that of the basic function and of the weight function, and is mainly determined by that of the weight function. Therefore, the weight function greatly affects the accuracy of results obtained. Different kinds of weight functions, such as the spline function, the Gauss function and so on, are proposed recently by many researchers. In the present work, the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method. The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed. Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and a in Gauss and exponential weight functions are in the range of reasonable values, respectively, and the higher the smoothness of the weight function, the better the features of the solutions.

  6. Study of the influence of morphology and strength of interphase boundaries on the integral mechanical properties of NiCr-TiC composite

    Science.gov (United States)

    Eremina, Galina M.; Smolin, Alexey Yu.; Shilko, Evgeny V.; Psakhie, Sergey G.

    2016-11-01

    Sintered metal-ceramic materials are characterized by high mechanical and tribological properties. A key element of the internal structure of the metal-ceramic composites which have an important, and in many cases, a decisive influence on the integral mechanical properties of these materials is the interphase boundary. In this paper, based on numerical simulation we show the influence of morphology and strength properties of interfaces for integral mechanical properties of the dispersion-reinforced composite NiCr-TiC (50 : 50). Computer simulation results indicate that the phase boundary significantly contributes to the integral mechanical characteristics of a composite material and to the nature of the initiation and development of cracks.

  7. Integrable boundaries in AdS/CFT: revisiting the Z=0 giant graviton and D7-brane

    CERN Document Server

    de Leeuw, Marius

    2012-01-01

    We consider the worldsheet boundary scattering and the corresponding boundary algebras for the Z=0 giant graviton and the Z=0 D7-brane in the AdS/CFT correspondence. We consider two approaches to the boundary scattering, the usual one governed by (generalized) twisted Yangians and the q-deformed model of these boundaries governed by quantum affine coideal subalgebras. We show that the q-deformed approach leads to boundary algebras that are of a much more compact form than the corresponding twisted Yangians, and thus are favourable to use for explicit calculations. We obtain the q-deformed reflection matrices for both boundaries which in the q\\rightarrow1 limit specialize to the ones obtained using twisted Yangians.

  8. A reduced-order integral formulation to account for the finite size effect of isotropic square panels using the transfer matrix method.

    Science.gov (United States)

    Bonfiglio, Paolo; Pompoli, Francesco; Lionti, Riccardo

    2016-04-01

    The transfer matrix method is a well-established prediction tool for the simulation of sound transmission loss and the sound absorption coefficient of flat multilayer systems. Much research has been dedicated to enhancing the accuracy of the method by introducing a finite size effect of the structure to be simulated. The aim of this paper is to present a reduced-order integral formulation to predict radiation efficiency and radiation impedance for a panel with equal lateral dimensions. The results are presented and discussed for different materials in terms of radiation efficiency, sound transmission loss, and the sound absorption coefficient. Finally, the application of the proposed methodology for rectangular multilayer systems is also investigated and validated against experimental data.

  9. Biomimetic aqueous-core lipid nanoballoons integrating a multiple emulsion formulation: a suitable housing system for viable lytic bacteriophages.

    Science.gov (United States)

    Balcão, Victor M; Glasser, Cássia A; Chaud, Marco V; del Fiol, Fernando S; Tubino, Matthieu; Vila, Marta M D C

    2014-11-01

    The emergence of antibiotic-resistant bacterial strains and the weak penetration of antibiotics into bacterial biofilms put an emphasis in the need for safe and effective alternatives for antimicrobial treatments. The application of strictly lytic bacteriophages (or phages) has been proposed as an alternative (or complement) to conventional antibiotics, allowing release of the natural predators of bacteria directly to the site of infection. In the present research effort, production of bacteriophage derivatives (starting from lytic phage particle isolates), encompassing full stabilization of their three-dimensional structure, has been attempted via housing said bacteriophage particles within lipid nanovesicles integrating a multiple water-in-oil-in-water (W/O/W) emulsion. As a proof-of-concept for the aforementioned strategy, bacteriophage particles with broad lytic spectrum were entrapped within the aqueous core of lipid nanoballoons integrating a W/O/W multiple emulsion. Long-term storage of the multiple emulsions produced did not lead to leaching of phage particles, thus proving the effectiveness of the encapsulation procedure.

  10. Assessment of strategy formulation

    DEFF Research Database (Denmark)

    Acur, Nuran; Englyst, Linda

    2006-01-01

    . Practical implications – The integration of three different strategy assessment approaches has been made to obtain a holistic, multi-perspective reflection on strategy formulation. Such reflection is assumed to enable managers to proactively evaluate the potential outcome and performance of their chosen......Purpose – Today, industrial firms need to cope with competitive challenges related to innovation, dynamic responses, knowledge sharing, etc. by means of effective and dynamic strategy formulation. In light of these challenges, the purpose of the paper is to present and evaluate an assessment tool...... for strategy formulation processes that ensures high quality in process and outcome. Design/methodology/approach – A literature review was conducted to identify success criteria for strategy formulation processes. Then, a simple questionnaire and assessment tool was developed and used to test the validity...

  11. Investigating Species Boundaries within the Hard Coral Genus Goniopora (Cnidaria, Scleractinia) from the Red Sea Using an Integrative Morphomolecular Approach

    KAUST Repository

    Terraneo, Tullia Isotta

    2015-12-01

    In the present study the species boundaries of the scleractinian coral genus Goniopora from the Saudi Arabian Red Sea were investigated. An integrated morpho-molecular approach was used to better clarify the complex scenario derived from traditional classification efforts based on skeletal morphology. Traditional taxonomy of this genus considers skeletal morphology first and polyp morphology as a secondary discriminating character. This leads to potential complication due to plasticity in skeletal features within a species. To address this issue, molecular analyses of evolutionary relationships between nine traditional morphospecies of Goniopora from the Red Sea were performed and were used to re-evaluate the informativeness of macromorphological and micromorphological features. Between four and six putative molecular lineages were identified within Goniopora samples from the Saudi Arabian Red Sea on the basis of four molecular markers: the mitochondrial intergenic spacer between Cytochrome b and the NADH dehydrogenase subunit 2, the entire nuclear ribosomal internal transcribed spacer region, the ATP synthase subunit β gene, and a portion of the Calmodulin gene. The results were strongly corroborated by three distinct analyses of species delimitation. Subsequent analyses of micromorphological and microstructural skeletal features identified the presence of distinctive characters in each of the molecular clades. Unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. The proposed re-organization of Goniopora will resolve several taxonomic problems in this genus while reconciling molecular and morphological evidence. Reliable species-level identification of Goniopora spp. can be achieved with polyp morphology under the proposed revision.

  12. An inverse problem by boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Tran-Cong, T.; Nguyen-Thien, T. [University of Southern Queensland, Toowoomba, QLD (Australia); Graham, A.L. [Los Alamos National Lab., NM (United States)

    1996-02-01

    Boundary Element Methods (BEM) have been established as useful and powerful tools in a wide range of engineering applications, e.g. Brebbia et al. In this paper, we report a particular three dimensional implementation of a direct boundary integral equation (BIE) formulation and its application to numerical simulations of practical polymer processing operations. In particular, we will focus on the application of the present boundary element technology to simulate an inverse problem in plastics processing.by extrusion. The task is to design profile extrusion dies for plastics. The problem is highly non-linear due to material viscoelastic behaviours as well as unknown free surface conditions. As an example, the technique is shown to be effective in obtaining the die profiles corresponding to a square viscoelastic extrudate under different processing conditions. To further illustrate the capability of the method, examples of other non-trivial extrudate profiles and processing conditions are also given.

  13. Existence and Uniqueness of Generalized Solutions to a Telegraph Equation with an Integral Boundary Condition via Galerkin's Method

    Directory of Open Access Journals (Sweden)

    Assia Guezane-Lakoud

    2011-01-01

    Full Text Available We consider a telegraph equation with nonlocal boundary conditions, and using the application of Galerkin's method we established the existence and uniqueness of a generalized solution.

  14. Riccati transfer matrix method combined with Newmark acceleration formulation integration for analysing sliding bearings and rotor system%滑动轴承-转子系统 Riccati-Newmark 加速度传递矩阵法

    Institute of Scientific and Technical Information of China (English)

    毛文贵; 韩旭; 刘桂萍

    2015-01-01

    In order to eliminate the numerical instability of transfer matrix method and to build a transfer matrix of nonlinear elements(bearings),the Riccati transfer matrix method was extended to the transient analysis of nonlinear rotor-bearing systems.In the method,the transfer matrix was obtained with the aid of the Newmark acceleration formulation,the deflections and velocities at the stations containing nonlinear element (bearings)were predicted by Taylor series,and then the deflections,velocities and accelerations at all stations were solved by using the Riccati transfer matrix method combined with the Newmark acceleration formulation integration according to the boundary conditions.An example of single disc rotor system was presented and the results were compared with those by a transient analysis considering linear perturbation and linear oil film force to verify the effectiveness of the proposed method.%为克服传递矩阵法数值不稳定及非线性瞬态响应分析中滑动轴承矩阵建立困难问题,提出 Riccati-New-mark 加速度传递矩阵法。借助 Newmark 加速度法建立传递矩阵,采用 Taylor 级数预估滑动轴承轴心下一时刻位移、速度建立滑动轴承矩阵;据边界条件用 Riccati 传递矩阵法求滑动轴承-转子系统非线性瞬态响应,提高数值稳定性。以单圆盘转子系统为例,与传统轴颈下一时刻位移、速度近似线性扰动处理的瞬态响应对比分析,验证此方法的有效性;讨论不同转速下线性、非线性油膜力的瞬态轨迹。

  15. INTEGRATED STRATIGRAPHY FROM THE CONTRADA FORNAZZO SECTION, MONTE INICI, WESTERN SICILY, ITALY: PROPOSED G.S.S.P. FOR THE BASAL BOUNDARY OF THE TITHONIAN STAGE

    Directory of Open Access Journals (Sweden)

    GIULIO PAVIA

    2004-03-01

    Full Text Available This paper deals with a definition of the lower boundary stratotype of the Tithonian Stage in the Upper Jurassic succession of Monte Inici, Western Sicily. The upper member of the Rosso Ammonitico Fm. is 27 m thick and shows a typical nodular-calcareous lithofacies; its lower beds have been sampled for biostratigraphic and paleomagnetic purposes. Though the succession is affected by high stratigraphic condensation, the resulting hiatuses have been shown to be below biochronological resolution and thus do not hinder any biostratigraphic definition. The biostratigraphic analysis has been based on the rich ammonite assemblages in which the common genus Hybonoticeras is the index-key for characterizing the Kimmeridgian-Tithonian boundary. Four ammonite biozones have been identified; the basal Tithonian one is defined by the assemblage of Hybonoticeras gr. hybonotum and Haploceras staszycii. The recorded calcareous nannofossil bioevents allow recognition of the V. stradneri and C. mexicana Zones, whose boundary is located a little below the identified Tithonian lower boundary. The paleomagnetic record shows normal polarity in the S. darwini/V. albertinum Zone and mainly reverse polarity in the H. beckeri and H. hybonotum Zones, with three minor normal polarity intervals; the lower boundary of the Tithonian falls in the oldest of these intervals. The integrated multidisciplinary stratigraphic information gathered from the Contrada Fornazzo section defines the lower boundary of the H. hybonotum Zone at the base of Bed 110, and supplies elements of chrono-correlation sufficient to regard this section as a possible G.S.S.P. of the Tithonian Stage.

  16. On the modeling of narrow gaps using the standard boundary element method

    DEFF Research Database (Denmark)

    Cutanda Henríquez, Vicente; Juhl, Peter Møller; Jacobsen, Finn

    2001-01-01

    . This paper makes use of a standard axisymmetric Helmholtz integral equation formulation and its boundary element method (BEM) implementation to study the behavior of the method on two test cases: a thin rigid disk of variable thickness and two rigid cylinders separated by a gap of variable width. Both...

  17. Hamiltonian, path integral and BRST formulations of large N scalar QCD{sub 2} on the light-front and spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kulshreshtha, Usha, E-mail: ushakulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics, Kirori Mal College, University of Delhi, 110007, Delhi (India); Kulshreshtha, Daya Shankar, E-mail: dskulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics and Astrophysics, University of Delhi, 110007, Delhi (India); Vary, James P., E-mail: jvary@iastate.edu [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States)

    2015-04-28

    Recently Grinstein, Jora, and Polosa have studied a theory of large-N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe–Salpeter equation describing the discrete spectrum of quark–antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark–antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front ’t Hooft gauge.

  18. Hamiltonian, path integral and BRST formulations of large N scalar QCD{sub 2} on the light-front and spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kulshreshtha, Usha [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics, Kirori Mal College, Delhi (India); Kulshreshtha, Daya Shankar [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics and Astrophysics, Delhi (India); Vary, James P. [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States)

    2015-04-01

    Recently Grinstein, Jora, and Polosa have studied a theory of large- N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front 't Hooft gauge. (orig.)

  19. Hamiltonian, Path Integral and BRST Formulations of Large N Scalar $QCD_{2}$ on the Light-Front and Spontaneous Symmetry Breaking

    CERN Document Server

    Kulshreshtha, Usha; Vary, James P

    2015-01-01

    Recently Grinstein, Jora, and Polosa have studied a theory of large-$N$ scalar quantum chromodynamics in one-space one-time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of $SU(N)$ and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge-invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as ...

  20. Boundary Conformal Field Theory

    CERN Document Server

    Cardy, J L

    2004-01-01

    Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.

  1. Determination of regional surface heat fluxes over heterogeneous landscapes by integrating satellite remote sensing with boundary layer observations

    NARCIS (Netherlands)

    Ma, Y.M.

    2006-01-01

    Keywords: satellite remote sensing, surface layer observations, atmospheric boundary layer observations, land surface variables, vegetation variables, land surface heat fluxes, validation, heterogeneous landscape, GAME/Tibet

  2. Existence and uniqueness theorems for impulsive fractional differential equations with the two-point and integral boundary conditions.

    Science.gov (United States)

    Mardanov, M J; Mahmudov, N I; Sharifov, Y A

    2014-01-01

    We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.

  3. Nanoethics and the breaching of boundaries: a heuristic for going from encouragement to a fuller integration of ethical, legal and social issues and science : commentary on: "Adding to the mix: integrating ELSI into a National Nanoscale Science and Technology Center".

    Science.gov (United States)

    Tuma, Julio R

    2011-12-01

    The intersection of ELSI and science forms a complicated nexus yet their integration is an important goal both for society and for the successful advancement of science. In what follows, I present a heuristic that makes boundary identification and crossing an important tool in the discovery of potential areas of ethical, legal, and social concern in science. A dynamic and iterative application of the heuristic can lead towards a fuller integration and appreciation of the concerns of ELSI and of science from both sides of the divide.

  4. Measurement and analysis of grain boundary grooving by volume diffusion

    Science.gov (United States)

    Hardy, S. C.; Mcfadden, G. B.; Coriell, S. R.; Voorhees, P. W.; Sekerka, R. F.

    1991-01-01

    Experimental measurements of isothermal grain boundary grooving by volume diffusion are carried out for Sn bicrystals in the Sn-Pb system near the eutectic temperature. The dimensions of the groove increase with a temporal exponent of 1/3, and measurement of the associated rate constant allows the determination of the product of the liquid diffusion coefficient D and the capillarity length Gamma associated with the interfacial free energy of the crystal-melt interface. The small-slope theory of Mullins is generalized to the entire range of dihedral angles by using a boundary integral formulation of the associated free boundary problem, and excellent agreement with experimental groove shapes is obtained. By using the diffusivity measured by Jordon and Hunt, the present measured values of Gamma are found to agree to within 5 percent with the values obtained from experiments by Gunduz and Hunt on grain boundary grooving in a temperature gradient.

  5. Boundary crisis and suppression of Fermi acceleration in a dissipative two-dimensional non-integrable time-dependent billiard

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diego F.M., E-mail: diegofregolente@gmail.co [Departamento de Fisica, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista, Av. 24A, 1515 Bela Vista, CEP, 13506-900 Rio Claro, SP (Brazil); Leonel, Edson D., E-mail: edleonel@rc.unesp.b [Departamento de Estatistica, Matematica Aplicada e Computacao, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista, Av. 24A, 1515 Bela Vista, CEP, 13506-900 Rio Claro, SP (Brazil)

    2010-07-05

    Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards.

  6. On fictitious domain formulations for Maxwell's equations

    DEFF Research Database (Denmark)

    Dahmen, W.; Jensen, Torben Klint; Urban, K.

    2003-01-01

    We consider fictitious domain-Lagrange multiplier formulations for variational problems in the space H(curl: Omega) derived from Maxwell's equations. Boundary conditions and the divergence constraint are imposed weakly by using Lagrange multipliers. Both the time dependent and time harmonic...... formulations of the Maxwell's equations are considered. and we derive well-posed formulations for both cases. The variational problem that arises can be discretized by functions that do not satisfy an a-priori divergence constraint....

  7. $\\mathcal{N}=2$ supersymmetric field theories on 3-manifolds with A-type boundaries

    CERN Document Server

    Aprile, Francesco

    2016-01-01

    General half-BPS A-type boundary conditions are formulated for N=2 supersymmetric field theories on compact 3-manifolds with boundary. We observe that under suitable conditions manifolds of the real A-type admitting two complex supersymmetries (related by charge conjugation) possess, besides a contact structure, a natural integrable toric foliation. A boundary, or a general co-dimension-1 defect, can be inserted along any leaf of this preferred foliation to produce manifolds with boundary that have the topology of a solid torus. We show that supersymmetric field theories on such manifolds can be endowed with half-BPS A-type boundary conditions. We specify the natural curved space generalization of the A-type projection of bulk supersymmetries and analyze the resulting A-type boundary conditions in generic 3d non-linear sigma models and YM/CS-matter theories.

  8. Boundary conditions for the gravitational field

    Science.gov (United States)

    Winicour, Jeffrey

    2012-06-01

    A review of the treatment of boundaries in general relativity is presented with the emphasis on application to the formulations of Einstein's equations used in numerical relativity. At present, it is known how to treat boundaries in the harmonic formulation of Einstein's equations and a tetrad formulation of the Einstein-Bianchi system. However, a universal approach valid for other formulations is not in hand. In particular, there is no satisfactory boundary theory for the 3+1 formulations which have been highly successful in binary black hole simulation. I discuss the underlying problems that make the initial-boundary-value problem much more complicated than the Cauchy problem. I review the progress that has been made and the important open questions that remain. Science is a differential equation. Religion is a boundary condition. (Alan Turing, quoted in J D Barrow, ‘Theories of Everything’)

  9. Eulerian Formulation of Spatially Constrained Elastic Rods

    Science.gov (United States)

    Huynen, Alexandre

    Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applications, the rod deflection is restricted by an external constraint and a significant part of the elastic body is in contact with a stiff constraining surface. The research work presented in this doctoral dissertation formulates a computational model for the solution of elastic rods constrained inside or around frictionless tube-like surfaces. The segmentation strategy adopted to cope with this complex class of problems consists in sequencing the global problem into, comparatively simpler, elementary problems either in continuous contact with the constraint or contact-free between their extremities. Within the conventional Lagrangian formulation of elastic rods, this approach is however associated with two major drawbacks. First, the boundary conditions specifying the locations of the rod centerline at both extremities of each elementary problem lead to the establishment of isoperimetric constraints, i.e., integral constraints on the unknown length of the rod. Second, the assessment of the unilateral contact condition requires, in principle, the comparison of two curves parametrized by distinct curvilinear coordinates, viz. the rod centerline and the constraint axis. Both conspire to burden the computations associated with the method. To streamline the solution along the elementary problems and rationalize the assessment of the unilateral contact condition, the rod governing equations are reformulated within the Eulerian framework of the constraint. The methodical exploration of both types of elementary problems leads to specific formulations of the rod governing equations that stress the profound connection between the mechanics of the rod and the geometry of the constraint surface. The proposed Eulerian reformulation, which restates the rod local equilibrium in terms of the curvilinear coordinate associated with the constraint axis, describes the rod deformed configuration

  10. Robust multiscale field-only formulation of electromagnetic scattering

    Science.gov (United States)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2017-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission

  11. Spherical and plane integral operators for PDEs construction, analysis, and applications

    CERN Document Server

    Sabelfeld, Karl K

    2013-01-01

    The book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators.

  12. A finite-difference outer layer and integral inner layer method for the solution of the turbulent boundary layer equations

    Science.gov (United States)

    Barnwell, R. W.; Dejarnette, F. R.; Wahls, R. A.

    1987-01-01

    A new turbulent boundary-layer method is developed which models the inner region with the law of the wall while the outer region uses Clauser's eddy viscosity in Matsuno's finite-difference method. The match point between the inner and outer regions as well as the wall shear stress are determined at each marching step during the computation. Results obtained for incompressible, two-dimensional flow over flat plates and ellipses are compared with solutions from a baseline method which uses a finite-difference method for the entire boundary layer. Since the present method used the finite-difference method in the outer region only, the number of grid points required was about half that needed for the baseline method. Accurate displacement and momentum thicknesses were predicted for all cases. Skin friction was predicted well for the flat plate, but the accuracy decreased significantly for the ellipses. Adding a wake functions to the law of the wall allows some of the pressure gradient effect to be taken into account thereby increasing the accuracy of the method.

  13. A corrected formulation of the Multilayer Model (MLM) for inferring gaseous dry deposition to vegetated surfaces

    Science.gov (United States)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-08-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (<3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  14. Integrating canopy and large-scale effects in the convective boundary-layer dynamics during the CHATS experiment

    Science.gov (United States)

    Shapkalijevski, Metodija M.; Ouwersloot, Huug G.; Moene, Arnold F.; Vilà-Guerau de Arrellano, Jordi

    2017-02-01

    By characterizing the dynamics of a convective boundary layer above a relatively sparse and uniform orchard canopy, we investigated the impact of the roughness-sublayer (RSL) representation on the predicted diurnal variability of surface fluxes and state variables. Our approach combined numerical experiments, using an atmospheric mixed-layer model including a land-surface-vegetation representation, and measurements from the Canopy Horizontal Array Turbulence Study (CHATS) field experiment near Dixon, California. The RSL is parameterized using an additional factor in the standard Monin-Obukhov similarity theory flux-profile relationships that takes into account the canopy influence on the atmospheric flow. We selected a representative case characterized by southerly wind conditions to ensure well-developed RSL over the orchard canopy. We then investigated the sensitivity of the diurnal variability of the boundary-layer dynamics to the changes in the RSL key scales, the canopy adjustment length scale, Lc, and the β = u*/|U| ratio at the top of the canopy due to their stability and dependence on canopy structure. We found that the inclusion of the RSL parameterization resulted in improved prediction of the diurnal evolution of the near-surface mean quantities (e.g. up to 50 % for the wind velocity) and transfer (drag) coefficients. We found relatively insignificant effects on the modelled surface fluxes (e.g. up to 5 % for the friction velocity, while 3 % for the sensible and latent heat), which is due to the compensating effect between the mean gradients and the drag coefficients, both of which are largely affected by the RSL parameterization. When varying Lc (from 10 to 20 m) and β (from 0.25 to 0.4 m), based on observational evidence, the predicted friction velocity is found to vary by up to 25 % and the modelled surface-energy fluxes (sensible heat, SH, and latent heat of evaporation, LE) vary up to 2 and 9 %. Consequently, the boundary-layer height varies up to

  15. Towards an Integral Meta-Studies: Describing and Transcending Boundaries in the Development of Big Picture Science

    Directory of Open Access Journals (Sweden)

    Mark G. Edwards

    2013-06-01

    Full Text Available We are entering a period in human civilisation when we will either act globally to establish a sustainable and sustaining network of world societies or be enmired, for the foreseeable future, in a regressive cycle of ever-deepening global crises. We will need to develop global forms of big picture science that possess institutionalised capacities for carrying out meta-level research and practice. It will be global in that such research cannot be undertaken in isolation from practical global concerns and global social movements. In this paper I propose a general schema, called integral meta-studies, that describes some of the characteristics of this meta-level science. Integral here refers to the long tradition of scientific and philosophic endeavours to develop integrative models and methods. Given the disastrous outcomes of some of the totalising theories of the nineteenth century, the subsequent focus on ideas of the middle-range is entirely understandable. But middle-range theory will not resolve global problems. A more reflexive and wider conceptual vision is required. Global problems of the scale that we currently face require a response that can navigate through theoretical pluralism and not be swallowed up by it. In saying that, twenty-first-century metatheories will need to be different from the monistic, grand theories of the past. They will have to be integrative rather than totalising, pluralistic rather than monistic, based on science and not only on philosophy, methodical rather than idiosyncratic, find inspiration in theories, methods and interpretive frameworks from the edge more than from the centre and provide means for inventing new ways of understanding as much as new technologies. Integrative meta-studies describes an open system of knowledge acquisition that has a place for many forms of scientific inquiry and their respective theories, methods, techniques of analysis and interpretive frameworks. Note: The word

  16. Defining species boundaries in the Merodon avidus complex (Diptera, Syrphidae using integrative taxonomy, with the description of a new species

    Directory of Open Access Journals (Sweden)

    Jelena Ačanski

    2016-10-01

    Full Text Available Several recent studies have detected and described complexes of cryptic and sibling species in the genus Merodon (Diptera, Syrphidae. One representative of these complexes is the Merodon avidus complex that contains four sibling species, which have proven difficult to distinguish using traditional morphological characters. In the present study, we use two geometric morphometric approaches, as well as molecular characters of the 5’-end of the mtDNA COI gene, to delimit sibling taxa. Analyses based on these data were used to strengthen species boundaries within the complex, and to validate the status of a previously-recognized cryptic taxon from Lesvos Island (Greece, here described as Merodon megavidus Vujić & Radenković sp. nov. Geometric morphometric results of both wing and surstylus shape confirm the present classification for three sibling species-M. avidus (Rossi, 1790, M. moenium Wiedemann in Meigen, 1822 and M. ibericus Vujić, 2015-and, importantly, clearly discriminate the newly-described taxon Merodon megavidus sp. nov. In addition to our geometric morphometric results, supporting characters were obtained from molecular analyses of mtDNA COI sequences, which clearly differentiated M. megavidus sp. nov. from the other members of the M. avidus complex. Molecular analyses revealed that the earliest divergence of M. ibericus occurred around 800 ky BP, while the most recent separation happened between M. avidus and M. moenium around 87 ky BP.

  17. Solvability of boundary value problems with Riemann-Stieltjes Δ-integral conditions for second-order dynamic equations on time scales at resonance

    Directory of Open Access Journals (Sweden)

    Li Yongkun

    2011-01-01

    Full Text Available Abstract In this paper, by making use of the coincidence degree theory of Mawhin, the existence of the nontrivial solution for the boundary value problem with Riemann-Stieltjes Δ-integral conditions on time scales at resonance x Δ Δ ( t = f ( t , x ( t , x Δ ( t + e ( t , a . e . t ∈ [ 0 , T ] T , x Δ ( 0 = 0 , x ( T = ∫ 0 T x σ ( s Δ g ( s is established, where f : [ 0 , T ] T × ℝ × ℝ → ℝ satisfies the Carathéodory conditions and e : [ 0 , T ] T → ℝ is a continuous function and g : [ 0 , T ] T → ℝ is an increasing function with ∫ 0 T Δ g ( s = 1 . An example is given to illustrate the main results.

  18. Iterative method for the numerical solution of a system of integral equations for the heat conduction initial boundary value problem

    Science.gov (United States)

    Svetushkov, N. N.

    2016-11-01

    The paper deals with a numerical algorithm to reduce the overall system of integral equations describing the heat transfer process at any geometrically complex area (both twodimensional and three-dimensional), to the iterative solution of a system of independent onedimensional integral equations. This approach has been called "string method" and has been used to solve a number of applications, including the problem of the detonation wave front for the calculation of heat loads in pulse detonation engines. In this approach "the strings" are a set of limited segments parallel to the coordinate axes, into which the whole solving area is divided (similar to the way the strings are arranged in a tennis racket). Unlike other grid methods where often for finding solutions, the values of the desired function in the region located around a specific central point here in each iteration step is determined by the solution throughout the length of the one-dimensional "string", which connects the two end points and set them values and determine the temperature distribution along all the strings in the first step of an iterative procedure.

  19. Boundary sine-Gordon model

    CERN Document Server

    Bajnok, Z; Takács, G

    2002-01-01

    We review our recent results on the on-shell description of sine-Gordon model with integrable boundary conditions. We determined the spectrum of boundary states together with their reflection factors by closing the boundary bootstrap and checked these results against WKB quantization and numerical finite volume spectra obtained from the truncated conformal space approach. The relation between a boundary resonance state and the semiclassical instability of a static classical solution is analyzed in detail.

  20. Fast Domain Partitioning Method for dynamic boundary integral equations applicable to non-planar faults dipping in 3-D elastic half-space

    Science.gov (United States)

    Ando, Ryosuke

    2016-11-01

    The elastodynamic boundary integral equation method (BIEM) in real space and in the temporal domain is an accurate semi-analytical tool to investigate the earthquake rupture dynamics on non-planar faults. However, its heavy computational demand for a historic integral generally increases with a time complexity of O(MN3)for the number of time steps N and elements M due to volume integration in the causality cone. In this study, we introduce an efficient BIEM, termed the `Fast Domain Partitioning Method' (FDPM), which enables us to reduce the computation time to the order of the surface integral, O(MN2), without degrading the accuracy. The memory requirement is also reduced to O(M2) from O(M2N). FDPM uses the physical nature of Green's function for stress to partition the causality cone into the domains of the P and S wave fronts, the domain in-between the P and S wave fronts, and the domain of the static equilibrium, where the latter two domains exhibit simpler dependences on time and/or space. The scalability of this method is demonstrated on the large-scale parallel computing environments of distributed memory systems. It is also shown that FDPM enables an efficient use of memory storage, which makes it possible to reduce computation times to a previously unprecedented level. We thus present FDPM as a powerful tool to break through the current fundamental difficulties in running dynamic simulations of coseismic ruptures and earthquake cycles under realistic conditions of fault geometries.

  1. Effects of a novel entomopathogenic nematode-infected host formulation on cadaver integrity, nematode yield, and suppression of Diaprepes abbreviatus and Aethina tumida.

    Science.gov (United States)

    Shapiro-Ilan, David I; Morales-Ramos, Juan A; Rojas, Maria G; Tedders, Walker L

    2010-02-01

    An alternative approach to applying entomopathogenic nematodes entails the distribution of nematodes in their infected insect hosts. Protection of the infected host from rupturing, and improving ease of handling, may be necessary to facilitate application. In this study our objective was to test the potential of a new method of formulating the infected hosts, i.e., enclosing the infected host in masking tape. Tenebrio molitor L. cadavers infected with Heterorhabditis indica Poinar, Karunakar and David or Steinernema carpocapsae (Weiser) were wrapped in tape using an automatic packaging machine; the machine was developed to reduce labor and to standardize the final product. The effects of the tape formulation on the ability to protect the cadavers from mechanical damage, nematode yield, and pest control efficacy were tested. After exposure to mechanical agitation at 7-d-post-infection, S. carpocapsae cadavers in tape were more resistant to rupture than cadavers without tape, yet H. indica cadavers 7-d-post-infection were not affected by mechanical agitation (with or without tape), nor was either nematode affected when 4-d-old cadavers were tested. Experiments indicated that infective juvenile yield was not affected by the tape formulation. Laboratory experiments were conducted measuring survival of the root weevil, Diaprepes abbreviatus (L.), or the small hive beetle, Aethina tumida Murray, after the application of two H. indica-infected hosts with or without tape per 15 cm pot (filled with soil). A greenhouse experiment was also conducted in a similar manner measuring survival of D. abbreviatus. In all experiments, both the tape and no-tape treatments caused significant reductions in insect survival relative to the control, and no differences were detected between the nematode treatments. Fifteen days post-application, the infected host treatments caused up to 78% control in A. tumida, 91% control in D. abbreviatus in the lab, and 75% in the greenhouse. These

  2. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  3. Nonparallel stability of boundary layers

    Science.gov (United States)

    Nayfeh, Ali H.

    1987-01-01

    The asymptotic formulations of the nonparallel linear stability of incompressible growing boundary layers are critically reviewed. These formulations can be divided into two approaches. The first approach combines a numerical method with either the method of multiple scales, or the method of averaging, of the Wentzel-Kramers-Brillouin (WKB) approximation; all these methods yield the same result. The second approach combined a multi-structure theory with the method of multiple scales. The first approach yields results that are in excellent agreement with all available experimental data, including the growth rates as well as the neutral stability curve. The derivation of the linear stability of the incompressible growing boundary layers is explained.

  4. Three dimensional boundary element solutions for eddy current nondestructive evaluation

    Science.gov (United States)

    Yang, Ming; Song, Jiming; Nakagawa, Norio

    2014-02-01

    The boundary integral equations (BIE) method is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations. It can be applied in many areas of engineering and science including fluid mechanics, acoustics, electromagnetics, and fracture mechanics. The eddy current problem is formulated by the BIE and discretized into matrix equations by the method of moments (MoM) or the boundary element method (BEM). The three dimensional arbitrarily shaped objects are described by a number of triangular patches. The Stratton-Chu formulation is specialized for the conductive medium. The equivalent electric and magnetic surface currents are expanded in terms of Rao-Wilton-Glisson (RWG) vector basis function while the normal component of magnetic field is expanded in terms of the pulse basis function. Also, a low frequency approximation is applied in the external medium. Additionally, we introduce Auld's impedance formulas to calculate impedance variation. There are very good agreements between numerical results and those from theory and/or experiments for a finite cross-section above a wedge.

  5. 曲面单元上超奇性与近超奇性边界积分数值计算的几何变换法%Geometric Conversion Approach for the Numerical Evaluation of Hypersin-gular and Nearly Hypersingular Boundary Integrals over Curved Surface Boundary Elements

    Institute of Scientific and Technical Information of China (English)

    马杭

    2002-01-01

    With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper.The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary in-tegrals encountered in a variety of applications with boundary element method. Based on the conversion, the hypersingularity in theboundary integrals could be lowered by one order, resulting in the simplification of the computer code. Moreover, an integral trans-formation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar co-ordinate system for the nearly hypersingular case. The approach is simple to use, which can be inserted readily to computer code, thusgetting rid of the dull routine deduction of formulae before the numerical implementations, as the expressions of these kernels are ingeneral complicated. The numerical examples were given in three-dimensional elasticity, verifying the effectiveness of the proposedapproach, which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernelsacross the boundary.

  6. An integrated, quality by design (QbD) approach for design, development and optimization of orally disintegrating tablet formulation of carbamazepine.

    Science.gov (United States)

    Mishra, Saurabh M; Rohera, Bhagwan D

    2016-06-27

    The objective of the present study was to design and develop a formulation for orally disintegrating tablets (ODTs) of carbamazepine using quality by design principles. The target product profile (TPP) and quality target product profile (QTPP) of ODTs were identified. Risk assessment was carried out by leveraging prior knowledge and experience to define the criticality of factors based on their impact by Ishikawa fishbone diagram and preliminary hazard analysis tool. Box-Behnken response surface methodology was used to study the effect of critical factors on various attributes of ODTs. The independent factors selected were compression pressure (X1), concentration of sublimating agent (volatile material) (X2), disintegrant concentration (X3) and the responses were tablet crushing strength, tablet porosity, disintegration time, water absorption time, tablet friability and drug dissolution. ANOVA and lack of fit test illustrated that selected independent variables had significant effect on the response variables, and excellent correlation was observed between actual and predicted values. Optimization by desirability function indicated that compression pressure, X1 (1534 lbs), ammonium bicarbonate concentration, X2 (7.68%) and Kollidon(®) CL-SF concentration, X3 (6%) were optimum to prepare ODT formulation of carbamazepine of desired attributes complying with QTPP. Thus, in the present study, a high level of assurance was established for ODT product quality and performance.

  7. An extension of the transpired skin-friction equation to compressible turbulent boundary layers

    Science.gov (United States)

    Silva-Freire, Atila P.

    1988-11-01

    A skin-friction equation for transpired incompressible turbulent boundary layer, proposed in a previous paper (Silva-Freire, 1988), is extended to compressible flow. The expression derived here is simple and gives more consistent results than the momentum-integral equation. The difficulty with the present formulation, however, is that the wake profile parameter due to injection has to be carefully determined in order to obtain good results.

  8. Application of impedance boundary conditions to numerical solution of corrugated circular horns

    DEFF Research Database (Denmark)

    Iskander, K; Shafai, L; Frandsen, Aksel

    1982-01-01

    . This formulation is then used to investigate numerically the radiation from corrugated conical horns by approximating the corrugated surface with anisotropic surface impedances. The method is also used to study the scattering properties of receiver horns. In this case the external load is simulated by an impedance......An integral equation method is used to formulate the problem of scattering by rotationally symmetric horn antennas. The excitation is assumed to be due to an infinitesimal dipole antenna, while the secondary field is obtained by assuming anisotropic impedance boundary conditions on the horn surface...

  9. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  10. Barium titanate particle model inquiry through effective permittivity measurements and boundary integral equation method based simulations of the BaTiO{sub 3}-epoxy resin composite material

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska, S [Ecole Centrale de Lyon, Centre de Genie Electrique de Lyon, CNRS UMR 5005, 69134 Ecully (France); Beroual, A [Ecole Centrale de Lyon, Centre de Genie Electrique de Lyon, CNRS UMR 5005, 69134 Ecully (France); Fleszynski, J [Institute of Fundamental Electrotechnics and Electrotechnology, University of Technology of Wroclaw, Wroclaw (Poland)

    2002-10-21

    The heterogeneous mixture properties depend on its constituents' characteristics. We examine the effective permittivity of a two-phase composite material made of epoxy resin host matrix and barium titanate (BaTiO{sub 3}) filler for different volume fractions in the matrix. The task we undertake consists in finding a model of BaTiO{sub 3} particles through the computer simulations executed in PHI3D-electric field calculating package, based on the resolution of the Laplace equation using boundary integral equation method. With this aim in view we compare the measured results of the effective permittivity of the BaTiO{sub 3}-epoxy resin composite samples with the simulation results for different BaTiO{sub 3} particle geometric models and for the same experimental conditions, with regard to the given volume fraction of the powder in the matrix. The experimental results are obtained through the measurements with an impedance meter in the range of frequencies from 50 Hz to 1 MHz.

  11. Boundary terms of conformal anomaly

    Directory of Open Access Journals (Sweden)

    Sergey N. Solodukhin

    2016-01-01

    Full Text Available We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons–Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  12. Boundary terms of conformal anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr

    2016-01-10

    We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons–Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  13. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)

  14. IT Supporting Strategy Formulation

    NARCIS (Netherlands)

    Achterbergh, J.M.I.M.

    2005-01-01

    This overview approaches information and communication technology (ICT) for competitive intelligence from the perspective of strategy formulation. It provides an ICT architecture for supporting the knowledge processes producing relevant knowledge for strategy formulation. To determine what this arch

  15. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    This article proposes a processual ontology for the emergence of man-made, linear boundaries across northwestern Europe, particularly in the first millennium BC. Over a significant period of time, these boundaries became new ways of organizing the landscape and settlements—a phenomenon that has...... of this phenomenon emerged along equivalent trajectories. At the same time, variation in the regional incorporation of these linear phenomena points toward situation-specific applications and independent development....

  16. Neuromagnetic mismatch field (MMF) dependence on the auditory temporal integration window and the existence of categorical boundaries: comparisons between dissyllabic words and their equivalent tones.

    Science.gov (United States)

    Inouchi, Mayako; Kubota, Mikio; Ohta, Katsuya; Matsushima, Eisuke; Ferrari, Paul; Scovel, Thomas

    2008-09-26

    Previous duration-related auditory mismatch response studies have tested vowels, words, and tones. Recently, the elicitation of strong neuromagnetic mismatch field (MMF) components in response to large (>32%) vowel-duration decrements was clearly observed within dissyllabic words. To date, however, the issues of whether this MMF duration-decrement effect also extends to duration increments, and to what degree these duration decrements and increments are attributed to their corresponding non-speech acoustic properties remainto be resolved. Accordingly, this magnetoencephalographic (MEG) study investigated whether prominent MMF components would be evoked by both duration decrements and increments for dissyllabic word stimuli as well as frequency-band matched tones in order to corroborate the relation between the MMF elicitation and the directions of duration changes in speech and non-speech. Further, the peak latency effectsdepending on stimulus types (words vs. tones) were examined. MEG responses were recorded with a whole-head 148-channel magnetometer, while subjects passively listened to the stimuli presented within an odd-ball paradigm for both shortened duration (180-->100%) and lengthened duration (100-->180%). Prominent MMF components were observed in the shortened and lengthened paradigms for the word stimuli, but only in the shortened paradigm for tones. The MMF peak latency results showed that the words ledtoearlier peak latencies than the tones. These findings suggest that duration lengthening as well as shortening in words produces a salient acoustic MMF response when the divergent point between the long and short durations fallswithin the temporal window ofauditory integration post sound onset (<200 ms), and that theearlier latency of the dissyllabic word stimuli over tones is due to a prominent syllable structure in words which is used to generate temporal categorical boundaries.

  17. A note on the convergence of the direct collocation boundary

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    1998-01-01

    An overview of the literature dealing with convergence of boundary element formulations is presented, and an intuitive account of the results is given. The convergence of an axisymmetric boundary element formulation is studied using linear, quadratic or superparametric elements. It is demonstrate...

  18. Torsion formulation of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lledo, M A; Sommovigo, L, E-mail: Maria.Lledo@ific.uv.e, E-mail: Luca.Sommovigo@mfn.unipmn.i [Departament de Fisica Teorica, Universitat de Valencia, and IFIC (Centro mixto CSIC-UVEG) C/Dr Moliner, 50, E-46100 Burjassot (Valencia) (Spain)

    2010-03-21

    We explain precisely what it means to have a connection with torsion as a solution of the Einstein equations. While locally the theory remains the same, the new formulation allows for topologies that would have been excluded in the standard formulation of gravity. In this formulation it is possible to couple arbitrary torsion to gauge fields without breaking the gauge invariance.

  19. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  20. Indirect boundary element method for three dimensional problems. Analytical solution for contribution to wave field by triangular element; Sanjigen kansetsu kyokai yosoho. Sankakukei yoso no kiyo no kaisekikai

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, T. [Building Research Institute, Tokyo (Japan); Sanchez-Sesma, F. [Universidad National Autonoma de Mexico, (Mexico). Institute de Ingenieria

    1997-05-27

    Formulation is introduced for discretizing a boundary integral equation into an indirect boundary element method for the solution of 3-dimensional topographic problems. Yokoi and Takenaka propose an analytical solution-capable reference solution (solution for the half space elastic body with flat free surface) to problems of topographic response to seismic motion in a 2-dimensional in-plane field. That is to say, they propose a boundary integral equation capable of effectively suppressing the non-physical waves that emerge in the result of computation in the wake of the truncation of the discretized ground surface making use of the wave field in a semi-infinite elastic body with flat free surface. They apply the proposed boundary integral equation discretized into the indirect boundary element method to solve some examples, and succeed in proving its validity. In this report, the equation is expanded to deal with 3-dimensional topographic problems. A problem of a P-wave vertically landing on a flat and free surface is solved by the conventional boundary integral equation and the proposed boundary integral equation, and the solutions are compared with each other. It is found that the new method, different from the conventional one, can delete non-physical waves from the analytical result. 4 figs.

  1. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    ; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects...... and distributive justice at national level....

  2. General theory of spherically symmetric boundary-value problems of the linear transport theory.

    Science.gov (United States)

    Kanal, M.

    1972-01-01

    A general theory of spherically symmetric boundary-value problems of the one-speed neutron transport theory is presented. The formulation is also applicable to the 'gray' problems of radiative transfer. The Green's function for the purely absorbing medium is utilized in obtaining the normal mode expansion of the angular densities for both interior and exterior problems. As the integral equations for unknown coefficients are regular, a general class of reduction operators is introduced to reduce such regular integral equations to singular ones with a Cauchy-type kernel. Such operators then permit one to solve the singular integral equations by the standard techniques due to Muskhelishvili. We discuss several spherically symmetric problems. However, the treatment is kept sufficiently general to deal with problems lacking azimuthal symmetry. In particular the procedure seems to work for regions whose boundary coincides with one of the coordinate surfaces for which the Helmholtz equation is separable.

  3. Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment.

    Science.gov (United States)

    Cardoso, Ariela M; Horn, Martha B; Ferret, Lizete S; Azevedo, Carla M N; Pires, Marçal

    2015-04-28

    Several researchers have reported zeolite synthesis using coal ash for a wide range of applications. However, little attention has been given to green processes, including moderate synthesis conditions, using waste as raw material and effluent reuse or reduction. In this study, Brazilian coal fly ashes were used for integrated synthesis of zeolites 4A and Na-P1 by two different routes and under moderate operating conditions (temperature and pressure). Both procedures produced zeolites with similar conversions (zeolite 4A at 82% purity and zeolite Na-P1 at 57-61%) and high CEC values (zeolites 4A: 4.5meqCa(2+)g(-1) and zeolites Na-P1: 2.6-2.8meqNH4(+)g(-1)). However, process 1 generated less effluent for the zeolite mass produced (7mLg(-1)), with low residual Si and Al levels and 74% of the Si available in the coal fly ash incorporated into the zeolite, while only 55% is used in process 2. For use as a builder in detergents, synthetic zeolite 4A exhibited conformity parameters equal to or greater than those of the commercial zeolite adopted as reference. Treatment of swine wastewater with zeolite Na-P1 resulted in a high removal capacity for total ammoniacal nitrogen (31mgg(-1)).

  4. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work to ...

  5. Prediction of two-dimensional sound propagation over an arbitrarily-shaped barrier using the boundary element method

    Science.gov (United States)

    Park, Jong M.; Eversman, W.

    1992-01-01

    2D sound propagation over an arbitrarily-shaped barrier situated on a locally reacting infinite plane in a homogeneous medium is treated utilizing the BEM. The BIE is formulated so that the integral along an infinite homogeneous plane disappears if the half space Green's function is selected to satisfy the boundary condition of this plane. Comparison of the BEM results with test results by Habault and by Kearns shows good agreement of the sound field utilizing the BEM.

  6. Dynamic density and spin responses of a superfluid Fermi gas in the BCS-BEC crossover: Path integral formulation and pair fluctuation theory

    Science.gov (United States)

    He, Lianyi

    2016-10-01

    We present a standard field theoretical derivation of the dynamic density and spin linear response functions of a dilute superfluid Fermi gas in the BCS-BEC crossover in both three and two dimensions. The derivation of the response functions is based on the elegant functional path integral approach which allows us to calculate the density-density and spin-spin correlation functions by introducing the external sources for the density and the spin density. Since the generating functional cannot be evaluated exactly, we consider two gapless approximations which ensure a gapless collective mode (Goldstone mode) in the superfluid state: the BCS-Leggett mean-field theory and the Gaussian-pair-fluctuation (GPF) theory. In the mean-field theory, our results of the response functions agree with the known results from the random phase approximation. We further consider the pair fluctuation effects and establish a theoretical framework for the dynamic responses within the GPF theory. We show that the GPF response theory naturally recovers three kinds of famous diagrammatic contributions: the Self-Energy contribution, the Aslamazov-Lakin contribution, and the Maki-Thompson contribution. We also show that unlike the equilibrium state, in evaluating the response functions, the linear (first-order) terms in the external sources as well as the induced order parameter perturbations should be treated carefully. In the superfluid state, there is an additional order parameter contribution which ensures that in the static and long wavelength limit, the density response function recovers the result of the compressibility (compressibility sum rule). We expect that the f-sum rule is manifested by the full number equation which includes the contribution from the Gaussian pair fluctuations. The dynamic density and spin response functions in the normal phase (above the superfluid critical temperature) are also derived within the Nozières-Schmitt-Rink (NSR) theory.

  7. Dynamic Stationary Response of Reinforced Plates by the Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Facundo Sanches

    2007-01-01

    Full Text Available A direct version of the boundary element method (BEM is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs. Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state (membrane and for the out-of-plane state (bending. These uncoupled systems are joined to form a macro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs. A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM.

  8. Spherical gravitational curvature boundary-value problem

    Science.gov (United States)

    Šprlák, Michal; Novák, Pavel

    2016-08-01

    Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.

  9. Explosive Formulation Pilot Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Pilot Plant for Explosive Formulation supports the development of new explosives that are comprised of several components. This system is particularly beneficial...

  10. The open boundary equation

    Directory of Open Access Journals (Sweden)

    D. Diederen

    2015-06-01

    Full Text Available We present a new equation describing the hydrodynamics in infinitely long tidal channels (i.e., no reflection under the influence of oceanic forcing. The proposed equation is a simple relationship between partial derivatives of water level and velocity. It is formally derived for a progressive wave in a frictionless, prismatic, tidal channel with a horizontal bed. Assessment of a large number of numerical simulations, where an open boundary condition is posed at a certain distance landward, suggests that it can also be considered accurate in the more natural case of converging estuaries with nonlinear friction and a bed slope. The equation follows from the open boundary condition and is therefore a part of the problem formulation for an infinite tidal channel. This finding provides a practical tool for evaluating tidal wave dynamics, by reconstructing the temporal variation of the velocity based on local observations of the water level, providing a fully local open boundary condition and allowing for local friction calibration.

  11. Higgsless Deconstruction Without Boundary Condition

    CERN Document Server

    He, H J

    2004-01-01

    Deconstruction is a powerful means to explore the rich dynamics of gauge theories in four and higher dimensions. We demonstrate that gauge symmetry breaking in a compactified higher dimensional theory can be formulated via deconstructed 4D moose theory with {\\it spontaneous symmetry breaking} and {\\it without boundary condition.} The proper higher-D boundary conditions are automatically induced in the continuum limit rather than being imposed. We identify and analyze the moose theories which exhibit {\\it delayed unitarity violation} (effective unitarity) as a {\\it collective effect} of many gauge groups, without resorting to any known 5D geometry. Relevant phenomenological constraints are also addressed.

  12. Dirichlet-Neumann bracketing for boundary-value problems on graphs

    Directory of Open Access Journals (Sweden)

    Sonja Currie

    2005-08-01

    Full Text Available We consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise to eigenvalue and eigenfunction asymptotic approximations.

  13. Thermal field theories and shifted boundary conditions

    CERN Document Server

    Giusti, Leonardo

    2013-01-01

    The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedur...

  14. Boundary conditions for viscous vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Koumoutsakos, P.; Leonard, A.; Pepin, F. (California Institute of Technology, Pasadena, CA (United States))

    1994-07-01

    This paper presents a Neumann-type vorticity boundary condition for the vorticity formulation of the Navier-Stokes equations. The vorticity creation process at the boundary, due to the no-slip condition, is expressed in terms of a vorticity flux. The scheme is incorporated then into a Lagrangian vortex blob method that uses a particle strength exchange algorithm for viscous diffusion. The no-slip condition is not enforced by the generation of new vortices at the boundary but instead by modifying the strength of the vortices in the vicinity of the boundary. 19 refs., 5 figs.

  15. N=1 Supersymmetric Boundary Bootstrap

    CERN Document Server

    Toth, G Z

    2004-01-01

    We investigate the boundary bootstrap programme for finding exact reflection matrices of integrable boundary quantum field theories with N=1 boundary supersymmetry. The bulk S-matrix and the reflection matrix are assumed to take the form S=S_1S_0, R=R_1R_0, where S_0 and R_0 are the S-matrix and reflection matrix of some integrable non-supersymmetric boundary theory that is assumed to be known, and S_1 and R_1 describe the mixing of supersymmetric indices. Under the assumption that the bulk particles transform in the kink and boson/fermion representations and the ground state is a singlet we present rules by which the supersymmetry representations and reflection factors for excited boundary bound states can be determined. We apply these rules to the boundary sine-Gordon model, to the boundary a_2^(1) and a_4^(1) affine Toda field theories, to the boundary sinh-Gordon model and to the free particle.

  16. Changing Boundaries

    DEFF Research Database (Denmark)

    Brodkin, Evelyn; Larsen, Flemming

    2013-01-01

    In recent decades, workfare-style policies have become part of the institutional architecture of welfare and labor market arrangements around the world. In this article, we offer a comparative, historical view of workfare´s advance. Our analysis recognizes the complexity and diversity of what we...... call the “policies of workfare” and highlights the different paths through which these policies have developed in the U.S. and parts of Europe. We argue that it is necessary to look beyond familiar policy labels and language in order to consider workfare-style policies as part of a broader political...... project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...

  17. Derivation of an eddy diffusivity coefficient depending on source distance for a shear dominated planetary boundary layer

    Science.gov (United States)

    Alves, I. P.; Degrazia, G. A.; Buske, D.; Vilhena, M. T.; Moraes, O. L. L.; Acevedo, O. C.

    2012-12-01

    In this study an integral and an algebraic formulation for the eddy diffusivities in a shear driven planetary boundary layer are derived for pollutant dispersion applications. The expressions depend on the turbulence properties and on the distance from the source. They are based on the turbulent kinetic energy spectra, Taylor’s statistical diffusion theory and measured turbulent characteristics during intense wind events. The good agreement between the algebraic and the integral formulation for the eddy diffusivities corroborate the hypothesis that using an algebraic formulation as a surrogate for the eddy diffusivities in the neutral planetary boundary layer is valid. As a consequence, the vertical eddy diffusivity provided by the algebraic formulation and its asymptotic limit for large time (diffusion time much larger than the Lagrangian integral time scale), were introduced into an analytical air pollution model and validated against data from the classic Prairie Grass project. A statistical analysis, employing specific indices shows that the results are in good agreement with the observations. Furthermore, this study suggests that the inclusion of the memory effect, which is important in regions near to a continuous point source, improves the description of the turbulent transport process of atmospheric contaminants. Therefore, the major finding of this paper is the necessity of including the downwind distance-dependent eddy diffusivity for low continuous point sources in air quality modeling studies.

  18. Thermal analysis of a functionally graded material subject to a thermal gradient using the boundary element method

    Science.gov (United States)

    Goldberg, Robert K.; Hopkins, Dale A.

    1994-01-01

    The boundary element method is utilized in this study to conduct thermal analysis of functionally graded composites, materials in which the internal microstructure or properties are explicitly tailored in order to obtain an optimal response, on the micromechanical (constituent) scale. A unique feature of the boundary element formulations used here is the use of circular shape functions to convert the two-dimensional integrations of the composite fibers to one dimensional integrations. Using the computer code BEST-CMS, the through the thickness temperature profiles are computed for a representative material with varying numbers of fibers and fiber spacing in the thickness direction. The computed temperature profiles are compared to those obtained using an alternate analytical theory which explicitly couples the heterogeneous microstructure to the global analysis. The boundary element results compared favorably to the analytical calculations, with discrepancies that are explainable based on the boundary element formulation. The results serve both to demonstrate the ability of the boundary element method to analyze these types of materials, and to verify the accuracy of the analytical theory.

  19. Formulations in first encounters

    NARCIS (Netherlands)

    A. Hak (Tony); F. de Boer (Fijgje)

    1994-01-01

    markdownabstractThe paper describes and compares the use and function of the formulation--decision pair in three types of diagnostic interviewing. The investigatory type of interviewing, which typically occurs in the medical interview, is characterized by the absence of formulations. In the explora

  20. Post-buckling analysis of composite beams: A simple intuitive formulation

    Indian Academy of Sciences (India)

    Jagadish Babu Gunda; G Venkateswara Rao

    2013-06-01

    Post-buckling analysis of composite beams with axially immovable ends is investigated using an Intuitive formulation. Intuitive formulation uses two parameters namely critical buckling load and axial stretching force developed in the post-buckled domain of composite beam. Geometric nonlinearity of von-Karman type is taken into consideration which accounts for membrane stretching action of the beam. Axial stretching force developed in post-buckled domain of composite beam is evaluated by using an axial governing equation and is expressed either in terms of lateral displacement function as an integrated value, or as a function of both axial and lateral displacement functions at any discrete location of the beam. The available expressions of critical buckling load and derived expressions of axial stretching force developed in the beam are used for obtaining an approximate closed-form expressions for the post-buckling loads of various beam boundary conditions. Numerical accuracy of the proposed analytical closed-form expressions obtained from the intuitive formulation are compared to the available finite element solutions for symmetric and asymmetric lay-up schemes of laminated composite beam. Effect of central amplitude ratio and lay-up orientation on post-buckling load variation is briefly discussed for various beam boundary conditions considered in this study.

  1. Integrating canopy and large-scale atmospheric effects in the convective boundary-layer dynamics and chemistry during the CHATS experiment

    NARCIS (Netherlands)

    Shapkalijevski, M.; Ouwersloot, Huug; Moene, A.F.; Vilà-Guerau De Arellano, J.

    2017-01-01

    By characterizing the dynamics of a convective boundary layer above a relatively sparse and uniform orchard canopy, we investigated the impact of the roughness-sublayer (RSL) representation on the predicted diurnal variability of surface fluxes and state variables. Our approach combined numerical ex

  2. Bethe ansatz solution of the small polaron with nondiagonal boundary terms

    Science.gov (United States)

    Karaiskos, Nikos; Grabinski, André M.; Frahm, Holger

    2013-07-01

    The small polaron with generic, nondiagonal boundary terms is investigated within the framework of quantum integrability. The fusion hierarchy of the transfer matrices and its truncation for particular values of the anisotropy parameter are both employed, so that the spectral problem is formulated in terms of a TQ equation. The solution of this equation for generic boundary conditions is based on a deformation of the diagonal case. The eigenvalues of the model are extracted and the corresponding Bethe ansatz equations are presented. Finally, we comment on the eigenvectors of the model and explicitly compute the eigenstate of the model which evolves into the Fock vacuum when the off-diagonal boundary terms are switched off.

  3. Riemann Boundary Value Problems for Koch Curve

    Directory of Open Access Journals (Sweden)

    Zhengshun Ruanand

    2012-11-01

    Full Text Available In this study, when L is substituted for Koch curve, Riemann boundary value problems was defined, but generally speaking, Cauchy-type integral is meaningless on Koch curve. When some analytic conditions are attached to functions G (z and g (z, through the limit function of a sequence of Cauchytype integrals, the homogeneous and non-homogeneous Riemann boundary problems on Koch curve are introduced, some similar results was attained like the classical boundary value problems for analytic functions.

  4. Surface integral formulation of Maxwell's equations for simulation of non-destructive testing by eddy currents. Preliminary study on the implementation of the fast multipole method; Formulation integrale surfacique des equations de Maxwell pour la simulation de controles non destructifs par courant de Foucault. Etude preliminaire a la mise en oeuvre de la methode multipole rapide.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, T.

    2011-04-28

    To simulate numerically a non-destructive by eddy current testing (NDT-CF), the sensor response can be modeled through a semi-analytical approach by volume integral equations. Faster than the finite element method, this approach is however restricted to the study of plane or cylindrical parts (without taking into account the edge effects) because of the complexity of the expression of the dyadic Green function for more general configurations. However, there is an industrial demand to extend the capabilities of the CF model in complex configurations (deformed plates, edges effects...). We were thus brought to formulate the electromagnetic problem differently, by setting ourselves the goal of maintaining a semi-analytical approach. The surface integral equation (SIE) expresses the volume problem by an equivalent transmission one at the interfaces (2D) between homogeneous sub-domains. This problem is approached by a linear system (by the method of moments), whose number of unknowns is reduced due to the nature of the surfacic mesh. Therefore, this system can be solved by a direct solver for small configurations. That enabled us to treat several various positions of the sensor for only one inversion of the impedance matrix. The numerical results obtained using this formulation involve plates with consideration of edge effects such as edge and corner. They are consistent with results obtained by the finite element method. For larger configurations, we conducted a preliminary study for the adaptation of an acceleration method of the matrix vector product involved in an iterative solver (fast multipole method or FMM) to define the conditions under which the FMM calculation works correctly (accuracy, convergence...) in the NDT's domain. A special attention has been given to the choice of basis functions (which have to satisfy an Hdiv conforming property) and on the evaluation of near interactions (which are weakly singular). (author) [French] Pour simuler

  5. Random Matrices, Boundaries and Branes

    CERN Document Server

    Niedner, Benjamin

    2016-01-01

    This thesis is devoted to the application of random matrix theory to the study of random surfaces, both discrete and continuous; special emphasis is placed on surface boundaries and the associated boundary conditions in this formalism. In particular, using a multi-matrix integral with permutation symmetry, we are able to calculate the partition function of the Potts model on a random planar lattice with various boundary conditions imposed. We proceed to investigate the correspondence between the critical points in the phase diagram of this model and two-dimensional Liouville theory coupled to conformal field theories with global $\\mathcal{W}$-symmetry. In this context, each boundary condition can be interpreted as the description of a brane in a family of bosonic string backgrounds. This investigation suggests that a spectrum of initially distinct boundary conditions of a given system may become degenerate when the latter is placed on a random surface of bounded genus, effectively leaving a smaller set of ind...

  6. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  7. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  8. Investigation of acoustic field near to elastic thin plate using integral method

    Directory of Open Access Journals (Sweden)

    В.І. Токарев

    2004-01-01

    Full Text Available  Investigation of acoustic field near to elastic thin plate using  integral method The influence of boundary conditions on sound wave propagation, radiation and transmission through thin elastic plate is investigated. Necessary for that numerical model was found using the Helmholtz equation and equation of oscilated plate by means of integral formulation of the solution for acoustic fields near to elastic thin plate and for bending waves of small amplitudes.

  9. Formulation techniques for nanofluids.

    Science.gov (United States)

    Rivera-Solorio, Carlos I; Payán-Rodríguez, Luis A; García-Cuéllar, Alejandro J; Ramón-Raygoza, E D; L Cadena-de-la-Peña, Natalia; Medina-Carreón, David

    2013-11-01

    Fluids with suspended nanoparticles, commonly known as nanofluids, may be formulated to improve the thermal performance of industrial heat transfer systems and applications. Nanofluids may show enhanced thermal and electrical properties such as thermal conductivity, viscosity, heat transfer coefficient, dielectric strength, etc. However, stability problems may arise as nanoparticles usually have the tendency to agglomerate and sediment producing deterioration in the increment of these properties. In this review, we discuss patents that report advances in the formulation of nanofluids including: production methods, selection of components (nanoparticles, base fluid and surfactants), their chemical compositions and morphologies, and characterization techniques. Finally, current and future directions in the development of nanofluid formulation are discussed.

  10. Integrated biostratigraphy, stage boundaries and Paleoclimatology of the Upper Cretaceous-Lower Eocene successions in Kharga and Dakhala Oases, Western Desert, Egypt

    Science.gov (United States)

    Khalil, H.; Al Sawy, S.

    2014-08-01

    The Upper Cretaceous-Lower Eocene succession in the studied sections is divided into four rock units that arranged from base to top: the Dakhla, Tarawan, Esna and the Thebes formations. Detailed study of the foraminifera and calcareous nannofossils has led to the recognition of 58 and 82 species, respectively. Based on planktonic foraminifera and calcareous nannofossils 8 planktonic foraminiferal biozones (CF4, P2, P3, P4, E1, E2, E3 and E4) have been recognized as well as 8 calcareous nannofossil biozones (CC25b, NP3, NP4, NP5, NP6, NP7/8, NP9, and NP10). At Gabal Teir/Tarawan section, Kharga Oasis, the Paleocene can be divided into three stages; Danian, Selandian and Thanetian. The Danian/Selandian boundary is placed at P3a/P3b zonal boundary (LO of Igorina albeari) which corresponds to the level of LO of Lithoptychius ulii, Fasciculithus pileatus, Fasciculithus involutus and Lithoptychius janii (upper part of Zone NP4). The Selandian/Thanetian boundary, on the other hand, can be traced within the foraminiferal Zone P4 (Globanomalina pseudomenardii Zone) and between the nannofossil zones NP6 and NP7/8 (LO of Discoaster mohleri). At Gabal Ghanima section, the Paleocene/Eocene boundary is located within the lower part of the Esna Formation. It can be traced at the base of planktonic foraminiferal Zone E1 (LOs of Acarinina africana, A sibaiyaensis and Morozovella allinsoensis), and at the NP9a/NP9b subzonal boundary (LO of Rhomboaster spp). However, the lower Eocene succession seems to be condensed and punctuated by minor hiatus (absence of Subzone NP10a). The dominance of cool water nannofossil species in the late Maastrichtian and early Danian interval suggests a gradual decrease in the surface water paleotemperature. However, a slight warming condition prevailed around the Danian/Selandian transition as evidenced by the warm water nannofossil species. At the P/E boundary interval, the high abundance of warm-water taxa (e.g. Discoaster, Sphenolithus, Rhomboaster

  11. Synthetic Helmholtz Integral Equation Formulation Method for Calculating the Radiating Acoustic Field of Arbitrary Radiator%辐射体声场计算的综合Helmholtz积分公式法

    Institute of Scientific and Technical Information of China (English)

    蒋伟; 何正耀; 王冬海

    2006-01-01

    提出了一种计算无界声媒质空间中任意形状辐射体辐射声场的新方法--综合Helmholtz积分公式法(Synthetic Helmholtz Integral Equation Formulation,SHIEF).该方法将关于辐射体的内部、表面和外部Helmholtz积分方程有机地组合在一起,在已知辐射体表面法向振速的条件下,求出辐射体表面的声压分布,进而求其辐射声场分布.运用该方法计算分析了脉动球相对辐射阻抗随相对半径的变化情况,通过与理论值以及已有的其他方法(例如联立Helmholtz积分公式法(CHIEF)、超定外部Helmholtz积分公式法等)的比较,证明了该方法的正确性、准确性以及快速性,该方法有效地克服了CHIEF法和超定外部Helmholtz积分公式法的缺点.

  12. Gravitational action with null boundaries

    CERN Document Server

    Lehner, Luis; Poisson, Eric; Sorkin, Rafael D

    2016-01-01

    We present a complete discussion of the boundary term in the action functional of general relativity when the boundary includes null segments in addition to the more usual timelike and spacelike segments. We confirm that ambiguities appear in the contribution from a null segment, because it depends on an arbitrary choice of parametrization for the generators. We also show that similar ambiguities appear in the contribution from a codimension-two surface at which a null segment is joined to another (spacelike, timelike, or null) segment. The parametrization ambiguity can be tamed by insisting that the null generators be affinely parametrized; this forces each null contribution to the boundary action to vanish, but leaves intact the fredom to rescale the affine parameter by a constant factor on each generator. Once a choice of parametrization is made, the ambiguity in the joint contributions can be eliminated by formulating well-motivated rules that ensure the additivity of the gravitational action. Enforcing t...

  13. Study of the effect of wind speed on evaporation from soil through integrated modeling of atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan; Illangasekare, Tissa

    2013-04-01

    The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change, the movement of green house gases such as possible leaking of sequestered CO2 and the accurate detection of buried objects such as landmines. Soil moisture distribution in the shallow subsurface becomes a critical factor in all these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary

  14. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    Science.gov (United States)

    Pecher, Radek

    The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced

  15. Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions

    Science.gov (United States)

    Biondini, Gino; Fagerstrom, Emily; Prinari, Barbara

    2016-10-01

    We formulate the inverse scattering transform (IST) for the defocusing nonlinear Schrödinger (NLS) equation with fully asymmetric non-zero boundary conditions (i.e., when the limiting values of the solution at space infinities have different non-zero moduli). The theory is formulated without making use of Riemann surfaces, and instead by dealing explicitly with the branched nature of the eigenvalues of the associated scattering problem. For the direct problem, we give explicit single-valued definitions of the Jost eigenfunctions and scattering coefficients over the whole complex plane, and we characterize their discontinuous behavior across the branch cut arising from the square root behavior of the corresponding eigenvalues. We pose the inverse problem as a Riemann-Hilbert Problem on an open contour, and we reduce the problem to a standard set of linear integral equations. Finally, for comparison purposes, we present the single-sheet, branch cut formulation of the inverse scattering transform for the initial value problem with symmetric (equimodular) non-zero boundary conditions, as well as for the initial value problem with one-sided non-zero boundary conditions, and we also briefly describe the formulation of the inverse scattering transform when a different choice is made for the location of the branch cuts.

  16. Testing outer boundary treatments for the Einstein equations

    CERN Document Server

    Rinne, Oliver; Scheel, Mark A

    2007-01-01

    Various methods of treating outer boundaries in numerical relativity are compared using a simple test problem: a Schwarzschild black hole with an outgoing gravitational wave perturbation. Numerical solutions computed using different boundary treatments are compared to a `reference' numerical solution obtained by placing the outer boundary at a very large radius. For each boundary treatment, the full solutions including constraint violations and extracted gravitational waves are compared to those of the reference solution, thereby assessing the reflections caused by the artificial boundary. These tests use a first-order generalized harmonic formulation of the Einstein equations. Constraint-preserving boundary conditions for this system are reviewed, and an improved boundary condition on the gauge degrees of freedom is presented. Alternate boundary conditions evaluated here include freezing the incoming characteristic fields, Sommerfeld boundary conditions, and the constraint-preserving boundary conditions of K...

  17. Element free Galerkin formulation of composite beam with longitudinal slip

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad [Department of Civil Engineering, Universiti Selangor, Bestari Jaya, Selangor (Malaysia); Badli, Mohd Iqbal; Yassin, Airil Y. Mohd [Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor (Malaysia)

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after been verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.

  18. CROSS-BOUNDARY URBAN DEVELOPMENT AND INTEGRATION: A CASE STUDY OF HONG KONG AND SHENZHEN%城市跨界发展与融合——港深案例研究

    Institute of Scientific and Technical Information of China (English)

    沈建法

    2013-01-01

    This paper examines the crossboundary urban development and integration of Hong Kong and Shenzhen.It is found that close economic integration has been established,and some progress has been made in institutional integration.But social integration lags significantly behind economic and institutional integration.Residents in Hong Kong and Shenzhen do no have adequate understanding of each other.Over 57% of Hong Kong and Shenzhen residents are not familiar or very unfamiliar with the other city.Over 40% of Hong Kong and Shenzhen residents consider that their different value systems are a main barrier to the construction of Hong Kong-Shenzhen metropolis.The cross-border community in Hong KongShenzhen region is not well integrated.Hong Kong and Shenzhen have many differences which may make it difficult to achieve full integration.Two cities should aim to raise urban competitiveness and facilitate cross-boundary living and working for residents in the process of promoting cross-boundary urban development and integration.%探讨港深两地跨界城市发展与城市融合的进程.香港和深圳已建立了紧密的经济融合,制度层面上的融合也有一定的进展,但社会层面上的融合显著滞后.香港和深圳居民对边界另一边的对方缺乏充分认识.超过57%的香港和深圳居民不太熟悉或非常不熟悉另一个城市.超过四成的香港和深圳受访者认为价值观的差异是构建港深大都会的最主要的障碍.港深大都会的跨界社区尚未融合.香港和深圳在许多方面存在差异,造成两地之间难以实现完全的融合.港深两地有必要在“一国两制”的原则下,以提升两地城市竞争力与方便居民跨界居住与工作为出发点,推动城市跨界发展与融合.

  19. Spectrum of boundary states in N=1 SUSY sine-Gordon theory

    CERN Document Server

    Bajnok, Z; Takács, G

    2002-01-01

    We consider N=1 supersymmetric sine-Gordon theory (SSG) with supersymmetric integrable boundary conditions (boundary SSG = BSSG). We find two possible ways to close the boundary bootstrap for this model, corresponding to two different choices for the boundary supercharge. We argue that these two bootstrap solutions should correspond to the two integrable Lagrangian boundary theories considered recently by Nepomechie.

  20. Homogenization of the stochastic Navier–Stokes equation with a stochastic slip boundary condition

    KAUST Repository

    Bessaih, Hakima

    2015-11-02

    The two-dimensional Navier–Stokes equation in a perforated domain with a dynamical slip boundary condition is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the holes. We consider a scaling (ᵋ for the viscosity and 1 for the density) that will lead to a time-dependent limit problem. However, the noncritical scaling (ᵋ, β > 1) is considered in front of the nonlinear term. The homogenized system in the limit is obtained as a Darcy’s law with memory with two permeabilities and an extra term that is due to the stochastic perturbation on the boundary of the holes. The nonhomogeneity on the boundary contains a stochastic part that yields in the limit an additional term in the Darcy’s law. We use the two-scale convergence method after extending the solution with 0 inside the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. Due to the stochastic integral, the pressure that appears in the variational formulation does not have enough regularity in time. This fact made us rely only on the variational formulation for the passage to the limit on the solution. We obtain a variational formulation for the limit that is solution of a Stokes system with two pressures. This two-scale limit gives rise to three cell problems, two of them give the permeabilities while the third one gives an extra term in the Darcy’s law due to the stochastic perturbation on the boundary of the holes.

  1. Separation of variables for integrable spin-boson models

    CERN Document Server

    Amico, Luigi; Osterloh, Andreas; Wirth, Tobias

    2010-01-01

    We formulate the functional Bethe ansatz for bosonic (infinite dimensional) representations of the Yang-Baxter algebra. The main deviation from the standard approach consists in a half infinite 'Sklyanin lattice' made of the eigenvalues of the operator zeros of the Bethe annihilation operator. By a separation of variables, functional TQ equations are obtained for this half infinite lattice. They provide valuable information about the spectrum of a given Hamiltonian model. We apply this procedure to integrable spin-boson models subject to both twisted and open boundary conditions. In the case of general twisted and certain open boundary conditions polynomial solutions to these TQ equations are found and we compute the spectrum of both the full transfer matrix and its quasi-classical limit. For generic open boundaries we present a two-parameter family of Bethe equations, derived from TQ equations that are compatible with polynomial solutions for Q. A connection of these parameters to the boundary fields is stil...

  2. Formulations and nebulizer performance.

    Science.gov (United States)

    O'Riordan, Thomas G

    2002-11-01

    To deliver a drug by nebulization, the drug must first be dispersed in a liquid (usually aqueous) medium. After application of a dispersing force (either a jet of gas or ultrasonic waves), the drug particles are contained within the aerosol droplets, which are then inhaled. Some drugs readily dissolve in water, whereas others need a cosolvent such as ethanol or propylene glycol. Some drugs are delivered as suspensions, and the efficiency of nebulizers can be different for solutions and suspensions. Solutions are delivered more efficiently with most devices. In general, conventional ultrasonic nebulizers should not be used to aerosolize suspensions, because of low efficiency. Newer strategies to improve the delivery of non-water-soluble drugs include the use of liposomes and the milling of the drug into very small "nanoparticles." In addition to the active therapeutic ingredient and solvents, drug formulations may include buffers (the solubility of some medications is influenced by pH), stabilizers, and, in the case of multi-dose preparations, antibacterial agents. Though formulations are designed to optimize drug solubility and stability, changes in formulation can also affect inhaled mass, particle size, and treatment time, though the differences between nebulizer brands probably have a greater impact than differences in formulation. Ultrasonic and jet nebulizers may damage protein and other complex agents through heat or shear stress. Additives to multi-dose formulations, especially antimicrobial and chelating agents, may cause adverse events, so there is a trend towards single-use, preservative-free vials.

  3. A Regularized Galerkin Boundary Element Method (RGBEM) for Simulating Potential Flow About Zero Thickness Bodies

    Energy Technology Data Exchange (ETDEWEB)

    GHARAKHANI,ADRIN; WOLFE,WALTER P.

    1999-10-01

    the collocation points. Unfortunately, the development of elements with C{sup 1} continuity for the potential jumps is quite complicated in 3-D. To this end, the application of Galerkin ''smoothing'' to the boundary integral equations removes the singularity at the collocation points; thus allowing the use of C{sup o} elements and potential jump distributions [4]. Successful implementations of the Galerkin Boundary Element Method to 2-D conduction [4] and elastostatic [5] problems have been reported in the literature. Thus far, the singularity removal algorithms have been based on a posterior and mathematically complex reasoning, which have required Taylor series expansion and limit processes. The application of these strategies to 3-D is expected to be significantly more complicated. In this report, we develop the formulation for a ''Regularized'' Galerkin Boundary Element Method (RGBEM). The regularization procedure involves simple manipulations using vector calculus to reduce the singularity of the hypersingular boundary integral equation by two orders for C{sup o} elements. For the case of linear potential jump distributions over plane triangles the regularized integral is simplified considerably to a double surface integral of the Green function. This is the case implemented and tested in this report. Using the example problem of flow normal to a square flat plate, the linear RGBEM predictions are demonstrated here to be more accurate, to converge faster, and to be significantly less spiked than the solutions obtained by the vortex loop method.

  4. Brain response to prosodic boundary cues depends on boundary position

    Directory of Open Access Journals (Sweden)

    Julia eHolzgrefe

    2013-07-01

    Full Text Available Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer’s syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name as compared to later in the utterance (i.e., after the second name. A closure positive shift (CPS — marking the processing of a prosodic phrase boundary — was elicited only for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context.

  5. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    After a long history dominated by out-migration, Denmark, Norway and Sweden have, in the past 50 years, become immigration societies. This article compares how these Scandinavian welfare societies have sought to incorporate immigrants and refugees into their national communities. It suggests that......, while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  6. New Poisson's Type Integral Formula for Thermoelastic Half-Space

    Directory of Open Access Journals (Sweden)

    Victor Seremet

    2009-01-01

    Full Text Available A new Green's function and a new Poisson's type integral formula for a boundary value problem (BVP in thermoelasticity for a half-space with mixed boundary conditions are derived. The thermoelastic displacements are generated by a heat source, applied in the inner points of the half-space and by temperature, and prescribed on its boundary. All results are obtained in closed forms that are formulated in a special theorem. A closed form solution for a particular BVP of thermoelasticity for a half-space also is included. The main difficulties to obtain these results are in deriving of functions of influence of a unit concentrated force onto elastic volume dilatation Θ( and, also, in calculating of a volume integral of the product of function Θ( and Green's function in heat conduction. Using the proposed approach, it is possible to extend the obtained results not only for any canonical Cartesian domain, but also for any orthogonal one.

  7. Formulation of Automotive Lubricants

    Science.gov (United States)

    Atkinson, D.; Brown, A. J.; Jilbert, D.; Lamb, G.

    The formulation of lubricants for current light- and heavy-duty vehicles (passenger cars and trucks) and also motorcycles/small engines is described in terms of engine types and meeting European, US and Japanese emission control requirements. Trends in the formulation of lubricants are discussed and the importance of high and low 'SAPS' for future developments emphasised. Specification and evaluation of lubricant performance for light-vehicle gasoline and diesel, and also heavy-duty diesel engines are described. Emphasis is given to diesel engine cleanliness by soot and deposit control and the effect of emission controls on lubricant formulation. The lubricant requirements for motorcycle and small engines, primarily two-stroke cycle, and their specifications are described.

  8. Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form

    Science.gov (United States)

    Kashirin, A. A.; Smagin, S. I.; Taltykina, M. Yu.

    2016-04-01

    Interior and exterior three-dimensional Dirichlet problems for the Helmholtz equation are solved numerically. They are formulated as equivalent boundary Fredholm integral equations of the first kind and are approximated by systems of linear algebraic equations, which are then solved numerically by applying an iteration method. The mosaic-skeleton method is used to speed up the solution procedure.

  9. Lubrication in tablet formulations.

    Science.gov (United States)

    Wang, Jennifer; Wen, Hong; Desai, Divyakant

    2010-05-01

    Theoretical aspects and practical considerations of lubrication in tablet compression are reviewed in this paper. Properties of the materials that are often used as lubricants, such as magnesium stearate, in tablet dosage form are summarized. The manufacturing process factors that may affect tablet lubrication are discussed. As important as the lubricants in tablet formulations are, their presence can cause some changes to the tablet physical and chemical properties. Furthermore, a detailed review is provided on the methodologies used to characterize lubrication process during tablet compression with relevant process analytical technologies. Finally, the Quality-by-Design considerations for tablet formulation and process development in terms of lubrication are discussed.

  10. Boundary-volume integral equation numerical modeling for complex near surface%复杂地表边界元-体积元波动方程数值模拟

    Institute of Scientific and Technical Information of China (English)

    管西竹; 符力耘; 陶毅; 于更新

    2011-01-01

    复杂近地表引起来自深部构造的地震反射信号振幅和相位的异常变化,是影响复杂近地表地区地震资料品质的主要原因.本文采用边界元-体积元方法,通过求解含复杂地表的波动积分方程,来模拟地震波在复杂近地表构造中的传播.其中,边界元法模拟地形起伏和表层地质结构对地震波传播的影响;体积元法模拟起伏地表下非均质低降速层的影响.与其他数值模拟方法比较,其主要优点为几何上精确描述不规则地表界面,实现精确模拟自由表面对地震波的边界散射;显式应用近地表地层界面的连续边界条件,实现半解析的数值模拟;分区处理近地表复杂结构,有效模拟复杂地表下非均匀介质对地震波场的体散射.数值试验结果表明了该方法的实用性和有效性.%Complex near surface causes the anomalous variation of the amplitude and phase of seismic reflection signal from deep structures, and it is the most important factor to degrade the quality of seismic data. In this paper, we use the boundary-volume integral equation technique to simulate the seismic wave propagation in the complex near surface structure by solving the wave propagation equation with complex near surface condition. In the boundary-volume integral equation technique, the boundary element method can simulate irregular surface and geological structure for seismic wave propagation, and the volume element method can simulate the effect of the heterogeneous medium in low subweathered zone for the seismic wave propagation. Compared with other numerical simulation methods, the main advantage of the boundary-volume integral equation technique is its accurate geometric description of irregular surface and interface to simulate the boundary scattering waves by the free surface; it explicitly applies the continuous boundary conditions of the complex near surface to implement the semi-analytical numerical simulation; it

  11. Lattice Boltzmann simulations of pressure-driven flows in microchannels using Navier–Maxwell slip boundary conditions

    KAUST Repository

    Reis, Tim

    2012-01-01

    We present lattice Boltzmann simulations of rarefied flows driven by pressure drops along two-dimensional microchannels. Rarefied effects lead to non-zero cross-channel velocities, nonlinear variations in the pressure along the channel. Both effects are absent in flows driven by uniform body forces. We obtain second-order accuracy for the two components of velocity the pressure relative to asymptotic solutions of the compressible Navier-Stokes equations with slip boundary conditions. Since the common lattice Boltzmann formulations cannot capture Knudsen boundary layers, we replace the usual discrete analogs of the specular diffuse reflection conditions from continuous kinetic theory with a moment-based implementation of the first-order Navier-Maxwell slip boundary conditions that relate the tangential velocity to the strain rate at the boundary. We use these conditions to solve for the unknown distribution functions that propagate into the domain across the boundary. We achieve second-order accuracy by reformulating these conditions for the second set of distribution functions that arise in the derivation of the lattice Boltzmann method by an integration along characteristics. Our moment formalism is also valuable for analysing the existing boundary conditions. It reveals the origin of numerical slip in the bounce-back other common boundary conditions that impose conditions on the higher moments, not on the local tangential velocity itself. © 2012 American Institute of Physics.

  12. Boundary Conditions at Infinity for Physical Theories

    CERN Document Server

    Trautman, Andrzej

    2016-01-01

    The Sommerfeld boundary conditions, imposed on hyperbolic differential equations to obtain solutions in the form of outgoing waves, are formulated here so as to make explicit the role of an appropriate null vector field. When applied to the scalar and Maxwell equations, they lead to the asymptotic form of the energy-momentum tensor representing radiation as a null, perfect dust.

  13. A Tensor-Train accelerated solver for integral equations in complex geometries

    Science.gov (United States)

    Corona, Eduardo; Rahimian, Abtin; Zorin, Denis

    2017-04-01

    We present a framework using the Quantized Tensor Train (QTT) decomposition to accurately and efficiently solve volume and boundary integral equations in three dimensions. We describe how the QTT decomposition can be used as a hierarchical compression and inversion scheme for matrices arising from the discretization of integral equations. For a broad range of problems, computational and storage costs of the inversion scheme are extremely modest O (log ⁡ N) and once the inverse is computed, it can be applied in O (Nlog ⁡ N) . We analyze the QTT ranks for hierarchically low rank matrices and discuss its relationship to commonly used hierarchical compression techniques such as FMM and HSS. We prove that the QTT ranks are bounded for translation-invariant systems and argue that this behavior extends to non-translation invariant volume and boundary integrals. For volume integrals, the QTT decomposition provides an efficient direct solver requiring significantly less memory compared to other fast direct solvers. We present results demonstrating the remarkable performance of the QTT-based solver when applied to both translation and non-translation invariant volume integrals in 3D. For boundary integral equations, we demonstrate that using a QTT decomposition to construct preconditioners for a Krylov subspace method leads to an efficient and robust solver with a small memory footprint. We test the QTT preconditioners in the iterative solution of an exterior elliptic boundary value problem (Laplace) formulated as a boundary integral equation in complex, multiply connected geometries.

  14. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries.......After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies...... seem a core issue when dealing with technology for boundaries....

  15. 9th International Conference on Boundary Elements

    CERN Document Server

    Wendland, W; Kuhn, G

    1987-01-01

    This book contains the edited versions of most of the papers presented at the 9th International Conference on Boundary Elements held at the University of Stuttgart, Germany from August 31st to September 4th, 1987, which was organized in co-operation with the Computational Mechanics Institute and GAMM (Society for Applied Mathematics and Mechanics). This Conference, as the previous ones, aimed to review the latest developments in technique and theory and point out new advanced future trends. The emphasis of the meeting was on the engineering advances versus mathematical formulations, in an effort to consolidate the basis of many new applications. Recently engineers have proposed different techniques to solve non-linear and time dependent problems and many of these formulations needed a better mathematical understanding. Furthermore, new approximate formulations have been proposed for boundary elements which appeared to work in engineering practice, but did not have a proper theoretical background. The Conferen...

  16. Design of formulated products: a systematic methodology

    DEFF Research Database (Denmark)

    Conte, Elisa; Gani, Rafiqul; Ng, K.M.

    2011-01-01

    -based computer-aided methodology for design and verification of a class of chemical-based products (liquid formulations) is presented. This methodology is part of an integrated three-stage approach for design/verification of liquid formulations where stage-1 generates a list of feasible product candidates and....../or verifies a specified set through a sequence of predefined activities (work-flow). Stage-2 and stage-3 (not presented here) deal with the planning and execution of experiments, for product validation. Four case studies have been developed to test the methodology. The computer-aided design (stage-1...

  17. Optimal boundary conditions at the staircase-shaped coastlines

    CERN Document Server

    Kazantsev, Eugene

    2014-01-01

    A 4D-Var data assimilation technique is applied to the rectangular-box configuration of the NEMO in order to identify the optimal parametrization of boundary conditions at lateral boundaries. The case of the staircase-shaped coastlines is studied by rotating the model grid around the center of the box. It is shown that, in some cases, the formulation of the boundary conditions at the exact boundary leads to appearance of exponentially growing modes while optimal boundary conditions allow to correct the errors induced by the staircase-like appriximation of the coastline.

  18. Recent advances in boundary element methods

    CERN Document Server

    Manolis, GD

    2009-01-01

    Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).

  19. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  20. On Displacement Height, from Classical to Practical Formulation: Stress, Turbulent Transport and Vorticity Considerations

    Science.gov (United States)

    Sogachev, Andrey; Kelly, Mark

    2016-03-01

    Displacement height ( d) is an important parameter in the simple modelling of wind speed and vertical fluxes above vegetative canopies, such as forests. Here we show that, aside from implicit definition through a (displaced) logarithmic profile, accepted formulations for d do not consistently predict flow properties above a forest. Turbulent transport can affect the displacement height, and is an integral part of what is called the roughness sublayer. We develop a more general approach for estimation of d, through production of turbulent kinetic energy and turbulent transport, and show how previous stress-based formulations for displacement height can be seen as simplified cases of a more general definition including turbulent transport. Further, we also give a simplified and practical form for d that is in agreement with the general approach, exploiting the concept of vortex thickness scale from mixing-layer theory. We assess the new and previous displacement height formulations by using flow statistics derived from the atmospheric boundary-layer Reynolds-averaged Navier-Stokes model SCADIS as well as from wind-tunnel observations, for different vegetation types and flow regimes in neutral conditions. The new formulations tend to produce smaller d than stress-based forms, falling closer to the classic logarithmically-defined displacement height. The new, more generally defined, displacement height appears to be more compatible with profiles of components of the turbulent kinetic energy budget, accounting for the combined effects of turbulent transport and shear production. The Coriolis force also plays a role, introducing wind-speed dependence into the behaviour of the roughness sublayer; this affects the turbulent transport, shear production, stress, and wind speed, as well as the displacement height, depending on the character of the forest. We further show how our practical (`mixing-layer') form for d matches the new turbulence-based relation, as well as

  1. Redrawing Identity Boundaries through Integration Policies: Strategies of Inclusion/Exclusion of Immigrants in Québec and South Tyrol

    Directory of Open Access Journals (Sweden)

    Lorenzo Piccoli

    2013-02-01

    Full Text Available Following the research agenda introduced by Will Kymlicka, this qualitative study offers an interpretation of how the sub-national elites of Québec and South Tyrol police the integration of immigrants. For these national minority groups, which are constantly undergoing a process of redefinition of their collective identities by differentiating themselves from the Others who do not belong to the in-group, immigrants have progressively become the most significant Others as they are not part of the original system of compromises. This article questions how sub-national elites are handling this relatively new kind of ethnocultural diversity brought about by large-scale permanent immigration on two levels: first, the political narrative of the ruling sub-national parties, their electoral appeals, manifestos and speeches; second, the policy arrangements for the integration of immigrants in education, language and social policy. The initial approach of the article is pessimistic, as it assumes that sub-national elites will marginalize immigrants to please core nationalist supporters. In fact, the hypotheses to be tested are whether the national minority groups of Québec and South Tyrol engage in a process of reconstruction of their ethnic identity bounded by opposition to real or imagined Others – the newcomers; and whether they adopt practical measures that force newcomers to be assimilated into the group or to be marginalized. The comparison between Québec and South Tyrol provides a basic understanding of the impact of immigration in two sub-national polities that are very different, but still adopt similar political narratives and policy strategies with regard to the integration of newcomers.

  2. Evaluating the Species Boundaries of Green Microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta Using Integrative Taxonomy and DNA Barcoding with Further Implications for the Species Identification in Environmental Samples.

    Directory of Open Access Journals (Sweden)

    Tatyana Darienko

    Full Text Available Integrative taxonomy is an approach for defining species and genera by taking phylogenetic, morphological, physiological, and ecological data into account. This approach is appropriate for microalgae, where morphological convergence and high levels of morphological plasticity complicate the application of the traditional classification. Although DNA barcode markers are well-established for animals, fungi, and higher plants, there is an ongoing discussion about suitable markers for microalgae and protists because these organisms are genetically more diverse compared to the former groups. To solve these problems, we assess the usage of a polyphasic approach combining phenotypic and genetic parameters for species and generic characterization. The application of barcode markers for database queries further allows conclusions about the 'coverage' of culture-based approaches in biodiversity studies and integrates additional aspects into modern taxonomic concepts. Although the culture-dependent approach revealed three new lineages, which are described as new species in this paper, the culture-independent analyses discovered additional putative new species. We evaluated three barcode markers (V4, V9 and ITS-2 regions, nuclear ribosomal operon and studied the morphological and physiological plasticity of Coccomyxa, which became a model organism because its whole genome sequence has been published. In addition, several biotechnological patents have been registered for Coccomyxa. Coccomyxa representatives are distributed worldwide, are free-living or in symbioses, and colonize terrestrial and aquatic habitats. We investigated more than 40 strains and reviewed the biodiversity and biogeographical distribution of Coccomyxa species using DNA barcoding. The genus Coccomyxa formed a monophyletic group within the Trebouxiophyceae separated into seven independent phylogenetic lineages representing species. Summarizing, the combination of different characteristics

  3. Liposomal paclitaxel formulations.

    Science.gov (United States)

    Koudelka, Stěpán; Turánek, Jaroslav

    2012-11-10

    Over the past three decades, taxanes represent one of the most important new classes of drugs approved in oncology. Paclitaxel (PTX), the prototype of this class, is an anti-cancer drug approved for the treatment of breast and ovarian cancer. However, notwithstanding a suitable premedication, present-day chemotherapy employing a commercial preparation of PTX (Taxol®) is associated with serious side effects and hypersensitivity reactions. Liposomes represent advanced and versatile delivery systems for drugs. Generally, both in vivo mice tumor models and human clinical trials demonstrated that liposomal PTX formulations significantly increase a maximum tolerated dose (MTD) of PTX which outperform that for Taxol®. Liposomal PTX formulations are in various stages of clinical trials. LEP-ETU (NeoPharm) and EndoTAG®-1 (Medigene) have reached the phase II of the clinical trials; Lipusu® (Luye Pharma Group) has already been commercialized. Present achievements in the preparation of various liposomal formulations of PTX, the development of targeted liposomal PTX systems and the progress in clinical testing of liposomal PTX are discussed in this review summarizing about 30 years of liposomal PTX development.

  4. Differential and Integral Models of TOKAMAK

    Directory of Open Access Journals (Sweden)

    Ivo Dolezel

    2004-01-01

    Full Text Available Modeling of 3D electromagnetic phenomena in TOKAMAK with typically distributed main and additional coils is not an easy business. Evaluated must be not only distribution of the magnetic field, but also forces acting in particular coils. Use of differential methods (such as FDM or FEM for this purpose may be complicated because of geometrical incommensurability of particular subregions in the investigated area or problems with the boundary conditions. That is why integral formulation of the problem may sometimes be an advantages. The theoretical analysis is illustrated on an example processed by both methods, whose results are compared and discussed.

  5. From discrete particles to continuum fields near a boundary

    OpenAIRE

    Weinhart, T.; Thornton, A R; Luding, S.; Bokhove, O

    2011-01-01

    An expression for the stress tensor near an external boundary of a discrete mechanical system is derived explicitly in terms of the constituents’ degrees of freedom and interaction forces. Starting point is the exact and general coarse graining formulation presented by Goldhirsch in [I.Goldhirsch, Gran.Mat., 12(3):239-252, 2010], which is consistent with the continuum equations everywhere but does not account for boundaries. Our extension accounts for the boundary interaction forces in a self...

  6. Boundary conditions towards realistic simulation of jet engine noise

    Science.gov (United States)

    Dhamankar, Nitin S.

    Strict noise regulations at major airports and increasing environmental concerns have made prediction and attenuation of jet noise an active research topic. Large eddy simulation coupled with computational aeroacoustics has the potential to be a significant research tool for this problem. With the emergence of petascale computer clusters, it is now computationally feasible to include the nozzle geometry in jet noise simulations. In high Reynolds number experiments on jet noise, the turbulent boundary layer on the inner surface of the nozzle separates into a turbulent free shear layer. Inclusion of a nozzle with turbulent inlet conditions is necessary to simulate this phenomenon realistically. This will allow a reasonable comparison of numerically computed noise levels with the experimental results. Two viscous wall boundary conditions are implemented for modeling the nozzle walls. A characteristic-based approach is compared with a computationally cheaper, extrapolation-based formulation. In viscous flow over a circular cylinder under two different regimes, excellent agreement is observed between the results of the two approaches. The results agree reasonably well with reference experimental and numerical results. Both the boundary conditions are thus found to be appropriate, the extrapolation-based formulation having an edge with its low cost. This is followed with the crucial step of generation of a turbulent boundary layer inside the nozzle. A digital filter-based turbulent inflow condition, extended in a new way to non-uniform curvilinear grids is implemented to achieve this. A zero pressure gradient flat plate turbulent boundary layer is simulated at a high Reynolds number to show that the method is capable of producing sustained turbulence. The length of the adjustment region necessary for synthetic inlet turbulence to recover from modeling errors is estimated. A low Reynolds number jet simulation including a round nozzle geometry is performed and the method

  7. Uzawa Type Algorithm Based on Dual Mixed Variational Formulation

    Institute of Scientific and Technical Information of China (English)

    王光辉; 王烈衡

    2002-01-01

    Based on the dual mixed variational formulation with three variants (stress,displacement, displacement on contact boundary ) and the unilateral beaming problem of finite element discretization, an Uzawa type iterative algorithm is presented. The convergence of this iterative algorithm is proved, and then the efficiency of the algorithm is tested by a numerical example.

  8. Unified formulation of radiation conditions for the wave equation

    DEFF Research Database (Denmark)

    Krenk, Steen

    2002-01-01

    A family of radiation conditions for the wave equation is derived by truncating a rational function approxiamtion of the corresponding plane wave representation, and it is demonstrated how these boundary conditions can be formulated in terms of fictitious surface densities, governed by second...

  9. AN IMPROVED HYBRID BOUNDARY NODE METHOD IN TWO-DIMENSIONAL SOLIDS

    Institute of Scientific and Technical Information of China (English)

    Miao Yu; Wang Yuanhan; Jiang Heyang

    2005-01-01

    The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the latter. Following its application in solving potential problems, it is further developed and numerically implemented for 2D solids in this paper. The rigid movement method is employed to solve the hyper-singular integrations. Numerical examples for some 2D solids have been given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution.The parameters that influence the performance of this method are studied through numerical examples.

  10. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    Science.gov (United States)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  11. The Boundary Layer Radiometer

    Science.gov (United States)

    Irshad, Ranah; Bowles, N. E.; Calcutt, S. B.; Hurley, J.

    2010-10-01

    The Boundary Layer Radiometer is a small, low mass (<1kg) radiometer with only a single moving part - a scan/calibration mirror. The instrument consists of a three mirror telescope system incorporating an intermediate focus for use with miniature infrared and visible filters. It also has an integrated low power blackbody calibration target to provide long-term calibration stability The instrument may be used as an upward looking boundary layer radiometer for both the terrestrial and Martian atmospheres with appropriate filters for the mid-infrared carbon dioxide band, as well as a visible channel for the detection of aerosol components such as dust. The scan mirror may be used to step through different positions from the local horizon to the zenith, allowing the vertical temperature profile of the atmosphere to be retrieved. The radiometer uses miniature infrared filter assemblies developed for previous space-based instruments by Oxford, Cardiff and Reading Universities. The intermediate focus allows for the use of upstream blocking filters and baffles, which not only simplifies the design of the filters and focal plane assembly, but also reduces the risk of problems due to stray light. Combined with the calibration target this means it has significant advantages over previous generations of small radiometers.

  12. New Boundaries for the B-Model

    CERN Document Server

    Bergman, Aaron

    2008-01-01

    Witten couples the open topological B-model to a holomorphic vector bundle by adding to the boundary of the worldsheet a Wilson loop for an integrable connection on the bundle. Using the descent procedure for boundary vertex operators in this context, I generalize this construction to write a worldsheet coupling for a graded vector bundle with an integrable superconnection. I then compute the open string vertex operators between two such boundaries. A theorem of J. Block gives that this is equivalent to coupling the B-model to an arbitrary object in the derived category.

  13. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  14. Prediction of acoustic radiation from axisymmetric surfaces with arbitrary boundary conditions using the boundary element method on a distributed computing system.

    Science.gov (United States)

    Wright, Louise; Robinson, Stephen P; Humphrey, Victor F

    2009-03-01

    This paper presents a computational technique using the boundary element method for prediction of radiated acoustic waves from axisymmetric surfaces with nonaxisymmetric boundary conditions. The aim is to predict the far-field behavior of underwater acoustic transducers based on their measured behavior in the near-field. The technique is valid for all wavenumbers and uses a volume integral method to calculate the singular integrals required by the boundary element formulation. The technique has been implemented on a distributed computing system to take advantage of its parallel nature, which has led to significant reductions in the time required to generate results. Measurement data generated by a pair of free-flooding underwater acoustic transducers encapsulated in a polyurethane polymer have been used to validate the technique against experiment. The dimensions of the outer surface of the transducers (including the polymer coating) were an outer diameter of 98 mm with an 18 mm wall thickness and a length of 92 mm. The transducers were mounted coaxially, giving an overall length of 185 mm. The cylinders had resonance frequencies at 13.9 and 27.5 kHz, and the data were gathered at these frequencies.

  15. Distributed Tuning of Boundary Resources

    DEFF Research Database (Denmark)

    Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten

    2015-01-01

    in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent......The digital age has seen the rise of service systems involving highly distributed, heterogeneous, and resource-integrating actors whose relationships are governed by shared institutional logics, standards, and digital technology. The cocreation of service within these service systems takes place...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...

  16. Boundary works of Grindr research

    DEFF Research Database (Denmark)

    Jørgensen, Kristian Møller

    . Intimate boundary works There are phycological and sociological approaches that use it to describe types of interpersonal relationships (Giddens 1992, Baumeister 2007, Stempfhuber 2011, Nordqvist 2013). Related to this approach is the understanding that intimacy is something that is done, that is practiced....... (Berlant 1998) The production of a public/private divide serves to orient subject attention towards interpersonal matters, making invisible the forces that define which exact distinctions to police. This paper argues for an integrative approach, an amalgamation of sociological and critical intimacy theory...... Inquiry, 11(6), 840–860. Jamieson, L. (2005). Boundaries of Intimacy. In S. Cunningham-Burley (Ed.), Families in Society. Boundaries and relationships (pp. 189–205). Polity press. Linke, C. (2011). Being a couple in a media world: The mediatization of everyday communication in couple relationships...

  17. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea

    2013-01-01

    Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  18. Boundary value problems for systems of linear partial differential equations and propagation of microanalyticity

    OpenAIRE

    Oaku, Toshinori

    1986-01-01

    We give a general formulation of boundary value problems in the framework of hyperfunctions both for systems of linear partial differential equations with non-characteristic boundary and for Fuchsian systems of partial differential equations in a unified manner. We also give a microlocal formulation, which enables us to prove new results on propagation of micro-analyticity up to the boundary for solutions of systems micro-hyperbolic in a weak sense.

  19. Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems

    Science.gov (United States)

    Lehman, L. L.

    1982-01-01

    A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.

  20. Generalized Supersymetric Boundary State

    OpenAIRE

    1999-01-01

    Following our previous paper (hep-th/9909027), we generalize a supersymmetric boundary state so that arbitrary configuration of the gauge field coupled to the boundary of the worldsheet is incorpolated. This generalized boundary state is BRST invariant and satisfy the non-linear boundary conditions with non-constant gauge field strength. This boundary state contains divergence which is identical with the loop divergence in a superstring sigma model. Hence vanishing of the beta function in the...

  1. Study of Boundary Structures.

    Science.gov (United States)

    1982-09-01

    THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 11 - 4 TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY STRUCTURES...19 B THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 37 C TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY...layer structure. 10 SECTION 3 THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE The (111) planes of the fcc structure is stacked as ABCABC... as

  2. Prediction of diffuse organic micropollutant loads in streams under changing climatic, socio-economic and technical boundary conditions with an integrated transport model

    Science.gov (United States)

    Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Ghielmetti, Nico; Stamm, Christian

    2014-05-01

    Catchments are complex systems where water quantity, quality and the ecological services provided are determined by interacting physical, chemical, biological, economical and social factors. The realization of these interactions led to the prevailing catchment management paradigm: Integrated Water Resources Management (IWRM). IWRM requires considering all these aspects during the design of sustainable resource utilization. Due to the complexity of this task, mathematical modeling plays a key role in IWRM, namely in the evaluation of the impacts of hypothetical scenarios and management measures. Toxicity is a key determinant of the ecological state and as such a focal point in IWRM, but we still have significant knowledge gaps about the diffuse loads of organic micropollutants (OMP) that leak from both urban and agricultural areas. Most European catchments possess mixed land use, containing rural (natural and agricultural) landscapes and settlements in varying proportions. Thus, a catchment model supporting IWRM must be able to cope with both classes. However, the majority of existing catchment models is dedicated to either rural or urban areas, while the minority capable of simulating both contain overly simplified descriptions for either land use category. We applied a conceptual model that describes all major land use classes for assessing the impacts of climate change, socio-economic development and management alternatives on diffuse OMP loads. We simulated the loads of 12 compounds (agricultural and urban pesticides and urban biocides) with daily resolution at 11 locations in the stream network of a small catchment (46 km2) in Switzerland. The model considers all important diffuse transport pathways separately, but each with a simple empirical process rate. Consequently, some site-specific observations were required to calibrate rate parameters. We assessed uncertainty during both calibration and prediction phases. Predictions indicated that future OMP loads

  3. Lagrangian formulation of the one-dimensional Vlasov equation. [in plasma physics

    Science.gov (United States)

    Lewak, G. J.

    1974-01-01

    A new formulation of the one-dimensional Vlasov equation is derived which is analogous to the Kalman-transformed cold-plasma equations. The equations are shown to yield nonsecular, nonlinear approximations to a source or boundary-value problem. It is suggested that the formulation may have other applications in nonlinear plasma theory.

  4. Boundary states and finite size effects in sine-Gordon model with Neumann boundary condition

    CERN Document Server

    Bajnok, Z; Takács, G

    2001-01-01

    The sine-Gordon model with Neumann boundary condition is investigated. Using the bootstrap principle the spectrum of boundary bound states is established. Somewhat surprisingly it is found that Coleman-Thun diagrams and bound state creation may coexist. A framework to describe finite size effects in boundary integrable theories is developed and used together with the truncated conformal space approach to confirm the bound states and reflection factors derived by bootstrap.

  5. Integrating matrix solution of the hybrid state vector equations for beam vibration

    Science.gov (United States)

    Lehman, L. L.

    1982-01-01

    A simple, versatile, and efficient computational technique has been developed for dynamic analysis of linear elastic beam and rod type of structures. Moreover, the method provides a rather general solution approach for two-point boundary value problems that are described by a single independent spatial variable. For structural problems, the method is implemented by a mixed state vector formulation of the differential equations, combined with an integrating matrix solution procedure. Highly accurate solutions are easily achieved with this approach. Example solutions are given for beam vibration problems including discontinuous stiffness and mass parameters, elastic restraint boundary conditions, concentrated inertia loading, and rigid body modes

  6. Gravitational action with null boundaries

    Science.gov (United States)

    Lehner, Luis; Myers, Robert C.; Poisson, Eric; Sorkin, Rafael D.

    2016-10-01

    We present a complete discussion of the boundary term in the action functional of general relativity when the boundary includes null segments in addition to the more usual timelike and spacelike segments. We confirm that ambiguities appear in the contribution from a null segment, because it depends on an arbitrary choice of parametrization for the generators. We also show that similar ambiguities appear in the contribution from a codimension-two surface at which a null segment is joined to another (spacelike, timelike, or null) segment. The parametrization ambiguity can be tamed by insisting that the null generators be affinely parametrized; this forces each null contribution to the boundary action to vanish, but leaves intact the fredom to rescale the affine parameter by a constant factor on each generator. Once a choice of parametrization is made, the ambiguity in the joint contributions can be eliminated by formulating well-motivated rules that ensure the additivity of the gravitational action. Enforcing these rules, we calculate the time rate of change of the action when it is evaluated for a so-called "Wheeler-DeWitt patch" of a black hole in asymptotically anti de Sitter space. We recover a number of results cited in the literature, obtained with a less complete analysis.

  7. Using reciprocity in Boundary Element Calculations

    DEFF Research Database (Denmark)

    Juhl, Peter Møller; Cutanda Henriquez, Vicente

    2010-01-01

    The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated...... as the reciprocal radiation problem. The present paper concerns the situation of having a point source (which is reciprocal to a point receiver) at or near a discretized boundary element surface. The accuracy of the original and the reciprocal problem is compared in a test case for which an analytical solution...

  8. Spectral Analysis of Diffusions with Jump Boundary

    CERN Document Server

    Kolb, Martin

    2011-01-01

    In this paper we consider one-dimensional diffusions with constant coefficients in a finite interval with jump boundary and a certain deterministic jump distribution. We use coupling methods in order to identify the spectral gap in the case of a large drift and prove that that there is a threshold drift above which the bottom of the spectrum no longer depends on the drift. As a Corollary to our result we are able to answer two questions concerning elliptic eigenvalue problems with non-local boundary conditions formulated previously by Iddo Ben-Ari and Ross Pinsky.

  9. Boundary as Bridge: An Analysis of the Educational Neuroscience Literature from a Boundary Perspective

    Science.gov (United States)

    Beauchamp, Catherine; Beauchamp, Miriam H.

    2013-01-01

    Within the emerging field of educational neuroscience, concerns exist that the impact of neuroscience research on education has been less effective than hoped. In seeking a way forward, it may be useful to consider the problems of integrating two complex fields in the context of disciplinary boundaries. Here, a boundary perspective is used as a…

  10. Spanning organizational boundaries to manage creative processes:

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Kragh, Hanne; Lettl, Christopher

    2013-01-01

    creative talent, b) create shared identity, and c) combine and integrate knowledge in innovation projects involving external actors. We study boundary spanning activities in two creative projects in the LEGO group. One involves identifying and integrating deep, specialized knowledge, the other focuses...

  11. Efficacy of sunlight-activatable porphyrin formulates on larvae of Anopheles gambiae M and S molecular forms and An. arabiensis: a potential novel biolarvicide for integrated malaria vector control.

    Science.gov (United States)

    Fabris, Clara; Ouédraogo, Robert Kossivi; Coppellotti, Olimpia; Dabiré, Roch K; Diabaté, Abdoulaye; Di Martino, Piera; Guidolin, Laura; Jori, Giulio; Lucantoni, Leonardo; Lupidi, Giulio; Martena, Valentina; Sawadogo, Simon P; Soncin, Marina; Habluetzel, Annette

    2012-09-01

    Biolarvicides, such as microbial formulations based on Bacillus thuringiensis and B. sphaericus, have been found to be highly effective against mosquito larvae and are currently employed as eco-friendly alternatives to synthetic chemical insecticides for vector control. Recently, a porphyrin of natural origin has been suggested as a sunlight-activatable larvicide against the dengue vector Aedes aegypti. In order to validate the approach for the control of the malaria vector, we tested the photo-larvicidal activity of a novel porphyrin, namely meso-tri(N-methyl-pyridyl), mono(N-dodecyl-pyridyl)porphine, C12, associated with two specifically selected carriers, against Anopheles gambiae s.s. and An. arabiensis larvae, both laboratory reared and collected from malaria endemic sites in Burkina Faso. Both C12-porphyrin formulates, when administered to larvae at a 50μM porphyrin dose, were accumulated in the alimentary canal. Subsequent exposure of the porphyrin-loaded larvae to sunlight for short times (0.5-3h) led to a complete mortality. The high efficacy exhibited by a "foodstuff" porphyrin formulate also in the presence of typical larval food particles opens promising perspectives for the development of an effective photocidal larvicide.

  12. Topological structures of boundary value problems in block elements

    Science.gov (United States)

    Babeshko, V. A.; Evdokimova, O. V.; Babeshko, O. M.

    2016-10-01

    Block structures are considered; a boundary value problem for a system of inhomogeneous partial differential equations with constant coefficients is formulated in each block of a structure. The problem of matching solutions to boundary value problems in blocks with each other by topological study of the properties of solutions in the block structure is examined in the conditions of correct solvability of boundary value problems in blocks of the block structure. Some new properties of solutions to boundary value problems in block structures are found that are important for applications.

  13. Forward seismic modeling with the use of boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Xuejun, L.

    1991-01-01

    Boundary element method for wave equation boundary value problem involves three steps: the boundary value problem of wave equations is converted into the boundary value problem of Helmholtz's equations by performing the one-dimensional Fourier transform of time variable, the new boundary value problem is converted into an integral equation by using Green's formula; and the integral equation is solved using boundary element method, and the required numerical solution is obtained by using inverse Fourier transform. This paper analyzes the theoretical formulas and application of the method. This method can be applied to forward and inverse seismic problems. In solving integral equation using boundary element method, the adoption of interval truncation division results in less element knots, less internal storage, faster operation and more accurate computation.

  14. Formulation of Complex Action Theory

    CERN Document Server

    Nagao, Keiichi

    2011-01-01

    We formulate the complex action theory from a fundamental level so that we can deal with a complex coordinate $q$ and a complex momentum $p$. We extend $| q >$ and $| p>$ to complex $q$ and $p$ by utilizing coherent states of harmonic oscillators. Introducing a philosophy to keep the analyticity in parameter variables of Feynman path integral, we define a modified set of complex conjugate, real and imaginary parts, hermitian conjugates and bras. They enable us to have both orthogonality and completeness relations for $|q >$ and $|p >$ with complex $q$ and $p$. We also pose a theorem on the relation between functions and operators to make it clear to some extent. Furthermore, extending our previous work \\cite{Nagao:2010xu} to the complex coordinate case, we study a system defined by a diagonalizable non-hermitian bounded Hamiltonian, and show that a hermitian Hamiltonian is effectively obtained after a long time development by introducing a proper inner product. If the hermitian Hamiltonian is given in a local...

  15. Boundary-value problems for wave equations with data on the whole boundary

    Directory of Open Access Journals (Sweden)

    Makhmud A. Sadybekov

    2016-10-01

    Full Text Available In this article we propose a new formulation of boundary-value problem for a one-dimensional wave equation in a rectangular domain in which boundary conditions are given on the whole boundary. We prove the well-posedness of boundary-value problem in the classical and generalized senses. To substantiate the well-posedness of this problem it is necessary to have an effective representation of the general solution of the problem. In this direction we obtain a convenient representation of the general solution for the wave equation in a rectangular domain based on d'Alembert classical formula. The constructed general solution automatically satisfies the boundary conditions by a spatial variable. Further, by setting different boundary conditions according to temporary variable, we get some functional or functional-differential equations. Thus, the proof of the well-posedness of the formulated problem is reduced to question of the existence and uniqueness of solutions of the corresponding functional equations.

  16. Plutonium Immobilization Project Baseline Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.

    1999-02-01

    A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

  17. County Political Boundaries (National)

    Data.gov (United States)

    Department of Transportation — County boundaries with political limit - boundaries extending into the ocean (NTAD 2015). The TIGER/Line shapefiles and related database files (.dbf) are an extract...

  18. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  19. State Agency Administrative Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...

  20. HUD GIS Boundary Files

    Data.gov (United States)

    Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...

  1. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  2. A Neumann Boundary Term for Gravity

    CERN Document Server

    Krishnan, Chethan

    2016-01-01

    The Gibbons-Hawking-York (GHY) boundary term makes the Dirichlet problem for gravity well defined, but no such general term seems to be known for Neumann boundary conditions. In this paper, we view Neumann {\\em not} as fixing the normal derivative of the metric ("velocity") at the boundary, but as fixing the functional derivative of the action with respect to the boundary metric ("momentum"). This leads directly to a new boundary term for gravity: the trace of the extrinsic curvature with a specific dimension-dependent coefficient. In three dimensions this boundary term reduces to a "one-half" GHY term noted in the literature previously, and we observe that our action translates precisely to the Chern-Simons action with no extra boundary terms. In four dimensions the boundary term vanishes, giving a natural Neumann interpretation to the standard Einstein-Hilbert action without boundary terms. We argue that in light of AdS/CFT, ours is a natural approach for defining a "microcanonical" path integral for gravit...

  3. Baseline LAW Glass Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  4. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 13. Integration of Renewable Energy Technologies in the national curriculum SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia)

    2011-11-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report focuses on the achievements for settling a national curriculum for Renewable Energy Technologies (RET) within the framework of national programme SPECTRUM, which includes all curricula of the medium technical schools in Indonesia.

  5. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  6. Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation.

    Science.gov (United States)

    Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I

    2016-05-28

    The objective of this study was to develop a novel methodology that enables pig diets to be formulated explicitly for environmental impact objectives using a Life Cycle Assessment (LCA) approach. To achieve this, the following methodological issues had to be addressed: (1) account for environmental impacts caused by both ingredient choice and nutrient excretion, (2) formulate diets for multiple environmental impact objectives and (3) allow flexibility to identify the optimal nutritional composition for each environmental impact objective. An LCA model based on Canadian pig farms was integrated into a diet formulation tool to compare the use of different ingredients in Eastern and Western Canada. By allowing the feed energy content to vary, it was possible to identify the optimum energy density for different environmental impact objectives, while accounting for the expected effect of energy density on feed intake. A least-cost diet was compared with diets formulated to minimise the following objectives: non-renewable resource use, acidification potential, eutrophication potential, global warming potential and a combined environmental impact score (using these four categories). The resulting environmental impacts were compared using parallel Monte Carlo simulations to account for shared uncertainty. When optimising diets to minimise a single environmental impact category, reductions in the said category were observed in all cases. However, this was at the expense of increasing the impact in other categories and higher dietary costs. The methodology can identify nutritional strategies to minimise environmental impacts, such as increasing the nutritional density of the diets, compared with the least-cost formulation.

  7. Saltstone Clean Cap Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2005-04-22

    The current operation strategy for using Saltstone Vault 4 to receive 0.2 Ci/gallon salt solution waste involves pouring a clean grout layer over the radioactive grout prior to initiating pour into another cell. This will minimize the radiating surface area and reduce the dose rate at the vault and surrounding area. The Clean Cap will be used to shield about four feet of Saltstone poured into a Z-Area vault cell prior to moving to another cell. The minimum thickness of the Clean Cap layer will be determined by the cesium concentration and resulting dose levels and it is expected to be about one foot thick based on current calculations for 0.1 Ci Saltstone that is produced in the Saltstone process by stabilization of 0.2 Ci salt solution. This report documents experiments performed to identify a formulation for the Clean Cap. Thermal transient calculations, adiabatic temperature rise measurements, pour height, time between pour calculations and shielding calculations were beyond the scope and time limitations of this study. However, data required for shielding calculations (composition and specific gravity) are provided for shielding calculations. The approach used to design a Clean Cap formulation was to produce a slurry from the reference premix (10/45/45 weight percent cement/slag/fly ash) and domestic water that resembled as closely as possible the properties of the Saltstone slurry. In addition, options were investigated that may offer advantages such as less bleed water and less heat generation. The options with less bleed water required addition of dispersants. The options with lower heat contained more fly ash and less slag. A mix containing 10/45/45 weight percent cement/slag/fly ash with a water to premix ratio of 0.60 is recommended for the Clean Cap. Although this mix may generate more than 3 volume percent standing water (bleed water), it has rheological, mixing and flow properties that are similar to previously processed Saltstone. The recommended

  8. Operator Formulation of Classical Mechanics.

    Science.gov (United States)

    Cohn, Jack

    1980-01-01

    Discusses the construction of an operator formulation of classical mechanics which is directly concerned with wave packets in configuration space and is more similar to that of convential quantum theory than other extant operator formulations of classical mechanics. (Author/HM)

  9. Formulation of supergravity without superspace

    CERN Document Server

    Ferrara, S

    1979-01-01

    Supergravity, the particle theory which unifies under a unique gauge principle the quantum-mechanical concept of spin and space-time geometry, is formulated in terms of quantities defined over Minkowski space-time. 'l'he relation between this formulation and the fonnulation which uses superspace, the space-time supplemented by spinning degrees of freedom, is also briefly discussed.

  10. Boundary element-free method for elastodynamics

    Institute of Scientific and Technical Information of China (English)

    CHENG; Yumin; PENG; Miaojuan

    2005-01-01

    The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system. A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method for elastodynamics problems is presented in this paper. Finally, some numerical examples are given.

  11. Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations

    Science.gov (United States)

    Ehrlacher, V.; Ortner, C.; Shapeev, A. V.

    2016-12-01

    Numerical simulations of crystal defects are necessarily restricted to finite computational domains, supplying artificial boundary conditions that emulate the effect of embedding the defect in an effectively infinite crystalline environment. This work develops a rigorous framework within which the accuracy of different types of boundary conditions can be precisely assessed. We formulate the equilibration of crystal defects as variational problems in a discrete energy space and establish qualitatively sharp regularity estimates for minimisers. Using this foundation we then present rigorous error estimates for (i) a truncation method (Dirichlet boundary conditions), (ii) periodic boundary conditions, (iii) boundary conditions from linear elasticity, and (iv) boundary conditions from nonlinear elasticity. Numerical results confirm the sharpness of the analysis.

  12. Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jens Stissing; Sigmund, Ole

    2007-01-01

    given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation...... for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several...

  13. Metric-based Hamiltonians, null boundaries, and isolated horizons

    CERN Document Server

    Booth, I S

    2001-01-01

    We extend the quasilocal (metric-based) Hamiltonian formulation of general relativity so that it may be used to study regions of spacetime with null boundaries. In particular we use this generalized Brown-York formalism to study the physics of isolated horizons. We show that the first law of isolated horizon mechanics follows directly from the first variation of the Hamiltonian. This variation is not restricted to the phase space of solutions to the equations of motion but is instead through the space of all (off-shell) spacetimes that contain isolated horizons. We find two-surface integrals evaluated on the horizons that are consistent with the Hamiltonian and which define the energy and angular momentum of these objects. These are closely related to the corresponding Komar integrals and for Kerr-Newman spacetime are equal to the corresponding ADM/Bondi quantities. Thus, the energy of an isolated horizon calculated by this method is in agreement with that recently calculated by Ashtekar and collaborators but...

  14. Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations

    Science.gov (United States)

    Kanoglu, U.; Aydin, B.

    2014-12-01

    The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV

  15. An Alternate Path Integral for Quantum Gravity

    CERN Document Server

    Krishnan, Chethan; Raju, Avinash

    2016-01-01

    We define a (semi-classical) path integral for gravity with Neumann boundary conditions in $D$ dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This "Neumann ensemble" perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

  16. An alternative path integral for quantum gravity

    Science.gov (United States)

    Krishnan, Chethan; Kumar, K. V. Pavan; Raju, Avinash

    2016-10-01

    We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This "Neumann ensemble" perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

  17. Comment on the uncertainty relation with periodic boundary conditions

    CERN Document Server

    Fujikawa, Kazuo

    2010-01-01

    The Kennard-type uncertainty relation $\\Delta x\\Delta p >\\frac{\\hbar}{2}$ is formulated for a free particle with given momentum $ inside a box with periodic boundary conditions in the large box limit. Our construction of a free particle state is analogous to that of the Bloch wave in a periodic potential. A simple Robertson-type relation, which minimizes the effect of the box boundary and may be useful in some practical applications, is also presented.

  18. Formulation of elastic multi-structures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the creative and groundbreaking work done by Feng and Shi, some further work has been carried out comprehensively by the first author on the formulation of elastic multi-structures. The main contribution of this paper can be summarized as follows: The work of Feng and Shi has been extended to an elastic multi-structures with nonlinear structural element: shell in both linear and nonlinear case. Three general combinations of multi-structures have been formulated, that is, Case 1: linear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; Case 2: nonlinear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; and Case 3: the linear-nonlinear mix problem of 3-D body (nonlinear), 1-D bar/beam (linear), 2-D plates (linear) and 2-D shell (linear). From the investigation, it has proved that the higher dimensional element will have a strong influence on the lower one with the inner linkage boundaries, and also proved that solution uniqueness of elastic multi-structures is different from a single 3-D body.

  19. Formulation of elastic multi-structures

    Institute of Scientific and Technical Information of China (English)

    SUN BoHua; YE ZhiMing

    2009-01-01

    Based on the creative and groundbreaking work done by Feng and Shi, some further work has been carried out comprehensively by the first author on the formulation of elastic multi-structures. The main contribution of this paper can be summarized as follows: The work of Feng and Shi has been extended to an elastic multi-structures with nonlinear structural element: shell in both linear and nonlinear case. Three general combinations of multi-structures have been formulated, that is, Case 1: linear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; Case 2: nonlinear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; and Case 3: the linear-nonlinear mix problem of 3-D body (nonlinear), 1-D bar/beam (linear), 2-D plates (linear) and 2-D shell (linear). From the investigation, it has proved that the higher dimensional element will have a strong influence on the lower one with the inner linkage boundaries, and also proved that solution uniqueness of elastic mulU-structures is different from a single 3-D body.

  20. An integral-free expression for short-term changes in fault stability due to pore pressure induced when a point load is placed on the pervious boundary of a porous elastic half space containing a fault

    Indian Academy of Sciences (India)

    Ramesh Chander; S K Tomar

    2014-10-01

    A concentrated load with step-function time behaviour is placed normal to the planar, pervious boundary of a porous elastic half space (PEHS) with compressible constituents. A planar fault exists in the PEHS in such a way that the poroelastic behaviour of the medium is unhindered. We derive an approximate but integral-free expression for CFSCPP, i.e., changes in fault stability due to changes in pore pressure, at a point not too far off the line along which the load acts. But, in the interest of simplicity, the main discussion is focussed on a consideration of CFSCPP at a point located on the fault at depth directly beneath the load. It is convenient to introduce dimensionless time directly proportional to real time . The constant of proportionality is 4c/z2, where is hydraulic diffusivity. The derived approximate expression gives results with an accuracy of greater than 99% for limited values of after the load is imposed. We learn from the derived expression that, for a given , fault stability undergoes an initial sudden decrease commensurate with the undrained pore pressure induced in the PEHS. This is followed by a more gradual decrease in fault stability with increasing until a minimum is reached. The real time to minimum fault stability increases with . The magnitude of CFSCPP decreases with as −2 for a given in the permissible range. The derived expression and the inferences based on it should be useful during earth science investigations of the possible hazards due to reactivation of a pre-existing shallow fault when a civil engineering project involving imposition of a heavy load on the earth’s surface is to be executed nearby. They should be useful also for investigations if a shallow earthquake occurs near such a project soon after its execution.

  1. A fast integral equation method for solid particles in viscous flow using quadrature by expansion

    CERN Document Server

    Klinteberg, Ludvig af

    2016-01-01

    Boundary integral methods are advantageous when simulating viscous flow around rigid particles, due to the reduction in number of unknowns and straightforward handling of the geometry. In this work we present a fast and accurate framework for simulating spheroids in periodic Stokes flow, which is based on the completed double layer boundary integral formulation. The framework implements a new method known as quadrature by expansion (QBX), which uses surrogate local expansions of the layer potential to evaluate it to very high accuracy both on and off the particle surfaces. This quadrature method is accelerated through a newly developed precomputation scheme. The long range interactions are computed using the spectral Ewald (SE) fast summation method, which after integration with QBX allows the resulting system to be solved in M log M time, where M is the number of particles. This framework is suitable for simulations of large particle systems, and can be used for studying e.g. porous media models.

  2. Stückelberg formulation of holography

    Science.gov (United States)

    Dvali, Gia; Gomez, Cesar; Wintergerst, Nico

    2016-10-01

    We suggest that holography can be formulated in terms of the information capacity of the Stückelberg degrees of freedom that maintain gauge invariance of the theory in the presence of an information boundary. These Stückelbergs act as qubits that account for a certain fraction of quantum information. Their information capacity is measured by the ratio of the inverse Stückelberg energy gap to the size of the system. Systems with the smallest gap are maximally holographic. For massless gauge systems this information measure is universally equal to the inverse coupling evaluated at the systems' length scale. In this language it becomes very transparent why the Stückelberg information capacity of black holes saturates the Bekenstein bound and accounts for the entire information of the system. The physical reason is that the strength of quantum interaction is bounded from below by the gravitational coupling, which scales as area. Observing the striking similarity between the scalings of the energy gap of the boundary Stückelberg modes and the Bogoliubov modes of critical many-body systems, we establish a connection between holography and quantum criticality through the correspondence between these modes.

  3. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  4. Characterizations of boundary pluripolar hulls

    NARCIS (Netherlands)

    Djire, I.K.; Wiegerinck, J.

    2016-01-01

    We present some basic properties of the so-called boundary relative extremal function and discuss boundary pluripolar sets and boundary pluripolar hulls. We show that for B-regular domains the boundary pluripolar hull is always trivial on the boundary of the domain and present a “boundary version” o

  5. Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras

    Science.gov (United States)

    Grahovski, Georgi G.; Mikhailov, Alexander V.

    2013-12-01

    Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated.

  6. BoundaryOther_BNDHASH

    Data.gov (United States)

    Vermont Center for Geographic Information — The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee) boundaries. It is a...

  7. A simple and self-consistent geostrophic-force-balance model of the thermohaline circulation with boundary mixing

    Directory of Open Access Journals (Sweden)

    J. Callies

    2011-08-01

    Full Text Available A simple model of the thermohaline circulation (THC is formulated, with the objective to represent explicitly the geostrophic force balance of the basinwide THC. The model comprises advective-diffusive density balances in two meridional-vertical planes located at the eastern and the western walls of a hemispheric sector basin. Boundary mixing constrains vertical motion to lateral boundary layers along these walls. Interior, along-boundary, and zonally integrated meridional flows are in thermal-wind balance. Rossby waves and the absence of interior mixing render isopycnals zonally flat except near the western boundary, constraining meridional flow to the western boundary layer. The model is forced by a prescribed meridional surface density profile.

    This two-plane model reproduces both steady-state density and steady-state THC structures of a primitive-equation model. The solution shows narrow deep sinking at the eastern high latitudes, distributed upwelling at both boundaries, and a western boundary current with poleward surface and equatorward deep flow. The overturning strength has a 2/3-power-law dependence on vertical diffusivity and a 1/3-power-law dependence on the imposed meridional surface density difference. Convective mixing plays an essential role in the two-plane model, ensuring that deep sinking is located at high latitudes. This role of convective mixing is consistent with that in three-dimensional models and marks a~sharp contrast with previous two-dimensional models.

    Overall, the two-plane model reproduces crucial features of the THC as simulated in simple-geometry three-dimensional models. At the same time, the model self-consistently makes quantitative a conceptual picture of the three-dimensional THC that hitherto has been expressed either purely qualitatively or not self-consistently.

  8. A simple and self-consistent geostrophic-force-balance model of the thermohaline circulation with boundary mixing

    Directory of Open Access Journals (Sweden)

    J. Callies

    2012-01-01

    Full Text Available A simple model of the thermohaline circulation (THC is formulated, with the objective to represent explicitly the geostrophic force balance of the basinwide THC. The model comprises advective-diffusive density balances in two meridional-vertical planes located at the eastern and the western walls of a hemispheric sector basin. Boundary mixing constrains vertical motion to lateral boundary layers along these walls. Interior, along-boundary, and zonally integrated meridional flows are in thermal-wind balance. Rossby waves and the absence of interior mixing render isopycnals zonally flat except near the western boundary, constraining meridional flow to the western boundary layer. The model is forced by a prescribed meridional surface density profile.

    This two-plane model reproduces both steady-state density and steady-state THC structures of a primitive-equation model. The solution shows narrow deep sinking at the eastern high latitudes, distributed upwelling at both boundaries, and a western boundary current with poleward surface and equatorward deep flow. The overturning strength has a 2/3-power-law dependence on vertical diffusivity and a 1/3-power-law dependence on the imposed meridional surface density difference. Convective mixing plays an essential role in the two-plane model, ensuring that deep sinking is located at high latitudes. This role of convective mixing is consistent with that in three-dimensional models and marks a sharp contrast with previous two-dimensional models.

    Overall, the two-plane model reproduces crucial features of the THC as simulated in simple-geometry three-dimensional models. At the same time, the model self-consistently makes quantitative a conceptual picture of the three-dimensional THC that hitherto has been expressed either purely qualitatively or not self-consistently.

  9. Numerical Solution for the Helmholtz Equation with Mixed Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We consider the numerical solution for the Helmholtz equation in R2 with mixed boundary conditions. The solvability of this mixed boundary value problem is established by the boundary integral equation method. Based on the Green formula, we express the solution in terms of the boundary data. The key to the numerical realization of this method is the computation of weakly singular integrals. Numerical performances show the validity and feasibility of our method. The numerical schemes proposed in this paper have been applied in the realization of probe method for inverse scattering problems.

  10. Regular and Irregular Boundary Conditions in the AdS/CFT Correspondence

    CERN Document Server

    Mück, W

    1999-01-01

    We expand on Klebanov and Witten's recent proposal for formulating the AdS/CFT correspondence using irregular boundary conditions. The proposal is shown to be correct to any order in perturbation theory.

  11. Formulation of Complex Action Theory

    OpenAIRE

    Nagao, Keiichi; Nielsen, Holger Bech

    2011-01-01

    We formulate a complex action theory which includes operators of coordinate and momentum $\\hat{q}$ and $\\hat{p}$ being replaced with non-hermitian operators $\\hat{q}_{new}$ and $\\hat{p}_{new}$, and their eigenstates ${}_m

  12. Formulation Optimization of Arecoline Patches

    Directory of Open Access Journals (Sweden)

    Pao-Chu Wu

    2014-01-01

    Full Text Available The response surface methodology (RSM including polynomial equations has been used to design an optimal patch formulation with appropriate adhesion and flux. The patch formulations were composed of different polymers, including Eudragit RS 100 (ERS, Eudragit RL 100 (ERL and polyvinylpyrrolidone K30 (PVP, plasticizers (PEG 400, and drug. In addition, using terpenes as enhancers could increase the flux of the drug. Menthol showed the highest enhancement effect on the flux of arecoline.

  13. Quasienergy formulation of damped response theory.

    Science.gov (United States)

    Kristensen, Kasper; Kauczor, Joanna; Kjaergaard, Thomas; Jørgensen, Poul

    2009-07-28

    We present a quasienergy-based formulation of damped response theory where a common effective lifetime parameter has been introduced for all excited states in terms of complex excitation energies. The introduction of finite excited state lifetimes leads to a set of (complex) damped response equations, which have the same form to all orders in the perturbation. An algorithm is presented for solving the damped response equations in Hartree-Fock theory and Kohn-Sham density functional theory. The use of the quasienergy formulation allows us to obtain directly the computationally simplest expressions for damped response functions by applying a set of response parameter elimination rules, which minimize the total number of damped response equations to be solved. In standard response theory broadened absorption spectra are obtained by ad hoc superimposing lineshape functions onto the absorption stick spectra, whereas an empirical lineshape function common to all excitations is an integrated part of damped response theory. By superimposing the lineshape functions inherent in damped response theory onto the stick spectra of standard response theory, we show that the absorption spectra obtained in standard and damped response theory calculations are identical. We demonstrate that damped response theory may be applied to obtain absorption spectra in all frequency ranges, also those that are not readily addressed using standard response theory. This makes damped response theory an effective tool, e.g., for determining absorption spectra for large molecules, where the density of the excited states may be very high, and where standard response theory therefore is not applicable in practice. A thorough comparison is given between our formulation of damped response theory and the formulation by Norman et al. [J. Chem. Phys. 123, 194103 (2005)].

  14. Niosomal Formulation Of Orlistat: Formulation And In-Vitro Evaluation

    Directory of Open Access Journals (Sweden)

    SAMYUKTHA RANI. B

    2011-06-01

    Full Text Available The purpose of the research was to prepare Orlistat niosomes from proniosome to improve its poor and variable oral bioavailability. The non-ionic surfactant vesicles are prepared by the reverse phase evaporation technique (slurry method. The slurry of - Cyclodextrin and Span 60 was dried to form a free flowing powder in rotary flash evaporator which could be rehydrated by addition of buffer (0.5% NaCl with 3% SLS at pH 6.0. The lipid mixture consisted of cholesterol, Span 60 and - Cyclodextrin carrier in molar ratios of (0.1:0.9:1 to 0.9:0.1:1 respectively. The niosomal formulations were evaluated for particle size, entrapment efficiency, in-vitro drug release, release kinetics, Interactions and compatibility (FT-IR, surface morphology (SEM, stability studies, conductivity and sedimentation rate, pH density, viscosity. The formulation OT9 which showed higher entrapment efficiency of 44.09% and invitro releases of 94.59% at the end of 12hrs was found to be best among all the 9 formulations. Release was best fitted with Hixson kinetics and it shows that the drug release may follow diffusion mechanism. FT-IR data revealed that, compatible and there were no interactions between the drug and excipients added in the formulation. SEM images of niosomes with various magnifications revealed the mean size of the niosomes were 100 nm with smooth surface. Niosome formulation has showed appropriate stability for 90 days by storing the formulation at room temperature. Thus the niosomal formulations could be a promising delivery system for Orlistat with improved oral bioavailability, stability and for sustained drug release.

  15. Deformation of vortex patches by boundaries

    CERN Document Server

    Crosby, A; Morrison, P J

    2013-01-01

    The deformation of two-dimensional vortex patches in the vicinity of fluid boundaries is investigated. The presence of a boundary causes an initially circular patch of uniform vorticity to deform. Sufficiently far away from the boundary, the deformed shape is well approximated by an ellipse. This leading order elliptical deformation is investigated via the elliptic moment model of Melander, Zabusky & Styczek [M. V. Melander, N. J. Zabusky & A. S. Styczek, J. Fluid. Mech., 167, 95 (1986)]. When the boundary is straight, the centre of the elliptic patch remains at a constant distance from the boundary, and the motion is integrable. Furthermore, since the straining flow acting on the patch is constant in time, the problem is that of an elliptic vortex patch in constant strain, which was analysed by Kida [S. Kida, J. Phys. Soc. Japan, 50, 3517 (1981)]. For more complicated boundary shapes, such as a square corner, the motion is no longer integrable. Instead, there is an adiabatic invariant for the motion....

  16. Bioavailability of cefuroxime axetil formulations.

    Science.gov (United States)

    Donn, K H; James, N C; Powell, J R

    1994-06-01

    Cefuroxime axetil tablets have proved effective for the treatment of a variety of community-acquired infections. A suspension formulation has been developed for use in children. Two studies have been conducted to determine if the cefuroxime axetil formulations are bioequivalent. In the initial randomized, two-period crossover study, 24 healthy men received 250-mg doses of suspension and tablet formulations of cefuroxime axetil every 12 h after eating for seven doses. Each treatment period was separated by 4 days. Comparisons of serum and urine pharmacokinetic parameters indicated that the suspension and tablet formulations of cefuroxime axetil are not bioequivalent. Following the initial bioequivalency study, 0.1 % sodium lauryl sulfate (SLS) was added to the suspension to assure the homogeneity of the granules during the manufacturing process. In the subsequent randomized, three-period crossover study, 24 healthy men received single 250-mg doses of three cefuroxime axetil formulations: suspension without SLS, suspension with SLS, and tablet. Again each treatment period was separated by 4 days. Pharmacokinetic analyses demonstrated that while the suspension with SLS and suspension without SLS are bioequivalent, bioequivalence between the suspension with SLS and the tablet was not observed. Thus, the addition of the SLS surfactant to the suspension did not alter the bioavailability of the formulation.

  17. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Science.gov (United States)

    Liska, Sebastian; Colonius, Tim

    2017-02-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.

  18. On the curvature of some free boundaries in higher dimensions

    CERN Document Server

    Gustafsson, Björn

    2011-01-01

    It is known that any subharmonic quadrature domain in two dimensions satisfies a natural inner ball condition, in other words there is a specific upper bound on the curvature of the boundary. This result directly applies to free boundaries appearing in obstacle type problems and in Hele-Shaw flow. In the present paper we make partial progress on the corresponding question in higher dimensions. Specifically, we prove the equivalence between several different ways to formulate the inner ball condition, and we compute the Brouwer degree for a geometrically important mapping related to the Schwarz potential of the boundary. The latter gives in particular a new proof in the two dimensional case.

  19. Coleman-Gurtin type equations with dynamic boundary conditions

    Science.gov (United States)

    Gal, Ciprian G.; Shomberg, Joseph L.

    2015-02-01

    We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman-Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear terms are defined on the interior of the domain and on the boundary and subject to either classical dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we do not assume that the interior and the boundary share the same memory kernel.

  20. Generalized Supersymetric Boundary State

    CERN Document Server

    Hashimoto, K

    2000-01-01

    Following our previous paper (hep-th/9909027), we generalize a supersymmetric boundary state so that arbitrary configuration of the gauge field coupled to the boundary of the worldsheet is incorpolated. This generalized boundary state is BRST invariant and satisfy the non-linear boundary conditions with non-constant gauge field strength. This boundary state contains divergence which is identical with the loop divergence in a superstring sigma model. Hence vanishing of the beta function in the superstring sigma model corresponds to a well-defined boundary state with no divergence. The coupling of a single closed superstring massless mode with multiple open string massless modes is encoded in the boundary state, and we confirm that derivative correction to the D-brane action in this sector vanishes up to the first non-trivial order O(alpha'(derivative)^2). Combining T-dualities, we incorpolate also general configurations of the scalar fields on the D-brane, and construct boundary states representing branes stuc...

  1. Renormalized Volumes with Boundary

    CERN Document Server

    Gover, A Rod

    2016-01-01

    We develop a general regulated volume expansion for the volume of a manifold with boundary whose measure is suitably singular along a separating hypersurface. The expansion is shown to have a regulator independent anomaly term and a renormalized volume term given by the primitive of an associated anomaly operator. These results apply to a wide range of structures. We detail applications in the setting of measures derived from a conformally singular metric. In particular, we show that the anomaly generates invariant (Q-curvature, transgression)-type pairs for hypersurfaces with boundary. For the special case of anomalies coming from the volume enclosed by a minimal hypersurface ending on the boundary of a Poincare--Einstein structure, this result recovers Branson's Q-curvature and corresponding transgression. When the singular metric solves a boundary version of the constant scalar curvature Yamabe problem, the anomaly gives generalized Willmore energy functionals for hypersurfaces with boundary. Our approach ...

  2. A coupled BEM-FEM method for finite strain magneto-elastic boundary-value problems

    Science.gov (United States)

    Nedjar, B.

    2016-12-01

    The first objective of this contribution is the formulation of nonlinear problems in magneto-elasticity involving finite geometry of the surrounding free space. More specifically for the magnetic part of the problem, the surrounding free space is described by means of a boundary integral equation for which boundary elements are used that are appropriately coupled with the finite element discretization used inside the material. The second objective is to develop a numerical strategy to solve the strongly coupled magneto-mechanics problem at hand. Herein we provide a staggered scheme consisting of a magnetostatic resolution employing the above coupled BEM-FEM procedure at fixed deformation, followed by a mechanical resolution at fixed magnetic fields. This decoupled method renders the whole solution strategy very appealing since, among others, the first BEM-FEM resolution is linear for some prototype models, and the remaining mechanical resolution is analogous to nowadays classical nonlinear elastostatic problems in the finite strain range. Some nonlinear boundary-value problems are simulated to demonstrate the applicability of the proposed framework.

  3. Paint and Click: Unified Interactions for Image Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Summa, B. [Univ. of Utah, Salt Lake City, UT (United States). Scientific Computing and Imaging (SCI) Inst.; Gooch, A. A. [Univ. of Utah, Salt Lake City, UT (United States). Scientific Computing and Imaging (SCI) Inst.; Scorzelli, G. [Univ. of Utah, Salt Lake City, UT (United States). Scientific Computing and Imaging (SCI) Inst.; Pascucci, V. [Univ. of Utah, Salt Lake City, UT (United States). Scientific Computing and Imaging (SCI) Inst.

    2015-06-22

    Image boundaries are a fundamental component of many interactive digital photography techniques, enabling applications such as segmentation, panoramas, and seamless image composition. Interactions for image boundaries often rely on two complementary but separate approaches: editing via painting or clicking constraints. In this work, we provide a novel, unified approach for interactive editing of pairwise image boundaries that combines the ease of painting with the direct control of constraints. Rather than a sequential coupling, this new formulation allows full use of both interactions simultaneously, giving users unprecedented flexibility for fast boundary editing. To enable this new approach, we provide technical advancements. In particular, we detail a reformulation of image boundaries as a problem of finding cycles, expanding and correcting limitations of the previous work. Our new formulation provides boundary solutions for painted regions with performance on par with state-of-the-art specialized, paint-only techniques. In addition, we provide instantaneous exploration of the boundary solution space with user constraints. Finally, we provide examples of common graphics applications impacted by our new approach.

  4. Level set formulation of two-dimensional Lagrangian vortex detection methods

    CERN Document Server

    Hadjighasem, Alireza

    2016-01-01

    We propose here the use of the variational level set methodology to capture Lagrangian vortex boundaries in 2D unsteady velocity fields. This method reformulates earlier approaches that seek material vortex boundaries as extremum solutions of variational problems. We demonstrate the performance of this technique for two different variational formulations built upon different notions of coherence. The first formulation uses an energy functional that penalizes the deviation of a closed material line from piecewise uniform stretching [Haller and Beron-Vera, J. Fluid Mech. 731, R4 (2013)]. The second energy function is derived for a graph-based approach to vortex boundary detection [Hadjighasem et al., Phys. Rev. E 93, 063107 (2016)]. Our level-set formulation captures an a priori unknown number of vortices simultaneously at relatively low computational cost. We illustrate the approach by identifying vortices from different coherence principles in several examples.

  5. Social Groupwork. A Model for Goal Formulation.

    Science.gov (United States)

    Tompkins, Rosamond P.; Gallo, Frank T.

    1978-01-01

    A conceptual model for goal formulation in social groupwork, discussion of existing models and their limitations, and an attempt to formulate an encompassing groupwork model that facilitates goal formulation. (Author/PD)

  6. The Changing Spatial Pattern of Cross-Boundary Consumption Activities in the Context of Shenzhen-Hong Kong Integration%签证制度对跨境消费行为的影响研究

    Institute of Scientific and Technical Information of China (English)

    李鹏; 张进晖

    2013-01-01

    The process of Shenzhen-Hong Kong integration has been increasingly move forward within the framework of “one country, two systems” policy.One of the biggest steps toward this agenda is the approval of Multiple-Jour-ney Exit-Entry Permit for Shenzhen residents in 2009 .This policy brings great convenience for Shenzhen residents going to Hong Kong .The influences of such new policy of Multiple-Journey Exit-Entry Permit by focusing on the changing spatial patterns of cross-boundary shopping activities are investigated .Quantitative methods are applied to compare the behaviors of visitors who have different entry visa rights .It reveals that the consumption pattern of visi-tors holding Multiple-Journey Exit-Entry Permit has changed from visiting tourist attractions to shopping .Most of their travel destinations are located in the northern part of Hong Kong , which is spatially adjacent to Shenzhen while the popular tourist attractions are less visited .The changing consumption pattern would make contribution to the e-ven distribution of Hong Kong business facilities .%采用问卷调查的方法,通过对比深圳居民中享有不同签注权利的居民赴港消费行为的比较研究,发现持有一年多次往返香港签注便利的深圳居民的旅游明显地从观光向日常消费转变,在行程安排上更加注重交通便利性的考量,主动回避游客集聚的中心消费场所,转而选择香港北部靠近深圳的次级消费场所。这种消费者空间行为的改变在一定程度上有助于香港商业设施在空间上的均衡发展。

  7. A Geometrical Approach to the Boundary Element Method

    CERN Document Server

    Auchmann, B; Rjasanow, S

    2008-01-01

    We introduce a geometric formulation of the boundary element method (BEM), using concepts of the discrete electromagnetic theory. Geometric BEM is closely related to Galerkin-BEM and to the generalized collocation scheme. It is easy to implement, accurate, and computationally efficient. We validate our approach with 2-D examples and give an outlook to 3-D results.

  8. Parameter identification in tidal models with uncertain boundaries

    NARCIS (Netherlands)

    Bagchi, Arunabha; Brummelhuis, ten Paul

    1994-01-01

    In this paper we consider a simultaneous state and parameter estimation procedure for tidal models with random inputs, which is formulated as a minimization problem. It is assumed that some model parameters are unknown and that the random noise inputs only act upon the open boundaries. The hyperboli

  9. From discrete particles to continuum fields near a boundary

    NARCIS (Netherlands)

    Weinhart, Thomas; Thornton, Anthony R.; Luding, Stefan; Bokhove, Onno

    2011-01-01

    An expression for the stress tensor near an external boundary of a discrete mechanical system is derived explicitly in terms of the constituents’ degrees of freedom and interaction forces. Starting point is the exact and general coarse graining formulation presented by Goldhirsch in [I.Goldhirsch, G

  10. Secure Supply Chains: Design Restrictions & Organizational Boundaries

    NARCIS (Netherlands)

    Ludema, M.W.

    2009-01-01

    An important issue in the design of secure supply chains is the understanding of the relation between supply chains and the organizational responsibility of specific parts of these supply chains. Organizational boundaries change over time by means of vertical and/or horizontal (des)-integration and

  11. Riemann boundary value problem for hyperanalytic functions

    Directory of Open Access Journals (Sweden)

    Ricardo Abreu Blaya

    2005-01-01

    Full Text Available We deal with Riemann boundary value problem for hyperanalytic functions. Furthermore, necessary and sufficient conditions for solvability of the problem are derived. At the end the explicit form of general solution for singular integral equations with a hypercomplex Cauchy kernel in the Douglis sense is established.

  12. Equivariant preconditioners for boundary element methods

    Energy Technology Data Exchange (ETDEWEB)

    Tausch, J. [Colorado State Univ., Fort Collins, CO (United States)

    1994-12-31

    In this paper the author proposes and discusses two preconditioners for boundary integral equations on domains which are nearly symmetric. The preconditioners under consideration are equivariant, that is, they commute with a group of permutation matrices. Numerical experiments demonstrate their efficiency for the GMRES method.

  13. Stress Wave Propagation in Soils Modelled by the Boundary Element Method

    DEFF Research Database (Denmark)

    Rasmussen, K. M.

    This thesis deals with different aspects of the boundary element method (BEM) applied to stress wave propagation problems in soils. Among other things BEM formulations for coupled FEM and BEM, moving loads, direct BEM and indirect BEM are presented. For all the formulations both analytical expres...

  14. Obliquity along plate boundaries

    Science.gov (United States)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  15. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne;

    2015-01-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combi...

  16. A review on the systematic formulation of 3D multiparameter full waveform inversion in viscoelastic medium

    Science.gov (United States)

    Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean

    2016-07-01

    In this paper we study 3D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body (GMB/GZB) including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter full waveform inversion for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parameterization can be related to the counterparts using P- and S- velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high performance computing resources and the field data are available.

  17. A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium

    Science.gov (United States)

    Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean

    2016-10-01

    In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P and S velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high-performance computing resources and the field data are available.

  18. An accurate boundary value problem solver applied to scattering from cylinders with corners

    CERN Document Server

    Helsing, Johan

    2012-01-01

    In this paper we consider the classic problems of scattering of waves from perfectly conducting cylinders with piecewise smooth boundaries. The scattering problems are formulated as integral equations and solved using a Nystr\\"om scheme where the corners of the cylinders are efficiently handled by a method referred to as Recursively Compressed Inverse Preconditioning (RCIP). This method has been very successful in treating static problems in non-smooth domains and the present paper shows that it works equally well for the Helmholtz equation. In the numerical examples we specialize to scattering of E- and H-waves from a cylinder with one corner. Even at a size kd=1000, where k is the wavenumber and d the diameter, the scheme produces at least 13 digits of accuracy in the electric and magnetic fields everywhere outside the cylinder.

  19. A Coupled Far-Field Formulation for Time-Periodic Numerical Problems in Fluid Dynamics

    Indian Academy of Sciences (India)

    Edmund Chadwick; Rabea El-Mazuzi

    2012-11-01

    Consider uniform flow past an oscillating body generating a time-periodic motion in an exterior domain, modelled by a numerical fluid dynamics solver in the near field around the body. A far-field formulation, based on the Oseen equations, is presented for coupling onto this domain thereby enabling the whole space to be modelled. In particular, examples for formulations by boundary elements and infinite elements are described.

  20. Velocity-vorticity formulation of three-dimensional, steady, viscous, incompressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Meir, A.J. [Auburn Univ., AL (United States)

    1994-12-31

    In this work we discuss some aspects of the velocity-vorticity formulation of three-dimensional, steady, viscous, incompressible flows. We describe reasonable boundary conditions that should be imposed on the vorticity and a compatibility condition that the vorticity must satisfy. This formulation may give rise to efficient numerical algorithms for approximating solutions of the Stokes problem, which in turn yields an iterative method for approximating solutions of the Navier-Stokes equations.

  1. Formulations of Amlodipine: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Sheraz

    2016-01-01

    Full Text Available Amlodipine (AD is a calcium channel blocker that is mainly used in the treatment of hypertension and angina. However, latest findings have revealed that its efficacy is not only limited to the treatment of cardiovascular diseases as it has shown to possess antioxidant activity and plays an important role in apoptosis. Therefore, it is also employed in the treatment of cerebrovascular stroke, neurodegenerative diseases, leukemia, breast cancer, and so forth either alone or in combination with other drugs. AD is a photosensitive drug and requires protection from light. A number of workers have tried to formulate various conventional and nonconventional dosage forms of AD. This review highlights all the formulations that have been developed to achieve maximum stability with the desired therapeutic action for the delivery of AD such as fast dissolving tablets, floating tablets, layered tablets, single-pill combinations, capsules, oral and transdermal films, suspensions, emulsions, mucoadhesive microspheres, gels, transdermal patches, and liposomal formulations.

  2. Multimedia Environmental Pollutant Assessment System (MEPAS{reg_sign}): Groundwater pathway formulations

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; McDonald, J.P. [Pacific Northwest National Lab., Richland, WA (United States); Sato, C. [Idaho State Univ., Pocatello, ID (United States)

    1996-06-01

    This report describes the mathematical formulations used for contaminant fate and transport in the groundwater pathway of the Multimedia Environmental Pollutant Assessment System (MEPAS). It is one in a series of reports that collectively describe the components of MEPAS. The groundwater component of the MEPAS methodology models solute transport through the groundwater environment (i.e., partially saturated and saturated zones). Specifically, this component provides estimates of groundwater contaminant fluxes at various transporting medium interfaces (e.g., water table or aquifer/river interface) and contaminant concentrations at withdrawal wells. Contaminant fluxes at transporting medium interfaces represent boundary conditions for the next medium in which contaminant migration and fate is to be simulated (e.g., groundwater contamination entering a surface-water environment). Contaminant concentrations at withdrawal wells provide contaminant levels for the exposure assessment component of MEPAS. A schematic diagram illustrating the groundwater environment is presented. The migration and fate of contaminants through the groundwater environment are described by the three-dimensional, advective-dispersive equation for solute transport. The results are based on semianalytical solutions (i.e., solutions that require numerical integration) that are well established in the scientific literature. To increase computational efficiency, limits of integration are also identified.

  3. Mixed boundary conditions for piezoelectric plates

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions accurate to all order.A decay analysis technique is used to establish necessary conditions that the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate.For the case of axisymmetric bending and stretching of a circular plate,these decaying state conditions are obtained explicitly for the first time when the mixed conditions are imposed on the plate edge.They are then used for the correct formulation of boundary conditions for the interior solution.

  4. Boundary layer control of rotating convection systems.

    Science.gov (United States)

    King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M

    2009-01-15

    Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.

  5. National Forest Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...

  6. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  7. Allegheny County Boundary

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the Allegheny County boundary. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  8. FWS Approved Acquisition Boundaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data layer depicts the external boundaries of lands and waters that are approved for acquisition by the U.S. Fish and Wildlife Service (USFWS) in North America,...

  9. 500 Cities: City Boundaries

    Data.gov (United States)

    U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...

  10. State Park Statutory Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...

  11. NM School District Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The dataset represents the boundaries of all public school districts in the state of New Mexico. The source for the data layer is the New Mexico Public Education...

  12. Site Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...

  13. FWS Approved Acquisition Boundaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data layer depicts the external boundaries of lands and waters that are approved for acquisition by the U.S. Fish and Wildlife Service (USFWS) in North...

  14. The boundary l

    Directory of Open Access Journals (Sweden)

    Muhammad Naseer

    2014-09-01

    Full Text Available The present problem is the steady boundary layer flow and heat transfer of a hyperbolic tangent fluid flowing over a vertical exponentially stretching cylinder in its axial direction. After applying usual boundary layer with a suitable similarity transformation to the given partial differential equations and the boundary conditions, a system of coupled nonlinear ordinary differential equations is obtained. This system of ordinary differential equations subject to the boundary conditions is solved with the help of Runge–Kutta–Fehlberg method. The effects of the involved parameters such as Reynolds numbers, Prandtl numbers, Weissenberg numbers and the natural convection parameter are presented through the graphs. The associated physical properties on the flow and heat transfer characteristics that is the skin friction coefficient and Nusselt numbers are presented for different parameters.

  15. HUC 8 Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...

  16. Watershed Boundary Areas

    Data.gov (United States)

    Department of Homeland Security — This map layer contains hydrologic unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. It was revised for inclusion in the...

  17. Shared care and boundaries:

    DEFF Research Database (Denmark)

    Winthereik, Brit Ross

    2008-01-01

    and technology studies. Findings – The paper shows how a version of “the responsible patient” emerges from the project which is different from the version envisioned by the project organisation. The emerging one is concerned with the boundary between primary and secondary sector care, and not with the boundary...... of healthcare in relation to IT design. Originality/value – The paper shows that “unshared” care does not exist; care is always shared among human and nonhuman actors. It also points to the value of studying how boundaries are enacted in projects that seek to create continuity across boundaries. Udgivelsesdato......Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science...

  18. Tax Unit Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — The Statewide GIS Tax Unit boundary file was created through a collaborative partnership between the State of Kansas Department of Revenue Property Valuation...

  19. Minnesota County Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography...

  20. A boundary value problem for hypermonogenic functions in Clifford analysis

    Institute of Scientific and Technical Information of China (English)

    QIAO; Yuying

    2005-01-01

    This paper deals with a boundary value problem for hypermonogenic functions in Clifford analysis. Firstly we discuss integrals of quasi-Cauchy's type and get the Plemelj formula for hypermonogenic functions in Clifford analysis, and then we address Riemman boundary value problem for hypermonogenic functions.