WorldWideScience

Sample records for boundary conformal field

  1. Boundary states in c=-2 logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Bredthauer, Andreas; Flohr, Michael

    2002-01-01

    Starting from first principles, a constructive method is presented to obtain boundary states in conformal field theory. It is demonstrated that this method is well suited to compute the boundary states of logarithmic conformal field theories. By studying the logarithmic conformal field theory with central charge c=-2 in detail, we show that our method leads to consistent results. In particular, it allows to define boundary states corresponding to both, indecomposable representations as well as their irreducible subrepresentations

  2. Mixed global anomalies and boundary conformal field theories

    OpenAIRE

    Numasawa, Tokiro; Yamaguchi, Satoshi

    2017-01-01

    We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal...

  3. Conformal field theories near a boundary in general dimensions

    International Nuclear Information System (INIS)

    McAvity, D.M.

    1995-01-01

    The implications of restricted conformal invariance under conformal transformations preserving a plane boundary are discussed for general dimensions d. Calculations of the universal function of a conformal invariant ξ which appears in the two-point function of scalar operators in conformally invariant theories with a plane boundary are undertaken to first order in the ε=4-d expansion for the operator φ 2 in φ 4 theory. The form for the associated functions of ξ for the two-point functions for the basic field φ α and the auxiliary field λ in the N→∞ limit of the O(N) non-linear sigma model for any d in the range 2 α φ β and λλ. Using this method the form of the two-point function for the energy-momentum tensor in the conformal O(N) model with a plane boundary is also found. General results for the sum of the contributions of all derivative operators appearing in the operator product expansion, and also in a corresponding boundary operator expansion, to the two-point functions are also derived making essential use of conformal invariance. (orig.)

  4. Boundary conditions in rational conformal field theories

    International Nuclear Information System (INIS)

    Behrend, Roger E.; Pearce, Paul A.; Petkova, Valentina B.; Zuber, Jean-Bernard

    2000-01-01

    We develop further the theory of Rational Conformal Field Theories (RCFTs) on a cylinder with specified boundary conditions emphasizing the role of a triplet of algebras: the Verlinde, graph fusion and Pasquier algebras. We show that solving Cardy's equation, expressing consistency of a RCFT on a cylinder, is equivalent to finding integer valued matrix representations of the Verlinde algebra. These matrices allow us to naturally associate a graph G to each RCFT such that the conformal boundary conditions are labelled by the nodes of G. This approach is carried to completion for sl(2) theories leading to complete sets of conformal boundary conditions, their associated cylinder partition functions and the A-D-E classification. We also review the current status for WZW sl(3) theories. Finally, a systematic generalisation of the formalism of Cardy-Lewellen is developed to allow for multiplicities arising from more general representations of the Verlinde algebra. We obtain information on the bulk-boundary coefficients and reproduce the relevant algebraic structures from the sewing constraints

  5. Sewing constraints for conformal field theories on surfaces with boundaries

    International Nuclear Information System (INIS)

    Lewellen, D.C.

    1992-01-01

    In a conformal field theory, correlation functions on any Riemann surface are in principle unambiguously defined by sewing together three-point functions on the sphere, provided that the four-point functions on the sphere are crossing symmetric, and the one-point functions on the torus are modular covariant. In this work we extend Sonoda's proof of this result to conformal field theories defined on surfaces with boundaries. Four additional sewing constraints arise; three on the half-plane and one on the cylinder. These relate the various OPE coefficients in the theory (bulk, boundary, and bulk-boundary) to one another. In rational theories these relations can be expressed in terms of data arising solely within the bulk theory: The matrix S which implements modular transformations on the characters, and the matrices implementing duality transformations on the four-point conformal-block functions. As an example we solve these relations for the boundary and bulk-boundary structure constants in the Ising model with all possible conformally invariant boundary conditions. The role of the basic sewing constraints in the construction of open string theories is discussed. (orig.)

  6. Boundary conformal field theory and the worldsheet approach to D-branes

    CERN Document Server

    Recknagel, Andreas

    2013-01-01

    Boundary conformal field theory is concerned with a class of two-dimensional quantum field theories which display a rich mathematical structure and have many applications ranging from string theory to condensed matter physics. In particular, the framework allows discussion of strings and branes directly at the quantum level. Written by internationally renowned experts, this comprehensive introduction to boundary conformal field theory reaches from theoretical foundations to recent developments, with an emphasis on the algebraic treatment of string backgrounds. Topics covered include basic concepts in conformal field theory with and without boundaries, the mathematical description of strings and D-branes, and the geometry of strongly curved spacetime. The book offers insights into string geometry that go beyond classical notions. Describing the theory from basic concepts, and providing numerous worked examples from conformal field theory and string theory, this reference is of interest to graduate students and...

  7. Two-point functions and logarithmic boundary operators in boundary logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Ishimoto, Yukitaka

    2004-01-01

    Amongst conformal field theories, there exist logarithmic conformal field theories such as c p,1 models. We have investigated c p,q models with a boundary in search of logarithmic theories and have found logarithmic solutions of two-point functions in the context of the Coulomb gas picture. We have also found the relations between coefficients in the two-point functions and correlation functions of logarithmic boundary operators, and have confirmed the solutions in [hep-th/0003184]. Other two-point functions and boundary operators have also been studied in the free boson construction of boundary CFT with SU(2) k symmetry in regard to logarithmic theories. This paper is based on a part of D. Phil. Thesis [hep-th/0312160]. (author)

  8. Twisted boundary states in c=1 coset conformal field theories

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Yamaguchi, Atsushi

    2003-01-01

    We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the charge-conjugation modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n) 1 +so(2n) 1 /so(2n) 2 , which is equivalent to the orbifold S 1 /Z 2 at a particular radius. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield conformal boundary states that preserve only the Virasoro algebra. (author)

  9. Conformal boundary state for the rectangular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Bondesan, R., E-mail: roberto.bondesan@cea.fr [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Dubail, J. [Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Jacobsen, J.L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, H. [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)

    2012-09-11

    We discuss conformal field theories (CFTs) in rectangular geometries, and develop a formalism that involves a conformal boundary state for the 1+1d open system. We focus on the case of homogeneous boundary conditions (no insertion of a boundary condition changing operator), for which we derive an explicit expression of the associated boundary state, valid for any arbitrary CFT. We check the validity of our solution, comparing it with known results for partition functions, numerical simulations of lattice discretizations, and coherent state expressions for free theories.

  10. Conformal field theory on surfaces with boundaries and nondiagonal modular invariants

    International Nuclear Information System (INIS)

    Bern, Z.; Dunbar, D.C.

    1990-01-01

    This paper shows that the operator content of a conformal field theory defined on surfaces with boundaries and crosscaps is more restricted when the periodic sector is described by nondiagonal modular invariants than in the case of diagonal modular invariants. By tensoring, the restrictions can be alleviated, leading to a rich structure. Such constrictions are useful, for example, in lower- dimensional open superstring models

  11. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  12. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  13. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  14. Bulk Renormalization Group Flows and Boundary States in Conformal Field Theories

    Directory of Open Access Journals (Sweden)

    John Cardy

    2017-08-01

    Full Text Available We propose using smeared boundary states $e^{-\\tau H}|\\cal B\\rangle$ as variational approximations to the ground state of a conformal field theory deformed by relevant bulk operators. This is motivated by recent studies of quantum quenches in CFTs and of the entanglement spectrum in massive theories. It gives a simple criterion for choosing which boundary state should correspond to which combination of bulk operators, and leads to a rudimentary phase diagram of the theory in the vicinity of the RG fixed point corresponding to the CFT, as well as rigorous upper bounds on the universal amplitude of the free energy. In the case of the 2d minimal models explicit formulae are available. As a side result we show that the matrix elements of bulk operators between smeared Ishibashi states are simply given by the fusion rules of the CFT.

  15. Nilpotent weights in conformal field theory

    Directory of Open Access Journals (Sweden)

    S. Rouhani

    2001-12-01

    Full Text Available   Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.

  16. Boundary conditions in conformal and integrable theories

    CERN Document Server

    Petkova, V B

    2000-01-01

    The study of boundary conditions in rational conformal field theories is not only physically important. It also reveals a lot on the structure of the theory ``in the bulk''. The same graphs classify both the torus and the cylinder partition functions and provide data on their hidden ``quantum symmetry''. The Ocneanu triangular cells -- the 3j-symbols of these symmetries, admit various interpretations and make a link between different problems.

  17. Associative-algebraic approach to logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Read, N.; Saleur, Hubert

    2007-01-01

    We set up a strategy for studying large families of logarithmic conformal field theories by using the enlarged symmetries and non-semisimple associative algebras appearing in their lattice regularizations (as discussed in a companion paper [N. Read, H. Saleur, Enlarged symmetry algebras of spin chains, loop models, and S-matrices, cond-mat/0701259]). Here we work out in detail two examples of theories derived as the continuum limit of XXZ spin-1/2 chains, which are related to spin chains with supersymmetry algebras gl(n|n) and gl(n+1 vertical bar n), respectively, with open (or free) boundary conditions in all cases. These theories can also be viewed as vertex models, or as loop models. Their continuum limits are boundary conformal field theories (CFTs) with central charge c=-2 and c=0 respectively, and in the loop interpretation they describe dense polymers and the boundaries of critical percolation clusters, respectively. We also discuss the case of dilute (critical) polymers as another boundary CFT with c=0. Within the supersymmetric formulations, these boundary CFTs describe the fixed points of certain nonlinear sigma models that have a supercoset space as the target manifold, and of Landau-Ginzburg field theories. The submodule structures of indecomposable representations of the Virasoro algebra appearing in the boundary CFT, representing local fields, are derived from the lattice. A central result is the derivation of the fusion rules for these fields

  18. Controlling electromagnetic fields at boundaries of arbitrary geometries

    Science.gov (United States)

    Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice

    2016-08-01

    Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.

  19. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  20. Mixed-symmetry fields in AdS(5), conformal fields, and AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2015-01-15

    Mixed-symmetry arbitrary spin massive, massless, and self-dual massive fields in AdS(5) are studied. Light-cone gauge actions for such fields leading to decoupled equations of motion are constructed. Light-cone gauge formulation of mixed-symmetry anomalous conformal currents and shadows in 4d flat space is also developed. AdS/CFT correspondence for normalizable and non-normalizable modes of mixed-symmetry AdS fields and the respective boundary mixed-symmetry anomalous conformal currents and shadows is studied. We demonstrate that the light-cone gauge action for massive mixed-symmetry AdS field evaluated on solution of the Dirichlet problem amounts to the light-cone gauge 2-point vertex of mixed-symmetry anomalous shadow. Also we show that UV divergence of the action for mixed-symmetry massive AdS field with some particular value of mass parameter evaluated on the Dirichlet problem amounts to the action of long mixed-symmetry conformal field, while UV divergence of the action for mixed-symmetry massless AdS field evaluated on the Dirichlet problem amounts to the action of short mixed-symmetry conformal field. We speculate on string theory interpretation of a model which involves short low-spin conformal fields and long higher-spin conformal fields.

  1. Introduction to conformal field theory. With applications to string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Plauschinn, Erik

    2009-01-01

    Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)

  2. Automorphisms of W-algebras and extended rational conformal field theories

    International Nuclear Information System (INIS)

    Honecker, A.

    1992-11-01

    Many extended conformal algebras with one generator in addition to the Virasoro field as well as Casimir algebras have non-trivial outer automorphisms which enables one to impose 'twisted' boundary conditions on the chiral fields. We study their effect on the highest weight representations. We give formulae for the enlarged rational conformal field theories in both series of W-algebras with two generators and conjecture a general formula for the additional models in the minimal series of Casimir algebras. A third series of W-algebras with two generators which includes the spin three algebra at c = -2 also has finitely many additional fields in the twisted sector although the model itself is apparently not rational. The additional fields in the twisted sector have applications in statistical mechanics as we demonstrate for Z n -quantum spin chains with a particular type of boundary conditions. (orig.)

  3. Boundary effects in quantum field theory

    International Nuclear Information System (INIS)

    Deutsch, D.; Candelas, P.

    1979-01-01

    Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the ''renormalized mode sum energy,'' a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary

  4. Conformal field theory in conformal space

    International Nuclear Information System (INIS)

    Preitschopf, C.R.; Vasiliev, M.A.

    1999-01-01

    We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems

  5. Stochastic Loewner evolution as an approach to conformal field theory

    International Nuclear Information System (INIS)

    Mueller-Lohmann, Annekathrin

    2008-01-01

    The main focus on this work lies on the relationship between two-dimensional boundary Conformal Field Theories (BCFTs) and SCHRAMM-LOEWNER Evolutions (SLEs) as motivated by their connection to the scaling limit of Statistical Physics models at criticality. The BCFT approach used for the past 25 years is based on the algebraic formulation of local objects such as fields and their correlations in these models. Introduced in 1999, SLE describes the physical properties from a probabilistic point of view, studying measures on growing curves, i.e. global objects such as cluster interfaces. After a short motivation of the topic, followed by a more detailed introduction to two-dimensional boundary Conformal Field Theory and SCHRAMM-LOEWNER Evolution, we present the results of our original work. We extend the method of obtaining SLE variants for a change of measure of the single SLE to derive the most general BCFT model that can be related to SLE. Moreover, we interpret the change of the measure in the context of physics and Probability Theory. In addition, we discuss the meaning of bulk fields in BCFT as bulk force-points for the SLE variant SLE (κ, vector ρ). Furthermore, we investigate the short-distance expansion of the boundary condition changing fields, creating cluster interfaces that can be described by SLE, with other boundary or bulk fields. Thereby we derive new SLE martingales related to the existence of boundary fields with vanishing descendant on level three. We motivate that the short-distance scaling law of these martingales as adjustment of the measure can be interpreted as the SLE probability of curves coming close to the location of the second field. Finally, we extend the algebraic κ-relation for the allowed variances in multiple SLE, arising due to the commutation requirement of the infinitesimal growth operators, to the joint growth of two SLE traces. The analysis straightforwardly suggests the form of the infinitesimal LOEWNER mapping of joint

  6. Twistors and four-dimensional conformal field theory

    International Nuclear Information System (INIS)

    Singer, M.A.

    1990-01-01

    This is a report (with technical details omitted) on work concerned with generalizations to four dimensions of two-dimensional Conformed Field Theory. Accounts of this and related material are contained elsewhere. The Hilbert space of the four-dimensional theory has a natural interpretation in terms of massless spinor fields on real Minkowski space. From the twistor point of view this follows from the boundary CR-manifold P being precisely the space of light rays in real compactified Minkowski space. All the amplitudes can therefore be regarded as defined on Hilbert spaces built from Lorentzian spinor fields. Thus the twistor picture provides a kind of halfway house between the Lorentzian and Euclidean field theories. (author)

  7. On the correspondence between boundary and bulk lattice models and (logarithmic) conformal field theories

    Science.gov (United States)

    Belletête, J.; Gainutdinov, A. M.; Jacobsen, J. L.; Saleur, H.; Vasseur, R.

    2017-12-01

    The relationship between bulk and boundary properties is one of the founding features of (rational) conformal field theory (CFT). Our goal in this paper is to explore the possibility of having an equivalent relationship in the context of lattice models. We focus on models based on the Temperley-Lieb algebra, and use the concept of ‘braid translation’, which is a natural way, in physical terms, to ‘close’ an open spin chain by adding an interaction between the first and last spins using braiding to ‘bring’ them next to each other. The interaction thus obtained is in general non-local, but has the key feature that it is expressed solely in terms of the algebra for the open spin chain—the ‘ordinary’ Temperley-Lieb algebra and its blob algebra generalization. This is in contrast with the usual periodic spin chains which involve only local interactions, and are described by the periodic Temperley-Lieb algebra. We show that for the restricted solid-on-solid models, which are known to be described by minimal unitary CFTs (with central charge ccontent in terms of the irreducibles is the same, as well as the spectrum, but the detailed structure (like logarithmic coupling) is profoundly different. This carries over to the continuum limit. The situation is similar for the sl(2\\vert 1) case. The problem of relating bulk and boundary lattice models for LCFTs thus remains open.

  8. The logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.

    1997-01-01

    We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)

  9. Axiomatic conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Goddard, P.

    2000-01-01

    A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)

  10. Mode solutions for a Klein-Gordon field in anti-de Sitter spacetime with dynamical boundary conditions of Wentzell type

    Science.gov (United States)

    Dappiaggi, Claudio; Ferreira, Hugo R. C.; Juárez-Aubry, Benito A.

    2018-04-01

    We study a real, massive Klein-Gordon field in the Poincaré fundamental domain of the (d +1 )-dimensional anti-de Sitter (AdS) spacetime, subject to a particular choice of dynamical boundary conditions of generalized Wentzell type, whereby the boundary data solves a nonhomogeneous, boundary Klein-Gordon equation, with the source term fixed by the normal derivative of the scalar field at the boundary. This naturally defines a field in the conformal boundary of the Poincaré fundamental domain of AdS. We completely solve the equations for the bulk and boundary fields and investigate the existence of bound state solutions, motivated by the analogous problem with Robin boundary conditions, which are recovered as a limiting case. Finally, we argue that both Robin and generalized Wentzell boundary conditions are distinguished in the sense that they are invariant under the action of the isometry group of the AdS conformal boundary, a condition which ensures in addition that the total flux of energy across the boundary vanishes.

  11. Boundary conformal field theory analysis of the H+3 model

    International Nuclear Information System (INIS)

    Adorf, Hendrik

    2008-01-01

    The central topic of this thesis is the study of consistency conditions for the maximally symmetric branes of the H + 3 model. It is carried out by deriving constraints in the form of so-called shift equations and analysing their solutions. This results in explicit expressions for the one point functions in the various brane backgrounds. The brane spectrum becomes organized in certain continuous and discrete series. In the first part, we give an introduction to two dimensional conformal field theory (CFT) in the framework of vertex operator algebras and their modules. As this approach has been developed along with rational CFT, we pay attention to adapt it to the special needs of the nonrational H + 3 model. Part two deals with boundary CFT only. We start with a review of some basic techniques of boundary CFT and the Cardy-Lewellen sewing relations that will be at the heart of all following constructions. Afterwards, we introduce the systematics of brane solutions that we are going to follow. With the distinction between regular and irregular one point functions, we propose a new additional pattern according to which the brane solutions must be organized. We argue that all isospin dependencies must be subjected to the sewing constraints. At this point, the programme to be carried out is established and we are ready to derive the missing 1/2-shift equations for the various types of AdS 2 branes in order to make the list of this kind of equation complete. Then we address the b -2 /2-shift equations. It turns out that their derivation is not straightforward: One needs to extend the initial region of definition of a certain (boundary CFT) two point function to a suitable patch. Therefore, a continuation prescription has to be assumed. The most natural candidate is analytic continuation. We show that it can be carried out, although it is rather technical and involves the use of certain generalized hypergeometric functions in two variables. In this way, we derive a

  12. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  13. Bootstrapping conformal field theories with the extremal functional method.

    Science.gov (United States)

    El-Showk, Sheer; Paulos, Miguel F

    2013-12-13

    The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.

  14. Quantum Conformal Algebras and Closed Conformal Field Theory

    CERN Document Server

    Anselmi, D

    1999-01-01

    We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...

  15. Naturality in conformal field theory

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)

  16. Long, partial-short, and special conformal fields

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2016-05-17

    In the framework of metric-like approach, totally symmetric arbitrary spin bosonic conformal fields propagating in flat space-time are studied. Depending on the values of conformal dimension, spin, and dimension of space-time, we classify all conformal field as long, partial-short, short, and special conformal fields. An ordinary-derivative (second-derivative) Lagrangian formulation for such conformal fields is obtained. The ordinary-derivative Lagrangian formulation is realized by using double-traceless gauge fields, Stueckelberg fields, and auxiliary fields. Gauge-fixed Lagrangian invariant under global BRST transformations is obtained. The gauge-fixed BRST Lagrangian is used for the computation of partition functions for all conformal fields. Using the result for the partition functions, numbers of propagating D.o.F for the conformal fields are also found.

  17. Algebraic conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-11-01

    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  18. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  19. Superspace conformal field theory

    International Nuclear Information System (INIS)

    Quella, Thomas

    2013-07-01

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  20. Stochastic geometry of critical curves, Schramm-Loewner evolutions and conformal field theory

    International Nuclear Information System (INIS)

    Gruzberg, Ilya A

    2006-01-01

    Conformally invariant curves that appear at critical points in two-dimensional statistical mechanics systems and their fractal geometry have received a lot of attention in recent years. On the one hand, Schramm (2000 Israel J. Math. 118 221 (Preprint math.PR/9904022)) has invented a new rigorous as well as practical calculational approach to critical curves, based on a beautiful unification of conformal maps and stochastic processes, and by now known as Schramm-Loewner evolution (SLE). On the other hand, Duplantier (2000 Phys. Rev. Lett. 84 1363; Fractal Geometry and Applications: A Jubilee of Benot Mandelbrot: Part 2 (Proc. Symp. Pure Math. vol 72) (Providence, RI: American Mathematical Society) p 365 (Preprint math-ph/0303034)) has applied boundary quantum gravity methods to calculate exact multifractal exponents associated with critical curves. In the first part of this paper, I provide a pedagogical introduction to SLE. I present mathematical facts from the theory of conformal maps and stochastic processes related to SLE. Then I review basic properties of SLE and provide practical derivation of various interesting quantities related to critical curves, including fractal dimensions and crossing probabilities. The second part of the paper is devoted to a way of describing critical curves using boundary conformal field theory (CFT) in the so-called Coulomb gas formalism. This description provides an alternative (to quantum gravity) way of obtaining the multifractal spectrum of critical curves using only traditional methods of CFT based on free bosonic fields

  1. Arbitrary spin conformal fields in (A)dS

    International Nuclear Information System (INIS)

    Metsaev, R.R.

    2014-01-01

    Totally symmetric arbitrary spin conformal fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. In contrast to conformal fields in flat space, the kinetic terms of conformal fields in (A)dS space turn out to be diagonal with respect to fields entering the Lagrangian. Explicit form of conformal transformation which maps conformal field in flat space to conformal field in (A)dS space is obtained. Covariant Lorentz-like and de-Donder like gauge conditions leading to simple gauge-fixed Lagrangian of conformal fields are proposed. Using such gauge-fixed Lagrangian, which is invariant under global BRST transformations, we explain how the partition function of conformal field is obtained in the framework of our approach

  2. Operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Gabbiani, F.; Froehlich, J.

    1993-01-01

    We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)

  3. Boundary and interface CFTs from the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, Ferdinando [Dipartimento di Fisica, Università di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adelershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Meineri, Marco [Scuola Normale Superiore,Piazza dei Cavalieri 7 I-56126 Pisa (Italy); Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Rago, Antonio [Centre for Mathematical Sciences, Plymouth University,Drake Circus, Plymouth, PL4 8AA (United Kingdom)

    2015-05-07

    We explore some consequences of the crossing symmetry for defect conformal field theories, focusing on codimension one defects like flat boundaries or interfaces. We study surface transitions of the 3d Ising and other O(N) models through numerical solutions to the crossing equations with the method of determinants. In the extraordinary transition, where the low-lying spectrum of the surface operators is known, we use the bootstrap equations to obtain information on the bulk spectrum of the theory. In the ordinary transition the knowledge of the low-lying bulk spectrum allows to calculate the scale dimension of the relevant surface operator, which compares well with known results of two-loop calculations in 3d. Estimates of various OPE coefficients are also obtained. We also analyze in 4-ϵ dimensions the renormalization group interface between the O(N) model and the free theory and check numerically the results in 3d.

  4. Operator product expansions on the vacuum in conformal quantum field theory in two spacetime dimensions

    International Nuclear Information System (INIS)

    Luescher, M.

    1975-11-01

    Let phi 1 (x) and phi 2 (y) be two local fields in a conformal quantum field theory (CQFT) in two-dimensional spacetime. It is then shown that the vector-valued distribution phi 1 (x) phi 2 (y) /0 > is a boundary value of a vector-valued holomorphic function which is defined on a large conformally invariant domain. By group theoretical arguments alone it is proved that phi 1 (x) phi 2 (y) /0 > can be expanded into conformal partial waves. These have all the properties of a global version of Wilson's operator product expansions when applied to the vacuum state /0 >. Finally, the corresponding calculations are carried out more explicitly in the Thirring model. Here, a complete set of local conformally covariant fields is found, which is closed under vacuum expansion of any two of its elements (a vacuum expansion is an operator product expansion applied to the vacuum). (orig.) [de

  5. Conformal invariant quantum field theory and composite field operators

    International Nuclear Information System (INIS)

    Kurak, V.

    1976-01-01

    The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry

  6. Logarithmic conformal field theory through nilpotent conformal dimensions

    International Nuclear Information System (INIS)

    Moghimi-Araghi, S.; Rouhani, S.; Saadat, M.

    2001-01-01

    We study logarithmic conformal field theories (LCFTs) through the introduction of nilpotent conformal weights. Using this device, we derive the properties of LCFTs such as the transformation laws, singular vectors and the structure of correlation functions. We discuss the emergence of an extra energy momentum tensor, which is the logarithmic partner of the energy momentum tensor

  7. Introductory lectures on conformal field theory and strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures

  8. Introductory lectures on Conformal Field Theory and Strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. They are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these

  9. Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1987-01-01

    A multipoint conformal block of Ramond states of the two-dimensional free scalar field is calculated. This function is related to the free energy of the scalar field on the hyperelliptic Riemann surface under a particular choice of boundary conditions. Being compactified on the circle this field leads to the crossing symmetric correlation functions with a discrete spectrum of scale dimensions. These functions are supposed to describe multipoint spin correlations of the critical Ashkin-Teller model. (orig.)

  10. Vertex operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Huang, Y.Z.

    1992-01-01

    This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics

  11. More on boundary holographic Witten diagrams

    Science.gov (United States)

    Sato, Yoshiki

    2018-01-01

    In this paper we discuss geodesic Witten diagrams in general holographic conformal field theories with boundary or defect. In boundary or defect conformal field theory, two-point functions are nontrivial and can be decomposed into conformal blocks in two distinct ways; ambient channel decomposition and boundary channel decomposition. In our previous work [A. Karch and Y. Sato, J. High Energy Phys. 09 (2017) 121., 10.1007/JHEP09(2017)121] we only consider two-point functions of same operators. We generalize our previous work to a situation where operators in two-point functions are different. We obtain two distinct decomposition for two-point functions of different operators.

  12. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  13. Conformal field theories and tensor categories. Proceedings

    International Nuclear Information System (INIS)

    Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph

    2014-01-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  14. Vacuum quantum effect for curved boundaries in static Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Setare, M.R.; Sadeghi, J.

    2009-01-01

    The energy-momentum tensor for a massless conformally coupled scalar field in the region between two curved boundaries in k=-1 static Robertson-Walker space-time is investigated. We assume that the scalar field satisfies the Dirichlet boundary condition on the boundaries. k=-1 Robertson-Walker space is conformally related to the Rindler space, as a result we can obtain vacuum expectation values of energy-momentum tensor for conformally invariant field in Robertson-Walker space from the corresponding Rindler counterpart by the conformal transformation.

  15. The edge of entanglement: getting the boundary right for non-minimally coupled scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Christopher P. [C.N. Yang Institute for Theoretical Physics,Department of Physics and Astronomy, Stony Brook University,Stony Brook, NY 11794 (United States); Nishioka, Tatsuma [Department of Physics, Faculty of Science, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-12-27

    In entanglement computations for a free scalar field with coupling to background curvature, there is a boundary term in the modular Hamiltonian which must be correctly specified in order to get sensible results. We focus here on the entanglement in flat space across a planar interface and (in the case of conformal coupling) other geometries related to this one by Weyl rescaling of the metric. For these “half-space entanglement” computations, we give a new derivation of the boundary term and revisit how it clears up a number of puzzles in the literature, including mass corrections and twist operator dimensions. We also discuss how related boundary terms may show up in other field theories.

  16. Z/NZ conformal field theories

    International Nuclear Information System (INIS)

    Degiovanni, P.

    1990-01-01

    We compute the modular properties of the possible genus-one characters of some Rational Conformal Field Theories starting from their fusion rules. We show that the possible choices of S matrices are indexed by some automorphisms of the fusion algebra. We also classify the modular invariant partition functions of these theories. This gives the complete list of modular invariant partition functions of Rational Conformal Field Theories with respect to the A N (1) level one algebra. (orig.)

  17. Logarithmic conformal field theory: beyond an introduction

    International Nuclear Information System (INIS)

    Creutzig, Thomas; Ridout, David

    2013-01-01

    This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model M(1,2), related to the triplet model W(1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess–Zumino–Witten model based on sl-hat (2) at k=−(1/2), related to the bosonic βγ ghost system; and the Wess–Zumino–Witten model for the Lie supergroup GL(1∣1), related to SL(2∣1) at k=−(1/2) and 1, the Bershadsky–Polyakov algebra W 3 (2) and the Feigin–Semikhatov algebras W n (2) . These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models W(q,p), the fractional level Wess–Zumino–Witten models, and the Wess–Zumino–Witten models on Lie supergroups (excluding OSP(1∣2n)). In this review, the emphasis lies on the representation theory of the underlying chiral algebra and the modular data pertaining to the characters of the representations. Each of the archetypal logarithmic conformal field theories is

  18. Irreversibility and higher-spin conformal field theory

    Science.gov (United States)

    Anselmi, Damiano

    2000-08-01

    I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.

  19. C-metric solution for conformal gravity with a conformally coupled scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)

    2017-02-15

    The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.

  20. An introduction to conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Fitzwilliam College, Cambridge

    2000-01-01

    A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories. (author)

  1. Conformal invariance in quantum field theory

    International Nuclear Information System (INIS)

    Grensing, G.

    1978-01-01

    We study the transformation law of interacting fields under the universal covering group of the conformal group. It is defined with respect to the representations of the discrete series. These representations are field representations in the sense that they act on finite component fields defined over Minkowski space. The conflict with Einstein causality is avoided as in the case of free fields with canonical dimension. Furthermore, we determine the conformal invariant two-point function of arbitrary spin. Our result coincides with that obtained by Ruehl. In particular, we investigate the two-point function of symmetric and traceless tensor fields and give the explicit form of the trace terms

  2. Irreversibility and higher-spin conformal field theory

    CERN Document Server

    Anselmi, D

    2000-01-01

    I discuss the idea that quantum irreversibility is a general principle of nature and a related "conformal hypothesis", stating that all fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points. In particular, the Newton constant should be viewed as a low-energy effect of the RG scale. This approach leads naturally to consider higher-spin conformal field theories, which are here classified, as candidate high-energy theories. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. The central charges c and a are well defined and positive. I calculate their values and study the operator-product structure. Fermionic theories have no gauge invariance and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a...

  3. Coadjoint orbits and conformal field theory

    International Nuclear Information System (INIS)

    Taylor, W. IV.

    1993-08-01

    This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription

  4. Edge states and conformal boundary conditions in super spin chains and super sigma models

    International Nuclear Information System (INIS)

    Bondesan, Roberto; Jacobsen, Jesper L.; Saleur, Hubert

    2011-01-01

    The sigma models on projective superspaces CP N+M-1|N with topological angle θ=πmod2π flow to non-unitary, logarithmic conformal field theories in the low-energy limit. In this paper, we determine the exact spectrum of these theories for all open boundary conditions preserving the full global symmetry of the model, generalizing recent work on the particular case M=0 [C. Candu et al., JHEP 1002 (2010) 015]. In the sigma model setting, these boundary conditions are associated with complex line bundles, and are labelled by an integer, related with the exact value of θ. Our approach relies on a spin chain regularization, where the boundary conditions now correspond to the introduction of additional edge states. The exact values of the exponents then follow from a lengthy algebraic analysis, a reformulation of the spin chain in terms of crossing and non-crossing loops (represented as a certain subalgebra of the Brauer algebra), and earlier results on the so-called one- and two-boundary Temperley-Lieb algebras (also known as blob algebras). A remarkable result is that the exponents, in general, turn out to be irrational. The case M=1 has direct applications to the spin quantum Hall effect, which will be discussed in a sequel.

  5. Edge states and conformal boundary conditions in super spin chains and super sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Bondesan, Roberto, E-mail: roberto.bondesan@cea.f [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Jacobsen, Jesper L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, Hubert [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)

    2011-08-11

    The sigma models on projective superspaces CP{sup N+M-1{vert_bar}N} with topological angle {theta}={pi}mod2{pi} flow to non-unitary, logarithmic conformal field theories in the low-energy limit. In this paper, we determine the exact spectrum of these theories for all open boundary conditions preserving the full global symmetry of the model, generalizing recent work on the particular case M=0 [C. Candu et al., JHEP 1002 (2010) 015]. In the sigma model setting, these boundary conditions are associated with complex line bundles, and are labelled by an integer, related with the exact value of {theta}. Our approach relies on a spin chain regularization, where the boundary conditions now correspond to the introduction of additional edge states. The exact values of the exponents then follow from a lengthy algebraic analysis, a reformulation of the spin chain in terms of crossing and non-crossing loops (represented as a certain subalgebra of the Brauer algebra), and earlier results on the so-called one- and two-boundary Temperley-Lieb algebras (also known as blob algebras). A remarkable result is that the exponents, in general, turn out to be irrational. The case M=1 has direct applications to the spin quantum Hall effect, which will be discussed in a sequel.

  6. Riemann monodromy problem and conformal field theories

    International Nuclear Information System (INIS)

    Blok, B.

    1989-01-01

    A systematic analysis of the use of the Riemann monodromy problem for determining correlators (conformal blocks) on the sphere is presented. The monodromy data is constructed in terms of the braid matrices and gives a constraint on the noninteger part of the conformal dimensions of the primary fields. To determine the conformal blocks we need to know the order of singularities. We establish a criterion which tells us when the knowledge of the conformal dimensions of primary fields suffice to determine the blocks. When zero modes of the extended algebra are present the analysis is more difficult. In this case we give a conjecture that works for the SU(2) WZW case. (orig.)

  7. Non-linear realizations of conformal symmetry and effective field theory for the pseudo-conformal universe

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Joyce, Austin; Khoury, Justin

    2012-01-01

    The pseudo-conformal scenario is an alternative to inflation in which the early universe is described by an approximate conformal field theory on flat, Minkowski space. Some fields acquire a time-dependent expectation value, which breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of perturbations. The scenario is very general, and its essential features are determined by the symmetry breaking pattern, irrespective of the details of the underlying microphysics. In this paper, we apply the well-known coset technique to derive the most general effective lagrangian describing the Goldstone field and matter fields, consistent with the assumed symmetries. The resulting action captures the low energy dynamics of any pseudo-conformal realization, including the U(1)-invariant quartic model and the Galilean Genesis scenario. We also derive this lagrangian using an alternative method of curvature invariants, consisting of writing down geometric scalars in terms of the conformal mode. Using this general effective action, we compute the two-point function for the Goldstone and a fiducial weight-0 field, as well as some sample three-point functions involving these fields

  8. Conformal quantum field theory: From Haag-Kastler nets to Wightman fields

    International Nuclear Information System (INIS)

    Joerss, M.

    1996-07-01

    Starting from a chiral conformal Haag-Kastler net of local observables on two-dimensional Minkowski space-time, we construct associated pointlike localizable charged fields which intertwine between the superselection sectors with finite statistics of the theory. This amounts to a proof of the spin-statistics theorem, the PCT theorem, the Bisognano-Wichmann identification of modular operators, Haag duality in the vacuum sector, and the existence of operator product expansions. Our method consists of the explicit use of the representation theory of the universal covering group of SL(2,R). A central role is played by a ''conformal cluster theorem'' for conformal two-point functions in algebraic quantum field theory. Generalizing this ''conformal cluster theorem'' to the n-point functions of Haag-Kastler theories, we can finally construct from a chiral conformal net of algebras a compelte set of conformal n-point functions fulfilling the Wightman axioms. (orig.)

  9. Parafermionic conformal field theory

    International Nuclear Information System (INIS)

    Kurak, V.

    1989-09-01

    Conformal parafermionic field theories are reviewed with emphasis on the computation of their OPE estructure constants. It is presented a simple computational of these for the Z(N) parafermions, unveilling their Lie algebra content. (A.C.A.S.) [pt

  10. Holography beyond conformal invariance and AdS isometry?

    CERN Document Server

    Barvinsky, A.O.

    2015-01-01

    We suggest that the principle of holographic duality can be extended beyond conformal invariance and AdS isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on its boundary, provided that the boundary operator represents the inverse propagators of the theory induced on the boundary by the Dirichlet boundary value problem from the bulk spacetime. This relation holds for operators of general spin-tensor structure on generic manifolds with boundaries irrespective of their background geometry and conformal invariance, and it apparently underlies numerous $O(N^0)$ tests of AdS/CFT correspondence, based on direct calculation of the bulk and boundary partition functions, Casimir energies and conformal anomalies. The generalized holographic duality is discussed within the concept of the "double-trace" deformation of the boundary theory, which is responsible in the case of large $N$ CFT coupled to the tower of higher spin gauge fields for t...

  11. Conformal invariance in the quantum field theory

    International Nuclear Information System (INIS)

    Kurak, V.

    1975-09-01

    Basic features concerning the present knowledge of conformal symmetry are illustrated in a simple model. Composite field dimensions of this model are computed and related to the conformal group. (author) [pt

  12. Conformal FDTD modeling wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Jurgens, T.; Harfoush, F.

    1991-05-01

    Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.

  13. Analytic aspects of rational conformal field theories

    International Nuclear Information System (INIS)

    Kiritsis, E.B.; Lawrence Berkeley Lab., CA

    1990-01-01

    The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)

  14. Perturbative evaluation of the zero-point function for self-interacting scalar field on a manifold with boundary

    International Nuclear Information System (INIS)

    Tsoupros, George

    2002-01-01

    The character of quantum corrections to the gravitational action of a conformally invariant field theory for a self-interacting scalar field on a manifold with boundary is considered at third loop-order in the perturbative expansion of the zero-point function. Diagramatic evaluations and higher loop-order renormalization can be best accomplished on a Riemannian manifold of positive constant curvature accommodating a boundary of constant extrinsic curvature. The associated spherical formulation for diagramatic evaluations reveals a non-trivial effect which the topology of the manifold has on the vacuum processes and which ultimately dissociates the dynamical behaviour of the quantized field from its behaviour in the absence of a boundary. The first surface divergence is evaluated and the necessity for simultaneous renormalization of volume and surface divergences is shown

  15. Note on Weyl versus conformal invariance in field theory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng [Nanchang University, Department of Physics, Nanchang (China)

    2017-12-15

    It was argued recently that conformal invariance in flat spacetime implies Weyl invariance in a general curved background for unitary theories and possible anomalies in the Weyl variation of scalar operators are identified. We argue that generically unitarity alone is not sufficient for a conformal field theory to be Weyl invariant. Furthermore, we show explicitly that when a unitary conformal field theory couples to gravity in a Weyl-invariant way, each primary scalar operator that is either relevant or marginal in the unitary conformal field theory corresponds to a Weyl-covariant operator in the curved background. (orig.)

  16. Electromagnetic complementary media with arbitrary geometries and non-conformal boundaries

    Science.gov (United States)

    Liu, Guochang; Li, Chao; Chen, Chao; Fang, Guangyou

    2014-06-01

    A generalized folded transformation procedure is presented for the space with arbitrary shapes. General expressions for the constitute parameters of complementary media are deduced, which can be readily applied to design complementary media based transformation optics devices (CMTOD) with arbitrary shapes. It's no longer limited to the situation when the inner and outer boundaries of the CMTOD are conformal or similar shapes, and can be available for the non-conformal situations. Three kinds of CMTOD are designed and studied, which involves a super-lens, an external cloak that hides object outside the cloaking shell, and an illusion optics device that transforms one object to another. Full-wave simulations are carried out to validate the proposed approach. The generalization introduced here makes a step forward for the flexible design of CMTOD with arbitrary geometries.

  17. Dilogarithm identities in conformal field theory

    International Nuclear Information System (INIS)

    Nahm, W.; Recknagel, A.; Terhoeven, M.

    1992-11-01

    Dilogarithm identities for the central charges and conformal dimensions exist for at least large classes of rational conformally invariant quantum field theories in two dimensions. In many cases, proofs are not yet known but the numerical and structural evidence is convincing. In particular, close relations exist to fusion rules and partition identities. We describe some examples and ideas, and present conjectures useful for the classification of conformal theories. The mathematical structures seem to be dual to Thurston's program for the classification of 3-manifolds. (orig.)

  18. Light-cone AdS/CFT-adapted approach to AdS fields/currents, shadows, and conformal fields

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2015-10-16

    Light-cone gauge formulation of fields in AdS space and conformal field theory in flat space adapted for the study of AdS/CFT correspondence is developed. Arbitrary spin mixed-symmetry fields in AdS space and arbitrary spin mixed-symmetry currents, shadows, and conformal fields in flat space are considered on an equal footing. For the massless and massive fields in AdS and the conformal fields in flat space, simple light-cone gauge actions leading to decoupled equations of motion are found. For the currents and shadows, simple expressions for all 2-point functions are also found. We demonstrate that representation of conformal algebra generators on space of currents, shadows, and conformal fields can be built in terms of spin operators entering the light-cone gauge formulation of AdS fields. This considerably simplifies the study of AdS/CFT correspondence. Light-cone gauge actions for totally symmetric arbitrary spin long conformal fields in flat space are presented. We apply our approach to the study of totally antisymmetric (one-column) and mixed-symmetry (two-column) fields in AdS space and currents, shadows, and conformal fields in flat space.

  19. Modular constraints on conformal field theories with currents

    Science.gov (United States)

    Bae, Jin-Beom; Lee, Sungjay; Song, Jaewon

    2017-12-01

    We study constraints coming from the modular invariance of the partition function of two-dimensional conformal field theories. We constrain the spectrum of CFTs in the presence of holomorphic and anti-holomorphic currents using the semi-definite programming. In particular, we find the bounds on the twist gap for the non-current primaries depend dramatically on the presence of holomorphic currents, showing numerous kinks and peaks. Various rational CFTs are realized at the numerical boundary of the twist gap, saturating the upper limits on the degeneracies. Such theories include Wess-Zumino-Witten models for the Deligne's exceptional series, the Monster CFT and the Baby Monster CFT. We also study modular constraints imposed by W -algebras of various type and observe that the bounds on the gap depend on the choice of W -algebra in the small central charge region.

  20. Conformal field theory with two kinds of Bosonic fields and two linear dilatons

    International Nuclear Information System (INIS)

    Kamani, Davoud

    2010-01-01

    We consider a two-dimensional conformal field theory which contains two kinds of the bosonic degrees of freedom. Two linear dilaton fields enable to study a more general case. Various properties of the model such as OPEs, central charge, conformal properties of the fields and associated algebras will be studied. (author)

  1. Inverse bootstrapping conformal field theories

    Science.gov (United States)

    Li, Wenliang

    2018-01-01

    We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.

  2. Fusion rules in conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.

    1993-06-01

    Several aspects of fusion rings and fusion rule algebras, and of their manifestations in two-dimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme. (orig.)

  3. Lagrangian model of conformal invariant interacting quantum field theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1976-01-01

    A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3

  4. Conformal field theory between supersymmetry and indecomposable structures

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, H.

    2006-07-15

    This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z{sub 2} and Z{sub 4} orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z{sub 2} and Z{sub 4} orbifold model as well as the Gepner model (2){sup 4}. We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c{sub p,q} minimal models which generalise the well-known (augmented) c{sub p,1} model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c{sub p,q} models, the augmented c{sub 2,3}=0 model as well as the augmented Yang-Lee model at c{sub 2,5}=-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic

  5. Conformal field theory between supersymmetry and indecomposable structures

    International Nuclear Information System (INIS)

    Eberle, H.

    2006-07-01

    This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z 2 and Z 4 orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z 2 and Z 4 orbifold model as well as the Gepner model (2) 4 . We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c p,q minimal models which generalise the well-known (augmented) c p,1 model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c p,q models, the augmented c 2,3 =0 model as well as the augmented Yang-Lee model at c 2,5 =-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic examples to give the representation content and

  6. Modeling 3D Dynamic Rupture on Arbitrarily-Shaped faults by Boundary-Conforming Finite Difference Method

    Science.gov (United States)

    Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.

    2008-12-01

    We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.

  7. Very special conformal field theories and their holographic duals

    Science.gov (United States)

    Nakayama, Yu

    2018-03-01

    Cohen and Glashow introduced the notion of very special relativity as viable space-time symmetry of elementary particle physics. As a natural generalization of their idea, we study the subgroup of the conformal group, dubbed very special conformal symmetry, which is an extension of the very special relativity. We classify all of them and construct field theory examples as well as holographic realization of the very special conformal field theories.

  8. Causality Constraints in Conformal Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...

  9. Causality constraints in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.

  10. Strings - Links between conformal field theory, gauge theory and gravity

    International Nuclear Information System (INIS)

    Troost, J.

    2009-05-01

    String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity

  11. Quantum Fluctuations and the Unruh effect in strongly-coupled conformal field theories

    Science.gov (United States)

    Cáceres, Elena; Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2010-06-01

    Through the AdS/CFT correspondence, we study a uniformly accelerated quark in the vacuum of strongly-coupled conformal field theories in various dimensions, and determine the resulting stochastic fluctuations of the quark trajectory. From the perspective of an inertial observer, these are quantum fluctuations induced by the gluonic radiation emitted by the accelerated quark. From the point of view of the quark itself, they originate from the thermal medium predicted by the Unruh effect. We scrutinize the relation between these two descriptions in the gravity side of the correspondence, and show in particular that upon transforming the conformal field theory from Rindler space to the open Einstein universe, the acceleration horizon disappears from the boundary theory but is preserved in the bulk. This transformation allows us to directly connect our calculation of radiation-induced fluctuations in vacuum with the analysis by de Boer et al. of the Brownian motion of a quark that is on average static within a thermal medium. Combining this same bulk transformation with previous results of Emparan, we are also able to compute the stress-energy tensor of the Unruh thermal medium.

  12. Warped conformal field theory as lower spin gravity

    Science.gov (United States)

    Hofman, Diego M.; Rollier, Blaise

    2015-08-01

    Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.

  13. Warped conformal field theory as lower spin gravity

    Directory of Open Access Journals (Sweden)

    Diego M. Hofman

    2015-08-01

    Full Text Available Two dimensional Warped Conformal Field Theories (WCFTs may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space–times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton–Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL(2,R×U(1 Chern–Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.

  14. Topics in conformal field theory

    International Nuclear Information System (INIS)

    Kiritsis, E.B.

    1988-01-01

    In this work two major topics in Conformal Field Theory are discussed. First a detailed investigation of N = 2 Superconformal theories is presented. The structure of the representations of the N = 2 superconformal algebras is investigated and the character formulae are calculated. The general structure of N = 2 superconformal theories is elucidated and the operator algebra of the minimal models is derived. The first minimal system is discussed in more detail. Second, applications of the conformal techniques are studied in the Ashkin-Teller model. The c = 1 as well as the c = 1/2 critical lines are discussed in detail

  15. Conformal FDTD modeling of 3-D wake fields

    International Nuclear Information System (INIS)

    Jurgens, T.G.; Harfoush, F.A.

    1991-01-01

    Many computer codes have been written to model wake fields. Here the authors describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non-cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements so as to conform to the interface. These improvements to the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall monitors

  16. Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

    Science.gov (United States)

    Qian, Wei; Werner, Wendelin

    2018-06-01

    We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.

  17. Notes on the Verlinde formula in nonrational conformal field theories

    International Nuclear Information System (INIS)

    Jego, Charles; Troost, Jan

    2006-01-01

    We review and extend evidence for the validity of a generalized Verlinde formula, in particular, nonrational conformal field theories. We identify a subset of representations of the chiral algebra in nonrational conformal field theories that give rise to an analogue of the relation between modular S-matrices and fusion coefficients in rational conformal field theories. To that end we review and extend the Cardy-type brane calculations in bosonic and supersymmetric Liouville theory (and its duals) as well as in H 3 + . We analyze the three-point functions of Liouville theory and of H 3 + in detail to directly identify the fusion coefficients from the operator product expansion. Moreover, we check the validity of a proposed generic formula for localized brane one-point functions in nonrational conformal field theories

  18. 2D conformal field theories and holography

    International Nuclear Information System (INIS)

    Freidel, Laurent; Krasnov, Kirill

    2004-01-01

    It is known that the chiral part of any 2D conformal field theory defines a 3D topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3D topological theory that arises is a certain 'square' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3D gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting 'holographic' perspective on conformal field theories in two dimensions

  19. Sine-square deformation of solvable spin chains and conformal field theories

    International Nuclear Information System (INIS)

    Katsura, Hosho

    2012-01-01

    We study solvable spin chains, one-dimensional massless Dirac fermions and conformal field theories (CFTs) with sine-square deformation (SSD), in which the Hamiltonian density is modulated by the function f(x) = sin  2 (πx/ℓ), where x is the position and ℓ is the length of the system. For the XY chain and the transverse field Ising chain at criticality, it is shown that the ground state of an open system with SSD is identical to that of a uniform chain with periodic boundary conditions. The same holds for the massless Dirac fermions with SSD, corresponding to the continuum limit of the gapless XY chain. For general CFTs, we find that the Hamiltonian of a system with SSD has an expression in terms of the generators of the Virasoro algebra. This allows us to show that the vacuum state is an exact eigenstate of the sine-square deformed Hamiltonian. Furthermore, for a restricted class of CFTs associated with affine Lie (Kac–Moody) algebras, including c = 1 Gaussian CFT, we prove that the vacuum is an exact ground state of the deformed Hamiltonian. This explains why the SSD has succeeded in suppressing boundary effects in one-dimensional critical systems, as observed in previous numerical studies. (paper)

  20. Recent progress in irrational conformal field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1993-09-01

    In this talk, I will review the foundations of irrational conformal field theory (ICFT), which includes rational conformal field theory as a small subspace. Highlights of the review include the Virasoro master equation, the Ward identities for the correlators of ICFT and solutions of the Ward identities. In particular, I will discuss the solutions for the correlators of the g/h coset construction and the correlators of the affine-Sugawara nests on g contains h 1 contains hor-ellipsis contains h n . Finally, I will discuss the recent global solution for the correlators of all the ICFT's in the master equation

  1. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    Wendland, K.

    2000-08-01

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  2. Conformal field theory and its application to strings

    International Nuclear Information System (INIS)

    Verlinde, E.P.

    1988-01-01

    Conformal field theories on Riemann surfaces are considered and the result is applied to study the loop amplitudes for bosonic strings. It is shown that there is a close resemblance between the loop amplitudes for φ 3 -theory and the expressions for string multi-loop amplitudes. The similarity between φ 3 -amplitudes in curved backgrounds and the analytic structure of string amplitudes in backgrounds described by conformal field theories is also pointed out. 60 refs.; 5 figs.; 200 schemes

  3. Conformal consistency relations for single-field inflation

    International Nuclear Information System (INIS)

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko

    2012-01-01

    We generalize the single-field consistency relations to capture not only the leading term in the squeezed limit — going as 1/q 3 , where q is the small wavevector — but also the subleading one, going as 1/q 2 . This term, for an (n+1)-point function, is fixed in terms of the variation of the n-point function under a special conformal transformation; this parallels the fact that the 1/q 3 term is related with the scale dependence of the n-point function. For the squeezed limit of the 3-point function, this conformal consistency relation implies that there are no terms going as 1/q 2 . We verify that the squeezed limit of the 4-point function is related to the conformal variation of the 3-point function both in the case of canonical slow-roll inflation and in models with reduced speed of sound. In the second case the conformal consistency conditions capture, at the level of observables, the relation among operators induced by the non-linear realization of Lorentz invariance in the Lagrangian. These results mean that, in any single-field model, primordial correlation functions of ζ are endowed with an SO(4,1) symmetry, with dilations and special conformal transformations non-linearly realized by ζ. We also verify the conformal consistency relations for any n-point function in models with a modulation of the inflaton potential, where the scale dependence is not negligible. Finally, we generalize (some of) the consistency relations involving tensors and soft internal momenta

  4. Comments on conformal Killing vector fields and quantum field theory

    International Nuclear Information System (INIS)

    Brown, M.R.; Ottewill, A.C.; Siklos, S.T.C.

    1982-01-01

    We give a comprehensive analysis of those vacuums for flat and conformally flat space-times which can be defined by timelike, hypersurface-orthogonal, conformal Killing vector fields. We obtain formulas for the difference in stress-energy density between any two such states and display the correspondence with the renormalized stress tensors. A brief discussion is given of the relevance of these results to quantum-mechanical measurements made by noninertial observers moving through flat space

  5. Scalar field dynamics in a BTZ background with generic boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Garbarz, Alan; La Madrid, Joan [UBA y IFIBA, CONICET, Departamento de Fisica, FCEyN, Buenos Aires (Argentina); Leston, Mauricio [Pabellon IAFE-CONICET, Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    2017-11-15

    We revisit the dynamics of a massive scalar field in a Banados, Teitelboim, and Zanelli background taking into account the lack of global hyperbolicity of the spacetime. We approach this issue using the strategy of Ishibashi and Wald which finds a unique smooth solution as the causal evolution of initial data, each possible evolution corresponding to a positive self-adjoint extension of certain operator in a Hilbert space on the initial surface. Moreover, solutions obtained this way are the most general ones satisfying a few physically sensible requirements. This procedure is intimately related to the choice of boundary conditions and the existence of bound states. We find that the scalar field dynamics in the (effective) mass window -3/4 ≤ m{sub e}{sup 2}l{sup 2} < 0 can be well defined within a one-parametric family of distinct boundary conditions (-3/4 being the conformally coupled case), while for m{sub e}{sup 2}l{sup 2} ≥ 0 the boundary condition is unique (only one self-adjoint extension is possible). It is argued that there is no sensible evolution possible for m{sub e}{sup 2}l{sup 2} < -1, and also it is shown that in the range m{sub e}{sup 2}l{sup 2} element of [-1, -3/4) there is a U(1) family of allowed boundary conditions, however, the positivity of the self-adjoint extensions is only motivated but not proven. We focus mainly on describing the dynamics of such evolutions given the initial data and all possible boundary conditions, and in particular we show the energy is always positive and conserved. (orig.)

  6. Flat connection, conformal field theory and quantum group

    International Nuclear Information System (INIS)

    Kato, Mitsuhiro.

    1989-07-01

    General framework of linear first order differential equation for four-point conformal block is studied by using flat connection. Integrability and SL 2 invariance restrict possible form of flat connection. Under a special ansatz classical Yang-Baxter equation appears as an integrability condition and the WZW model turns to be unique conformal field theory in that case. Monodromy property of conformal block can be easily determined by the flat connection. 11 refs

  7. Conformal transformation and symplectic structure of self-dual fields

    International Nuclear Information System (INIS)

    Yang Kongqing; Luo Yan

    1996-01-01

    Considered two dimensional self-dual fields, the symplectic structure on the space of solutions is given. It is shown that this structure is Poincare invariant. The Lagrangian of two dimensional self-dual field is invariant under infinite one component conformal group, then this symplectic structure is also invariant under this conformal group. The conserved currents in geometrical formalism are also obtained

  8. Nonrelativistic Conformed Symmetry in 2 + 1 Dimensional Field Theory.

    Science.gov (United States)

    Bergman, Oren

    This thesis is devoted to the study of conformal invariance and its breaking in non-relativistic field theories. It is a well known feature of relativistic field theory that theories which are conformally invariant at the classical level can acquire a conformal anomaly upon quantization and renormalization. The anomaly appears through the introduction of an arbitrary, but dimensionful, renormalization scale. One does not usually associate the concepts of renormalization and anomaly with nonrelativistic quantum mechanics, but there are a few examples where these concepts are useful. The most well known case is the two-dimensional delta -function potential. In two dimensions the delta-function scales like the kinetic term of the Hamiltonian, and therefore the problem is classically conformally invariant. Another example of classical conformal invariance is the famous Aharonov-Bohm (AB) problem. In that case each partial wave sees a 1/r^2 potential. We use the second quantized formulation of these problems, namely the nonrelativistic field theories, to compute Green's functions and derive the conformal anomaly. In the case of the AB problem we also solve an old puzzle, namely how to reproduce the result of Aharonov and Bohm in perturbation theory. The thesis is organized in the following manner. Chapter 1 is an introduction to nonrelativistic field theory, nonrelativistic conformal invariance, contact interactions and the AB problem. In Chapter 2 we discuss nonrelativistic scalar field theory, and how its quantization produces the anomaly. Chapter 3 is devoted to the AB problem, and the resolution of the perturbation puzzle. In Chapter 4 we generalize the discussion of Chapter 3 to particles carrying nonabelian charges. The structure of the nonabelian theory is much richer, and deserves a separate discussion. We also comment on the issues of forward scattering and single -valuedness of wavefunctions, which are important for Chapter 3 as well. (Copies available

  9. An introduction to conformal field theory

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1995-01-01

    The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)

  10. Extensions of conformal symmetry in two-dimensional quantum field theory

    International Nuclear Information System (INIS)

    Schoutens, C.J.M.

    1989-01-01

    Conformal symmetry extensions in a two-dimensional quantum field theory are the main theme of the work presented in this thesis. After a brief exposition of the formalism for conformal field theory, the motivation for studying extended symmetries in conformal field theory is presented in some detail. Supersymmetric extensions of conformal symmetry are introduced. An overview of the algebraic superconformal symmetry is given. The relevance of higher-spin bosonic extensions of the Virasoro algebra in relation to the classification program for so-called rational conformal theories is explained. The construction of a large class of bosonic extended algebras, the so-called Casimir algebras, are presented. The representation theory of these algebras is discussed and a large class of new unitary models is identified. The superspace formalism for O(N)-extended superconformal quantum field theory is presented. It is shown that such theories exist for N ≤ 4. Special attention is paid to the case N = 4 and it is shown that the allowed central charges are c(n + ,n - ) = 6n + n - /(n + ,n - ), where n + and n - are positive integers. A different class of so(N)-extended superconformal algebras is analyzed. The representation theory is studied and it is established that certain free field theories provide realizations of the algebras with level S = 1. Finally the so-called BRST construction for extended conformal algebras is considered. A nilpotent BRST charge is constructed for a large class of algebras, which contains quadratically nonlinear algebras that fall outside the traditional class if finitely generated Lie (super)algebras. The results are especially relevant for the construction of string models based on extended conformal symmetry. (author). 118 refs.; 7 tabs

  11. Conformal Vector Fields on Doubly Warped Product Manifolds and Applications

    Directory of Open Access Journals (Sweden)

    H. K. El-Sayied

    2016-01-01

    Full Text Available This article aimed to study and explore conformal vector fields on doubly warped product manifolds as well as on doubly warped spacetime. Then we derive sufficient conditions for matter and Ricci collineations on doubly warped product manifolds. A special attention is paid to concurrent vector fields. Finally, Ricci solitons on doubly warped product spacetime admitting conformal vector fields are considered.

  12. Pressure and Compressibility of Conformal Field Theories from the AdS/CFT Correspondence

    Directory of Open Access Journals (Sweden)

    Brian P. Dolan

    2016-05-01

    Full Text Available The equation of state associated with N = 4 supersymmetric Yang–Mills in four dimensions, for S U ( N in the large N limit, is investigated using the AdS/CFT correspondence. An asymptotically AdS black-hole on the gravity side provides a thermal background for the Yang–Mills theory on the boundary in which the cosmological constant is equivalent to a volume. The thermodynamic variable conjugate to the cosmological constant is a pressure, and the P - V diagram of the quark-gluon plasma is studied. It is known that there is a critical point where the heat capacity diverges, and this is reflected in the isothermal compressibility. Critical exponents are derived and found to be mean field in the large N limit. The same analysis applied to three- and six-dimensional conformal field theories again yields mean field exponents associated with the compressibility at the critical point.

  13. From spinning conformal blocks to matrix Calogero-Sutherland models

    Science.gov (United States)

    Schomerus, Volker; Sobko, Evgeny

    2018-04-01

    In this paper we develop further the relation between conformal four-point blocks involving external spinning fields and Calogero-Sutherland quantum mechanics with matrix-valued potentials. To this end, the analysis of [1] is extended to arbitrary dimensions and to the case of boundary two-point functions. In particular, we construct the potential for any set of external tensor fields. Some of the resulting Schrödinger equations are mapped explicitly to the known Casimir equations for 4-dimensional seed conformal blocks. Our approach furnishes solutions of Casimir equations for external fields of arbitrary spin and dimension in terms of functions on the conformal group. This allows us to reinterpret standard operations on conformal blocks in terms of group-theoretic objects. In particular, we shall discuss the relation between the construction of spinning blocks in any dimension through differential operators acting on seed blocks and the action of left/right invariant vector fields on the conformal group.

  14. Conformal generally covariant quantum field theory. The scalar field and its Wick products

    Energy Technology Data Exchange (ETDEWEB)

    Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-06-15

    In this paper we generalize the construction of generally covariant quantum theories given in [R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237, 31 (2003)] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale {mu} appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields. (orig.)

  15. Conformal generally covariant quantum field theory. The scalar field and its Wick products

    International Nuclear Information System (INIS)

    Pinamonti, N.

    2008-06-01

    In this paper we generalize the construction of generally covariant quantum theories given in [R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237, 31 (2003)] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale μ appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields. (orig.)

  16. Supergravity, Non-Conformal Field Theories and Brane-Worlds

    CERN Document Server

    Gherghetta, Tony; Gherghetta, Tony; Oz, Yaron

    2002-01-01

    We consider the supergravity dual descriptions of non-conformal super Yang-Mills theories realized on the world-volume of Dp-branes. We use the dual description to compute stress-energy tensor and current correlators. We apply the results to the study of dilatonic brane-worlds described by non-conformal field theories coupled to gravity. We find that brane-worlds based on D4 and D5 branes exhibit a localization of gauge and gravitational fields. We calculate the corrections to the Newton and Coulomb laws in these theories.

  17. Indecomposability parameters in chiral logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Vasseur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert

    2011-01-01

    Work of the last few years has shown that the key algebraic features of Logarithmic Conformal Field Theories (LCFTs) are already present in some finite lattice systems (such as the XXZ spin-1/2 chain) before the continuum limit is taken. This has provided a very convenient way to analyze the structure of indecomposable Virasoro modules and to obtain fusion rules for a variety of models such as (boundary) percolation etc. LCFTs allow for additional quantum numbers describing the fine structure of the indecomposable modules, and generalizing the 'b-number' introduced initially by Gurarie for the c=0 case. The determination of these indecomposability parameters (or logarithmic couplings) has given rise to a lot of algebraic work, but their physical meaning has remained somewhat elusive. In a recent paper, a way to measure b for boundary percolation and polymers was proposed. We generalize this work here by devising a general strategy to compute matrix elements of Virasoro generators from the numerical analysis of lattice models and their continuum limit. The method is applied to XXZ spin-1/2 and spin-1 chains with open (free) boundary conditions. They are related to gl(n+m|m) and osp(n+2m|2m)-invariant superspin chains and to non-linear sigma models with supercoset target spaces. These models can also be formulated in terms of dense and dilute loop gas. We check the method in many cases where the results were already known analytically. Furthermore, we also confront our findings with a construction generalizing Gurarie's, where logarithms emerge naturally in operator product expansions to compensate for apparently divergent terms. This argument actually allows us to compute indecomposability parameters in any logarithmic theory. A central result of our study is the construction of a Kac table for the indecomposability parameters of the logarithmic minimal models LM(1,p) and LM(p,p+1).

  18. Conformal field theories, Coulomb gas picture and integrable models

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1988-01-01

    The aim of the study is to present the links between some results of conformal field theory, the conventional Coulomb gas picture in statistical mechanics and the approach of integrable models. It is shown that families of conformal theories, related by the coset construction to the SU(2) Kac-Moody algebra, may be regarded as obtained from some free field, and modified by the coupling of its winding numbers to floating charges. This representation reflects the procedure of restriction of the corresponding integrable lattice models. The work may be generalized to models based on the coset construction with higher rank algebras. The corresponding integrable models are identified. In the conformal field description, generalized parafermions appear, and are coupled to free fields living on a higher-dimensional torus. The analysis is not as exhaustive as in the SU(2) case: all the various restrictions have not been identified, nor the modular invariants completely classified

  19. Boundary stress tensors for spherically-symmetric conformal Rindler observers

    Energy Technology Data Exchange (ETDEWEB)

    Culetu, Hristu [Ovidius University, Constanta (Romania)

    2010-06-15

    The boundary energy-momentum tensors for a static observer in the conformally flat Rindler geometry are considered. We find that the surface energy density is positive far from the Planck world, but that the transversal pressures are negative. The kinematical parameters associated with the nongeodesic congruence of static observers are computed. The entropy S corresponding to the degrees of freedom on the 2-surface of constant {rho} and t equals the horizon entropy of a black hole with a time-dependent mass, and the Padmanabhan expression E = 2ST is obeyed. The 2-surface shear tensor is vanishing, and the coefficient of the bulk viscosity {zeta} is 1/16 {pi}, so the negative pressure due to it acts as a surface tension.

  20. Markov traces and II1 factors in conformal field theory

    International Nuclear Information System (INIS)

    Boer, J. de; Goeree, J.

    1991-01-01

    Using the duality equations of Moore and Seiberg we define for every primary field in a Rational Conformal Field Theory a proper Markov trace and hence a knot invariant. Next we define two nested algebras and show, using results of Ocneanu, how the position of the smaller algebra in the larger one reproduces part of the duality data. A new method for constructing Rational Conformal Field Theories is proposed. (orig.)

  1. Infinite additional symmetries in two-dimensional conformal quantum field theory

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1986-01-01

    This paper investigates additional symmetries in two-dimensional conformal field theory generated by spin s = 1/2, 1,...,3 currents. For spins s = 5/2 and s = 3, the generators of the symmetry form associative algebras with quadratic determining relations. ''Minimal models'' of conforma field theory with such additional symmetries are considered. The space of local fields occurring in a conformal field theory with additional symmetry corresponds to a certain (in general, reducible) representation of the corresponding algebra of the symmetry

  2. Relating the archetypes of logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Creutzig, Thomas; Ridout, David

    2013-01-01

    Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought

  3. Relating the archetypes of logarithmic conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, Thomas, E-mail: tcreutzig@mathematik.tu-darmstadt.de [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB 3255, Chapel Hill, NC 27599-3255 (United States); Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt (Germany); Ridout, David, E-mail: david.ridout@anu.edu.au [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200 (Australia)

    2013-07-21

    Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.

  4. Exploring perturbative conformal field theory in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)

    2017-01-24

    We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.

  5. Quantum Yang-Mills theory of Riemann surfaces and conformal field theory

    International Nuclear Information System (INIS)

    Killingback, T.P.

    1989-01-01

    It is shown that Yang-Mills theory on a smooth surface, when suitably quantized, is a topological quantum field theory. This topological gauge theory is intimately related to two-dimensional conformal field theory. It is conjectured that all conformal field theories may be obtained from Yang-Mills theory on smooth surfaces. (orig.)

  6. Particle versus field structure in conformal quantum field theories

    International Nuclear Information System (INIS)

    Schroer, Bert

    2000-06-01

    I show that a particle structure in conformal field theory is incompatible with interactions. As a substitute one has particle-like excitations whose interpolating fields have in addition to their canonical dimension an anomalous contribution. The spectra of anomalous dimension is given in terms of the Lorentz invariant quadratic invariant (compact mass operator) of a conformal generator R μ with pure discrete spectrum. The perturbative reading of R o as a Hamiltonian in its own right, associated with an action in a functional integral setting naturally leads to the Ad S formulation. The formal service role of Ad S in order to access C QFT by a standard perturbative formalism (without being forced to understand first massive theories and then taking their scale-invariant limit) vastly increases the realm of conventionally accessible 4-dim. C QFT beyond those for which one had to use Lagrangians with supersymmetry in order to have a vanishing Beta-function. (author)

  7. Infinite-component conformal fields. Spectral representation of the two-point function

    International Nuclear Information System (INIS)

    Zaikov, R.P.; Tcholakov, V.

    1975-01-01

    The infinite-component conformal fields (with respect to the stability subgroup) are considered. The spectral representation of the conformally invariant two-point function is obtained. This function is nonvanishing as/lso for one ''fundamental'' and one infinite-component field

  8. Conformal solids and holography

    Science.gov (United States)

    Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R.

    2017-12-01

    We argue that a SO( d) magnetic monopole in an asymptotically AdS space-time is dual to a d-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration solidon. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary — the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.

  9. Conformally coupled scalars, instantons and vacuum instability in AdS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    De Haro, S. [King' s College London (United Kingdom). Dept. of Mathematics; Papadimitriou, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Petkou, A.C. [Crete Univ., Keraklion (Greece). Dept. of Physics

    2006-11-15

    We show that a scalar field conformally coupled to AdS gravity in four dimensions with a quartic self-interaction can be embedded into M-theory. The holographic effective action and effective potential are exactly calculated, allowing us to study non-perturbatively the stability of AdS{sub 4} in the presence of the conformally coupled scalar. It is shown that there exists a one-parameter family of conformal scalar boundary conditions for which the boundary theory has an unstable vacuum. In this case, the bulk theory has instanton solutions that mediate the decay of the AdS{sub 4} space. These results match nicely with the vacuum structure and the existence of instantons in an effective three-dimensional boundary model.

  10. Conformally covariant massless spin-two field equations

    International Nuclear Information System (INIS)

    Drew, M.S.; Gegenberg, J.D.

    1980-01-01

    An explicit proof is constructed to show that the field equations for a symmetric tensor field hsub(ab) describing massless spin-2 particles in Minkowski space-time are not covariant under the 15-parameter group SOsub(4,2); this group is usually associated with conformal transformations on flat space, and here it will be considered as a global gauge group which acts upon matter fields defined on space-time. Notwithstanding the above noncovariance, the equations governing the rank-4 tensor Ssub(abcd) constructed from hsub(ab) are shown to be covariant provided the contraction Ssub(ab) vanishes. Conformal covariance is proved by demonstrating the covariance of the equations for the equivalent 5-component complex field; in fact, covariance is proved for a general field equation applicable to massless particles of any spin >0. It is shown that the noncovariance of the hsub(ab) equations may be ascribed to the fact that the transformation behaviour of hsub(ab) is not the same as that of a field consisting of a gauge only. Since this is in contradistinction to the situation for the electromagnetic-field equations, the vector form of the electromagnetic equations is cast into a form which can be duplicated for the hsub(ab)-field. This procedure results in an alternative, covariant, field equation for hsub(ab). (author)

  11. On the conformal transformation in *gλμ-unified field theory

    International Nuclear Information System (INIS)

    Lee, Il Young

    1986-01-01

    Chung gave the complete set of the general solutions of Einstein's equations in the Einstein's * g λμ -unified field theory for all classes and all possible indices of interia. In the present paper we shall investigate how the conformal transformation enforces the connection and give the complete relations between connections in * g λμ -unified field theory. Also we shall investigate how S λ is transformed by the conformal transformation and give conformally invariant connection. (Author)

  12. Conformal fields in prostate radiotherapy: A comparison between measurement, calculation and simulation

    Directory of Open Access Journals (Sweden)

    Seied R Mahdavi

    2012-01-01

    Full Text Available Aims: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS for calculating the dose distribution parameters in conformal fields (CF. Dosimetric parameters of CF′s were compared between measurement, Monte Carlo simulation (MCNP4C and TPS calculation. Materials and Methods: Field analyzer water phantom was used for obtaining percentage depth dose (PDD curves and beam profiles (BP of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. Results: Results showed that the distance to agreement (DTA and dose difference (DD of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. Conclusions: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.

  13. Conformal symmetries of FRW accelerating cosmologies

    International Nuclear Information System (INIS)

    Kehagias, A.; Riotto, A.

    2014-01-01

    We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage

  14. Backreaction from non-conformal quantum fields in de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem; Verdaguer, Enric [Departament de Fisica Fonamental and Institut de Ciencies del Cosmos, Universitat de Barcelona, Av Diagonal 647, 08028 Barcelona (Spain); Roura, Albert [Theoretical Division, T-8, Los Alamos National Laboratory, M.S. B285, Los Alamos, NM 87545 (United States)

    2008-08-07

    We study the backreaction on the mean field geometry due to a non-conformal quantum field in a Robertson-Walker background. In the regime of small mass and small deviation from conformal coupling, we compute perturbatively the expectation value of the stress tensor of the field for a variety of vacuum states, and use it to obtain explicitly the semiclassical gravity solutions for isotropic perturbations around de Sitter spacetime, which is found to be stable. Our results clearly show the crucial role of the non-local terms that appear in the effective action: they cancel the contribution from local terms proportional to the logarithm of the scale factor which would otherwise become dominant at late times and prevent the existence of a stable self-consistent de Sitter solution. Finally, the opposite regime of a strongly non-conformal field with a large mass is also considered.

  15. Strings, conformal fields and topology

    International Nuclear Information System (INIS)

    Kaku, Michio

    1991-01-01

    String Theory has advanced at an astonishing pace in the last few years, and this book aims to acquaint the reader with the most active topics of research in the field. Building on the foundations laid in his Introduction to Superstrings, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, the non-polynominal closed string field theory, matrix models, and topological field theory. Several chapters review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. The book conveys the vitality of current research in string theory and places readers at its forefront. (orig.) With 40 figs. in 50 parts

  16. Asymptotic mass degeneracies in conformal field theories

    International Nuclear Information System (INIS)

    Kani, I.; Vafa, C.

    1990-01-01

    By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)

  17. Massless fields in curved space-time: The conformal formalism

    International Nuclear Information System (INIS)

    Castagnino, M.A.; Sztrajman, J.B.

    1986-01-01

    A conformally invariant theory for massless quantum fields in curved space-time is formulated. We analyze the cases of spin-0, - 1/2 , and -1. The theory is developed in the important case of an ''expanding universe,'' generalizing the particle model of ''conformal transplantation'' known for spin-0 to spins- 1/2 and -1. For the spin-1 case two methods introducing new conformally invariant gauge conditions are stated, and a problem of inconsistency that was stated for spin-1 is overcome

  18. Conformal and Nearly Conformal Theories at Large N

    Science.gov (United States)

    Tarnoplskiy, Grigory M.

    In this thesis we present new results in conformal and nearly conformal field theories in various dimensions. In chapter two, we study different properties of the conformal Quantum Electrodynamics (QED) in continuous dimension d. At first we study conformal QED using large Nf methods, where Nf is the number of massless fermions. We compute its sphere free energy as a function of d, ignoring the terms of order 1/Nf and higher. For finite Nf we use the epsilon-expansion. Next we use a large Nf diagrammatic approach to calculate the leading corrections to CT, the coefficient of the two-point function of the stress-energy tensor, and CJ, the coefficient of the two-point function of the global symmetry current. We present explicit formulae as a function of d and check them versus the expectations in 2 and 4 - epsilon dimensions. In chapter three, we discuss vacuum stability in 1 + 1 dimensional conformal field theories with external background fields. We show that the vacuum decay rate is given by a non-local two-form. This two-form is a boundary term that must be added to the effective in/out Lagrangian. The two-form is expressed in terms of a Riemann-Hilbert decomposition for background gauge fields, and is given by its novel "functional'' version in the gravitational case. In chapter four, we explore Tensor models. Such models possess the large N limit dominated by the melon diagrams. The quantum mechanics of a real anti-commuting rank-3 tensor has a large N limit similar to the Sachdev-Ye-Kitaev (SYK) model. We also discuss the quantum mechanics of a complex 3-index anti-commuting tensor and argue that it is equivalent in the large N limit to a version of SYK model with complex fermions. Finally, we discuss models of a commuting tensor in dimension d. We study the spectrum of the large N quantum field theory of bosonic rank-3 tensors using the Schwinger-Dyson equations. We compare some of these results with the 4 - epsilon expansion, finding perfect agreement. We

  19. Quantum Ising chains with boundary fields

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore; Pelissetto, Andrea

    2015-01-01

    We present a detailed study of the finite one-dimensional quantum Ising chain in a transverse field in the presence of boundary magnetic fields coupled with the order-parameter spin operator. We consider two magnetic fields located at the boundaries of the chain that have the same strength and that are aligned in the same or in the opposite direction. We derive analytic expressions for the gap in all phases for large values of the chain length L, as a function of the boundary field strength. We also investigate the behaviour of the chain in the quantum ferromagnetic phase for oppositely aligned fields, focusing on the magnet-to-kink transition that occurs at a finite value of the magnetic field strength. At this transition we compute analytically the finite-size crossover functions for the gap, the magnetisation profile, the two-point correlation function, and the density of fermionic modes. As the magnet-to-kink transition is equivalent to the wetting transition in two-dimensional classical Ising models, our results provide new analytic predictions for the finite-size behaviour of Ising systems in a strip geometry at this transition. (paper)

  20. Tricritical Ising model with a boundary

    International Nuclear Information System (INIS)

    De Martino, A.; Moriconi, M.

    1998-03-01

    We study the integrable and supersymmetric massive φ (1,3) deformation of the tricritical Ising model in the presence of a boundary. We use constraints from supersymmetry in order to compute the exact boundary S-matrices, which turn out to depend explicitly on the topological charge of the supersymmetry algebra. We also solve the general boundary Yang-Baxter equation and show that in appropriate limits the general reflection matrices go over the supersymmetry preserving solutions. Finally, we briefly discuss the possible connection between our reflection matrices and boundary perturbations within the framework of perturbed boundary conformal field theory. (author)

  1. On relevant boundary perturbations of unitary minimal models

    International Nuclear Information System (INIS)

    Recknagel, A.; Roggenkamp, D.; Schomerus, V.

    2000-01-01

    We consider unitary Virasoro minimal models on the disk with Cardy boundary conditions and discuss deformations by certain relevant boundary operators, analogous to tachyon condensation in string theory. Concentrating on the least relevant boundary field, we can perform a perturbative analysis of renormalization group fixed points. We find that the systems always flow towards stable fixed points which admit no further (non-trivial) relevant perturbations. The new conformal boundary conditions are in general given by superpositions of 'pure' Cardy boundary conditions

  2. Three-dimensional conformal pancreas treatment: comparison of four- to six-field techniques

    International Nuclear Information System (INIS)

    Higgins, Patrick D.; Sohn, Jason W.; Fine, Robert M.; Schell, Michael C.

    1995-01-01

    Purpose: We compare practical conformal treatment approaches to pancreatic cancer using 6 and 18 MV photons and contrast those approaches against standard techniques. Methods and Materials: A four-field conformal technique for treating pancreas cancer has been developed using nonopposed 18 MV photons. This approach has been extended to 6 MV photon application by the addition of one to two fields. These techniques have been optimized to increase sparing of normal liver and bowel, compared with opposed-field methods, to improve patient tolerance of high doses. In this study we compare these techniques in a simulated tumor model in a cylindrical phantom. Dose-volume analysis is used to quantify differences between the conformal, nonopposed techniques with conformal, opposed field methods. This model is also used to evaluate the effect of 1-2 cm setup errors on dose-volume coverage. Results: Dose-volume analysis demonstrates that five-to-six field conformal treatments using 6 MV photons provides similar or better dose coverage and normal tissue sparing characteristics as an optimized 18 MV, four-field approach when 1-2 cm margins are included for setup uncertainty. All approaches using nonopposed beam geometry provide significant reduction in the volume of tissue encompassed by the 30-50% isodose surfaces, as compared with four-field box techniques. Conclusions: Three-dimensional (3D) conformal treatments can be designed that significantly improve dose-volume characteristics over conventional treatment designs without costing unacceptable amounts of machine time. Further, deep intraabdominal sites can be adequately accessed and treated on intermediate energy machines with a relatively moderate increase in machine time

  3. On osp(2|2) conformal field theories

    International Nuclear Information System (INIS)

    Ding Xiangmao; Gould, Mark D; Mewton, Courtney J; Zhang Yaozhong

    2003-01-01

    We study the conformal field theories corresponding to current superalgebras osp(2|2) (1) k and osp(2|2) (2) k . We construct the free field realizations, screen currents and primary fields of these current superalgebras at general level k. All the results for osp(2|2) (2) k are new, and the results for the primary fields of osp(2|2) (1) k also seem to be new. Our results are expected to be useful in the supersymmetric approach to Gaussian disordered systems such as the random bond Ising model and the Dirac model

  4. An introduction to conformal field theory in two dimensions and string theory

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1989-01-01

    This paper provides information on The S-Matrix; Elements of conformally invariant field theory in 2-dim.; The Virasoro gauge conditions; Some representations of the Virasoro algebra; The S-matrix of the Bosonic string theory; Super conformal field theory; Superstring; superstring spectrum and GSO projection; The (β,γ) ghost system; BRST formulation; and String propagation in background fields

  5. Conformal and Lie superalgebras motivated from free fermionic fields

    International Nuclear Information System (INIS)

    Ma, Shukchuen

    2003-01-01

    In this paper, we construct six families of conformal superalgebras of infinite type, motivated from free quadratic fermonic fields with derivatives, and we prove their simplicity. The Lie superalgebras generated by these conformal superalgebras are proven to be simple except for a few special cases in the general linear superalgebras and the type-Q lie superalgebras, in which these Lie superalgebras have a one-dimensional centre and the quotient Lie superalgebras modulo the centre are simple. Certain natural central extensions of these families of conformal superalgebras are also given. Moreover, we prove that these conformal superalgebras are generated by their finite-dimensional subspaces of minimal weight in a certain sense. It is shown that a conformal superalgebra is simple if and only if its generated Lie superalgebra does not contain a proper nontrivial ideal with a one-variable structure

  6. Holographic applications of logarithmic conformal field theories

    NARCIS (Netherlands)

    Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.

    2013-01-01

    We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in

  7. Infinite-dimensional Lie algebras in 4D conformal quantum field theory

    International Nuclear Information System (INIS)

    Bakalov, Bojko; Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan

    2008-01-01

    The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V M (x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp(∞,R) corresponding to the field R of reals, of u(∞, ∞) associated with the field C of complex numbers, and of so*(4∞) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively

  8. A new tool in the classification of rational conformal field theories

    International Nuclear Information System (INIS)

    Christe, P.; Ravanini, F.

    1988-10-01

    The fact that in any rational conformal field theory (RCFT) 4-point functions on the sphere must satisfy an ordinary differential equation gives a simple condition on the conformal dimensions of primary fields. We discuss how this can help in the classification program of RCFT. As an example all associative fusion rules with less than four non-trivial primary fields and N ijk <<1 are discussed. Another application to the classification of chiral algebras is briefly mentioned. (orig.)

  9. An algebraic approach towards the classification of 2 dimensional conformal field theories

    International Nuclear Information System (INIS)

    Bouwknegt, P.G.

    1988-01-01

    This thesis treats an algebraic method for the construction of 2-dimensional conformal field theories. The method consists of the study of the representation theory of the Virasoro algebra and suitable extensions of this. The classification of 2-dimensional conformal field theories is translated into the classification of combinations of representations which satisfy certain consistence conditions (unitarity and modular invariance). For a certain class of 2-dimensional field theories, namely the one with central charge c = 1 from the theory of Kac-Moody algebra's. there exist indications, but as yet mainly hope, that this construction will finally lead to a classification of 2-dimensional conformal field theories. 182 refs.; 2 figs.; 26 tabs

  10. A universal nonlinear relation among boundary states in closed string field theory

    International Nuclear Information System (INIS)

    Kishimoto, Isao; Matsuo, Yutaka; Watanabe, Eitoku

    2004-01-01

    We show that the boundary states satisfy a nonlinear relation (the idempotency equation) with respect to the star product of closed string field theory. This relation is universal in the sense that various D-branes, including the infinitesimally deformed ones, satisfy the same equation, including the coefficient. This paper generalizes our analysis [hep-th/0306189] in the following senses. (1) We present a background-independent formulation based on conformal field theory. It illuminates the geometric nature of the relation and allows us to more systematically analyze the variations around the D-brane background. (2) We show that the Witten-type star product satisfies a similar relation but with a more divergent coefficient. (3) We determine the coefficient of the relation analytically. The result shows that the α parameter can be formally factored out, and the relation becomes universal. We present a conjecture on vacuum theory based on this computation. (author)

  11. Entanglement evolution across a conformal interface

    Science.gov (United States)

    Wen, Xueda; Wang, Yuxuan; Ryu, Shinsei

    2018-05-01

    For two-dimensional conformal field theories (CFTs) in the ground state, it is known that a conformal interface along the entanglement cut can suppress the entanglement entropy from to , where L is the length of the subsystem A, and is the effective central charge which depends on the transmission property of the conformal interface. In this work, by making use of conformal mappings, we show that a conformal interface has the same effect on entanglement evolution in non-equilibrium cases, including global, local and certain inhomogeneous quantum quenches. I.e. a conformal interface suppresses the time evolution of entanglement entropy by effectively replacing the central charge c with , where is exactly the same as that in the ground state case. We confirm this conclusion by a numerical study on a critical fermion chain. Furthermore, based on the quasi-particle picture, we conjecture that this conclusion holds for an arbitrary quantum quench in CFTs, as long as the initial state can be described by a regularized conformal boundary state.

  12. Rectangular amplitudes, conformal blocks, and applications to loop models

    Energy Technology Data Exchange (ETDEWEB)

    Bondesan, Roberto, E-mail: roberto.bondesan@cea.fr [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Jacobsen, Jesper L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, Hubert [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)

    2013-02-21

    In this paper we continue the investigation of partition functions of critical systems on a rectangle initiated in [R. Bondesan, et al., Nucl. Phys. B 862 (2012) 553-575]. Here we develop a general formalism of rectangle boundary states using conformal field theory, adapted to describe geometries supporting different boundary conditions. We discuss the computation of rectangular amplitudes and their modular properties, presenting explicit results for the case of free theories. In a second part of the paper we focus on applications to loop models, discussing in details lattice discretizations using both numerical and analytical calculations. These results allow to interpret geometrically conformal blocks, and as an application we derive new probability formulas for self-avoiding walks.

  13. Critical boundary sine-Gordon revisited

    International Nuclear Information System (INIS)

    Hasselfield, M.; Lee, Taejin; Semenoff, G.W.; Stamp, P.C.E.

    2006-01-01

    We revisit the exact solution of the two space-time dimensional quantum field theory of a free massless boson with a periodic boundary interaction and self-dual period. We analyze the model by using a mapping to free fermions with a boundary mass term originally suggested in Ref. [J. Polchinski, L. Thorlacius, Phys. Rev. D 50 (1994) 622]. We find that the entire SL (2, C) family of boundary states of a single boson are boundary sine-Gordon states and we derive a simple explicit expression for the boundary state in fermion variables and as a function of sine-Gordon coupling constants. We use this expression to compute the partition function. We observe that the solution of the model has a strong-weak coupling generalization of T-duality. We then examine a class of recently discovered conformal boundary states for compact bosons with radii which are rational numbers times the self-dual radius. These have simple expression in fermion variables. We postulate sine-Gordon-like field theories with discrete gauge symmetries for which they are the appropriate boundary states

  14. Double-trace deformations of conformal correlations

    Science.gov (United States)

    Giombi, Simone; Kirilin, Vladimir; Perlmutter, Eric

    2018-02-01

    Large N conformal field theories often admit unitary renormalization group flows triggered by double-trace deformations. We compute the change in scalar four-point functions under double-trace flow, to leading order in 1/ N. This has a simple dual in AdS, where the flow is implemented by a change of boundary conditions, and provides a physical interpretation of single-valued conformal partial waves. We extract the change in the conformal dimensions and three-point coefficients of infinite families of double-trace composite operators. Some of these quantities are found to be sign-definite under double-trace flow. As an application, we derive anomalous dimensions of spinning double-trace operators comprised of non-singlet constituents in the O( N) vector model.

  15. Matrix factorisations for rational boundary conditions by defect fusion

    International Nuclear Information System (INIS)

    Behr, Nicolas; Fredenhagen, Stefan

    2015-01-01

    A large class of two-dimensional N=(2,2) superconformal field theories can be understood as IR fixed-points of Landau-Ginzburg models. In particular, there are rational conformal field theories that also have a Landau-Ginzburg description. To understand better the relation between the structures in the rational conformal field theory and in the Landau-Ginzburg theory, we investigate how rational B-type boundary conditions are realised as matrix factorisations in the SU(3)/U(2) Grassmannian Kazama-Suzuki model. As a tool to generate the matrix factorisations we make use of a particular interface between the Kazama-Suzuki model and products of minimal models, whose fusion can be realised as a simple functor on ring modules. This allows us to formulate a proposal for all matrix factorisations corresponding to rational boundary conditions in the SU(3)/U(2) model.

  16. Matrix factorisations for rational boundary conditions by defect fusion

    Energy Technology Data Exchange (ETDEWEB)

    Behr, Nicolas [Department of Mathematics, Heriot-Watt University,Riccarton, Edinburgh, EH14 4AS (United Kingdom); Maxwell Institute for Mathematical Sciences,Edinburgh (United Kingdom); Fredenhagen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,D-14424 Golm (Germany)

    2015-05-11

    A large class of two-dimensional N=(2,2) superconformal field theories can be understood as IR fixed-points of Landau-Ginzburg models. In particular, there are rational conformal field theories that also have a Landau-Ginzburg description. To understand better the relation between the structures in the rational conformal field theory and in the Landau-Ginzburg theory, we investigate how rational B-type boundary conditions are realised as matrix factorisations in the SU(3)/U(2) Grassmannian Kazama-Suzuki model. As a tool to generate the matrix factorisations we make use of a particular interface between the Kazama-Suzuki model and products of minimal models, whose fusion can be realised as a simple functor on ring modules. This allows us to formulate a proposal for all matrix factorisations corresponding to rational boundary conditions in the SU(3)/U(2) model.

  17. Towards the classification of conformal field theories in arbitrary dimension

    CERN Document Server

    Anselmi, D

    2000-01-01

    I identify the subclass of higher-dimensional conformal field theories that is most similar to two-dimensional conformal field theory. In this subclass the domain of validity of the recently proposed formula for the irreversibility of the renormalization-group flow is suitably enhanced. The trace anomaly is quadratic in the Ricci tensor and contains a unique central charge. This implies, in particular, a relationship between the coefficient in front of the Euler density (charge a) and the stress-tensor two-point function (charge c). I check the prediction in detail in four, six and eight dimensions, and then in arbitrary dimension. In four and six dimensions there is agreement with results from the AdS/CFT correspondence. A by-product is a mathematical algorithm to construct conformal invariants.

  18. Energy momentum tensor and marginal deformations in open string field theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2004-01-01

    Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)

  19. Topics in two dimensional conformal field theory and three dimensional topological lattice field theory

    International Nuclear Information System (INIS)

    Chung, Stephen-wei.

    1993-01-01

    The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint

  20. Inflation and conformal invariance: the perspective from radial quantization

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Theoretical Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Riotto, Antonio [Department of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2017-05-15

    According to the dS/CFT correspondence, correlators of fields generated during a primordial de Sitter phase are constrained by three-dimensional conformal invariance. Using the properties of radially quantized conformal field theories and the operator-state correspondence, we glean information on some points. The Higuchi bound on the masses of spin-s states in de Sitter is a direct consequence of reflection positivity in radially quantized CFT{sub 3} and the fact that scaling dimensions of operators are energies of states. The partial massless states appearing in de Sitter correspond from the boundary CFT{sub 3} perspective to boundary states with highest weight for the conformal group. Finally, we discuss the inflationary consistency relations and the role of asymptotic symmetries which transform asymptotic vacua to new physically inequivalent vacua by generating long perturbation modes. We show that on the CFT{sub 3} side, asymptotic symmetries have a nice quantum mechanics interpretation. For instance, acting with the asymptotic dilation symmetry corresponds to evolving states forward (or backward) in ''time'' and the charge generating the asymptotic symmetry transformation is the Hamiltonian itself. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Optimized dose conformation of multi-leaf collimator fields

    International Nuclear Information System (INIS)

    Serago, Christopher F.; Buskirk, Steven J.; Foo, May L.; McLaughlin, Mark P.

    1996-01-01

    Purpose/Objective: Current commercially available multi-leaf collimators (MLC) have leaf widths of about 1 cm. These leaf widths may produce stepped dose gradients at the fields edges at the 50% dose level. Small local perturbations of the dose distribution from the prescribed/expected dose distribution may not be acceptable for some clinical applications. Improvements to the conformation of the MLC dose distribution may be achieved using multiple exposures per MLC field, with either shifting the table/patient position, or rotating the orientation of the MLC jaws between exposures. Material and Methods: Dose distributions for MLC, primary jaws only, and lead alloy block fields were measured with film dosimetry for 6 and 20 MV photon beams in a solid water phantom. Square, circular, and typical clinical prostate, brain, lung, esophagus, and head and neck fields were measured. MLC field shapes were produced using a commercial MLC with a leaf width of 1 cm at the treatment isocenter. The dose per MLC field was delivered in either single (conventional) or multiple exposures. The table(patient) position or the collimator rotation was shifted between exposures when multiple exposure MLC fields were used. Differences in the dose distribution were evaluated at the 90% and 50% isodose level. Displacements of the measured 50% isodose from the prescribed/expected 50% isodose were measured at 5 degree intervals. Results: Measurements of the penumbra at a 10 cm depth for square fields show that using double exposure MLC fields with .5 cm table index decreases the effective penumbra by 1 mm. For clinical shaped fields, displacements between the prescribed/expected 50% isodose and the measured 50% isodose for conventional single exposure MLC fields are measured to be as great as 9 mm, and discrepancies on the order of 5 to 6 mm are common. In contrast, the maximum displacement errors measured with multiple exposure MLC fields are less than 5 mm and rarely more than 4 mm. In some

  2. Trickle-down boundary conditions in aeolian dune-field pattern formation

    Science.gov (United States)

    Ewing, R. C.; Kocurek, G.

    2015-12-01

    One the one hand, wind-blown dune-field patterns emerge within the overarching boundary conditions of climate, tectonics and eustasy implying the presence of these signals in the aeolian geomorphic and stratigraphic record. On the other hand, dune-field patterns are a poster-child of self-organization, in which autogenic processes give rise to patterned landscapes despite remarkable differences in the geologic setting (i.e., Earth, Mars and Titan). How important are climate, tectonics and eustasy in aeolian dune field pattern formation? Here we develop the hypothesis that, in terms of pattern development, dune fields evolve largely independent of the direct influence of 'system-scale' boundary conditions, such as climate, tectonics and eustasy. Rather, these boundary conditions set the stage for smaller-scale, faster-evolving 'event-scale' boundary conditions. This 'trickle-down' effect, in which system-scale boundary conditions indirectly influence the event scale boundary conditions provides the uniqueness and richness of dune-field patterned landscapes. The trickle-down effect means that the architecture of the stratigraphic record of dune-field pattern formation archives boundary conditions, which are spatially and temporally removed from the overarching geologic setting. In contrast, the presence of an aeolian stratigraphic record itself, reflects changes in system-scale boundary conditions that drive accumulation and preservation of aeolian strata.

  3. Globally conformal invariant gauge field theory with rational correlation functions

    CERN Document Server

    Nikolov, N M; Todorov, I T; CERN. Geneva; Todorov, Ivan T.

    2003-01-01

    Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields $V_{\\kappa} (x_1, x_2)$ of dimension $(\\kappa, \\kappa)$. For a {\\it globally conformal invariant} (GCI) theory we write down the OPE of $V_{\\kappa}$ into a series of {\\it twist} (dimension minus rank) $2\\kappa$ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field. We argue that the theory of a GCI hermitian scalar field ${\\cal L} (x)$ of dimension 4 in $D = 4$ Minkowski space such that the 3-point functions of a pair of ${\\cal L}$'s and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density ${\\cal L} (x)$.

  4. Representation theory of current algebra and conformal field theory on Riemann surfaces

    International Nuclear Information System (INIS)

    Yamada, Yasuhiko

    1989-01-01

    We study conformal field theories with current algebra (WZW-model) on general Riemann surfaces based on the integrable representation theory of current algebra. The space of chiral conformal blocks defined as solutions of current and conformal Ward identities is shown to be finite dimensional and satisfies the factorization properties. (author)

  5. Two-point boundary correlation functions of dense loop models

    Directory of Open Access Journals (Sweden)

    Alexi Morin-Duchesne, Jesper Lykke Jacobsen

    2018-06-01

    Full Text Available We investigate six types of two-point boundary correlation functions in the dense loop model. These are defined as ratios $Z/Z^0$ of partition functions on the $m\\times n$ square lattice, with the boundary condition for $Z$ depending on two points $x$ and $y$. We consider: the insertion of an isolated defect (a and a pair of defects (b in a Dirichlet boundary condition, the transition (c between Dirichlet and Neumann boundary conditions, and the connectivity of clusters (d, loops (e and boundary segments (f in a Neumann boundary condition. For the model of critical dense polymers, corresponding to a vanishing loop weight ($\\beta = 0$, we find determinant and pfaffian expressions for these correlators. We extract the conformal weights of the underlying conformal fields and find $\\Delta = -\\frac18$, $0$, $-\\frac3{32}$, $\\frac38$, $1$, $\\tfrac \\theta \\pi (1+\\tfrac{2\\theta}\\pi$, where $\\theta$ encodes the weight of one class of loops for the correlator of type f. These results are obtained by analysing the asymptotics of the exact expressions, and by using the Cardy-Peschel formula in the case where $x$ and $y$ are set to the corners. For type b, we find a $\\log|x-y|$ dependence from the asymptotics, and a $\\ln (\\ln n$ term in the corner free energy. This is consistent with the interpretation of the boundary condition of type b as the insertion of a logarithmic field belonging to a rank two Jordan cell. For the other values of $\\beta = 2 \\cos \\lambda$, we use the hypothesis of conformal invariance to predict the conformal weights and find $\\Delta = \\Delta_{1,2}$, $\\Delta_{1,3}$, $\\Delta_{0,\\frac12}$, $\\Delta_{1,0}$, $\\Delta_{1,-1}$ and $\\Delta_{\\frac{2\\theta}\\lambda+1,\\frac{2\\theta}\\lambda+1}$, extending the results of critical dense polymers. With the results for type f, we reproduce a Coulomb gas prediction for the valence bond entanglement entropy of Jacobsen and Saleur.

  6. Introduction to twisted conformal fields

    International Nuclear Information System (INIS)

    Kazama, Y.

    1988-01-01

    A pedagogical account is given of the recent developments in the theory of twisted conformal fields. Among other things, the main part of the lecture concerns the construction of the twist-emission vertex operator, which is a generalization of the fermion emission vertex in the superstring theory. Several different forms of the vertex are derived and their mutural relationships are clarified. In this paper, the authors include a brief survey of the history of the fermion emission vertex, as it offers a good perspective in which to appreciate the logical development

  7. Thermalization and revivals after a quantum quench in conformal field theory.

    Science.gov (United States)

    Cardy, John

    2014-06-06

    We consider a quantum quench in a finite system of length L described by a 1+1-dimensional conformal field theory (CFT), of central charge c, from a state with finite energy density corresponding to an inverse temperature β≪L. For times t such that ℓ/2boundary conditions, L for open boundary conditions) there are (in general, partial) revivals at which F is O(1), leading to an eventual complete revival with F=1. There is also interesting structure at all rational values of t/L, related to properties of the CFT under modular transformations. At early times t≪(Lβ)^{1/2} there is a universal decay F∼exp(-(πc/3)Lt^{2}/β(β^{2}+4t^{2})). The effect of an irrelevant nonintegrable perturbation of the CFT is to progressively broaden each revival at t=nL/2 by an amount O(n^{1/2}).

  8. Effective Field Theory on Manifolds with Boundary

    Science.gov (United States)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  9. Conformal anomalies and the Einstein field equations

    Energy Technology Data Exchange (ETDEWEB)

    Godazgar, Hadi [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany); Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany)

    2017-04-28

    We compute corrections to the Einstein field equations which are induced by the anomalous effective actions associated to the type A conformal anomaly, both for the (non-local) Riegert action, as well as for the local action with dilaton. In all cases considered we find that these corrections can be very large.

  10. Field-aligned currents near the magnetosphere boundary

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.

    1984-01-01

    This paper describes present thinking about the structure of magnetospheric boundary layers and their roles in the generation of the field-aligned currents that are observed in the polar regions. A principal effect of the momentum loss by magnetosheath plasma to the magnetosphere boundary regions just within the magnetopause, whether it be by a diffusive process or by magnetic reconnection, is the tailward pulling of the surface flux tubes relative to those deeper below the surface. The dayside region 1 currents at low altitudes flow along field lines in the resulting regions of magnetic shear. The direction of the shear and its magnitude, actually measured in the boundary region, confirm that the polarities and intensities of the dayside region 1 currents can be accounted for by this process. The low latitude boundary layer, formerly thought to be threaded entirely by closed field lines, now appears to contain at least some open field lines, newly reconnected, that are in the process of being swept into the high latitude tail to form the plasma mantle. The open flux tubes of the flux transfer events, thought to be the product of patchy reconnection have a spiral magnetic structure whose helicity is such as to suggest currents having the polarities of the region 1 currents. 13 references

  11. Field-aligned currents near the magnetosphere boundary

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.

    1983-01-01

    This paper reviews present thinking about the structure of magnetospheric boundary layers and their roles in the generation of the field-aligned currents that are observed in the polar regions. A principal effect of the momentum loss by magnetosheath plasma to the magnetosphere boundary regions just within the magnetopause, whether it be by a diffusive process or by magnetic reconnection, is the tailward pulling of surface flux tubes relative to those deeper below the surface. The dayside region 1 currents at low altitudes flow along field lines in the resulting regions of magnetic shear. The direction of the shear and its magnitude, measured in the boundary region, confirm tht the polarities and intensities of the dayside region 1 currents can be accounted for by this process. The low latitude boundary layer, formerly thought to be threaded entirely by closed field lines, now appears to contain at least some open field lines, newly reconnected, that are in the process of being swept into the high latitude tail to form the plasma mantle. The open flux tubes of the flux transfer events, thought to be the product of patchy reconnection have a spiral magnetic structure whose helicity is such as to suggest currents having the polarities of the region 1 currents

  12. The quantum symmetry of rational conformal field theories

    Directory of Open Access Journals (Sweden)

    César Gómez

    1991-04-01

    Full Text Available The quantum group symmetry of the c ˇ1 Rational Conformal Field Theory, in its Coulomb gas version, is formulated in terms of a new type of screened vertex operators, which define the representation spaces of a quantum group Q. The conformal properties of these operators show a deep interplay between the quantum group Q and the Virasoro algebra.The R-matrix, the comultiplication rules and the quantum Clebsch-Gordan coefficients of Q are obtained using contour deformation techniques. Finally, the relation between the chiral vertex operators and the quantum Clebsch-Gordan coefficients is shown.

  13. General solution of an exact correlation function factorization in conformal field theory

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Kleban, Peter

    2009-01-01

    The correlation function factorization with K a boundary operator product expansion coefficient, is known to hold for certain scaling operators at the two-dimensional percolation point and in a few other cases. Here the correlation functions are evaluated in the upper half-plane (or any conformally equivalent region) with x 1 and x 2 arbitrary points on the real axis, and z an arbitrary point in the interior. This type of result is of interest because it is both exact and universal, relates higher-order correlation functions to lower-order ones and has a simple interpretation in terms of cluster or loop probabilities in several statistical models. This motivated us to use the techniques of conformal field theory to determine the general conditions for its validity. Here, we discover that either (see display) factorizes in this way for any central charge c, generalizing previous results. In particular, the factorization holds for either FK (Fortuin–Kasteleyn) or spin clusters in the Q-state Potts models; it also applies to either the dense or dilute phases of the O(n) loop models. Further, only one other non-trivial set of highest-weight operators (in an irreducible Verma module) factorizes in this way. In this case the operators have negative dimension (for c<1) and do not seem to have a physical realization

  14. Factors affecting the species composition of arable field boundary vegetation

    NARCIS (Netherlands)

    Kleijn, D.; Verbeek, M.

    2000-01-01

    1. In recent decades the botanical diversity of arable field boundaries has declined drastically. To determine the most important factors related to the species composition of arable field boundaries, the vegetation composition of 105 herbaceous boundaries, 1-m wide, in the central and eastern

  15. Scalar field theory in the AdS/CFT correspondence revisited

    International Nuclear Information System (INIS)

    Minces, Pablo; Rivelles, Victor O.

    2000-01-01

    We consider the role of boundary conditions in the AdS d+1 /CFT d correspondence for the scalar field theory. Also a careful analysis of some limiting cases is presented. We study three possible types of boundary conditions, Dirichlet, Neumann and mixed. We compute the two-point functions of the conformal operators on the boundary for each type of boundary condition. We show how particular choices of the mass require different treatments. In the Dirichlet case we find that there is no double zero in the two-point function of the operator with conformal dimension d/2. The Neumann case leads to new normalizations for the boundary two-point functions. In the massless case we show that the conformal dimension of the boundary conformal operator is precisely the unitarity bound for scalar operators. We find a one-parameter family of boundary conditions in the mixed case. There are again new normalizations for the boundary two-point functions. For a particular choice of the mixed boundary condition and with the mass squared in the range -d 2 /4 2 2 /4+1 the boundary operator has conformal dimension comprised in the interval [(d-2)/2, d/2]. For mass squared m 2 >-d 2 /4+1 the same choice of mixed boundary condition leads to a boundary operator whose conformal dimension is the unitarity bound

  16. Conformal fields. From Riemann surfaces to integrable hierarchies

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1991-01-01

    I discuss the idea of translating ingredients of conformal field theory into the language of hierarchies of integrable differential equations. Primary conformal fields are mapped into (differential or matrix) operators living on the phase space of the hierarchy, whereas operator insertions of, e.g., a current or the energy-momentum tensor, become certain vector fields on the phase space and thus acquire a meaning independent of a given Riemann surface. A number of similarities are observed between the structures arising on the hierarchy and those of the theory on the world-sheet. In particular, there is an analogue of the operator product algebra with the Cauchy kernel replaced by its 'off-shell' hierarchy version. Also, hierarchy analogues of certain operator insertions admit two (equivalent, but distinct) forms, resembling the 'bosonized' and 'fermionized' versions respectively. As an application, I obtain a useful reformulation of the Virasoro constraints of the type that arise in matrix models, as a system of equations on dressing (or Lax) operators (rather than correlation functions, i.e., residues or traces). This also suggests an interpretation in terms of a 2D topological field theory, which might be extended to a correspondence between Virasoro-constrained hierarchies and topological theories. (orig.)

  17. Conformal coupling of gravitational wave field to curvature

    International Nuclear Information System (INIS)

    Grishchuk, L.P.; Yudin, V.

    1980-01-01

    Conformal properties of the equations for weak gravitational waves in a curved space--time are investigated. The basic equations are derived in the linear approximation from Einstein's equations. They represent, in fact, the equations for the second-rank tensor field h/sub alphabeta/, restricted by the auxiliary conditions h/sub α//sup β//sub ;/α =0, hequivalentγ/sub alphabeta/h/sup alphabeta/=0, and embedded into the background space--time with the metric tensor γ/sub alphabeta/. It is shown that the equations for h/sub alphabeta/ are not conformally invariant under the transformations gamma-circumflex/sub alphabeta/ =e/sup 2sigma/γ/sub alphabeta/ and h/sub alphabeta/ =e/sup sigma/h/sub alphabeta/, except for those metric rescalings which transform the Ricci scalar R of the original background space--time into e/sup -2sigma/R, where R is the Ricci scalar of the conformally related background space--time. The general form of the equations for h/sub alphabeta/ which are conformally invariant have been deduced. It is shown that these equations cannot be derived in the linear approximation from any tensor equations which generalize the Einstein equations

  18. Differential equation for genus-two characters in arbitrary rational conformal field theories

    International Nuclear Information System (INIS)

    Mathur, S.D.; Sen, A.

    1989-01-01

    We develop a general method for deriving ordinary differential equations for the genus-two ''characters'' of an arbitrary rational conformal field theory using the hyperelliptic representation of the genus-two moduli space. We illustrate our method by explicitly deriving the character differential equations for k=1 SU(2), G 2 , and F 4 WZW models. Our method provides an intrinsic definition of conformal field theories on higher genus Riemann surfaces. (orig.)

  19. Selection of candidate wells and optimization of conformance treatment design in the Barrancas Field using a 3D conformance simulator

    Energy Technology Data Exchange (ETDEWEB)

    Crosta, Dante; Elitseche, Luis [Repsol YPF (Argentina); Gutierrez, Mauricio; Ansah, Joe; Everett, Don [Halliburton Argentina S.A., Buenos Aires (Argentina)

    2004-07-01

    Minimizing the amount of unwanted water production is an important goal at the Barrancas field. This paper describes a selection process for candidate injection wells that is part of a pilot conformance project aimed at improving vertical injection profiles, reducing water cut in producing wells, and improving ultimate oil recovery from this field. The well selection process is based on a review of limited reservoir information available for this field to determine inter-well communications. The methodology focuses on the best use of available information, such as production and injection history, well intervention files, open hole logs and injectivity surveys. After the candidate wells were selected and potential water injection channels were identified, conformance treatment design and future performance of wells in the selected pilot area were evaluated using a new 3 -D conformance simulator, developed specifically for optimization of the design and placement of unwanted fluid shut-off treatments. Thus, when acceptable history match ing of the pilot area production was obtained, the 3 -D simulator was used to: evaluate the required volume of selected conformance treatment fluid; review expected pressures and rates during placement;. model temperature behavior; evaluate placement techniques, and forecast water cut reduction and incremental oil recovery from the producers in this simulated section of the pilot area. This paper outlines a methodology for selecting candidate wells for conformance treatments. The method involves application of several engineering tools, an integral component of which is a user-friendly conformance simulator. The use of the simulator has minimized data preparation time and allows the running of sensitivity cases quickly to explore different possible scenarios that best represent the reservoir. The proposed methodology provides an efficient means of identifying conformance problems and designing optimized solutions for these individual

  20. Quantum groups and algebraic geometry in conformal field theory

    International Nuclear Information System (INIS)

    Smit, T.J.H.

    1989-01-01

    The classification of two-dimensional conformal field theories is described with algebraic geometry and group theory. This classification is necessary in a consistent formulation of a string theory. (author). 130 refs.; 4 figs.; schemes

  1. Surface Design Based on Discrete Conformal Transformations

    Science.gov (United States)

    Duque, Carlos; Santangelo, Christian; Vouga, Etienne

    Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.

  2. Properties of partial-wave amplitudes in conformal invariant field theories

    CERN Document Server

    Ferrara, Sergio; Grillo, A F

    1975-01-01

    Analyticity properties of partial-wave amplitudes of the conformal group O/sub D,2/ (D not necessarily integer) in configuration space are investigated. The presence of Euclidean singularities in the Wilson expansion in conformal invariant field theories is discussed, especially in connection with the program of formulating dynamical bootstrap conditions coming from the requirement of causality. The exceptional case of D-2 is discussed in detail. (18 refs).

  3. On the existence of pointlike localized fields in conformally invariant quantum physics

    International Nuclear Information System (INIS)

    Joerss, M.

    1992-11-01

    In quantum field theory the existence of pointlike localizable objects called 'fields' is a preassumption. Since charged fields are in general not observable this situation is unsatisfying from a quantum physics point of view. Indeed in any quantum theory the existence of fields should follow from deeper physical concepts and more natural first principles like stability, locality, causality and symmetry. In the framework of algebraic quantum field theory with Haag-Kastler nets of local observables this is presented for the case of conformal symmetry in 1+1 dimensions. Conformal fields are explicitly constructed as limits of observables localized in finite regions of space-time. These fields then allow to derive a geometric identification of modular operators, Haag duality in the vacuum sector, the PCT-theorem and an equivalence theorem for fields and algebras. (orig.)

  4. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    theories including those with boundaries, supersymmetry and galilean relativity. Gurarie has written an historical overview of his seminal contributions to this field, putting his results (and those of his collaborators) in the context of understanding applications to condensed matter physics. This includes the link between the non-diagonalisability of L0 and logarithmic singularities, a study of the c → 0 catastrophe, and a proposed resolution involving supersymmetric partners for the stress-energy tensor and its logarithmic partner field. Henkel and Rouhani describe a direction in which logarithmic singularities are observed in correlators of non-relativistic field theories. Their review covers the appropriate modifications of conformal invariance that are appropriate to non-equilibrium statistical mechanics, strongly anisotropic critical points and certain variants of TMG. The main variation away from the standard relativistic idea of conformal invariance is that time is explicitly distinguished from space when considering dilations and this leads to a variety of algebraic structures to explore. In this review, the link between non-diagonalisable representations and logarithmic singularities in correlators is generalised to these algebras, before two applications of the theory are discussed. Huang and Lepowsky give a non-technical overview of their work on braided tensor structures on suitable categories of representations of vertex operator algebras. They also place their work in historic context and compare it to related approaches. The authors sketch their construction of the so-called P(z)-tensor product of modules of a vertex operator algebra, and the construction of the associativity isomorphisms for this tensor product. They proceed to give a guide to their works leading to the first authorrsquo;s proof of modularity for a class of vertex operator algebras, and to their works, joint with Zhang, on logarithmic intertwining operators and the resulting tensor

  5. Universality of sparse d>2 conformal field theory at large N

    Energy Technology Data Exchange (ETDEWEB)

    Belin, Alexandre; Boer, Jan de; Kruthoff, Jorrit [Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics,University of Amsterdam, Science Park 904, Amsterdam, 1098 XH The (Netherlands); Michel, Ben; Shaghoulian, Edgar; Shyani, Milind [Department of Physics, University of California,Santa Barbara, CA, 93106 (United States)

    2017-03-13

    We derive necessary and sufficient conditions for large N conformal field theories to have a universal free energy and an extended range of validity of the higher-dimensional Cardy formula. These constraints are much tighter than in two dimensions and must be satisfied by any conformal field theory dual to Einstein gravity. We construct and analyze symmetric product orbifold theories on T{sup d} and show that they only realize the necessary phase structure and extended range of validity if the seed theory is assumed to have a universal vacuum energy.

  6. Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansions

    International Nuclear Information System (INIS)

    Fredenhagen, K.; Joerss, M.

    1994-10-01

    Starting from a chiral conformal Haag-Kastler net on 2 dimensional Minkowski space we construct associated pointlike localized fields. This amounts to a proof of the existence of operator product expansions. We derive the result in two ways. One is based on the geometrical identification of the modular structure, the other depends on a ''conformal cluster theorem'' of the conformal two-point-functions in algebraic quantum field theory. The existence of the fields then implies important structural properties of the theory, as PCT-invariance, the Bisognano-Wichmann identification of modular operators, Haag duality and additivity. (orig.)

  7. Bioactive conformational generation of small molecules: A comparative analysis between force-field and multiple empirical criteria based methods

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-11-01

    Full Text Available Abstract Background Conformational sampling for small molecules plays an essential role in drug discovery research pipeline. Based on multi-objective evolution algorithm (MOEA, we have developed a conformational generation method called Cyndi in the previous study. In this work, in addition to Tripos force field in the previous version, Cyndi was updated by incorporation of MMFF94 force field to assess the conformational energy more rationally. With two force fields against a larger dataset of 742 bioactive conformations of small ligands extracted from PDB, a comparative analysis was performed between pure force field based method (FFBM and multiple empirical criteria based method (MECBM hybrided with different force fields. Results Our analysis reveals that incorporating multiple empirical rules can significantly improve the accuracy of conformational generation. MECBM, which takes both empirical and force field criteria as the objective functions, can reproduce about 54% (within 1Å RMSD of the bioactive conformations in the 742-molecule testset, much higher than that of pure force field method (FFBM, about 37%. On the other hand, MECBM achieved a more complete and efficient sampling of the conformational space because the average size of unique conformations ensemble per molecule is about 6 times larger than that of FFBM, while the time scale for conformational generation is nearly the same as FFBM. Furthermore, as a complementary comparison study between the methods with and without empirical biases, we also tested the performance of the three conformational generation methods in MacroModel in combination with different force fields. Compared with the methods in MacroModel, MECBM is more competitive in retrieving the bioactive conformations in light of accuracy but has much lower computational cost. Conclusions By incorporating different energy terms with several empirical criteria, the MECBM method can produce more reasonable conformational

  8. Modular invariance and (quasi)-Galois symmetry in conformal field theory

    International Nuclear Information System (INIS)

    Schellekens, A.N.

    1995-01-01

    A brief heuristic explanation is given of recent work with Juergen Fuchs, Beatriz Gato-Rivera and Christoph Schweigert on the construction of modular invariant partition functions from Galois symmetry in conformal field theory. A generalization, which we call quasi-Galois symmetry, is also described. As an application of the latter, the invariants of the exceptional algebras at level g (for example E s level 30) expected from conformal embeddings are presented. (orig.)

  9. Wilson loop invariants from WN conformal blocks

    Directory of Open Access Journals (Sweden)

    Oleg Alekseev

    2015-12-01

    Full Text Available Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern–Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU(N, which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.

  10. Conformal conservation laws for second-order scalar fields

    International Nuclear Information System (INIS)

    Blakeskee, J.S.; Logan, J.D.

    1976-01-01

    It is considered an action integral over space-time whose Lagrangian depends upon a scalar field an upon derivatives of the field function up to second order. From invariance identities obtained by the authors in an earlier work it is shown how a new proof of Noether's theorem for this second-order problem follows in the multiple integral case. Finally, conservation laws are written down in the case that the given action integral be invariant under the fifteen-parameter special conformal group

  11. Boundaries immersed in a scalar quantum field

    International Nuclear Information System (INIS)

    Actor, A.A.; Bender, I.

    1996-01-01

    We study the interaction between a scalar quantum field φ(x), and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which φ(x) is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors left angle T μv (x) right angle and left angle direct difference μv (x) right angle of φ(x) for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of left angle T μv (x) right angle and left angle direct difference μv (x) right angle. For Neumann conditions, left angle T μv (x) right angle and left angle direct difference μv (x) right angle lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable. (orig.)

  12. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    Science.gov (United States)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  13. Relating c 0 conformal field theories

    International Nuclear Information System (INIS)

    Guruswamy, S.; Ludwig, A.W.W.

    1998-03-01

    A 'canonical mapping' is established between the c = -1 system of bosonic ghosts at the c = 2 complex scalar theory and, a similar mapping between the c = -2 system of fermionic ghosts and the c = 1 Dirac theory. The existence of this mapping is suggested by the identity of the characters of the respective theories. The respective c 0 theories share the same space of states, whereas the spaces of conformal fields are different. Upon this mapping from their c 0) complex scalar and the Dirac theories inherit hidden nonlocal sl(2) symmetries. (author)

  14. Relative entropy of excited states in two dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology,Budapest, H-1521 (Hungary); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California,Santa Barbara,CA 93106 (United States)

    2016-07-21

    We study the relative entropy and the trace square distance, both of which measure the distance between reduced density matrices of two excited states in two dimensional conformal field theories. We find a general formula for the relative entropy between two primary states with the same conformal dimension in the limit of a single small interval and find that in this case the relative entropy is proportional to the trace square distance. We check our general formulae by calculating the relative entropy between two generalized free fields and the trace square distance between the spin and disorder operators of the critical Ising model. We also give the leading term of the relative entropy in the small interval expansion when the two operators have different conformal dimensions. This turns out to be universal when the CFT has no primaires lighter than the stress tensor. The result reproduces the previously known special cases.

  15. Space- and time-like superselection rules in conformal quantum field theory

    International Nuclear Information System (INIS)

    Schroer, Bert

    2000-11-01

    In conformally invariant quantum field theories one encounters besides the standard DHR superselection theory based on spacelike (Einstein-causal) commutation relations and their Haag duality another timelike (Huygens) based superselection structure. Whereas the DHR theory based on spacelike causality of observables confirmed the Lagrangian internal symmetry picture on the level of the physical principles of local quantum physics, the attempts to understand the timelike based superselection charges associated with the center of the conformal covering group in terms of timelike localized charges lead to a more dynamical role of charges outside the DR theorem and even outside the Coleman-Mandula setting. The ensuing plektonic timelike structure of conformal theories explains the spectrum of the anomalous scale dimensions in terms of admissible braid group representations, similar to the explanation of the possible anomalous spin spectrum expected from the extension of the DHR theory to stringlike d=1+2 plektonic fields. (author)

  16. Introduction to conformal field theory and string theory

    International Nuclear Information System (INIS)

    Dixon, L.J.

    1989-12-01

    These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs

  17. OPE convergence in non-relativistic conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Goldberger, Walter D.; Khandker, Zuhair University; Prabhu, Siddharth [Department of Physics, Yale University,New Haven, CT 06511 (United States); Physics Department, Boston University,Boston, MA 02215 (United States)

    2015-12-09

    Motivated by applications to the study of ultracold atomic gases near the unitarity limit, we investigate the structure of the operator product expansion (OPE) in non-relativistic conformal field theories (NRCFTs). The main tool used in our analysis is the representation theory of charged (i.e. non-zero particle number) operators in the NRCFT, in particular the mapping between operators and states in a non-relativistic “radial quantization” Hilbert space. Our results include: a determination of the OPE coefficients of descendant operators in terms of those of the underlying primary state, a demonstration of convergence of the (imaginary time) OPE in certain kinematic limits, and an estimate of the decay rate of the OPE tail inside matrix elements which, as in relativistic CFTs, depends exponentially on operator dimensions. To illustrate our results we consider several examples, including a strongly interacting field theory of bosons tuned to the unitarity limit, as well as a class of holographic models. Given the similarity with known statements about the OPE in SO(2,d) invariant field theories, our results suggest the existence of a bootstrap approach to constraining NRCFTs, with applications to bound state spectra and interactions. We briefly comment on a possible implementation of this non-relativistic conformal bootstrap program.

  18. NLIE of Dirichlet sine-Gordon model for boundary bound states

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bajnok, Zoltan; Palla, Laszlo; Ravanini, Francesco

    2008-01-01

    We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luescher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory

  19. Tritium dispersion around the Angra Nuclear Power Plant: boundary simplification by Diffeomorph Conformal Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Meneghetti, Andre; Bodmann, Bardo E.J.; Vilhena, Marco T. de, E-mail: andre.imef@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2017-07-01

    We present progress on research concerning dispersion of tritium around the Angra Nuclear Power Plant (Angra dos Reis, Rio de Janeiro state, Brazil). In particular, we are interested in studying how dispersion behaves in scenarios with complex orography. Our proposal is to transform a problem with curvilinear boundaries into an equivalent problem with plane parallel boundaries. We modify the coordinate system through a diffeomorph conformal transformation. Consequently, the operators of the dynamical equations change according to the additional terms from the affine connection. To de ne the transformation it is necessary to satisfy strong constraints, i.e., boundaries shall be 'smooth'. Our main purpose is to solve problems using a semi-analytical resolution. Currently, semi-analytic resolutions are applied only in problems that have domain with parallel planes. As a rst step into this direction in this work we present a numerical resolution. Even with restrictions, our model can be implemented in several situations. A at region is a particular case of a curvilinear domain and can be studied, where the height of the boundary layer above rivers, lakes, basins is typically smaller and thus implies a varying boundary layer height, for instance. Thus, even in at regions variations in the boundary layer occur, which characterizes a case of a curvilinear domain. Our specific interest is the region around the Angra Nuclear Power Plant that need a large source of water for their operation. There are several nuclear power plants worldwide, that are located in mountainous regions, as for example in Japan and Brazil. As one step into a new direction we focus in this work on complex relieves. We present a simulation of tritium dispersion specifically in the area where the Angra 2 Nuclear Power Plant of is located and where the relief is characterized by a considerable complexity. (author)

  20. Tritium dispersion around the Angra Nuclear Power Plant: boundary simplification by Diffeomorph Conformal Transformations

    International Nuclear Information System (INIS)

    Meneghetti, Andre; Bodmann, Bardo E.J.; Vilhena, Marco T. de

    2017-01-01

    We present progress on research concerning dispersion of tritium around the Angra Nuclear Power Plant (Angra dos Reis, Rio de Janeiro state, Brazil). In particular, we are interested in studying how dispersion behaves in scenarios with complex orography. Our proposal is to transform a problem with curvilinear boundaries into an equivalent problem with plane parallel boundaries. We modify the coordinate system through a diffeomorph conformal transformation. Consequently, the operators of the dynamical equations change according to the additional terms from the affine connection. To de ne the transformation it is necessary to satisfy strong constraints, i.e., boundaries shall be 'smooth'. Our main purpose is to solve problems using a semi-analytical resolution. Currently, semi-analytic resolutions are applied only in problems that have domain with parallel planes. As a rst step into this direction in this work we present a numerical resolution. Even with restrictions, our model can be implemented in several situations. A at region is a particular case of a curvilinear domain and can be studied, where the height of the boundary layer above rivers, lakes, basins is typically smaller and thus implies a varying boundary layer height, for instance. Thus, even in at regions variations in the boundary layer occur, which characterizes a case of a curvilinear domain. Our specific interest is the region around the Angra Nuclear Power Plant that need a large source of water for their operation. There are several nuclear power plants worldwide, that are located in mountainous regions, as for example in Japan and Brazil. As one step into a new direction we focus in this work on complex relieves. We present a simulation of tritium dispersion specifically in the area where the Angra 2 Nuclear Power Plant of is located and where the relief is characterized by a considerable complexity. (author)

  1. Higher Curvature Gravity from Entanglement in Conformal Field Theories

    Science.gov (United States)

    Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles

    2018-05-01

    By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.

  2. The Toda lattice hierarchy and deformation of conformal field theories

    International Nuclear Information System (INIS)

    Fukuma, M.

    1990-01-01

    In this paper, the authors point out that the Toda lattice hierarchy known in soliton theory is relevant for the description of the deformations of conformal field theories while the KP hierarchy describes unperturbed conformal theories. It is shown that the holomorphic parts of the conserved currents in the perturbed system (the Toda lattice hierarchy) coincide with the conserved currents in the KP hierarchy and can be written in terms of the W-algebraic currents. Furthermore, their anti-holomorphic counterparts are obtained

  3. Electromagnetic field and the theory of conformal and biholomorphic invariants

    International Nuclear Information System (INIS)

    Lawrynowicz, J.

    1976-01-01

    This paper contains sections on: 1. Conformal invariance and variational principles in electrodynamics. 2. The principles of Dirichlet and Thomson as a physical motivation for the methods of conformal capacities and extremal lengths. 3. Extension to pseudoriemannian manifolds. 4. Extension to hermitian manifolds. 5. An extension of Schwarz's lemma for hermitian manifolds and its physical significance. 6. Variation of ''complex'' capacities within the admissible class of plurisubharmonic functions. The author concentrates on motivations and interpretations connected with the electromagnetic field. (author)

  4. A geometrical approach to two-dimensional Conformal Field Theory

    Science.gov (United States)

    Dijkgraaf, Robertus Henricus

    1989-09-01

    This thesis is organized in the following way. In Chapter 2 we will give a brief introduction to conformal field theory along the lines of standard quantum field theory, without any claims to originality. We introduce the important concepts of the stress-energy tensor, the Virasoro algebra, and primary fields. The general principles are demonstrated by fermionic and bosonic free field theories. This also allows us to discuss some general aspects of moduli spaces of CFT's. In particular, we describe in some detail the space of iiiequivalent toroidal comi)actificalions, giving examples of the quantum equivalences that we already mentioned. In Chapter 3 we will reconsider general quantum field theory from a more geometrical point of view, along the lines of the so-called operator formalism. Crucial to this approach will be the consideration of topology changing amplitudes. After a simple application to 2d topological theories, we proceed to give our second introduction to CFT, stressing the geometry behind it. In Chapter 4 the so-called rational conformal field theories are our object of study. These special CFT's have extended symmetries with only a finite number of representations. If an interpretation as non-linear sigma model exists, this extra symmetry can be seen as a kind of resonance effect due to the commensurability of the size of the string and the target space-time. The structure of rational CFT's is extremely rigid, and one of our results will be that the operator content of these models is—up to some discrete choices—completely determined by the symmetry algebra. The study of rational models is in its rigidity very analogous to finite group theory. In Chapter 5 this analogy is further pursued and substantiated. We will show how one can construct from general grounds rational conformal field theories from finite groups. These models are abstract versions of non-linear o-models describing string propagation on 'orbifoids.' An orbifold is a singular

  5. Dual conformal transformations of smooth holographic Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Dekel, Amit [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2017-01-19

    We study dual conformal transformations of minimal area surfaces in AdS{sub 5}×S{sup 5} corresponding to holographic smooth Wilson loops and some other related observables. To act with dual conformal transformations we map the string solutions to the dual space by means of T-duality, then we apply a conformal transformation and finally T-dualize back to the original space. The transformation maps between string solutions with different boundary contours. The boundary contours of the minimal surfaces are not mapped back to the AdS boundary, and the regularized area of the surface changes.

  6. Casimir densities for a boundary in Robertson-Walker spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Saharian, A.A., E-mail: saharian@ictp.i [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia); Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of)

    2010-04-12

    For scalar and electromagnetic fields we evaluate the vacuum expectation value of the energy-momentum tensor induced by a curved boundary in the Robertson-Walker spacetime with negative spatial curvature. In order to generate the vacuum densities we use the conformal relation between the Robertson-Walker and Rindler spacetimes and the corresponding results for a plate moving by uniform proper acceleration through the Fulling-Rindler vacuum. For the general case of the scale factor the vacuum energy-momentum tensor is presented as the sum of the boundary free and boundary induced parts.

  7. Casimir densities for a boundary in Robertson-Walker spacetime

    International Nuclear Information System (INIS)

    Saharian, A.A.; Setare, M.R.

    2010-01-01

    For scalar and electromagnetic fields we evaluate the vacuum expectation value of the energy-momentum tensor induced by a curved boundary in the Robertson-Walker spacetime with negative spatial curvature. In order to generate the vacuum densities we use the conformal relation between the Robertson-Walker and Rindler spacetimes and the corresponding results for a plate moving by uniform proper acceleration through the Fulling-Rindler vacuum. For the general case of the scale factor the vacuum energy-momentum tensor is presented as the sum of the boundary free and boundary induced parts.

  8. New unified field theory based on the conformal group

    Energy Technology Data Exchange (ETDEWEB)

    Pessa, E [Rome Univ. (Italy). Ist. di Matematica

    1980-10-01

    Based on a six-dimensional generalization of Maxwell's equations, a new unified theory of the electromagnetic and gravitational field is developed. Additional space-time coordinates are interpreted only as mathematical tools in order to obtain a linear realization of the four-dimensional conformal group.

  9. Distributions of electric and elastic fields at domain boundaries

    International Nuclear Information System (INIS)

    Novak, Josef; Fousek, Jan; Maryska, Jiri; Marvan, Milan

    2005-01-01

    In this paper we describe the application of the finite element method (FEM) in modelling spatial distributions of electric and elastic fields in a ferroelectric crystals with two domains separated by a 90 deg. domain wall. The domain boundary is idealized as a two-dimensional defect in an electro-elastic continuum. It represents the source of inhomogenity and internal distortion in both elastic and electric fields. The main results are distributions of electric field, strain and mechanical force along the domain boundary

  10. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...

  11. Higher genus partition functions of meromorphic conformal field theories

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Volpato, Roberto

    2009-01-01

    It is shown that the higher genus vacuum amplitudes of a meromorphic conformal field theory determine the affine symmetry of the theory uniquely, and we give arguments that suggest that also the representation content with respect to this affine symmetry is specified, up to automorphisms of the finite Lie algebra. We illustrate our findings with the self-dual theories at c = 16 and c = 24; in particular, we give an elementary argument that shows that the vacuum amplitudes of the E 8 x E 8 theory and the Spin(32)/Z 2 theory differ at genus g = 5. The fact that the discrepancy only arises at rather high genus is a consequence of the modular properties of higher genus amplitudes at small central charges. In fact, we show that for c ≤ 24 the genus one partition function specifies already the partition functions up to g ≤ 4 uniquely. Finally we explain how our results generalise to non-meromorphic conformal field theories.

  12. Computing black hole entropy in loop quantum gravity from a conformal field theory perspective

    International Nuclear Information System (INIS)

    Agulló, Iván; Borja, Enrique F.; Díaz-Polo, Jacobo

    2009-01-01

    Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity

  13. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  14. Conformal field theory, triality and the Monster group

    International Nuclear Information System (INIS)

    Dolan, L.; Goddard, P.; Montague, P.

    1990-01-01

    From an even self-dual N-dimensional lattice, Λ, it is always possible to construct two (chiral) conformal field theories, an untwisted theory H (Λ), and a Z 2 -twisted theory H (Λ), constructed using the reflection twist. (N must be a multiple of 8 and the theories are modular invariant if it is a multiple of 24.) Similarly, from a doubly-even self-dual binary code C, it is possible to construct two even self-dual lattices, an untwisted one Λ C and a twisted one anti Λ C . It is shown that H(Λ C ) always has a triality structure, and that this triality induces first an isomorphism H(anti Λ C )≅H(Λ C ) and, through this, a triality of H(anti Λ C ). In the case where C is the Golay code, anti Λ C is the Leech lattice and the induced triality is the extra symmetry necessary to generate the Monster group from (an extension of) Conway's group. Thus it is demonstrated that triality is a generic symmetry. The induced isomorphism accounts for all 9 of the coincidences between the 48 conformal field theories H(Λ) and H(Λ) with N=24. (orig.)

  15. Topological defects in open string field theory

    Science.gov (United States)

    Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin

    2018-04-01

    We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.

  16. Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Fouxon, Itzhak; Oz, Yaron

    2008-01-01

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them

  17. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    Science.gov (United States)

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  18. Boundary conditions and dualities: vector fields in AdS/CFT

    International Nuclear Information System (INIS)

    Marolf, Donald; Ross, Simo F.

    2006-01-01

    In AdS, scalar fields with masses slightly above the Breitenlohner-Freedman bound admit a variety of possible boundary conditions which are reflected in the Lagrangian of the dual field theory. Generic small changes in the AdS boundary conditions correspond to deformations of the dual field theory by multi-trace operators. Here we extend this discussion to the case of vector gauge fields in the bulk spacetime using the results of Ishibashi and Wald [hep-th/0402184]. As in the context of scalar fields, general boundary conditions for vector fields involve multi-trace deformations which lead to renormalization-group flows. Such flows originate in ultra-violet CFTs which give new gauge/gravity dualities. At least for AdS 4 /CFT 3 , the dual of the bulk photon appears to be a propagating gauge field instead of the usual R-charge current. Applying similar reasoning to tensor fields suggests the existence of a duality between string theory on AdS 4 and a quantum gravity theory in three dimensions

  19. Conformal use of retarded Green's functions for the Maxwell field in de Sitter space

    International Nuclear Information System (INIS)

    Faci, S.; Huguet, E.; Renaud, J.

    2011-01-01

    We propose a new propagation formula for the Maxwell field in de Sitter space which exploits the conformal invariance of this field together with a conformal gauge condition. This formula allows to determine the classical electromagnetic field in the de Sitter space from given currents and initial data. It only uses the Green's function of the massless Minkowskian scalar field. This leads to drastic simplifications in practical calculations. We apply this formula to the classical problem of the two charges of opposite signs at rest at the North and South Poles of the de Sitter space.

  20. Three level constraints on conformal field theories and string models

    International Nuclear Information System (INIS)

    Lewellen, D.C.

    1989-05-01

    Simple tree level constraints for conformal field theories which follow from the requirement of crossing symmetry of four-point amplitudes are presented, and their utility for probing general properties of string models is briefly illustrated and discussed. 9 refs

  1. Chiral gauged Wess-Zumino-Witten theories and coset models in conformal field theory

    International Nuclear Information System (INIS)

    Chung, S.; Tye, S.H.

    1993-01-01

    The Wess-Zumino-Witten (WZW) theory has a global symmetry denoted by G L direct-product G R . In the standard gauged WZW theory, vector gauge fields (i.e., with vector gauge couplings) are in the adjoint representation of the subgroup H contained-in G. In this paper, we show that, in the conformal limit in two dimensions, there is a gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R where H L and H R can be different groups. In the special case where H L =H R , the theory is equivalent to vector gauged WZW theory. For general groups H L and H R , an examination of the correlation functions (or more precisely, conformal blocks) shows that the chiral gauged WZW theory is equivalent to (G/H L ) L direct-product(G/H R ) R coset models in conformal field theory

  2. K theoretical approach to the fusion rules of conformal quantum field theories

    International Nuclear Information System (INIS)

    Recknagel, A.

    1993-09-01

    Conformally invariant quantum field theories are investigated using concepts of the algebraic approach to quantum field theory as well as techniques from the theory of operator algebras. Arguments from the study of statistical lattice models in one and two dimensions, from recent developments in algebraic quantum field theory, and from other sources suggest that there exists and intimate connection between conformal field theories and a special class of C*-algebras, the so-called AF-algebras. For a series of Virasoro minimal models, this correspondence is made explicit by constructing path representations of the irreducible highest weight modules. We then focus on the K 0 -invariant of these path AF-algebras and show how its functorial properties allow to exploit the abstract theory of superselection sectors in order to derive the fusion rules of the W-algebras hidden in the Virasoro minimal models. (orig.)

  3. Introduction to two dimensional conformal and superconformal field theory

    International Nuclear Information System (INIS)

    Shenker, S.H.

    1986-01-01

    Some of the basic properties of conformal and superconformal field theories in two dimensions are discussed in connection with the string and superstring theories built from them. In the first lecture the stress-energy tensor, the Virasoro algebra, highest weight states, primary fields, operator products coefficients, bootstrap ideas, and unitary and degenerate representations of the Virasoro algebra are discussed. In the second lecture the basic structure of superconformal two dimensional field theory is sketched and then the Ramond Neveu-Schwarz formulation of the superstring is described. Some of the issues involved in constructing the fermion vertex in this formalism are discussed

  4. Conforming discretizations of boundary element solutions to the electroencephalography forward problem

    Science.gov (United States)

    Rahmouni, Lyes; Adrian, Simon B.; Cools, Kristof; Andriulli, Francesco P.

    2018-01-01

    In this paper, we present a new discretization strategy for the boundary element formulation of the Electroencephalography (EEG) forward problem. Boundary integral formulations, classically solved with the Boundary Element Method (BEM), are widely used in high resolution EEG imaging because of their recognized advantages, in several real case scenarios, in terms of numerical stability and effectiveness when compared with other differential equation based techniques. Unfortunately, however, it is widely reported in literature that the accuracy of standard BEM schemes for the forward EEG problem is often limited, especially when the current source density is dipolar and its location approaches one of the brain boundary surfaces. This is a particularly limiting problem given that during an high-resolution EEG imaging procedure, several EEG forward problem solutions are required, for which the source currents are near or on top of a boundary surface. This work will first present an analysis of standardly and classically discretized EEG forward problem operators, reporting on a theoretical issue of some of the formulations that have been used so far in the community. We report on the fact that several standardly used discretizations of these formulations are consistent only with an L2-framework, requiring the expansion term to be a square integrable function (i.e., in a Petrov-Galerkin scheme with expansion and testing functions). Instead, those techniques are not consistent when a more appropriate mapping in terms of fractional-order Sobolev spaces is considered. Such a mapping allows the expansion function term to be a less regular function, thus sensibly reducing the need for mesh refinements and low-precisions handling strategies that are currently required. These more favorable mappings, however, require a different and conforming discretization, which must be suitably adapted to them. In order to appropriately fulfill this requirement, we adopt a mixed

  5. Dosimetric evaluation of the conformation of the multileaf collimator to irregularly shaped fields

    International Nuclear Information System (INIS)

    Frazier, Arthur; Du, Maria; Wong, John; Vicini, Frank; Taylor, Roy; Yu, Cedric; Matter, Richard; Martinez, Alvaro; Yan Di

    1995-01-01

    Purpose: The goal of this study was to evaluate the dosimetric characteristics of geometric MLC prescription strategies and compare them to those of conventional shielding block. Methods and Materials: Circular fields, square fields, and 12 irregular fields for patients with cancer of the head and neck, lung, and pelvis were included in this study. All fields were shaped using the MLC and conventional blocks. A geometric criterion was defined as the amount of area discrepancy between the MLC and the prescription outline. The 'least area discrepancy' (LAD) of the MLC conformation was searched by selecting the collimator angle, meanwhile keeping a preselected position along the width of the leaf into the prescribed field. Five LAD conventions were studied. These included the LAD-0, LAD-(1(3)), LAD-(1(2)), and LAD-(2(3)) that inserted the leaves at the 0, (1(3)), (1(2)), and (2(3)) of the leaf end into the prescription field, respectively. In addition, the LAD optimization was applied to the transecting (TRN) approach for leaf conformation that prescribed an equal area of overblocking and underblocking under each leaf. Film dosimetry was performed in a 20 cm polystyrene phantom at 10 cm depth 100 cm from source to axis distance (SAD) for both 6 and 18 MV photons with each of the above MLC conformations and conventional blocks. The field penumbra width, defined as the mean of the separation between the 20% and 80% isodose lines along the normal of the prescription field edge, was calculated using both the MLC and conventional block film dosimetry and compared. In a similar way, the d20 is defined as the mean separation between the 20% isodose line and the prescription field edge, and the d80 is defined as the mean separation between the 80% isodose line and the prescription field edge. Results: The field penumbra width for all MLC conventions was approximately 2 mm larger than that of the conventional block. However, there was a larger variation of the separation

  6. Low-latitude boundary layer near noon: An open field line model

    Science.gov (United States)

    Lyons, L. R.; Schulz, M.; Pridmore-Brown, D. C.; Roeder, J. L.

    1994-01-01

    We propose that many features of the cusp and low-latitude boundary layer (LLBL) observed near noon MLT can be explained by interpreting the LLBL as being on open lines with an inner boundary at the separatrix between open and closed magnetic field lines. This interpretation places the poleward boundary of the LLBL and equatorward boundary of the cusp along the field line that bifurcates at the cusp neutral point. The interpretation accounts for the abrupt boundary of magnetosheath particles at the inner edge of the LLBL, a feature that is inconsistent with LLBL formation by diffusion onto closed field lines, and for the distribution of magnetosheath particles appearing more as one continuous region than as two distinct regions across the noon cusp/LLBL boundary. Furthermore, we can explain the existence of energetic radiation belt electrons and protons with differing pitch angle distributions within the LLBL and their abrupt cutoff at the poleward boundary of the LLBL. By modeling the LLBL and cusp region quantitatively, we can account for a hemispherical difference in the location of the equatorial boundary of the cusp that is observed to be dependent on the dipole tilt angle but not on the interplanetary magnetic field (IMF) x component. We also find important variations and hemispherical differences in that the size of the LLBL that should depend strongly upon the x component of the IMF. This prediction is observationally testable. Finally, we find that when the IMF is strongly northward, the LLBL may include a narrow region adjacent to the magnetopause where field lines are detached (i.e., have both ends connected to the IMF).

  7. Rényi entropy, stationarity, and entanglement of the conformal scalar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongseog; Lewkowycz, Aitor [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Perlmutter, Eric [DAMTP, Centre for Mathematical Sciences, University of Cambridge,Cambridge, CB3 0WA (United Kingdom); Safdi, Benjamin R. [Department of Physics, Princeton University,Princeton, NJ 08544 (United States)

    2015-03-16

    We extend previous work on the perturbative expansion of the Rényi entropy, S{sub q}, around q=1 for a spherical entangling surface in a general CFT. Applied to conformal scalar fields in various spacetime dimensions, the results appear to conflict with the known conformal scalar Rényi entropies. On the other hand, the perturbative results agree with known Rényi entropies in a variety of other theories, including theories of free fermions and vector fields and theories with Einstein gravity duals. We propose a resolution stemming from a careful consideration of boundary conditions near the entangling surface. This is equivalent to a proper treatment of total-derivative terms in the definition of the modular Hamiltonian. As a corollary, we are able to resolve an outstanding puzzle in the literature regarding the Rényi entropy of N=4 super-Yang-Mills near q=1. A related puzzle regards the question of stationarity of the renormalized entanglement entropy (REE) across a circle for a (2+1)-dimensional massive scalar field. We point out that the boundary contributions to the modular Hamiltonian shed light on the previously-observed non-stationarity. Moreover, IR divergences appear in perturbation theory about the massless fixed point that inhibit our ability to reliably calculate the REE at small non-zero mass.

  8. Rényi entropy, stationarity, and entanglement of the conformal scalar

    Science.gov (United States)

    Lee, Jeongseog; Lewkowycz, Aitor; Perlmutter, Eric; Safdi, Benjamin R.

    2015-03-01

    We extend previous work on the perturbative expansion of the Rényi entropy, S q , around q = 1 for a spherical entangling surface in a general CFT. Applied to conformal scalar fields in various spacetime dimensions, the results appear to conflict with the known conformal scalar Rényi entropies. On the other hand, the perturbative results agree with known Rényi entropies in a variety of other theories, including theories of free fermions and vector fields and theories with Einstein gravity duals. We propose a resolution stemming from a careful consideration of boundary conditions near the entangling surface. This is equivalent to a proper treatment of total-derivative terms in the definition of the modular Hamiltonian. As a corollary, we are able to resolve an outstanding puzzle in the literature regarding the Rényi entropy of super-Yang-Mills near q = 1. A related puzzle regards the question of stationarity of the renormalized entanglement entropy (REE) across a circle for a (2+1)-dimensional massive scalar field. We point out that the boundary contributions to the modular Hamiltonian shed light on the previously-observed non-stationarity. Moreover, IR divergences appear in perturbation theory about the massless fixed point that inhibit our ability to reliably calculate the REE at small non-zero mass.

  9. Tensor categories and the mathematics of rational and logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Huang, Yi-Zhi; Lepowsky, James

    2013-01-01

    We review the construction of braided tensor categories and modular tensor categories from representations of vertex operator algebras, which correspond to chiral algebras in physics. The extensive and general theory underlying this construction also establishes the operator product expansion for intertwining operators, which correspond to chiral vertex operators, and more generally, it establishes the logarithmic operator product expansion for logarithmic intertwining operators. We review the main ideas in the construction of the tensor product bifunctors and the associativity isomorphisms. For rational and logarithmic conformal field theories, we review the precise results that yield braided tensor categories, and in the rational case, modular tensor categories as well. In the case of rational conformal field theory, we also briefly discuss the construction of the modular tensor categories for the Wess–Zumino–Novikov–Witten models and, especially, a recent discovery concerning the proof of the fundamental rigidity property of the modular tensor categories for this important special case. In the case of logarithmic conformal field theory, we mention suitable categories of modules for the triplet W-algebras as an example of the applications of our general construction of the braided tensor category structure. (review)

  10. Duality and modular invariance in rational conformal field theories

    International Nuclear Information System (INIS)

    Li Miao.

    1990-03-01

    We investigate the polynomial equations which should be satisfied by the duality data for a rational conformal field theory. We show that by these duality data we can construct some vector spaces which are isomorphic to the spaces of conformal blocks. One can construct explicitly the inner product for the former if one deals with a unitary theory. These vector spaces endowed with an inner product are the algebraic reminiscences of the Hilbert spaces in a Chern-Simons theory. As by-products, we show that the polynomial equations involving the modular transformations for the one-point blocks on the torus are not independent. And along the way, we discuss the reconstruction of the quantum group in a rational conformal theory. Finally, we discuss the solution of structure constants for a physical theory. Making some assumption, we obtain a neat solution. And this solution in turn implies that the quantum groups of the left sector and of the right sector must be the same, although the chiral algebras need not to be the same. Some examples are given. (orig.)

  11. Conformal field theory and 2D critical phenomena. Part 1

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.; Zamolodchikov, Al.B.

    1989-01-01

    Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs

  12. On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Bengt E.W. [Fundamental Physics, Chalmers University of Technology,SE-412 96 Göteborg (Sweden)

    2016-08-24

    We propose field equations for the conformal higher spin system in three dimensions coupled to a conformal scalar field with a sixth order potential. Both the higher spin equation and the unfolded equation for the scalar field have source terms and are based on a conformal higher spin algebra which we treat as an expansion in multi-commutators. Explicit expressions for the source terms are suggested and subjected to some simple tests. We also discuss a cascading relation between the Chern-Simons action for the higher spin gauge theory and an action containing a term for each spin that generalizes the spin 2 Chern-Simons action in terms of the spin connection expressed in terms of the frame field. This cascading property is demonstrated in the free theory for spin 3 but should work also in the complete higher spin theory.

  13. Casimir apparatuses in a weak gravitational field

    DEFF Research Database (Denmark)

    Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero

    2009-01-01

    We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...

  14. Exclusion Statistics in Conformal Field Theory Spectra

    International Nuclear Information System (INIS)

    Schoutens, K.

    1997-01-01

    We propose a new method for investigating the exclusion statistics of quasiparticles in conformal field theory (CFT) spectra. The method leads to one-particle distribution functions, which generalize the Fermi-Dirac distribution. For the simplest SU(n) invariant CFTs we find a generalization of Gentile parafermions, and we obtain new distributions for the simplest Z N -invariant CFTs. In special examples, our approach reproduces distributions based on 'fractional exclusion statistics' in the sense of Haldane. We comment on applications to fractional quantum Hall effect edge theories. copyright 1997 The American Physical Society

  15. Remarks on the quantization of conformal fields

    International Nuclear Information System (INIS)

    Bakas, I.

    1988-01-01

    The quantization of a general (b,c) system in two dimensions is formulated in terms of an infinite hierarchy of modules for the Virasoro algebra that interpolate between the space of classical conformal fields of weight j and the Dirac sea of semi-infinite forms. This provides a natural framework in which to study the relation between algebraic geometry and representations of the Virasoro algebra with central charge c j = -2(6j 2 -6j+1). The importance of the construction is discussed in the context of string theory. (orig.)

  16. Boundary multi-trace deformations and Opens in AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Petkou, Anastasios C.

    2002-01-01

    We argue that multi-trace deformations of the boundary CFT in AdS/CFT correspondence can arise through the OPE of single-trace operators. We work out the example of a scalar field in AdS 5 with cubic self interaction. By an appropriate reparametrization of the boundary data we are able to deform the boundary CFT by a marginal operator that couples to the conformal anomaly. Our method can be used in the analysis of multi-trace deformations in N=4 SYM where the OPEs of various single-trace operators are known. (author)

  17. Towers of algebras in rational conformal field theories

    International Nuclear Information System (INIS)

    Gomez, C.; Sierra, G.

    1991-01-01

    This paper reports on Jones fundamental construction applied to rational conformal field theories. The Jones algebra which emerges in this application is realized in terms of duality operations. The generators of the algebra are an open version of Verlinde's operators. The polynomial equations appear in this context as sufficient conditions for the existence of Jones algebra. The ADE classification of modular invariant partition functions is put in correspondence with Jones classification of subfactors

  18. Defects in conformal field theory

    International Nuclear Information System (INIS)

    Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco

    2016-01-01

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  19. Defects in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)

    2016-04-15

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  20. Dimension shifting operators and null states in 2D conformally invariant field theories

    International Nuclear Information System (INIS)

    Gervais, J.L.

    1986-01-01

    We discuss the existence and properties of differential operators which transform covariant operators into covariant operators of different weights in two-dimensional conformally invariant field theories. We relate them to null states and the vanishing of the Kac determinant in representations of the conformal algebra, and to the existence of differential equations for Green functions of covariant operators. In this framework, we rederive the essential features of our earlier work on dual models with shifted intercept, which in euclidean space-time gives explicit solutions of the conformal bootstrap equations where all operators are marginal. (orig.)

  1. Boundary string field theory and an open string one-loop

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi

    2003-01-01

    We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field

  2. Current oscillations, interacting Hall discs and boundary CFTs

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Vaidya, S.; Bimonte, G.; Govindarajan, T.R.; Gupta, K.S.; John, V.

    1998-12-01

    In this paper, we discuss the behavior of conformal field theories interacting at a single point. The edge states of the quantum Hall effect (QHE) system gives rise to a particular representation of a chiral Kac-Moody current algebra. We show that in the case of QHE systems interacting at one point we obtain a 'twisted' representation of the current algebra. The condition for stationarity of currents is the same as the classical Kirchoff's law applied to the currents at the interaction point. We find that in the case of two discs touching at one point, since the currents are chiral, they are not stationary and one obtains current oscillations between the two discs. We determine the frequency of these oscillations in terms of an effective parameter characterizing the interactions. The chiral conformal field theories can be represented in terms of bosonic Lagrangians with a boundary interaction. We discuss how these one point interactions can be represented as boundary conditions on fields, and how the requirement of chirality leads to restrictions on the interactions described by these Lagrangians. By gauging these models we find that the theory is naturally coupled to a Chern-Simons gauge theory in 2+1 dimensions, and this coupling is completely determined by the requirement of anomaly cancellation. (author)

  3. Lattice models and conformal field theories

    International Nuclear Information System (INIS)

    Saleur, H.

    1988-01-01

    Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied

  4. External beam radiotherapy of localized prostatic adenocarcinoma. Evaluation of conformal therapy, field number and target margins

    International Nuclear Information System (INIS)

    Lennernaes, B.; Rikner, G.; Letocha, H.; Nilsson, S.

    1995-01-01

    The purpose of the present study was to identify factors of importance in the planning of external beam radiotherapy of prostatic adenocarcinoma. Seven patients with urogenital cancers were planned for external radiotherapy of the prostate. Four different techniques were used, viz. a 4-field box technique and four-, five- or six-field conformal therapy set-ups combined with three different margins (1-3 cm). The evaluations were based on the doses delivered to the rectum and the urinary bladder. A normal tissue complication probability (NTCP) was calculated for each plan using Lyman's dose volume reduction method. The most important factors that resulted in a decrease of the dose delivered to the rectum and the bladder were the use of conformal therapy and smaller margins. Conformal therapy seemed more important for the dose distribution in the urinary bladder. Five- and six-field set-ups were not significantly better than those with four fields. NTCP calculations were in accordance with the evaluation of the dose volume histograms. To conclude, four-field conformal therapy utilizing reduced margins improves the dose distribution to the rectum and the urinary bladder in the radiotherapy of prostatic adenocarcinoma. (orig.)

  5. On bidimensional Lagrangian conformal models

    International Nuclear Information System (INIS)

    Lazzarini, S.

    1990-04-01

    The main topic of this thesis is the study of Conformal Field Theories defined on an arbitrary compact Riemann surface without boundary. The Beltrami parametrization of complexe structures endowing such a surface provides a local bidimensional diffeomorphism invariance of the theory and the holomorphic factorization. The perturbative quantization a la Feynman is then constrained by local factorized Ward identities. The renormalization is analysed in the Esptein-Glaser scheme. A first part deals with the simplest free field models where one checks the interesting conjecture that renormalized perturbative expansions could be resumed by a Polyakov's formula which is a Wess-Zumino action for the diffeomorphism anomaly. For a higher genus surface, only a differential version is proposed. The second part of this thesis is devoted to the characterization of some observables of the free bosonic string in the corresponding gauge theory with the aid of the nilpotent Slavnov s-operator. It is conjectured that part of the observables of this theory is labelled by the local cohomology of s modulo d and corresponds to the vertex operators, as it is verified for the tachyon vertex in the conformal gauge [fr

  6. Bianchi type-I model with conformally invariant scalar and electromagnetic field

    International Nuclear Information System (INIS)

    Accioly, A.J.; Vaidya, A.N.; Som, M.M.

    1983-01-01

    A Bianchi type-I exact solution of the Einstein theory representing the homogeneous anisotropic models with the electromagnetic field and the conformally invariant scalar field is studied. The solution contains Kasner model, pure electromagnetic and pure scalar models as special cases. It is found that the models evolve from an initial Kasner type to a final open Friedmann type universe. (Author) [pt

  7. Energy flow in non-equilibrium conformal field theory

    Science.gov (United States)

    Bernard, Denis; Doyon, Benjamin

    2012-09-01

    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  8. Effect of External Electric Field Stress on Gliadin Protein Conformation

    OpenAIRE

    Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya

    2013-01-01

    A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...

  9. Exact marginality in open string field theory. A general framework

    International Nuclear Information System (INIS)

    Kiermaier, M.

    2007-07-01

    We construct analytic solutions of open bosonic string field theory for any exactly marginal deformation in any boundary conformal field theory when properly renormalized operator products of the marginal operator are given. We explicitly provide such renormalized operator products for a class of marginal deformations which include the deformations of flat D-branes in flat backgrounds by constant massless modes of the gauge field and of the scalar fields on the D-branes, the cosine potential for a space-like coordinate, and the hyperbolic cosine potential for the time-like coordinate. In our construction we use integrated vertex operators, which are closely related to finite deformations in boundary conformal field theory, while previous analytic solutions were based on unintegrated vertex operators. We also introduce a modified star product to formulate string field theory around the deformed background. (orig.)

  10. Direct approach to operator conformal constructions: from fermions to primary fields

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1989-01-01

    I discuss the direct solution of Sugawara and coset constructions, including a path to construction of the primary fields. The basic tools are (1) a construction of affine-conformal highest-weight states, pretensors and tensors form quantum-irreducible representations of the currents of affine g, and (2) construction of primary fields by factorization and boosting of the pretensors. Large classes of pretensors are easily obtained in fermionic constructions, and guesswork is minimized with factorization of bosonized fermionic pretensors: The simplest case constructs conformal-weights h g =mN(n--N)/2n of SU m (n) and h K =mN(n--N)/n of SU m (n)direct-product SU m (n)/SU 2m (n) and extension to simply-laced g is clear. More general cases are left for future study. copyright Academic Prss, Inc. 1989

  11. Open membranes in a constant C-field background and noncommutative boundary strings

    International Nuclear Information System (INIS)

    Kawamoto, Shoichi; Sasakura, Naoki

    2000-01-01

    We investigate the dynamics of open membrane boundaries in a constant C-field background. We follow the analysis for open strings in a B-field background, and take some approximations. We find that open membrane boundaries do show noncommutativity in this case by explicit calculations. Membrane boundaries are one dimensional strings, so we face a new type of noncommutativity, that is, noncommutative strings. (author)

  12. Heterotic string solutions and coset conformal field theories

    CERN Document Server

    Giveon, Amit; Tseytlin, Arkady A

    1993-01-01

    We discuss solutions of the heterotic string theory which are analogous to bosonic and superstring backgrounds related to coset conformal field theories. A class of exact `left-right symmetric' solutions is obtained by supplementing the metric, antisymmetric tensor and dilaton of the superstring solutions by the gauge field background equal to the generalised Lorentz connection with torsion. As in the superstring case, these backgrounds are $\\a'$-independent, i.e. have a `semiclassical' form. The corresponding heterotic string sigma model is obtained from the combination of the (1,0) supersymmetric gauged WZNW action with the action of internal fermions coupled to the target space gauge field. The pure (1,0) supersymmetric gauged WZNW theory is anomalous and does not describe a consistent heterotic string solution. We also find (to the order $\\alpha'^3$) a two-dimensional perturbative heterotic string solution with the trivial gauge field background. To the leading order in $\\alpha'$ it coincides with the kno...

  13. Twisted conformal field theories and Morita equivalence

    Energy Technology Data Exchange (ETDEWEB)

    Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy)], E-mail: adelenaddeo@yahoo.it

    2009-04-01

    The Morita equivalence for field theories on noncommutative two-tori is analysed in detail for rational values of the noncommutativity parameter {theta} (in appropriate units): an isomorphism is established between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space. We focus on a particular conformal field theory (CFT), the one obtained by means of the m-reduction procedure [V. Marotta, J. Phys. A 26 (1993) 3481; V. Marotta, Mod. Phys. Lett. A 13 (1998) 853; V. Marotta, Nucl. Phys. B 527 (1998) 717; V. Marotta, A. Sciarrino, Mod. Phys. Lett. A 13 (1998) 2863], and show that it is the Morita equivalent of a NCFT. Finally, the whole m-reduction procedure is shown to be the image in the ordinary space of the Morita duality. An application to the physics of a quantum Hall fluid at Jain fillings {nu}=m/(2pm+1) is explicitly discussed in order to further elucidate such a correspondence and to clarify its role in the physics of strongly correlated systems. A new picture emerges, which is very different from the existing relationships between noncommutativity and many body systems [A.P. Polychronakos, arXiv: 0706.1095].

  14. Decoding the hologram: Scalar fields interacting with gravity

    Science.gov (United States)

    Kabat, Daniel; Lifschytz, Gilad

    2014-03-01

    We construct smeared conformal field theory (CFT) operators which represent a scalar field in anti-de Sitter (AdS) space interacting with gravity. The guiding principle is microcausality: scalar fields should commute with themselves at spacelike separation. To O(1/N) we show that a correct and convenient criterion for constructing the appropriate CFT operators is to demand microcausality in a three-point function with a boundary Weyl tensor and another boundary scalar. The resulting bulk observables transform in the correct way under AdS isometries and commute with boundary scalar operators at spacelike separation, even in the presence of metric perturbations.

  15. Comparison of static conformal field with multiple noncoplanar arc techniques for stereotactic radiosurgery or stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Hamilton, Russell J.; Kuchnir, Franca T.; Sweeney, Patrick; Rubin, Steven J.; Dujovny, Manuel; Pelizzari, Charles A.; Chen, George T. Y.

    1995-01-01

    Purpose: Compare the use of static conformal fields with the use of multiple noncoplanar arcs for stereotactic radiosurgery or stereotactic radiotherapy treatment of intracranial lesions. Evaluate the efficacy of these treatment techniques to deliver dose distributions comparable to those considered acceptable in current radiotherapy practice. Methods and Materials: A previously treated radiosurgery case of a patient presenting with an irregularly shaped intracranial lesion was selected. Using a three-dimensional (3D) treatment-planning system, treatment plans using a single isocenter multiple noncoplanar arc technique and multiple noncoplanar conformal static fields were generated. Isodose distributions and dose volume histograms (DVHs) were computed for each treatment plan. We required that the 80% (of maximum dose) isodose surface enclose the target volume for all treatment plans. The prescription isodose was set equal to the minimum target isodose. The DVHs were analyzed to evaluate and compare the different treatment plans. Results: The dose distribution in the target volume becomes more uniform as the number of conformal fields increases. The volume of normal tissue receiving low doses (> 10% of prescription isodose) increases as the number of static fields increases. The single isocenter multiple arc plan treats the greatest volume of normal tissue to low doses, approximately 1.6 times more volume than that treated by four static fields. The volume of normal tissue receiving high (> 90% of prescription isodose) and intermediate (> 50% of prescription isodose) doses decreases by 29 and 22%, respectively, as the number of static fields is increased from four to eight. Increasing the number of static fields to 12 only further reduces the high and intermediate dose volumes by 10 and 6%, respectively. The volume receiving the prescription dose is more than 3.5 times larger than the target volume for all treatment plans. Conclusions: Use of a multiple noncoplanar

  16. Flat holography: aspects of the dual field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Arjun [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Basu, Rudranil [Saha Institute of Nuclear Physics,Block AF, Sector 1, Bidhannagar, Kolkata 700068 (India); Kakkar, Ashish [Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India); Mehra, Aditya [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India)

    2016-12-29

    Assuming the existence of a field theory in D dimensions dual to (D+1)-dimensional flat space, governed by the asymptotic symmetries of flat space, we make some preliminary remarks about the properties of this field theory. We review briefly some successes of the 3d bulk – 2d boundary case and then focus on the 4d bulk – 3d boundary example, where the symmetry in question is the infinite dimensional BMS{sub 4} algebra. We look at the constraints imposed by this symmetry on a 3d field theory by constructing highest weight representations of this algebra. We construct two and three point functions of BMS primary fields and surprisingly find that symmetries constrain these correlators to be identical to those of a 2d relativistic conformal field theory. We then go one dimension higher and construct prototypical examples of 4d field theories which are putative duals of 5d Minkowski spacetimes. These field theories are ultra-relativistic limits of electrodynamics and Yang-Mills theories which exhibit invariance under the conformal Carroll group in D=4. We explore the different sectors within these Carrollian gauge theories and investigate the symmetries of the equations of motion to find that an infinite ultra-relativistic conformal structure arises in each case.

  17. From the geometric quantization to conformal field theory

    International Nuclear Information System (INIS)

    Alekseev, A.; Shatashvili, S.

    1990-01-01

    Investigation of 2d conformal field theory in terms of geometric quantization is given. We quantize the so-called model space of the compact Lie group, Virasoro group and Kac-Moody group. In particular, we give a geometrical interpretation of the Virasoro discrete series and explain that this type of geometric quantization reproduces the chiral part of CFT (minimal models, 2d-gravity, WZNW theory). In the appendix we discuss the relation between classical (constant) r-matrices and this geometrical approach. (orig.)

  18. Spatial and null infinity via advanced and retarded conformal factors

    International Nuclear Information System (INIS)

    Hayward, Sean A.

    2003-01-01

    A new approach to space-time asymptotics is presented, refining Penrose's idea of conformal transformations with infinity represented by the conformal boundary of space-time. It is proposed that the Penrose conformal factor be a product of advanced and retarded conformal factors, which asymptotically relate physical and conformal null coordinates and vanish at future and past null infinity respectively. A refined definition of asymptotic flatness at both spatial and null infinity is given, including that the conformal boundary is locally a light cone, with spatial infinity as the vertex. It is shown how to choose the conformal factors so that this asymptotic light cone is locally a metric light cone. The theory is implemented in the spin-coefficient (or null-tetrad) formalism by a joint transformation of the spin-metric and spin-basis (or metric and tetrad). Asymptotic regularity conditions are proposed, based on the conformal boundary locally being a smoothly embedded metric light cone. These conditions ensure that the Bondi-Sachs energy-flux integrals of ingoing and outgoing gravitational radiation decay at spatial infinity such that the total radiated energy is finite, and that the Bondi-Sachs energy-momentum has a unique limit at spatial infinity, coinciding with the uniquely rendered ADM energy-momentum

  19. The unitary conformal field theory behind 2D Asymptotic Safety

    Energy Technology Data Exchange (ETDEWEB)

    Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)

    2016-02-25

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.

  20. Phase-field simulation study of the migration of recrystallization boundaries

    DEFF Research Database (Denmark)

    Moelans, Nele; Godfrey, Andy; Zhang, Yubin

    2013-01-01

    We present simulation results based on a phase-field model that describes the local migration of recrystallization boundaries into varying deformation energy fields. An important finding from the simulations is that the overall migration rate of the recrystallization front can be considerably...... amplitudes, however, the velocity scales with the maximum of the deformation energy density along the variation, resulting in a considerably larger velocity than that obtained from standard recrystallization models. The shape of the migrating grain boundary greatly depends on the local characteristics...... of the varying stored deformation energy field. For different deformation energy fields, the simulation results are in good qualitative agreement with experiments and add information which cannot be directly derived from experiments....

  1. Quantum Hamiltonian reduction and conformal field theories

    International Nuclear Information System (INIS)

    Bershadsky, M.

    1991-01-01

    It is proved that irreducible representation of the Virasoro algebra can be extracted from an irreducible representation space of the SL (2, R) current algebra by putting a constraint on the latter using the BRST formalism. Thus there is a SL(2, R) symmetry in the Virasoro algebra which is gauged and hidden. This construction of the Virasoro algebra is the quantum analog of the Hamiltonian reduction. The author then naturally leads to consider an SL(2, R) Wess-Zumino-Witten model. This system is related to the quantum field theory of the coadjoint orbit of the Virasoro group. Based on this result he presents the canonical derivation of the SL(2, R) current algebra in Polyakov's theory of two dimensional gravity; it is manifestation of the SL(2, R) symmetry in the conformal field theory hidden by the quantum Hamiltonian reduction. He discusses the quantum Hamiltonian reduction of the SL(n, R) current algebra for the general type of constraints labeled by index 1 ≤ l ≤ (n - 1) and claim that it leads to the new extended conformal algebras W n l . For l = 1 he recovers the well known W n algebra introduced by A. Zamolodchikov. For SL(3, R) Wess-Zumino-Witten model there are two different possibilities of constraining it. The first possibility gives the W 3 algebra, while the second leads to the new chiral algebra W 3 2 generated by the stress-energy tensor, two bosonic supercurrents with spins 3/2 and the U(1) current. He conjectures a Kac formula that describes the highly reducible representation for this algebra. He also makes some speculations concerning the structure of W gravity

  2. Scalar field collapse in a conformally flat spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Soumya; Banerjee, Narayan [Indian Institute of Science Education and Research, Kolkata, Department of Physical Sciences, Mohanpur, West Bengal (India)

    2017-03-15

    The collapse scenario of a scalar field along with a perfect fluid distribution was investigated for a conformally flat spacetime. The theorem for the integrability of an anharmonic oscillator has been utilized. For a pure power-law potential of the form φ{sup n+1}, it was found that a central singularity is formed which is covered by an apparent horizon for n > 0 and n < -3. Some numerical results have also been presented for a combination of two different powers of φ in the potential. (orig.)

  3. Boundary between a plasma and a field with particle losses

    International Nuclear Information System (INIS)

    Konkhashbaev, I.K.; Zandman, I.S.; Ilinich, F.R.

    1978-01-01

    For open magnetic traps with β=1, the formation of plasma-field boundary (skin-layer) and the rate of the magnetic field fiffusion into plasma were investigated through the consideration of an evolution of a wide skin-layer. A large value of the mirror ratio is assumed for the sake of simplicity. The skin-layer structure is formed by two mechanisms: a mutual plasma-field diffusion tending to expand the boundary, and escape of particles trapped in the skin-layer region, along lines of force through the magnetic mirror, which tends to compress the boundary. It is shown that compression of the wide boundary occurs for the time of the order of the ion-ion collision time when the ion and electron temperatures change substantially. The final skin-layer width proved to be larger than a hybrid one, but smaller than the ion Larmour radius and depends slightly on initial temperatures. It has been established that the diffusion of the magnetic field into the plasma of magnetic trap has the character of a stationary wave of a width equal to the ion Larmour radius and of the velocity V approximately Vsub(Ti)/(ωsub(i)tausub(i))(Vsub(Ti) is the thermal ion velocity, ωsub(i), tausub(i) - the ion cyclotron frequency and collision time)

  4. Implications of conformal invariance for quantum field theories in d>2

    International Nuclear Information System (INIS)

    Osborn, H.

    1994-01-01

    Recently obtained results for two and three point functions for quasi-primary operators in conformally invariant theories in arbitrary dimensions d are described. As a consequence the three point function for the energy momentum tensor has three linearly independent forms for general d compatible with conformal invariance. The corresponding coefficients may be regarded as possible generalisations of the Virasoro central charge to d larger than 2. Ward identities which link two linear combinations of the coefficients to terms appearing in the energy momentum tensor trace anomaly on curved space are discussed. The requirement of positivity for expectation values of the energy density is also shown to lead to positivity conditions which are simple for a particular choice of the three coefficients. Renormalisation group like equations which express the constraints of broken conformal invariance for quantum field theories away from critical points are postulated and applied to two point functions. (orig.)

  5. Conformality or confinement: (IR)relevance of topological excitations

    Energy Technology Data Exchange (ETDEWEB)

    Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2010-08-26

    What distinguishes two asymptotically-free non-abelian gauge theories on R{sup 4}, one of which is just below the conformal window boundary and confines, while the other is slightly above the boundary and flows to an infrared conformal field theory? In this work, we aim to answer this question for non-supersymmetric Yang-Mills theories with fermions in arbitrary chiral or vectorlike representations. We use the presence or absence of mass gap for gauge fluctuations as an identifier of the infrared behavior. With the present-day understanding of such gauge theories, the mass gap for gauge fluctuations cannot be computed on R{sup 4}. However, recent progress allows its non-perturbative computation on R{sup 3} x S{sup 1} by using either the twisted partition function or deformation theory, for a range of sizes of S{sup 1} depending on the theory. For small number of fermions, N{sub f}, we show that the mass gap increases with increasing radius, due to the non-dilution of monopoles and bions - the topological excitations relevant for confinement on R{sup 3} x S{sup 1}. For sufficiently large N{sub f}, we show that the mass gap decreases with increasing radius. In a class of theories, we claim that the decompactification limit can be taken while remaining within the region of validity of semiclassical techniques, giving the first examples of semiclassically solvable Yang-Mills theories at any size S{sup 1}. For general non-supersymmetric vectorlike or chiral theories, we conjecture that the change in the behavior of the mass gap on R{sup 3} x S{sup 1} as a function of the radius occurs near the lower boundary of the conformal window and give non-perturbative estimates of its value. For vectorlike theories, we compare our estimates of the conformal window with existing lattice results, truncations of the Schwinger-Dyson equations, NSVZ beta function-inspired estimates, and degree of freedom counting criteria. For multi-generation chiral gauge theories, to the best of our

  6. Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization

    Directory of Open Access Journals (Sweden)

    Wesley Pacheco Calixto

    2010-01-01

    Full Text Available Having the property to modify only the geometry of a polygonal structure, preserving its physical magnitudes, the Conformal Mapping is an exceptional tool to solve electromagnetism problems with known boundary conditions. This work aims to introduce a new developed mathematical operator, based on polynomial extrapolation. This operator has the capacity to accelerate an optimization method applied in conformal mappings, to determinate the equipotential lines, the field lines, the capacitance, and the permeance of some polygonal geometry electrical devices with an inner dielectric of permittivity ε. The results obtained in this work are compared with other simulations performed by the software of finite elements method, Flux 2D.

  7. A conformal field theory description of fractional quantum Hall states

    NARCIS (Netherlands)

    Ardonne, E.

    2002-01-01

    In this thesis, we give a description of fractional quantum Hall states in terms of conformal field theory (CFT). As was known for a long time, the Laughlin states could be written in terms of correlators of chiral vertex operators of a c=1 CFT. It was shown by G. Moore and N. Read that more general

  8. Takiff superalgebras and conformal field theory

    International Nuclear Information System (INIS)

    Babichenko, Andrei; Ridout, David

    2013-01-01

    A class of non-semisimple extensions of Lie superalgebras is studied. They are obtained by adjoining to the superalgebra its adjoint representation as an Abelian ideal. When the superalgebra is of affine Kac–Moody type, a generalization of Sugawara’s construction is shown to give rise to a copy of the Virasoro algebra and so, presumably, to a conformal field theory. Evidence for this is detailed for the extension of the affinization of the superalgebra gl( 1|1): its highest weight irreducible modules are classified using spectral flow, the irreducible supercharacters are computed and a continuum version of the Verlinde formula is verified to give non-negative integer structure coefficients. Interpreting these coefficients as those of the Grothendieck ring of fusion, partial results on the true fusion ring and its indecomposable structures are deduced. (paper)

  9. Electron polar cap and the boundary of open geomagnetic field lines.

    Science.gov (United States)

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  10. Dilogarithm identities in conformal field theory and group homology

    International Nuclear Information System (INIS)

    Dupont, J.L.

    1994-01-01

    Recently, Rogers' dilogarithm identities have attracted much attention in the setting of conformal field theory as well as lattice model calculations. One of the connecting threads is an identity of Richmond-Szekeres that appeared in the computation of central charges in conformal field theory. We show that the Richmond-Szekeres identity and its extension by Kirillov-Reshetikhin (equivalent to an identity found earlier by Lewin) can be interpreted as a lift of a generator of the third integral homology of a finite cyclic subgroup sitting inside the projective special linear group of all 2x2 real matrices viewed as a discrete group. This connection allows us to clarify a few of the assertions and conjectures stated in the work of Nahm-Recknagel-Terhoven concerning the role of algebraic K-theory and Thurston's program on hyperbolic 3-manifolds. Specifically, it is not related to hyperbolic 3-manifolds as suggested but is more appropriately related to the group manifold of the universal covering group of the projective special linear group of all 2x2 real matrices viewed as a topological group. This also resolves the weaker version of the conjecture as formulated by Kirillov. We end with a summary of a number of open conjectures on the mathematical side. (orig.)

  11. Extended SL(2,R)/U(1) characters, or modular properties of a simple non-rational conformal field theory

    International Nuclear Information System (INIS)

    Israel, D.; Pakman, A.; Troost, J.

    2004-01-01

    We define extended SL(2,R)/U(1) characters which include a sum over winding sectors. By embedding these characters into similarly extended characters of N=2 algebras, we show that they have nice modular transformation properties. We calculate the modular matrices of this simple but non-trivial non-rational conformal field theory explicitly. As a result, we show that discrete SL(2,R) representations mix with continuous SL(2,R) representations under modular transformations in the coset conformal field theory. We comment upon the significance of our results for a general theory of non-rational conformal field theories. (author)

  12. Expectation values of local fields for a two-parameter family of integrable models and related perturbed conformal field theories

    International Nuclear Information System (INIS)

    Baseilhac, P.; Fateev, V.A.

    1998-01-01

    We calculate the vacuum expectation values of local fields for the two-parameter family of integrable field theories introduced and studied by Fateev (1996). Using this result we propose an explicit expression for the vacuum expectation values of local operators in parafermionic sine-Gordon models and in integrable perturbed SU(2) coset conformal field theories. (orig.)

  13. Group of local biholomorphisms of C/sup 1/ and conformal field theory on the operator formalism

    Energy Technology Data Exchange (ETDEWEB)

    Budzynski, R.J.; Klimek, S.; Sadowski, P.

    1989-01-01

    Motivated by the operator formulation of conformal field theory on Riemann surfaces, we study the properties of the infinite dimensional group of local biholomorphic transformations (conformal reparametrizations) of C/sup 1/ and develop elements of its representation theory.

  14. Topics in conformal invariance and generalized sigma models

    International Nuclear Information System (INIS)

    Bernardo, L.M.; Lawrence Berkeley National Lab., CA

    1997-05-01

    This thesis consists of two different parts, having in common the fact that in both, conformal invariance plays a central role. In the first part, the author derives conditions for conformal invariance, in the large N limit, and for the existence of an infinite number of commuting classical conserved quantities, in the Generalized Thirring Model. The treatment uses the bosonized version of the model. Two different approaches are used to derive conditions for conformal invariance: the background field method and the Hamiltonian method based on an operator algebra, and the agreement between them is established. The author constructs two infinite sets of non-local conserved charges, by specifying either periodic or open boundary conditions, and he finds the Poisson Bracket algebra satisfied by them. A free field representation of the algebra satisfied by the relevant dynamical variables of the model is also presented, and the structure of the stress tensor in terms of free fields (and free currents) is studied in detail. In the second part, the author proposes a new approach for deriving the string field equations from a general sigma model on the world sheet. This approach leads to an equation which combines some of the attractive features of both the renormalization group method and the covariant beta function treatment of the massless excitations. It has the advantage of being covariant under a very general set of both local and non-local transformations in the field space. The author applies it to the tachyon, massless and first massive level, and shows that the resulting field equations reproduce the correct spectrum of a left-right symmetric closed bosonic string

  15. Classically integrable boundary conditions for affine Toda field theories

    International Nuclear Information System (INIS)

    Bowcock, P.; Corrigan, E.; Dorey, P.E.; Rietdijk, R.H.

    1995-01-01

    Boundary conditions compatible with classical integrability are studied both directly, using an approach based on the explicit construction of conserved quantities, and indirectly by first developing a generalisation of the Lax pair idea. The latter approach is closer to the spirit of earlier work by Sklyanin and yields a complete set of conjectures for permissible boundary conditions for any affine Toda field theory. (orig.)

  16. Exact Kantowski-Sachs and Bianchi types I and III cosmological models with a conformally invariant scalar field

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1985-01-01

    Exact solutions of the Einstein-Conformally Invariant Scalar Field Equations are obtained for Kantowski-Sachs and Bianchi types I and III cosmologies. The presence of the conformally invariant scalar field is responsible for some interesting features of the solutions. In particular it is found that the Bianchi I model is consistent with the big-bang theory of cosmology. (Author) [pt

  17. Universal parity effects in the entanglement entropy of XX chains with open boundary conditions

    International Nuclear Information System (INIS)

    Fagotti, Maurizio; Calabrese, Pasquale

    2011-01-01

    We consider the Rényi entanglement entropies in the one-dimensional XX spin-chains with open boundary conditions in the presence of a magnetic field. In the case of a semi-infinite system and a block starting from the boundary, we derive rigorously the asymptotic behavior for large block sizes on the basis of a recent mathematical theorem for the determinant of Toeplitz plus Hankel matrices. We conjecture a generalized Fisher–Hartwig form for the corrections to the asymptotic behavior of this determinant that allows the exact characterization of the corrections to the scaling at order o(l -1 ) for any n. By combining these results with conformal field theory arguments, we derive exact expressions also in finite chains with open boundary conditions and in the case when the block is detached from the boundary

  18. Electrostatic field in inhomogeneous dielectric media. I. Indirect boundary element method

    International Nuclear Information System (INIS)

    Goel, N.S.; Gang, F.; Ko, Z.

    1995-01-01

    A computationally fast method is presented for calculating electrostatic field in arbitrary inhomogeneous dielectric media with open boundary condition. The method involves dividing the whole space into cubical cells and then finding effective dielectric parameters for interfacial cells consisting of several dielectrics. The electrostatic problem is then solved using either the indirect boundary element method described in this paper or the so-called volume element method described in the companion paper. Both methods are tested for accuracy by comparing the numerically calculated electrostatic fields against those analytically obtained for a dielectric sphere and dielectric ellipsoid in a uniform field and for a dielectric sphere in a point charge field

  19. Supersymmetric gauge theories, quantization of Mflat, and conformal field theory

    International Nuclear Information System (INIS)

    Teschner, J.; Vartanov, G.S.

    2013-02-01

    We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.

  20. BCS wave function, matrix product states, and the Ising conformal field theory

    Science.gov (United States)

    Montes, Sebastián; Rodríguez-Laguna, Javier; Sierra, Germán

    2017-11-01

    We present a characterization of the many-body lattice wave functions obtained from the conformal blocks (CBs) of the Ising conformal field theory (CFT). The formalism is interpreted as a matrix product state using continuous ancillary degrees of freedom. We provide analytic and numerical evidence that the resulting states can be written as BCS states. We give a complete proof that the translationally invariant 1D configurations have a BCS form and we find suitable parent Hamiltonians. In particular, we prove that the ground state of the finite-size critical Ising transverse field (ITF) Hamiltonian can be obtained with this construction. Finally, we study 2D configurations using an operator product expansion (OPE) approximation. We associate these states to the weak pairing phase of the p +i p superconductor via the scaling of the pairing function and the entanglement spectrum.

  1. Steady state toroidal magnetic field at earth's core-mantle boundary

    Science.gov (United States)

    Levy, Eugene H.; Pearce, Steven J.

    1991-01-01

    Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.

  2. Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence

    Science.gov (United States)

    Grebenev, V. N.; Wacławczyk, M.; Oberlack, M.

    2017-10-01

    We study the statistical properties of the vorticity field in two-dimensional turbulence. The field is described in terms of the infinite Lundgren-Monin-Novikov (LMN) chain of equations for multi-point probability density functions (pdf’s) of vorticity. We perform a Lie group analysis of the first equation in this chain using the direct method based on the canonical Lie-Bäcklund transformations devised for integro-differential equations. We analytically show that the conformal group is broken for the first LMN equation i.e. for the 1-point pdf at least for the inviscid case but the equation is still conformally invariant on the associated characteristic with zero-vorticity. Then, we demonstrate that this characteristic is conformally transformed. We find this outcome coincides with the numerical results about the conformal invariance of the statistics of zero-vorticity isolines, see e.g. Falkovich (2007 Russian Math. Surv. 63 497-510). The conformal symmetry can be understood as a ‘local scaling’ and its traces in two-dimensional turbulence were already discussed in the literature, i.e. it was conjectured more than twenty years ago in Polyakov (1993 Nucl. Phys. B 396 367-85) and clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124-8).

  3. Creation of particles in the gravitational field and the boundary conditions for quantized fields

    International Nuclear Information System (INIS)

    Khrustalev, O.A.; Silaev, P.K.

    1995-01-01

    We prove, that if one impose the linear constraints on the quantized fields that satisfy different boundary conditions, it can leads to such a transformation between creation-annihilation operators, that corresponds to particle creation. We also prove, that the correspondence between field, quantized in Minkowski space and the field, quantized in Rindler space has Rindler space can't be observed. 7 refs

  4. Conformal invariance in supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.A.

    1983-01-01

    In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)

  5. Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory.

    Science.gov (United States)

    Roberts, Daniel A; Stanford, Douglas

    2015-09-25

    We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order thermal correlators of the form ⟨W(t)VW(t)V⟩. We reproduce holographic calculations similar to those of Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of ~t_{*}-(β/2π)logβ^{2}E_{w}E_{v}, where t_{*} is the fast scrambling time (β/2π)logc and E_{w},E_{v} are the energy scales of the W,V operators.

  6. The integrable structure of nonrational conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, A. [Steklov Mathematics Institute, St. Petersburg (Russian Federation); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-02-15

    Using the example of Liouville theory, we show how the separation into left- and rightmoving degrees of freedom of a nonrational conformal field theory can be made explicit in terms of its integrable structure. The key observation is that there exist separate Baxter Q-operators for left- and right-moving degrees of freedom. Combining a study of the analytic properties of the Q-operators with Sklyanin's Separation of Variables Method leads to a complete characterization of the spectrum. Taking the continuum limit allows us in particular to rederive the Liouville reflection amplitude using only the integrable structure. (orig.)

  7. Effects of organic farming duration on field boundary vegetation in Denmark

    DEFF Research Database (Denmark)

    Petersen, Sune; Axelsen, Jørgen A.; Tybirk, Knud

    2006-01-01

    The aim of this study was to assess, whether organic dairy farming has increased the biological diversity of field boundary vegetation when compared to conventional dairy farming, and if increasing organic farming duration affected diversity. The diversity of plant species in field boundaries...... was found to be higher under organic than under conventional farming. Analysis of community patterns revealed that ruderal species and species with affinity to nutrient rich conditions were most common in conventional field borders, whereas stress-tolerant species were more abundant around organic farming....... These differences occurred only 3-4 years after conversion to organic farming....

  8. Dosimetric evaluation of tomography and four-box field conformal radiotherapy in locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Yu, Mina; Lee, Hyo Chun; Chung, Mi Joo; Kim, Sung Hwan; Lee, Jong Hoon; Jang, Hong Seok; Jeon, Dong Min; Cheon, Geum Seong

    2013-01-01

    To report the results of dosimetric comparison between intensity-modulated radiotherapy (IMRT) using Tomotherapy and four-box field conformal radiotherapy (CRT) for pelvic irradiation of locally advanced rectal cancer. Twelve patients with locally advanced rectal cancer who received a short course preoperative chemoradiotherapy (25 Gy in 5 fractions) on the pelvis using Tomotherapy, between July 2010 and December 2010, were selected. Using their simulation computed tomography scans, Tomotherapy and four-box field CRT plans with the same dose schedule were evaluated, and dosimetric parameters of the two plans were compared. For the comparison of target coverage, we analyzed the mean dose, Vn Gy, Dmin, Dmax, radical dose homogeneity index (rDHI), and radiation conformity index (RCI). For the comparison of organs at risk (OAR), we analyzed the mean dose. Tomotherapy showed a significantly higher mean target dose than four-box field CRT (p 0.001). But, V26.25 Gy and V27.5 Gywere not significantly different between the two modalities. Tomotherapy showed higher Dmax and lower Dmin. The Tomotherapy plan had a lower rDHI than four-box field CRT (p = 0.000). Tomotherapy showed better RCI than four-box field CRT (p = 0.007). For OAR, the mean irradiated dose was significantly lower in Tomotherapy than four-box field CRT. In locally advanced rectal cancer, Tomotherapy delivers a higher conformal radiation dose to the target and reduces the irradiated dose to OAR than four-box field CRT.

  9. Dosimetric evaluation of tomography and four-box field conformal radiotherapy in locally advanced rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mina; Lee, Hyo Chun; Chung, Mi Joo; Kim, Sung Hwan; Lee, Jong Hoon [Dept. of Radiation Oncology, St. Vincent' s Hospital, The Catholic University of Korea College of Medicine, Suwon (Korea, Republic of); Jang, Hong Seok; Jeon, Dong Min; Cheon, Geum Seong [Dept. of Radiation Oncology, Seoul St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2013-12-15

    To report the results of dosimetric comparison between intensity-modulated radiotherapy (IMRT) using Tomotherapy and four-box field conformal radiotherapy (CRT) for pelvic irradiation of locally advanced rectal cancer. Twelve patients with locally advanced rectal cancer who received a short course preoperative chemoradiotherapy (25 Gy in 5 fractions) on the pelvis using Tomotherapy, between July 2010 and December 2010, were selected. Using their simulation computed tomography scans, Tomotherapy and four-box field CRT plans with the same dose schedule were evaluated, and dosimetric parameters of the two plans were compared. For the comparison of target coverage, we analyzed the mean dose, Vn Gy, Dmin, Dmax, radical dose homogeneity index (rDHI), and radiation conformity index (RCI). For the comparison of organs at risk (OAR), we analyzed the mean dose. Tomotherapy showed a significantly higher mean target dose than four-box field CRT (p 0.001). But, V26.25 Gy and V27.5 Gywere not significantly different between the two modalities. Tomotherapy showed higher Dmax and lower Dmin. The Tomotherapy plan had a lower rDHI than four-box field CRT (p = 0.000). Tomotherapy showed better RCI than four-box field CRT (p = 0.007). For OAR, the mean irradiated dose was significantly lower in Tomotherapy than four-box field CRT. In locally advanced rectal cancer, Tomotherapy delivers a higher conformal radiation dose to the target and reduces the irradiated dose to OAR than four-box field CRT.

  10. An introduction to conformal invariance in quantum field theory and statistical mechanics

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Naon, C.M.

    1990-01-01

    The subject of conformal invariance provides an extraordinarly successful and productive symbiosis between statistical mechanics and quantum field theory. The main goal of this paper, which is tailored to a wide audience, is to give an introduction to such vast subject (C.P.)

  11. Conformal covariance, modular structure, and duality for local algebras in free massless quantum field theories

    International Nuclear Information System (INIS)

    Hislop, P.D.

    1988-01-01

    The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation of SU(2, 2), a covering group of the conformal group. An irreducible set of ''standard'' linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. The modular operators for these algebras are obtained in explicit form using the conformal covariance and the results of Bisognano and Wichmann on the modular structure of the wedge algebras. The modular automorphism groups are implemented by one-parameter groups of conformal transformations. The modular conjugation operators are used to prove the duality property for the double-cone algebras and the timelike duality property for the lightcone algebras. copyright 1988 Academic Press, Inc

  12. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga

    International Nuclear Information System (INIS)

    Murray, S. J.; Marioni, M.; Allen, S. M.; O'Handley, R. C.; Lograsso, T. A.

    2000-01-01

    Field-induced strains of 6% are reported in ferromagnetic Ni-Mn-Ga martensites at room temperature. The strains are the result of twin boundary motion driven largely by the Zeeman energy difference across the twin boundary. The strain measured parallel to the applied magnetic field is negative in the sample/field geometry used here. The strain saturates in fields of order 400 kA/m and is blocked by a compressive stress of order 2 MPa applied orthogonal to the magnetic field. The strain versus field curves exhibit appreciable hysteresis associated with the motion of the twin boundaries. A simple model accounts quantitatively for the dependence of strain on magnetic field and external stress using as input parameters only measured quantities. (c) 2000 American Institute of Physics

  13. A phase-field simulation study of irregular grain boundary migration during recrystallization

    DEFF Research Database (Denmark)

    Moelans, N.; Zhang, Yubin; Godfrey, A.

    2015-01-01

    We present simulation results based on a phase-field model that describes the migration of recrystallization boundaries into spatially varying deformation energy fields. Energy fields with 2-dimensional variations representing 2 sets of dislocation boundaries lying at equal, but opposite, angles......, highly asymmetrical protrusions and retrusions can develop on the migrating recrystallization front resulting in a migration velocity considerably larger than that expected from standard recrystallization models. It is also seen that, when the wavelength of the variations in a deformation microstructure...

  14. Stationary vacuum fields with a conformally flat three-space Pt. 1

    International Nuclear Information System (INIS)

    Lukacs, B.; Perjes, Z.; Sebestyen, A.; Sparling, G.A.J.

    1982-01-01

    A generalized notion of conformastat space-times is introduced in relativity theory. In this sense, the conformastat space-time is stationary with the three-space of time-like Killing trajectories being conformally flat. A 3+1 decomposition of the field equations is given, and two classes of nonstatic conformastat vacuum fields are exhaustively investigated. The resulting three metrics form a NUT-type extension of the solution of the static conformastat vacuum problem. The authors conjecture that all conformastat vacuum space-times are axially symmetric. (author)

  15. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  16. Conformal Infinity.

    Science.gov (United States)

    Frauendiener, Jörg

    2004-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  17. Yang-Baxter algebra - Integrable systems - Conformal quantum field theories

    International Nuclear Information System (INIS)

    Karowski, M.

    1989-01-01

    This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)

  18. Conformal Symmetry Patterns in Baryon Spectra

    International Nuclear Information System (INIS)

    Kirchbach, Mariana; Compean, Cliffor B

    2011-01-01

    Attention is drawn to the fact that the spectra of the baryons of the lightest flavors, the nucleon and the Δ, carry quantum numbers characteristic for an unitary representation of the conformal group. We show that the above phenomenon is well explained for baryons whose internal structure is dominated by a quark-diquark configuration that resides in a conformally compactified Minkowski space time, R 1 x S 3 , and is described by means of the conformal scale equation there. The R 1 x S 3 space-time represents the boundary of the conformally compactified AdS 5 , on which one expects to encounter a conformal theory in accord with the gauge-gravity duality. Within this context, our model is congruent with AdS 5 /CFT 4 .

  19. Chern-Simons supergravity plus matter near the boundary of AdS3

    International Nuclear Information System (INIS)

    Deger, N.S.; Kaya, A.; Sezgin, E.; Sundell, P.; Tanii, Y.

    2001-01-01

    We examine the boundary behaviour of the gauged N=(2,0) supergravity in D=3 coupled to an arbitrary number of scalar supermultiplets which parametrize a Kaehler manifold. In addition to the gravitational coupling constant, the model depends on two parameters, namely the cosmological constant and the size of the Kaehler manifold. It is shown that regular and irregular boundary conditions can be imposed on the matter fields depending on the size of the sigma model manifold. It is also shown that the super AdS transformations in the bulk produce the transformations of the N=(2,0) conformal supergravity and scalar multiplets on the boundary, containing fields with nonvanishing Weyl weights determined by the ratio of the sigma model and the gravitational coupling constants. Various types of (2,0) superconformal multiplets are found on the boundary and in one case the superconformal symmetry is shown to be realized in an unconventional way

  20. Towards a classification of fusion rule algebras in rational conformal field theories

    International Nuclear Information System (INIS)

    Ravanini, F.

    1991-01-01

    We review the main topics concerning Fusion Rule Algebras (FRA) of Rational Conformal Field Theories. After an exposition of their general properties, we examine known results on the complete classification for low number of fields (≤4). We then turn our attention to FRA's generated polynomially by one (real) fundamental field, for which a classification is known. Attempting to generalize this result, we describe some connections between FRA's and Graph Theory. The possibility to get new results on the subject following this ''graph'' approach is briefly discussed. (author)

  1. Black Hole Entropy from Conformal Field Theory in Any Dimension

    International Nuclear Information System (INIS)

    Carlip, S.

    1999-01-01

    Restricted to a black hole horizon, the open-quotes gaugeclose quotes algebra of surface deformations in general relativity contains a Virasoro subalgebra with a calculable central charge. The fields in any quantum theory of gravity must transform accordingly, i.e., they must admit a conformal field theory description. Applying Cardy close-quote s formula for the asymptotic density of states, I use this result to derive the Bekenstein-Hawking entropy. This method is universal it holds for any black hole, and requires no details of quantum gravity but it is also explicitly statistical mechanical, based on counting microscopic states. copyright 1999 The American Physical Society

  2. Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.

    Science.gov (United States)

    Fradkin, Eduardo; Moore, Joel E

    2006-08-04

    The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.

  3. Old and new topics in conformal field theory

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1991-01-01

    These notes reflect the structure of the lectures given at the Kathmandu Summer School. They are made of two parts: the first is intended to be an elementary (and standard) introduction to conformal field theory, following the approach of Belavin, Polyakov and Zamolodchikov [1], together with a short and biaised review of some significant results. For the sake of brevity, the author shall not provide detailed references in that part. The second part presents some recent developments on some relations between c.f.t. and classical integrable systems (of KdV type), the so-called W-algebras and related results on the structure of singular vectors. (author)

  4. Testing the isotropic boundary algorithms method to evaluate the magnetic field configuration in the tail

    International Nuclear Information System (INIS)

    Sergeev, V.A.; Malkov, M.; Mursula, K.

    1993-01-01

    This paper describes tests done on one model system for studying the magnetic field in the magneotail, called the isotropic boundary algorithm method. The tail field lines map into the ionosphere, and there have been two direct methods applied to study tail fields, one a global model, and the other a local model. The global models are so broad in scope that they have a hard time dealing with specific field configurations at some time and some location. Local models rely upon field measurements being simultaneously available over a large region of space to study simultaneously the field configurations. In general this is either very fortuitous or very expensive. The isotropic boundary algorithm method relys upon measuring energetic particles, here protons with energies greater than 30 keV, in the isotropic boundary at low altitudes and interpreting them as representing the boundary between stochastic and adiabatic particle motion regions in the equatorial tail current sheet. The authors have correlated particle measurements by NOAA spacecraft to study the isotropic boundary, with magnetic measurements of tail magnetic fields by the geostationary GOES 2 spacecraft. Positive correlations are observed

  5. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    Science.gov (United States)

    Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Lenschow, D. H.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jiménez, M. A.; Jonassen, M.; van den Kroonenberg, A.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.

    2014-10-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the

  6. The solutions of affine and conformal affine Toda field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1994-02-01

    We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs

  7. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  8. Conformal description of spinning particles

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1986-01-01

    This book is an introduction to the application of the conformal group to quantum field theory of particles with spin. After an introduction to the twistor representations of the conformal group of a conformally flat space-time and twistor flag manifolds with Su(2,2) orbits the classical phase space of conformal spinning particles is described. Thereafter the twistor description of classical zero mass fields is considered together with the quantization. (HSI)

  9. Novel conformal technique to reduce staircasing artifacts at material boundaries for FDTD modeling of the bioheat equation

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, E [Foundation for Research on Information Technologies in Society (IT' IS), ETH Zurich, 8092 Zurich (Switzerland); Chavannes, N [Foundation for Research on Information Technologies in Society (IT' IS), ETH Zurich, 8092 Zurich (Switzerland); Samaras, T [Radiocommunications Laboratory, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Kuster, N [Foundation for Research on Information Technologies in Society (IT' IS), ETH Zurich, 8092 Zurich (Switzerland)

    2007-08-07

    The modeling of thermal effects, often based on the Pennes Bioheat Equation, is becoming increasingly popular. The FDTD technique commonly used in this context suffers considerably from staircasing errors at boundaries. A new conformal technique is proposed that can easily be integrated into existing implementations without requiring a special update scheme. It scales fluxes at interfaces with factors derived from the local surface normal. The new scheme is validated using an analytical solution, and an error analysis is performed to understand its behavior. The new scheme behaves considerably better than the standard scheme. Furthermore, in contrast to the standard scheme, it is possible to obtain with it more accurate solutions by increasing the grid resolution.

  10. The significance of a grassy field boundary for the spatial distribution of carabids within two cereal fields

    NARCIS (Netherlands)

    Saska, P.; Vodde, M.; Heijerman, Th.; Westerman, P.R.; Werf, van der W.

    2007-01-01

    This paper investigated how distance from the field edge affects overall activity-density, species richness and distribution of individual carabid (Coleoptera: Carabidae) species. Carabid beetles were sampled using pitfall traps at six different locations: grassy field boundary, 0 (field edge), 4,

  11. Conformally invariant amplitudes and field theory in a spacetime of constant curvature

    International Nuclear Information System (INIS)

    Drummond, I.T.

    1979-01-01

    The problem of calculating the ultraviolet divergences of a field theory in a spherical spacetime is reduced to analyzing the pole structure of conformally invariant integrals which are analogous to amplitudes which occur in the theory of dual models. The calculations are illustrated with phi 3 theory in six dimensions

  12. Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations

    Science.gov (United States)

    Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel

    2012-01-01

    Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?

  13. Target volume delineation and field setup. A practical guide for conformal and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nancy Y. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Radiation Oncology; Lu, Jiade J. (eds.) [National Univ. Health System, Singapore (Singapore). Dept. of Radiation Oncology; National Univ. of Singapore (Singapore). Dept. of Medicine

    2013-03-01

    Practical handbook on selection and delineation of tumor volumes and fields for conformal radiation therapy, including IMRT. Helpful format facilitating use on a step-by-step basis in daily practice. Designed to ensure accurate coverage of commonly encountered tumors along their routes of spread. This handbook is designed to enable radiation oncologists to appropriately and confidently delineate tumor volumes/fields for conformal radiation therapy, including intensity-modulated radiation therapy (IMRT), in patients with commonly encountered cancers. The orientation of this handbook is entirely practical, in that the focus is on the illustration of clinical target volume (CTV) delineation for each major malignancy. Each chapter provides guidelines and concise knowledge on CTV selection for a particular disease, explains how the anatomy of lymphatic drainage shapes the selection of the target volume, and presents detailed illustrations of volumes, slice by slice, on planning CT images. While the emphasis is on target volume delineation for three-dimensional conformal therapy and IMRT, information is also provided on conventional radiation therapy field setup and planning for certain malignancies for which IMRT is not currently suitable.

  14. Tribological Behavior of Oil-Lubricated Laser Textured Steel Surfaces in Conformal Flat and Non-Conformal Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchenko, A. M. [Inst. for Problems of Materials Science, Dept. 7, 3 Krzhizhanovsky Street, Kyiv 03142, UA (Corresponding author), e-mail: andrii.kovalchenko@gatech.edu; Erdemir, A. [Argonne National Lab., Energy Systems Division, 9700 South Cass Avenue, Argonne, IL 60439 US; Ajayi, O. O. [Argonne National Lab., Energy Systems Division, 9700 South Cass Avenue, Argonne, IL 60439 US; Etsion, I. [Technion-Israel Inst. of Technology, Dept. of Mechanical Engineering, Haifa 32000, IL

    2017-01-30

    Changing the surface texture of sliding surfaces is an effective way to manipulate friction and wear of lubricated surfaces. Having realized its potential, we have done very extensive studies on the effects of laser surface texturing (LST, which involves the creation of an array of microdimples on a surface) on friction and wear behavior of oil-lubricated steel surfaces in the early 2000s. In this paper, we reviewed some of our research accomplishments and assessed future directions of the laser texturing field in many diverse industrial applications. Our studies specifically addressed the impact of laser texturing on friction and wear of both the flat conformal and initial non-conformal point contact configurations using a pin-on-disk test rig under fully-flooded synthetic oil lubricants with different viscosities. Electrical resistance measurement between pin and LST disks was also used to determine the operating lubrication regimes in relation to friction. In conformal contact, we confirmed that LST could significantly expand the operating conditions for hydrodynamic lubrication to significantly much higher loads and slower speeds. In particular, with LST and higher viscosity oils, the low-friction full hydrodynamic regime was shifted to the far left in the Stribeck diagram. Overall, the beneficial effects of laser surface texturing were more pronounced at higher speeds and loads and with higher viscosity oil. LST was also observed to reduce the magnitude of friction coefficients in the boundary regime. For the non-conformal contact configuration, we determined that LST would produce more abrasive wear on the rubbing counterface compared to the untreated surfaces due to a reduction in lubricant fluid film thickness, as well as the highly uneven and rough nature of the textured surfaces. However, this higher initial wear rate has led to faster generation of a conformal contact, and thus transition from the high-friction boundary to lower friction mixed

  15. Numerical estimation of structure constants in the three-dimensional Ising conformal field theory through Markov chain uv sampler

    Science.gov (United States)

    Herdeiro, Victor

    2017-09-01

    Herdeiro and Doyon [Phys. Rev. E 94, 043322 (2016), 10.1103/PhysRevE.94.043322] introduced a numerical recipe, dubbed uv sampler, offering precise estimations of the conformal field theory (CFT) data of the planar two-dimensional (2D) critical Ising model. It made use of scale invariance emerging at the critical point in order to sample finite sublattice marginals of the infinite plane Gibbs measure of the model by producing holographic boundary distributions. The main ingredient of the Markov chain Monte Carlo sampler is the invariance under dilation. This paper presents a generalization to higher dimensions with the critical 3D Ising model. This leads to numerical estimations of a subset of the CFT data—scaling weights and structure constants—through fitting of measured correlation functions. The results are shown to agree with the recent most precise estimations from numerical bootstrap methods [Kos, Poland, Simmons-Duffin, and Vichi, J. High Energy Phys. 08 (2016) 036, 10.1007/JHEP08(2016)036].

  16. Revisiting the conformal invariance of the scalar field: From Minkowski space to de Sitter space

    International Nuclear Information System (INIS)

    Huguet, E.; Queva, J.; Renaud, J.

    2008-01-01

    In this article, we clarify the link between the conformal (i.e. Weyl) correspondence from the Minkowski space to the de Sitter space and the conformal [i.e. SO(2,d)] invariance of the conformal scalar field on both spaces. We exhibit the realization on de Sitter space of the massless scalar representation of SO(2,d). It is obtained from the corresponding representation in Minkowski space through an intertwining operator inherited from the Weyl relation between the two spaces. The de Sitter representation is written in a form which allows one to take the point of view of a Minkowskian observer who sees the effect of curvature through additional terms

  17. On the linear conformal gravitation

    International Nuclear Information System (INIS)

    Pal'chik, M.Ya.; Fradkin, E.S.

    1984-01-01

    Conformal gravitation is analyzed under the assumption that its solution possesses the property of conformal symmetry. This assumption has sense in the case of small distances and only for definite types of matter fields, namely: at special choice of matter fields and their interactions, providing a lack of conformal anomalies; or at definite magnitudes of binding constants, coinciding with the zeroes of the Gell-Mann-Low function. The field equations, of the group-theoretical natura are obtained

  18. Topologically massive gravity and its conformal limit

    International Nuclear Information System (INIS)

    Ertl, S.

    2012-01-01

    -symmetric solutions of the three dimensional counterpart. Besides this classification and the construction of suitable numerical algorithms the most intriguing and new results are solitonic solutions that show asymptotic warped AdS behaviour. More precisely, they show damped oscillations around warped AdS. Then emphasis is put on the conformal limit of TMG leading to a theory called conformal Chern-Simons gravity. Motivated by partial masslessness, which provides an additional gauge symmetry, a specific set of boundary conditions is chosen. This specific set comprises boundary conditions on the conformal class of the metric and the Weyl factor. A complete holographic analysis, including calculations of the boundary stress tensor and the canonical charges, gives rise to interesting features of the dual CFT. Depending on the boundary conditions on the Weyl factor the CFT has different properties. For fixed Weyl factor the central charges are c R =-c L =12k. For varying Weyl factor the dual CFT contains a scalar field with background charge resulting in a shifted value for the left central charge -c L =12k+1+6Q 2 . (author)

  19. Free ◻{sup k} scalar conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2017-02-13

    We consider the generalizations of the free U(N) and O(N) scalar conformal field theories to actions with higher powers of the Laplacian ◻{sup k}, in general dimension d. We study the spectra, Verma modules, anomalies and OPE of these theories. We argue that in certain d and k, the spectrum contains zero norm operators which are both primary and descendant, as well as extension operators which are neither primary nor descendant. In addition, we argue that in even dimensions d≤2k, there are well-defined operator algebras which are related to the ◻{sup k} theories and are novel in that they have a finite number of single-trace states.

  20. Downstream evolution of an open MHD magnetotail boundary

    International Nuclear Information System (INIS)

    Sanchez, E.R.; Siscoe, G.L.; Summers, D.

    1990-01-01

    The authors use the rotational discontinuity-slow expansion fan model for an open magnetotail boundary to obtain a quantitative three-dimensional picture of the complete magnetotail boundary. Its configuration and physical properties are inferred for different orientations of the field as well as different reconnection rates by representing the high-latitude plasma mantle with a self-similar slow expansion wave. Some of those properties follow: (1) The tail boundary geometry appears to be stable against moderate variations of the upstream parameters. (2) The transition between the open and closed portions of the tail boundary takes place at increasingly higher latitudes tailward, thus narrowing the open window in the same direction. For the magnetosheath values considered (n 0 = 10 7 m -3 , V 0 = 3 x 10 5 m s -1 , B 0 = 10 nT, T = 10 6 degree K) and for a purely southward field an initial 90 degree latitudinal width of the open window in the near-Earth environment evolves into 55 degree at x ≅ -150 R E . (3) Portions of the plasma mantle become separated from the magnetosheath by a tangential discontinuity as larger distances down the tail are considered, with a thin strip of plasma sheet plasma (≅2 R E in the radial direction, at x ≅ -150 R E ) intruding in between. (4) The internal boundary of the mantle is relatively flat in the near-Earth tail but becomes increasingly V shaped tailward. Its intersection with the geomagnetic equator conforms to a U-shaped form with an antiearthward concavity. The tail boundary geometry when the external field has some inclination away from the vertical is investigated. A duskward or dawnward shift of the entire open tail boundary takes place, and the expansion fan is thickest on the sector toward which the shift occurred

  1. On the large N limit of conformal field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    2003-01-01

    Following recent advances in large N matrix mechanics, I discuss here the free (Cuntz) algebraic formulation of the large N limit of two-dimensional conformal field theories of chiral adjoint fermions and bosons. One of the central results is a new affine free algebra which describes a large N limit of su(N) affine Lie algebra. Other results include the associated free-algebraic partition functions and characters, a free-algebraic coset construction, free-algebraic construction of osp(1|2), free-algebraic vertex operator constructions in the large N Bose systems, and a provocative new free-algebraic factorization of the ordinary Koba-Nielsen factor

  2. Connections on the state-space over conformal field theories

    International Nuclear Information System (INIS)

    Ranganathan, K.; Sonoda, H.; Zwiebach, B.

    1994-01-01

    Motivated by the problem of background independence of closed string field theory we study geometry on the infinite vector bundle of local fields over the space of conformal field theories (CFTs). With any connection we can associate an excluded domain D for the integral of marginal operators, and an operator one-form ω μ . The pair (D, ω μ ) determines the covariant derivative of any correlator of local fields. We obtain interesting classes of connections in which ω μ 's can be written in terms of CFT data. For these connections we compute their curvatures in terms of four-point correlators, D, and ω μ . Among these connections three are of particular interest. A flat, metric compatible connection Γ, and connections c and c with non-vanishing curvature, with the latter metric compatible. The flat connection cannot be used to do parallel transport over a finite distance. Parallel transport with either c or c, however, allows us to construct a CFT in the state-space of another CFT a finite distance away. The construction is given in the form of perturbation theory manifestly free of divergences. (orig.)

  3. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  4. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  5. Holographic description of curved-space quantum field theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Uhlemann, Christoph Frank

    2012-12-12

    The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these

  6. Holographic description of curved-space quantum field theory and gravity

    International Nuclear Information System (INIS)

    Uhlemann, Christoph Frank

    2012-01-01

    The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these

  7. Informal introduction to extended algebras and conformal field theories with c ≥ 1

    International Nuclear Information System (INIS)

    Ravanini, F.

    1989-01-01

    We review some of the topics of Conformal Field Theory, like extended algebras, parafermions, coset constructions and generalized Feigin-Fuchs construction, modular invariant partition functions on the torus and the help they give in classification of CFTs. Some recent issues in RCFT are also discussed. (orig.)

  8. Correspondence between the contracted BTZ solution of cosmological topological massive gravity and two-dimensional Galilean conformal algebra

    International Nuclear Information System (INIS)

    Setare, M R; Kamali, V

    2011-01-01

    We show that a BTZ black hole solution of cosmological topological massive gravity has a hidden conformal symmetry. In this regard, we consider the wave equation of a massless scalar field propagating in BTZ spacetime and find that the wave equation could be written in terms of the SL(2, R) quadratic Casimir. From the conformal coordinates, the temperatures of the dual conformal field theories (CFTs) could be read directly. Moreover, we compute the microscopic entropy of the dual CFT by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole. Then, we consider Galilean conformal algebras (GCA), which arises as a contraction of relativistic conformal algebras (x → εx, t → t, ε → 0). We show that there is a correspondence between GCA 2 on the boundary and contracted BTZ in the bulk. For this purpose we obtain the central charges and temperatures of GCA 2 . Then, we compute the microscopic entropy of the GCA 2 by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole in a non-relativistic limit. The absorption cross section of a near-region scalar field also matches the microscopic absorption cross section of the dual GCA 2 . So we find further evidence that shows correspondence between a contracted BTZ black hole and two-dimensional GCA.

  9. Two-dimensional conformal field theory and beyond. Lessons from a continuing fashion

    International Nuclear Information System (INIS)

    Todorov, I.

    2000-01-01

    Two-dimensional conformal field theory (CFT) has several sources: the search for simple examples of quantum field theory, tile description of surface critical phenomena, the study of (super)string vacua (which made it particularly fashionable). In the present overview of tile subject we emphasize the role of CFT in bridging the gap between mathematics and quantum field theory and discuss some new physical concepts that emerged in the study of CFT models: anomalous dimensions, rational CFT, braid group statistics. In an aside, at tile end of the paper, we share tile misgivings, recently expressed by Penrose, about some dominant trends in fundamental theoretical physics. (author)

  10. Numerical conformal mapping methods for exterior and doubly connected regions

    Energy Technology Data Exchange (ETDEWEB)

    DeLillo, T.K. [Wichita State Univ., KS (United States); Pfaltzgraff, J.A. [Univ. of North Carolina, Chapel Hill, NC (United States)

    1996-12-31

    Methods are presented and analyzed for approximating the conformal map from the exterior of the disk to the exterior a smooth, simple closed curve and from an annulus to a bounded, doubly connected region with smooth boundaries. The methods are Newton-like methods for computing the boundary correspondences and conformal moduli similar to Fornberg`s method for the interior of the disk. We show that the linear systems are discretizations of the identity plus a compact operator and, hence, that the conjugate gradient method converges superlinearly.

  11. NUMERICAL SIMULATION OF MAGNETIC FIELD STRUCTURE IN CYLINDRICAL FILM SCREEN

    Directory of Open Access Journals (Sweden)

    G. F. Gromyko

    2016-01-01

    Full Text Available A numerical method for solving the boundary value problem for a nonlinear magnetostatic equation describing the external magnetostatic field penetration through the cylindrical film coating is developed. A mathematical model of the shielding problem based on the use of the boundary conditions of the third kind on the film surface is studied. The nonlinear dependence of the film magnetic permeability on magnetic field conforms with experimental data. The distribution of the magnetic field strength in the film layer and the magnetic permeability of the film material depending on the magnitude of the external magnetic field strength are investigated numerically.

  12. A quantum group structure in integrable conformal field theories

    International Nuclear Information System (INIS)

    Smit, D.J.

    1990-01-01

    We discuss a quantization prescription of the conformal algebras of a class of d=2 conformal field theories which are integrable. We first give a geometrical construction of certain extensions of the classical Virasoro algebra, known as classical W algebras, in which these algebras arise as the Lie algebra of the second Hamiltonian structure of a generalized Korteweg-de Vries hierarchy. This fact implies that the W algebras, obtained as a reduction with respect to the nilpotent subalgebras of the Kac-Moody algebra, describe the intergrability of a Toda field theory. Subsequently we determine the coadjoint operators of the W algebras, and relate these to classical Yang-Baxter matrices. The quantization of these algebras can be carried out using the concept of a so-called quantum group. We derive the condition under which the representations of these quantum groups admit a Hilbert space completion by exploring the relation with the braid group. Then we consider a modification of the Miura transformation which we use to define a quantum W algebra. This leads to an alternative interpretation of the coset construction for Kac-Moody algebras in terms of nonlinear integrable hierarchies. Subsequently we use the connection between the induced braid group representations and the representations of the mapping class group of Riemann surfaces to identify an action of the W algebras on the moduli space of stable curves, and we give the invariants of this action. This provides a generalization of the situation for the Virasoro algebra, where such an invariant is given by the so-called Mumford form which describes the partition function of the bosonic string. (orig.)

  13. Conformal algebra of Riemann surfaces

    International Nuclear Information System (INIS)

    Vafa, C.

    1988-01-01

    It has become clear over the last few years that 2-dimensional conformal field theories are a crucial ingredient of string theory. Conformal field theories correspond to vacuum solutions of strings; or more precisely we know how to compute string spectrum and scattering amplitudes by starting from a formal theory (with a proper value of central charge of the Virasoro algebra). Certain non-linear sigma models do give rise to conformal theories. A lot of progress has been made in the understanding of conformal theories. The author discusses a different view of conformal theories which was motivated by the development of operator formalism on Riemann surfaces. The author discusses an interesting recent work from this point of view

  14. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  15. Initial-boundary-value problem of the self-gravitating scalar field in the Bondi-Sachs gauge

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Gomez, Roberto

    2007-01-01

    It is shown that, in the Bondi-Sachs gauge that fixes the speed of incoming light rays to the value 1, the Einstein equations coupled to a scalar field in spherical symmetry are cast into a symmetric-hyperbolic system of equations for the scalar field, lapse and shift as fundamental variables. In this system of equations, the lapse and shift are incoming characteristic fields, and the scalar field has three components: incoming, outgoing and static. A constraint-preserving boundary condition is prescribed by imposing the projection of the Einstein equation normal to the boundary at the outer value of the radial coordinate. The boundary condition specifies one of the two incoming metric fields. The remaining incoming metric field and the incoming scalar field component need to be specified arbitrarily. Numerical simulations of the scattering of the scalar field by a black hole in the nonlinear regime are presented that illustrate interesting facts about black-hole physics and the behavior of the characteristic variables of the problem

  16. Popularity, likeability, and peer conformity: Four field experiments

    NARCIS (Netherlands)

    Gommans, R.; Sandstrom, M.J.; Stevens, G.W.J.M.; Bogt, T.F.M. ter; Cillessen, A.H.N.

    2017-01-01

    Adolescents tend to alter their attitudes and behaviors to match those of others; a peer influence process named peer conformity. This study investigated to what extent peer conformity depended on the status (popularity and likeability) of the influencer and the influencee. The study consisted of

  17. Relative entanglement entropies in 1+1-dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Paola; Calabrese, Pasquale [International School for Advanced Studies (SISSA) and INFN,Via Bonomea 265, 34136, Trieste (Italy)

    2017-02-08

    We study the relative entanglement entropies of one interval between excited states of a 1+1 dimensional conformal field theory (CFT). To compute the relative entropy S(ρ{sub 1}∥ρ{sub 0}) between two given reduced density matrices ρ{sub 1} and ρ{sub 0} of a quantum field theory, we employ the replica trick which relies on the path integral representation of Tr(ρ{sub 1}ρ{sub 0}{sup n−1}) and define a set of Rényi relative entropies S{sub n}(ρ{sub 1}∥ρ{sub 0}). We compute these quantities for integer values of the parameter n and derive via the replica limit the relative entropy between excited states generated by primary fields of a free massless bosonic field. In particular, we provide the relative entanglement entropy of the state described by the primary operator i∂ϕ, both with respect to the ground state and to the state generated by chiral vertex operators. These predictions are tested against exact numerical calculations in the XX spin-chain finding perfect agreement.

  18. An Ar threesome: Matrix models, 2d conformal field theories, and 4dN=2 gauge theories

    International Nuclear Information System (INIS)

    Schiappa, Ricardo; Wyllard, Niclas

    2010-01-01

    We explore the connections between three classes of theories: A r quiver matrix models, d=2 conformal A r Toda field theories, and d=4N=2 supersymmetric conformal A r quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions.

  19. An(1) affine Toda field theories with integrable boundary conditions revisited

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2008-01-01

    Generic classically integrable boundary conditions for the A n (1) affine Toda field theories (ATFT) are investigated. The present analysis rests primarily on the underlying algebra, defined by the classical version of the reflection equation. We use as a prototype example the first non-trivial model of the hierarchy i.e. the A 2 (1) ATFT, however our results may be generalized for any A n (1) (n > 1). We assume here two distinct types of boundary conditions called some times soliton preserving (SP), and soliton non-preserving (SNP) associated to two distinct algebras, i.e. the reflection algebra and the (q) twisted Yangian respectively. The boundary local integrals of motion are then systematically extracted from the asymptotic expansion of the associated transfer matrix. In the case of SNP boundary conditions we recover previously known results. The other type of boundary conditions (SP), associated to the reflection algebra, are novel in this context and lead to a different set of conserved quantities that depend on free boundary parameters. It also turns out that the number of local integrals of motion for SP boundary conditions is 'double' compared to those of the SNP case.

  20. Conformal techniques in string theory and string field theory

    International Nuclear Information System (INIS)

    Giddings, S.B.

    1987-01-01

    The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string

  1. Conformally invariant amplitudes and field theory in a space-time of constant curvature

    International Nuclear Information System (INIS)

    Drummond, I.T.

    1977-02-01

    The problem of calculating the ultra violet divergences of a field theory in a spherical space-time is reduced to analysing the pole structure of conformally invariant integrals which are analogous to amplitudes which occur in the theory of dual models. The calculations are illustrated with phi 3 -theory in six-dimensions. (author)

  2. Extended KN algebras and extended conformal field theories over higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Ceresole, A.; Huang Chaoshang

    1990-01-01

    A global operator formalism for extended conformal field theories over higher genus Riemann surfaces is introduced and extended KN algebra are obtained by means of the KN bases. The BBSS construction of the spin-3 operator is carried out for Kac-Moody algebra A 2 over a Riemann surface of arbitrary genus. (orig.)

  3. Conformal Field Theory, Automorphic Forms and Related Topics

    CERN Document Server

    Weissauer, Rainer; CFT 2011

    2014-01-01

    This book, part of the series Contributions in Mathematical and Computational Sciences, reviews recent developments in the theory of vertex operator algebras (VOAs) and their applications to mathematics and physics.   The mathematical theory of VOAs originated from the famous monstrous moonshine conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship between the characters of the largest simple finite sporadic group, the Monster, and the theory of modular forms inspired by the observations of J. MacKay and J. Thompson.   The contributions are based on lectures delivered at the 2011 conference on Conformal Field Theory, Automorphic Forms and Related Topics, organized by the editors as part of a special program offered at Heidelberg University that summer under the sponsorship of the MAThematics Center Heidelberg (MATCH).

  4. Path operator algebras in conformal quantum field theories

    International Nuclear Information System (INIS)

    Roesgen, M.

    2000-10-01

    Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)

  5. The sewing technique for strings and conformal field theories

    International Nuclear Information System (INIS)

    Di Vecchia, P.

    1989-01-01

    We discuss recent results obtained from the sewing procedure for strings and conformal field theories. They are summarized by the N Point [String] g loop Vertex V N;g , that is the 'generating functional' of all correlation functions [scattering amplitudes] of the theory on a genus g Riemann surface. We discuss V N;g for free bosonic theory with arbitrary background charge and for fermionic and bosonic bc systems. By saturating those vertices with highest weight states we obtain in a simple way the correlation functions of the corresponding primary fields on genus g Riemann surfaces that reproduce known results including the correlation functions of a bosonic bc system, that present a number of peculiarities. We construct also V N;g for the bosonic and fermionic string. In particular this technique allows one to explicitly construct the measure of integration over the moduli and to study the various pinching limits in order to check the finiteness of superstring theories. (orig.)

  6. A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid

    KAUST Repository

    Kedia, Kushal S.; Safta, Cosmin; Ray, Jaideep; Najm, Habib N.; Ghoniem, Ahmed F.

    2014-01-01

    In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A "buffer zone" methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed. © 2014 Elsevier Inc.

  7. A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A "buffer zone" methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed. © 2014 Elsevier Inc.

  8. Quantum field theories in two dimensions collected works of Alexei Zamolodchikov

    CERN Document Server

    Pugai, Yaroslav; Zamolodchikov, Alexander

    2012-01-01

    Volume 1 is a collection of reprinted works of Alexei Zamolodchikov who was a prominent theoretical physicist of his time. It contains his works on conformal field theories, 2D quantum gravity, and Liouville theory. These original contributions of Alexei Zamolodchikov have a profound effect on shaping the fast developing areas of theoretical physics. His ideas are expressed lucidly, such as the recursive relation for conformal blocks and the structure of conformal bootstrap in Liouville theory, including the boundary Liouville theory. These ideas are at the foundation of the subject and they are of great interest to a wide community of physicists and mathematicians working in diverse areas. This volume is a part of the 2-volume collection of remarkable research papers that can be used as an advanced textbook by graduate students specializing in string theory, conformal field theory and integrable models of QFT. It is also highly relevant to experts in these fields. Volume 2 includes Alexei Zamolodchikov's w...

  9. Effects of Uncertainties in Electric Field Boundary Conditions for Ring Current Simulations

    Science.gov (United States)

    Chen, Margaret W.; O'Brien, T. Paul; Lemon, Colby L.; Guild, Timothy B.

    2018-01-01

    Physics-based simulation results can vary widely depending on the applied boundary conditions. As a first step toward assessing the effect of boundary conditions on ring current simulations, we analyze the uncertainty of cross-polar cap potentials (CPCP) on electric field boundary conditions applied to the Rice Convection Model-Equilibrium (RCM-E). The empirical Weimer model of CPCP is chosen as the reference model and Defense Meteorological Satellite Program CPCP measurements as the reference data. Using temporal correlations from a statistical analysis of the "errors" between the reference model and data, we construct a Monte Carlo CPCP discrete time series model that can be generalized to other model boundary conditions. RCM-E simulations using electric field boundary conditions from the reference model and from 20 randomly generated Monte Carlo discrete time series of CPCP are performed for two large storms. During the 10 August 2000 storm main phase, the proton density at 10 RE at midnight was observed to be low (Dst index is bounded by the simulated Dst values. In contrast, the simulated Dst values during the recovery phases of the 10 August 2000 and 31 August 2005 storms tend to underestimate systematically the observed late Dst recovery. This suggests a need to improve the accuracy of particle loss calculations in the RCM-E model. Application of this technique can aid modelers to make efficient choices on either investing more effort on improving specification of boundary conditions or on improving descriptions of physical processes.

  10. Extended U(1) conformal field theories and Zk-parafermions

    International Nuclear Information System (INIS)

    Furlan, P.; Paunov, R.R.; Todorov, I.T.

    1992-01-01

    A constructive approach is developed for studying local chiral algebras generated by a pair of oppositely charged fields ψ(z, ±g) such that the operator product expansion (OPE) of ψ(z 1 ,g) ψ(z 2 , -g) involves a U (1) current. The main tool in the study is the factorization property of the charged fields (exhibited in [PT 2.3]) for Virasoro central charge c k -parafermions. The case Δ 2 =4(Δ 1 -1), where Δ sν =Δ K-ν (Δ 0 =0) ore conformal dimensions of the parafemionic currents, is studied in detail. For Δ Τ = 2Τ(1 - Δ/k) the theory is related to GEPNER'S [GE] Z 2 [SO (k)] parafermions and the corresponding quantum field theroretic (QFT) representations of the chiral algebra are displayed. The Coulomb gas method of [CR] is further developed to include an explicit construction of the basic parafermionic current φ of wight Δ = Δ 1 . The characters of the positive energy representations of the local chiral algebra are written as sums of products of Kac,s string functions and classical Θ-functions. (orig.)

  11. Fluid analog model for boundary effects in field theory

    International Nuclear Information System (INIS)

    Ford, L. H.; Svaiter, N. F.

    2009-01-01

    Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.

  12. Supersymmetric gauge theories, quantization of M{sub flat}, and conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Teschner, J.; Vartanov, G.S.

    2013-02-15

    We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.

  13. A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors

    Directory of Open Access Journals (Sweden)

    Einar M. Rønquist

    1984-04-01

    Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.

  14. Genus two partition functions of extremal conformal field theories

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Yin Xi

    2007-01-01

    Recently Witten conjectured the existence of a family of 'extremal' conformal field theories (ECFTs) of central charge c = 24k, which are supposed to be dual to three-dimensional pure quantum gravity in AdS 3 . Assuming their existence, we determine explicitly the genus two partition functions of k = 2 and k = 3 ECFTs, using modular invariance and the behavior of the partition function in degenerating limits of the Riemann surface. The result passes highly nontrivial tests and in particular provides a piece of evidence for the existence of the k = 3 ECFT. We also argue that the genus two partition function of ECFTs with k ≤ 10 are uniquely fixed (if they exist)

  15. Classical open-string field theory: A∞-algebra, renormalization group and boundary states

    International Nuclear Information System (INIS)

    Nakatsu, Toshio

    2002-01-01

    We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles

  16. Topological black holes dressed with a conformally coupled scalar field and electric charge

    International Nuclear Information System (INIS)

    Martinez, Cristian; Troncoso, Ricardo; Staforelli, Juan Pablo

    2006-01-01

    Electrically charged solutions for gravity with a conformally coupled scalar field are found in four dimensions in the presence of a cosmological constant. If a quartic self-interaction term for the scalar field is considered, there is a solution describing an asymptotically locally AdS charged black hole dressed with a scalar field that is regular on and outside the event horizon, which is a surface of negative constant curvature. This black hole can have negative mass, which is bounded from below for the extremal case, and its causal structure shows that the solution describes a ''black hole inside a black hole''. The thermodynamics of the nonextremal black hole is analyzed in the grand canonical ensemble. The entropy does not follow the area law, and there is an effective Newton constant which depends on the value of the scalar field at the horizon. If the base manifold is locally flat, the solution has no electric charge, and the scalar field has a vanishing stress-energy tensor so that it dresses a locally AdS spacetime with a nut at the origin. In the case of vanishing self interaction, the solutions also dress locally AdS spacetimes, and if the base manifold is of negative constant curvature a massless electrically charged hairy black hole is obtained. The thermodynamics of this black hole is also analyzed. It is found that the bounds for the black holes parameters in the conformal frame obtained from requiring the entropy to be positive are mapped into the ones that guarantee cosmic censorship in the Einstein frame

  17. Contour integral representations for the characters of rational conformal field theories

    International Nuclear Information System (INIS)

    Mukhi, S.; Panda, S.; Sen, A.

    1989-01-01

    We propose simple Feigin-Fuchs contour integral representations for the characters of a large class of rational conformal field theories. These include the A, D and E series SU(2) WZW theories, the A and D series c<1 minimal theories, and the k=1 SU(N) WZW theories. All these theories are characterized by the absence of the zeroes in the wronskian determinant of the characters in the interior of moduli space. This proposal is verified by several calculations. (orig.)

  18. Vacuum in the presence of electromagnetic fields and rotating boundaries

    International Nuclear Information System (INIS)

    Manogue, C.A.

    1984-01-01

    Two investigations of the properties of the vacuum are made. The first is a reconsideration of the classic Klein paradox, particle creation due to the presence of very strong external electromagnetic potentials. Expectation values of the current, momentum, and number operators, each of which is a measure of particle creation, are calculated for both massive spin zero and massive spin one half fields. The relationship between super-radiance and pair creation is explained. A review of past work by other authors is included and common conceptual errors are pointed out. The second investigation concerns the rotation of the vacuum caused by the rotation of boundaries. Just as the presence of boundaries can create a change in the vacuum expectation value of the energy density (the Casimir effect), the rotation of such boundaries can create changes in the vacuum expectation value of the momentum density. Calculations of the Casimir effect are made for a massless scalar field confined to an infinitely long square box. The change in the vacuum expectation value of the momentum density is calculated if this same box is rotating around its long central axis. In contrast, it is shown that for an infinitely long circular cylinder there is no change in the momentum density

  19. Conformal maps between pseudo-Finsler spaces

    Science.gov (United States)

    Voicu, Nicoleta

    The paper aims to initiate a systematic study of conformal mappings between Finsler spacetimes and, more generally, between pseudo-Finsler spaces. This is done by extending several results in pseudo-Riemannian geometry which are necessary for field-theoretical applications and by proposing a technique that reduces some problems involving pseudo-Finslerian conformal vector fields to their pseudo-Riemannian counterparts. Also, we point out, by constructing classes of examples, that conformal groups of flat (locally Minkowskian) pseudo-Finsler spaces can be much richer than both flat Finslerian and pseudo-Euclidean conformal groups.

  20. A Cosserat crystal plasticity and phase field theory for grain boundary migration

    Science.gov (United States)

    Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut

    2018-06-01

    The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.

  1. Sharp Trapping Boundaries in the Random Walk of Interplanetary Magnetic Field Lines

    Science.gov (United States)

    Ruffolo, D.; Chuychai, P.; Meechai, J.; Pongkitiwanichkul, P.; Kimpraphan, N.; Matthaeus, W. H.; Rowlands, G.

    2004-05-01

    Although magnetic field lines in space are believed to undergo a diffusive random walk in the long-distance limit, observed dropouts of solar energetic particles, as well as computer simulations, indicate sharply defined filaments in which interplanetary magnetic field lines have been temporarily trapped. We identify mechanisms that can explain such sharp boundaries in the framework of 2D+slab turbulence, a model that provides a good explanation of solar wind turbulence spectra and the parallel transport of solar energetic particles. Local trapping boundaries (LTBs) are empirically defined as trajectories of 2D turbulence where the mean 2D field is a local maximum. In computer simulations, the filaments (or ``islands'' in the two dimensions perpendicular to the mean field) that are most resistant to slab diffusion correspond closely to the mathematically defined LTBs, that is, there is a mathematical prescription for defining the trapping regions. Furthermore, we provide computational evidence and a theoretical explanation that strong 2D turbulence can inhibit diffusion due to the slab component. Therefore, while these filaments are basically defined by the small-scale topology of 2D turbulence, there can be sharp trapping boundaries where the 2D field is strongest. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and NASA Grant NAG5-11603. G.R. thanks Mahidol University for its hospitality and the Thailand Commission for Higher Education for travel support.

  2. Three-dimensional wake field analysis by boundary element method

    International Nuclear Information System (INIS)

    Miyata, K.

    1987-01-01

    A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity

  3. Circular Wilson loops in defect conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera-Damia, Jeremías; Correa, Diego H. [Instituto de Física La Plata, CONICET, Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina); Giraldo-Rivera, Victor I. [International Centre for Theoretical Sciences (ICTS-TIFR),Shivakote, Hesaraghatta Hobli, Bengaluru 560089 (India)

    2017-03-06

    We study a D3-D5 system dual to a conformal field theory with a codimension-one defect that separates regions where the ranks of the gauge groups differ by k. With the help of this additional parameter, as observed by Nagasaki, Tanida and Yamaguchi, one can define a double scaling limit in which the quantum corrections are organized in powers of λ/k{sup 2}, which should allow to extrapolate results between weak and strong coupling regimes. In particular we consider a radius R circular Wilson loop placed at a distance L, whose internal space orientation is given by an angle χ. We compute its vacuum expectation value and show that, in the double scaling limit and for small χ and small L/R, weak coupling results can be extrapolated to the strong coupling limit.

  4. Particles in a magnetic field and plasma analogies: doubly periodic boundary conditions

    International Nuclear Information System (INIS)

    Forrester, P J

    2006-01-01

    The N-particle free fermion state for quantum particles in the plane subject to a perpendicular magnetic field, and with doubly periodic boundary conditions, is written in a product form. The absolute value of this is used to formulate an exactly solvable one-component plasma model and further motivates the formulation of an exactly solvable two-species Coulomb gas. The large N expansion of the free energy of both these models exhibits the same O(1) term. On the basis of a relationship to the Gaussian free field, this term is predicted to be universal for conductive Coulomb systems in doubly periodic boundary conditions

  5. A new multistack radiation boundary condition for FDTD based on self-teleportation of fields

    International Nuclear Information System (INIS)

    Diaz, Rodolfo E.; Scherbatko, Igor

    2005-01-01

    In [Electromagnetics 23 (2003) 187], a technique for injecting perfect plane waves into finite regions of space in FDTD was reported. The essence of the technique, called Field Teleportation, is to invoke the principle of equivalent sources using FDTDs discrete definition of the curl to copy any field propagating in one FDTD domain to a finite region of another domain. In this paper, we apply this technique of Field Teleportation to the original domain itself to create a transparent boundary across which any outward traveling FDTD field produces an exact negative copy of itself. When this copied field is teleported one cell ahead and one cell forward in time it causes significant self-cancelation of the original field. Illustrative experiments in two-dimensions show that a two-layer (10-cell thick) multi-stack Radiation Boundary Condition (RBC) with a simplest Huygens's termination readily yields reflection coefficients of the order of -80 dB up to grazing incidence for all the fields radiated by a harmonic point source (λ = 30 cells) in free space located 20 cells away from the boundary. Similarly low levels of artificial reflection are demonstrated for a case in which the RBC cuts through five different magnetodielectric materials

  6. Complete conformal field theory solution of a chiral six-point correlation function

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Kleban, Peter

    2011-01-01

    Using conformal field theory, we perform a complete analysis of the chiral six-point correlation function C(z)= 1,2 φ 1,2 Φ 1/2,0 (z, z-bar )φ 1,2 φ 1,2 >, with the four φ 1,2 operators at the corners of an arbitrary rectangle, and the point z = x + iy in the interior. We calculate this for arbitrary central charge (equivalently, SLE parameter κ > 0). C is of physical interest because for percolation (κ = 6) and many other two-dimensional critical points, it specifies the density at z of critical clusters conditioned to touch either or both vertical ends of the rectangle, with these ends 'wired', i.e. constrained to be in a single cluster, and the horizontal ends free. The correlation function may be written as the product of an algebraic prefactor f and a conformal block G, where f = f(x, y, m), with m a cross-ratio specified by the corners (m determines the aspect ratio of the rectangle). By appropriate choice of f and using coordinates that respect the symmetry of the problem, the conformal block G is found to be independent of either y or x, and given by an Appell function.

  7. Lie algebra of conformal Killing–Yano forms

    International Nuclear Information System (INIS)

    Ertem, Ümit

    2016-01-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases. (paper)

  8. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.

    Science.gov (United States)

    Watts, Charles R; Gregory, Andrew; Frisbie, Cole; Lovas, Sándor

    2018-03-01

    The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1-40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER-ff99sb-ILDN, AMBER-ff99sb*-ILDN, AMBER-ff99sb-NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER-ff99sb-ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α-helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER-ff99sb-NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER-ff99sb-NMR force field, the others tended to under estimate the expected amount of β-sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER-ff99sb-NMR, reproduce a theoretically expected β-sheet-turn-β-sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C-terminal hydrophobic cores from residues 17-21 and 30-36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different. © 2017 Wiley Periodicals, Inc.

  9. Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory

    International Nuclear Information System (INIS)

    Pons, Josep M.

    2011-01-01

    In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.

  10. Infinite additional symmetries in the two-dimensional conformal quantum field theory

    International Nuclear Information System (INIS)

    Apikyan, S.A.

    1987-01-01

    Additional symmetries in the two-dimensional conformal field theory, generated by currents (2,3/2,5/2) and (2,3/2,3) have been studied. It has been shown that algebra (2,3/2,5/2) is the direct product of algebras (2,3/2) and (2,5/2), and algebra (2,3/2,3) is the direct product of algebras (2,3/2) and (2,3). Associative algebra, formed by multicomponent symmetry generators of spin 3 for SO(3) has also been found

  11. The gluonic field of a heavy quark in conformal field theories at strong coupling

    Science.gov (United States)

    Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2011-10-01

    We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in mathcal{N} = 4 super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator Tr[ F 2 + …] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine (Tr[ F 2 + …])when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3 + 1 dimensions with a dual gravity formulation.

  12. Comprehensive irradiation of head and neck cancer using conformal multisegmental fields: assessment of target coverage and noninvolved tissue sparing

    International Nuclear Information System (INIS)

    Eisbruch, Avraham; Marsh, Lon H.; Martel, Mary K.; Ship, Jonathan A.; Haken, Randall ten; Pu, Anthony T.; Fraass, Benedick A.; Lichter, Allen S.

    1998-01-01

    Purpose: Conformal treatment using static multisegmental intensity modulation was developed for patients requiring comprehensive irradiation for head and neck cancer. The major aim is sparing major salivary gland function while adequately treating the targets. To assess the adequacy of the conformal plans regarding target coverage and dose homogeneity, they were compared with standard irradiation plans. Methods and Materials: Fifteen patients with stage III/IV head and neck cancer requiring comprehensive, bilateral neck irradiation participated in this study. CT-based treatment plans included five to six nonopposed fields, each having two to four in-field segments. Fields and segments were devised using beam's eye views of the planning target volumes (PTVs), noninvolved organs, and isodose surfaces, to achieve homogeneous dose distribution that encompassed the targets and spared major salivary gland tissue. For comparison, standard three-field radiation plans were devised retrospectively for each patient, with the same CT-derived targets used for the clinical (conformal) plans. Saliva flow rates from each major salivary gland were measured before and periodically after treatment. Results: On average, the minimal dose to the primary PTVs in the conformal plans [95.2% of the prescribed dose, standard deviation (SD) 4%] was higher than in the standard plans (91%, SD 7%; p = 0.02), and target volumes receiving <95% or <90% of the prescribed dose were smaller in the conformal plans (p = 0.004 and 0.02, respectively). Similar advantages of the conformal plans compared to standard plans were found in ipsilateral jugular nodes PTV coverage. The reason for underdosing in the standard treatment plans was primarily failure of electron beams to fully encompass targets. No significant differences were found in contralateral jugular or posterior neck nodes coverage. The minimal dose to the retropharyngeal nodes was higher in the standard plans. However, all conformal plans

  13. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2008-10-14

    The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement

  14. Truncated conformal space approach to scaling Lee-Yang model

    International Nuclear Information System (INIS)

    Yurov, V.P.; Zamolodchikov, Al.B.

    1989-01-01

    A numerical approach to 2D relativstic field theories is suggested. Considering a field theory model as an ultraviolet conformal field theory perturbed by suitable relevant scalar operator one studies it in finite volume (on a circle). The perturbed Hamiltonian acts in the conformal field theory space of states and its matrix elements can be extracted from the conformal field theory. Truncation of the space at reasonable level results in a finite dimensional problem for numerical analyses. The nonunitary field theory with the ultraviolet region controlled by the minimal conformal theory μ(2/5) is studied in detail. 9 refs.; 17 figs

  15. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  16. Superintegrability of d-dimensional conformal blocks

    International Nuclear Information System (INIS)

    Isachenkov, Mikhail

    2016-02-01

    We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.

  17. Superintegrability of d-dimensional conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Isachenkov, Mikhail [Weizmann Institute of Science, Rehovot (Israel). Dept. of Particle Physics and Astronomy; Schomerus, Volker [DESY Theory Group, Hamburg (Germany)

    2016-02-15

    We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.

  18. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Khoury, Justin

    2012-01-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves

  19. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna.

    Science.gov (United States)

    Ku, Hui-Yu; Sun, Y Henry

    2017-07-01

    Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields.

  20. Superconducting-normal phase boundary of quasicrystalline arrays in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.; Fradkin, E.; Chang, S.

    1987-01-01

    We study the effect of frustration, induced by a mangnetic field, on the superconducting diamagnetic properties of two-dimensional quasicrystalline arrays. In particular, we calculate the superconducting-normal phase boundary, T/sub c/(H), for several geometries with quasicrystalline order. The agreement between our theoretically obtained phase boundaries and the experimentally obtained ones is very good. We also propose a new way of analytically analyzing the overall and the fine structure of T/sub c/(H) in terms of short- and long-range correlations among tiles

  1. Polyakov's quantized string with boundary terms

    International Nuclear Information System (INIS)

    Durhuus, B.; Olesen, P.; Petersen, J.L.

    1982-01-01

    We compute the boundary terms due to the conformal anomaly which are needed in Polyakov's method of calculating averages of functionals defined on surfaces. The method we use is due to Seeley, who found recursive relations yielding the boundary terms. We solve these relations for a general second-order elliptic differential operator. This solution is then applied to Polyakov's problem. (orig.)

  2. Super-Galilean conformal algebra in AdS/CFT

    International Nuclear Information System (INIS)

    Sakaguchi, Makoto

    2010-01-01

    Galilean conformal algebra (GCA) is an Inoenue-Wigner (IW) contraction of a conformal algebra, while Newton-Hooke string algebra is an IW contraction of an Anti-de Sitter (AdS) algebra, which is the isometry of an AdS space. It is shown that the GCA is a boundary realization of the Newton-Hooke string algebra in the bulk AdS. The string lies along the direction transverse to the boundary, and the worldsheet is AdS 2 . The one-dimensional conformal symmetry so(2,1) and rotational symmetry so(d) contained in the GCA are realized as the symmetry on the AdS 2 string worldsheet and rotational symmetry in the space transverse to the AdS 2 in AdS d+2 , respectively. It follows from this correspondence that 32 supersymmetric GCAs can be derived as IW contractions of superconformal algebras, psu(2,2|4), osp(8|4), and osp(8*|4). We also derive less supersymmetric GCAs from su(2,2|2), osp(4|4), osp(2|4), and osp(8*|2).

  3. Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications

    International Nuclear Information System (INIS)

    Cardy, John

    2013-01-01

    We describe an approach to logarithmic conformal field theories as limits of sequences of ordinary conformal field theories with varying central charge c. Logarithmic behaviour arises from degeneracies in the spectrum of scaling dimensions at certain values of c. The theories we consider are all invariant under some internal symmetry group, and logarithmic behaviour occurs when the decomposition of the physical observables into irreducible operators becomes singular. Examples considered are quenched random magnets using the replica formalism, self-avoiding walks as the n → 0 limit of the O(n) model, and percolation as the limit Q → 1 of the Potts model. In these cases we identify logarithmic operators and pay particular attention to how the c → 0 paradox is resolved and how the b-parameter is evaluated. We also show how this approach gives information on logarithmic behaviour in the extended Ising model, uniform spanning trees and the O( − 2) model. Most of our results apply to general dimensionality. We also consider massive logarithmic theories and, in two dimensions, derive sum rules for the effective central charge and the b-parameter. (review)

  4. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping; Shi, Yifei; Jiang, Lijun; Bagci, Hakan

    2014-01-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer's shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  5. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  6. Conformal field theory and functions of hypergeometric type

    International Nuclear Information System (INIS)

    Isachenkov, Mikhail

    2016-03-01

    Conformal field theory provides a universal description of various phenomena in natural sciences. Its development, swift and successful, belongs to the major highlights of theoretical physics of the late XX century. In contrast, advances of the theory of hypergeometric functions always assumed a slower pace throughout the centuries of its existence. Functional identities studied by this mathematical discipline are fascinating both in their complexity and beauty. This thesis investigates the interrelation of two subjects through a direct analysis of three CFT problems: two-point functions of the 2d strange metal CFT, three-point functions of primaries of the non-rational Toda CFT and kinematical parts of Mellin amplitudes for scalar four-point functions in general dimensions. We flash out various generalizations of hypergeometric functions as a natural mathematical language for two of these problems. Several new methods inspired by extensions of classical results on hypergeometric functions, are presented.

  7. Conformal field theory and functions of hypergeometric type

    Energy Technology Data Exchange (ETDEWEB)

    Isachenkov, Mikhail

    2016-03-15

    Conformal field theory provides a universal description of various phenomena in natural sciences. Its development, swift and successful, belongs to the major highlights of theoretical physics of the late XX century. In contrast, advances of the theory of hypergeometric functions always assumed a slower pace throughout the centuries of its existence. Functional identities studied by this mathematical discipline are fascinating both in their complexity and beauty. This thesis investigates the interrelation of two subjects through a direct analysis of three CFT problems: two-point functions of the 2d strange metal CFT, three-point functions of primaries of the non-rational Toda CFT and kinematical parts of Mellin amplitudes for scalar four-point functions in general dimensions. We flash out various generalizations of hypergeometric functions as a natural mathematical language for two of these problems. Several new methods inspired by extensions of classical results on hypergeometric functions, are presented.

  8. Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign

    Science.gov (United States)

    Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.

    2004-12-01

    A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.

  9. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  10. Field theories on conformally related space-times: Some global considerations

    International Nuclear Information System (INIS)

    Candelas, P.; Dowker, J.S.

    1979-01-01

    The nature of the vacua appearing in the relation between the vacuum expectation value of stress tensors in conformally flat spaces is clarified. The simple but essential point is that the relevant spaces should have conformally related global Cauchy surfaces. Some commonly occurring conformally flat space-times are divided into two families according to whether they are conformally equivalent to Minkowski space or to the Rindler wedge. Expressions, some new, are obtained for the vacuum expectation value of the stress tensor for a number of illustrative cases. It is noted that thermalization relates the Green's functions of these two families

  11. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories

    Science.gov (United States)

    Dong, Xi

    2016-06-01

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients: fb(n ) for traceless extrinsic curvature deformations and fc(n ) for Weyl tensor deformations. We provide the first calculation of the coefficient fb(n ) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture fb(n )=fc(n ), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  12. Boundary Fixed Points, Enhanced Gauge Symmetry and Singular Bundles on K3

    CERN Document Server

    Fuchs, J; Lerche, Wolfgang; Lütken, C A; Schweigert, C; Walcher, J

    2001-01-01

    We investigate certain fixed points in the boundary conformal field theory representation of type IIA D-branes on Gepner points of K3. They correspond geometrically to degenerate brane configurations, and physically lead to enhanced gauge symmetries on the world-volume. Non-abelian gauge groups arise if the stabilizer group of the fixed points is realized projectively, which is similar to D-branes on orbifolds with discrete torsion. Moreover, the fixed point boundary states can be resolved into several irreducible components. These correspond to bound states at threshold and can be viewed as (non-locally free) sub-sheaves of semi-stable sheaves. Thus, the BCFT fixed points appear to carry two-fold geometrical information: on the one hand they probe the boundary of the instanton moduli space on K3, on the other hand they probe discrete torsion in D-geometry.

  13. Plasmasheet boundary electric fields during substorms

    International Nuclear Information System (INIS)

    Pedersen, A.

    1985-01-01

    Electric field data from the ISEE-1 and GEOS-2 satellites have been studied during two substorms when ISEE-1 was in a favourable position in the magneto-tail and GEOS-2 was in the afternoon/evening sector of the geostationary orbit. Both electric field measurements were carried out with spherical double probes, separately by 73.5 m on ISEE-1, and 42 m on GEOS-2. In one case GEOS-2, in the afternoon sector, detected an increase of the dawn-to-dusk electric field during plasmasheet thinning and approximately 10 minutes prior to a substorm expansion. At the time of this expansion ISEE-1 was most likely near an X-line, on the Earthward side and detected Earthward antiE x antiB velocities, in excess of 500 km s -1 . In another example ISEE-1 was most likely near an X-line, on the tailward side, and observed tailward antiE x antiB velocities which were followed, 5-20 minutes later, by characteristic oscillating electric fields (time scales of 10s-30s) on GEOS-2 near 23 local time. Such signatures have on many occasions been connected with observations of westward travelling surges near the GEOS-2 conjugated area in Scandinavia. The ISEE-1 observations of large-dawn-to-dusk electric fields were concentrated to the outer boundary of the plasmasheet, and in the case of the westward travelling surge. GEOS-2 was most likely at the inner, Earthward edge of the plasmasheet. Time delays between ISEE-1 and GEOS-2 indicate a propagation velocity comparable to the antiE x antiB velocity

  14. Thermodynamics of de Sitter black holes with a conformally coupled scalar field

    International Nuclear Information System (INIS)

    Barlow, Anne-Marie; Doherty, Daniel; Winstanley, Elizabeth

    2005-01-01

    We study the thermodynamics of de Sitter black holes with a conformally coupled scalar field. The geometry is that of the lukewarm Reissner-Nordstroem-de Sitter black holes, with the event and cosmological horizons at the same temperature. This means that the region between the event and cosmological horizons can form a regular Euclidean instanton. The entropy is modified by the nonminimal coupling of the scalar field to the geometry, but can still be derived from the Euclidean action, provided suitable modifications are made to deal with the electrically charged case. We use the first law as derived from the isolated horizons formalism to compute the local horizon energies for the event and cosmological horizons

  15. From here to criticality: Renormalization group flow between two conformal field theories

    International Nuclear Information System (INIS)

    Leaf-Herrmann, W.A.

    1993-01-01

    Using non-perturbative techniques, we study the renormalization group trajectory between two conformal field theories. Specifically, we investigate a perturbation of the A 3 superconformal minimal model such that in the infrared limit the theory flows to the A 2 model. The correlation functions in the topological sector of the theory are computed numerically along the trajectory, and these results are compared to the expected asymptotic behavior. Excellent agreement is found, and the characteristic features of the infrared theory, including the central charge and the normalized operator product expansion coefficients, are obtained. We also review and discuss some aspects of the geometrical description of N=2 supersymmetric quantum field theories recently uncovered by Cecotti and Vafa. (orig.)

  16. Conformal Dimensions via Large Charge Expansion.

    Science.gov (United States)

    Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico

    2018-02-09

    We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.

  17. Boundary conditions for the gravitational field

    International Nuclear Information System (INIS)

    Winicour, Jeffrey

    2012-01-01

    A review of the treatment of boundaries in general relativity is presented with the emphasis on application to the formulations of Einstein's equations used in numerical relativity. At present, it is known how to treat boundaries in the harmonic formulation of Einstein's equations and a tetrad formulation of the Einstein-Bianchi system. However, a universal approach valid for other formulations is not in hand. In particular, there is no satisfactory boundary theory for the 3+1 formulations which have been highly successful in binary black hole simulation. I discuss the underlying problems that make the initial-boundary-value problem much more complicated than the Cauchy problem. I review the progress that has been made and the important open questions that remain. Science is a differential equation. Religion is a boundary condition. (Alan Turing, quoted in J D Barrow, 'Theories of Everything') (topical review)

  18. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    Science.gov (United States)

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters.

  19. On functional representations of the conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, Oliver J.

    2017-07-15

    Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations corresponding to dilatation and special conformal invariance. In a particular representation, the former corresponds to the canonical form of the exact renormalization group equation specialized to a fixed point whereas the latter is new. This provides a concrete understanding of how conformal invariance is realized as a property of the Wilsonian effective action and the relationship to action-free formulations of conformal field theory. Subsequently, it is argued that the conformal Ward Identities serve to define a particular representation of the energy-momentum tensor. Consistency of this construction implies Polchinski's conditions for improving the energy-momentum tensor of a conformal field theory such that it is traceless. In the Wilsonian approach, the exactly marginal, redundant field which generates lines of physically equivalent fixed points is identified as the trace of the energy-momentum tensor. (orig.)

  20. A phase field study of strain energy effects on solute–grain boundary interactions

    International Nuclear Information System (INIS)

    Heo, Tae Wook; Bhattacharyya, Saswata; Chen Longqing

    2011-01-01

    We have studied strain-induced solute segregation at a grain boundary and the solute drag effect on boundary migration using a phase field model integrating grain boundary segregation and grain structure evolution. The elastic strain energy of a solid solution due to the atomic size mismatch and the coherency elastic strain energy caused by the inhomogeneity of the composition distribution are obtained using Khachaturyan’s microelasticity theory. Strain-induced grain boundary segregation at a static planar boundary is studied numerically and the equilibrium segregation composition profiles are validated using analytical solutions. We then systematically studied the effect of misfit strain on grain boundary migration with solute drag. Our theoretical analysis based on Cahn’s analytical theory shows that enhancement of the drag force with increasing atomic size mismatch stems from both an increase in grain boundary segregation due to the strain energy reduction and misfit strain relaxation near the grain boundary. The results were analyzed based on a theoretical analysis in terms of elastic and chemical drag forces. The optimum condition for solute diffusivity to maximize the drag force under a given driving force was identified.

  1. A note on the algebraic evaluation of correlators in local chiral conformal field theory

    International Nuclear Information System (INIS)

    Honecker, A.

    1992-09-01

    We comment on a program designed for the study of local chiral algebras and their representations in 2D conformal field theory. Based on the algebraic approach described by W. Nahm, this program efficiently calculates arbitrary n-point functions of these algebras. The program is designed such that calculations involving e.g. current algebras, W-algebras and N-Superconformal algebras can be performed. As a non-trivial application we construct an extension of the Virasoro algebra by two fields with spin four and six using the N=1-Super-Virasoro algebra. (orig.)

  2. Efficient CT simulation of the four-field technique for conformal radiotherapy of prostate carcinoma

    International Nuclear Information System (INIS)

    Valicenti, Richard K.; Waterman, Frank M.; Croce, Raymond J.; Corn, Benjamin; Suntharalingam, Nagalingam; Curran, Walter J.

    1997-01-01

    Purpose: Conformal radiotherapy of prostate carcinoma relies on contouring of individual CT slices for target and normal tissue localization. This process can be very time consuming. In the present report, we describe a method to more efficiently localize pelvic anatomy directly from digital reconstructed radiographs (DRRs). Materials and Methods: Ten patients with prostate carcinoma underwent CT simulation (the spiral mode at 3 mm separation) for conformal four-field 'box' radiotherapy. The bulbous urethra and bladder were opacified with iodinated contrast media. On lateral and anteroposterior DRRs, the volume of interest (VOI) was restricted to 1.0-1.5 cm tissue thickness to optimize digital radiograph reconstruction of the prostate and seminal vesicles. By removing unessential voxel elements, this method provided direct visualization of those structures. For comparison, the targets of each patient were also obtained by contouring CT axial slices. Results: The method was successfully performed if the target structures were readily visualized and geometrically corresponded to those generated by contouring axial images. The targets in 9 of 10 patients were reliable representations of the CT-contoured volumes. One patient had 18 mm variation due to the lack of bladder opacification. Using VOIs to generate thin tissue DRRs, the time required for target and normal tissue localization was on the average less than 5 min. Conclusion: In CT simulation of the four-field irradiation technique for prostate carcinoma, thin-tissue DRRs allowed for efficient and accurate target localization without requiring individual axial image contouring. This method may facilitate positioning of the beam isocenter and provide reliable conformal radiotherapy

  3. Einstein gravity 3-point functions from conformal field theory

    Science.gov (United States)

    Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    2017-12-01

    We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.

  4. Geometric accuracy of field alignment in fractionated stereotactic conformal radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Kortmann, Rolf D.; Becker, Gerd; Perelmouter, Jury; Buchgeister, Markus; Meisner, Christoph; Bamberg, Michael

    1999-01-01

    Purpose: To assess the accuracy of field alignment in patients undergoing three-dimensional (3D) conformal radiotherapy of brain tumors, and to evaluate the impact on the definition of planning target volume and control procedures. Methods and Materials: Geometric accuracy was analyzed in 20 patients undergoing fractionated stereotactic conformal radiotherapy for brain tumors. Rigid head fixation was achieved by using cast material. Transfer of stereotactic coordinates was performed by an external positioning device. The accuracy during treatment planning was quantitatively assessed by using repeated computed tomography (CT) examinations in treatment position (reproducibility of isocenter). Linear discrepancies were measured between treatment plan and CT examination. In addition, for each patient, a series of 20 verifications were taken in orthogonal projections. Linear discrepancies were measured between first and all subsequent verifications (accuracy during treatment delivery). Results: For the total group of patients, the distribution of deviations during treatment setup showed mean values between -0.3-1.2 mm, with standard deviations (SD) of 1.3-2.0 mm. During treatment delivery, the distribution of deviations revealed mean values between 0.7-0.8 mm, with SDs of 0.5-0.6 mm, respectively. For all patients, deviations for the transition to the treatment machine were similar to deviations during subsequent treatment delivery, with 95% of all absolute deviations between less than 2.8 and 4.6 mm. Conclusion: Random fluctuations of field displacements during treatment planning and delivery prevail. Therefore, our quantitative data should be considered when prescribing the safety margins of the planning target volume. Repeated CT examination are useful to detect operator errors and large random or systematic deviations before start of treatment. Control procedures during treatment delivery appear to be of limited importance. In addition, our findings should help to

  5. Dipole-magnet field models based on a conformal map

    Directory of Open Access Journals (Sweden)

    P. L. Walstrom

    2012-10-01

    Full Text Available In general, generation of charged-particle transfer maps for conventional iron-pole-piece dipole magnets to third and higher order requires a model for the midplane field profile and its transverse derivatives (soft-edge model to high order and numerical integration of map coefficients. An exact treatment of the problem for a particular magnet requires use of measured magnetic data. However, in initial design of beam transport systems, users of charged-particle optics codes generally rely on magnet models built into the codes. Indeed, if maps to third order are adequate for the problem, an approximate analytic field model together with numerical map coefficient integration can capture the important features of the transfer map. The model described in this paper is based on the fact that, except at very large distances from the magnet, the magnetic field for parallel pole-face magnets with constant pole gap height and wide pole faces is basically two dimensional (2D. The field for all space outside of the pole pieces is given by a single (complex analytic expression and includes a parameter that controls the rate of falloff of the fringe field. Since the field function is analytic in the complex plane outside of the pole pieces, it satisfies two basic requirements of a field model for higher-order map codes: it is infinitely differentiable at the midplane and also a solution of the Laplace equation. It is apparently the only simple model available that combines an exponential approach to the central field with an inverse cubic falloff of field at large distances from the magnet in a single expression. The model is not intended for detailed fitting of magnetic field data, but for use in numerical map-generating codes for studying the effect of extended fringe fields on higher-order transfer maps. It is based on conformally mapping the area between the pole pieces to the upper half plane, and placing current filaments on the pole faces. An

  6. Elementary introduction to conformal invariance

    International Nuclear Information System (INIS)

    Grandati, Y.

    1992-01-01

    These notes constitute an elementary introduction to the concept of conformal invariance and its applications to the study of bidimensional critical phenomena. The aim is to give an access as pedestrian as possible to this vast subject. After a brief account of the general properties of conformal transformation in D dimensions, we study more specifically the case D = 2. The center of the discussion is then the consequences of the action of this symmetry group on bidimensional field theories, and in particular the links between the representations of the Virasoro algebra and the structure of the correlation functions of conformal field theories. Finally after showing how the Ising model reduces to a Majorana fermionic field theory, we see how the general formalism previously discussed can be applied to the Ising case at the critical point. (orig.)

  7. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  8. Radiation from a moving mirror in two dimensional space-time: conformal anomaly

    International Nuclear Information System (INIS)

    Fulling, S.A.; Davies, P.C.W.

    1976-01-01

    The energy-momentum tensor is calculated in the two dimensional quantum theory of a massless scalar field influenced by the motion of a perfectly reflecting boundary (mirror). The simple model system evidently can provide insight into more sophisticated processes, such as particle production in cosmological models and exploding black holes. In spite of the conformally static nature of the problem, the vacuum expectation value of the tensor for an arbitrary mirror trajectory exhibits a non-vanishing radiation flux (which may be readily computed). The expectation value of the instantaneous energy flux is negative when the proper acceleration of the mirror is increasing, but the total energy radiated during a bounded mirror motion is positive. A uniformly accelerating mirror does not radiate; however, the quantization does not coincide with the treatment of that system as a 'static universe'. The calculation of the expectation value requires a regularization procedure of covariant separation of points (in products of field operators) along time-like geodesics; more naive methods do not yield the same answers. A striking example involving two mirrors clarifies the significance of the conformal anomaly. (author)

  9. Effects of low-frequency magnetic field on grain boundary segregation in horizontal direct chill casting of 2024 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Effects of low frequency electromagnetic field on grain boundary segregation in horizontal direct chill (HDC)casting process was investigated experimentally. The grain boundary segregation and microstructures of the ingots,which manufactured by conventional HDC casting and low frequency electromagnetic HDC casting were compared.Results show that low frequency electromagnetic field significantly refines the microstructures and reduces grain boundary segregation. Decreasing electromagnetic frequency or increasing electromagnetic intensity has great effects in reducing grain boundary segregation. Meanwhile, the governing mechanisms were discussed.

  10. The intercomparison of the dose distributions between conformation techniques with pions and photons

    International Nuclear Information System (INIS)

    Karasawa, K.; Nakagawa, K.; Akanuma, A.

    1990-01-01

    To compare conformation radiation treatment with pions vs photons, dose volume histograms (DVH) to the critical organs, including the spinal cord, kidney, and intestine, were examined in a patient with retroperitoneal soft tissue sarcoma. For photon conformation treatment, the following techniques were used: 360 degree rotation conformation technique (photon conformation), 4 fixed field technique (photon 4-field), and 2-axis conformation technique (photon 2-axial conformation). According to the DVH reduction method, complication probability was estimated. The concave portion of the target was conformed by pion conformation treatment, but not by photon conformation treatment. Pion conformation for the intestine showed the best DVH, whereas photon 4-field technique showed the worst DVH. For the kidney, pion conformation showed better DVH as compared with any other photon conformation treatment technique. In the spinal cord, photon 2-axial conformation was far superior, followed by pion conformation and then photon conformation and 4-field technique. A 2-axial technique showed a bigger inhomogeneity inside the target volume which is critical in curative treatment. TD 50 was 72 Gy for pion conformation, 53 Gy for photon conformation, 51 Gy for photon 4-field, and 68 Gy for photon 2-axial conformation. Complication probabilities for these conformation techniques at 60 Gy were 3%, 85%, 97%, and 9%. In view of tumor control probabilities, pion seems to have the biggest therapeutic ratio among these techniques. (N.K.)

  11. Fast words boundaries localization in text fields for low quality document images

    Science.gov (United States)

    Ilin, Dmitry; Novikov, Dmitriy; Polevoy, Dmitry; Nikolaev, Dmitry

    2018-04-01

    The paper examines the problem of word boundaries precise localization in document text zones. Document processing on a mobile device consists of document localization, perspective correction, localization of individual fields, finding words in separate zones, segmentation and recognition. While capturing an image with a mobile digital camera under uncontrolled capturing conditions, digital noise, perspective distortions or glares may occur. Further document processing gets complicated because of its specifics: layout elements, complex background, static text, document security elements, variety of text fonts. However, the problem of word boundaries localization has to be solved at runtime on mobile CPU with limited computing capabilities under specified restrictions. At the moment, there are several groups of methods optimized for different conditions. Methods for the scanned printed text are quick but limited only for images of high quality. Methods for text in the wild have an excessively high computational complexity, thus, are hardly suitable for running on mobile devices as part of the mobile document recognition system. The method presented in this paper solves a more specialized problem than the task of finding text on natural images. It uses local features, a sliding window and a lightweight neural network in order to achieve an optimal algorithm speed-precision ratio. The duration of the algorithm is 12 ms per field running on an ARM processor of a mobile device. The error rate for boundaries localization on a test sample of 8000 fields is 0.3

  12. Conformal techniques for OPE in asymptotically free quantum field theory

    International Nuclear Information System (INIS)

    Craigie, N.S.; Dobrev, V.K.

    1982-06-01

    We discuss the relationship between the short-distance behaviour of vertex functions and conformal invariance in asymptotically free theories. We show how conformal group techniques can be used to derive spectral representations of wave functions and vertex functions in QCD. (author)

  13. Global operator expansions in conformally invariant relativistic quantum field theory

    International Nuclear Information System (INIS)

    Schoer, B.; Swieca, J.A.; Voelkel, A.H.

    1974-01-01

    A global conformal operator expansions in the Minkowski region in several models and their formulation in the general theory is presented. Whereas the vacuum expansions are termwise manisfestly conformal invariant, the expansions away from the vacuum do not share this property

  14. The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse

    Energy Technology Data Exchange (ETDEWEB)

    Graf von der Pahlen, J.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-01-15

    Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that

  15. Gauge fixing problem in the conformal QED

    International Nuclear Information System (INIS)

    Ichinose, Shoichi

    1986-01-01

    The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)

  16. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    KAUST Repository

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  17. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  18. Confinement dynamics and boundary condition studies in the Reversed Field Pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Ingraham, J.C.; Moses, R.W. Jr.

    1988-01-01

    The study of confinement dynamics, including investigation of the boundary conditions required for plasma sustainment, are central to the development of the Reversed Field Pinch (RFP) concept. Recently, several insights into confinement have emerged from a detailed investigation RFP electron and ion dynamics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and coupled role in RFP stability, sustainment, and confinement. In this paper, we summarize the results of confinement studies on the ZT-40M experiment, and boundary condition studies on the Wisconsin non-circular RFP experiment. A brief description of the newly commissioned Madison Symmetric Torus (MST) is also presented. 28 refs., 3 figs

  19. A comparison of inverse boundary element method and near-field acoustical holography

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Hald, Jørgen; Saemann, E.-U.

    1999-01-01

    An inverse boundary element method (IBEM) is used to estimate the surface velocity of a rolling tyre from measurements of the near-field pressure. Subsequently, the sound pressure is calculated over a finite plane surface next to the tyre from the reconstructed velocity field on the tyre surface........ In order to verify the reconstruction process, part of the measurement data is used together with Near-Field Acoustical Holography (NAH). Estimated distributions of sound pressure and particle velocity over a plane surface obtained from the two methods are compared....

  20. Study of the conformal symmetry breaking in field theories in gravitational background using path integrals

    International Nuclear Information System (INIS)

    Souza Alves, Marcelo de.

    1990-03-01

    Some general aspects on field theories in curved space-time and a introduction to conformal symmetry are presented.The behavior of the physical systems under Weyl transformations is discussed. The quantization of such systems are performed through the functional integration method. The regularization in curved space-time is also discussed. An application of this analysis in String theories is made. 42 refs

  1. Conformity index: A review

    International Nuclear Information System (INIS)

    Feuvret, Loic; Noel, Georges; Mazeron, Jean-Jacques; Bey, Pierre

    2006-01-01

    We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear

  2. Conformal (WEYL) invariance and Higgs mechanism

    International Nuclear Information System (INIS)

    Zhao Shucheng.

    1991-10-01

    A massive Yang-Mills field theory with conformal invariance and gauge invariance is proposed. It involves gravitational and various gauge interactions, in which all the mass terms appear as a uniform form of interaction m(x) KΦ(x). When the conformal symmetry is broken spontaneously and gravitation is ignored, the Higgs field emerges naturally, where the imaginary mass μ can be described as a background curvature. (author). 7 refs

  3. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2016-09-12

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  4. Conformal symmetry and string theories

    International Nuclear Information System (INIS)

    Kumar, A.

    1987-01-01

    This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories

  5. Relative entropy of excited states in conformal field theories of arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Theoretische Natuurkunde, Vrije Universiteit Brussels and International Solvay Institutes,Pleinlaan 2, Brussels, B-1050 (Belgium); David Rittenhouse Laboratory, University of Pennsylvania,Philadelphia, PA 19104 (United States); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2017-02-10

    Extending our previous work, we study the relative entropy between the reduced density matrices obtained from globally excited states in conformal field theories of arbitrary dimensions. We find a general formula in the small subsystem size limit. When one of the states is the vacuum of the CFT, our result matches with the holographic entanglement entropy computations in the corresponding bulk geometries, including AdS black branes. We also discuss the first asymmetric part of the relative entropy and comment on some implications of the results on the distinguishability of black hole microstates in AdS/CFT.

  6. Conformal superalgebras via tractor calculus

    Science.gov (United States)

    Lischewski, Andree

    2015-01-01

    We use the manifestly conformally invariant description of a Lorentzian conformal structure in terms of a parabolic Cartan geometry in order to introduce a superalgebra structure on the space of twistor spinors and normal conformal vector fields formulated in purely algebraic terms on parallel sections in tractor bundles. Via a fixed metric in the conformal class, one reproduces a conformal superalgebra structure that has been considered in the literature before. The tractor approach, however, makes clear that the failure of this object to be a Lie superalgebra in certain cases is due to purely algebraic identities on the spinor module and to special properties of the conformal holonomy representation. Moreover, it naturally generalizes to higher signatures. This yields new formulas for constructing new twistor spinors and higher order normal conformal Killing forms out of existing ones, generalizing the well-known spinorial Lie derivative. Moreover, we derive restrictions on the possible dimension of the space of twistor spinors in any metric signature.

  7. Black Hole Monodromy and Conformal Field Theory

    NARCIS (Netherlands)

    Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J.

    2013-01-01

    The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event

  8. On the conformal transformations in the massless Thirring model

    International Nuclear Information System (INIS)

    Hadjiivanov, L.K.; Mikhov, S.G.; Stoyanov, D.T.

    1977-01-01

    On the basis of solutions for the massless scalar field in the two dimensional space-time the fields satisfying the renormalized Thirring equation are constructed. Both infinitesimal and global transformations with respect to the two-dimensional conformal group for these fields are obtained. The latter do not coincide with the standard ones. The renormalized Thirring equation is proved to be covariant under infinitesimal conformal group transformations as well as under the global transformations belonging to the universal covering of the conformal group

  9. Universal spectrum of 2d conformal field theory in the large c limit

    OpenAIRE

    Thomas HartmanKavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, U.S.A.; Christoph A. Keller(NHETC, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019, U.S.A.); Bogdan Stoica(Walter Burke Institute for Theoretical Physics, California Institute of Technology, 452-48, Pasadena, CA 91125, U.S.A.)

    2014-01-01

    Two-dimensional conformal field theories exhibit a universal free energy in the high temperature limit $T \\to \\infty$, and a universal spectrum in the Cardy regime, $\\Delta \\to \\infty$. We show that a much stronger form of universality holds in theories with a large central charge $c$ and a sparse light spectrum. In these theories, the free energy is universal at all values of the temperature, and the microscopic spectrum matches the Cardy entropy for all $\\Delta \\geq c/6$. The same is true o...

  10. Non-singular string-cosmologies from exact conformal field theories

    International Nuclear Information System (INIS)

    Vega, H.J. de; Larsen, A.L.; Sanchez, N.

    2001-01-01

    Non-singular two and three dimensional string cosmologies are constructed using the exact conformal field theories corresponding to SO(2,1)/SO(1,1) and SO(2,2)/SO(2,1). All semi-classical curvature singularities are canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge. However, considering different patches of the global manifolds, allows the construction of non-singular space-times with cosmological interpretation. In both two and three dimensions, we construct non-singular oscillating cosmologies, non-singular expanding and inflationary cosmologies including a de Sitter (exponential) stage with positive scalar curvature as well as non-singular contracting and deflationary cosmologies. Similarities between the two and three dimensional cases suggest a general picture for higher dimensional coset cosmologies: Anisotropy seems to be a generic unavoidable feature, cosmological singularities are generically avoided and it is possible to construct non-singular cosmologies where some spatial dimensions are experiencing inflation while the others experience deflation

  11. Taming the conformal zoo

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    All known rational conformal field theories may be obtained from (2+1)-dimensional Chern-Simons gauge theories by appropriate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2+1)-dimensional Chern-Simons gauge theories. (orig.)

  12. Magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Ming-Wu, Fan [Institute of Atomic Energy, Peking (China)

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake.

  13. Effective field theory of thermal Casimir interactions between anisotropic particles.

    Science.gov (United States)

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  14. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

    Science.gov (United States)

    Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang

    2018-03-01

    We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.

  15. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    N=2 conformal supersymmetry is realized in harmonic superspace, its peculiarities are analyzed. The coordinate group and analytical prepotentials for N=2 conformal supergravity are found. A new version of the N=2 Einstein supergravity with infinite number of auxiliary fields is suggested. A hypermultiplet without central charges and constraints is used as a compensator

  16. Remarks on the boundary curve of a constant mean curvature topological disc

    DEFF Research Database (Denmark)

    Brander, David; Lopéz, Rafael

    2017-01-01

    We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature of the bo......We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature...

  17. Research in string theory and two dimensional conformal field theory: Progress report for period April 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    Friedan, D.H.; Martinec, E.J.; Shenker, S.H.

    1988-12-01

    The present contract supported work by Daniel H. Frieden, Emil J, Martinec and Stephen H. Shenker (principal investigators), Research Associates, and graduate students in theoretical physics at the University of Chicago. Research has been conducted in areas of string theory and two dimensional conformal and superconformal field theory. The ultimate objectives have been: to expose the fundamental structure of string theory so as to eventually make possible effective nonperturbative calculations and thus a comparison of sting theory with experiment, the complete classification of all two dimensional conformal and superconformal field theories thus giving a complete description of all classical ground states of string and of all possible two (and 1 + 1) dimensional critical phenomena, and the development of methods to describe, construct and solve two dimensional field theories. Work has also been done on skyrmion and strong interaction physics

  18. Two dimensional infinite conformal symmetry

    International Nuclear Information System (INIS)

    Mohanta, N.N.; Tripathy, K.C.

    1993-01-01

    The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs

  19. Boundary value problems of holomorphic vector functions in 1D QCs

    International Nuclear Information System (INIS)

    Gao Yang; Zhao Yingtao; Zhao Baosheng

    2007-01-01

    By means of the generalized Stroh formalism, two-dimensional (2D) problems of one-dimensional (1D) quasicrystals (QCs) elasticity are turned into the boundary value problems of holomorphic vector functions in a given region. If the conformal mapping from an ellipse to a circle is known, a general method for solving the boundary value problems of holomorphic vector functions can be presented. To illustrate its utility, by using the necessary and sufficient condition of boundary value problems of holomorphic vector functions, we consider two basic 2D problems in 1D QCs, that is, an elliptic hole and a rigid line inclusion subjected to uniform loading at infinity. For the crack problem, the intensity factors of phonon and phason fields are determined, and the physical sense of the results relative to phason and the difference between mechanical behaviors of the crack problem in crystals and QCs are figured out. Moreover, the same procedure can be used to deal with the elastic problems for 2D and three-dimensional (3D) QCs

  20. Conformal field theory construction for non-Abelian hierarchy wave functions

    Science.gov (United States)

    Tournois, Yoran; Hermanns, Maria

    2017-12-01

    The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.

  1. S-Adenosylmethionine conformations in solution and in protein complexes: Conformational influences of the sulfonium group

    DEFF Research Database (Denmark)

    Markham, George D.; Norrby, Per-Ola; Bock, Charles W.

    2002-01-01

    S-Adenosylmethionine (AdoMet) and other sulfonium ions play central roles in the metabolism of all organisms. The conformational preferences of AdoMet and two other biologically important sulfonium ions, S-methylmethionine and dimethylsulfonioproprionic acid, have been investigated by NMR...... and computational studies. Molecular mechanics parameters for the sulfonium center have been developed for the AMBER force field to permit analysis of NMR results and to enable comparison of the relative energies of the different conformations of AdoMet that have been found in crystal structures of complexes...... with proteins. S-Methylmethionine and S-dimethylsulfonioproprionate adopt a variety of conformations in aqueous solution; a conformation with an electrostatic interaction between the sulfonium sulfur and the carboxylate group is not noticeably favored, in contrast to the preferred conformation found by in vacuo...

  2. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    Science.gov (United States)

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Homothetic and conformal symmetries of solutions to Einstein's equations

    International Nuclear Information System (INIS)

    Eardley, D.; Isenberg, J.; Marsden, J.; Moncrief, V.; Yale Univ., New Haven, CT

    1986-01-01

    We present several results about the nonexistence of solutions of Einstein's equations with homoethetic or conformal symmetry. We show that the only spatially compact, globally hyperbolic spacetimes admitting a hypersurface of constant mean extrinsic curvature, and also admitting an infinitesimal proper homothetic symmetry, are everywhere locally flat; this assumes that the matter fields either obey certain energy conditions, or are the Yang-Mills or massless Klein-Gordon fields. We find that the only vacuum solutions admitting an infinitesimal proper conformal symmetry are everywhere locally flat spacetimes and certain plane wave solutions. We show that if the dominant energy condition is assumed, then Minkowski spacetime is the only asymptotically flat solution which has an infinitesimal conformal symmetry that is asymptotic to a dilation. In other words, with the exceptions cited, homothetic or conformal Killing fields are in fact Killing in spatially compact or asymptotically flat spacetimes. In the conformal procedure for solving the initial value problem, we show that data with infinitesimal conformal symmetry evolves to a spacetime with full isometry. (orig.)

  4. Sine-Gordon quantum field theory on the half-line with quantum boundary degrees of freedom

    International Nuclear Information System (INIS)

    Baseilhac, P.; Koizumi, K.

    2003-01-01

    The sine-Gordon model on the half-line with a dynamical boundary introduced by Delius and one of the authors is considered at quantum level. Classical boundary conditions associated with classical integrability are shown to be preserved at quantum level too. Non-local conserved charges are constructed explicitly in terms of the field and boundary operators. We solve the intertwining equation associated with a certain coideal subalgebra of U q (sl 2 -bar) generated by these non-local charges. The corresponding solution is shown to satisfy quantum boundary Yang-Baxter equations. Up to an exact relation between the quantization length of the boundary quantum mechanical system and the sine-Gordon coupling constant, we conjecture the soliton/antisoliton reflection matrix and bound states reflection matrices. The structure of the boundary state is then considered, and shown to be divided in two sectors. Also, depending on the sine-Gordon coupling constant a finite set of boundary bound states are identified. Taking the analytic continuation of the coupling, the corresponding boundary sinh-Gordon model is briefly discussed. In particular, the particle reflection factor enjoys weak-strong coupling duality

  5. Velocity Induced by a Plane Uniform Vortex Having the Schwarz Function of Its Boundary with Two Simple Poles

    Directory of Open Access Journals (Sweden)

    G. Riccardi

    2008-01-01

    Full Text Available The velocity induced by a plane, uniform vortex is investigated through the use of an integral relation between Schwarz function of the vortex boundary and conjugate of the velocity. The analysis is restricted to a certain class of vortices, the boundaries of which are described through conformal maps onto the unit circle and the corresponding Schwarz functions possess two poles in the plane of the circle. The dependence of the velocity field on the vortex shape is investigated by comparing velocity and streamfunction with the ones of the equivalent Rankine vortex (which has the same vorticity, area, and center of vorticity. By changing the parameters of the Schwarz function (poles and corresponding residues, rather complicated vortex shapes can be easily analyzed, some of them mimicing an incipient filamentation of the vortex boundary.

  6. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.

    Science.gov (United States)

    Langley, Robin S; Cotoni, Vincent

    2010-04-01

    Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

  7. Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity

    Science.gov (United States)

    Veraguth, Olivier J.; Wang, Charles H.-T.

    2017-10-01

    Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field.

  8. Remote Sensing of the Reconnection Electric Field From In Situ Multipoint Observations of the Separatrix Boundary

    Science.gov (United States)

    Nakamura, T. K. M.; Nakamura, R.; Varsani, A.; Genestreti, K. J.; Baumjohann, W.; Liu, Y.-H.

    2018-05-01

    A remote sensing technique to infer the local reconnection electric field based on in situ multipoint spacecraft observation at the reconnection separatrix is proposed. In this technique, the increment of the reconnected magnetic flux is estimated by integrating the in-plane magnetic field during the sequential observation of the separatrix boundary by multipoint measurements. We tested this technique by applying it to virtual observations in a two-dimensional fully kinetic particle-in-cell simulation of magnetic reconnection without a guide field and confirmed that the estimated reconnection electric field indeed agrees well with the exact value computed at the X-line. We then applied this technique to an event observed by the Magnetospheric Multiscale mission when crossing an energetic plasma sheet boundary layer during an intense substorm. The estimated reconnection electric field for this event is nearly 1 order of magnitude higher than a typical value of magnetotail reconnection.

  9. Divergence theorem for symmetric (0,2)-tensor fields on a semi-Riemannian manifold with boundary

    International Nuclear Information System (INIS)

    Ezin, J.P.; Mouhamadou Hassirou; Tossa, J.

    2005-08-01

    We prove in this paper a divergence theorem for symmetric (0,2)-tensors on a semi-Riemannian manifold with boundary. As a consequence we establish the complete divergence theorem on a semi-Riemannian manifold with any kinds of smooth boundaries. This result contains the previous attempts to write this theorem on a semi-Riemannian manifold as Unal results. A vanishing theorem for gradient timelike Killing vector fields on Einstein semi-Riemannian manifolds is obtained. As a tool, an induced volume form is defined for a degenerate boundary by using a star like operator that we define on degenerate submanifolds. (author)

  10. Geometric decomposition of the conformation tensor in viscoelastic turbulence

    Science.gov (United States)

    Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.

    2018-05-01

    This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.

  11. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    International Nuclear Information System (INIS)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen

    2016-01-01

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm 2 beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm 2 field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  12. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen [Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Calgary, AB (Canada)

    2016-08-15

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm{sup 2} beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm{sup 2} field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  13. Grain boundary characteristics and texture formation in a medium carbon steel during its austenitic decomposition in a high magnetic field

    International Nuclear Information System (INIS)

    Zhang, Y.D.; Esling, C.; Lecomte, J.S.; He, C.S.; Zhao, X.; Zuo, L.

    2005-01-01

    A 12-T magnetic field has been applied to a medium plain carbon steel during the diffusional decomposition of austenite and the effect of a high magnetic field on the distribution of misorientation angles, grain boundary characteristics and texture formation in the ferrite produced has been investigated. The results show that a high magnetic field can cause a considerable decrease in the frequency of low-angle misorientations and an increase in the occurrence of low Σ coincidence boundaries, in particular the Σ3 of ferrite. This may be attributed to the elevation in the transformation temperature caused by the magnetic field and, therefore, the reduction of the transformation stress. The wider temperature range for grain growth offers longer time to the less mobile Σ boundaries to enlarge their areas. Moreover, the magnetic field can enhance the transverse field-direction fiber ( parallel TFD). It can be assumed that the effects of the field were caused by the dipolar interaction between the magnetic moments of Fe atoms

  14. The quantum-field renormalization group in the problem of a growing phase boundary

    International Nuclear Information System (INIS)

    Antonov, N.V.; Vasil'ev, A.N.

    1995-01-01

    Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik's assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants (open-quotes chargeclose quotes). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundary and time, δ h and δ t , which satisfy the exact relationship 2 δ h = δ t + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab

  15. Rapid roll inflation with conformal coupling

    International Nuclear Information System (INIS)

    Kofman, Lev; Mukohyama, Shinji

    2008-01-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1-100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S 3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities

  16. Rapid roll inflation with conformal coupling

    Science.gov (United States)

    Kofman, Lev; Mukohyama, Shinji

    2008-02-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  17. Fermionic field perturbations of a three-dimensional Lifshitz black hole in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A. [Facultad de Ingenieria y Ciencias, Universidad Diego Portales, Santiago (Chile); Vasquez, Yerko; Villalobos, Ruth Noemi [Universidad de La Serena, Departamento de Fisica y Astronomia, Facultad de Ciencias, La Serena (Chile)

    2017-09-15

    We study the propagation of massless fermionic fields in the background of a three-dimensional Lifshitz black hole, which is a solution of conformal gravity. The black-hole solution is characterized by a vanishing dynamical exponent. Then we compute analytically the quasinormal modes, the area spectrum, and the absorption cross section for fermionic fields. The analysis of the quasinormal modes shows that the fermionic perturbations are stable in this background. The area and entropy spectrum are evenly spaced. In the low frequency limit, it is observed that there is a range of values of the angular momentum of the mode that contributes to the absorption cross section, whereas it vanishes in the high frequency limit. In addition, by a suitable change of variables a gravitational soliton can also be obtained and the stability of the quasinormal modes are studied and ensured. (orig.)

  18. Conformal correlation functions in the Brownian loop soup

    Science.gov (United States)

    Camia, Federico; Gandolfi, Alberto; Kleban, Matthew

    2016-01-01

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  19. Conformal correlation functions in the Brownian loop soup

    Energy Technology Data Exchange (ETDEWEB)

    Camia, Federico, E-mail: federico.camia@nyu.edu [New York University Abu Dhabi (United Arab Emirates); VU University, Amsterdam (Netherlands); Gandolfi, Alberto, E-mail: albertogandolfi@nyu.edu [New York University Abu Dhabi (United Arab Emirates); Università di Firenze (Italy); Kleban, Matthew, E-mail: kleban@nyu.edu [New York University Abu Dhabi (United Arab Emirates); Center for Cosmology and Particle Physics, Department of Physics, New York University (United States)

    2016-01-15

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  20. Conformal correlation functions in the Brownian loop soup

    Directory of Open Access Journals (Sweden)

    Federico Camia

    2016-01-01

    Full Text Available We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  1. Stress-free states of continuum dislocation fields : Rotations, grain boundaries, and the Nye dislocation density tensor

    NARCIS (Netherlands)

    Limkumnerd, Surachate; Sethna, James P.

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose

  2. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    International Nuclear Information System (INIS)

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  3. Black hole thermodynamics, conformal couplings, and R 2 terms

    Science.gov (United States)

    Chernicoff, Mariano; Galante, Mario; Giribet, Gaston; Goya, Andres; Leoni, Matias; Oliva, Julio; Perez-Nadal, Guillem

    2016-06-01

    Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for this theory, which renders the variational problem well-posed and suffices to regularize the Euclidean action in AdS. We also discuss several interrelated properties of the theory, such as its duality symmetry under field redefinition and how it acts on black holes and gravitational wave solutions.

  4. Black hole thermodynamics, conformal couplings, and R2 terms

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Galante, Mario; Giribet, Gaston; Goya, Andres; Leoni, Matias; Oliva, Julio; Perez-Nadal, Guillem

    2016-01-01

    Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for this theory, which renders the variational problem well-posed and suffices to regularize the Euclidean action in AdS. We also discuss several interrelated properties of the theory, such as its duality symmetry under field redefinition and how it acts on black holes and gravitational wave solutions.

  5. Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.

    OpenAIRE

    Park, J.; Jeong, Y-S.; Park, K-S.; Do, L-M.; Bae, J-H.; Choi, J.S.; Pearson, C.; Petty, M.C.

    2012-01-01

    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the infl...

  6. Scalar perturbations and conformal transformation

    International Nuclear Information System (INIS)

    Fabris, J.C.; Tossa, J.

    1995-11-01

    The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs

  7. Conformity enhances network reciprocity in evolutionary social dilemmas.

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2015-02-06

    The pursuit of highest payoffs in evolutionary social dilemmas is risky and sometimes inferior to conformity. Choosing the most common strategy within the interaction range is safer because it ensures that the payoff of an individual will not be much lower than average. Herding instincts and crowd behaviour in humans and social animals also compel to conformity in their own right. Motivated by these facts, we here study the impact of conformity on the evolution of cooperation in social dilemmas. We show that an appropriate fraction of conformists within the population introduces an effective surface tension around cooperative clusters and ensures smooth interfaces between different strategy domains. Payoff-driven players brake the symmetry in favour of cooperation and enable an expansion of clusters past the boundaries imposed by traditional network reciprocity. This mechanism works even under the most testing conditions, and it is robust against variations of the interaction network as long as degree-normalized payoffs are applied. Conformity may thus be beneficial for the resolution of social dilemmas. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Topics in field theory

    International Nuclear Information System (INIS)

    Velasco, E.S.

    1986-01-01

    This dissertation deals with several topics of field theory. Chapter I is a brief outline of the work presented in the next chapters. In chapter II, the Gauss-Bonnet-Chern theorem for manifolds with boundary is computed using the path integral representation of the Witten index for supersymmetric quantum mechanical systems. In chapter III the action of N = 2 (Poincare) supergravity is obtained in terms of N = 1 superfields. In chapter IV, N = 2 supergravity coupled to the (abelian) vector multiplet is projected into N - 1 superspace. There, the resulting set of constraints is solved in terms of unconstrained prepotential and the action in terms of N = 1 superfields is constructed. In chapter V the set of constraints for N = 2 conformal supergravity is projected into N = 1 superspace and solved in terms of N = 1 conformal supergravity fields a d matter prepotentials. In chapter VI the role of magnetic monopoles in the phase structure of the change one fixed length abelian Higgs model ins the latticer is investigated using analytic and numerical methods. The technique of monopole suppression is used to determine the phase transition lines that are monopole driven. Finally in chapter VII, the role of the charge of the Higgs field in the abelian Higgs model in the lattice is investigated

  9. Seed conformal blocks in 4D CFT

    Energy Technology Data Exchange (ETDEWEB)

    Echeverri, Alejandro Castedo; Elkhidir, Emtinan; Karateev, Denis [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); Serone, Marco [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); ICTP,Strada Costiera 11, I-34151 Trieste (Italy)

    2016-02-29

    We compute in closed analytical form the minimal set of “seed' conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation (ℓ,ℓ̄) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0,|ℓ−ℓ̄|) and one (|ℓ−ℓ̄|,0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any (ℓ,ℓ̄), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p=|ℓ−ℓ̄| and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories.

  10. A magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    International Nuclear Information System (INIS)

    Yan Chen; Fan Ming-Wu

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake

  11. Absorbing boundary conditions for Einstein's field equations

    Energy Technology Data Exchange (ETDEWEB)

    Sarbach, Olivier [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Cd. Universitaria. C. P. 58040 Morelia, Michoacan (Mexico)

    2007-11-15

    A common approach for the numerical simulation of wave propagation on a spatially unbounded domain is to truncate the domain via an artificial boundary, thus forming a finite computational domain with an outer boundary. Absorbing boundary conditions must then be specified at the boundary such that the resulting initial-boundary value problem is well posed and such that the amount of spurious reflection is minimized. In this article, we review recent results on the construction of absorbing boundary conditions in General Relativity and their application to numerical relativity.

  12. Superstrings, conformal field theories and holographic duality

    International Nuclear Information System (INIS)

    Benichou, R.

    2009-06-01

    The first half of this work is dedicated to the study of non-compact Gepner models.The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. We have also studied bound states in N=2 Liouville theory with boundary and deep throat D-branes. We have shown that the bound states can give rise to massless vector and hyper multiplets in a low-energy gauge theory on D-branes deep inside the throat. The second half of this work deals with the issue of the quantization of the string in the presence of Ramond-Ramond backgrounds. Using the pure spinor formalism on the world-sheet, we derive the T-duality rules for all target space couplings in an efficient manner. The world-sheet path integral derivation is a proof of the equivalence of the T-dual Ramond-Ramond backgrounds which is valid non-perturbatively in the string length over the curvature radius and to all orders in perturbation theory in the string coupling. Sigma models on supergroup manifolds are relevant for quantifying string in various Anti-de-Sitter space-time with Ramond-Ramond backgrounds. We show that the conformal current algebra is realized in non-linear sigma models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting

  13. Hidden conformal symmetry of extremal black holes

    International Nuclear Information System (INIS)

    Chen Bin; Long Jiang; Zhang Jiaju

    2010-01-01

    We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.

  14. Maxwell equations in conformal invariant electrodynamics

    International Nuclear Information System (INIS)

    Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.

    1983-01-01

    We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)

  15. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    Science.gov (United States)

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  16. Renyi entropy and conformal defects

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Lorenzo [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Meineri, Marco [Scuola Normale Superiore, Pisa (Italy); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Myers, Robert C. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Smolkin, Michael [California Univ., Berkely, CA (United States). Center for Theoretical Physics and Department of Physics

    2016-04-18

    We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  17. Renyi entropy and conformal defects

    International Nuclear Information System (INIS)

    Bianchi, Lorenzo; Myers, Robert C.; Smolkin, Michael

    2016-01-01

    We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  18. dS/CFT correspondence from a holographic description of massless scalar fields in Minkowski space-time

    International Nuclear Information System (INIS)

    Loran, Farhang

    2004-01-01

    We solve Klein-Gordon equation for massless scalars on (d+1)-dimensional Minkowski (Euclidean) space in terms of the Cauchy data on the hypersurface t=0. By inserting the solution into the action of massless scalars in Minkowski (Euclidean) space we obtain the action of dual theory on the boundary t=0 which is exactly the holographic dual of conformally coupled scalars on (d+1)-dimensional (Euclidean anti) de Sitter space obtained in (A)dS/CFT correspondence. The observed equivalence of dual theories is explained using the one-to-one map between conformally coupled scalar fields on Minkowski (Euclidean) space and (Euclidean anti) de Sitter space which is an isomorphism between the hypersurface t=0 of Minkowski (Euclidean) space and the boundary of (A)dS space

  19. Conformal constraint in canonical quantum gravity

    NARCIS (Netherlands)

    t Hooft, G.

    2010-01-01

    Perturbative canonical quantum gravity is considered, when coupled to a renormalizable model for matter fields. It is proposed that the functional integral over the dilaton field should be disentangled from the other integrations over the metric fields. This should generate a conformally invariant

  20. Defects in higher-dimensional quantum field theory. Relations to AdS/CFT-correspondence and Kondo lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.

    2007-03-15

    The present work is addressed to defects and boundaries in quantum field theory considering the application to AdS/CFT correspondence. We examine interactions of fermions with spins localised on these boundaries. Therefore, an algebra method is emphasised adding reflection and transmission terms to the canonical quantisation prescription. This method has already been applied to bosons in two space-time dimensions before. We show the possibilities of such reflection-transmission algebras in two, three, and four dimensions. We compare with models of solid state physics as well as with the conformal field theory approach to the Kondo effect. Furthermore, we discuss ansatzes of extensions to lattice structures. (orig.)

  1. Conformal geometry computational algorithms and engineering applications

    CERN Document Server

    Jin, Miao; He, Ying; Wang, Yalin

    2018-01-01

    This book offers an essential overview of computational conformal geometry applied to fundamental problems in specific engineering fields. It introduces readers to conformal geometry theory and discusses implementation issues from an engineering perspective.  The respective chapters explore fundamental problems in specific fields of application, and detail how computational conformal geometric methods can be used to solve them in a theoretically elegant and computationally efficient way. The fields covered include computer graphics, computer vision, geometric modeling, medical imaging, and wireless sensor networks. Each chapter concludes with a summary of the material covered and suggestions for further reading, and numerous illustrations and computational algorithms complement the text.  The book draws on courses given by the authors at the University of Louisiana at Lafayette, the State University of New York at Stony Brook, and Tsinghua University, and will be of interest to senior undergraduates, gradua...

  2. Boundary regularity of Nevanlinna domains and univalent functions in model subspaces

    International Nuclear Information System (INIS)

    Baranov, Anton D; Fedorovskiy, Konstantin Yu

    2011-01-01

    In the paper we study boundary regularity of Nevanlinna domains, which have appeared in problems of uniform approximation by polyanalytic polynomials. A new method for constructing Nevanlinna domains with essentially irregular nonanalytic boundaries is suggested; this method is based on finding appropriate univalent functions in model subspaces, that is, in subspaces of the form K Θ =H 2 ominus ΘH 2 , where Θ is an inner function. To describe the irregularity of the boundaries of the domains obtained, recent results by Dolzhenko about boundary regularity of conformal mappings are used. Bibliography: 18 titles.

  3. On the integrability of Friedmann-Robertson-Walker models with conformally coupled massive scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, L A A [Programa de Pos-Graduacao em Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Skea, J E F [Departamento de Fisica Teorica, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Stuchi, T J [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68528, Rio de Janeiro, RJ, 21945-970 (Brazil)], E-mail: luis@dft.if.uerj.br, E-mail: jimsk@dft.if.uerj.br, E-mail: tstuchi@if.ufrj.br

    2008-02-22

    In this paper, we use a nonintegrability theorem by Morales and Ramis to analyse the integrability of Friedmann-Robertson-Walker cosmological models with a conformally coupled massive scalar field. We answer the long-standing question of whether these models with a vanishing cosmological constant and non-self-interacting scalar field are integrable: by applying Kovacic's algorithm to the normal variational equations, we prove analytically and rigorously that these equations and, consequently, the Hamiltonians are nonintegrable. We then address the models with a self-interacting massive scalar field and cosmological constant and show that, with the exception of a set of measure zero, the models are nonintegrable. For the spatially curved cases, we prove that there are no additional integrable cases other than those identified in the previous work based on the non-rigorous Painleve analysis. In our study of the spatially flat model, we explicitly obtain a new possibly integrable case.

  4. On the smoothness of electric fields near plane gratings of cylindrical conductors

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D.L. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The electric field near an infinite plane grating of equally spaced round rods at the same potential, forming the boundary of a uniform field, is determined analytically to good accuracy by conformal transformations and evaluated numerically. This contribution, which has a frankly pedagogical flavor, to the Klaus Halbach Festschrift is offered to honor his displayed mastery of conformal techniques. Although the numerical work and the form of its presentation are new, the transformation used is not original. However, to locate its antecedents in an archival journal it was necessary to seek out a paper published in 1923 (close to the year of his birth, and of mine), in a place obscure to modern physicists, so the authors efforts cannot be said to replicate recent published work. A new insight is obtained in the form of a simple estimate of departures from field uniformity at all distances from rods of any size.

  5. Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Pinamonti, Nicola [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Matematica

    2010-09-15

    We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a{sub 0}. In the case a{sub 0} = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)

  6. Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola

    2010-09-01

    We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a 0 . In the case a 0 = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)

  7. The Mars Crustal Magnetic Field Control of Plasma Boundary Locations and Atmospheric Loss: MHD Prediction and Comparison with MAVEN

    Science.gov (United States)

    Fang, Xiaohua; Ma, Yingjuan; Masunaga, Kei; Dong, Chuanfei; Brain, David; Halekas, Jasper; Lillis, Robert; Jakosky, Bruce M.; Connerney, Jack; Grebowsky, Joseph; hide

    2017-01-01

    We present results from a global Mars time-dependent MHD simulation under constant solar wind and solar radiation impact considering inherent magnetic field variations due to continuous planetary rotation. We calculate the 3-D shapes and locations of the bow shock (BS) and the induced magnetospheric boundary (IMB) and then examine their dynamic changes with time. We develop a physics-based, empirical algorithm to effectively summarize the multidimensional crustal field distribution. It is found that by organizing the model results using this new approach, the Mars crustal field shows a clear, significant influence on both the IMB and the BS. Specifically, quantitative relationships have been established between the field distribution and the mean boundary distances and the cross-section areas in the terminator plane for both of the boundaries. The model-predicted relationships are further verified by the observations from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Our analysis shows that the boundaries are collectively affected by the global crustal field distribution, which, however, cannot be simply parameterized by a local parameter like the widely used subsolar longitude. Our calculations show that the variability of the intrinsic crustal field distribution in Mars-centered Solar Orbital itself may account for approx.60% of the variation in total atmospheric loss, when external drivers are static. It is found that the crustal field has not only a shielding effect for atmospheric loss but also an escape-fostering effect by positively affecting the transterminator ion flow cross-section area.

  8. Hypotrochoids in conformal restriction systems and Virasoro descendants

    International Nuclear Information System (INIS)

    Doyon, Benjamin

    2013-01-01

    A conformal restriction system is a commutative, associative, unital algebra equipped with a representation of the groupoid of univalent conformal maps on connected open sets of the Riemann sphere, along with a family of linear functionals on subalgebras, satisfying a set of properties including conformal invariance and a type of restriction. This embodies some expected properties of expectation values in conformal loop ensembles CLE κ (at least for 8/3 iθ and w. We find that it has an expansion in positive powers of u and u-bar , and that the coefficients of pure u ( u-bar ) powers are holomorphic in w ( w-bar ). We identify these coefficients (the ‘hypotrochoid fields’) with certain Virasoro descendants of the identity field in conformal field theory, thereby showing that they form part of a vertex operator algebraic structure. This largely generalizes works by the author (in CLE), and the author with his collaborators Riva and Cardy (in SLE 8/3 and other restriction measures), where the case of the ellipse, at the order u 2 , led to the stress–energy tensor of CFT. The derivation uses in an essential way the Virasoro vertex operator algebra structure of conformal derivatives established recently by the author. The results suggest in particular the exact evaluation of CLE expectations of products of hypotrochoid fields as well as nontrivial relations amongst them through the vertex operator algebra, and further shed light onto the relationship between CLE and CFT. (paper)

  9. On induced action for conformal higher spins in curved background

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo, E-mail: matteo.beccaria@le.infn.it [Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento & INFN, Via Arnesano, 73100 Lecce (Italy); Tseytlin, Arkady A., E-mail: tseytlin@imperial.ac.uk [The Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2017-06-15

    We continue the investigation of the structure of the action for a tower of conformal higher spin fields in non-trivial 4d background metric recently discussed in Grigoriev and Tseytlin (2016). The action is defined as an induced one from path integral of a conformal scalar field in curved background coupled to higher spin fields. We analyze in detail the dependence of the quadratic part of the induced action on the spin 1 and spin 3 fields, determining the presence of a curvature-dependent mixed spin 1–3 term. One consequence is that the pure spin 3 kinetic term cannot be gauge-invariant on its own beyond the leading term in small curvature expansion. We also compute the non-zero contribution of the 1–3 mixing term to the conformal anomaly c-coefficient. One is thus to determine all such mixing terms before addressing the question of possible vanishing of the total c-coefficient in the conformal higher spin theory.

  10. On induced action for conformal higher spins in curved background

    Directory of Open Access Journals (Sweden)

    Matteo Beccaria

    2017-06-01

    Full Text Available We continue the investigation of the structure of the action for a tower of conformal higher spin fields in non-trivial 4d background metric recently discussed in Grigoriev and Tseytlin (2016 [15]. The action is defined as an induced one from path integral of a conformal scalar field in curved background coupled to higher spin fields. We analyze in detail the dependence of the quadratic part of the induced action on the spin 1 and spin 3 fields, determining the presence of a curvature-dependent mixed spin 1–3 term. One consequence is that the pure spin 3 kinetic term cannot be gauge-invariant on its own beyond the leading term in small curvature expansion. We also compute the non-zero contribution of the 1–3 mixing term to the conformal anomaly c-coefficient. One is thus to determine all such mixing terms before addressing the question of possible vanishing of the total c-coefficient in the conformal higher spin theory.

  11. The golden mean in the topology of four-manifolds, in conformal field theory, in the mathematical probability theory and in Cantorian space-time

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2006-01-01

    In the present work we show the connections between the topology of four-manifolds, conformal field theory, the mathematical probability theory and Cantorian space-time. In all these different mathematical fields, we find as the main connection the appearance of the golden mean

  12. Boundary element numerical method for the electric field generated by oblique multi-needle electrodes

    Institute of Scientific and Technical Information of China (English)

    LIU FuPing; WANG AnLing; WANG AnXuan; CAO YueZu; CHEN Qiang; YANG ChangChun

    2009-01-01

    According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa-tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced significance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.

  13. A non-renormalization theorem for conformal anomalies

    International Nuclear Information System (INIS)

    Petkou, Anastasios; Skenderis, Kostas

    1999-01-01

    We provide a non-renormalization theorem for the coefficients of the conformal anomaly associated with operators with vanishing anomalous dimensions. Such operators include conserved currents and chiral operators in superconformal field theories. We illustrate the theorem by computing the conformal anomaly of 2-point functions both by a computation in the conformal field theory and via the AdS/CFT correspondence. Our results imply that 2- and 3-point functions of chiral primary operators in N=4 SU(N) SYM will not renormalize provided that a 'generalized Adler-Bardeen theorem' holds. We further show that recent arguments connecting the non-renormalizability of the above-mentioned correlation functions to a bonus U(1) Y symmetry are incomplete due to possible U(1) Y violating contact terms. The tree level contribution to the contact terms may be set to zero by considering appropriately normalized operators. Non-renormalizability of the above-mentioned correlation functions, however, will follow only if these contact terms saturate by free fields

  14. Black hole thermodynamics, conformal couplings, and R{sup 2} terms

    Energy Technology Data Exchange (ETDEWEB)

    Chernicoff, Mariano [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México,A.P. 70-542, México D.F. 04510 (Mexico); Galante, Mario [Departamento de Física, Universidad de Buenos Aires and IFIBA-CONICET,Ciudad Universitaria, pabellón 1 (1428) Buenos Aires (Argentina); Van Swidenderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Giribet, Gaston [Departamento de Física, Universidad de Buenos Aires and IFIBA-CONICET,Ciudad Universitaria, pabellón 1 (1428) Buenos Aires (Argentina); Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231 B-1050, Bruxelles (Belgium); Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4950, Valparaíso (Chile); Goya, Andres; Leoni, Matias [Departamento de Física, Universidad de Buenos Aires and IFIBA-CONICET,Ciudad Universitaria, pabellón 1 (1428) Buenos Aires (Argentina); Oliva, Julio [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Perez-Nadal, Guillem [Departamento de Física, Universidad de Buenos Aires and IFIBA-CONICET,Ciudad Universitaria, pabellón 1 (1428) Buenos Aires (Argentina)

    2016-06-27

    Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for this theory, which renders the variational problem well-posed and suffices to regularize the Euclidean action in AdS. We also discuss several interrelated properties of the theory, such as its duality symmetry under field redefinition and how it acts on black holes and gravitational wave solutions.

  15. Conformal Transformations and Conformal Killing Fields

    Science.gov (United States)

    Definition 1.1 A semi-Riemannian manifold is a pair (M,g) consisting of a differentiate (i.e. C∞) manifold M and a differentiable tensor field g which assigns to each point a ∈ M a non-degenerate and symmetric bilinear form on the tangent space TaM: g_a :T_a M × T_a M to R.

  16. BRST structure of two dimensional conformal field theories

    International Nuclear Information System (INIS)

    Rivelles, V.O.

    1987-09-01

    We present a procedure to obtain the BRST charge for the representations of the Virassoro algebra. For C ≤ 1 the BRST charge has in general terms containing products of more than three ghosts. It is nilpotent for any allowed value of the central charge and conformal weight of the representation. (Author) [pt

  17. Theory and observations of upward field-aligned currents at the magnetopause boundary layer.

    Science.gov (United States)

    Wing, Simon; Johnson, Jay R

    2015-11-16

    The dependence of the upward field-aligned current density ( J ‖ ) at the dayside magnetopause boundary layer is well described by a simple analytic model based on a velocity shear generator. A previous observational survey confirmed that the scaling properties predicted by the analytical model are applicable between 11 and 17 MLT. We utilize the analytic model to predict field-aligned currents using solar wind and ionospheric parameters and compare with direct observations. The calculated and observed parallel currents are in excellent agreement, suggesting that the model may be useful to infer boundary layer structures. However, near noon, where velocity shear is small, the kinetic pressure gradients and thermal currents, which are not included in the model, could make a small but significant contribution to J ‖ . Excluding data from noon, our least squares fit returns log( J ‖,max_cal ) = (0.96 ± 0.04) log( J ‖_obs ) + (0.03 ± 0.01) where J ‖,max_cal = calculated J ‖,max and J ‖_obs = observed J ‖ .

  18. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles.

    Science.gov (United States)

    Verbaro, Daniel; Ghosh, Indrajit; Nau, Werner M; Schweitzer-Stenner, Reinhard

    2010-12-30

    Structural preferences in the unfolded state of peptides determined by molecular dynamics still contradict experimental data. A remedy in this regard has been suggested by MD simulations with an optimized Amber force field ff03* ( Best, R. Hummer, G. J. Phys. Chem. B 2009 , 113 , 9004 - 9015 ). The simulations yielded a statistical coil distribution for alanine which is at variance with recent experimental results. To check the validity of this distribution, we investigated the peptide H-A(5)W-OH, which with the exception of the additional terminal tryptophan is analogous to the peptide used to optimize the force fields ff03*. Electronic circular dichroism, vibrational circular dichroism, and infrared spectroscopy as well as J-coupling constants obtained from NMR experiments were used to derive the peptide's conformational ensemble. Additionally, Förster resonance energy transfer between the terminal chromophores of the fluorescently labeled peptide analogue H-Dbo-A(5)W-OH was used to determine its average length, from which the end-to-end distance of the unlabeled peptide was estimated. Qualitatively, the experimental (3)J(H(N),C(α)), VCD, and ECD indicated a preference of alanine for polyproline II-like conformations. The experimental (3)J(H(N),C(α)) for A(5)W closely resembles the constants obtained for A(5). In order to quantitatively relate the conformational distribution of A(5) obtained with the optimized AMBER ff03* force field to experimental data, the former was used to derive a distribution function which expressed the conformational ensemble as a mixture of polyproline II, β-strand, helical, and turn conformations. This model was found to satisfactorily reproduce all experimental J-coupling constants. We employed the model to calculate the amide I' profiles of the IR and vibrational circular dichroism spectrum of A(5)W, as well as the distance between the two terminal peptide carbonyls. This led to an underestimated negative VCD couplet and an

  19. Conformational transformations induced by the charge-curvature interaction: Mean-field approach

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Christiansen, Peter Leth; Zakrzewski, W.J.

    2006-01-01

    A simple phenomenological model for describing the conformational dynamics of biological macromolecules via the nonlinearity-induced instabilities is proposed. It is shown that the interaction between charges and bending degrees of freedom of closed molecular aggregates may act as drivers giving ...... impetus to conformational dynamics of biopolymers. It is demonstrated that initially circular aggregates may undergo transformation to polygonal shapes and possible application to aggregates of bacteriochlorophyl a molecules is considered....

  20. Flow equation, conformal symmetry, and anti-de Sitter geometry

    Science.gov (United States)

    Aoki, Sinya; Yokoyama, Shuichi

    2018-03-01

    We argue that the anti-de Sitter (AdS) geometry in d+1 dimensions naturally emerges from an arbitrary conformal field theory in d dimensions using the free flow equation. We first show that an induced metric defined from the flowed field generally corresponds to the quantum information metric, called the Bures or Helstrom metric, if the flowed field is normalized appropriately. We next verify that the induced metric computed explicitly with the free flow equation always becomes the AdS metric when the theory is conformal. We finally prove that the conformal symmetry in d dimensions converts to the AdS isometry in d+1 dimensions after d-dimensional quantum averaging. This guarantees the emergence of AdS geometry without explicit calculation.