Systematic model-dependent behaviour of fusion involving weakly bound projectiles 6,7Li
International Nuclear Information System (INIS)
Many measurements on complete fusion (CF) cross section at above barrier energies involving weakly bound stable projectiles (e.g., 6Li, 7Li and 9Be) show suppression by various degrees compared to theoretical estimates as well as experimental CF cross sections of reactions involving strongly bound projectiles. However, there is no concrete picture at sub-barrier energies. The conclusions based on coupled-channels (CC) calculations using different codes (e.g., FRESCO or CCFULL) may differ as the theoretical models used to calculate fusion are not same. In a recent paper on complete fusion in 7Li+152Sm system, the fusion cross sections calculated by CCFULL and FRESCO have been shown to be different despite using same bare potential. It was observed that with the inclusion of only inelastic couplings, the results of FRESCO were much closer to the experimental data in the above barrier region, while the CCFULL results overpredict the data over the entire range. To explore the above observation in different systems involving 6,7Li as projectile, in the present work, a systematic and detailed study has been carried out by means of CC calculations using both FRESCO and CCFULL. The aim is to analyze the differences between the two models of calculations
Stable Bound Orbits around Black Rings
Energy Technology Data Exchange (ETDEWEB)
Igata, Takahisa; Ishihara, Hideki; Takamori, Yohsuke, E-mail: igata@sci.osaka-cu.ac.jp [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan)
2011-09-22
We study stable bound orbits of a free particle around a black ring. Unlike the higher-dimensional black hole case, we find that there exist stable bound orbits in toroidal spiral shape near the ring axis and stable circular orbits on the axis. In addition, radii of stable bound orbits can be infinitely large if the ring thickness is less than a critical value.
Seyyedi, S A
2015-01-01
Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be +209Bi,208Pb,29Si and 27Al reactions. The results show that applying these effects at energies near the Coulomb barrier improves the agreement between the calculated and experimental cross sections, and modifies the mean values of the suppression parameter.
Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions
Indian Academy of Sciences (India)
S S Godre
2014-05-01
Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not only on the initial orientations of the deformed nucleus, but also on the collision energy and the moment of inertia of the deformed nucleus. Maximum reorientation effect occurs at near- and below-barrier energies for light deformed nuclei. Calculated fusion crosssections for 24Mg + 208Pb reaction are compared with a static-barrier-penetration model (SBPM) calculation to see the effect of reorientation. Heavy-ion reactions are also simulated in a 3-stage classical molecular dynamics (3S-CMD) model in which the rigid-body constraints are relaxed when the two nuclei are close to the barrier thus, taking into account all the rotational and vibrational degrees of freedom in the same calculation. This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion, no-capture breakup and scattering are demonstrated.
Interplay of projectile breakup and target excitation in reactions induced by weakly-bound nuclei
Gomez-Ramos, M
2016-01-01
In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Reactions 58Ni(d, d) 58Ni*, 24Mg(d, d) 24Mg* , 144Sm( 6Li, 6Li) 144Sm* and 9Be( 6Li, 6Li) 9Be* are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. The studied CDCC method is proved to be an accurate tool to describe target excitation in reactions with weakly-bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.
Fortunato, L; Sofia, H M; Vitturi, A
2002-01-01
The use of radioactive ion beams is shown to offer the possibility to study collective pairing states at high excitation energy, which are not usually accessible with stable projectiles because of large energy mismatch. In the case of two-neutron stripping reactions induced by 6He, we predict a population of the Giant Pairing Vibration in 208Pb or 116Sn with cross sections of the order of a millibarn, dominating over the mismatched transition to the ground state.
Breakup Effect of Weakly Bound Projectile on the Barrier Distribution Around Coulomb Barrier
Institute of Scientific and Technical Information of China (English)
贾会明; 林承键; 张焕乔; 刘祖华; 喻宁; 杨峰; 徐新星; 贾飞; 吴振东; 张世涛
2012-01-01
The excitation function of quasi-elastic （QEL） scattering at a backward angle has been measured for 9^Be＋208^Pb. The barrier distribution was extracted by means of the first derivative of the measured excitation function and calculated with the coupled-channel model. The present work shows that the experimental barrier distribution extracted from QEL scattering is shifted to the low energy side by 1.5 MeV as compared with the theoretical one. This energy discrepancy indicates that breakup is important in the colliding processes of the weakly bound nucleus system.
Kaur, Mandeep; Sharma, Manoj K; Gupta, Raj K
2015-01-01
The dynamics of the reactions forming compound nuclei using loosely bound projectiles is analysed within the framework of dynamical cluster decay model (DCM) of Gupta and Collaborators. We have analysed different reactions with $^{7}Li$, $^{9}Be$ and $^{7}Be$ as neutron rich and neutron deficient projectiles, respectively, on different targets at the three $E_{lab}$ values, forming compound nuclei within the mass region A$\\sim 30-200$. The contributions of light particles LPs ($A\\le4$) cross sections $\\sigma_{LP}$, energetically favoured intermediate mass fragments IMFs ($5 \\le A_2 \\le 20$) cross sections $\\sigma_{IMF}$ as well as fusion-fission $\\it{ff}$ cross sections $\\sigma_{ff}$ constitute the $\\sigma_{fus}$ (=$\\sigma_{LP}$+$\\sigma_{IMF}$+$\\sigma_{ff}$) for these reactions. The contribution of the emitted LPs, IMFs and ff fragments is added for all the angular momentum upto the $\\ell_{max}$ value, for the resepctive reactions. Interestingly, we find that the $\\Delta R^{emp}$, the only parameter of model ...
Hydrodynamic Drag on Streamlined Projectiles and Cavities
Jetly, Aditya
2016-04-19
The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.
Directory of Open Access Journals (Sweden)
Ashish Shrivastava
2016-01-01
Full Text Available We consider a variant of socially stable marriage problem where preference lists may be incomplete, may contain ties and may have bounded length. In real world application like NRMP and Scottish medical matching scheme such restrictions arise very frequently where set of agents (man/woman is very large and providing a complete and strict order preference list is practically in-feasible. In presence of ties in preference lists, the most common solution is weakly socially stable matching. It is a fact that in an instance, weakly stable matching can have different sizes. This motivates the problem of finding a maximum cardinality weakly socially stable matching. In this paper, we find maximum size weakly socially stable matching for an instance of Stable Marriage problem with Ties and Incomplete bounded length preference list with Social Stability. The motivation to consider this instance is the known fact, any larger instance of this problem is NP-hard.
Recent Results on Fusion and Direct Reactions with Weakly Bound Stable Nuclei
Directory of Open Access Journals (Sweden)
Shrivastava A.
2011-10-01
Full Text Available Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. Deviation in slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. These results along with the study of capture reaction of the breakup fragments using particle- gamma coincidences is presented, thereby giving the current status of the ﬁeld.
No-capture breakup and incomplete fusion reactions induced by stable weakly bound nucleus 9Be
Seyyedi, S. A.
2016-06-01
The reactions including the stable weakly bound nucleus 9Be have been studied using the classical trajectory model accompanied with the experimental breakup function and the Aage-Winther interaction potential (AW95). In these calculations, the no-capture breakup and the incomplete fusion cross-sections as well as their competition at around the Coulomb barrier have been investigated. Our calculations showed that at a given far-Coulomb-barrier energy the incomplete fusion reaction in different distributions of angular momentum and energies can dominate the no-capture breakup reaction. This dominating process is reversed at the near-barrier energies.
VANDERSTEEGE, G; NIEBOER, M; SWAVING, J; TEMPELAAR, MJ
1992-01-01
Chimaeric genes of promoter sequences from the potato gene encoding granule-bound starch synthase (GBSS) and the beta-glucuronidase (GUS) reporter gene were used to study GBSS expression and regulation. Analysis of stable transformants revealed that a GBSS promoter sequence of 0.4 kb was sufficient
Directory of Open Access Journals (Sweden)
Ashish Shrivastava
2016-02-01
Full Text Available We consider a variant of the Stable Marriage Problem where preference lists of man/woman may be incomplete, may contain ties and may have bounded length in presence of a notion of social stability. In real world matching applications like NRMP and Scottish medical matching scheme such restrictions can arise very frequently where set of agents (man/woman is very large and providing a complete and strict order preference list is practically in-feasible. In presence of ties in preference lists, there exist three different notion of stability, weak stability, strong stability and super stability. The most common solution is to produce a weakly stable matching. It is a fact that in an instance of Stable Marriage problem with Ties and Incomplete list (SMTI, weakly stable matching can have different sizes. This motivates the problem of finding a maximum cardinality weakly socially stable matching.
Energy Technology Data Exchange (ETDEWEB)
Burton, R.L.; Witherspoon, F.D.; Goldstein, S.A. (Gruy Federal, Inc., Arlington, VA (United States))
1991-01-01
This paper reports on the EMET projectile which uses joule heating to accelerate the projectile in a railgun with a predominantly electrothermal driving force. The structure is designed to conduct armature current within a thin annular band around the shank of the large L/D dumbbell-shaped projectile. Current is initiated by a fuse located around the shank, and an impedance of 8 m{Omega} is achieved, compared to the 1-2 m{Omega} observed for EM guns. A supersonic nozzle in the projectile tail section expands and cools the armature plasma to raise its resistivity, prevent secondary arcs and provide additional accelerating thrust. Experimental data is presented for 9.5 mm diameter, 5 gm projectiles, accelerated to nearly 600 m/sec at 55 kA in a 0.9 m railgun. The armature remains confined in the projectile structure, and 75% of the acceleration is provided electrothermally.
Small caliber guided projectile
Jones, James F.; Kast, Brian A.; Kniskern, Marc W.; Rose, Scott E.; Rohrer, Brandon R.; Woods, James W.; Greene, Ronald W.
2010-08-24
A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.
Projectile Demilitarization Facilities
Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...
Projectile Motion Demonstration
Graf, Erlend H.
2008-12-01
For a recent lecture, I went to our apparatus stock room and took out our venerable Sargent-Welch projectile apparatus that demonstrates that a dropped ball and a horizontally launched ball hit the floor at the same time, if they are simultaneously released. A problem with this apparatus is that its small size makes it difficult for a large class to see what is going on. Furthermore, the projectiles are ball bearings, which tend to roll under chairs, benches, etc.
Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra
van den Berg, Jan Bouwe; Mireles James, Jason D.; Reinhardt, Christian
2016-08-01
We develop techniques for computing the (un)stable manifold at a hyperbolic equilibrium of an analytic vector field. Our approach is based on the so-called parametrization method for invariant manifolds. A feature of this approach is that it leads to a posteriori analysis of truncation errors which, when combined with careful management of round off errors, yields a mathematically rigorous enclosure of the manifold. The main novelty of the present work is that, by conjugating the dynamics on the manifold to a polynomial rather than a linear vector field, the computer-assisted analysis is successful even in the case when the eigenvalues fail to satisfy non-resonance conditions. This generically occurs in parametrized families of vector fields. As an example, we use the method as a crucial ingredient in a computational existence proof of a connecting orbit in an amplitude equation related to a pattern formation model that features eigenvalue resonances.
O2-stable membrane-bound [NiFe]hydrogenase from a newly isolated Citrobacter sp. S-77.
Eguchi, Shigenobu; Yoon, Ki-Seok; Ogo, Seiji
2012-11-01
Hydrogenases are of great interest due to their potential use in H(2)-based technology. However, most hydrogenases are highly sensitive to O(2), which have been the major bottleneck in hydrogenase studies. Here we report an O(2)-stable membrane-bound [NiFe]hydrogenase (MBH) purified from a newly isolated strain, S-77. According to the 16S rRNA gene sequence and phylogenetic analysis of the strain S-77, it belongs to the genus of Citrobacter. In vitro experiments using the cytoplasmic membrane of strain S-77 suggested that a cytochrome b acts as the physiological electron acceptor of the MBH. The purified MBH was composed of a dimer of heterodimers, consisting of two distinct subunits with the molecular weights of 58.5 and 38.5 kDa. The enzyme showed a specific activity for H(2)-oxidation of 661 U/mg, which is 35-fold greater than that for H(2)-production of 18.7 U/mg. Notably, the MBH showed a remarkable O(2)-stability, maintaining almost 95% of its original activity even after incubation for 30 h in air at 4°C. These results suggest that the O(2)-stable MBH may play an important role in the H(2)-metabolic pathway under the aerobic conditions of Citrobacter sp. S-77. This is the first report of the purification and biochemical characterization of an O(2)-stable MBH from the genus of Citrobacter.
Dynamic analysis of a guided projectile during engraving process
Directory of Open Access Journals (Sweden)
Tao Xue
2014-06-01
Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.
Dynamic analysis of a guided projectile during engraving process
Institute of Scientific and Technical Information of China (English)
Tao XUE; Xiao-bing ZHANG; Dong-hua CUI
2014-01-01
The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects:(a) the effects caused by the different band geometry;and (b) the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.
Subcaliber discarding sabot airgun projectiles.
Frank, Matthias; Schönekeß, Holger; Herbst, Jörg; Staats, Hans-Georg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta
2014-03-01
Medical literature abounds with reports on injuries and fatalities caused by airgun projectiles. While round balls or diabolo pellets have been the standard projectiles for airguns for decades, today, there are a large number of different airgun projectiles available. A very uncommon--and until now unique--discarding sabot airgun projectile (Sussex Sabo Bullet) was introduced into the market in the 1980s. The projectile, available in 0.177 (4.5 mm) and 0.22 (5.5 mm) caliber, consists of a plastic sabot cup surrounding a subcaliber copper-coated lead projectile in typical bullet shape. Following the typical principle of a discarding sabot projectile, the lightweight sabot is supposed to quickly loose velocity and to fall to the ground downrange while the bullet continues on target. These sabot-loaded projectiles are of special forensic interest due to their non-traceability and ballistic parameters. Therefore, it is the aim of this work to investigate the ballistic performance of these sabot airgun projectiles by high-speed video analyses and by measurement of the kinetic parameters of the projectile parts by a transient recording system as well as observing their physical features after being fired. While the sabot principle worked properly in high-energy airguns (E > 17 J), separation of the core projectile from the sabot cup was also observed when discharged in low-energy airguns (E < 7.5 J). While the velocity of the discarded Sussex Sabo core projectile was very close to the velocity of a diabolo-type reference projectile (RWS Meisterkugel), energy density was up to 60 % higher. To conclude, this work is the first study to demonstrate the regular function of this uncommon type of airgun projectile. PMID:24263305
Measurement of Spin of Projectiles
Directory of Open Access Journals (Sweden)
S. R. Verma
1989-01-01
Full Text Available Hitherto the spin of the projectile has been measured with the help of spin loop method (for magnetised projectiles and Multishot Ballistic Synchro method (for magnetised and non-magnetised projectiles. This paper discusses the method of measurement of spinwith a single ballistic synchro picture; the advantage of this method is that it dispenses with elaborate and precise optical alignment, required for Multishot Ballistic Synchro method.
International Nuclear Information System (INIS)
This paper reports on the 90 mm EMGWS D1 Projectile which is an unguided projectile that is designed for launch from an Electromagnetic gun to achieve significant armor penetration. It is being developed under the broader program called Electromagnetic Gun Weapon System (EMGWS) which is sponsored by DARPA, DNA, and the U.S. Army. The 90 mm D1 Type II 'workhorse' Projectile is used to prove out material strength, fabrication techniques, and projectile structural integrity. The type II flight projectile is designed to allow maximum stress levels of 100-ksi when launched at 100-kilogees peak acceleration. The total weight of the projectile is 2.0 kg to attain a muzzle velocity of 3.0 km/s from a 9-Megajoule EM Gun. The Type II projectile configuration employs a tungsten nosetip plus 12 segmented tungsten penetrators, a two-piece aluminum discarding sabot, an aluminum pusher plate, and a nylon obturator. The pusher plate can incorporate either a solid or plasma armature
Hu, Han; Ding, Yulin; Zhu, Qing; Wu, Bo; Xie, Linfu; Chen, Min
2016-08-01
Least-squares matching is a standard procedure in photogrammetric applications for obtaining sub-pixel accuracies of image correspondences. However, least-squares matching has also been criticized for its instability, which is primarily reflected by the requests for the initial correspondence and favorable image quality. In image matching between oblique images, due to the blur, illumination differences and other effects, the image attributes of different views are notably different, which results in a more severe convergence problem. Aiming at improving the convergence rate and robustness of least-squares matching of oblique images, we incorporated prior geometric knowledge in the optimization process, which is reflected as the bounded constraints on the optimizing parameters that constrain the search for a solution to a reasonable region. Furthermore, to be resilient to outliers, we substituted the square loss with a robust loss function. To solve the composite problem, we reformulated the least-squares matching problem as a bound constrained optimization problem, which can be solved with bounds constrained Levenberg-Marquardt solver. Experimental results consisting of images from two different penta-view oblique camera systems confirmed that the proposed method shows guaranteed final convergences in various scenarios compared to the approximately 20-50% convergence rate of classical least-squares matching.
Mass stabilized projectile designs for electromagnetic launch
International Nuclear Information System (INIS)
A dual density Rodman cone, with l/d = 7, has been found to be attractive for electromagnetic launch and may have adequate terminal ballistic performance. Stable flight is achieved from the correct distribution of mass within the projectile body. The design provides some flexibility for the armature in that all the armature mass is used for aerodynamic stability. Furthermore, the acceleration can be supported by a simple one-piece armature. A bore rider, which is less than 10% of the total mass, is needed for in-bore stability and structural support at the tungsten/aluminum interface. Work to date has focused on small caliber applications, but substantial gains can be achieved when the bore size is increased to cannon caliber. General design principles are presented for a mass stabilized projectile. This paper addresses nearly all aspects of launch, flight, and terminal effects as a function of bore size. Flight and terminal effects are computed from curve fits to existing experimental data
Projectile penetration into ballistic gelatin.
Swain, M V; Kieser, D C; Shah, S; Kieser, J A
2014-01-01
Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. PMID:24184862
Isospin dependent multifragmentation of relativistic projectiles
Ogul, R; Atav, U; Buyukcizmeci, N; Mishustin, I N; Adrich, P; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Boudard, A; Brzychczyk, J; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Hellstrom, M; Henzlova, D; Imme, G; Iori, I; Johansson, H; Kezzar, K; Lafriakh, A; Le Fèvre, A; Gentil, E Le; Leifels, Y; Luhning, J; Lukasik, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Muller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Pawlowski, P; Pullia, A; Raciti, G; Rapisarda, E; Sann, H; Schwarz, C; Sfienti, C; Simon, H; Summerer, K; Trautmann, W; Tsang, M B; Verde, G; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwieglinski, B
2010-01-01
The N/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at SIS. Stable and radioactive Sn and La beams with an incident energy of 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. For the interpretation of the data, calculations with the Statistical Multifragmentation Model for a properly chosen ensemble of excited sources were performed. The parameters of the ensemble, representing the variety of excited spectator nuclei expected in a participant-spectator scenario, are determined empirically by searching for an optimum reproduction of the measured fragment charge distributions and correlations. An overall very good agreement is obtained. The possible modification of the liquid-drop parameters of the fragment description in the hot freeze-out environment is studied, and a significant reduction of the symmetry-term coefficient is found necessary to reproduce the mean neutron-to-proton ratios /Z an...
Projectiles, pendula, and special relativity
Price, R H
2005-01-01
The kind of flat-earth gravity used in introductory physics appears in an accelerated reference system in special relativity. From this viewpoint, we work out the special relativistic description of a ballistic projectile and a simple pendulum, two examples of simple motion driven by earth-surface gravity. The analysis uses only the basic mathematical tools of special relativity typical of a first-year university course.
Projectile Balloting Attributable to Gun Tube Curvature
Directory of Open Access Journals (Sweden)
Michael M. Chen
2010-01-01
Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.
Projectile development for railguns using hypervelocity preacceleration
Energy Technology Data Exchange (ETDEWEB)
Susoeff, A.R.; Hawke, R.S. [Lawrence Livermore National Lab., CA (United States); Sauve, G.L. [EG and G Rocky Flats, Inc., Golden, CO (United States); Konrad, C.H. [Sandia National Labs., Albuquerque, NM (United States); Hickman, R.J. [Ktech Corp., Albuquerque, NM (United States)
1991-02-01
The STARFIRE Project is a joint Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) effort to achieve hypervelocity projectile launches up to 15 km/s. The apparatus used to achieve this goal is a three stage acceleration system made up of a two-stage light-gas gun (2SLGG) is used as a preaccelerator capable of injecting 2 gram projectiles at velocities of 6 km/s or more. Projectiles used in this environment are subject to many conditions. Some of these which effect projectile design include: acceleration loading, structural response, barrel condition and alignment. Development of a projectile to satisfy the programmatic requirements is underway. This report covers the evolution of design and fabrication for railgun projectiles from previous experience at LLNL to the replenished plasma armature and projectile now used on STARFIRE. Projectile design, development and fabrication methods which use off-the-shelf materials and standard techniques to meet the operational criteria of the experimental program are discussed in this paper. Initial work involving the design and fabrication of skirted projectiles, which are expected to further reduce interaction phenomena between the plasma armature and railgun barrel, is also described.
Projectile development for railguns using hypervelocity preacceleration
Energy Technology Data Exchange (ETDEWEB)
Susoeff, A.R.; Hawke, R.S. (Lawrence Livermore National Lab., CA (United States)); Ang, J.A.; Asay, J.R.; Hall, C.A.; Konrad, C.H. (Sandia National Labs., Albuquerque, NM (United States)); Sauve, G.L. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Hickman, R.J. (Ktech Corp., Albuquerque, NM (United States))
1992-03-20
The STARFIRE Project is a joint Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) effort to achieve hypervelocity projectile launches up to 15 km/s. The apparatus used to achieve this goal is a three stage acceleration system made up of a two-stage light-gas gun (2SLGG) coupled to a railgun. The 2SLGG is used as a preaccelerator capable of injecting 2 gram projectiles at velocities of 6 km/s or more. Projectiles used in this environment are subject to many conditions. Some of these which effect projectile design include: acceleration loading, structural response, barrel condition and alignment. Development of a projectile to satisfy the programmatic requirements is underway. This report covers the evolution of design and fabrication for railgun projectiles from previous experiment at LLNL to the replenished plasma armature and projectile now used on STARFIRE. Projectile design, development and fabrication methods which use off-the-shelf materials and standard techniques to meet the operational criteria of the experimental program are discussed in this paper. Initial work involving the design and fabrication of skirted projectiles, which are expected to further reduce interaction phenomena between the plasma armature and railgun barrel, is also described.
Projectile development for railguns using hypervelocity preacceleration
Susoeff, A. R.; Hawke, R. S.; Ang, J. A.; Asay, J. R.; Hall, C. A.; Konrad, C. H.; Sauve, G. L.
1992-03-01
The STARFIRE Project is a joint Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) effort to achieve hypervelocity projectile launches up to 15 km/s. The apparatus used to achieve this goal is a three stage acceleration system made up of a two-stage light-gas gun (2SLGG) coupled to a railgun. The 2SLGG is used as a preaccelerator capable of injecting 2 gram projectiles at velocities of 6 km/s or more. Projectiles used in this environment are subject to many conditions. Some of these which effect projectile design include acceleration loading, structural response, barrel condition and alignment. Development of a projectile to satisfy the programmatic requirements is underway. This report covers the evolution of design and fabrication for railgun projectiles from previous experimentation at LLNL to the replenished plasma armature and projectile now used on STARFIRE. Projectile design, development and fabrication methods which use off-the-shelf materials and standard techniques to meet the operational criteria of the experimental program are discussed in this paper. Initial work involving the design and fabrication of skirted projectiles, which are expected to further reduce interaction phenomena between the plasma armature and railgun barrel, is also described.
Reliability estimates for flawed mortar projectile bodies
Energy Technology Data Exchange (ETDEWEB)
Cordes, J.A. [US Army ARDEC, AMSRD-AAR-MEF-E, Analysis and Evaluation Division, Fuze and Precision Armaments Technology Directorate, US Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ 07806-5000 (United States)], E-mail: jennifer.cordes@us.army.mil; Thomas, J.; Wong, R.S.; Carlucci, D. [US Army ARDEC, AMSRD-AAR-MEF-E, Analysis and Evaluation Division, Fuze and Precision Armaments Technology Directorate, US Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ 07806-5000 (United States)
2009-12-15
The Army routinely screens mortar projectiles for defects in safety-critical parts. In 2003, several lots of mortar projectiles had a relatively high defect rate, 0.24%. Before releasing the projectiles, the Army reevaluated the chance of a safety-critical failure. Limit state functions and Monte Carlo simulations were used to estimate reliability. Measured distributions of wall thickness, defect rate, material strength, and applied loads were used with calculated stresses to estimate the probability of failure. The results predicted less than one failure in one million firings. As of 2008, the mortar projectiles have been used without any safety-critical incident.
Role of projectile breakup effects and intrinsic degrees of freedom on fusion dynamics
Singh Gautam, Manjeet
2016-05-01
This article analyzes the fusion dynamics of loosely bound and stable projectiles with Zr-target isotopes within the context of the coupled channel approach and the energy-dependent Woods-Saxon potential model (EDWSP model). In the case of the 28Si + 90Zr reaction, the coupling to the inelastic surface excitations results in an adequate description of the observed fusion dynamics while in case of the 28Si + 94Zr reaction, the coupling to collective surface vibrational states as well as the neutron (multi-neutron) transfer channel is necessary in the coupled channel calculations to reproduce the below-barrier fusion data. However, the EDWSP model calculation provides an accurate explanation of the fusion data of 28Si + 90,94Zr reactions in the domain of the Coulomb barrier. In the fusion of the 6Li + 90Zr reaction, the inclusion of the nuclear structure degrees of freedom recovers the observed sub-barrier fusion enhancement but results in suppression of the above barrier fusion data by 34% with respect to the coupled channel calculations. Using EDWSP model calculations, this suppression factor is reduced by 14% and consequently, the above-barrier fusion data of 6Li + 90Zr reaction is suppressed by 20% with reference to the EDWSP model calculations. Such fusion suppression at above-barrier energies can be correlated with the breakup of the projectile (6Li) before reaching the fusion barrier, as a consequence of low binding energy. Supported by Dr. D. S. Kothari Post-Doctoral Fellowship Scheme sponsored by University Grants Commission (UGC), New Delhi, India
Plastic Guidance Fins for Long Rod Projectiles .
Directory of Open Access Journals (Sweden)
Mark L. Bundy
1997-10-01
Full Text Available Projectile tail fins on long rod kinetic energy (KE penetrators serve the same purpose as fletchings (feathers on an arrow, namely, they help align the projectile axis with its velocity vector. This reduces the projectile's yaw and hence reduces its aerodynamic drag. In addition, a low yaw angle at target impact helps to maximise the projectile's target penetration. It is typical for projectiles to exit the gun muzzle and enter free flight at some ndn-zero yaw angle. Aerodynamic forces acting on yawed tail fins create a stabilising torque about the projectile's centre of gravity (CG. This torque can be increased by making the fin material lighter. Most conventional long rod penetrators fired from high performance guns have tail fins made from aluminium. However, aluminium can undergo catastrophic oxidation (rapid burning in-bore. Coating aluminium with Al/sub 2/O/sub 3/ {hardcoat prevents ignition of the substrate, provided solid propellant grain impacts do not chip the brittle hardcoat off the surface. Plastic is lighter than aluminium and less exothermic when oxidized. Therefore, other factors aside, it is conceivable that plastic fins could increase projectile stability while incurring less thermal erosion than aluminium. However, thermal loads are not the only concern when considering plastic as an alternative tail fin material. The mechanical strength of plastic is also a critical factor. This paper discusses some of the successes and failures of plastic fins, at least relatively thin fins, for use as KE stabilisers.
Stability Criterion for a Finned Spinning Projectile
Directory of Open Access Journals (Sweden)
S. D. Naik
2000-01-01
Full Text Available The state-of-the-art in gun projectile technology has been used for the aerodynamic stabilisation.This approach is acceptable for guided and controlled rockets but the free-flight rockets suffer fromunacceptable dispersion. Sabot projectiles with both spin and fms developed during the last decadeneed careful analysis. In this study, the second method of Liapunov has been used to develop stability criterion for a projectile to be designed with small fins and is made to spin in the flight. This criterion is useful for the designer.
Optical Potential Parameters of Weakly Bound Nuclear System 17F+13C
Institute of Scientific and Technical Information of China (English)
AN Guang-Peng; JIA Hui-Ming; XU Xin-Xing; BAI Chun-Lin; YU Ning; LIN Cheng-Jian; ZHANG Huan-Qiao; LIU Zu-Hua; YANG Feng; ZHANG Gao-Long; ZHANG Chun-Lei; WU Zhen-Dong; JIA Fei
2008-01-01
@@ Elastic scattering angular distributions of the 14N+16O system and the angular distributions of transfer reaction 16O(14N, 13C)17F at ELab=76.2 Me V and 5 7 Me V have been measured and calculated by means of the exact finite-range distorted-wave Born approximation with the PTOLEMY code.The optical potential parameters for the weakly bound nuclear system 17F +13C have been deduced and applied to analyse the elastic scattering angular distributions of the similar systems 17F+12C and 17F+14N which are taken from literature.The result shows that the transfer reaction with stable projectile and target combination can be used as an alternative method to extract the optical potential parameters for the weakly bound nuclear system.
Restrictions of stable bundles
Balaji, V
2011-01-01
The Mehta-Ramanathan theorem ensures that the restriction of a stable vector bundle to a sufficiently high degree complete intersection curve is again stable. We improve the bounds for the "sufficiently high degree" and propose a possibly optimal conjecture.
Three Dimensional CAPP Technology of Projectile Based on MBD
Directory of Open Access Journals (Sweden)
Hongzhi Zhao
2013-07-01
Full Text Available This study aims at the research goal of three-dimensional digital process design of projectile, which adopts three-dimensional computer-aided process design technology based on MBD and uses MBD to conduct parametric modeling of projectile that can reduce the input of projectile’s process information and data conversion and produce reasonable, feasible and three-dimensional projectile manufacturing process to realize paperless three-dimensional process design of projectile. The application of three-dimensional computer-assisted process design technology of projectile based on model definition can shorten the design cycle of projectile, thus improving rapid manufacturing capacity of product and reducing cost.
Fatal lawn mower related projectile injury
DEFF Research Database (Denmark)
Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte
2014-01-01
Fatal lawn mower related injuries are a relatively rare occurrence. In a forensic setting, the primary aim is to reconstruct the injury mechanism and establish the cause of death. A relatively rare, but characteristic type of injury is a so-called projectile or missile injury. This occurs when...... the operator or a bystander is impacted by an object mobilized from the grass by the rotating mower blades. This type of injury often leaves only modest external trauma, which increases the risk of overlooking an entry wound. In this paper we present a case of a fatal lawn mower related projectile injury which...... was initially overlooked, later interpreted as a possible gunshot homicide, and finally identified as a lawn mower related projectile injury when autopsy revealed a piece of metal thread in the main bronchus to the right middle lobe, hemopericardium, and right-sided hemothorax. To our knowledge, this injury...
Projectile-Borne Video Reconnaissance System
Institute of Scientific and Technical Information of China (English)
王海福; 张锋; 李向荣
2004-01-01
Aiming at applications as a projectile-borne video reconnaissance system, the overall design and prototype in principle of a mortar video reconnaissance system bomb were developed. Mortar launched test results show that the initial integrated system was capable of transmitting images through tens of kilometers with the image resolution identifying effectively tactical targets such as roads, hills, caverns, trees and rivers. The projectile-borne video reconnaissance system is able to meet the needs of tactical target identification and battle dage assessment for tactical operations. The study will provide significant technological support for further independent development.
Isoscaling of projectile-like fragments
Institute of Scientific and Technical Information of China (English)
Zhong Chen; Chen Jin-Hui; Guo Wei; Ma Chun-Wang; Ma Guo-Liang; Su Qian-Min; Yan Ting-Zhi; Zuo Jia-Xu; Ma Yu-Gang; Fang De-Qing; Cai Xiang-Zhou; Chen Jin-Gen; Shen Wen-Qing; Tian Wen-Dong; Wang Kun; Wei Yi-Bin
2006-01-01
In this paper, the isotopic and isotonic distributions of projectile fragmentation products have been simulated by a modified statistical abrasion-ablation model and the isoscaling behaviour of projectile-like fragments has been discussed. The isoscaling parameters α andβ have been extracted respectively, for hot fragments before evaporation and cold fragments after evaporation. It looks that the evaporation has stronger effect on α than β. For cold fragments,a monotonic increase of α and |β| with the increase of Z and N is observed. The relation between isoscaling parameter and the change of isospin content is discussed.
Three Dimensional CAPP Technology of Projectile Based on MBD
Hongzhi Zhao; Yingai Piao; Xiaoyong Zhu
2013-01-01
This study aims at the research goal of three-dimensional digital process design of projectile, which adopts three-dimensional computer-aided process design technology based on MBD and uses MBD to conduct parametric modeling of projectile that can reduce the input of projectile’s process information and data conversion and produce reasonable, feasible and three-dimensional projectile manufacturing process to realize paperless three-dimensional process design of projectile. The application of ...
Speed, Acceleration, Chameleons and Cherry Pit Projectiles
Planinsic, Gorazd; Likar, Andrej
2012-01-01
The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…
Launching a Projectile into Deep Space
Maruszewski, Richard F., Jr.
2004-01-01
As part of the discussion about Newton's work in a history of mathematics course, one of the presentations calculated the amount of energy necessary to send a projectile into deep space. Afterwards, the students asked for a recalculation with two changes: First the launch under study consisted of a single stage, but the students desired to…
A note on stability of motion of a projectile
Indian Academy of Sciences (India)
S D Naik
2001-08-01
A projectile is stabilised using either gyroscopic or aerodynamic stability. But subcalibre projectiles with sabot have both spin and ﬁns. Separate stability criteria are researched generally for each type of projectile. In this paper a stability criterion which can be used for all such bodies has been developed through the Liapunov second method.
Saric, Dragomir
2006-01-01
We give a short proof of the fact that bounded earthquakes of the unit disk induce quasisymmetric maps of the unit circle. By a similar method, we show that symmetric maps are induced by bounded earthquakes with asymptotically trivial measures.
Initiation of Gaseous Detonation by Conical Projectiles
Verreault, Jimmy
Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed
Aerodynamic Characteristics of Projectile with Exotic Wraparound Wings Configuration
Institute of Scientific and Technical Information of China (English)
Fu Zhang; WenJun Ruan; Hao Wang; ChenGuang Zhu; MengHua Zhang
2014-01-01
A projectile with exotic wraparound wings ( WAW ) configuration is designed to improve the fin-stabilized projectile shooting quality. Two fin-stabilized projectiles with the same body with and without exotic WAW configuration are simulated numerically by applying the Roe scheme. The shear-stress transport turbulence models and the lower-upper symmetric Gauss-Seidel implicit method are used to solve 3D Reynolds-averaged Navier-Stokes equations. The differences in aerodynamic coefficients and aerodynamic characteristics of the projectiles when the Mach number varies from 0�35 to 0�95 are obtained, and the cause of these differences is analyzed. The calculation results indicate that the lift-to-drag ratio of the projectile significantly increases, the rolling moment decreases, and the position of the pressure center of the projectile shows relatively small changes when the exotic WAW configuration is used. Therefore, this projectile can obviously reduce rolling effect, enlarge range and improve flying stability.
Investigates on Aerodynamic Characteristics of Projectile with Triangular Cross Section
Institute of Scientific and Technical Information of China (English)
YI Wen-jun; WANG Zhong-yuan; LI Yan; QIAN Ji-sheng
2009-01-01
The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment. Processed the experiment data, curves of flight velocity variation and nutation of both projectiles are obtained, based on the curves, their aerodynamic force and moment coefficients are found out by data fitting, and their aerodynamic performances are compared and analyzed. Results show that the projectile with triangular cross section has smaller resistance, higher lift-drag ratio, better static stability, higher stability capability and more excellent maneuverability than those of the projectile with circular cross section, therefore it can be used in the guided projectiles; under lower rotation speed, the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.
Bound entanglement and entanglement bounds
Energy Technology Data Exchange (ETDEWEB)
Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)
2008-07-01
We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.
Minimum and terminal velocities in projectile motion
Miranda, E N; Riba, R
2012-01-01
The motion of a projectile with horizontal initial velocity V0, moving under the action of the gravitational field and a drag force is studied analytically. As it is well known, the projectile reaches a terminal velocity Vterm. There is a curious result concerning the minimum speed Vmin; it turns out that the minimum velocity is lower than the terminal one if V0 > Vterm and is lower than the initial one if V0 < Vterm. These results show that the velocity is not a monotonous function. If the initial speed is not horizontal, there is an angle range where the velocity shows the same behavior mentioned previously. Out of that range, the volocity is a monotonous function. These results come out from numerical simulations.
Slit-Drum Camera For Projectile Studies
Liangyi, Chen; Shaoxiang, Zhou; Guanhua, Cha; Yuxi, Hu
1983-03-01
The' model XF-70 slit-drum camera has been developed to record projectile in flight for observation and acquisition. It has two operation modes: (1) synchro-ballistic photography, (2) streak record. The film is located on the inner surface of rotating drum to make it travel. The folding mirror is arranged to reflect light beam 90 degree on to film. The assembly of folding mirror and slit aperture can be together rotated about the optical axis of objective so that the camera makes a feature of recording projectile having any launching angle either in synchro-ballistic photography or in streak record through prerotating the folding mirror assembly by an appropriate angle. The mechanical-electric shutter preventing film from reexposing is close to the slit aperture. The loading mechanism is designed for use in daylight. LED fiducial mark and timing mark are printed at the edges of the frame for accurate measurements.
The Envelope of Projectile Trajectories in Midair
Chudinov, P
2005-01-01
A classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. Analytic approach is used for investigation. Simple analytical formulas are used for the constructing the envelope of the family of the point mass trajectories. The equation of envelope is applied for determination of maximum range of flight. The motion of a baseball is presented as an example.
Fragmentation of hypervelocity aluminum projectiles on fabrics
Rudolph, Martin; Schäfer, Frank; Destefanis, Roberto; Faraud, Moreno; Lambert, Michel
2012-07-01
This paper presents work performed for a study investigating the ability of different flexible materials to induce fragmentation of a hypervelocity projectile. Samples were chosen to represent a wide range of industrially available types of flexible materials like ceramic, aramid and carbon fabrics as well as a thin metallic mesh. Impact conditions and areal density were kept constant for all targets. Betacloth and multi-layer insulation (B-MLI) are mounted onto the targets to account for thermal system engineering requirements. All tests were performed using the Space light-gas gun facility (SLGG) of the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI. Projectiles were aluminum spheres with 5 mm diameter impacting at approximately 6.3 km/s. Fragmentation was evaluated using a witness plate behind the target. An aramid and a ceramic fabric lead the ranking of fabrics with the best projectile fragmentation and debris cloud dispersion performance. A comparison with an equal-density rigid aluminum plate is presented. The work presented can be applied to optimize the micrometeoroid and space debris (MM/SD) shielding structure of inflatable modules.
Indian Academy of Sciences (India)
Sudhanshu S Jha; S D Mahanti
2007-05-01
We use different determinantal Hartree–Fock (HF) wave functions to calculate true variational upper bounds for the ground state energy of spin-half fermions in volume 0, with mass , electric charge zero, and magnetic moment , interacting through magnetic dipole–dipole interaction. We ﬁnd that at high densities when the average interparticle distance 0 becomes small compared to the magnetic length m ≡ 22/ħ2, a ferromagnetic state with spheroidal occupation function ↑ $(\\vec{k})$, involving quadrupolar deformation, gives a lower upper bound compared to the variational energy for the uniform paramagnetic state or for the state with dipolar deformation. This system is unstable towards inﬁnite density collapse, but we show explicitly that a suitable short-range repulsive (hard core) interaction of strength 0 and range a can stop this collapse. The existence of a stable equilibrium high density ferromagnetic state with spheroidal occupation function is possible as long as the ratio of coupling constants cm ≡ (03/2) is not very smallcompared to 1.
Electron-hydrogen collisions with dressed target and Volkov projectile states in a laser field
International Nuclear Information System (INIS)
Cross sections for the 1S-2S and 1S-2PO transitions in laser-assisted e--H(1S) collisions are calculated in both the multi-channel eikonal treatment and the Born wave approximation, as a function of impact energy and laser field intensity. The laser considered is a monotonic, plane-polarized CO2 laser (photon energy = 0.117 eV) with the polarization direction parallel to the initial projectile velocity. The first part of this paper confines the laser perturbation to the bound electrons of the atom. The second part extends the laser perturbation to the projectile electron, and the familiar Volkov dressed states are used. (author)
Forensic and clinical issues in the use of frangible projectile.
Komenda, Jan; Hejna, Petr; Rydlo, Martin; Novák, Miroslav; Krajsa, Jan; Racek, František; Rejtar, Pavel; Jedlička, Luděk
2013-08-01
Frangible projectiles for firearms, which break apart on impact, are mainly used by law enforcement agencies for training purposes, but can also be used for police interventions. Apart from the usual absence of lead in the projectiles, the main advantage of using frangible projectiles is the reduced risk of ricochet after impact with a hard target. This article describes the design and function of frangible projectiles, and describes gunshot wounds caused by ultra-frangible projectiles which fragment after penetration of soft tissues. Shooting experiments performed by the authors confirmed that differences in the geometry and technology of frangible projectiles can significantly modify their wounding effects. Some frangible projectiles have minimal wounding effects because they remain compact after penetration of soft tissues, comparable to standard fully jacketed projectiles. However, a number of ultra-frangible projectiles disintegrate into very small fragments after impact with a soft tissue substitute. In shooting experiments, we found that the terminal behavior of selected ultra-frangible projectiles was similar in a block of ballistic gel and the soft tissues of the hind leg of a pig, except that the degree of disintegration was less in the gel. PMID:23910864
Hign-speed penetration of projectile with cavitator into sand
Daurskikh, Anna; Veldanov, Vladislav
2011-06-01
Cavitators are used in underwater projectiles design to form a cavern in which projectile could move with no or significantly reduced drag. An investigation of possible application of this structural element for penetration into porous media was conducted. High-speed impact of a conical-shaped head projectile with cavitator was studied in terms of its influence on penetration capacity and projectile stability in sand for impact velocity about 1500 m/s. Cavitators were manufactured of steel with different strength moduli, and thus two penetration regimes (with eroding/non-eroding cavitator) were compared. Numerical simulations showing wave propagation in target and projectile were performed in AUTODYN with Johnson-Cook model for projectile and granular model for sand.
Measuring Projectile Velocity using Shock Wave Pressure Sensors
Directory of Open Access Journals (Sweden)
Sankarsan Padhy
2014-11-01
Full Text Available This paper deals with development of velocity measurement methodology based on projectile shock wave pressure measurements. The measurement principle is based on the fact that, whenever a projectile moves with supersonic velocity, shock wave fronts are produced along the trajectory of the projectile. Measurement configuration has been developed for measuring the shock wave pressure associated with projectile in flight, and hence, projectile velocity has been calculated. This paper covers various aspects of shock waves, generation of N Waves, feasibility study for capturing shock wave using dynamic microphone. Finally, suitable piezo-electric sensor has been selected and deployed in the trials and shock wave signature has been captured. From shock wave pressure, the projectile velocity has been computed.Defence Science Journal, Vol. 64, No. 6, November 2014, pp.499-501, DOI:http://dx.doi.org/10.14429/dsj.64.8108
Penetration of Granular Projectiles into a Water Target
González-Gutiérrez, Jorge; J. L. Carrillo-Estrada; Ruiz-Suárez, J. C.
2014-01-01
The penetration of low-speed projectiles into a water target has been studied in the last several years to understand the physics behind the formation and collapse of cavities. In such studies, the projectiles employed were solid bodies or liquid drops. Here we report similar impact experiments using granular projectiles, with the aim to investigate how the morphology of the cavities is determined by the balance between the dynamic pressure exerted by the fluid and the cohesive strength of th...
Oblique Impact of Projectile on Thin Aluminium Plates
Directory of Open Access Journals (Sweden)
W.U. Khan
2003-04-01
Full Text Available Experiments were performed, wherein cylindrical projectiles made of hardened steel were impacted on commercially available aluminium plates at different angles. Projectiles were of 12.8 mm diameter and plates were of 0.81 mm, 1.52mm and 1.91mm thicknesses. Based on the experimental results, an analytical model has been developed to predict the residual velocity of the projectile and the ballistic limit of the plate.
Projectile development for railguns using hypervelocity preacceleration. Revision 1
Energy Technology Data Exchange (ETDEWEB)
Susoeff, A.R.; Hawke, R.S. [Lawrence Livermore National Lab., CA (United States); Ang, J.A.; Asay, J.R.; Hall, C.A.; Konrad, C.H. [Sandia National Labs., Albuquerque, NM (United States); Sauve, G.L. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Hickman, R.J. [Ktech Corp., Albuquerque, NM (United States)
1992-03-20
The STARFIRE Project is a joint Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) effort to achieve hypervelocity projectile launches up to 15 km/s. The apparatus used to achieve this goal is a three stage acceleration system made up of a two-stage light-gas gun (2SLGG) coupled to a railgun. The 2SLGG is used as a preaccelerator capable of injecting 2 gram projectiles at velocities of 6 km/s or more. Projectiles used in this environment are subject to many conditions. Some of these which effect projectile design include: acceleration loading, structural response, barrel condition and alignment. Development of a projectile to satisfy the programmatic requirements is underway. This report covers the evolution of design and fabrication for railgun projectiles from previous experiment at LLNL to the replenished plasma armature and projectile now used on STARFIRE. Projectile design, development and fabrication methods which use off-the-shelf materials and standard techniques to meet the operational criteria of the experimental program are discussed in this paper. Initial work involving the design and fabrication of skirted projectiles, which are expected to further reduce interaction phenomena between the plasma armature and railgun barrel, is also described.
Design and testing of high-pressure railguns and projectiles
Peterson, D. R.; Fowler, C. M.; Cummings, C. E.; Kerrisk, J. F.; Parker, J. V.; Marsh, S. P.; Adams, D. F.
1984-03-01
Attention is given to the results of high-pressure tests involving four railgun designs and four projectile types. Explosive magnetic-flux compression generators were employed to power the railguns. On the basis of the experimental data, it appears that the high-strength projectiles have lower resistance to acceleration than low-strength projectiles, which expand against the bore during acceleration. While confined in the bore, polycarbonate projectiles can be subjected to pressures as high as 1.3 GPa without shattering. In multishot railguns, it is important to prevent an accumulation of sooty material from the plasma armature in railgun seams.
New projectiles: multicharged metal clusters and biopolymers
International Nuclear Information System (INIS)
Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface(∼100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV
Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes
Thies, R; Adachi, T; Aksyutina, Y; Alcantara-Núñes, J; Altstadt, S; Alvarez-Pol, H; Ashwood, N; Aumann, T; Avdeichikov, V; Barr, M; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boretzky, K; Borge, M J G; Burgunder, G; Caamano, M; Caesar, C; Casarejos, E; Catford, W; Cederkäll, J; Chakraborty, S; Chartier, M; Chulkov, L V; Cortina-Gil, D; Crespo, R; Datta, U; Fernández, P Díaz; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Freudenberger, M; Fynbo, H O U; Galaviz, D; Geissel, H; Gernhäuser, R; Göbel, K; Golubev, P; Diaz, D Gonzalez; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Henriques, A; Holl, M; Ickert, G; Ignatov, A; Jakobsson, B; Johansson, H T; Jonson, B; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knöbel, R; Kröll, T; Krücken, R; Kurcewicz, J; Kurz, N; Labiche, M; Langer, C; Bleis, T Le; Lemmon, R; Lepyoshkina, O; Lindberg, S; Machado, J; Marganiec, J; Maroussov, V; Mostazo, M; Movsesyan, A; Najafi, A; Nilsson, T; Nociforo, C; Panin, V; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Prochazka, A; Rahaman, A; Rastrepina, G; Reifarth, R; Ribeiro, G; Ricciardi, M V; Rigollet, C; Riisager, K; Röder, M; Rossi, D; del Rio, J Sanchez; Savran, D; Scheit, H; Simon, H; Sorlin, O; Stoica, V; Streicher, B; Taylor, J T; Tengblad, O; Terashima, S; Togano, Y; Uberseder, E; Van de Walle, J; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Weigand, M; Wheldon, C; Wilson, G; Wimmer, C; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M V; Zilges, A; Zuber, K
2016-01-01
Background: Models describing nuclear fragmentation and fragmentation-fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool to reach the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from 10,12-18C and 10-15B isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent dataset. We compare our data to model calculations. Results: One-proton removal cross sec...
Gutiérrez-Rodríguez, A
2003-01-01
A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).
A study of the penetration of projectiles into marine sediments
International Nuclear Information System (INIS)
The work described in this document consists of three main parts: - Application, after having reviewed calculation methods and known codes, of a dynamic plasticity model based on the upper bound-method (with dissipated energy calculations by plastic deformations). The soil model used for this calculation is the Cambridge Clay Model. - Carrying out a programme of tests with instrumented small scale penetrators in centrifuge on a consolidated clay-target. The trials are done under 50 g, with projectiles, fired with an airgun at high impact velocity (50 m/s). The penetrators' instrumentation consists of either measuring acceleration, or tip force with strain gauges. - The mounting of a small instrumented penetrator for shallow water depth experimentations, with an accelerometer, and a local cell for tip resistance. A rapid electronic data acquisition system has been developed for these experimentations. The preliminary tests are done in a large tank filled with clay. The geotechnical characteristics of the clay are perfectly controlled. The tests performed under these conditions have shown the following observations: the rapid electronic data acquisition system works perfectly and could be used as a basic component for a deep water instrumentated penetrator; the results, obtained in these particular test conditions, are in a perfect agreement with the predictions of the model developed in the frame of this contract
Penetration of projectiles into granular targets
Ruiz-Suárez, J. C.
2013-06-01
Energetic collisions of subatomic particles with fixed or moving targets have been very valuable to penetrate into the mysteries of nature. But the mysteries are quite intriguing when projectiles and targets are macroscopically immense. We know that countless debris wandering in space impacted (and still do) large asteroids, moons and planets; and that millions of craters on their surfaces are traces of such collisions. By classifying and studying the morphology of such craters, geologists and astrophysicists obtain important clues to understand the origin and evolution of the Solar System. This review surveys knowledge about crater phenomena in the planetary science context, avoiding detailed descriptions already found in excellent papers on the subject. Then, it examines the most important results reported in the literature related to impact and penetration phenomena in granular targets obtained by doing simple experiments. The main goal is to discern whether both schools, one that takes into account the right ingredients (planetary bodies and very high energies) but cannot physically reproduce the collisions, and the other that easily carries out the collisions but uses laboratory ingredients (small projectiles and low energies), can arrive at a synergistic intersection point.
Locating the source of projectile fluid droplets
Varney, Christopher R
2011-01-01
The ballistically ill-posed projectile problem of finding source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. Due to missing velocity information, however, finding the height of origin from impact position and angle of individual drops is not possible. Turning to aggregate statistics of the spatter and basic equations of projectile motion familiar to physics students, we introduce a reciprocal correlation plot that is effective when the polar angle of launch is concentrated in a narrow range. The horizontal plot coordinate is twice the reciprocal of impact distance, and the vertical coordinate depends on the orientation of the spattered surface; for a level surface this is the tangent of impact angle. In all cases one infers source height as the slope of data points in the reciprocal correlation plot. Such plo...
Extraordinary energy production after collision of metallic projectile with solid target
International Nuclear Information System (INIS)
Production of additional energy in collision of metallic projectile with solid target is considered. It is shown that when the projectile speed exceeds certain threshold, the heat energy after collision may sufficiently exceed the kinetic energy of the projectile
Corrected Launch Speed for a Projectile Motion Laboratory
Sanders, Justin M.; Boleman, Michael W.
2013-01-01
At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…
Projectile impact Hugoniot parameters for selected materials
Energy Technology Data Exchange (ETDEWEB)
Vigil, M G
1989-08-01
The Rankine Hugoniot equation relating the conversion of momentum across a shock front and the empirical relationship for shock velocity as a function of particle velocity are used to calculate the impact pressures for selected materials. The shock velocity and particle velocities are then calculated as a function of impact pressures. The calculated data are graphically presented sets of three figures for the selected materials as follows: Impact pressure as a function of impact velocity, impact pressure as a function of particle velocity, impact pressure as a function of shock velocity. Given the projectile impact velocity and material Hugoniot information, this graphical representation of the data allows for a fast approximation of the impact pressure particle velocity, and shock velocity in the target material. 9 refs., 1 fig., 3 tabs.
Influence of projectile breakup on complete fusion
Indian Academy of Sciences (India)
A Mukherjee; M K Pradhan
2010-07-01
Complete fusion excitation functions for 11,10B+159Tb and 6,7Li+159Tb have been reported at energies around the respective Coulomb barriers. The measurements show significant suppression of complete fusion cross-sections at energies above the barrier for 10B+159Tb and 6,7Li+159Tb reactions, when compared to those for 11B+159Tb. The comparison shows that the extent of suppression of complete fusion cross-sections is correlated with the -separation energies of the projectiles. Also, the measured incomplete fusion cross-sections show that the -particle emanating channel is the favoured incomplete fusion process. Inclusive measurement of the -particles produced in 6Li+159Tb reaction has been carried out. Preliminary CDCC calculations carried out to estimate the - yield following 6Li breaking up into + fail to explain the measured -yield. Transfer processes seem to be important contributors.
Experimental and numerical study on fragmentation of steel projectiles
Directory of Open Access Journals (Sweden)
Hopperstad O.S.
2012-08-01
Full Text Available A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.
Experimental and numerical study on fragmentation of steel projectiles
Råkvaag, K. G.; Børvik, T.; Hopperstad, O. S.; Westermann, I.
2012-08-01
A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.
NUMERICAL SIMULATION FOR FORMED PROJECTILE OF DEPLETED URANIUM ALLOY
Institute of Scientific and Technical Information of China (English)
宋顺成; 高平; 才鸿年
2003-01-01
The numerical simulation for forming projectile of depleted uranium alloy with the SPH ( Smooth Particle Hydrodynamic ) algorithm was presented. In the computations the artificial pressures of detonation were used, i. e. , the spatial distribution and time distribution were given artificially. To describe the deformed behaviors of the depleted uranium alloy under high pressure and high strain rate, the Johnson-Cook model of materials was introduced. From the numerical simulation the formed projectile velocity,projectile geometry and the minimum of the height of detonation are obtained.
Directory of Open Access Journals (Sweden)
Oukara A.
2012-08-01
Full Text Available Since there is an increasing interest in avoiding human body injury in diverse situations like crowd control or peacekeeping missions, less lethal ammunition are more and more used. In this study we focus only on kinetic energy non-lethal (KENLW projectiles. Their desired effects on human body are the temporary incapacitation through blunt trauma. There are different types of KENLW projectiles ranging from rigid to deformable projectiles. Unfortunately, the effects of such projectiles are not really well known as it is difficult to measure the force transmitted to the human body or the related deformation. Because the potential of injury excludes human living tests, tests are performed on cadavers, animals or human tissue surrogates. Besides these tests, numerical simulations are more and more used to gain more understanding, to assess or to predict the effects of this kind of projectile on human body. In this paper a comparison based on the viscous criterion between the 37 mm rigid projectile and the 40 mm sponge projectile was made.
Simultaneous Projectile-Target Excitation in Heavy Ion Collisions
Benesh, C. J.; Friar, J. L.
1994-01-01
We calculate the lowest-order contribution to the cross section for simultaneous excitation of projectile and target nuclei in relativistic heavy ion collisions. This process is, to leading order, non-classical and adds incoherently to the well-studied semi-classical Weizs\\"acker-Williams cross section. While the leading contribution to the cross section is down by only $1/Z_P$ from the semiclassical process, and consequently of potential importance for understanding data from light projectil...
Theoretical design and modeling of an Infantry railgun projectile
Brady, James A.
2005-01-01
In order for railgun technology to be relevant to the Infantry, the design of the projectile must incorporate the following three concepts: an effective ballistics package, geometries for aerodynamic stability; and a non-parasitic conducting armature. I designed an effective 30mm and scaled 40mm projectile which incorporates the aforementioned concepts. My ballistics analysis concluded with two AUTODYN. finite-element computer models that refined theoretical estimates for target penetration. ...
Injury Risk Assessment of Non-Lethal Projectile Head Impacts
Oukara, Amar; Nsiampa, Nestor; Robbe, Cyril; Papy, Alexandre
2014-01-01
Kinetic energy non-lethal projectiles are used to impart sufficient effect onto a person in order to deter uncivil or hazardous behavior with a low probability of permanent injury. Since their first use, real cases indicate that the injuries inflicted by such projectiles may be irreversible and sometimes lead to death, especially for the head impacts. Given the high velocities and the low masses involved in such impacts, the assessment approaches proposed in automotive crash tests and sports ...
Directory of Open Access Journals (Sweden)
Ballester Pla, Coralio
2012-03-01
Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.
La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.
Directory of Open Access Journals (Sweden)
NianSong Zhang
2015-01-01
Full Text Available A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.
Set Down Study of Projectile in Flight Through Imaging
Directory of Open Access Journals (Sweden)
Suman Kumar Choudhury
2014-11-01
Full Text Available Deformation study of projectile immediately after firing is essential for its successful impact. A projectile that undergoes more than the tolerated amount of deformation in the barrel may not produce the requisite results. The study of projectile deformation before its impact requires it to be imaged in flight and perform some computation on the acquired image. Often the deformation tolerance is of the order of tens of micrometer and the acquired image cannot produce image with such accuracy because of photographic limitations. Therefore, it demands sub-pixel manipulation of the captured projectile image. In this work the diameter of a projectile is estimated from its image which became blur because of slow shutter speed. First the blurred image is restored and then various interpolation methods are used for sub-pixel measurement. Two adaptive geometrical texture based interpolation schemes are also proposed in this research. The proposed methods produce very good results as compared to the existing methods.Science Journal, Vol. 64, No. 6, November 2014, pp.530-535, DOI:http://dx.doi.org/10.14429/dsj.64.8114
Injury risk assessment of non-lethal projectile head impacts.
Oukara, Amar; Nsiampa, Nestor; Robbe, Cyril; Papy, Alexandre
2014-01-01
Kinetic energy non-lethal projectiles are used to impart sufficient effect onto a person in order to deter uncivil or hazardous behavior with a low probability of permanent injury. Since their first use, real cases indicate that the injuries inflicted by such projectiles may be irreversible and sometimes lead to death, especially for the head impacts. Given the high velocities and the low masses involved in such impacts, the assessment approaches proposed in automotive crash tests and sports may not be appropriate. Therefore, there is a need of a specific approach to assess the lethality of these projectiles. In this framework, some recent research data referred in this article as "force wall approach" suggest the use of three lesional thresholds (unconsciousness, meningeal damages and bone damages) that depend on the intracranial pressure. Three corresponding critical impact forces are determined for a reference projectile. Based on the principle that equal rigid wall maximal impact forces will produce equal damage on the head, these limits can be determined for any other projectile. In order to validate the consistence of this innovative method, it is necessary to compare the results with other existing assessment methods. This paper proposes a comparison between the "force wall approach" and two different head models. The first one is a numerical model (Strasbourg University Finite Element Head Model-SUFEHM) from Strasbourg University; the second one is a mechanical surrogate (Ballistics Load Sensing Headform-BLSH) from Biokinetics. PMID:25400712
Elastic recovery in targets impacted by low-velocity projectiles*%信息动态
Institute of Scientific and Technical Information of China (English)
2011-01-01
By taking into account the whole plastic deformation and elastic deformation recovery of targets during the penetration of the rigid, sharp-nose projectiles, the ANSYS/LS-DYNA code was used to calculate the rebound velocities of the projectiles and targets in the cases that the projectiles at the same velocities penetrated into the targets with different widths and thicknesses. Influences of the sizes of the targets and the impact velocities of the projectiles on the elastic recovery of the targets and the rebound of the projectiles were analyzed. The researched results are helpful for the engineering and experimental designs of the projectiles with low velocities penetrating into the targets.
Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes
Thies, R.; Heinz, A.; Adachi, T.; Aksyutina, Y.; Alcantara-Núñes, J.; Altstadt, S.; Alvarez-Pol, H.; Ashwood, N.; Aumann, T.; Avdeichikov, V.; Barr, M.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Burgunder, G.; Camaño, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chakraborty, S.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Crespo, R.; Datta, U.; Díaz Fernández, P.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Freudenberger, M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Göbel, K.; Golubev, P.; Gonzalez Diaz, D.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Henriques, A.; Holl, M.; Ickert, G.; Ignatov, A.; Jakobsson, B.; Johansson, H. T.; Jonson, B.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knöbel, R.; Kröll, T.; Krücken, R.; Kurcewicz, J.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lepyoshkina, O.; Lindberg, S.; Machado, J.; Marganiec, J.; Maroussov, V.; Mostazo, M.; Movsesyan, A.; Najafi, A.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Prochazka, A.; Rahaman, A.; Rastrepina, G.; Reifarth, R.; Ribeiro, G.; Ricciardi, M. V.; Rigollet, C.; Riisager, K.; Röder, M.; Rossi, D.; Sanchez del Rio, J.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Stoica, V.; Streicher, B.; Taylor, J. T.; Tengblad, O.; Terashima, S.; Togano, Y.; Uberseder, E.; Van de Walle, J.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Weigand, M.; Wheldon, C.; Wilson, G.; Wimmer, C.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M. V.; Zilges, A.; Zuber, K.; R3B Collaboration
2016-05-01
Background: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from 10,12 -18C and B-1510 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1 p x n ) for relativistic 10,12 -18C and B-1510 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the epax code is not able to describe the data satisfactorily. Using abrabla07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease abrabla07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.
Design limitations for small caliber electromagnetic saboted rod projectiles
International Nuclear Information System (INIS)
In any application of electromagnetic launch, the armature package must conform to the barrel and provide the desired terminal performance. Finned long rod projectiles have proven to be viable candidates for both flight bodies and terminal effectiveness. This paper describes the criteria necessary for integrating a solid armature with a conventional type finned rod. An initial design is presented for a rod projectile, launched from a 15.24 mm (.60 caliber) augmented railgun with a sinusoidal driving current. Other designs are assessed in order to explore improvements and scalability to other bore diameters. The authors evaluate the final armature design considering: launch, flight, and terminal effects. ohmic heating, structural limitations, and barrel parameters are also discussed. Flight and aerodynamic data are scaled from existing finned rod projectile data bases to calculate horizontal flat-trajectory performance. Finally, terminal effects are incorporated for a simple rolled homogeneous armor (RHA) target
Using Tracker as a Pedagogical Tool for Understanding Projectile Motion
Wee, Loo Kang; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong
2012-01-01
This paper reports the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When computer model building learning processes is supported and driven by video analysis data, this free Open Source Physics (OSP) tool can provide opportunities for students to engage in active inquiry-based learning. We discuss the pedagogical use of Tracker to address some common misconceptions of projectile motion by allowing students to test their hypothesis by juxtaposing their mental models against the analysis of real life videos. Initial research findings suggest that allowing learners to relate abstract physics concepts to real life through coupling computer modeling with traditional video analysis could be an innovative and effective way to learn projectile motion.
Oblique perforation of thick metallic plates by rigid projectiles
Institute of Scientific and Technical Information of China (English)
Xiaowei Chen; Qingming Li; Saucheong Fan
2006-01-01
Oblique perforation of thick metallic plates by rigid Drojectiles with various nose shapes is studied in this paper.Two perforation mechanisms,i.e., the hole enlargement for a sharp projectile nose and the plugging formation for a blunt projectile nose,are considered in the proposed analytical model.It is shown that the perforation of a thick plate is dominated by several non-dimensional numbers,i.e., the impact function,the geometry function of projectile,the non-dimensional thickness of target and the impact obliquity.Explicit formulae are obtained to predict the ballistic limit.residual velocity and directional change for the oblique perforation of thick metallic plates.The proposed model is able to predict the critical condition for the occurrence of ricochet.The proposed model is validated by comparing the predictions with other existing models and independent experimental data.
Fragmentation of Pb-Projectiles at SPS Energies
2002-01-01
% EMU17 \\\\ \\\\ We have exposed stacks consisting of solid state nuclear track detectors (CR-39 plastic and BP-1 glass) and different target materials at the SPS to beams of Pb projectiles. Our detectors record tracks of relativistic nuclei with charge numbers of Z~$\\geq$~6 for CR-39 and Z~$\\geq$75 for BP-1. After development of the tracks by etching they are detected and measured using completely automated microscope systems. Thus experiments with high statistics are possible. \\\\ \\\\BP-1 detectors were exposed to measure total charge changing cross sections and elemental production cross sections for heavy projectile fragments. These experiments were performed for different targets CH$ _{2} $, C, Al, Cu, Ag and Pb. Comparison of the results for different targets allows to investigate contributions to charge changing reactions by electromagnetic dissociation. Multifragmentation events in which several intermediate mass fragments are emitted from the heavy Pb projectile are studied using stacks containing CR-39 d...
Using Tracker as a pedagogical tool for understanding projectile motion
Wee, Loo Kang; Chew, Charles; Hwee Goh, Giam; Tan, Samuel; Lee, Tat Leong
2012-07-01
This article reports on the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When a computer model building learning process is supported and driven by video analysis data, this free Open Source Physics tool can provide opportunities for students to engage in active enquiry-based learning. We discuss the pedagogical use of Tracker to address some common misconceptions concerning projectile motion by allowing students to test their hypothesis by juxtaposing their mental models against the analysis of real-life videos. Initial research findings suggest that allowing learners to relate abstract physics concepts to real life through coupling computer modelling with traditional video analysis could be an innovative and effective way to learn projectile motion.
Optical potentials for p-shell heavy ion projectiles
International Nuclear Information System (INIS)
Elastic and inelastic scatterings of 12C, 13C, 14N, and 16O projectiles on 28Si have been studied at corresponding bombarding energies to the scattering in regions of the vicinity of the strong absorption radius. Optical model and microscopic double-folding model analyses have been performed in order to define the nature of the optical potential depending on the projectiles. The analysis by the optical model calculations showed that the shallow potential (V/sub R/ = 10 MeV) was not adequate for reproducing both the measured elastic and inelastic angular distributions, and a spin-dependent noncentral potential for the scattering systems 13C,14N+28Si was indispensable for obtaining the similar central potentials for all four projectiles. Analysis by the microscopic double-folding calculations supported the results of the optical model calculations
Projectile transverse motion and stability in electromagnetic induction launchers
Energy Technology Data Exchange (ETDEWEB)
Shokair, I.R.
1993-12-31
The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Linearized transverse forces and torques due to energized coils are derived for displaced or tilted armature elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple linear stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot circuit code and numerical solutions for the transverse motion are obtained. For a launcher with a 10 cm bore radius with a 40 cm long solid armature, we find that stability is achieved with a restoring force (per unit length) constant of k {approx} 1 {times} 10{sup 8} N/m{sup 2}. For k = 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of 1 mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars. Results for a wound armature with uniform current density throughout show very similar displacements.
Stable rotating dipole solitons in nonlocal media
DEFF Research Database (Denmark)
Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.;
2006-01-01
We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....
Dimensional Analysis on the Perforation of Stiffened Plates by Projectiles
Institute of Scientific and Technical Information of China (English)
SONG Wei-dong; NING Jian-guo
2007-01-01
The phenomena attendant to the perforation of truncated oval shape projectile in to multi-layered stiffened plates were investigated. Dimensional analysis was employed to give an empirical formula. Then a membership function was introduced to modify the empirical formula. The effects of initial velocities, base plate thicknesses, height and width of stiffener on residual velocities were explored. The predictions of the empirical formula are in reasonably good agreement with those of experiment and numerical results. All these results indicate that the empirical formula is capable of predicting the residual velocity of the projectile penetrating the multi-layered stiffened plates.
PERFORATION OF PLASTIC SPHERICAL SHELLS UNDER IMPACT BY CYLINDRICAL PROJECTILES
Institute of Scientific and Technical Information of China (English)
NING Jian-guo; SONG Wei-dong
2006-01-01
The objective is to study the perforation of a plastic spherical shell impacted by a cylindrical projectile. First, the deformation modes of the shell were given by introducing an isometric transformation. Then, the perforation mechanism of the shell was analyzed and an analytical model was advanced. Based on Hamilton principle, the governing equation was obtained and solved using Runge-Kuta method. Finally, some important theoretical predictions were given to describe the perforation mechanism of the shell. The results will play an important role in understanding the perforation mechanism of spherical shells impacted by a projectile.
Dispersion Analysis of the XM881APFSDS Projectile
Directory of Open Access Journals (Sweden)
Thomas F. Erline
2001-01-01
Full Text Available This study compares the results of a dispersion test with mathematical modeling. A 10-round group of modified 25-mm XM881 Armor Piercing Fin Stabilized Discarding Sabot projectiles was fired from the M242 chain gun into a designated target. The mathematical modeling results come from BALANS, a product of Arrow Tech Associates. BALANS is a finite-element lumped parameter code that has the capability to model a flexible projectile being fired from a flexible gun. It also has the unique feature of an automated statistical evaluation of dispersion. This study represents an effort to evaluate a simulation approach with experiment.
A Cosmological Upper Bound on Superpartner Masses
Hall, Lawrence J; Volansky, Tomer
2013-01-01
If some superpartners were in thermal equilibrium in the early universe, and if the lightest superpartner is a cosmologically stable gravitino, then there is a powerful upper bound on the scale of the superpartner masses. Typically the bound is below tens of TeV, often much lower, and has similar parametrics to the WIMP miracle.
Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.
2011-03-01
We present results of hypervelocity cratering experiments using iron meteorite as projectile and a sandstone target. The ejecta show shock features (melting, PDFs, lechatelierite) and physical as well as chemical mixing between projectile and target.
On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts
Stewart, Sean M.
2012-01-01
Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…
Survivability of Meteorite Projectiles - Results from Impact Experiments
Bland, P. A.; Cintala, M. J.; Hoerz, F.; Cressey, G.
2001-01-01
An experimental impact study investigating the fragmentation of various projectiles, including meteorite, at speeds up to 1.8 km/s. The results have implications for the survivability of meteorites impacting planetary and asteroidal surfaces. Additional information is contained in the original extended abstract.
Projectile attitude and position determination using magnetometer sensor only
Changey, Sebastien; Fleck, Volker; Beauvois, Dominique
2005-03-01
A priori information given by the complete modelling of the ballistic behavior (trajectory, attitude) of the projectile is simplified to give a pertinent reduced evolution model. An algorithm based on extended Kalman filters is designed to determinate: " position: x,y,z references in earth frame. " value and direction of the velocity vector; its direction is given by 2 angles (η and θ). " attitude around velocity vector given by 3 angles: roll angle in the range [0, 2π], angle of attack α and side-slip angle β in the range of few milliradians. The estimation is based on the measures of the magnetic field of the earth given by a three-axis magnetometer sensor embedded on the projectile. The algorithm also needs the knowledge of the direction of the earth magnetic fields in the earth frame and aerodynamics coefficients of the projectile. The algorithm has been tested on simulation, using real evolution of attitude data for a shot with a 155 mm rotating projectile over a distance of 16 km, with wind and measurement noise. The results show that we can estimate milliradians with non-linear equations and approximations, with good precision.
Projectile deformation effects in the breakup of $^{37}$Mg
Shubhchintak,; Shyam, R
2015-01-01
We study the breakup of $^{37}$Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the post-form finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of $^{37}$Mg.
Using Tracker as a Pedagogical Tool for Understanding Projectile Motion
Wee, Loo Kang; Chew, Charles; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong
2012-01-01
This article reports on the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When a computer model building learning process is supported and driven by video analysis data, this free Open Source Physics tool can provide opportunities for students to engage in active enquiry-based…
Behaviour of a Kinetic Energy Projectile on Angular Impact
Directory of Open Access Journals (Sweden)
R. A. Goel
1988-07-01
Full Text Available Experiments of high velocity impact have been carried out with 30 mm armoured piercing projectiles on 55 mm thick hard steel plate. Angle of impact has been varied from 10" to 90". Damage inflicted on target with varying angle of impact has been reported and discussed in this paper. Comparative behaviour with 20 mm APP shot has also been discussed.
Calculation of forces arising from impacting projectiles upon yielding structures
International Nuclear Information System (INIS)
Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building [QUOTE]acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might-in general-be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behaviour of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. The calculations are performed with a one-dimensional model for the projectile. The presented model calculations seem to verify that the motion of the target does not have much influence on the impact force for projectiles similar to the model projectile, provided the displacement of the yielding target is small in comparison with the path covered by the free-flying projectile during a time which is equivalent to the total time of impact. (Auth.)
3D Numerical Simulation of Projectile Penetration into Concrete Target
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Basing on the explicit instantaneous dynamics software MSC-Dytran and the general coupling arithmetic, the process of the projectile penetration into concrete target was simulated with the point-line-surface-body modeling method. Simulation results are in agreement with experimental results. The simulated data could provide design reference for the defense engineering construction and penetrator design.
Livingstone, I.H.G.; Verolme, K.; Hayhurst, C.J.
2001-01-01
For cubes and spheres under high velocity impact there exists for each system of projectile and target, a threshold velocity that is just sufficient to shatter the projectile. This velocity, usually above 2km/s for metallic projectiles, is known as the fragmentation onset velocity. To determine the
Institute of Scientific and Technical Information of China (English)
HU Zhi-peng; LIU Rong-zhong; GUO Rui
2012-01-01
The design of terminally sensitive projectile scanning platform requires a better understanding of its aerodynamic characteristics.The terminally sensitive projectile with S-C fins has a complex aerodynamic shape,which is constructed with small length to diameter ratio cylindrical body on which two low aspect ratio fins are installed.The study focuses on the effect of fin aspect ratio on the aerodynamic characteristics.Simulation was carried on based on computational fluid dynamics(CFD) method,and the pressure distribution characteristic,drag coefficient,lift coefficient and rolling moment coefficient varying with attack angle were obtained.A free flying experimental investigation focused on the kinetic aerodynamics was made.The results show that the fins provide sufficient drag to balance the terminally sensitive projectile weight to keep it flying at low and stable speed.The lift coefficient has a negative linear varying with attack angle.The rolling moment decrease with the increase in attack angle and the decrease in wing span area.
Physics with loosely bound nuclei
Indian Academy of Sciences (India)
Chhanda Samanta
2001-08-01
The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to ﬁnd a consistent picture for the unstable nuclei starting from their stable counterparts. Some signiﬁcant differences in the structure and reaction mechanisms are found.
Experimental Research on Behavior of Composite Material Projectile Penetrating Concrete Target
Institute of Scientific and Technical Information of China (English)
ZHONG Weizhou; SONG Shuncheng; ZHANG Fangju; ZHANG Qingping; HUANG Xicheng; LI Sizhong; LU Yonggang
2008-01-01
Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336 m/s, 447 m/s and 517 m/s.The angles between the perpendicular of target surface and projectile axis are 0° and 30° .The thickness of concrete target is 200 mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete target without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile, if the density of metal is taken as 7.8 g/cm3.Comparing with metal projectile, low-density, high-strength composite material can lessen projectile weight, improve charge-weight ratio of detonator and enhance destructive powder.
Ballistics considerations for small-caliber, low-density projectiles
Energy Technology Data Exchange (ETDEWEB)
Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.
1993-11-01
One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at {approximately} 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these small (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases.
Plasma as a high-charge-state projectile stripping medium
International Nuclear Information System (INIS)
The classical trajectory Monte Carlo model has been used to computationally study the charge-state distributions that result from interactions between a high-energy, multielectron projectile and neutral and fully ionized targets. These studies are designed to determine the properties of a plasma for producing highly stripped ions as a possible alternative to gas and foil strippers that are commonly used to enhance the charge states of energetic ion beams. The results of these studies clearly show that a low-atomic-number, highly ionized plasma can yield higher charge states than a neutral target of the same density. The effect is principally attributable to the reduction in the number of available electron-capture channels. In this article, we compare the charge-state distributions that result during passage of a 20-MeV Pb projectile through neutral gas and fully ionized (singly charged) plasma strippers and estimate the effects of multiple scattering on the quality of the beam
Performance of the Projectile Fragmentation Wall at CELSIUS Storage Ring
Siwek, A.; Budzanowski, A.; Czech, B.; Gburek, T.; Jakobsson, B.; Kozik, E.; Skwirczyńska, I.; Westerberg, L.
The projectile fragmentation wall [Budzanowski, A. et al., Nucl. Instr. Meth. A482, 528 (2002).] (PFW) is a part of a bigger detection system comprising of the CHICSi detector [Jakobsson, B., Nucl. Phys. News Int. 9:2, 22 (1999). Siwek, A., Nucl. Phys., A654, 2695 (1999)] and a recoil detectors array [Kuznetsov, A. V. et al, Nucl. Instr. Meth. A452, 525 (2000)]. The system is designed to register products of proton- and heavy ion-induced reactions at the energies 50-450 MeV/nucleon (see Bo Jakobsson's contribution to this conference). The aim of PFW is to register and identify projectile like fragments emitted in forward direction not covered by the CHICSi detector.
Mechanisms of Li-projectile breakup-up
International Nuclear Information System (INIS)
Various experimental and theoretical features observed in recent studies of break-up of 6Li and 7Li projectiles in the field of atomic nuclei are discussed, in particular for the transitional energy regime of 10-30 MeV/amu. The discussion is organized as three independent lectures presented at the International School on Nuclear Physics, Kiev (UkSSR), 28 May - 8 June, 1990. After a survey on the main experimental facts and on the basic reaction mechanisms, current theoretical approaches are illustrated by an application to the analysis of elastic break-up of 156 MeV 6Li projectiles. Finally Coulomb break-up is discussed as a novel tool of laboratory nuclear astrophysics. (orig.)
Magnus Force of Common Projectile Bodies with Turbulent Layers
Institute of Scientific and Technical Information of China (English)
CHEN Jun
2005-01-01
Calculating formulae of Magnus force on common projectile bodies (cone-shaped and parabola-shaped) with turbulent layers were built based on Magnus theory. The effects of temperature exponential were considered, and curve-fitting approaches were adopted in the research that could give more exact result data. Both flow layer constants and shape constants are presented in Magnus force formulae, which are useful to evaluate Magnus force in different states.
Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation
Norbury, John W.; Adamczyk, Anne; Dick, Frank
2008-01-01
Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.
Numerical simulation of multiphase cavitating flows around an underwater projectile
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The present simulation investigates the multiphase cavitating flow around an underwater projectile.Based on the Homogeneous Equilibrium Flow assumption,a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied.The calculations are executed based on a suite of CFD code.The hyd...
Projectile - Mass asymmetry systematics for low energy incomplete fusion
Directory of Open Access Journals (Sweden)
Singh Pushpendra P.
2015-01-01
Full Text Available In the present work, low energy incomplete fusion (ICF in which only a part of projectile fuses with target nucleus has been investigated in terms of various entrance channel parameters. The ICF strength function has been extracted from the analysis of experimental excitation functions (EFs measured for different projectile-target combinations from near- to well above- barrier energies in 12C,16O(from 1.02Vb to 1.64Vb+169Tm systems. Experimental EFs have been analysed in the framework statistical model code PACE4 based on the idea of equilibrated compound nucleus decay. It has been found that the value of ICF fraction (FICF increases with incident projectile energy. A substantial fraction of ICF (FICF ≈ 7 % has been accounted even at energy as low as ≈ 7.5% above the barrier (at relative velocity νrel ≈0.027 in 12C+169Tm system, and FICF ≈ 10 % at νrel ≈0.014 in 16O+169Tm system. The probability of ICF is discussed in light of the Morgenstern’s mass-asymmetry systematics. The value of FICF for 16O+169Tm systems is found to be 18.3 % higher than that observed for 12C+169Tm systems. Present results together with the re-analysis of existing data for nearby systems conclusively demonstrate strong competition of ICF with CF even at slightly above barrier energies, and strong projectile dependence that seems to supplement the Morgenstern’s systematics.
Yields of Projectile Fragments in Sulphur-Emulsion Interactions at 3.7 GeV/nucleon
Kamel, S; Fayed, M
2016-01-01
This work presents the basic characteristics of singly, doubly and heavily charged projectile fragments emitted in inelastic interactions of 32S ions with photo-emulsion nuclei at Dubna energy (3.7 GeV/nucleon). The relationship between the projectile mass and the charge of the projectile fragments is investigated, reflecting the importance of the projectile size. The mean multiplicities of different charged projectile fragments are studied and are found to increase linearly with the projectile mass. The yields of projectile fragments broke up from the interactions of 32S projectile nuclei with the different target nuclei in a nuclear emulsion are studied and they indicate that the projectile breakup mechanism seems to be independent of the target mass. A study of the multiplicity distributions of singly and doubly charged projectile fragments seem to be energy independent.
Chunk projectile launch using the Sandia Hypervelocity Launcher Facility
Energy Technology Data Exchange (ETDEWEB)
Chhabildas, L.C.; Trucano, T.G.; Reinhart, W.D.; Hall, C.A.
1994-07-01
An experimental technique is described to launch an intact ``chunk,`` i.e. a 0.3 cm thick by 0.6 cm diameter cylindrical titanium alloy (Ti-6Al-4V) flyer, to 10.2 km/s. The ability to launch fragments having such an aspect ratio is important for hypervelocity impact phenomenology studies. The experimental techniques used to accomplish this launch were similar but not identical to techniques developed for the Sandia HyperVelocity Launcher (HVL). A confined barrel impact is crucial in preventing the two-dimensional effects from dominating the loading response of the projectile chunk. The length to diameter ratio of the metallic chunk that is launched to 10.2 km/s is 0.5 and is an order of magnitude larger than those accomplished using the conventional hypervelocity launcher. The multi-dimensional, finite-difference (finite-volume), hydrodynamic code CTH was used to evaluate and assess the acceleration characteristics i.e., the in-bore ballistics of the chunky projectile launch. A critical analysis of the CTH calculational results led to the final design and the experimental conditions that were used in this study. However, the predicted velocity of the projectile chunk based on CTH calculations was {approximately} 6% lower than the measured velocity of {approximately}10.2 km/S.
Theoretical Design and Computational Fluid Dynamic Analysis of Projectile Intake
Directory of Open Access Journals (Sweden)
Wei Wang
2011-08-01
Full Text Available With the development of the science and technology, the more requirements such as cost effective, high specific impulse in wide operation rang, becomes stricter and multiplicity. However, the existing supersonic inlet can no longer adjust to all the new projectiles. In this paper, based on the basic characteristic of inlet and considering the design requirements, the two-dimensional supersonic projectile inlet was designed and verified by numerical simulation under different operating conditions such as attack angle, altitude, and so on. The results are shown that: 1 The design process is successful, but the working conditions should be limited to the small angle of attack; 2 The total pressure recovery coefficient is increasing as the Ma number increases, and then is gradually decreased after the point of Mach number is equal to 0.5; 3 The existence of attack angle reduces values of total pressure recovery. And moreover, the shock wave which occurs at the anterior point is gradually deviating from projectile body direction with the increase of attack angle; 4. The variance ratio in the outlet has the acute changed with increasing of altitudes clearly, but its corresponding values degrade sharply in the entrance.
Effects of Different Meteorological Standards on Projectile Path
Directory of Open Access Journals (Sweden)
R. J. Mukhedkar
2013-01-01
Full Text Available Projectile\tpath\tis\tdictated\tby\testimated\tline\tof\tfire.\tLine\tof\tfire\tcan\tbe\testimated\tby\treferring\tRT\tas\twell\tas trajectory model on computer. RT is prepared under ISA/ICAO meteorological standard conditions without wind effect. Meteorological conditions like density, humidity, pressure, wind, temperature affect the path of the trajectory. Meteorological data plays very important role in trajectory prediction. Trajectory is predicted using RT for a particular weapon where ICAO standard met data is used. Ind Std met data is different from ICAO data.\tUse\tof\tInd\tStd\tdata\timproves\tthe\taccuracy\tof\ttrajectory\tprediction\tfor\tIndian\tfield\tdeployment.\tIn\tthis\tpaper, comparative study of effect on projectile path under ICAO, Ind Std and actual Indian prevailing met have been carried out and analyzed. From this analysis, a new model has been established that if actual prevailing met is not available then trajectory prediction can be carried out using Ind Std met data with wind data as per date and time. It predicts trajectory very close to actual. Effect of wind has been studied and found that wind effect is very dominant on projectile path. Study of effect of density also has been carried out in this paper. It is\tobserved\tthat\tInd\tStd\tdensity\tvalues\tare\tmuch\tclose\tto\tactual\tas\tcompared\tto\tICAO.\tTherefore,\tif\tinsufficient\tmet\tis\trecorded\tthen\tInd\tstd\tdensity\tcan\tbe\tused\tto\tfill\tdensity\tvalues\tfor\tthat\tregion.
Initiation of Detonation in Explosives by Impact of Projectiles
Directory of Open Access Journals (Sweden)
H.S. Yadav
2006-04-01
Full Text Available This paper presents a study of initiation of detonation in explosives by the impact ofprojectiles. The shock wave produced by the impact of projectiles has been considered as thestimulus for initiation of detonation. Three types of projectiles, namely (i flyer plate, (ii flatendedrod, and (iii round-ended rod or a shaped charge jet, have been considered to impact andproduce a shock wave in the explosives. Deriving relations for the parameters of impact-generatedshock wave in the explosives and projectiles, and the sound velocity in the compressed explosives,it has been shown that the difference of kinetic energy of the flyer plate before and after theimpact, which is equal to the total energy of the shock wave in the explosives, leads to criticalenergy criterion for shock initiation of explosives. In this study, the critical criterion has beenused to derive the relations for initiation of explosives by a shaped charge jet, Vj2 D = K0 , whereV j and D denote the velocity and diameter of the jet, and K0 is a constant of the explosive.
McDermott, K. H.; Price, M. C.; Cole, M.; Burchell, M. J.
2016-04-01
During hypervelocity impact (>a few km s-1) the resulting cratering and/or disruption of the target body often outweighs interest on the outcome of the projectile material, with the majority of projectiles assumed to be vaporised. However, on Earth, fragments, often metallic, have been recovered from impact sites, meaning that metallic projectile fragments may survive a hypervelocity impact and still exist within the wall, floor and/or ejecta of the impact crater post-impact. The discovery of the remnant impactor composition within the craters of asteroids, planets and comets could provide further information regarding the impact history of a body. Accordingly, we study in the laboratory the survivability of 1 and 2 mm diameter copper projectiles fired onto ice at speeds between 1.00 and 7.05 km s-1. The projectile was recovered intact at speeds up to 1.50 km s-1, with no ductile deformation, but some surface pitting was observed. At 2.39 km s-1, the projectile showed increasing ductile deformation and broke into two parts. Above velocities of 2.60 km s-1 increasing numbers of projectile fragments were identified post impact, with the mean size of the fragments decreasing with increasing impact velocity. The decrease in size also corresponds with an increase in the number of projectile fragments recovered, as with increasing shock pressure the projectile material is more intensely disrupted, producing smaller and more numerous fragments. The damage to the projectile is divided into four classes with increasing speed and shock pressure: (1) minimal damage, (2) ductile deformation, start of break up, (3) increasing fragmentation, and (4) complete fragmentation. The implications of such behaviour is considered for specific examples of impacts of metallic impactors onto Solar System bodies, including LCROSS impacting the Moon, iron meteorites onto Mars and NASA's "Deep Impact" mission where a spacecraft impacted a comet.
Strain Measurement for Hollow Projectiles During Its Penetration of Concrete Targets
Institute of Scientific and Technical Information of China (English)
王琳; 王富耻; 王鲁; 李树奎
2004-01-01
Gives a new technique to measure the dynic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying strain gages attached to the inner walls of the hollow projectile, linked with on-board testing and storage recorder. This on-board test-record system is easy to operate, cost-effective and can provide reasonable, accurate and detailed information. Obverse ballistic experiments were carried out on ogival-nose hollow projectiles normally impacting concrete targets at velocities from 150 m/s to 300 m/s. The deformation process of projectiles was measured, recorded and played back. Profiles of voltage-time relationship were successively obtained and transfered to strain-time relationship with the aid of calibration tables. It was found that projectiles go through a series of compression and tension deformations intermittently. Relationships between strain development and projectile deformation process were discussed.
International Nuclear Information System (INIS)
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
Variance bounding Markov chains
Roberts, Gareth O.; Jeffrey S. Rosenthal
2008-01-01
We introduce a new property of Markov chains, called variance bounding. We prove that, for reversible chains at least, variance bounding is weaker than, but closely related to, geometric ergodicity. Furthermore, variance bounding is equivalent to the existence of usual central limit theorems for all L2 functionals. Also, variance bounding (unlike geometric ergodicity) is preserved under the Peskun order. We close with some applications to Metropolis–Hastings algorithms.
Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates
Aizik F.; Ran E.; Vizel A.; Weiss A.; Paris V.
2012-01-01
In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by match...
Institute of Scientific and Technical Information of China (English)
Evgeny A. KHMELNIKOV; Alexey V. STYROV; Konstantin V. SMAGIN; Natalia S. KRAVCHENKO; Valery L. RUDENKO; Vladimir I. FALALEEV; Sergey S. SOKOLOV; Artem V. SVIDINSKY; Natalia F. SVIDINSKAYA
2015-01-01
The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are pre-sented. Analysis of mathematical models for interaction of elastoplastic projectile and target without taking additional energy released during interaction of fluoropolymer and aluminum into consideration is carried out. Energy fraction which is spent effectively on the increase in cavity volume is determined. The experimental and calculated results of penetration by combined and inert projectiles are compared.
Mathematical Model to Simulate the Trajectory Elements ofan Artillery Projectile Proof Shot
K.K. Chand; H.S. Panda
2007-01-01
In external ballistics of a conventional spin-stabilised artillery projectile, there are a numberof trajectory models developed for computing trajectory elements having varying degrees ofcomplexity. The present study attempts to propose a single mathematical model, viz., simplifiedpoint-mass/simple particle trajectory model to simulate the trajectory elements of a typical spin-stabilised flat-head artillery projectile proof shot. Due to difficulties in the projectile shape andsize, and the co...
Positivity bounds on double parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus; Kasemets, Tomas
2013-03-15
Double hard scattering in proton-proton collisions is described in terms of double parton distributions. We derive bounds on these distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. These bounds constrain the size of the polarized distributions and can for instance be used to set upper limits on the effects of spin correlations in double hard scattering. We show that the bounds are stable under leading-order DGLAP evolution to higher scales.
Numerical Investigation of Penetration Performance of Non-Ideal Segmented-Rod Projectiles
Institute of Scientific and Technical Information of China (English)
ALY S Y; LI Q M
2008-01-01
The design of a segmented-rod projectile is often simplified into an ideal one in theoretical analysis for the convenience of modeling of its performance.But the actual performance of non-ideal segmented-rod projectiles over the impact velocity range in practical applications was rarely explored.AUTODYN numerical code is used to investigate the influence of the component design upon the penetration performance of non-ideal segmented-rod projectiles over a wide range of impact velocities, which can be used to guide the optimal design of weaponry segmented-rod projectiles.
Chemical modification of projectile residues and target material in a MEMIN cratering experiment
Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas
2013-01-01
In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s-1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock-metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile-target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni-ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.
Rupture of Human Skin Membrane under Impact of Parabolodial Projectile: Bullet wound Ballistics
Directory of Open Access Journals (Sweden)
M. Mukhtar Ali
1996-10-01
Full Text Available This paper attempts to study the effect of the impact of a paraboloidal projectile on human shin membrane. The tip of the projectile (i.e., the bullet tip has been considered to be paraboloidal and is made of lead or steel. The threshold velocity i.e., the velocity when the skin membrane is about to rupture has been calculated for human beings of various age groups. The threshold velocity for a paraboloidal projectile of certain dimensions has been found, for all age groups, to be less than that of a spherical projectile under similar conditions.
Effects of Different Meteorological Standards on Projectile Path
Directory of Open Access Journals (Sweden)
Rajesh Jayant Mukhedkar
2013-01-01
Full Text Available Projectile path is dictated by estimated line of fire. Line of fire can be estimated by referring RT as well as trajectory model on computer. RT is prepared under ISA/ICAO meteorological standard conditions without wind effect. Meteorological conditions like density, humidity, pressure, wind, temperature affect the path of the trajectory. Meteorological data plays very important role in trajectory prediction. Trajectory is predicted using RT for a particular weapon where ICAO standard met data is used. Ind Std met data is different from ICAO data. Use of Ind Std data improves the accuracy of trajectory prediction for Indian field deployment. In this paper, comparative study of effect on projectile path under ICAO, Ind Std and actual Indian prevailing met have been carried out and analyzed. From this analysis, a new model has been established that if actual prevailing met is not available then trajectory prediction can be carried out using Ind Std met data with wind data as perdate and time. It predicts trajectory very close to actual. Effect of wind has been studied and found that wind effect is very dominant on projectile path. Study of effect of density also has been carried out in this paper. It is observed that Ind Std density values are much close to actual as compared to ICAO. Therefore, if insufficient met is recorded then Ind std density can be used to fill density values for that region.Defence Science Journal, 2013, 63(1, pp.101-107, DOI:http://dx.doi.org/10.14429/dsj.63.2641
Mass spectrometric analysis with cluster projectiles and coincidence counting
Energy Technology Data Exchange (ETDEWEB)
Cox, B.D.
1992-01-01
Methods for maximizing the amount of secondary ion information, per primary projectile, are described. The method is based on time-of-flight mass spectrometry and event-by-event coincidence counting. The information obtained from coincidence counting time-of-flight mass spectrometry includes: (a) surface composition, (b) relative concentrations, and (c) degree of intermolecular mixing. The technique was applied to the study of an important new class of polymers: polymer blends. Secondary ion mass spectrometry, when applied to the analysis of synthetic polymers, induces backbone fragmentation which is characteristic of the homopolymer. The characteristic fingerprint peaks from polystyrene and poly(vinyl methyl ether) were used to identify the presence of these two polymers in a polymer blend. The percent coincidence between the characteristic secondary ions from each component of the blend were used to determine both the relative concentration and the degree of molecular mixing. Results indicate molecular segregation of the two polymers on the film surface. The largest degree of segregation was determined for the phase separated blends. The performance of this technique depends on the desorption efficiency of the primary projectiles. In practice one seeks primary ions which are surface sensitive, have controllable parameters such as size, velocity, and charge state, and generate high secondary ion yields. Focus was placed on the use of keV organic cluster projectiles to meet these criteria. Of interest to this study were C[sub 18] (chrysene), C[sub 24] (coronene), and C[sub 60] (buckminster-fulleren). Results indicate enhanced secondary ion yields for C[sub 60]. For example, when CsI is bombarded with 30 keV C[sub 60], the yields for I[sup [minus
Calculation of forces arising from impacting projectiles upon yielding structures
International Nuclear Information System (INIS)
Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building 'acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might -in general- be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behavior of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. In view of the applications of the calculations to the impact of airplanes upon buildings which are constructed to withstand loads of this kind without serious damage and without large deformations, it is possible to simplify the calculations to some extent. That is, the investigations need not take into account in detail the behavior of the target during impact. The calculations are performed with a one-dimensional model for the projectile. The direction of impact is perpendicular to the target surface; direction of impact and projectile axis coincide. The calculations were performed for several initial velocities of the projectiles simulating a fast flying military airplane. Variations of the peak values of the load functions as compared to corresponding values for a rigid target do not exceed about 10%. The overall temporal behavior of the load curves turns out to be not very sensitive to the yielding of the target, though, in some cases displacements in time of the peak positions within a single load curve do arise
Analysis of electrostatic charge on small-arms projectiles
Vinci, Stephen; Zhu, Jack; Hull, David
2012-06-01
Triboelectric (frictional) and combustion processes impart electrostatic charge on projectiles as they are fired. Additional charging and discharging processes alter the magnitude of charge in-flight and are complex functions of a plethora of environmental conditions. There is an interest in using electric-field sensors to help detect and track projectiles in counter-sniper and projectile ranging systems. These applications require knowledge of the quantity of charge, as well as the sensitivity of electric-field sensors. The U.S. Army Research Laboratory (ARL) took part in multiple experiments at Aberdeen Proving Grounds (APG) to simulate a battlefield-like environment. Sensors were placed in strategic locations along the bullets' paths and recorded the electric-field signatures of charged small-arms bullets. The focus of this effort was to analyze the electric-field signatures collected during the APG experiment in order to estimate electrostatic charge on the bullets. Algorithms were written to extract electric-field bullet signatures from raw data; these signatures were further processed to estimate the miss distance, velocity and charge. The estimates of range and velocity were compared to similar estimates from acoustic signatures for verification. Ground-truth Global Positioning System (GPS) data were used to independently calculate ranges, azimuths, and miss distances. Signatures were filtered to remove clutter signals from power lines and other unwanted field sources. Closed-form equations were then fitted to the collected signatures to retrieve estimates for the magnitude of charge on the bullets. Test data, collected with sensors placed on a wall, showed enhanced E-field intensity. A Method of Moments (MoM) model of the wall was created to improve signature simulation. Detectable charges on bullets were found to exist in the 1 pC to 1 nC (10-12 - 10-9 C) range. Relationships between estimated charge, gun type, bullet caliber, noise thresholds and number
Fracture of the humerus caused by a slingshot projectile
Directory of Open Access Journals (Sweden)
Dar Tahir Ahmed
2012-02-01
Full Text Available 【Abstract】Unconventional and 憂on-lethal?weapons are being used in crowd control regularly nowadays. The use of these arms is not risk-free. The paramilitary forces in 2010 used the old fashioned slingshots for crowd control in Kashmir. A young male suffered from a fracture of the distal humerus due to a marble from a slingshot. He was managed by debridement and plaster splintage. Use of apparently innocuous weapons for crowd control is not without risk, as the projectiles fired from them can achieve high velocities and cause significant damage. Kew words: Humeral fractures; Conducted energy weapon injuries; Firearms
Fracture of the humerus caused by a slingshot projectile
Institute of Scientific and Technical Information of China (English)
Tahir Ahmed Dar; Riyaz Ahmed Dar; Mubashir Rashid; Shabir Ahmed Dhar
2011-01-01
Unconventional and 'non-lethal' weapons are being used in crowd control regularly nowadays. The use of these arms is not risk-free. The paramilitary forces in 2010 used the old fashioned slingshots for crowd control in Kashmir. A young male suffered from a fracture of the distal humerus due to a marble from a slingshot. He was managed by debridement and plaster splintage. Use of apparently innocuous weapons for crowd control is not without risk, as the projectiles fired from them can achieve high velocities and cause significant damage.
Numerical Simulation of Rigid Projectile's Normally Penetrating into Granite Targets
Institute of Scientific and Technical Information of China (English)
张德志; 张向荣; 林俊德; 唐润棣
2004-01-01
The process of penetrating into granite was simulated by using program LS-DYNA3D. The granite was represented by the isotropic elastic-plastic model with failure criterion and the projectile was modeled by rigid model. The depth of penetration from simulations is identical with experiments. Penetration deceleration vs striking velocity was acquired at the same time, which can assist in the design of penetration weapons with payload and fuse. Through numerical simulation, that material model is considered with straightforward physical meaning, a few parameters which can be determined easily are more practical for engineering calculation along with experiments.
Aspects of nuclear collectivity studied in projectile Coulomb excitation experiments
Möller, Thomas
2014-01-01
Projectile Coulomb excitation experiments have been performed on the nuclei 130,132Ba, 154Sm, and 194,196Pt. A detailed description of the experiments and the data analysis is given. The results on absolute decay rates of the low-lying collective states of these nuclei allow for a comparison with predictions from different theoretical models of nuclear quadrupole collectivity. For the nucleus 154Sm the data on the decay rates of the states of the first K=0 band support the assignment of this ...
Ihani, J. S.; Luna, H.; Wolff, W.; Montenegro, E. C.
2013-06-01
Neq + (q = 1,2,3,4) ionization and charge exchange cross sections (total electron capture, single electron capture and transfer ionization) in the collisions with Li3+, with energies between 100 and 900 keV amu-1, and C3+, with energies between 250 and 500 keV amu-1 are reported. Bare Li3+ projectiles give a key benchmark to study the role of projectile screening in collisions involving dressed projectile ions, and the measurements have shown a strong screening effect for all n-fold recoil ion charge states in the ionization channel which, unexpectedly, does not appear for transfer ionization.
Energy Technology Data Exchange (ETDEWEB)
Della-Negra, S.; Gardes, D.; Le Beyec, Y.; Waast, B.
1991-12-31
Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface({approx}100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV.
Electron capture by metastable projectiles on He and Ne
International Nuclear Information System (INIS)
Electron capture to n> or =2 levels of F7+ (1s2s) 3S projectiles lead to three-electron ions with an energetically allowed K-Auger decay channel. We have measured the F K-Auger emission spectra for collisions with thin gas targets of He and Ne with sufficiently high resolution to distinguish capture to several of the low-lying n values. The K-Auger production cross sections are reported as a function of the n level into which the electron is captured. The n-level dependence is measured for projectile energies of 6, 9, 12, and 15 MeV and is compared to the Oppenheimer-Brinkman-Kramers OBK model for charge transfer and to a 1/n3 function. The measured K-Auger electron-production cross sections closely follow the 1/n3 function which differs from the predicted OBK n dependence, even though the cross sections for the higher n levels agree with the predicted OBK energy dependence. The effects of cascading upon the calculated n dependence are also studied
Study on Overall Concept Planning of Terminal Correction Mortar Projectiles
Institute of Scientific and Technical Information of China (English)
XU Jin-xiang
2008-01-01
The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuration layout for TCMP are made in this paper, and its aerodynamic coefficients are calculated by using computational fluid dynamics (CFD) software. Test results of TCMP simulated ballistic projectiles indicate the designed TCMP can satisfy the interior ballistic demand and has a fine flight stability. The drag coefficients identified from the radar velocity-time data are in accord with the CFD computed results. According to the exposure frequency of the ground laser designator, a four-quadrant impulse correction scheme and a high exposure frequency impulse correction scheme are brought. The latter can calculate the target azimuth angle by counting the times of the facula passing through one quadrant. Simulation results also show that the guidance precision of the velocity pursuit is higher than that of the body pursuit, and the detector axis is less circuitous. Researches on the typical trajectory indicate that the terminal impulse correction can improve the hit precision of TCMP remarkably.
Evidence for a large radius of the 11Be projectile
So, W. Y.; Choi, K. S.; Cheoun, Myung-Ki; Kim, K. S.
2016-05-01
We investigate ratios of the elastic scattering cross section to Rutherford cross section, PE, and angular distributions of breakup cross section by using an optical model which exploits various long-range dynamic polarization potentials as well as short-range nuclear bare potentials for the 11Be projectile. From these simultaneous analyses, we extract a large radius of a halo projectile from the experimental data for PE and the angular distribution of the breakup cross section of the 11Be + 64Zn and 11 + 120Sn systems. It results from the fact that a large radius for the long-range nuclear potential is more reasonable for properly explaining these data simultaneously. The extracted reduced interaction radius turns out to be r0=3.18 ˜3.61 fm for 11Be nucleus, which is larger than the conventional value of r0=1.1 ˜1.5 fm used in the standard radius form R =r0A1 /3 . Furthermore, the larger radius as well as the normalization constant N is shown to be important for understanding Coulomb dipole strength distribution.
Projectile charge state dependent sputtering of solid surfaces
Hayderer, G
2000-01-01
dependence on the ion kinetic energy. This new type of potential sputtering not only requires electronic excitation of the target material, but also the formation of a collision cascade within the target in order to initiate the sputtering process and has therefore been termed kinetically assisted potential sputtering. In order to study defects induced by potential sputtering on the atomic scale we performed measurements of multiply charged Ar ion irradiated HOPG (highly oriented pyrolitic graphite) samples with scanning tunneling microscopy (STM). The only surface defects found in the STM images are protrusions. The mean diameter of the defects increases with projectile charge state while the height of the protrusions stays roughly the same indicating a possible pre-equilibrium effect of the stopping of slow multiply charged projectiles in HOPG. Total sputter yields for impact of slow singly and multiply charged ions on metal- (Au), oxide- (Al2O3, MgO) and alkali-halide surfaces (LiF) have been measured as a...
Xu, Xing; Wang, Meng; Zhang, Yu-Hu; Xu, Hu-Shan; Shuai, Peng; Tu, Xiao-Lin; Litvinov, Yuri A.; Zhou, Xiao-Hong; Sun, Bao-hua; Yuan, You-Jin; Xia, Jia-wen; Yang, Jian-Cheng; Blaum, Klaus; Chen, Rui-jiu; Chen, Xiang-cheng
2016-01-01
In this paper, we present direct mass measurements of neutron-rich $^{86}$Kr projectile fragments conducted at the HIRFL-CSR facility in Lanzhou by employing the Isochronous Mass Spectrometry (IMS) method. The new mass excesses of $^{52-54}$Sc nuclides are determined to be -40492(82), -38928(114), -34654(540) keV, which show a significant increase of binding energy compared to the reported ones in the Atomic Mass Evaluation 2012 (AME12). In particular, $^{53}$Sc and $^{54}$Sc are more bound b...
Scale effect of spherical projectiles for stabilization of oblique detonation waves
Maeda, S.; Sumiya, S.; Kasahara, J.; Matsuo, A.
2015-03-01
Oblique detonation waves (ODWs) were stabilized by launching a spherical projectile with 1.2-1.4 times the Chapman-Jouguet (C-J) velocity into detonable mixtures at rest. We used smaller projectiles (3.18 mm diameter) than those (4.76 mm diameter) in our previous studies and investigated the effect of the projectile scale on the stabilization of ODWs. We carried out high time resolution schlieren visualization using a high-speed camera. The detonable mixtures used were stoichiometric oxygen mixtures with acetylene, ethylene or hydrogen. They were diluted with argon with a 50 % volumetric fraction, and a dilute mixture containing 75 % argon was also tested for the acetylene/oxygen mixture. Here, we discuss the detonation stability in terms of the curvature effect arising from the three-dimensional nature of a stabilized ODW around a projectile. The curvature effect attenuated the detonation wave to below its C-J velocity in the vicinity of the projectile before the wave velocity asymptotically reached the C-J velocity in the far field. Our previous study showed that the propagation limit of the curvature effect is responsible for the stabilizing criticality of detonation waves. By obtaining detailed distributions of the wave propagation velocity and radius of curvature at the stabilizing criticality, we showed that the radius of curvature at the local minimum point of the wave propagation velocity represents the critical radius of curvature required for curved self-sustained detonation. In this study, we focused on this critical mode of the stabilized ODW for a small projectile (3.18 mm diameter). Distributions of the wave velocity and radius of curvature were obtained in the critical mode of the stabilized ODW. We compare these distributions with those for a larger projectile (4.76 mm diameter) and discuss the stabilizing criticality. For the small projectile, the observed combustion regimes had qualitatively the same trend for the initial pressure of the mixture
Physical Uncertainty Bounds (PUB)
Energy Technology Data Exchange (ETDEWEB)
Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.
Semi-theoretical analyses of the concrete plate perforated by a rigid projectile
Wu, Hao; Fang, Qin; Zhang, Ya-Dong; Gong, Zi-Ming
2012-12-01
Based on the three-stage perforation model, a semi-theoretical analysis is conducted for the ballistic performances of a rigid kinetic projectile impacting on concrete plates. By introducing the projectile resistance coefficients, dimensionless formulae are proposed for depth of penetration (DOP), perforation limit thickness, ballistic limit velocity, residual velocity and perforation ratio, with the projectile nosed geometries and projectile-target interfacial friction taken into account. Based on the proposed formula for DOP and lots of penetration tests data of normal and high strength concrete targets, a new expression is obtained for target strength parameter. By comparisons between the results of the proposed formulae and existing empirical formulae and large amount of projectile penetration or perforation tests data for monolithic and segmented concrete targets, the validations of the proposed formulae are verified. It is found that the projectile-target interfacial friction can be neglected in the predictions of characteristic ballistic parameters. The dimensionless DOP for low-to-mid speed impacts of non-flat nosed projectiles increases almost linearly with the impact factor by a coefficient of 2/(π S). The anti-perforation ability of the multilayered concrete plates is dependent on both the target plate thickness and the projectile impact velocity. The variation range of the perforation ratio is 1-3.5 for concrete targets.
Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model
Energy Technology Data Exchange (ETDEWEB)
Shama, Mahesh K., E-mail: maheshphy82@gmail.com [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Department of Applied Sciences, Chandigarh Engineering College, Landran Mohali-140307 (India); Panda, R. N. [Department of Physics, ITER, Shiksha O Anusandhan University, Bhubaneswar-751030 (India); Sharma, Manoj K. [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Patra, S. K. [Institute of Physics, Sachivalaya marg Bhubneswar-751005 (India)
2015-08-28
We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.
Light-particle multiplicity accompanying projectile breakup at 20 MeV/A
International Nuclear Information System (INIS)
A large-solid-angle array has been used to determine the multiplicity of Z = 1 and Z = 2 particles accompanying projectile breakup into two fragments each with 5 ≤ Z ≤ 8. The charge balance obtained shows that projectile breakup is not associated with an unusual charge transfer to the target. 13 refs., 1 fig
Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction
Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.
2009-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…
Deformation and Melting of Iron-Rich Projectiles in Hypervelocity MEMIN Cratering Experiments
Kenkmann, T.; Ebert, M.; Trullenque, G.; Deutsch, A.; Hecht, L.; Salge, T.; Schäfer, F.; Thoma, K.
2013-09-01
We conducted 23-54 kJ impact experiments using projectiles composed of steel and iron meteorite Campo del Cielo to study the structural changes that occur upon impact in these projectiles. Extensive melting is largely the result of plastic deformation.
Semi-theoretical analyses of the concrete plate perforated by a rigid projectile
Institute of Scientific and Technical Information of China (English)
Hao Wu; Qin Fang; Ya-Dong Zhang; Zi-Ming Gong
2012-01-01
Based on the three-stage perforation model,a semi-theoretical analysis is conducted for the ballistic performances of a rigid kinetic projectile impacting on concrete plates.By introducing the projectile resistance coefficients,dimensionless formulae are proposed for depth of penetration (DOP),perforation limit thickness,ballistic limit velocity,residual velocity and perforation ratio,with the projectile nosed geometries and projectile-target interfacial friction taken into account.Based on the proposed formula for DOP and lots of penetration tests data of normal and high strength concrete targets,a new expression is obtained for target strength parameter.By comparisons between the results of the proposed formulae and existing empirical formulae and large amount of projectile penetration or perforation tests data for monolithic and segmented concrete targets,the validations of the proposed formulae are verified.It is found that the projectile-target interfacial friction can be neglected in the predictions of characteristic ballistic parameters.The dimensionless DOP for low-to-mid speed impacts of non-flat nosed projectiles increases almost linearly with the impact factor by a coefficient of 2/(πS).The anti-perforation ability of the multilayered concrete plates is dependent on both the target plate thickness and the projectile impact velocity.The variation range of the perforation ratio is 1-3.5 for concrete targets.
DEFF Research Database (Denmark)
Jensen, Jens Højgaard
2014-01-01
independent of the Reynolds number and proportional to the square of the projectile's velocity. In this paper, by dimensional analysis, the latter assumption is shown to be incorrect for forces dependent on the angular velocity of the projectile, e.g. the lift force....
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias
2010-01-01
) resultant by means of mixed volume, as well as recent advances on aggregate root bounds for univariate polynomials, and are applicable to arbitrary positive dimensional systems. We improve upon Canny's gap theorem [7] by a factor of O(dn-1), where d bounds the degree of the polynomials, and n is the number...... bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milne's algorithm [22] in 2D....
Mathematical Model to Simulate the Trajectory Elements ofan Artillery Projectile Proof Shot
Directory of Open Access Journals (Sweden)
K.K. Chand
2007-01-01
Full Text Available In external ballistics of a conventional spin-stabilised artillery projectile, there are a numberof trajectory models developed for computing trajectory elements having varying degrees ofcomplexity. The present study attempts to propose a single mathematical model, viz., simplifiedpoint-mass/simple particle trajectory model to simulate the trajectory elements of a typical spin-stabilised flat-head artillery projectile proof shot. Due to difficulties in the projectile shape andsize, and the complicated nature of air resistance, an accurate mathematical prediction of thetrajectory is difficult. To simplify the computations, the governing equations of motion of theprojectile have been simplified and assumed that the projectile is a particle and the only forcesacting on the projectile are drag and gravity. With this model, trajectory elements have beengenerated and compared with experimental results obtained in the field test. The measuringinstrument used in this case is a Doppler radar.
Morales, Roberto; Casas, David
2016-01-01
The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...
DEFF Research Database (Denmark)
Failla, Virgilio; Melillo, Francesca; Reichstein, Toke
2014-01-01
Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...
Finite Element Modeling of Transient Temperatures in a Small-Caliber Projectile
Directory of Open Access Journals (Sweden)
M. B. Thomas
2010-01-01
Full Text Available Problem statement: Future generations of intelligent munitions will use Microelectromechanical Systems (MEMS for guidance, fuzing logic and assessment of the battlefield environment. The temperatures fund in a gun system, however, are sufficient to damage some materials used in the fabrication of MEMS. The motivation of this study is to model the dynamic temperature distribution in a typical small-caliber projectile. Approach: An axisymmetric finite-element model of a projectile is developed to simulate temperatures through internal ballistics (the projectile is in the gun barrel and external ballistics (the projectile travels in a free trajectory towards the target. Accuracy of the simulation is confirmed through comparison to analytical models and to payloads attached to experimental projectiles. In the simulation, the exact values for some boundary conditions are unknown and/or unknowable. A sensitivity analysis determines the effect of these uncertain parameters. Results: The simulation shows that friction at the projectile-gun barrel interface is primarily responsible for elevated temperatures in a gun system. Other factors have much smaller effects. The short duration of the internal ballistics prevents the frictional heat from diffusing into the bulk of the projectile. As a result, the projectile has a shallow, high-temperature zone at its bearing surface as it leaves the gun barrel. During external ballistics, this heat will diffuse through the projectile, but most of the projectile experiences temperatures of 56°C or lower. Simulation shows that the polymer package around a MEMS device will further attenuate heat flow, limiting temperatures in the device to less than 30°C. Conclusion: The finite element model demonstrates that a MEMS device may be engineered to survive temperatures expected in the ballistic environment.
Polymer Recovery from Auto Shredder Residue by Projectile Separation Method
Directory of Open Access Journals (Sweden)
Dong Yang Wu
2012-04-01
Full Text Available The number of vehicles on the road has been increasing at an enormous rate over the last decade. By 2015, the number of vehicles that reach the end of their life will be close to a million per year in Australia. Most metallic parts of the vehicle can be recycled but the plastic components and components of other materials are normally shredded and disposed in landfills. As more vehicles are using composite materials, the percentage of materials sent to landfill is alarming. This paper reviews existing polymer recycling techniques for End-of-Life Vehicles (ELVs and proposes a more efficient electrostatic based projectile separation method. The test rig is at the preliminary stage of development and initial outcomes are promising.
Projectile dependency of radioactivities of spallation products induced in copper
Energy Technology Data Exchange (ETDEWEB)
Yashima, Hiroshi; Sugita, Hiroshi; Nakamura, Takashi; Shiomi, Tomoyuki [Tohoku Univ., Department of Quantum Science and Energy Engineering, Sendai, Miyagi (Japan); Uwamino, Yoshitomo; Ito, Sachiko [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Fukumura, Akifumi [National Institute of Radiological Sciences, Chiba (Japan)
2001-03-01
The reaction cross-sections of spallation products in a Cu target by 230 MeV/nucleon Ne, C, He, p and 100 MeV/nucleon Ne, C ions were obtained. Irradiation experiments were performed at HIMAC (Heavy Ion Medical Accelerator in Chiba), National Institute of Radiological Sciences. Gamma-ray spectra from activation samples were measured with an HPGe detector. >From the gamma-ray spectra, we obtained the variation of reaction cross sections of Cl-38, Cr-49, Mn-55, Cu-60, Cu-61 and Co-62m in Cu sample with Cu target thickness and mass-yield distribution of nuclides in Cu sample on the surface of Cu target. The results showed that the dependence of the cross-sections to the projectile mass varies with the mass number difference between Cu and produced nuclide. (author)
Expert Systems Aimed at General Design of Projectiles
Institute of Scientific and Technical Information of China (English)
YUAN Zhi-hua; HOU Ni-na; HU Yu-hui
2007-01-01
Expert systems aimed at the general design of projectiles can implement a series of intelligent designs, such as the design of HE shell, the scheme expounded and proved, the emulation analysis and calculation, etc. Aiming at the product design feature, the expert system adopts the object-oriented knowledge representation and all kinds of inference control engines to describe and reason the relevant knowledge regarding the product through the microcomputer. It embodies the foundation of emulation analysis and simulated manufacturing of the shell. It makes use of the method that knowledge expression is combined with condition of inference to carry out the overall design and emulation and reference.The paper gives the ways through which the functions can be achieved, gives the modularization of reference and the design methods of systematization, puts forward the method of knowledge expression and working interface, and supplies a platform for similar products of the shell category that can be quickly designed.
Counter sniper: a small projectile and gunfire localization system
Moore, Fritz; Leslie, Daniel H.; Hyman, Howard; Squire, Mark D.
2001-02-01
This paper describes a prototype sensor system for detection and 3D tracking of bullets and other small projectiles. The intended purpose of the system is to rapidly locate a sniper to a few meters accuracy at ranges to 1 km in three dimensions. The system detects and tracks a single bullet, and based on the measured 3D trajectory, backtracks to the sniper location. Details of the system are describe including optics, infrared camera, scanning system, laser ranging system, computer control and electronics, and data reduction algorithm. The system has been field tested against bullets, and has been shown to locate a sniper to a few meters accuracy at 500 meters range. Plans for improving tracking performance are also described.
Aerodynamic Jump: A Short Range View for Long Rod Projectiles
Directory of Open Access Journals (Sweden)
Mark Bundy
2001-01-01
Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.
Lightweight Exoatmospheric Projectile (LEAP) test program. Supplemental environmental assessment
1992-06-01
The proposed action is to modify previously planned Lightweight Exoatmospheric Projectile (LEAP) Test Program activities (LEAP EA, July 1991, Ref 32) at White Sands Missile Range (WSMR), New Mexico; Kwajalein Missile Range (KMR), U.S. Army Kwajalein Atoll (USAKA); and Wake Island. The proposed action includes modifications of flight trajectories for LEAP flights 3, 5, and 6. Two additional flights, LEAP-X and LEAP-7 have been added to the program. LEAP-X is a single rocket test flight from KMR and LEAP-7 is a two-rocket test flight from KMR and Wake Island. Component/assembly ground tests will take place at Orbital Sciences Corporation (OSC), Space Data Division (SDD), Chandler, Arizona; Phillips Laboratory, Edwards Air Force Base, California; Rocketdyne Division of Rockwell International; Boeing Aerospace and Electronics, Kent, Washington; Hughes Aircraft Corporation, Missile Systems Group, Canoga Park California; Aerojet, Sacramento, California; and Thiokol Corporation, Elkton, Maryland.
Ruizenaar, M.G.A.
2011-01-01
The invention relates to a method of guiding a salvo of guided projectiles to a target. The method comprises the steps of generating a beam defining a common reference coordinate system, determining the position of each projectile relative to the beam, and providing to each projectile: position info
Breakup conditions of projectile spectators from dynamical observables
Energy Technology Data Exchange (ETDEWEB)
Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J. [and others
1998-03-01
Momenta and masses of heavy projectile fragments (Z {>=} 8), produced in collisions of {sup 197}Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 {Dirac_h}/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)
Breakup conditions of projectile spectators from dynamical observables
International Nuclear Information System (INIS)
Momenta and masses of heavy projectile fragments (Z ≥ 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 ℎ/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)
Investigations of nuclear projectile break-up reactions
International Nuclear Information System (INIS)
The cross sections for radiative capture of α-particles, deuterons and protons by light nuclei at very low relative energies are of particular importance for the understanding of the nucleosynthesis of chemical elements and for determining the relative elemental abundances in stellar burning processes at various astrophysical sites. As example we quote the reactions α+d → 6Li+γ, α+3He → 7Be+γ, or α+12C → 16O+γ. As an alternative to the direct experimental study of these processes we consider the inverse process, the photodisintegration, by means of the virtual photons provided by a nuclear Coulomb field: Z+a → Z+b+c. The radiative capture process b+c → a+γ is related to the inverse process, the photodisintegration γ+a → b+c by the detailed balance theorem. Except for the extreme case very close to the threshold the phase space favours the photodisintegration cross section as compared to the radiative capture. The Coulomb dissociation cross section proves to be enhanced due to the large virtual photon number, seen by the passing projectile, and the kinematics of the process leads to particular advantages for studies of the interaction of the two break-up fragments at small relative energies Ebc. The conditions of dedicated experimental investigations are discussed and demonstrated by recent experimental and theoretical studies of the break-up of 156 MeV 6Li projectiles. In addition, a brief review about general features of break-up processes of light ions in the field of atomic nuclei is given. (orig.)
de Rham, Claudia; Tolley, Andrew J; Zhou, Shuang-Yong
2016-01-01
Recently, aLIGO has announced the first direct detections of gravitational waves, a direct manifestation of the propagating degrees of freedom of gravity. The detected signals GW150914 and GW151226 have been used to examine the basic properties of these gravitational degrees of freedom, particularly setting an upper bound on their mass. It is timely to review what the mass of these gravitational degrees of freedom means from the theoretical point of view, particularly taking into account the recent developments in constructing consistent massive gravity theories. Apart from the GW150914 mass bound, a few other observational bounds have been established from the effects of the Yukawa potential, modified dispersion relation and fifth force that are all induced when the fundamental gravitational degrees of freedom are massive. We review these different mass bounds and examine how they stand in the wake of recent theoretical developments and how they compare to the bound from GW150914.
Proof-of-concept development of PXAMS (projectile x-ray accelerator mass spectrometry)
Energy Technology Data Exchange (ETDEWEB)
Proctor, I.D.; Roberts, M.L.; McAninch, J.E.; Bench, G.S.
1996-03-01
Prior to the current work, accelerator mass spectrometry (AMS) was limited to a set of {approximately}8--10 isotopes. This limitation is caused primarily by the inability to discriminate against stable atomic isobars. An analysis scheme that combines the isotopic sensitivity of AMS with similar isobar selectivity would open a large new class of isotope applications. This project was undertaken to explore the use of characteristic x rays as a method for the detection and identification of ions,and to allow the post-spectrometer rejection of isobaric interferences for isotopes previously inaccessible to AMS. During the second half of FY94 (with Advanced Concepts funding from the Office of Non-Proliferation and National Security), we examined the feasability of this technique, which we are referring to as PXAMS (Projectile X ray AMS), to the detection of several isotopes at Lawrence Livermore National Laboratory (LLNL). In our first exploratory work, we measured the x ray yield vs energy for {sup 80}Se ions stopped in a thick Y target. These results, demonstrated that useful detection efficiencies could be obtained for Se ions at energies accessible with our accelerator, and that the count rate from target x rays is small compared to the Se K{alpha} rate. We followed these measurements with a survey of x ray yields for Z = 14-46.
Energy Technology Data Exchange (ETDEWEB)
Accetta, F.S.; Gleiser, M.; Holman, R.; Kolb, E.W.
1986-03-01
We show that compactifications of theories with extra dimensions are unstable if due to monopole configurations of an antisymmetric tensor field balanced against one-loop Casimir corrections. In the case of ten dimensional supergravity, it is possible, at least for a portion of the phase space, to achieve a stable compactification without fine-tuning by including the contribution of fermionic condensates to the monopole configurations. 23 refs., 2 figs.
The influence of aerodynamic coefficients on the elements of classic projectile paths
Directory of Open Access Journals (Sweden)
Damir D. Jerković
2011-04-01
Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile
Non-invasive timing of gas gun projectiles with light detection and ranging
International Nuclear Information System (INIS)
We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of a gas gun launch tube in real-time. This capability permits the generation of precisely timed trigger pulses useful for triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore diameter single-stage gas gun routinely used for dynamic research at Los Alamos. A 655 nm pulsed diode laser operating at a pulse repetition rate of 100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ∼ 3 meters prior to impact. The position record showed that the projectile moved at a velocity of 489 m/s prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The time-to-amplitude conversion electronics used enable the LIDAR data to be processed in real-time to generate trigger pulses at preset separations between the projectile and target.
Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas; Wirth, Richard; Berndt, Jasper
2014-05-01
The possibility of fractionation processes between projectile and target matter is critical with regard to the classification of the impactor type from geochemical analysis of impactites from natural craters. Here we present results of five hypervelocity MEMIN impact experiments (Poelchau et al., 2013) using the Cr-V-Co-Mo-W-rich steel D290-1 as projectile and two different silica-rich lithologies (Seeberger sandstone and Taunus quartzite) as target materials. Our study is focused on geochemical target-projectile interaction occurring in highly shocked and projectile-rich ejecta fragments. In all of the investigated impact experiments, whether sandstone or quartzite targets, the ejecta fragments show (i) shock-metamorphic features e.g., planar-deformation features (PDF) and the formation of silica glasses, (ii) partially melting of projectile and target, and (iii) significant mechanical and chemical mixing of the target rock with projectile material. The silica-rich target melts are strongly enriched in the "projectile tracer elements" Cr, V, and Fe, but have just minor enrichments of Co, W, and Mo. Inter-element ratios of these tracer elements within the contaminated target melts differ strongly from the original ratios in the steel. The fractionation results from differences in the reactivity of the respective elements with oxygen during interaction of the metal melt with silicate melt. Our results indicate that the principles of projectile-target interaction and associated fractionation do not depend on impact energies (at least for the selected experimental conditions) and water-saturation of the target. Partitioning of projectile tracer elements into the silicate target melt is much more enhanced in experiments with a non-porous quartzite target compared with the porous sandstone target. This is mainly the result of higher impact pressures, consequently higher temperatures and longer reaction times at high temperatures in the experiments with quartzite as
Multicolor Bound Soliton Molecule
Luo, Rui; Lin, Qiang
2015-01-01
We show a new class of bound soliton molecule that exists in a parametrically driven nonlinear optical cavity with appropriate dispersion characteristics. The composed solitons exhibit distinctive colors but coincide in time and share a common phase, bound together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor bound soliton molecule shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which may open up a great avenue towards versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.
Kinetic Stable Delaunay Graphs
Agarwal, Pankaj K; Guibas, Leonidas J; Kaplan, Haim; Koltun, Vladlen; Rubin, Natan; Sharir, Micha
2011-01-01
We consider the problem of maintaining the Euclidean Delaunay triangulation $\\DT$ of a set $P$ of $n$ moving points in the plane, along algebraic trajectories of constant description complexity. Since the best known upper bound on the number of topological changes in the full $\\DT$ is nearly cubic, we seek to maintain a suitable portion of it that is less volatile yet retains many useful properties. We introduce the notion of a stable Delaunay graph, which is a dynamic subgraph of the Delaunay triangulation. The stable Delaunay graph (a) is easy to define, (b) experiences only a nearly quadratic number of discrete changes, (c) is robust under small changes of the norm, and (d) possesses certain useful properties. The stable Delaunay graph ($\\SDG$ in short) is defined in terms of a parameter $\\alpha>0$, and consists of Delaunay edges $pq$ for which the angles at which $p$ and $q$ see their Voronoi edge $e_{pq}$ are at least $\\alpha$. We show that (i) $\\SDG$ always contains at least roughly one third of the Del...
Rupture of Human Skin Membrane under Impact of Parabolodial Projectile: Bullet wound Ballistics
M. Mukhtar Ali; Vijay Paul Singh; GH. Nabi Parrey
1996-01-01
This paper attempts to study the effect of the impact of a paraboloidal projectile on human shin membrane. The tip of the projectile (i.e., the bullet tip) has been considered to be paraboloidal and is made of lead or steel. The threshold velocity i.e., the velocity when the skin membrane is about to rupture has been calculated for human beings of various age groups. The threshold velocity for a paraboloidal projectile of certain dimensions has been found, for all age groups, to be les...
Klevgard, Paul A
2015-01-01
The classical (Newtonian) concept of projectile motion underwent a series of seemingly minor changes and adjustments between the discovery of the quantum (Planck, 1900) and the early codification of quantum theory (Dirac, 1928). The goal of physicists in this period was to keep change to a minimum and preserve as much as possible of the traditional projectile paradigm (TPP). These adjustments were successful in masking an all-out projectile paradigm crisis, but they have left us with a conceptual muddle. This has been especially deleterious for special relativity and our understanding of space contraction and time dilation.
Projectile motion in real-life situation: Kinematics of basketball shooting
Changjan, A.; Mueanploy, W.
2015-06-01
Basketball shooting is a basic practice for players. The path of the ball from the players to the hoop is projectile motion. For undergraduate introductory physics courses student must be taught about projectile motion. Basketball shooting can be used as a case study for learning projectile motion from real-life situation. In this research, we discuss the relationship between optimal angle, minimum initial velocity and the height of the ball before the player shoots the ball for basketball shooting problem analytically. We found that the value of optimal angle and minimum initial velocity decreases with increasing the height of the ball before the player shoots the ball.
Energy Technology Data Exchange (ETDEWEB)
De Leo, Stefano [Department of Applied Mathematics, University of Campinas, PO Box 6065, SP 13083-970, Campinas (Brazil); Ducati, Gisele C [Department of Mathematics, University of Parana PO Box 19081, PR 81531-970, Curitiba (Brazil)
2005-04-15
We study the bound-state solutions of vanishing angular momentum in a quaternionic spherical square-well potential of finite depth. As in standard quantum mechanics, such solutions occur for discrete values of energy. At first glance, it seems that the continuity conditions impose a very restrictive constraint on the energy eigenvalues and, consequently, no bound states were expected for energy values below the pure quaternionic potential. Nevertheless, a careful analysis shows that pure quaternionic potentials do not remove bound states. It is also interesting to compare these new solutions with the bound state solutions of the trial-complex potential. The study presented in this paper represents a preliminary step towards a full understanding of the role that quaternionic potentials could play in quantum mechanics. Of particular interest for the authors is the analysis of confined wave packets and tunnelling times in this new formulation of quantum theory.
2015-01-01
Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure. I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...
RESEARCH ON THE BASE CAVITY OF A SUB-LAUNCHED PROJECTILE
Institute of Scientific and Technical Information of China (English)
CAO Jia-yi; LU Chuan-jing; CHEN Ying; CHEN Xin; LI Jie
2012-01-01
The finite volume method based on a multiphase model is adopted to solve the Reynolds-Averaged Navier-Stokes (RANS)equations,which takes into account the effects of fluid compressibility,viscosity,gravity,medium mixture and energy transfer of water and combustion gas.The program Fluent User Define Function (UDF) module combined with the dynamic mesh method is employed to simulate the coupling flow field of combustion gas,water field and trajectory of projectile.The results show that the volume of gas cavity at the bottom of projectile and tail pressure will fluctuate after bottom of the projectile leaving the launch tube.The cause of the fluctuation is analyzed and its effects on the trajectory of projectile are presented.The numerical and experimental results agree well with each other.
AN EXPERIMENTAL TECHNIQUE TO MEASURE PROJECTILE DECELERATION HISTORY DURING NORMAL PENETRATION
Institute of Scientific and Technical Information of China (English)
INTO PLAIN; Liu Xiaohu; Liu Ji; Wang Cheng
2000-01-01
The present paper presents a new experimental method to measure the deceleration time his tory of projectiles penetrating into concrete in full-size test. The experiment can be carried out by using an onboard accelerometer to measure the projectile deceleration history and the data are transmitted to a ground recording system. With this experimental method, a series of tests on hemisphere-nose steel projectiles pene trating normally into plain concrete at the velocity region 150 - 400 m/s have been executed and the deceler ation histories obtained. The high frequency portion in the deceleration data has been investigated and proved to be the structure response of projectile. The characteristics of deceleration history have also been analyzed and discussed.
A New Simple Model for the Mushrooming Deformation of Projectile Impacting on A Deformable Target
Institute of Scientific and Technical Information of China (English)
Zhang Xiaoqing; Yang Guitong
2004-01-01
Based on Taylor's model and Hawkyard's model, a new simple model for the mushrooming deformation of projectile impacting on a deformable target is installed considering the penetration of the projectile to the deformable target. In the model, the following time-dependent variables are involved in: the extent and the particle velocity in the rigid zone; the extent, the cross-section area and the particle velocity in plastic zone; the velocity and depth of the penetrating of projectile to the target. Solving the set of equations, analytic solution is given. The profiles of deformed projectile and shape parameters for different initial impact velocities are shown. The duration time of deformation increases with increasing the impact velocity. The analytical results by using this model are coincident with experimental result.
Domke, I.; Deutsch, A.; Hecht, L.; Kenkmann, T.
2010-03-01
We report textural and geochemical data (EMP, LA-ICP-MS) for different types of steel and the iron meteorites Arispe (IC) and Campo del Cielo (IAB) that are evaluated as projectile materials in hypervelocity cratering experiments .
Development of odd-Z-projectile reactions for transactinide element synthesis
International Nuclear Information System (INIS)
The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile energies in the latter reaction were too high for optimum production of the 1n product. At the highest projectile energy of 268.0 MeV in the target center, two decay
Development of odd-Z-projectile reactions for transactinide element synthesis
Energy Technology Data Exchange (ETDEWEB)
Folden III, Charles Marvin
2004-11-04
The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile energies in the latter reaction were too high for optimum production of the 1n product. At the highest projectile energy of 268.0 MeV in the target center, two decay
Study of Hypervelocity Projectile Impact on Thick Metal Plates
Directory of Open Access Journals (Sweden)
Shawoon K. Roy
2016-01-01
Full Text Available Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This study proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. The results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.
Korać, Želimir; Crnica, Suad; Demarin, Vida
2006-01-01
Terminal ballistics of high-velocity projectiles is focused primarily on evaluation of the effects of penetrating projectiles on tissue simulants, but there is always a question of their similarity with live tissue. Ethical problems related to using live animals in terminal ballistic researches have resulted in a reduced number of these experiments. The aim of this study was to analyze histologic effects of high-velocity missiles in swine muscle tissue. The hypothesis was that a penetrating p...
Numerical Simulation on Ceramic/Metal Armours Impacted by Deformable Projectile
Institute of Scientific and Technical Information of China (English)
Zhang Xiaoqing; Yao Xiaohu; Yang Guitong
2004-01-01
Numerical simulation for the dynamic response of ceramic/metal armours impacted by deformable projectile is carried out with LS-DYNA3D.The simulated penetration processes are shown. The mushrooming of the projectile is displayed. A distinct conoid shaped zone of fragmented ceramic is observed. A significant bending of the backing plate is revealed. Simulation results match fairly well with the experimental values and the theoretical analysis results. The accuracy of the numerical simulation is validated.
Finite Element Modeling of Transient Temperatures in a Small-Caliber Projectile
M. B. Thomas; Leon Dozier
2010-01-01
Problem statement: Future generations of intelligent munitions will use Microelectromechanical Systems (MEMS) for guidance, fuzing logic and assessment of the battlefield environment. The temperatures fund in a gun system, however, are sufficient to damage some materials used in the fabrication of MEMS. The motivation of this study is to model the dynamic temperature distribution in a typical small-caliber projectile. Approach: An axisymmetric finite-element model of a projectile is developed...
Hoyer, Paul
2016-01-01
Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...
Bounding species distribution models
Institute of Scientific and Technical Information of China (English)
Thomas J. STOHLGREN; Catherine S. JARNEVICH; Wayne E. ESAIAS; Jeffrey T. MORISETTE
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern.Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development,yet there is no recommended best practice for “clamping” model extrapolations.We relied on two commonly used modeling approaches:classification and regression tree (CART) and maximum entropy (Maxent) models,and we tested a simple alteration of the model extrapolations,bounding extrapolations to the maximum and minimum values of primary environmental predictors,to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States.Findings suggest that multiple models of bounding,and the most conservative bounding of species distribution models,like those presented here,should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5):642-647,2011].
Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates
Paris, V.; Weiss, A.; Vizel, A.; Ran, E.; Aizik, F.
2012-08-01
In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH) armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile's core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In order to study complicated interacting flow field over projectile with lateral jets. External interacting turbulence flow over projectile with lateral jets was numerically simulated firstly in supersonic speed and zero attack angle. The three dimensional Reynolds-averaged NavierStokes equations and implicit finite volume TVD scheme grid of single zone including projectile base was produced by algebraic arithmetic. Body-fitted grid was generated for the lateral nozzle exit successfully so that the nozzle exit can be simulated more accurately. The high Reynolds number two-equation κ-ε turbulence models were used.The main features of the complex flow are captured. The two kinds of flow field over projectile with and without lateral jets are compared from shock structure, pressure of body and base, etc. It shows that lateral jets not only can provide push force, but also change aerodynamics characteristic of projectile significantly. The results are very important for the study of projectile with lateral rocket boosters.``
Pepper spray projectile/disperser for countering hostage and barricade situations
Kelly, Roy
1997-01-01
An improved less-than-lethal projectile for use in hostage, barricade and tactical assault situations has been developed. The projectile is launched from a standoff position and disperse the incapacitating agent oleoresin capsicum in the form of atomized droplets. A literature search followed by an experimental study were conducted of the mechanism of barrier defeat for various shaped projectiles against the targets of interest in this work: window glass, plasterboard and plywood. Some of the trade- offs between velocity, standoff, projectile shape and size, penetration, and residual energy were quantified. Analysis of the ballistic trajectory and recoil, together with calculations of he amount of pepper spray needed to incapacitate the occupants of a typical barricaded structure, indicated the suitability of using a fin stabilized projectile fired from a conventional 37 mm riot control gas gun. Two projectile designs were considered, manufactured and tested. The results of static tests to simulate target impact, together with live firing trials against a variety of targets, showed that rear ejection of the atomized spray was more reproducible and effective than nose ejection. The performance characteristics of the finalized design were investigated in trials using the standard barrier for testing barrier penetrating tear gas agents as defined by the National Institute of Justice.
Fairly direct hit. Advances in imaging of shotgun projectiles in MRI
Energy Technology Data Exchange (ETDEWEB)
Eggert, Sebastian [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Kubik-Huch, Rahel A.; Peters, Alexander [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Klarhoefer, Markus [Siemens Healthcare, Zurich (Switzerland); Bolliger, Stephan A.; Thali, Michael J. [University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Anderson, Suzanne [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Notre Dame Australia, Radiology, Sydney School of Medicine, Sydney, NSW (Australia); Froehlich, Johannes M. [Federal Institute of Technology, Pharmaceutical Sciences, Zurich (Switzerland)
2015-09-15
To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)
Fairly direct hit. Advances in imaging of shotgun projectiles in MRI
International Nuclear Information System (INIS)
To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G. [Sandia National Labs., Albuquerque, NM (United States); Derr, W. [Derr Enterprises, Albuquerque, NM (United States)
1996-07-01
Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.
Information, Utility & Bounded Rationality
Ortega, Pedro A
2011-01-01
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here we employ an axiomatic framework for bounded rational decision-making based on a thermodynamic interpretation of resource costs as information costs. This leads to a variational "free utility" principle akin to thermodynamical free energy that trades off utility and information costs. We show that bounded optimal control solutions can be derived from this variational principle, which leads in general to stochastic policies. Furthermore, we show that risk-sensitive and robust (minimax) control schemes fall out naturally from this framework if the environment is considered as a bounded rational and perfectly rational opponent, respectively. When resource costs are ignored, the maximum expected utility principle is recovered.
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay;
2013-01-01
a public tamper-proof common reference string. Finally, we explain how to boost bounded tampering and leakage resilience (as in 1. and 2. above) to continuous tampering and leakage resilience, in the so-called floppy model where each user has a personal hardware token (containing leak- and tamper...
Stable clocks and general relativity
Will, C M
1995-01-01
We survey the role of stable clocks in general relativity. Clock comparisons have provided important tests of the Einstein Equivalence Principle, which underlies metric gravity. These include tests of the isotropy of clock comparisons (verification of local Lorentz invariance) and tests of the homogeneity of clock comparisons (verification of local position invariance). Comparisons of atomic clocks with gravitational clocks test the Strong Equivalence Principle by bounding cosmological variations in Newton's constant. Stable clocks also play a role in the search for gravitational radiation: comparision of atomic clocks with the binary pulsar's orbital clock has verified gravitational-wave damping, and phase-sensitive detection of waves from inspiralling compact binaries using laser interferometric gravitational observatories will facilitate extraction of useful source information from the data. Stable clocks together with general relativity have found important practical applications in navigational systems s...
Marimuthu, N; Inbanathan, S S R
2016-01-01
The present article significantly investigated projectiles lightest fragments (proton) multiplicity distribution and probability distribution with 84Kr36 emulsion collision at around 1 A GeV. The multiplicity and normalized multiplicity of projectiles lightest fragments (proton) is correlated with the compound particles, shower particles, black particles, grey particles, helium fragments particles and heavily ionizing charged particles. It is found that projectiles lightest fragments (proton) are strongly correlated with compound particles and shower particles rather than other particles and the average multiplicity of projectiles lightest fragments (proton) increases with increasing compound, shower and heavy ionizing particles. Normalized projectiles lightest fragments (proton) are strongly correlated with compound particles, shower particles and heavy ionizing charge particles. The multiplicity distribution of the projectiles lightest fragments (proton) emitted in the 84Kr36 + emulsion interaction at aroun...
Energy Technology Data Exchange (ETDEWEB)
Lamour, E
1997-11-01
In ion-solid collisions, more excited states of projectile ions with high angular momenta l are populated than in ion-atom collisions. The use of 13.6 MeV/u Ar{sup 18+} projectile ions and solid carbon targets allowed us to study Ar{sup 17+} excited states initially populated by electron capture. Using various targets with increasing thickness from 3.5 to 200 {mu}g/cm{sup 2}, the evolution of excited states from the single collision condition to the population equilibrium was investigated. We observed the evolution of the Lyman line intensities as a function of the ion transit time inside the target (sensitive to core state population) and as a function of the ion time of flight behind the target (sensitive to Rydberg state population). To explain the experimental results, a complete theoretical analysis of the transport of excited states inside the medium was performed. We used two different collisional models. The first one is a rate equation model based on a statistical description of binary collisions of the projectile with target atoms. The second one is a classical transport theory based on an equation describing the motion of the projectile electron on a classical orbit perturbed by a stochastic force. A comparison with experiment shows that such a collisional approach allows to interpret the excited l-state population, but fails in describing the core state population. The observed l mixing in these states is much larger than predicted by the models. The polarization of the medium induced by the projectile ion, with both models do not take into account, could be responsible for this mixing by means of the Stark effect. (author)
Hypervelocity impact of rod projectiles with L/D from 1 to 32
International Nuclear Information System (INIS)
Beside a short remark on the ''hydrodynamic theory of rod projectiles'', the paper deals with the terminal ballistic behaviour of cylindrical projectiles against semi-infinite targets. Experimental data of EMI, completed by results of some other authors, are presented. Crater parameters like depth, diameter and volume and their dependence on projectile velocity (up to 5000 m/s), projectile and target material properties, as well as L/D-ratios (1 - 32), are discussed. Mainly the projectile materials steel and tungsten sinter-alloys are considered. Target materials are mild steel and high strength steel, an Al-alloy and a tungsten sinter-alloy. The results show that the influence of material density on the crater dimensions is considerably greater than the influence of strength. The L/D ratio determines the velocity dependence of crater depth, diameter and volume. At high velocities in the hydrodynamic regime, the crater depth of short cylinders (L/D -- 1) is approximately proportional to v/sub p//sup 2/3/ (v/sub p/ = projectile velocity). With increasing L/D-ratio, the slope of the penetration curves decreases and converges for rods (L/D >> 1) versus a saturation, i.e. becomes nearly independent on v/sub p/. A consequence of this saturation is the existence of a so-called ''tangent velocity'', above which an optimal increase of efficiency is only realized by increasing the projectile mass and not the velocity. Furthermore, ballistic limits of real targets like single plates and symmetric double plates meteorite bumper shield) are taken into account. The expected better performance of ''segmented rods'' is also discussed
Target-projectile interaction during impact melting at Kamil Crater, Egypt
Fazio, Agnese; D'Orazio, Massimo; Cordier, Carole; Folco, Luigi
2016-05-01
In small meteorite impacts, the projectile may survive through fragmentation; in addition, it may melt, and chemically and physically interact with both shocked and melted target rocks. However, the mixing/mingling between projectile and target melts is a process still not completely understood. Kamil Crater (45 m in diameter; Egypt), generated by the hypervelocity impact of the Gebel Kamil Ni-rich ataxite on sandstone target, allows to study the target-projectile interaction in a simple and fresh geological setting. We conducted a petrographic and geochemical study of macroscopic impact melt lapilli and bombs ejected from the crater, which were collected during our geophysical campaign in February 2010. Two types of glasses constitute the impact melt lapilli and bombs: a white glass and a dark glass. The white glass is mostly made of SiO2 and it is devoid of inclusions. Its negligible Ni and Co contents suggest derivation from the target rocks without interaction with the projectile (compression stage and the excavation stage, projectile and target liquids formed at their interface and chemically interact in a restricted zone. Projectile contamination affected only a shallow portion of the target rocks. The SiO2 melt that eventually solidified as white glass behaved as an immiscible liquid and did not interact with the projectile. During the excavation stage dark glass melt engulfed and coated the white glass melt, target fragments, and got stuck to iron meteorite shrapnel fragments. This model could also explain the common formation of white and dark glasses in small impact craters generated by iron bodies (e.g., Wabar).
Shea, John J.; Matthew L. Sisk
2011-01-01
Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cros...
Chemical projectile-target interaction during hypervelocity cratering experiments (MEMIN project).
Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.
2012-04-01
The detection and identification of meteoritic components in impact-derived rocks are of great value for confirming an impact origin and reconstructing the type of extraterrestrial material that repeatedly stroke the Earth during geologic evolution [1]. However, little is known about processes that control the projectile distribution into the various impactites that originate during the cratering and excavation process, and inter-element fractionation between siderophile elements during impact cratering. In the context of the MEMIN project, cratering experiments have been performed using spheres of Cr-V-Co-Mo-W-rich steel and of the iron meteorite Campo del Cielo (IAB) as projectiles accelerated to about 5 km/s, and blocks of Seeberger sandstone as target. The experiments were carried out at the two-stage acceleration facilities of the Fraunhofer Ernst-Mach-Institute (Freiburg). Our results are based on geochemical analyses of highly shocked ejecta material. The ejecta show various shock features including multiple sets of planar deformations features (PDF) in quartz, diaplectic quartz, and partial melting of the sandstone. Melting is concentrated in the phyllosilicate-bearing sandstone matrix but involves quartz, too. Droplets of molten projectile have entered the low-viscosity sandstone melt but not quartz glass. Silica-rich sandstone melts are enriched in the elements that are used to trace the projectile, like Fe, Ni, Cr, Co, and V (but no or little W and Mo). Inter-element ratios of these "projectile" tracer elements within the contaminated sandstone melt may be strongly modified from the original ratios in the projectiles. This fractionation most likely result from variation in the lithophile or siderophile character and/or from differences in reactivity of these tracer elements with oxygen [2] during interaction of metal melt with silicate melt. The shocked quartz with PDF is also enriched in Fe and Ni (experiment with a meteorite iron projectile) and in Fe
Towards Secure Distance Bounding
Boureanu, Ioana; Mitrokotsa, Aikaterini; Vaudenay, Serge
2013-01-01
Relay attacks (and, more generally, man-in-the-middle attacks) are a serious threat against many access control and payment schemes. In this work, we present distance-bounding protocols, how these can deter relay attacks, and the security models formalizing these protocols. We show several pitfalls making existing protocols insecure (or at least, vulnerable, in some cases). Then, we introduce the SKI protocol which enjoys resistance to all popular attack-models and features provable security....
Kahneman, Daniel
2002-01-01
The work cited by the Nobel committee was done jointly with the late Amos Tversky (1937-1996) during a long and unusually close collaboration. Together, we explored the psychology of intuitive beliefs and choices and examined their bounded rationality. This essay presents a current perspective on the three major topics of our joint work: heuristics of judgment, risky choice, and framing effects. In all three domains we studied intuitions - thoughts and preferences that come to mind quickly an...
Hussain, G.; Hameed, A.; Hetherington, J. G.; Barton, P. C.; Malik, A. Q.
2013-04-01
The formation of mild steel (MS) and copper (Cu) explosively formed projectiles (EFPs) was simulated in AUTODYN using both the Johnson-Cook (JC) and modified Johnson-Cook (JCM) constitutive models. The JC model was modified by increasing the hardening constant by 10%. The previously established semi-empirical equations for diameter, length, velocity, and depth of penetration were used to verify the design of the EFP. The length-to-diameter (L/D) ratio of the warhead used in the simulation varied between 1 < L/D < 2. To avoid projectile distortion or breakup for large standoff applications, the design of the EFP warhead was modified to obtain a lower L/D ratio. Simulations from the JC model underestimated the EFP diameter, resulting in an unrealistically elongated projectile. This shortcoming was resolved by employing the JCM model, giving good agreement with the experimental results. The projectile velocity and hole characteristics in 10-mm-thick aluminum target plates were studied for both models. The semi-empirical equations and the JC model overestimated the projectile velocity, whereas the JCM model underestimated the velocity slightly when compared to the experimental results. The depths of penetration calculated by the semi-empirical equations in the aluminum (Al) target plate were 55 and 52 mm for Cu and MS EFPs, respectively.
Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates
Directory of Open Access Journals (Sweden)
Aizik F.
2012-08-01
Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.
Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept
Directory of Open Access Journals (Sweden)
Ahmed Elsaadany
2014-01-01
Full Text Available Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake and the second is devoted to drift correction (canard based-correction fuze. The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.
CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry
Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas
2016-06-01
The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.
On the universal scaling in the electronic stopping cross section for heavy ion projectiles
Cabrera-Trujillo, R.; Martínez-Flores, C.; Trujillo-López, L. N.; Serkovic-Loli, L. N.
2016-02-01
Energy deposition of heavy ions when penetrating a material is of crucial importance in determining the damage to materials with implications in areas such as material science, plasma physics, radiotherapy and dosimetry. Due to the N-body electron problem, it has been thought that the electronic stopping cross section is unique for a given projectile-target combination and differs from system to system. In this work, we show that within the Bethe theory, there is a universal scaling when the electronic stopping cross sections and projectile kinetic energy are scaled properly in terms of the target mean excitation energy, ?, for all projectile-target combinations. We show that the scaling is given by ? as a function of ?, thus showing the importance of the characterization of the mean excitation energy. The scaling law expresses a systematic and universal behavior among complex projectile-target systems in the energy deposition, characterized by the minimum momentum transfer during the slowing down process. We provide an analytic expression for the universal scaling law for the stopping cross section of any projectile-target combination valid at high collision energies. Finally, we verify the universal scaling law by comparison to atomic and molecular experimental data available in the literature. We expect our findings will motivate further experimental work to verify our universal scaling for more complex systems in the absence of experimental data.
Institute of Scientific and Technical Information of China (English)
GUO Zi-tao; ZHANG Wei; WANG Cong
2012-01-01
In this article,the horizontal water-entry of flat-nose projectiles of two different lengths at impact velocities of 400 r/s-600 m/s is studied experimentally and theoretically.Based on the solution of the Rayleigh-Besant problem,a set of projectile dynamic equations are derived and a cavity model is built to describe the projectile's water entry dynamics.A parameter in the cavity model is determined by employing the principle of energy conservation.The results indicate that the flat-nose projectiles enjoy a good stability of trajectory,the drag coefficient and the velocity decay coefficient are dependent on the cavitation number,and increase along the penetration distance but with a relatively small variation.The maximum cavity radius decreases monotonically with the penetration distance.Projectiles with the same nose shapes at different initial velocities have a basically consistent cavity dimension before the deep pinching off phenomenon occurs.Good agreements are observed between results obtained by the analytical model and the experimental results.
Kinard, William H.; Collins, Rufus D., Jr.
1961-01-01
A facility has been developed and put into operation to determine the feasibility of obtaining hypervelocity impact data by using the relative velocities of two projectiles. The facility utilizes the technique of firing a target toward an oncoming high-velocity projectile so that the impact velocity is equal to the sum of the projectile velocity and the target velocity. A 37-millimeter powder gun is utilized to accelerate the targets, and a specially designed 22-caliber light-gas gun accelerates the impacting projectiles. The light-gas gun is operated by detonating an explosive charge which permits it to be synchronized with the firing of the 37-millimeter gun. Impact velocities as great as 21,850 ft/sec have been obtained during development of the facility. After the oncoming projectiles impact the targets fired from the 37-millimeter gun, these targets are recovered by allowing them to impact into Celotex and soft wooden blocks. The craters formed in the targets then can be observed and measured. The results of several preliminary firings of the facility are included in this report.
Numerical Investigation of Bending-Body Projectile Aerodynamics for Maneuver Control
Youn, Eric; Silton, Sidra
2015-11-01
Precision munitions are an active area of research for the U.S. Army. Canard-control actuators have historically been the primary mechanism used to maneuver fin-stabilized, gun-launched munitions. Canards are small, fin-like control surfaces mounted at the forward section of the munition to provide the pitching moment necessary to rotate the body in the freestream flow. The additional lift force due to the rotated body and the canards then alters the flight path toward the intended target. As velocity and maneuverability requirements continue to increase, investigation of other maneuver mechanisms becomes necessary. One option for a projectile with a large length-to-diameter ratio (L/D) is a bending-body design, which imparts a curvature to the projectile body along its axis. This investigation uses full Navier-Stokes computational fluid dynamics simulations to evaluate the effectiveness of an 8-degree bent nose tip on an 8-degree bent forward section of an L/D =10 projectile. The aerodynamic control effectiveness of the bending-body concept is compared to that of a standard L/D =10 straight-body projectile as well as that of the same projectile with traditional canards. All simulations were performed at supersonic velocities between Mach 2-4.
Zhang, Wei; Huang, Wei; Gao, Yubo; Qi, Yafei; Hypervelocity Impact Research Center Team
2015-06-01
Laboratory-scaled oblique water entry experiments for the trajectory stability in the water column have been performed with four different nosed-projectiles at a range of velocities from 20m /s to 250 m /s . The slender projectiles are designed with flat, ogival, hemi-sperical, truncated-ogival noses to make comparisons on the trajectory deviation when they are launched at vertical and oblique impact angles (0°~25°). Two high-speed cameras that are positioned orthogonal to each other and normal to the column are employed to capture the entire process of projectiles' penetration. From the experimental results, the sequential images in two planes are presented to compare the trajectory deviation of different impact tests and the 3D trajectory models are extracted based on the location recorded by cameras. Considering the effect influenced by the impact velocities and noses of projectiles, it merited concluded that trajectory deviation is affected from most by impact angle, and least by impact velocities. Additionally, ogival projectiles tend to be more sensitive to oblique angle and experienced the largest attitude changing. National Natural Science Foundation of China (NO.: 11372088).
Normal and Oblique Impacts of Hard Projectile on Single and Layered Plates-An Experimental Study
Directory of Open Access Journals (Sweden)
V. Madhu
2003-04-01
Full Text Available The phenomenon of ordnance velocity impact of projectile on single and layered plates is of interest for many applications. In this paper. an experimental study of normal and oblique impacts or an ogive shaped, hard steel projectile on single and layered plates of mild steel and aluminium is presented. The projectiles were fired at an impact velocity of about 820 ms-1. The plate thickness was varied in the range 10 mm to 40 mm and the ratio of plate thickness to the diameter of the projectile varied in the range 1.5 to 13.0. Observations on target damage and measurements of incident and residual velocities for different angles of impact are presented. Plate thickness t*, for which the incident velocity is the ballistic limit, is determined. Computer simulations were carried out using a hydrodynamic code to simulate the normal impact of a projectile and compared these with the experimental results. Experiments were performed to evaluate the response of these plates of intermediate thickness when layered. and the results were compared to the results of single plate of same total thickness.
Light-ion elastic scattering potentials: Energy and projectile-mass dependence
International Nuclear Information System (INIS)
Volume integrals of the real potentials derived from elastic scattering studies of deuterons, tritons, 3He, and α particles have been calculated for data available from the lowest to the highest energy. These volume integrals have been plotted as a function of energy per nucleon for each projectile. By selecting energy regions where there were least ambiguities in the potentials and averaging the volume integrals in 1 MeV bins, the energy dependences were determined. The volume integrals show a logarithmic dependence on the energy per nucleon. The zero crossing of the potentials is at about the same value of ∼650 MeV/nucleon for all projectiles. With increasing projectile mass, the potentials become weaker, possibly due to Pauli blocking effects in the projectile. Neutron-rich projectiles have smaller volume integrals due to the manifestation of the isospin effect. A similar analysis of the imaginary volume integrals shows that they increase from zero at the lowest energies to about 100-150 MeV fm3 around 10 MeV/nucleon and then remain essentially constant
CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry
Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas
2016-09-01
The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.
BOUNDING PYRAMIDS AND BOUNDING CONES FOR TRIANGULAR BEZIER SURFACES
Institute of Scientific and Technical Information of China (English)
Jian-song Deng; Fa-lai Chen; Li-li Wang
2000-01-01
This paper describes practical approaches on how to construct bounding pyramids and bounding cones for triangular Bézier surfaces. Examples are provided to illustrate the process of construction and comparison is made between various surface bounding volumes. Furthermore, as a starting point for the construction,we provide a way to compute hodographs of triangular Bézier surfaces and improve the algorithm for computing the bounding cone of a set of vectors.
Screening and antiscreening by projectile electrons in high-velocity atomic collisions
International Nuclear Information System (INIS)
The scattering amplitude for a projectile of nuclear charge Z1 carrying N electrons colliding with an atomic target with charge Z2, evaluated in the first Born approximation using hydrogenic wave functions, is compared with recent experimental results. In the present approximation where the minimum momentum transfer t/sub min/ is considered to be approximately independent of the final state of the projectile, the differential cross sections separate into a product of one term that depends only on the target times the square Z21(t) of an effective projectile charge. Here an analytic expression for Z21(t) is given for 2, 1, and 0 electrons. Some total ionization cross-section ratios are also given
A study of the perforation of stiffened plates by rigid projectiles
Institute of Scientific and Technical Information of China (English)
Jianguo Ning; Weidong Song; Jing Wang
2005-01-01
In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and projectile exit. In addition, some important experimental results are presented and analyzed to validate the present perforation model. In the experiments, high speed camera system is used to record the perforation process. Observations on target damage and measurements of initial velocities and residual velocities with the aid of the system are presented. Numerical simulations are carried out for projectiles against single and layered plates adopted in the experiments. The perforation process is studied and the deformation and failure modes are obtained. The predictions of numerical simulations and analytical model are found in reasonably good agreement with those of experiments, and can be used to predict the ballistic limit and residual velocity of stiffened plates perforated by rigid projectiles.
Probable Projectile-Target Combinations for the Synthesis of Super Heavy Nucleus 286112
Directory of Open Access Journals (Sweden)
K. P. Santhosh
2014-02-01
Full Text Available The fusion cross sections for the reactions of all the projectile-target combinations found in the cold valleys of 286112 have been studied using scattering potential as the sum of Coulomb and proximity potential, so as to predict the most probable projectile-target combinations in heavy ion fusion reactions for the synthesis of super heavy nucleus 286112. While considering the nature of potential pockets and half lives of the colliding nuclei, the systems 82Ge + 204Hg, 80Ge + 206Hg and 78Zn + 208Pb found in the deep cold valley region and the systems 48Ca+238U, 38S+248Cm and 44Ar+242Pu in the cold valleys are predicted to be the better optimal projectile-target combinations for the synthesis of super heavy nucleus 286112.
Domke, Isabelle; Deutsch, Alex; Hecht, Lutz; Kenkmann, Thomas; Berndt, Jasper
2010-05-01
The DFG-funded "MEMIN" (multidisciplinary experimental and modelling impact crater research network) research group is aimed at a better understanding of the impact cratering process by combining (i) numerical modelling of crater formation, (ii) investigation of terrestrial craters and (iii) meso-scale hypervelocity impact experiments using the large two-stage light gas gun at the Ernst-Mach-Institute (EMI; Efringen-Kirchen, Germany). In the framework of MEMIN, 1 cm-sized projectiles of the steel SAE 4130 (mass of 4.1 g) have been fired with a velocity of ~ 5.3 km s-1 onto blocks of Seeberger sandstone (size 100 x 100 x 50 cm, grain size 169+/-8 μm; porosity 12-20 vol.%). One goal of MEMIN is to document, analyze, and understand the fate of the projectile and its distribution between crater and ejecta; hence, the use of well-analyzed projectile material is mandatory. For this purpose, we use optical, and electron microscopy, electron microprobe (WWU, and MfN), and LA-ICP-MS microanalysis (WWU). Currently we evaluate which steel or iron meteorite is adequate for the intended use. Important properties of a projectile are (i) textural and chemical homogeneity, (ii) clear chemical distinction to the target sandstone, (iii) presence of elements such as Co, Ni, Cr, PGE that as "meteoritic component" are used in terrestrial craters to trace projectile matter, and characterize the type of the projectile (i.e., meteorite group), and finally (iv) mechanical properties that guarantee stability during sphere production, launch and flight. Strong chemical differences to the target material and geochemical homogeneity of the projectile will allow detection of small volumes of projectile matter by high spatial resolution in-situ analysis with the LA-ICP-MS. Steel SAE 4130 is heterogeneous at the 100-µm scale and has low trace element contents. In future, we plan the use of the alloyed heat treatable steel D290-1 as projectile as its texture is quite homogenous at the scale of
Probable projectile-target combinations for the synthesis of super heavy nucleus $^{286}$112
Santhosh, K P
2014-01-01
The fusion cross sections for the reactions of all the projectile-target combinations found in the cold valleys of $^{286}$112 have been studied using scattering potential as the sum of Coulomb and proximity potential, so as to predict the most probable projectile-target combinations in heavy ion fusion reactions for the synthesis of super heavy nucleus $^{286}$112. While considering the nature of potential pockets and half lives of the colliding nuclei, the systems $^{82}$Ge + $^{204}$Hg, $^{80}$Ge + $^{206}$Hg and $^{78}$Zn + $^{208}$Pb found in the deep cold valley region and the systems $^{48}$Ca+$^{238}$U, $^{38}$S+$^{248}$Cm and $^{44}$Ar+$^{242}$Pu in the cold valleys are predicted to be the better optimal projectile-target combinations for the synthesis of super heavy nucleus $^{286}$112.
Ground target localization algorithm for semi-active laser terminal correction projectile
Directory of Open Access Journals (Sweden)
Xing-long Li
2016-06-01
Full Text Available A target localization algorithm, which uses the measurement information from onboard GPS and onboard laser detector to acquire the target position, is proposed to obtain the accurate position of ground target in real time in the trajectory correction process of semi-active laser terminal correction projectile. A target localization model is established according to projectile position, attitude and line-of-sight angle. The effects of measurement errors of projectile position, attitude and line-of-sight angle on localization accuracy at different quadrant elevation angles are analyzed through Monte-Carlo simulation. The simulation results show that the measurement error of line-of-sight angle has the largest influence on the localization accuracy. The localization accuracy decreases with the increase in quadrant elevation angle. However, the maximum localization accuracy is less than 7 m. The proposed algorithm meets the accuracy and real-time requirements of target localization.
Extended Range of a Gun Launched Smart Projectile Using Controllable Canards
Directory of Open Access Journals (Sweden)
Mark Costello
2001-01-01
Full Text Available This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and aerodynamic loads from the body and canards are Mach number and angle of attack dependent. The projectile body aerodynamic moments include unsteady aerodynamic damping. The focus of the study is directed toward low cost competent munitions that extend range and as such a simple flight control system is considered which utilizes only timer, roll rate, and roll attitude inputs.
Projectile motion of a once rotating object: physical quantities at the point of return
Arabasi, Sameer
2016-09-01
Vertical circular motion is a widely used example to explain non-uniform circular motion in most undergraduate general physics textbooks. However, most of these textbooks do not elaborate on the case when this motion turns into projectile motion under certain conditions. In this paper, we describe thoroughly when a mass attached to a cord, moving in a vertical circular motion, turns into a projectile and its location and velocity when it rejoins the circular orbit. This paper provides an intuitive understanding, supported by basic kinematic equations, to give an interesting elegant connection between circular motion and projectile motion—something lacking in most physics textbooks—and will be very useful to present to an undergraduate class to deepen their understanding of both models of motion.
Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.
Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael
2015-05-01
In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations. PMID:25739515
Universal bounds on current fluctuations
Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo
2016-05-01
For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.
Xu, Xing; Wang, Meng; Zhang, Yu-Hu; Xu, Hu-Shan; Shuai, Peng; Tu, Xiao-Lin; Yuri, A. Litvinov; Zhou, Xiao-Hong; Sun, Bao-Hua; Yuan, You-Jin; Xia, Jia-Wen; Yang, Jian-Cheng; Klaus, Blaum; Chen, Rui-Jiu; Chen, Xiang-Cheng; Fu, Chao-Yi; Ge, Zhuang; Hu, Zheng-Guo; Huang, Wen-Jia; Liu, Da-Wei; Lam, Yi-Hua; Ma, Xin-Wen; Mao, Rui-Shi; Uesaka, T.; Xiao, Guo-Qing; Xing, Yuan-Ming; Yamaguchi, T.; Yamaguchi, Y.; Zeng, Qi; Yan, Xin-Liang; Zhao, Hong-Wei; Zhao, Tie-Cheng; Zhang, Wei; Zhan, Wen-Long
2015-10-01
In this paper, we present direct mass measurements of neutron-rich 86Kr projectile fragments conducted at the HIRFL-CSR facility in Lanzhou by employing the Isochronous Mass Spectrometry (IMS) method. The new mass excesses of 52-54Sc nuclides are determined to be -40492(82), -38928(114), -34654(540) keV, which show a significant increase of binding energy compared to the reported ones in the Atomic Mass Evaluation 2012 (AME12). In particular, 53Sc and 54Sc are more bound by 0.8 MeV and 1.0 MeV, respectively. The behavior of the two neutron separation energy with neutron numbers indicates a strong sub-shell closure at neutron number N=32 in Sc isotopes. Supported by 973 Program of China (2013CB834401), the NSFC (U1232208, U1432125, 11205205, 11035007) and the Helmholtz-CAS Joint Research Group (HCJRG-108)
Xu, Xing; Zhang, Yu-hu; Xu, Hu-shan; Shuai, Peng; Tu, Xiao-lin; Litvinov, Yuri A; Zhou, Xiao-hong; Sun, Bao-hua; Yuan, You-jin; Xia, Jia-wen; Yang, Jian-cheng; Blaum, KLaus; Chen, Rui-jiu; Chen, Xiang-cheng; Fu, Chao-yi; Ge, Zhuang; Hu, Zheng-guo; Huang, Wen-jia; Liu, Da-wei; Lam, Yi-hua; Ma, Xin-wen; Mao, Rui-shi; Uesaka, T; Xiao, Guo-ging; Xing, Yuan-ming; Yamaguchi, T; Yamaguchi, Y; Zeng, Qi; Yan, Xin-liang; Zhao, Hong-wei; Zhao, Tie-cheneg; Zhang, Wei; Zhan, Wen-long
2016-01-01
In this paper, we present direct mass measurements of neutron-rich $^{86}$Kr projectile fragments conducted at the HIRFL-CSR facility in Lanzhou by employing the Isochronous Mass Spectrometry (IMS) method. The new mass excesses of $^{52-54}$Sc nuclides are determined to be -40492(82), -38928(114), -34654(540) keV, which show a significant increase of binding energy compared to the reported ones in the Atomic Mass Evaluation 2012 (AME12). In particular, $^{53}$Sc and $^{54}$Sc are more bound by 0.8 MeV and 1.0 MeV, respectively. The behavior of the two neutron separation energy with neutron numbers indicates a strong sub-shell closure at neutron number $N$ = 32 in Sc isotopes.
Santhosh, K. P.; Safoora, V.
2016-08-01
Probable projectile-target combinations for the synthesis of the superheavy element 302120 have been studied taking the Coulomb and proximity potential as the interaction barrier. The probabilities of the compound nucleus formation PCN for the projectile-target combinations found in the cold reaction valley of 302120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion, and evaporation residue cross sections for the reactions of all probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of the superheavy element 302120 in heavy-ion fusion reactions. The calculated fusion and evaporation cross sections for the more asymmetric ("hotter") projectile-target combination is found to be higher than the less asymmetric ("colder") combination. It can be seen from the nature of the quasifission barrier height, mass asymmetry, the probability of compound nucleus formation, survival probability, and excitation energy, the systems 44Ar+258No , 46Ar+256No , 48Ca+254Fm , 50Ca+252Fm , 54Ti+248Cf , and 58Cr+244Cm in deep region I of the cold reaction valley and the systems 62Fe+240Pu , 64Fe+238Pu , 68Ni+234U , 70Ni+232U , 72Ni+230U , and 74Zn+228Th in the other cold valleys are identified as the better projectile-target combinations for the synthesis of 302120. Our predictions on the synthesis of 302120 superheavy nuclei using the combinations 54Cr+248Cm , 58Fe+244Pu , 64Ni+238U , and 50Ti+249Cf are compared with available experimental data and other theoretical predictions.
Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles
Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.
1995-01-01
The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.
Maldacena, Juan; Stanford, Douglas
2015-01-01
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent $\\lambda_L \\le 2 \\pi k_B T/\\hbar$. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
DEFF Research Database (Denmark)
Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik
2011-01-01
We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....
Steinberg, Peter
2008-06-01
Who is the blog written by? Peter Steinberg is a nuclear physicist at the Brookhaven National Laboratory in New York, US. He is acting project manager of the PHOBOS experiment, which used Brookhaven's Relativistic Heavy Ion Collider (RHIC) to search for unusual events produced during collisions between gold nuclei. He is also involved with the PHENIX experiment, which seeks to discover a new state of matter known as the quark-gluon plasma. In addition to his own blog Entropy Bound, Steinberg is currently blogging on a website that was set up last year to publicize the involvement of US scientists with the Large Hadron Collider (LHC) at CERN.
Distorted wave theories for dressed-ion-atom collisions with GSZ projectile potentials
Energy Technology Data Exchange (ETDEWEB)
Monti, J M; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Fainstein, P D, E-mail: monti@ifir-conicet.gov.ar [Comision Nacional de EnergIa Atomica, Centro Atomico Bariloche, 8400 San Carlos de Bariloche (Argentina)
2011-10-14
The continuum distorted wave and the continuum distorted wave-eikonal initial state approximations for electron emission in ion-atom collisions are generalized to the case of dressed projectiles. The interaction between the dressed projectile and the active electron is represented by the analytic Green-Sellin-Zachor (GSZ) potential. Doubly differential cross sections as a function of the emitted electron energy and angle are computed. The region of the binary encounter peak is analysed in detail. Interference structures appear in agreement with the experimental data and are interpreted as arising from the coherent interference between short- and long-range scattering amplitudes.
Institute of Scientific and Technical Information of China (English)
陈沿海; 张庆明; 黄风雷
2004-01-01
Tests of hypervelocity projectile impact on double-wall structure were performed with the front wall ranging from 0.5 mm to 2.0 mm thick and different impact velocities. Smooth particle hydrodynamics (SPH) code in LS-DYNA was employed for the simulation of hypervelocity impact on the double-wall structure. By using elementary shock wave theory, the experimental results above are analyzed. The analysis can provide an explanation for the penetration mechanism of hypervelocity projectile impact on double-wall structure about the effect of front wall thickness and impact velocity.
Institute of Scientific and Technical Information of China (English)
Peng XU; Jing ZU; Jing-biao FAN
2010-01-01
A kind of novel on-boand memory acceleratian measure equipment, self-developed, had been employed in recent field test to obtain the acceleration of projectile penetrating many kinds of concrete target. At the same time, the aluminum foam with different density and pore-diameters had been utilized to protect cirruit modules. Fur-thermore, with the theoretical analysis, computer simulation and field test, the high frequency's impact on the tested acceleration of the projectile had been discussed; At last, the analysis on output signal tested the validity of test data.
Novel Bounds on Marginal Probabilities
Mooij, Joris M.; Kappen, Hilbert J
2008-01-01
We derive two related novel bounds on single-variable marginal probability distributions in factor graphs with discrete variables. The first method propagates bounds over a subtree of the factor graph rooted in the variable, and the second method propagates bounds over the self-avoiding walk tree starting at the variable. By construction, both methods not only bound the exact marginal probability distribution of a variable, but also its approximate Belief Propagation marginal (``belief''). Th...
Tight Bernoulli tail probability bounds
Dzindzalieta, Dainius
2014-01-01
The purpose of the dissertation is to prove universal tight bounds for deviation from the mean probability inequalities for functions of random variables. Universal bounds shows that they are uniform with respect to some class of distributions and quantity of variables and other parameters. The bounds are called tight, if we can construct a sequence of random variables, such that the upper bounds are achieved. Such inequalities are useful for example in insurance mathematics, for constructing...
Analysis of Price Stackelberg Duopoly Game with Bounded Rationality
Directory of Open Access Journals (Sweden)
Lian Shi
2014-01-01
Full Text Available The classical Stackelberg game is extended to boundedly rational price Stackelberg game, and the dynamic duopoly game model is described in detail. By using the theory of bifurcation of dynamical systems, the existence and stability of the equilibrium points of this model are studied. And some comparisons with Bertrand game with bounded rationality are also performed. Stable region, bifurcation diagram, The Largest Lyapunov exponent, strange attractor, and sensitive dependence on initial conditions are used to show complex dynamic behavior. The results of theoretical and numerical analysis show that the stability of the price Stackelberg duopoly game with boundedly rational players is only relevant to the speed of price adjustment of the leader and not relevant to the follower’s. This is different from the classical Cournot and Bertrand duopoly game with bounded rationality. And the speed of price adjustment of the boundedly rational leader has a destabilizing effect on this model.
Error bounds for set inclusions
Institute of Scientific and Technical Information of China (English)
ZHENG; Xiyin(郑喜印)
2003-01-01
A variant of Robinson-Ursescu Theorem is given in normed spaces. Several error bound theorems for convex inclusions are proved and in particular a positive answer to Li and Singer's conjecture is given under weaker assumption than the assumption required in their conjecture. Perturbation error bounds are also studied. As applications, we study error bounds for convex inequality systems.
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming
1992-01-01
they obtain a quadratic bound. These bounds are shown to be tight. Specializing the case of strict and additive functions to functionals of a form that would correspond to iterative programs they show that a linear bound is tight. This is related to several analyses studied in the literature (including...
Separable subgroups have bounded packing
Yang, Wen-yuan
2010-01-01
In this note, we prove that separable subgroups have bounded packing in ambient groups. The notion bounded packing was introduced by Hruska-Wise \\cite{HrWi} and in particular, our result confirms a conjecture in \\cite{HrWi} which states each subgroup of a virtually polycyclic group has the bounded packing property.
Stable Principal Component Pursuit
Zhou, Zihan; Wright, John; Candes, Emmanuel; Ma, Yi
2010-01-01
In this paper, we study the problem of recovering a low-rank matrix (the principal components) from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors. Recently, it has been shown that a convex program, named Principal Component Pursuit (PCP), can recover the low-rank matrix when the data matrix is corrupted by gross sparse errors. We further prove that the solution to a related convex program (a relaxed PCP) gives an estimate of the low-rank matrix that is simultaneously stable to small entrywise noise and robust to gross sparse errors. More precisely, our result shows that the proposed convex program recovers the low-rank matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound proportional to the noise level. We present simulation results to support our result and demonstrate that the new convex program accurately recovers the principal components (the low-rank matrix) under quite broad conditions. To our knowledge, this is...
Development of odd-Z-projectile reactions for transactinide element synthesis
Energy Technology Data Exchange (ETDEWEB)
Folden, III, Charles Marvin [Univ. of California, Berkeley, CA (United States)
2004-01-01
The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile ^{208}Pb(^{64}Ni, n)^{271}Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to ^{271}Ds were observed. These data, combined with previous results, establish an excitation function for the production of ^{271}Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the^{ 27}1Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile ^{208}Pb(^{65}Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile ^{208}Pb(^{55}Mn, n)^{26}2Bh reaction was studied at three different projectile energies, and 33 decay chains of ^{262}Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile ^{209}Bi(^{54}Cr, n)^{262}Bh reaction, which may be because the 54Cr projectile
Yipan, Guo; Zhihu, Yang; Shubin, Du; Hongwei, Chang; Qingliang, Xia; Qiumei, Xu
2016-03-01
We report studies on both target and projectile K-shell ionization by collisions of Cu9+ ions on the thin Zn target in the energy range of 60-100 MeV. In this work, the relative ratio for the production of the target to projectile K-vacancy is measured. The result shows that it almost remains stable over this energy range and has good consistency with the predictions by vacancy transfer via the 2pσ-1sσ rotational coupling, which gives experimental evidence for K-vacancy sharing between two partners. Furthermore, the discussion for comparisons between the experimental ionization cross sections and the possible theoretical estimations is presented. These comparisons suggest that the experimental data agree well with those predicted by the Binary-Encounter approximation (BEA) model but are not in good agreement with the modified BEA calculations. It allows us to infer that the direct ionization (and/or excitation) is of importance to initial K-vacancy production before 2pσ-1sσ transitions in the present collision condition. Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1332122).
Sisk, Matthew L; Shea, John J
2011-01-01
Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cross-Sectional Perimeter, a more accurate proxy of the force needed to penetrate a target to a lethal depth. The current study discusses this measure and uses it to analyze a collection of measurements from African Middle Stone Age pointed stone artifacts. Several point types that were rejected in previous studies are statistically indistinguishable from ethnographic projectile points using this new measure. The ramifications of this finding for a Middle Stone Age origin of complex projectile technology is discussed.
Directory of Open Access Journals (Sweden)
Matthew L. Sisk
2011-01-01
Full Text Available Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cross-Sectional Perimeter, a more accurate proxy of the force needed to penetrate a target to a lethal depth. The current study discusses this measure and uses it to analyze a collection of measurements from African Middle Stone Age pointed stone artifacts. Several point types that were rejected in previous studies are statistically indistinguishable from ethnographic projectile points using this new measure. The ramifications of this finding for a Middle Stone Age origin of complex projectile technology is discussed.
Santhosh, K P
2016-01-01
Probable projectile-target combinations for the synthesis of superheavy element $^{302}$120 have been studied taking Coulomb and proximity potential as the interaction barrier. The probabilities of compound nucleus formation, PCN for the projectile-target combinations found in the cold reaction valley of $^{302}$120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion and evaporation residue cross sections for the reactions of all the probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of SHE $^{302}$120 in heavy ion fusion reactions. The calculated fusion and evaporation cross section for the more asymmetric (hotter) projectile-target combination is found to be higher than the less asymmetric (colder) combination. It can be seen from the nature of quasi-fission barrier height, mass asymmetry, probability of compound nucleus formation, survival probability and excitation energy, the system...
Energy Technology Data Exchange (ETDEWEB)
Vidovic, Zvonimir [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)
1997-06-24
This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H{sup 0}, H{sub 2}{sup +} and H{sub 3}{sup +} projectiles in the 0.25 - 2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. Phenomenological and theoretical descriptions as well as a summary of the main theoretical models are the subjects of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of the thin carbon foils crossed by an energetic projectile is described in the chapter two. In this chapter there are also presented the method and the algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H{sup 0} atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H{sub 2}{sup +} and H{sub 3}{sup +} polyatomic ions. The results are interpreted in terms of collective effects in the interactions of the ions with solids. The role of the proximity of the protons, molecular ions fragments, upon the amplitude of these collected effects is evidenced from the study of the statistics of forward emission. The experiments allowed us to shed light on various aspects of atom and polyatomic ion interactions with solid surfaces. (author) 136 refs., 41 figs., 3 tabs.
Bound anionic states of adenine
Energy Technology Data Exchange (ETDEWEB)
Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H
2007-03-20
Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic
National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...
Nowak, K.; Kästner, M.; Miltner, A.
2009-04-01
During degradation of organic pollutants in soil, metabolites, microbial biomass, CO2and "bound" residues ("non-extractable" residues in soil organic matter) are formed. Enhanced transformation of these contaminants into "bound" residues has been proposed as an alternative remediation method for polluted soils. However, this kind of residues may pose a potential risk for the environment due to their chemical structure and possible remobilization under different conditions. Therefore particular attention is given actually to "bound" residues. Part of these non-extractable residues may be "biogenic," because microorganisms use the carbon from the pollutant to form their biomass components (fatty acids, amino acids, amino sugars), which subsequently may be incorporated into soil organic matter. Furthermore, the CO2 originating from mineralization of xenobiotics, can be re-assimilated by microorganisms and also incorporated into "biogenic residue". The hazard posed by "bound" residues may be overestimated because they are "biogenic" (contain microbial fatty acids and amino acids). The knowledge about the pathways of "biogenic residue" formation is necessary for a proper assessment of the fate of tested pollutants and their turnover in the soil environment. Moreover, these data are needed to establish the realistic degradation rates of the contaminants in soil. The main objectives of this study are: to quantify the extent of "biogenic residue" (fatty acids, amino acids, amino sugars) formation during the degradation of a model pollutant (2,4-dichlorophenoxyacetic acid = 2,4-D) and during CO2 assimilation by microorganisms and to evaluate which components are mainly incorporated into "bound" residues. To investigate the extent of "biogenic residue" formation in soil during the degradation of 2,4-D, experiments with either 14C-U-ring and 13C6-2,4-D or carboxyl-14C 2,4-D were performed. The incubation experiments were performed according to OECD test guideline 307, in the
On projectile fragmentation at high-velocity perforation of a thin bumper
Myagkov, N. N.; Stepanov, V. V.
2014-09-01
By means of 3D numerical simulations, we study the statistical properties of the fragments cloud formed during high-velocity impact of a spherical projectile on a mesh bumper. We present a quantitative description of the projectile fragmentation, and study the nature of the transition from the damage to the fragmentation of the projectile when the impact velocity varies. A distinctive feature of the present work is that the calculations are carried out by smoothed particle hydrodynamics (SPH) method applied to the equations of mechanics of deformable solids (MDS). We describe the materials behavior by the Mie-Grüneisen equation of state and the Johnson-Cook model for the yield strength. The maximum principal stress spall model is used as the fracture model. It is shown that the simulation results of fragmentation based on the MDS equations by the SPH method are qualitatively consistent with the results obtained earlier on the basis of the molecular dynamics and discrete element models. It is found that the power-law distribution exponent does not depend on energy imparted to the projectile during the high-velocity impact. At the same time, our calculations show that the critical impact velocity, the power-law exponent and other critical exponents depend on the fracture criterion.
International Nuclear Information System (INIS)
In the present study, we have tried to estimate the excitation energy of the primary projectile like fragments (PLFs) using the experimental data as well as simulation for the reaction 48Ca + 124Sn at 45 A MeV of lab energy
AB-Net Method of Protection from Projectiles (city, military base, battle-front, etc.)
Bolonkin, Alexander
2008-01-01
The author suggests a low cost special AB-Net from artificial fiber, which may protect cities and important objects from rockets, artillery and mortar shells, projectiles, bullets, and strategic weapons. The idea is as follows: The offered AB-Net joins an incoming projectile to a small braking parachute and this incoming projectile loses speed by air braking after a drag distance of 50 - 150 meters. A following interception net after the first may serve to collect the slowed projectiles and their fragments or bomblets so that they do not reach the aimpoint. The author offers the design of AB-Net, a developed theory of snagging with a small braking parachute by AB-Net; and sample computations. These nets may be used for defense of a town, city, military base, battle-front line, road (from terrorists), or any important objects or installations (for example nuclear electric station, government buildings, etc.). Computed projects are: Net to counter small rockets (for example, from Qassam), net to counter artille...
International Nuclear Information System (INIS)
The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed
Breakup of the projectile in heavy ion collisions at intermediate energies
International Nuclear Information System (INIS)
Report on an experiment in which the 4He breakup channel of 16O projectiles on various targets (27Al, 58Ni, 197Au) has been studied inclusively, and exclusively (in coincidence with charged pions). The bombarding energy was 94 MeV/nucleon. (D.L.). 7 refs., 5 figs
Kibirige, Israel; Lehong, Moyahabo Jeridah
2016-01-01
The study explored the effect of cooperative learning on Grade 12 learners' performance in projectile motions. A quasi-experimental research design with non-equivalent control group was used. Two schools were purposively selected from Maleboho Central circuit in South Africa based on their performance in Physical Sciences Grade 12 results of 2011.…
The scaling and dynamics of a projectile obliquely impacting a granular medium.
Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing
2012-01-01
In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.
Tissue simulant response at projectile impact on flexible fabric armour systems
Bree, J.L.M.J. van; Volker, A.; Heiden, N. van der
2006-01-01
Behind Armour Blunt Trauma is a phenomenon which has been studied extensively for rigid personal protective armour systems. These systems used in e.g. bullet proof vests manage to defeat high velocity small arms projectiles. Tissue simulants are used to study behind armour effects. At high velocity
Gilson, L.; Rabet, L.; Imad, A.; Kakogiannis, D.; Coghe, F.
2016-05-01
Among the different material surrogates used to study the effect of small calibre projectiles on the human body, ballistic gelatine is one of the most commonly used because of its specific material properties. For many applications, numerical simulations of this material could give an important added value to understand the different phenomena observed during ballistic testing. However, the material response of gelatine is highly non-linear and complex. Recent developments in this field are available in the literature. Experimental and numerical data on the impact of rigid steel spheres in gelatine available in the literature were considered as a basis for the selection of the best model for further work. For this a comparison of two models for Fackler gelatine has been made. The selected model is afterwards exploited for a real threat consisting of two types of ammunitions: 9 mm and .44 Magnum calibre projectiles. A high-speed camera and a pressure sensor were used in order to measure the velocity decay of the projectiles and the pressure at a given location in the gelatine during penetration of the projectile. The observed instability of the 9 mm bullets was also studied. Four numerical models were developed and solved with LS-DYNA and compared with the experimental data. Good agreement was obtained between the models and the experiments validating the selected gelatine model for future use.
Wound Ballistics: Study of the Rupture of Human Skin Membrane under the Impact of a Projectile
Directory of Open Access Journals (Sweden)
M. Jauhari
1979-07-01
Full Text Available The paper attempts to theorize the rupture of human skin membrane under the impact of a projectile. An expression for the threshold velocity for penetration has been derived which is found to give results in fair agreement with experimental values reported in literature.
Eulerian simulation of the perforation of aluminum plates by nondeforming projectiles
Energy Technology Data Exchange (ETDEWEB)
Silling, S.A.
1992-03-01
A new algorithm for the treatment of sliding interfaces between solids with or without friction in an Eulerian wavecode is described. The algorithm has been implemented in the two-dimensional version of the CTH code. The code was used to simulate penetration and perforation of aluminum plates by rigid, conical-nosed tungsten projectiles. Comparison with experimental data is provided.
International Nuclear Information System (INIS)
It is now well known that many reactions giving measurable fusion cross-sections also show a fission of the compound system formed, similar to the low energy fission of the known fissioning nuclei. Recently, both the fusion excitation functions and the mass equilibration in the fragmentation of the composite system were measured for a large number of systems with 94208Pb on different targets of 26Mg, 48Ca, 50Ti, 52Cr, 58Fe and 64Ni. From a theoretical point of view, it is relevant to ask the question: how do the colliding nuclei fuse and then why does the compound system formed fission instead of going to the ground state to give a stable system. In this Letter, we attempt to show that the fusion of asymmetric colliding nuclei is due to the overcoming of the interaction barriers in adiabatic potentials and the fission of the compound system should perhaps occur as a sudden process, like the one in the spontaneous fission phenomenon. We have made our calculations for the compound systems with 102<=Z<=110 and for the asymmetric target-projectile combinations of the experiments of Ref. 1, using the fragmentation theory whose basis is the asymmetric two-centre shell model
Sadeghzadeh, Sadegh; Liu, Ling
2016-09-01
In this paper, a quasi-classical model for the collision of various nanoparticles with single- and few-layer graphene nanosheets was introduced as a multi-scale approach that couples non-equilibrium molecular dynamics with the Finite Element Method. As a resistance criterion, it was observed that the coefficient of restitution and the induced stresses depend on the impact velocity of projectile. These parameters were evaluated computationally, and it was revealed that certain resulting behaviors differ from behaviors at the macro scale. By obtaining an out-of-plane yield stress limit of 1.0 TPa for graphene, the stress analysis of single- and multi-layer graphene sheets revealed that the limit projectile velocity needed for the yielding of graphene sheets increases with the increase in the number of layers. For aluminum nanoparticles, this increase is almost linear, and for other metals, it slightly deviates from the linear trend. It was also observed that the graphene sheets have a different rupture form when impacted by gaseous molecules than by metal particles. Considering the very high momentum of gas molecules and their shock-like behavior during high-speed collisions with a graphene sheet, pores with a size of one carbon atom can be created in graphene sheets. Since a single-layer graphene sheet can withstand a projectile which is 3.64 times larger than a projectile impacting a 20-layer graphene sheet, spaced graphene sheets seem to be more effective in absorbing the impact energy of projectiles than conventional few-layer graphene sheets.
Bresson, F; Ducouret, J; Peyré, J; Maréchal, C; Delille, R; Colard, T; Demondion, X
2012-06-10
We study in this paper the expanding behaviour of hollow point 9 mm Parabellum projectiles (Hornady XTP(®) and Speer Gold Dot(®)). We defined a deformation rate that takes into account both the diameter increase and the length reduction. We plotted the behaviour of this parameter versus impact velocity (we refer to this curve as the expanding law). This expanding law has been plotted for different gelatin weight ratios and different gelatin block lengths. We completed our experiments with a set of high speed movies in order to correlate the deceleration to the state of expansion and size of the temporary cavity. Our results pointed out that full expansion is reached shortly after the projectile fully penetrates the gelatin. This result shows that the key point to accurately simulate human body interaction with a hollow point projectile is to accurately simulate the interface (skin, skull, clothes thoracic walls). Simulating accurately organs is only an issue if a quantitative comparison between penetration depths is required, but not if we only focus on the state of expansion of the projectile. By varying the gelatin parameters, we discovered that the expanding law exhibits a velocity threshold below which no expansion occurs, followed by a rather linear curve. The parameters of that expanding law (velocity threshold and line slope) vary with the gelatin parameters, but our quantitative results demonstrate that these parameters are not extremely critical. Finally, our experiments demonstrate that the knowledge of the expansion law can be a useful tool to investigate a gunshot in a human body with a semi-jacketed projectile, giving an estimation of the impact velocity and thus the shooting distance. PMID:22269130
Bounds on gravitational wave backgrounds from large distance clock comparisons
Reynaud, Serge; Duchayne, Loic; Wolf, Peter; Jaekel, Marc-Thierry
2008-01-01
Our spacetime is filled with gravitational wave backgrounds that constitute a fluctuating environment created by astrophysical and cosmological sources. Bounds on these backgrounds are obtained from cosmological and astrophysical data but also by analysis of ranging and Doppler signals from distant spacecraft. We propose here a new way to set bounds on those backgrounds by performing clock comparisons between a ground clock and a remote spacecraft equipped with an ultra-stable clock, rather than only ranging to an onboard transponder. This technique can then be optimized as a function of the signal to be measured and the dominant noise sources, leading to significant improvements on present bounds in a promising frequency range where different theoretical models are competing. We illustrate our approach using the SAGAS project which aims to fly an ultra stable optical clock in the outer solar system.
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
Nonlinear Instabilities in Shock-Bounded Slabs
Vishniac, E T
1993-01-01
(substantial changes to section 3.2, otherwise minor) We present an analysis of the hydrodynamic stability of a cold slab bounded by two accretion shocks. Previous numerical work has shown that when the Mach number of the shock is large the slab is unstable. Here we show that to linear order both the bending and breathing modes of such a slab are stable. However, nonlinear effects will tend to soften the restoring forces for bending modes, and when the slab displacement is comparable to its thickness this gives rise to a nonlinear instability. The growth rate of the instability, above this threshold but for small bending angles, is $\\sim c_sk (k\\eta)^{1/2}$, where $\\eta$ is the slab displacement. When the bending angle is large the slab will contain a local vorticity comparable to $c_s/L$, where $L$ is the slab thickness. We discuss the implications of this work for gravitational instabilities of slabs. Finally, we examine the cases of a decelerating slab bounded by a single shock and a stationary slab bounde...
Bounded Rationality in Transposition Processes
DEFF Research Database (Denmark)
Vollaard, Hans; Martinsen, Dorte Sindbjerg
2014-01-01
that concerns the organisation and financing of national healthcare systems. This article applies the perspective of bounded rationality to explain (irregularities in) the timely and correct transposition of EU directives. The cognitive and organisational constraints long posited by the bounded rationality...... perspective may affect the commonly employed explanatory factors of administrative capacities, misfit and the heterogeneity of preferences among veto players. To prevent retrospective rationalisation of the transposition process, this paper traces this process as it unfolded in Denmark and the Netherlands....... As bounded rationality is apparent in the transposition processes in these relatively well-organised countries, future transposition studies should devote greater consideration to the bounded rationality perspective....
Institute of Scientific and Technical Information of China (English)
T.Tonuma; T.Matsuo; 等
1990-01-01
Slow Ar recoil ion Production cross sections by 42 MeV Ar1+(q=4-14) projectiles were measured using a projectile ion-recoilion coincidence technique in order to provide information on mechanisms of multiple ionization of target atome through pure ionization as well as of that accompaied simultaneously with multiple electron loss or capture of projectiles.The present results suggest that inner-shell electron processes caused through electron transfer into projectiles and also electron ionization by projectiles play a key role in the production of multiply charged recoil ions.
INVESTIGATION OF GLASS PLATE FAILURE MECHANISM SUBJECTED TO COPPER AND STEEL PROJECTILE IMPACTS
Directory of Open Access Journals (Sweden)
Qasim H. Shah
2014-05-01
Full Text Available Normal 0 false false false EN-US JA X-NONE ABSTRACT: A glass plate was subjected to impact by spherical copper and steel projectiles at low velocities. The glass failure features consisted of a central Hertzian cone made up of comminuted glass and a spider web like cracking pattern around the cone with circumferential and radial cracks. The objective of the investigation was to determine if the damage caused by copper projectile impact compared to steel projectile impact was higher for the same kinetic energy (K.E. projectiles and the reason for this phenomenon. For the constant K.E. impact, copper projectile apparently caused higher damage in glass plate. Higher damage was attributed to projectile contact duration and the contact area between the projectile and the glass plate. Finite element analysis using LS-DYNA based upon maximum principal strain failure criterion for laminated glass model was able to predict the failed material under the impact location and the cracking pattern in the glass plate for a biased meshing scheme. Radial cracks in glass target were reported to be 15% higher for copper projectile impact than the steel projectile impact. ABSTRAK: Kepingan kaca dikenakan impak oleh projektil kuprum dan keluli berbentuk sfera pada halaju rendah. Ciri-ciri kegagalan kaca terdiri daripada kon berpusat Hertzian yang melibatkan kaca yang hancur dan corak pecahan berbentuk sesawang lelabah pada keliling kon dengan retakan lilitan dan jejarian. Tujuan penyelidikan adalah untuk menentukan sebab bagaimana dengan projektil tenaga kinetik yang sama, kerosakan yang diakibatkan oleh impak projektil kuprum berbanding dengan impak projektil keluli adalah lebih tinggi. Untuk impak tenaga kinetik yang malar, projektil kuprum didapati menyebabkan kerosakan yang lebih ke atas kepingan kaca. Kerosakan lebih disebabkan oleh tempoh sentuhan projektil dan kawasan sentuhan di antara projektil dan kepingan kaca. Analisis unsur terhingga menggunakan LS
Stable bundles of rank 2 with 4 sections
Grzegorczyk, I; Newstead, P E
2010-01-01
This paper contains results on stable bundles of rank $2$ with space of sections of dimension $4$ on a smooth irreducible projective algebraic curve $C$. There is a known lower bound on the degree for the existence of such bundles; the main result of the paper is a geometric criterion for this bound to be attained. For a general curve $C$ of genus $10$, we show that the bound cannot be attained, but that there exist Petri curves of this genus for which the bound is sharp. We interpret the main results for various curves and in terms of Clifford indices and coherent systems.
Stable bundles of rank 2 with 4 sections
Grzegorczyk, I.; Mercat, V.; Newstead, P. E.
2010-01-01
This paper contains results on stable bundles of rank 2 with space of sections of dimension 4 on a smooth irreducible projective algebraic curve $C$. There is a known lower bound on the degree for the existence of such bundles; the main result of the paper is a geometric criterion for this bound to be attained. For a general curve $C$ of genus 10, we show that the bound cannot be attained, but that there exist Petri curves of this genus for which the bound is sharp. We interpret the main resu...
Stable convergence and stable limit theorems
Häusler, Erich
2015-01-01
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...
Bounds for Asian basket options
Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle
2008-09-01
In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.
Institute of Scientific and Technical Information of China (English)
LIU Li-Guo; TIAN Cheng-Lin; CHEN Ping-Xing; YUAN Nai-Chang
2009-01-01
We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively.Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.
Directory of Open Access Journals (Sweden)
Anuradha Nayak Majila
2016-03-01
Full Text Available Studies the impact response of flat Titanium alloy plate against spherical projectile for damage analysis of aero engine components using experimental and finite element techniques. Compressed gas gun has been used to impart speed to spherical projectile at various impact velocities for damage studies. Crater dimensions (diameter and depth obtained due to impact have been compared with finite element results using commercially available explicit finite element method code LS-DYNA. Strain hardening, high strain rate and thermal softening effect along with damage parameters have been considered using modified Johnson-Cook material model of LS-DYNA. Metallographic analysis has been performed on the indented specimen. This analysis is useful to study failure analysis of gas turbine engine components subjected to domestic object damage of gas turbine engine. Defence Science Journal, Vol. 66, No. 2, March 2016, pp. 193-199, DOI: http://dx.doi.org/10.14429/dsj.66.9130
Statistical fragmentation of Au projectiles at E/A=600 MeV
International Nuclear Information System (INIS)
The mean multiplicity of intermediate mass fragments (MIMF) produced by fragmentation of Au projectiles interacting with targets of C, Al, Cu and Pb at an incident energy of E/A = 600 MeV is compared to predictions of statistical multifragmentation and sequential evaporation models. The initial conditions for the calculations were provided by BUU simulations. In the high excitation energy regime the observed universal correlation between (MIMF) and the total charge Zbound of projectile fragments with charges Z ≥ 2 can not be reprocuced by the sequential evaporation code GEMINI. The data are well described by statistical decay calculations which assume the formation of an expanded nuclear system and a rather fast break-up. (orig.)
International Nuclear Information System (INIS)
We propose an approach to treat ionization of light atoms in relativistic collisions with highly charged ions, where the electromagnetic field generated by the ions can be very strong. The approach is based on the observation that, for a collision with a certain momentum transfer, either the relativistic effects, connected with the collision velocity approaching the speed of light, or the higher-order terms in the corresponding Born series in the projectile-target interaction can be of importance for the ionization process. The approach consists of dividing all collisions into those with 'small' and 'large' momentum transfers, which are described by (the first order of) the relativistic Born and the Glauber approximations, respectively. The approach is applied to describe helium single ionization by 1 GeV u-1 U92+ projectiles
Projectile charge and velocity effect on UO2 sputtering in the nuclear stopping regime
International Nuclear Information System (INIS)
Angular distributions and yields of uranium sputtered by slow highly charged Xeq+ ions (kinetic energy 1.5 keV ≤ Ek ≤ 81 keV, charge state 1 ≤ q ≤ 25 ) from UO2 were measured by means of the catcher technique. A charge state effect on the sputtering process is observed at 8 and 81 keV. A deviation from a A*cos(θ) shape (the linear collision cascade theory) is observed in case of Xeq+ impinging a UO2 surface at Ek = 8 keV. Yields increase linearly with projectile charge state q thus clearly revealing the contribution of potential energy to the sputtering process. In addition, as the kinetic energy of a Xe10+ projectile decreases from 81 keV to 1.5 keV, a velocity effect is clearly observed on the angular distribution. (authors)
Analysis of Penetration Model for Geo-Material by Rigid Projectile
Institute of Scientific and Technical Information of China (English)
LI Jianchun; MA Guowei; YU Maohong
2006-01-01
Based on the cylindrical cavity expansion theory,a plastic-damage-elastic model is proposed for the penetration problem of geo-material.In the model,the unified strength criterion (Yu,1991) is adopted as the failure criterion.The distributions of the radial stress and velocity are analyzed.According to the Newton's second law,a series results of the final penetration depth and the impedance load are obtained to different parameter b,when a rigid projectile normally impacts and penetrates a semi-infinite geo-material target with an impact velocity of 300-1 200 m/s.By comparing with the test data available,it appears that the method can be used in analyzing the final depth and the impedance load of a rigid projectile penetrating into a semi-infinite target with different impact velocities.
Yañez, R; Alfaro, R; Davin, B; Larochelle, Y; Xu, H; Beaulieu, L; Lefort, T; Viola, V E; De Souza, R T; Liu, T X; Liu, X D; Lynch, W G; Shomin, R; Tan, W P; Tsang, M B; Molen, A V; Wagner, A; Xi Hong Fei; Charity, R J; Sobotka, L G
2003-01-01
Projectile-like fragments (PLF:15<=Z<=46) formed in peripheral and mid-peripheral collisions of 114Cd projectiles with 92Mo nuclei at E/A=50 MeV have been detected at very forward angles, 2.1 deg.<=theta_lab<=4.2 deg. Calorimetric analysis of the charged particles observed in coincidence with the PLF reveals that the excitation of the primary PLF is strongly related to its velocity damping. Furthermore, for a given V_PLF*, its excitation is not related to its size, Z_PLF*. For the largest velocity damping, the excitation energy attained is large, approximately commensurate with a system at the limiting temperature
A NASTRAN investigation of simulated projectile damage effects on a UH-1B tail boom model
Futterer, A. T.
1980-01-01
A NASTRAN model of a UH-1B tail boom that had been designed for another project was used to investigate the effect on structural integrity of simulated projectile damage. Elements representing skin, and sections of stringers, longerons and bulkheads were systematically deleted to represent projectile damage. The structure was loaded in a manner to represent the flight loads that would be imposed on the tail boom at a 130 knot cruise. The deflection of four points on the rear of the tail boom relative to the position of these points for the unloaded, undamaged condition of the tail boom was used as a measure of the loss of structural rigidity. The same procedure was then used with the material properties of the aluminum alloys replaced with the material properties of T300/5208 high strength graphite/epoxy fibrous composite material, (0, + or - 45, 90)s for the skin and (0, + or - 45)s for the longerons, stringers, and bulk heads.
Production of helium projectile fragments in 16O-emulsion interactions at 4.5 A GeV/c
Institute of Scientific and Technical Information of China (English)
Zhang Dong-Hai; Li Zhen-Yu; Li Jun-Sheng; Wu Feng-Juan
2004-01-01
The measurements of partial production cross sections of the multiple helium projectile fragments emitted at 4.5A GeV/c 16O-Em interactions are reported. We have studied the production rate of helium projectile fragments due to fragmentation of 16O ions and compared it with that obtained from different projectiles at various energies. The dependence of on the mass number of the incident beams is formulated. The multiplicity distributions of the helium fragments produced in 16O-Em interactions at different energies exhibit Koba-Nielson-Olesen (KNO) scaling.The correlation of helium projectile fragments and target fragments is also investigated and it is found that the average of target fragments is increased with the decrease of the number of helium fragments in peripheral interactions.
Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Pt. 2
International Nuclear Information System (INIS)
The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is explored. The analysis reveals that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, a single- and multistage accelerator was designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities. (orig.)
Skyrmion model in 2+1 dimensions with soliton bound states
Energy Technology Data Exchange (ETDEWEB)
Piette, B.; Zakrzewski, W.J. (Dept. of Mathematical Sciences, Univ. Durham (United Kingdom))
1993-03-22
We consider a class of skyrmion models in 2+1 dimensions which possess bound stable solitons. We show that these models have one-soliton solutions as well as static solutions corresponding to their bound states. We study the scattering and stability properties of these solutions, compute their energies and estimate their binding energies. (orig.).
Geissel H.; Chen L.; Dickel T.; Farinon F.; Dillmann I.; Knöbel R.; Kurcewicz J.; Mukha I.; Münzenberg G.; Nociforo C.; Patyk Z.; Pietri S.; Plass W.R.; Prochazka A.; Scheidenberger C.
2014-01-01
Precision experiments with relativistic fragments separated in-flight require special experimentalmethods to overcome the inherent large emittance from the creation in nuclear reactions and atomic interactions in matter. At GSI relativistic exotic nuclei have been produced via uranium projectile fragmentation and fission and investigated with the inflight separator FRS directly, or in combination with either the storage-cooler ring ESR or the FRS Ion Catcher. 1000 A·MeV 238U ions were used to...
From boron carbide to glass: Absorption of an elongated high-speed projectile in brittle materials
Rumyantsev, B. V.
2016-09-01
Penetration into boron carbide of an elongated high-speed projectile in the form of a copper jet produced by an explosion of a cumulative charge is studied. The efficiency of absorption of a copper jet in different brittle materials for evaluating their protective ability is compared. Conditions for the absence of the influence of the lateral unloading wave on the penetration zone, which provide the minimum penetration depth, are determined.
Voitkiv, A. B.; Najjari, B.; Shevelko, S. P.
2010-01-01
At impact energies $ \\stackrel{>}{\\sim}1$ GeV/u the projectile-electron excitation and loss occurring in collisions between highly charged ions and neutral atoms is already strongly influenced by the presence of atomic electrons. In order to treat these processes in collisions with heavy atoms we generalize the symmetric eikonal model, used earlier for considerations of electron transitions in ion-atom collisions within the scope of a three-body Coulomb problem. We show that at asymptotically...
Comparison Among Depths of Penetration of Different Targets Subjected to Rigid Projectile Impact
Institute of Scientific and Technical Information of China (English)
LI Jicheng; CHEN Xiaowei
2008-01-01
The ratios of depth of penetration (DOP) of different targets under the same penetration condition was investigated according to the dimensionless formula of DOP of different targets penetrated by a non-deformable projectile.Results show that various targets may be equivalent to each other.The applicable range of the equivalence and the feasibility of targets substitution were discussed by integrating the available test data.
A Physical Model of Electromagnetic Force from PEMA Acted on Metal Projectiles
Institute of Scientific and Technical Information of China (English)
HU Jin-suo; YANG Zuo-bin
2007-01-01
Electromagnetic armor is a new conceptual combat vehicle technology, which improves remarkably the defensive capability and maneuverability of vehicles. The authors present definitely to apply the electromagnetic theory to analyze the electromagnetic armor. Based on electromagnetics, the experienced expression of projectile and the physical model of PEMA (passive electromagnetic armor) are obtained when electric current flows through the system, and a computer simulation is given.
M. Jauhari; Bandyopadhyay, A
1980-01-01
The paper suggests an impact test which can be used to evaluate the deformation energies of small arm projectiles. Such an evaluation is of significance in wound ballistics studies while determining the amount of energy actually consumed in causing cavitation. Various sources of error inherent in the test have been discussed and it has been concluded that although approximate, the test can serve the useful purpose of providing a basis for interpreting the energy loss figures in gel on a ratio...
INTERACTION MEAN FREE PATH OF He PROJECTILE FRAGMENTS FROM 16O-EM COLLISION AT 60 A GeV
Institute of Scientific and Technical Information of China (English)
ZHANG DONG-HA1; SUN HAN-CHENG; G.GHARIBI
2001-01-01
The interaction mean free path of He projectile fragments, produced by the collisions of 16O at 60 A GeV in a nuclear emulsion, has been investigated. In the present analysis, 1555 He projectile fragments, giving rise to 320 secondary interactions, have been used. At a level of 3% a very weak signal of anomalons is observed, which comes mainly from the 3×He channel.
Hypervelocity projectile acceleration with a railgun using a two-stage gas gun injector
Hawke, R. S.
1989-04-01
Unique potential applications of electromagnetic railguns [R.S. Hawke, IEEE Trans. Nucl. NS-28 (2) (1981) 1542] have motivated a decade of continuous development throughout the world. This effort has led to routine acceleration of projectiles of from 1 g to about 1 kg, to velocities of nearly 4 km/s. Attempts to reach higher velocities have met with problems in the 6- to 8-km/s range [J.V. Parker, Proc. 4th Symp. on Electromagnetic Launch Tech., Austin, TX, 1988, to be published in IEEE Trans. Mag.]. The principal problem is "restrike", which causes shunting of the propulsive plasma armature by the formation of a second plasma short circuit in the breech region of the railgun. One means of impeding restrike is the use of a two-stage light-gas gun (2SLGG) as a projectile injector. A joint development project was initiated in early 1986 between the Sandia National Laboratories Albuquerque (SNLA) and the Lawrence Livermore National Laboratory (LLNL). The project is based on the use of a 2SLGG to inject projectiles at about 7 km/s. The injection gas is hydrogen, which serves to inhibit formation of the secondary arc and to minimize barrel ablation and armature contamination. Results and status of this work are discussed.
Song, Weidong; Lv, Yangtao; Li, Jianqiao; Wang, Cheng; Ning, Jianguo
2016-07-01
For describing hypervelocity impact (relative low-speed as related to space debris and much lower than travelling speed of meteoroids) phenomenon associated with plasma generation, a self-developed 3D code was advanced to numerically simulate projectiles impacting on a rigid wall. The numerical results were combined with a new ionization model which was developed in an early study to calculate the ionized materials during the impact. The calculated results of ionization were compared with the empirical formulas concluded by experiments in references and a good agreement was obtained. Then based on the reliable 3D numerical code, a series of impacts with different projectile configurations were simulated to investigate the influence of impact conditions on hypervelocity impact generated plasma. It was found that the form of empirical formula needed to be modified. A new empirical formula with a critical impact velocity was advanced to describe the velocity dependence of plasma generation and the parameters of the modified formula were ensured by the comparison between the numerical predictions and the empirical formulas. For different projectile configurations, the changes of plasma charges with time are different but the integrals of charges on time almost stayed in the same level.
Effect of CFRP strengthening on the response of RC slabs to hard projectile impact
Energy Technology Data Exchange (ETDEWEB)
Almusallam, Tarek; Al-Salloum, Yousef; Alsayed, Saleh; Iqbal, Rizwan; Abbas, Husain, E-mail: abbas_husain@hotmail.com
2015-05-15
Highlights: • Studied response of CFRP-strengthened RC slabs under the impact load. • Slabs were tested under the strike of hemispherical steel projectiles at varying impact. • The slabs were analyzed numerically using LS-DYNA. • Strengthening increased the ballistic limit velocity by 18% and perforation energy by 56.7%. • CFRP sheet reduced the crater damage and contained the flying concrete fragments. - Abstract: In this paper impact response of CFRP-strengthened RC panels under the impact of non-deformable projectiles has been presented. The control and CFRP-strengthened RC slab panels were tested under the strike of hemispherical nosed steel projectiles at varying impact velocities. The response of these panels was investigated experimentally as well as numerically. The damage of the slab panels was measured in terms of the penetration depth, formation of cracks, spalling and scabbing areas and fracture of CFRP sheet. This study presents a practical and efficient numerical method for analyzing the impact response of CFRP-strengthened RC structures using LS-DYNA. The CFRP strengthening was found to increase the ballistic limit velocity by 18%, perforation energy of RC slabs by 56.7%, reduce the front crater damage and contains the flying of concrete fragments from the rear face. The maximum impact force occurs at almost same penetration depth for the control and CFRP-strengthened slabs but the restraint provided by CFRP increased the penetration depth by about 1/19.3 of the thickness of slab.
Penetration of a Small Caliber Projectile into Single and Multi-layered Targets
Directory of Open Access Journals (Sweden)
Riad A.M.
2010-06-01
Full Text Available The normal penetration of armor-piercing projectiles into single and multi-layered steel plates has been investigated. An experimental program has been conducted to study the effect of spaced and in-contact layered targets on their ballistic resistance. Armor piercing projectiles with caliber of 7.62 mm were fired against a series of single and multi-layered steel targets. The projectile impact velocities were ranged from 300-600 m/s, whereas the total thicknesses of the tested single, spaced and in-contact layered steel targets were 3 mm. The penetration process of different tested target configurations has been simulated using Autodayn-2D hydrocode. The experimental measurements of the present work were used to discuss the effect of impact velocity, target configurations and number of layers of different spaced and in-contact layered steel targets on their ballistic resistance. In addition, the post-firing examination of the tested targets over the used impact velocity range showed that the single and each layer of spaced and in-contact laminated steel targets were failed by petalling. Finally, the obtained experimental measurements were compared with the corresponding numerical results of Autodyn-2D hydrocode, good agreement was generally obtained.
Courtney, Elya; Courtney, Michael
2015-01-01
Pure theory recognizes the dependence of supersonic drag coefficients on both Mach number and Reynolds number, which includes an implicit dependence of drag coefficient on air density. However, many modern approaches to computing trajectories for artillery and small arms treat drag coefficients as a function of Mach number and assume no dependence on Reynolds number. If drag force is strictly proportional to air density for supersonic projectiles (as suggested by applied theory), the drag coefficient should be independent of air density over a range of Mach numbers. Experimental data to directly support this are not widely available for supersonic projectiles. The experiment determined drag on a 2.59 g projectile from M1.2 to M2.9 using optical chronographs to measure initial and final velocities over a separation of 91.44 m. The free flight determination of drag coefficients was performed at two significantly different atmospheric densities (0.93 kg/m3 and 1.15 kg/m3 ). This experiment supported direct propo...
Study on the oblique perforation of thin steel pates by flat and ogival projectiles
Guo, Zitao; Zhang, Wei; Ren, Peng; Hypervelocity Impact Research Center Collaboration
This paper presents a numerical study on the oblique perforation of thin steel plates. Numerical simulations of 1 mm single A3 steel plates impacted by flat and ogival projectiles at 0°, 15°, 30°, 45° and 60° angles over a range of velocities from 50 to 250 m/s were performed using the finite element code ABAQUS, where a modified versions of the J-C constitutive relation and fracture criterion based on a series of quasi-static and dynamic tensile tests with smooth and notched axisymmetric specimens were adopted to approximate behaviors of target material. Corresponding oblique perforation experiments were also conducted in order to be compared and calibrated. Initial-residual velocity curves and ballistic limits of targets under different angle impact were determined and compared, and the effects of projectile nose shape and obliquity on the ballistic resistance and failure models of targets were investigated. Results show that the nose shape of the projectile and oblique angles severely affected both the energy absorption and the failure mode of the target plate during perforation. Good agreement is found between the numerical simulations and experimental results.
Lyons, Frankel
2013-01-01
A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.
Electromagnetic Dissociation of Target Nuclei by $^{16}$O and $^{32}$S Projectiles
2002-01-01
We have measured the inclusive cross sections for electromagnetic dissociation (ED) of |1|9|7Au targets by 60 and 200~GeV/nucleon |1|6O and 200~ GeV/nucleon |3|2S projectiles. This is an extension of similar measurements carried out earlier at 2~GeV/nucleon. ED is a purely electromagnetic process occuring when a virtual photon is exchanged between projectile and target. The experiment emphasized precise measurement of total one-neutron-out cross sections. A secondary goal was to test the applicability of the concepts of factorization and limiting fragmentation at ultrarelativistic energies.\\\\ \\\\ Each individual target will be irradiated upstream and parasitic to experiment NA38 on the dimuon spectrometer. Cross sections for reactions of interest will be determined by off-line counting of the appropriate residual @g~ray activities in Ames, Iowa, USA. Preliminary results indicate an ED one-neutron removal cross section for 200~GeV/nucleon |1|6O projectiles on |1|9|7Au of approximately 0.45~barns. The result is ...
National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...
The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin
International Nuclear Information System (INIS)
During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Institute of Scientific and Technical Information of China (English)
Zhi-Hong Tao; Cong-Hua Zhou; Zhong Chen; Li-Fu Wang
2007-01-01
Bounded Model Checking has been recently introduced as an efficient verification method for reactive systems.This technique reduces model checking of linear temporal logic to propositional satisfiability.In this paper we first present how quantified Boolean decision procedures can replace BDDs.We introduce a bounded model checking procedure for temporal logic CTL* which reduces model checking to the satisfiability of quantified Boolean formulas.Our new technique avoids the space blow up of BDDs, and extends the concept of bounded model checking.
Energy Technology Data Exchange (ETDEWEB)
Forrestal, M.J.; Piekutowski, A.J.
1999-02-04
We conducted depth of penetration experiments with 7.11-mm-diameter, 74.7-mm-long, spherical-nose, 4340 steel projectiles launched into 250-mm-diameter, 6061-T6511 aluminum targets. To show the effect of projectile strength, we used projectiles that had average Rockwell harnesses of R{sub c} = 36.6, 39.5, and 46.2. A powder gun and two-stage, light-gas guns launched the 0.023 kg projectiles at striking velocities between 0.5 and 3.0 km/s. Post-test radiographs of the targets showed three response regions as striking velocities increased: (1) the projectiles remained visibly undeformed, (2) the projectiles permanently deformed without erosion, and (3) the projectiles eroded and lost mass. To show the effect of projectile strength, we compared depth-of-penetration data as a function of striking velocity for spherical-nose rods with three Rockwell harnesses at striking velocities ranging from 0.5 to 3.0 km/s. To show the effect of nose shape, we compared penetration data for the spherical-nose projectiles with previously published data for ogive-nose projectiles.
The motion of an arbitrarily rotating spherical projectile and its application to ball games
International Nuclear Information System (INIS)
In this paper the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary ‘wind’ are developed. Three forces are assumed to act on the projectile: (i) gravity, (ii) a drag force proportional to the square of the projectile's velocity and in the opposite direction to this velocity and (iii) a lift or ‘Magnus’ force also assumed to be proportional to the square of the projectile's velocity and in a direction perpendicular to both this velocity and the angular velocity vector of the projectile. The problem has been coded in Matlab and some illustrative model trajectories are presented for ‘ball-games’, specifically golf and cricket, although the equations could equally well be applied to other ball-games such as tennis, soccer or baseball. Spin about an arbitrary axis allows for the treatment of situations where, for example, the spin has a component about the direction of travel. In the case of a cricket ball the subtle behaviour of so-called ‘drift’, particularly ‘late drift’, and also ‘dip’, which may be produced by a slow bowler's off or leg-spin, are investigated. It is found that the trajectories obtained are broadly in accord with those observed in practice. We envisage that this paper may be useful in two ways: (i) for its inherent scientific value as, to the best of our knowledge, the fundamental equations derived here have not appeared in the literature and (ii) in cultivating student interest in the numerical solution of differential equations, since so many of them actively participate in ball-games, and they will be able to compare their own practical experience with the overall trends indicated by the numerical results. As the paper presents equations which can be further extended, it may be of interest to research workers. However, since only the most basic principles of fundamental mechanics are employed, it should be well within the grasp of first
Schulz, M D; Vidal, J
2016-01-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
The Chicxulub impact at the K-Pg boundary - search for traces of the projectile
Deutsch, A.
2012-04-01
One of the most interesting problems in the context of the end-Cretaceous Chicxulub impact is the question after the whererabouts of the main mass of the projectile. The nature of this >10 km-sized Chicxulub projectile was constrained by an anomaly in the chromium isotope 54 in the K-Pg deposit at Stevens Klint, Denmark, to a carbonaceous chondrite of type CM2 [1]. About 1.5 % of the estimated mass of the projectile has been detected world-wide in the K-Pg boundary layer; mainly in the form of platinum group elements (PGE) as well as other siderophile elements (Ni, Co ... ). A contamination by or even a major contribution of other "projectile" elements to the K-Pg event bed was rarely proposed. The few examples in the literature (cf. compilation in [2, 3]) used rare earth elements (REE) distribution patterns that are slightly inconsistent with REE patterns typical for the upper continental crust (UCC). Ejecta consisting of UCC target rocks is expected to form the overwhelming mass of the ejecta. In most K-Pg layers, however, the ejecta is diluted or even totally masked by a component of more local origin and with features of high-energy deposition mechanisms. Numerical models [4] indicate a deposition of >500km3 projectile material, corresponding to >2 x 10exp9 tons of mainly silica, iron, and magnesium in the K-Pg event bed. Detecting the "meteoritic" origin of these major elements, however, in a matrix of siliceous detritus, is practically impossible. Recent LA-ICP-MS analyses show that siliceous impact spherules - hydrated glass or altered to chlorite - in the Chicxulub event bed at various locations (e.g., Shell Creek, La Lajilla, La Popa) have REE patterns that are flat and un-fractionated, corresponding quite well to a typical CI-pattern. The REE abundances are chondritic to sub-chondritic. Mixing calculations indicate that the maximum REE contribution of UCC material to the REE budget of these spherules is on the order of 2 %, but usually much less. These
Curvature bounds for configuration spaces
Erbar, Matthias; Huesmann, Martin
2014-01-01
We show that the configuration space over a manifold M inherits many curvature properties of the manifold. For instance, we show that a lower Ricci curvature bound on M implies for the configuration space a lower Ricci curvature bound in the sense of Lott-Sturm-Villani, the Bochner inequality, gradient estimates and Wasserstein contraction. Moreover, we show that the heat flow on the configuration space, or the infinite independent particle process, can be identified as the gradient flow of t...
Finite Domain Bounds Consistency Revisited
Choi, Chiu Wo; Harvey, Warwick; Lee, Jimmy Ho-Man; Stuckey, Peter J.
2004-01-01
A widely adopted approach to solving constraint satisfaction problems combines systematic tree search with constraint propagation for pruning the search space. Constraint propagation is performed by propagators implementing a certain notion of consistency. Bounds consistency is the method of choice for building propagators for arithmetic constraints and several global constraints in the finite integer domain. However, there has been some confusion in the definition of bounds consistency. In t...
Entropy bounds for uncollapsed matter
Energy Technology Data Exchange (ETDEWEB)
Abreu, Gabriel; Visser, Matt, E-mail: Gabriel.Abreu@msor.vuw.ac.nz, E-mail: Matt.Visser@msor.vuw.ac.nz [School of Mathematics, Statistics and Operation Research Victoria University of Wellington Wellington (New Zealand)
2011-09-22
In any static spacetime the quasilocal Tolman mass contained within a volume can be reduced to a Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By introducing some basic thermodynamics, and invoking the Unruh effect, one can then develop elementary bounds on the quasilocal entropy that are very similar in spirit to the holographic bound, and closely related to entanglement entropy.
Nuclear reactions with radioactive and stable beams (Part II)
International Nuclear Information System (INIS)
At the present time there is a great interest at world level in experiments, with accelerated nuclei of short half life. The dispersion, fusion, transfer and break processes in the interaction of weakly light projectiles bounded with targets of Z great its have been object of intense recent investigation, at world level. Our group, in collaboration with the University of Notre Dame, it has measured and analyzed these processes for weakly bound systems as: 6He + 209Bi, 8Li + 208Pb, 10Be + 208Pb. On the other hand a research line that has wakened up great interest, it is that of studies of resonant reactions using the Inverse Kinematics technique with thick targets. The use of this technique allows to measure an entire excitation function with a single bombardment. Our group has carried out, in the ININ, preliminary bombardments for the system 12C + 4He. This allowed to establish the feasibility of implementing this technique in our Laboratory. The application of this and other techniques to different systems like 18O + 4He, 12C + 12C, 12C + 16O, 16O + 16O, it opens the possibility to measure the fusion of these systems at very low energy and to deepen in the knowledge of the nuclear structure and the nuclear astrophysics. In this technical report, the activities carried out by our group during the second stage of this project, considered for 2005 are described. Also in that year, our group carries out a research stay in the University of Notre Dame, during this stay, the angular distribution of the projectiles of 8B dispersed in an enriched target of 58Ni was measured. The same as in the previous experiments, in this occasion it was also possible to measure those angular distributions of the projectiles of 7Be and 6Li dispersed in this same target. In this same one our stay group participates in other three experiments proposed by collaborators of other institutions (University of Notre Dame, University of Sao Paulo), where the products of the reactions 6Li, 7Be and
Volume Stability of Bitumen Bound Building Blocks
Directory of Open Access Journals (Sweden)
Thanaya I.N.A.
2010-01-01
Full Text Available This paper covers results of laboratory investigations on the volume stability of masonry units incorporating waste materials bound with bitumen (Bitublocks, due to moisture adsorption, thermal exposure and vacuum saturation. The materials used were steel slag, crushed glass, coal fly ash, and 50 pen bitumen. The samples were produced in hot mix method, compacted, then exposed to moist and temperature. It was found that moisture adsorption from the environment caused the Bitublock to expand. The samples with less intense curing regime experienced lower expansion and became stable faster, and vice versa. Under thermal condition (at 70°C, the samples with less intense curing regime underwent higher expansion, and vice versa. They were also highly reversible. Their volume stability was found unique under water exposure. The expansion on first vacuum saturation cycle was irreversible, then largely reversible on the following cycles.
Bounds on 2m/R for static spherical objects
Guven, J; Guven, Jemal; Murchadha, Niall O'
1999-01-01
It is well known that a spherically symmetric constant density static star, modeled as a perfect fluid, possesses a bound on its mass m by its radial size R given by 2m/R \\le 8/9 and that this bound continues to hold when the energy density decreases monotonically. The existence of such a bound is intriguing because it occurs well before the appearance of an apparent horizon at m = R/2. However, the assumptions made are extremely restrictive. They do not hold in a humble soap bubble and they certainly do not approximate any known topologically stable field configuration. We show that the 8/9 bound is robust by relaxing these assumptions. If the density is monotonically decreasing and the tangential stress is less than or equal to the radial stress we show that the 8/9 bound continues to hold through the entire bulk if m is replaced by the quasi-local mass. If the tangential stress exceeds the radial stress and/or the density is not monotonic we cannot recover the 8/9 bound. However, we can show that 2m/R rema...
Institute of Scientific and Technical Information of China (English)
舒延春
2014-01-01
一维增程修正弹的地面密集度是评价修正效果的重要战技指标，其试验方法与常规弹药射击密集度试验明显不同。依据一维增程修正弹的修正原则，利用落点散布的正态分布特性与双侧100a百分位点，确定密集度试验边界最低可接受值以及最佳“调节裕量”，并通过仿真计算得到最佳“调节裕量”随密集度的变化规律，为靶场进行一维增程修正弹密集度试验提供一定的借鉴。%It’s an important tactical and technical index of the ground artillery dispersion of extended range for one-dimensional trajectory correction projectile to evaluate its correction effect,and the test meth-od is different comparatively to the conventional artillery’s.Utilizing the characteristic of the ground atille-ry dispersion of normal distribution and double-sided 100a reference interval,the minimum acceptable bound value for the ground artillery dispersion test and the optimization regulated margin are ascertained by the correction principle of the one-dimensional trajectory correction projectile.At the same time,the best regulated margin of the changing law can be gained by the simulation on the different firing ground disper-sion.The results can provide references for One-dimensional Trajectory Correction Projectile on the firing consistency on the range test.
On a Generalization of Kingman's Bounds
Liu, Zhen; Nain, Philippe; Towsley, Don
1994-01-01
In this paper we develop a framework for computing upper and lower bounds of an exponential form for a class of single server queueing systems with non-renewal inputs. These bounds generalize Kingman's bounds for queues with renewal inputs.
Directional detection of dark matter in universal bound states
Laha, Ranjan
2015-01-01
It has been suggested that several small-scale structure anomalies in $\\Lambda$CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown by Braaten and Hammer that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Laha and Braaten studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.
Properties of a Bound Polaron under a Perpendicular Magnetic Field
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We investigate the influence of a perpendicular magnetic field on a bound polaron near the interface of a polar-polar semiconductor with Rashba effect. The external magnetic field strongly changes the ground state binding energy of the polaron and the Rashba spin-orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splits the ground state binding energy of the bound polaron. In this paper, we have shown how the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity, the wave vector of the electron and the electron areal density, taking into account the SO coupling. Due to the presence of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the bound polaron are more stable, and we find that in the condition of week magnetic field, the Zeeaman effect can be neglected.
Directional detection of dark matter in universal bound states
Energy Technology Data Exchange (ETDEWEB)
Laha, Ranjan
2015-10-01
It has been suggested that several small-scale structure anomalies in CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.
Institute of Scientific and Technical Information of China (English)
WANG Er-Qin; LIU Fu-Hu; Magda A.Rahim; S.Fakhraddin; SUN Jian-Xin
2011-01-01
@@ The multiplicity distributions of projectile fragments emitted in interactions of different nuclei with emulsion are studied by using a multi-source model.Our calculated results show that the projectile fragments can be described by the model and each source contributes an exponential distribution.As the weighted sum of the folding result of many exponential distributions,a multi-component Erlang distribution is used to describe the experimental data.The relationship between the height(or width)of the distribution and the mass of the incident projectile,as well as the dependence of projectile fragments on target groups,are investigated too.
Bounds on Transient Instability for Complex Ecosystems.
Directory of Open Access Journals (Sweden)
Francesco Caravelli
Full Text Available Stability is a desirable property of complex ecosystems. If a community of interacting species is at a stable equilibrium point then it is able to withstand small perturbations to component species' abundances without suffering adverse effects. In ecology, the Jacobian matrix evaluated at an equilibrium point is known as the community matrix, which describes the population dynamics of interacting species. A system's asymptotic short- and long-term behaviour can be determined from eigenvalues derived from the community matrix. Here we use results from the theory of pseudospectra to describe intermediate, transient dynamics. We first recover the established result that the transition from stable to unstable dynamics includes a region of 'transient instability', where the effect of a small perturbation to species' abundances-to the population vector-is amplified before ultimately decaying. Then we show that the shift from stability to transient instability can be affected by uncertainty in, or small changes to, entries in the community matrix, and determine lower and upper bounds to the maximum amplitude of perturbations to the population vector. Of five different types of community matrix, we find that amplification is least severe when predator-prey interactions dominate. This analysis is relevant to other systems whose dynamics can be expressed in terms of the Jacobian matrix.
Bounds on Transient Instability for Complex Ecosystems.
Caravelli, Francesco; Staniczenko, Phillip P A
2016-01-01
Stability is a desirable property of complex ecosystems. If a community of interacting species is at a stable equilibrium point then it is able to withstand small perturbations to component species' abundances without suffering adverse effects. In ecology, the Jacobian matrix evaluated at an equilibrium point is known as the community matrix, which describes the population dynamics of interacting species. A system's asymptotic short- and long-term behaviour can be determined from eigenvalues derived from the community matrix. Here we use results from the theory of pseudospectra to describe intermediate, transient dynamics. We first recover the established result that the transition from stable to unstable dynamics includes a region of 'transient instability', where the effect of a small perturbation to species' abundances-to the population vector-is amplified before ultimately decaying. Then we show that the shift from stability to transient instability can be affected by uncertainty in, or small changes to, entries in the community matrix, and determine lower and upper bounds to the maximum amplitude of perturbations to the population vector. Of five different types of community matrix, we find that amplification is least severe when predator-prey interactions dominate. This analysis is relevant to other systems whose dynamics can be expressed in terms of the Jacobian matrix. PMID:27327511
Bounds on Transient Instability for Complex Ecosystems
2016-01-01
Stability is a desirable property of complex ecosystems. If a community of interacting species is at a stable equilibrium point then it is able to withstand small perturbations to component species’ abundances without suffering adverse effects. In ecology, the Jacobian matrix evaluated at an equilibrium point is known as the community matrix, which describes the population dynamics of interacting species. A system’s asymptotic short- and long-term behaviour can be determined from eigenvalues derived from the community matrix. Here we use results from the theory of pseudospectra to describe intermediate, transient dynamics. We first recover the established result that the transition from stable to unstable dynamics includes a region of ‘transient instability’, where the effect of a small perturbation to species’ abundances—to the population vector—is amplified before ultimately decaying. Then we show that the shift from stability to transient instability can be affected by uncertainty in, or small changes to, entries in the community matrix, and determine lower and upper bounds to the maximum amplitude of perturbations to the population vector. Of five different types of community matrix, we find that amplification is least severe when predator-prey interactions dominate. This analysis is relevant to other systems whose dynamics can be expressed in terms of the Jacobian matrix. PMID:27327511
Organizational Coordination and Costly Communication with Boundedly Rational Agents
Dietrichson, Jens; Jochem, Torsten
2014-01-01
How does costly communication affect organizational coordination? This paper develops a model of costly communication based on the weakest-link game and boundedly rational agents. Solving for the stochastically stable states, we find that communication increases the possibilities for efficient coordination compared to a setting where agents cannot communicate. But as agents face a trade-off between lowering the strategic uncertainty for the group and the costs of communication, the least effi...
Kinetic simulation study of one dimensional collisional bounded plasma
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
A self-consistent kinetic simulation study ofone dimensional collisional bounded plasma is presented.The formation of stable sheath potential is investigated.It is found that mass ratio of electron and ion not onlyaffects the level of sheath potential, but also affectsthe ion temperature of system. It is clarified that the effects of secondaryemission electron on both the total potential dropand the temperature are not important.
International Nuclear Information System (INIS)
Results of exact numerical calculations of differential and total 1s-1s electron-capture cross sections evaluated in the second Born approximation are presented for targets and projectiles of various charges Z/sub T/ and Z/sub P/ at velocities between 10 and 200 MeV/amu. For symmetric systems with Z/sub P/ = Z/sub T/ = Z the Thomas peak in the differential cross section, characteristic of a free-wave second Born-approximation process, appears at velocities above Z2 x (5 MeV/amu), where Z is the nuclear charge of the target (or projectile). The shape of this Thomas peak contains information about real and virtual intermediate states of the system. For total cross sections at velocities below Z2 x (2 MeV) the second Born-approximation cross section is larger than the first Born-approximation cross section indicating a breakdown of the second Born approximation using the free-wave Green's function. Results using the peaking approximation of Drisko converge to our exact second Born-approximation results only at velocities well above Z2 x (10 MeV/amu). For systems asymmetric in Z/sub P/ and Z/sub T/ no exact scaling is found, although the systematics are qualitatively similar to the symmetric case using Z = 1/2(Z/sub P/+Z/sub T/). For p+Ne at 100 MeV, the exact Born-approximation results lie somewhat above exact impulse-approximation calculations. It is found that the peaking approximation of Briggs and Simony converges to exact second Born-approximation results as the asymmetry of the projectile and target charges increases
Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles.
Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana
2016-04-01
Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. PMID:26874437
Eta nuclear bound states revisited
Friedman, E; Mareš, J
2013-01-01
The strong energy dependence of the s-wave eta-N scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11 N*(1535) resonance, is included self consistently in eta-nuclear bound state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of eta-nuclear binding, with a minimum value of Re a_{eta N} approximately 0.9 fm required to accommodate an eta-4He bound state. Binding energies and widths of eta-nuclear states are calculated within several underlying eta-N models for nuclei across the periodic table, including eta-25Mg for which some evidence was proposed in a recent COSY experiment.
Improved Range Searching Lower Bounds
DEFF Research Database (Denmark)
Larsen, Kasper Green; Nguyen, Huy L.
2012-01-01
range reporting problem. In approximate simplex range reporting, points that lie within a distance of ε ⋅ Diam(s) from the border of a query simplex s, are free to be included or excluded from the output, where ε ≥ 0 is an input parameter to the range searching problem. We prove our lower bounds......Table of Contents -------------------------------------------------------------------------------- In this paper we present a number of improved lower bounds for range searching in the pointer machine and the group model. In the pointer machine, we prove lower bounds for the approximate simplex...... by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...
Simulation bounds for system availability
International Nuclear Information System (INIS)
System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed
Energy bounds in designer gravity
Amsel, Aaron J.; Marolf, Donald
2006-09-01
We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d≥4 spacetime dimensions. The boundary conditions in these “designer gravity” theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. By comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.
Experimental activation of bound entanglement.
Kaneda, Fumihiro; Shimizu, Ryosuke; Ishizaka, Satoshi; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi
2012-07-27
Entanglement is one of the essential resources in quantum information and communication technology (QICT). The entanglement thus far explored and applied to QICT has been pure and distillable entanglement. Yet, there is another type of entanglement, called "bound entanglement," which is not distillable by local operations and classical communication. We demonstrate the experimental "activation" of the bound entanglement held in the four-qubit Smolin state, unleashing its immanent entanglement in distillable form, with the help of auxiliary two-qubit entanglement and local operations and classical communication. We anticipate that it opens the way to a new class of QICT applications that utilize more general classes of entanglement than ever, including bound entanglement.
Projectile X-ray emission in relativistic ion-atom collisions
Salem, Shadi
2010-01-01
This work reports on the study of the projectile x-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. Information about the population of the excited states for the H- and He-like uranium ions, can be obtained by measuring the angular distribution of the decay radiation...
Maximum range of a projectile thrown from constant-speed circular motion
Poljak, Nikola
2016-01-01
The problem of determining the angle at which a point mass launched from ground level with a given speed is a standard exercise in mechanics. Similar, yet conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion. The problem of determining the maximum distance of a rock thrown from a rotating arm motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) which produce the maximum throw distance.
Chudinov, Peter S
2009-01-01
A classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytic approach is mainly used for the investigation. Simple analytical formulas are used for the constructing the envelope of the family of the point mass trajectories. The equation of envelope is applied for the determination of the maximum range of flight. The motion of a baseball is presented as an example.
Maximum range of a projectile launched from a height h: a non-calculus treatment
International Nuclear Information System (INIS)
The classical example of problem solving, maximizing the range of a projectile launched from height h with velocity v over the ground level, has received various solutions. In some of these, one can find the maximization of the range R by differentiating R as a function of an independent variable or through the implicit differentiation in Cartesian or polar coordinates. In other papers, various elegant non-calculus solutions can be found. In this paper, this problem is revisited on the basis of the elementary analytical geometry and the trigonometry only. (papers)
Directory of Open Access Journals (Sweden)
M. Jauhari
1980-04-01
Full Text Available The paper suggests an impact test which can be used to evaluate the deformation energies of small arm projectiles. Such an evaluation is of significance in wound ballistics studies while determining the amount of energy actually consumed in causing cavitation. Various sources of error inherent in the test have been discussed and it has been concluded that although approximate, the test can serve the useful purpose of providing a basis for interpreting the energy loss figures in gel on a rational and scientific basis.
Directory of Open Access Journals (Sweden)
M. Jauhari
1982-07-01
Full Text Available Evaluation of certain parameters of the trajectory of a small arm projectile on the basis of Siacci approximation requires the values of space (S and Time (T functions as tabulated in the Ingalls and Hodsock ballistic tables. The development is reported of a computerized system, whereby the necessity of referring to these tables has been completely obviated. Programme flow-char has been presented and the logic behind the flow of programme has been made explicit. The programme has been executed successfully on the DCM Microsystem 1121.
International Nuclear Information System (INIS)
The charge and mass yield curves and the momentum distributions of the projectile fragments produced in the interactions of 4.1 A GeV/c 22Ne and 4.5 A GeV/c 28Si with emulsion have been studied. The overall charge distributions of the projectile fragments resulting from these interactions are presented. The dependence of the mass yield distributions of the projectile fragments on the impact parameter has been tested. The momentum distributions for the considered reactions have been investigated by two methods. First, the projected momentum distributions in the plane of the microscope have been achieved by fitting the projected angular distributions to gaussian ones. It has been found that the width of the distribution changes with the charge of the projectile fragment and it decreases with the increase of the projectile fragment charge. Secondly, the transverse momentum distributions have been compared with previous studies. The momentum distribution, in the forward cone, is a typically narrow gaussian one
International Nuclear Information System (INIS)
The design and analysis of experiences with heavy ions requires the knwoledge of several characteristic parameters of the collision and their dependence on the reactant system. In the case of an electrostatic accelerator as the TANDAR, the bombarding energy (function of the projectile) is a direct consequence of the evolution of the charged state distribution for the projectile at the exit of the last stripper, as a function of the atomic number. The complexity resulting from this dependence originated the confection of a series of diagrams. The diagrams correpond to the different physical magnitudes of interest in the analysis of nuclear reactions as a function of the projectile-target combination for terminal tensions similar to those expected to reach at the TANDAR. In each case, the curves are refered to the following physical magnitudes: Ecm/Bc Kinetic energy in the center of the mass system and Coulomb barrier for the projectile-target system, Lgr = angular momentum corresponding to the grazing collisions. Diagrams of the average projectile energy per nucleon for the different values of the terminal tensions with one or two solid strippers are included. The use of the diagrams in some practical applications is illustrated through four examples. The diagrams may be extended, if necesary, to other physical magnitudes, at different accelerator's operating conditions. (M.E.L.)
Fusion with projectiles form carbon to argon at energies between 20A and 60A MeV
International Nuclear Information System (INIS)
A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MEV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behaviour. Finally, the decay of highly excited (E* approximately 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space
Refining Castelnuovo-Halphen bounds
Di Gennaro, Vincenzo
2011-01-01
Fix integers $r,d,s,\\pi$ with $r\\geq 4$, $d\\gg s$, $r-1\\leq s \\leq 2r-4$, and $\\pi\\geq 0$. Refining classical results for the genus of a projective curve, we exhibit a sharp upper bound for the arithmetic genus $p_a(C)$ of an integral projective curve $C\\subset {\\mathbb{P}^r}$ of degree $d$, assuming that $C$ is not contained in any surface of degree $ \\pi$. Next we discuss other types of bound for $p_a(C)$, involving conditions on the entire Hilbert polynomial of the integral surfaces on which $C$ may lie.
Variables Bounding Based Retiming Algorithm
Institute of Scientific and Technical Information of China (English)
宫宗伟; 林争辉; 陈后鹏
2002-01-01
Retiming is a technique for optimizing sequential circuits. In this paper, wediscuss this problem and propose an improved retiming algorithm based on variables bounding.Through the computation of the lower and upper bounds on variables, the algorithm can signi-ficantly reduce the number of constraints and speed up the execution of retiming. Furthermore,the elements of matrixes D and W are computed in a demand-driven way, which can reducethe capacity of memory. It is shown through the experimental results on ISCAS89 benchmarksthat our algorithm is very effective for large-scale sequential circuits.
Stable isotopes labelled compounds
International Nuclear Information System (INIS)
The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme
Bounded Densities and Their Derivatives
DEFF Research Database (Denmark)
Kozine, Igor; Krymsky, V.
2009-01-01
This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing...
Market Access through Bound Tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings on t...
Market access through bound tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
2010-01-01
WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings on t...
Unconditional lower bounds against advice
H. Buhrman; L. Fortnow; R. Santhanam
2009-01-01
We show several unconditional lower bounds for exponential time classes against polynomial time classes with advice, including: (1) For any constant c, NEXP not in P^{NP[n^c]} (2) For any constant c, MAEXP not in MA/n^c (3) BPEXP not in BPP/n^{o(1)}. It was previously unknown even whether NEXP in NP
International Nuclear Information System (INIS)
We investigate experimentally and theoretically the electron emission in collisions between He atoms and Liq+ (q = 1, 2) projectiles at intermediate to high incident energies. We report on measured absolute values of double-differential cross-sections, as a function of the emitted electron energy and angle, at a collision energy of 440 keV u−1. The different contributions from target ionization, projectile ionization, and simultaneous target–projectile ionization are calculated with the quantum-mechanical continuum distorted wave and continuum distorted wave–eikonal initial state models, and with classical trajectory Monte Carlo simulations. There is an overall good agreement of the calculations with the experimental data for electron emission cross-sections. (paper)
Fregenal, D.; Monti, J. M.; Fiol, J.; Fainstein, P. D.; Rivarola, R. D.; Bernardi, G.; Suárez, S.
2014-08-01
We investigate experimentally and theoretically the electron emission in collisions between He atoms and L{{i}^{q+}} (q = 1, 2) projectiles at intermediate to high incident energies. We report on measured absolute values of double-differential cross-sections, as a function of the emitted electron energy and angle, at a collision energy of 440 keV u-1. The different contributions from target ionization, projectile ionization, and simultaneous target-projectile ionization are calculated with the quantum-mechanical continuum distorted wave and continuum distorted wave-eikonal initial state models, and with classical trajectory Monte Carlo simulations. There is an overall good agreement of the calculations with the experimental data for electron emission cross-sections.
International Nuclear Information System (INIS)
Absolute cross sections for projectile electron loss accompanied by target multiple ionization in collisions between He+ ions and noble gases have been measured for energies between 1.0 and 3.5 MeV. The data have been compared with other absolute cross sections that exist in the literature for the same projectile, and with calculations for the screening mode (nucleus-electron interaction) using both perturbative (plane-wave Born approximation (PWBA)) and non-perturbative (extended classical-impulse free-collision model, sudden approximation and coupled-channel method) approaches, and for the antiscreening mode (electron-electron interaction) within the PWBA. The energy dependence of the average number of active electrons for the antiscreening has been described by means of a simple function, which is 'universal' for noble gases but projectile dependent. A previously developed method has been employed to obtain the number of active electrons for each target subshell in the high-velocity regime.
Santos, A. C. F.; Sigaud, G. M.; Melo, W. S.; Sant'Anna, M. M.; Montenegro, E. C.
2011-02-01
Absolute cross sections for projectile electron loss accompanied by target multiple ionization in collisions between He+ ions and noble gases have been measured for energies between 1.0 and 3.5 MeV. The data have been compared with other absolute cross sections that exist in the literature for the same projectile, and with calculations for the screening mode (nucleus-electron interaction) using both perturbative (plane-wave Born approximation (PWBA)) and non-perturbative (extended classical-impulse free-collision model, sudden approximation and coupled-channel method) approaches, and for the antiscreening mode (electron-electron interaction) within the PWBA. The energy dependence of the average number of active electrons for the antiscreening has been described by means of a simple function, which is 'universal' for noble gases but projectile dependent. A previously developed method has been employed to obtain the number of active electrons for each target subshell in the high-velocity regime.
A Functional Calculus for Quotient Bounded Operators
Directory of Open Access Journals (Sweden)
Sorin Mirel Stoian
2006-12-01
Full Text Available If (X, P is a sequentially locally convex space, then a quotient bounded operator T beloging to QP is regular (in the sense of Waelbroeck if and only if it is a bounded element (in the sense of Allan of algebra QP. The classic functional calculus for bounded operators on Banach space is generalized for bounded elements of algebra QP.
Projectile fragmentation of 40,48Ca and isotopic scaling in a transport approach
Mikhailova, T. I.; Erdemchimeg, B.; Artukh, A. G.; Di Toro, M.; Wolter, H. H.
2016-07-01
We investigate theoretically projectile fragmentation in reactions of 40,48Ca on 9Be and 181Ta targets using a Boltzmann-type transport approach, which is supplemented by a statistical decay code to describe the de-excitation of the hot primary fragments. We determine the thermodynamical properties of the primary fragments and calculate the isotope distributions of the cold final fragments. These describe the data reasonably well. For the pairs of projectiles with different isotopic content we analyze the isotopic scaling (or isoscaling) of the final fragment distributions, which has been used to extract the symmetry energy of the primary source. The calculation exhibits isoscaling behavior for the total yields as do the experiments. We also perform an impact-parameter-dependent isoscaling analysis in view of the fact that the primary systems at different impact parameters have very different properties. Then the isoscaling behavior is less stringent, which we can attribute to specific structure effects of the 40,48Ca pair. The symmetry energy determined in this way depends on these structure effects.
EFFECT OF BODY SHAPE ON THE AERODYNAMICS OF PROJECTILES AT SUPERSONIC SPEEDS
Directory of Open Access Journals (Sweden)
ABDULKAREEM SH. MAHDI
2008-12-01
Full Text Available An investigation has been made to predict the effects of forebody and afterbody shapes on the aerodynamic characteristics of several projectile bodies at supersonic speeds using analytical methods combined with semi-empirical design curves. The considered projectile bodies had a length-to-diameter ratio of 6.67 and included three variations of forebody shape and three variations of afterbody shape. The results, which are verified by comparison with available experimental data, indicated that the lowest drag was achieved with a cone-cylinder at the considered Mach number range. It is also shown that the drag can be reduced by boattailing the afterbody. The centre-of-pressure assumed a slightly rearward location for the ogive-cylinder configuration when compared to the configuration with boattailed afterbody where it was the most forward. With the exception of the boattailed afterbody, all the bodies indicated inherent static stability above Mach number 2 for a centre-of-gravity location at about 40% from the body nose.
The influence of projectile ion induced chemistry on surface pattern formation
Karmakar, Prasanta; Satpati, Biswarup
2016-07-01
We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.
Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration
Energy Technology Data Exchange (ETDEWEB)
Taylor, Paul A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Candice Frances [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is virtually nonexistent but necessary to ensure adequate protection against injury to the heart and lungs. In this report, we discuss the development of a high-fidelity human torso model, it's merging with the existing Sandia Human Head-Neck Model, and development of the modeling & simulation (M&S) capabilities necessary to simulate wound injury scenarios. Using the new Sandia Human Torso Model, we demonstrate the advantage of virtual simulation in the investigation of wound injury as it relates to the warfighter experience. We present the results of virtual simulations of blast loading and ballistic projectile impact to the tors o with and without notional protective armor. In this manner, we demonstrate the ad vantages of applying a modeling and simulation approach to the investigation of wound injury and relative merit assessments of protective body armor without the need for trial-and-error testing.
Prospects for the discovery of the next new element: Influence of projectiles with Z > 20
Folden, Charles M; Werke, Tyler A; Alfonso, Marisa C; Bennett, Megan E; DeVanzo, Michael J
2012-01-01
The possibility of forming new superheavy elements with projectiles having Z > 20 is discussed. Current research has focused on the fusion of 48Ca with actinides targets, but these reactions cannot be used for new element discoveries in the future due to a lack of available target material. The influence on reaction cross sections of projectiles with Z > 20 have been studied in so-called analog reactions, which utilize lanthanide targets carefully chosen to create compound nuclei with energetics similar to those found in superheavy element production. The reactions 48Ca, 45Sc, 50Ti, 54Cr + 159Tb, 162Dy have been studied at the Cyclotron Institute at Texas A&M University using the Momentum Achromat Recoil Spectrometer. The results of these experimental studies are discussed in terms of the influence of collective enhancements to level density for compound nuclei near closed shells, and the implications for the production of superheavy elements. We have observed no evidence to contradict theoretical predict...
Lithic raw material procurement for projectiles points in the prehistory of Uruguay
Directory of Open Access Journals (Sweden)
José María López Mazz
2015-03-01
Full Text Available This paper focuses on current research on early colonisation of the Atlantic coast of South America during the early Holocene. We present advances in the investigation of raw material procurement at the Rincón de los Indios site, located in the eastern part of Uruguay. The technological studies suggest that some aspects of different styles of projectile points are related with environmental adaptation processes, experienced by the first American people in the New World. The occupation of new spaces and new forms of exploitation of resources changes the organisation of lithic technology. The distance to good quality rocks were critical for the opportunities and economic organisation of hunting groups. The study of changes in lithic procurement strategies for projectile points helps us develop a more comprehensive knowledge of this important social adaptation process which occurred during this period. These patterns started to become stabilised in the latter part of the early Holocene across the extended territory and confirm the efficient land occupation associated an intensive hunter-gatherer economies.
A STUDY ON THE COUNTER-INTUITIVE BEHAVIORS OF PIN-ENDED BEAMS UNDER PROJECTILE IMPACT
Institute of Scientific and Technical Information of China (English)
Li Haiwang; Qin Dongqi
2006-01-01
The counter-intuitive behaviors of pin-ended beams under the projectile impact are investigated with ANSYS/LS-DYNA in this paper. It studies in detail their displacement-time history curves, final deformed shapes, energy relationships and projectile impact velocity ranges related to their counterintuitive behaviors. The influences of the impact positions on their counterintuitive behaviors are also discussed. The results show that no matter where the impact position on the beam is, the counter-intuitive behaviors of pinned beams will occur as long as the impacting velocity lies within a proper range. Corresponding to the occurring of the counterintuitive behaviors, the rebounding number in the displacement history curves of the beams decreases from a few times to zero with an increase of the impact velocity. The final deformation modes of the beam corresponding to the counter-intuitive behaviors will appear in symmetrical and unsymmetrical forms no matter where the impact position is; the impact velocity of the first-occurring of the counter-intuitive behaviors of the beam increases slowly with the deviation of the impact position away from the mid-span.
Electron capture by fully stripped high-Z projectiles from the hydrogen atom
International Nuclear Information System (INIS)
A single-channel distorted-wave approximation is used to calculate the one-electron capture cross section into an arbitrary state (nlm) of Ti22+, V23+, and Fe26+ from the ground state of a hydrogen atom. Since the interaction between the heavy projectile and the target electron is stronger, we represent the initial-channel wave function by a continuum distorted wave while the wave function in the final channel is taken to be a traveling atomic orbital. The nth partial cross sections are found to be in qualitative agreement with previous calculations for some other systems. It is found that at high energies the value nmax, where the nth partial cross section is maximum, is larger by a few steps than obtained from the nmax=Z3/4 model. However, for a fixed projectile nmax moves towards the smaller values as the energy increases. The l dependence of the cross sections are also studied at different energies at the corresponding nmax. We have further studied the mth partial cross sections at various energies and at the corresponding nmax for several l values. It is found that the contributions from higher m values are decreasing rapidly for m>5
Temporary cavity created by free-flying projectiles propelled from a powder-actuated nail gun.
Frank, Matthias; Schönekeß, Holger C; Jäger, Frank; Hertel, Heinz; Ekkernkamp, Axel; Bockholdt, Britta
2012-09-01
Nails and driving pins discharged from powder-actuated fastening tools bear some special ballistic characteristics. Compared to the usual pistol or revolver projectiles, the sectional density (S) of fastening pins is extremely high. The general prevailing opinion is that the kinetic energy delivered by fastening tools is not high enough to cause a temporary cavity. Therefore, it was the aim of this study to investigate the wound morphology due to fastening bolts discharged from a powder-actuated direct-acting nail gun (where, in contrast to modern piston-type tools, the expanding gases act directly on the fastener) using ballistic soap blocks as simulants. For test shots, a direct-acting powder-actuated nail gun which features three interchangeable barrels (caliber (cal.) 6, 8, and 10 mm) was used. The average kinetic energy was 537, 532, and 694 J for the 6-, 8-, and 10-mm cal. bolts, respectively. Test shots on the ballistic soap blocks demonstrated that free-flying projectiles discharged from direct-acting fastening tools are able to create a temporary cavity. PMID:22797891
Evaluation of the performance of three elastomers for non-lethal projectile applications
Thota, N.; Epaarachchi, J.; Lau, K. T.
2015-09-01
Less lethal kinetic ammunitions with soft noses such as eXact iMpact 1006, National Sports Spartan and B&T have been commonly used by military and law enforcement officers in the situations where lethal force is not warranted. In order to explore new materials to be used as nose in such ammunitions, a scholastic study using finite element simulations has been carried out to evaluate the effectiveness of two rubber like elastomers and a polyolefinic foam (low density, highly compressible, stiff and closed cell type of thermos plastic elastomer). State-of-the art thorax surrogate MTHOTA has been employed for the evaluation of blunt thoracic trauma. Force-rigid wall method was employed for the evaluation of head damage curves for each material. XM 1006 has been used as the benchmark projectile for the purpose of comparison. Both blunt thoracic trauma and head damage criterion point of view, both rubbers (R1 and R2) have yielded high values of VCmax and peak impact force. Polyolefinic foam (F1) considered in the study has yielded very promising VCmax values and very less peak impact force when compared with those of bench mark projectile XM 1006.
Handayani, Langlang; Prasetya Aji, Mahardika; Susilo; Marwoto, Putut
2016-08-01
An alternative approach of an arts-based instruction for Basic Physics class has been developed through the implementation of video analysis of a Javanesse traditional dance: Bambangan Cakil. A particular movement of the dance -weapon throwing- was analyzed by employing the LoggerPro software package to exemplify projectile motion. The results of analysis indicated that the movement of the thrown weapon in Bambangan Cakil dance provides some helping explanations of several physics concepts of projectile motion: object's path, velocity, and acceleration, in a form of picture, graph and also table. Such kind of weapon path and velocity can be shown via a picture or graph, while such concepts of decreasing velocity in y direction (weapon moving downward and upward) due to acceleration g can be represented through the use of a table. It was concluded that in a Javanesse traditional dance there are many physics concepts which can be explored. The study recommends to bring the traditional dance into a science class which will enable students to get more understanding of both physics concepts and Indonesia cultural heritage.
Effects of the projectile electronic structure on Bethe-Bloch stopping parameters for Ag
Moussa, D.; Damache, S.; Ouichaoui, S.
2010-06-01
Energy losses of protons and alpha particles in silver have been accurately measured under the same experimental conditions over the velocity range E=(0.192-2.595) MeV/amu using the transmission method. Deduced S(E) stopping powers are compared to most accurate ones from the literature, to values generated by the SRIM-2008 computer code and to ICRU-49 compilation. They were analyzed in the framework of modified Bethe-Bloch theory for extracting Ag target mean excitation and ionization potential, I, and Barkas effect parameter, b. Values of ( 466±5) eV and 1.20±0.01 for these two parameters were inferred from the proton S(E) data while the alpha particle data yielded values of (438±4) eV and 1.38±0.01, respectively. The ( I, b) stopping parameters thus exhibit opposite variations as the projectile charge increases, similarly as we have found previously for nickel [6]. This can be ascribed only to an effect of the projectile electronic structure at low velocities. The obtained results are discussed in comparison to previous ones reported in the literature.
Effects of the projectile electronic structure on stopping parameters for nickel
Damache, S.; Ouichaoui, S.; Moussa, D.; Dib, A.
2006-08-01
The stopping powers of nickel foils for 1H+, 2H+ and 4He2+ ions have been accurately measured over the energy range E ≈ (0.166-2.725) MeV/amu. The data were compared to those reported in the literature and to values derived by the SRIM-2003 code. They were analysed in the framework of the modified Bethe-Bloch theory to extract the target mean excitation and ionisation potential, I, and the Barkas effect parameter, b. The values derived from the proton and the alpha particle data are {I = (311.11 ± 2.61) eV, b = 1.38 ± 0.01} and {I = (276.12 ± 2.84) eV, b = 1.58 ± 0.01}, respectively. They thus show opposite variations of the I and b parameters as the projectile charge increases, presumably due only to the incident ions electronic structure. Besides, the reduced stopping power data for incident deuterons show to be fully consistent with those for protons indicating no effect of the projectile isotopic structure on the target stopping parameters. These results are discussed in comparison with ones reported in the literature.
Scaling and universality in two dimensions: three-body bound states with short-ranged interactions
Energy Technology Data Exchange (ETDEWEB)
Bellotti, F F; Frederico, T [Instituto Tecnologico de Aeronautica, DCTA, 12.228-900 Sao Jose dos Campos, SP (Brazil); Yamashita, M T [Instituto de Fisica Teorica, UNESP-Univ Estadual Paulista, CP 70532-2, CEP 01156-970, Sao Paulo, SP (Brazil); Fedorov, D V; Jensen, A S; Zinner, N T, E-mail: zinner@phys.au.dk [Department of Physics and Astronomy-Aarhus University, Ny Munkegade, bygn. 1520, DK-8000 Arhus C (Denmark)
2011-10-28
The momentum space zero-range model is used to investigate universal properties of three interacting particles confined to two dimensions. The pertinent equations are first formulated for a system of two identical and one distinct particle and the two different two-body subsystems are characterized by two-body energies and masses. The three-body energy in units of one of the two-body energies is a universal function of the other two-body energy and the mass ratio. We derive convenient analytical formulae for calculations of the three-body energy as a function of these two independent parameters and exhibit the results as universal curves. In particular, we show that the three-body system can have any number of stable bound states. When the mass ratio of the distinct to identical particles is greater than 0.22, we find that at most two stable bound states exist, while for two heavy and one light mass an increasing number of bound states is possible. The specific number of stable bound states depends on the ratio of two-body bound state energies and on the mass ratio, and we map out an energy-mass phase diagram of the number of stable bound states. Realizable systems of both fermions and bosons are discussed in this framework.
Agarwal, Pankaj K.; Gao, Jie; Guibas, Leonidas J.; Kaplan, Haim; Rubin, Natan; Sharir, Micha
2015-01-01
Let $P$ be a set of $n$ points in $\\mathrm{R}^2$, and let $\\mathrm{DT}(P)$ denote its Euclidean Delaunay triangulation. We introduce the notion of an edge of $\\mathrm{DT}(P)$ being {\\it stable}. Defined in terms of a parameter $\\alpha>0$, a Delaunay edge $pq$ is called $\\alpha$-stable, if the (equal) angles at which $p$ and $q$ see the corresponding Voronoi edge $e_{pq}$ are at least $\\alpha$. A subgraph $G$ of $\\mathrm{DT}(P)$ is called {\\it $(c\\alpha, \\alpha)$-stable Delaunay graph} ($\\math...
Energy Technology Data Exchange (ETDEWEB)
Ichikawa, Y., E-mail: yuichikawa@phys.titech.ac.jp [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Ishii, Y. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Yoshimi, A. [Okayama University, Research Core for Extreme Quantum World (Japan); Kameda, D.; Watanabe, H.; Aoi, N. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Balabanski, D. L. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Chevrier, R.; Daugas, J. M. [CEA, DAM, DIF (France); Fukuda, N. [RIKEN Nishina Center (Japan); Georgiev, G. [CSNSM, IN2P3-CNRS, Universite Paris-sud (France); Hayashi, H.; Iijima, H. [Tokyo Institute of Technology, Department of Physics (Japan); Inabe, N. [RIKEN Nishina Center (Japan); Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Ishihara, M.; Kubo, T. [RIKEN Nishina Center (Japan); and others
2013-05-15
A novel method to produce spin-aligned rare-isotope (RI) beam has been developed, that is the two-step projectile fragmentation method with a technique of dispersion matching. The present method was verified in an experiment at the RIKEN RIBF, where an RI beam of {sup 32}Al with spin alignment of 8(1) % was successfully produced from a primary beam of {sup 48}Ca, with {sup 33}Al as an intermediate nucleus. Figure of merit of the present method was found to be improved by a factor larger than 50 compared with a conventional method employing single-step projectile fragmentation.
Energy Technology Data Exchange (ETDEWEB)
Lopez-Jimenez, M.J.; Saint-Laurent, M.G.; Achouri, L.; Daugas, J.M. [Grand Accelerateur National d`Ions Lourds, 14 - Caen (France); Belleguic, M.; Azaiez, F.; Bourgeois, C. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Stanoiu, M.; Borcea, C. [Institute of Atomic Physics, Bucharest (Romania); Angelique, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire] [and others
1999-11-01
The structure of nuclei far from stability around {sup 32}Mg have been recently investigated by means of a novel method. In-beam {gamma}-decay spectroscopy of a large number of exotic neutron-rich nuclei produced by projectile fragmentation of a {sup 36}S projectile has been performed, using coincidences between the recoil fragments collected at the focal plane of SPEG spectrometer and {gamma}-rays emitted at the target location. Preliminary results on both the population mechanism and the decay of excited states in nuclei around {sup 32}Mg are presented. (author) 24 refs.
Aldazabal, I.; Gravielle, M. S.; Miraglia, J. E.; Arnau, A.; Ponce, V. H.
2005-05-01
Target ionization and projectile ionization differential cross sections are used to calculate the electron emission spectra by fast proton impact on ionic crystal surfaces under grazing incidence conditions. Both bare protons and neutral hydrogen species are considered. We use a planar potential approach to determine the projectile trajectory that later on allows us to calculate the charge state fractions. We show that, although the fraction of protons is significantly higher, the contribution from neutral hydrogen ionization has to be considered. The energy and angular dependence of the spectra is analyzed.
Nuclear reactions with radioactive and stable beams (Part I)
International Nuclear Information System (INIS)
At the present time there is a great interest at world level in experiments, with accelerated nuclei of short half life. The dispersion, fusion, transfer and break processes in the interaction of weakly light projectiles bounded with targets of Z great its have been object of intense recent investigation, at world level. Our group, in collaboration with the University of Notre Dame, it has measured and analyzed these processes for weakly bound systems as: 6He + 209Bi, 8Li + 208Pb, 10Be + 208Pb. On the other hand a research line that has wakened up great interest, it is that of studies of resonant reactions using the Inverse Kinematics technique with thick targets. The use of this technique allows to measure an entire excitation function with a single bombardment. Our group has carried out, in the ININ, preliminary bombardments for the system 12C + 4He. This allowed to establish the feasibility of implementing this technique in our Laboratory. The application of this and other techniques to different systems like 18O + 4He, 12C + 12C, 12C + 16O, 16O + 16O, it opens the possibility to measure the fusion of these systems at very low energy and to deepen in the knowledge of the nuclear structure and the nuclear astrophysics. In this technical report, the activities carried out by our group during 2004 are described.(Author)
Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.
2015-08-01
During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.
Energy Technology Data Exchange (ETDEWEB)
Vidovic, Z
1997-06-15
This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H{sup 0}, H{sub 2}{sup +} and H{sub 3}{sup +} projectiles in the 0.25-2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. The phenomenological and theoretical descriptions, as well as a summary of the main theoretical models are the subject of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of a thin carbon foil traversed by an energetic projectile is described in the chapter two. In this chapter are also presented the method and algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with the emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H{sub 2}{sup +} and H{sub 3}{sup +} polyatomic ions. The results are interpreted in terms of collective effects in the interactions of these ions with solids. The role of the proximity of the protons, molecular ion fragments, upon the amplitude of these collective effects is evidenced from the study of the statistics of forward emission. These experiences allowed us to shed light on various aspects of atom and polyatomic ion inter-actions with solid surfaces. (author)
Concentration Bounds for Stochastic Approximations
Frikha, Noufel
2012-01-01
We obtain non asymptotic concentration bounds for two kinds of stochastic approximations. We first consider the deviations between the expectation of a given function of the Euler scheme of some diffusion process at a fixed deterministic time and its empirical mean obtained by the Monte-Carlo procedure. We then give some estimates concerning the deviation between the value at a given time-step of a stochastic approximation algorithm and its target. Under suitable assumptions both concentration bounds turn out to be Gaussian. The key tool consists in exploiting accurately the concentration properties of the increments of the schemes. For the first case, as opposed to the previous work of Lemaire and Menozzi (EJP, 2010), we do not have any systematic bias in our estimates. Also, no specific non-degeneracy conditions are assumed.
Entropy Bounds in Spherical Space
Brevik, I; Odintsov, S D; Brevik, Iver; Milton, Kimball A.; Odintsov, Sergei D.
2002-01-01
Exact calculations are given for the Casimir energy for various fields in $R\\times S^3$ geometry. The Green's function method naturally gives a result in a form convenient in the high-temperature limit, while the statistical mechanical approach gives a form appropriate for low temperatures. The equivalence of these two representations is demonstrated. Some discrepancies with previous work are noted. In no case, even for ${\\cal N}=4$ SUSY, is the ratio of entropy to energy found to be bounded.
2013-03-26
... Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math Science... Upward Bound Math Science Annual Performance Report. OMB Control Number: 1840-NEW. Type of Review: New... under the regular Upward Bound (UB) and Upward Bound Math and Science (UBMS) Programs. The Department...
How stable are the 'stable ancient shields'?
Viola, Giulio; Mattila, Jussi
2014-05-01
"Archean cratons are relatively flat, stable regions of the crust that have remained undeformed since the Precambrian, forming the ancient cores of the continents" (King, EPSL, 2005). While this type of statement is supported by a wealth of constraints in the case of episodes of thoroughgoing ductile deformation affecting shield regions of Archean and also Peleoproterozoic age, a growing amount of research indicates that shields are not nearly as structurally stable within the broad field of environmental conditions leading to brittle deformation. In fact, old crystalline basements usually present compelling evidence of long brittle deformation histories, often very complex and challenging to unfold. Recent structural and geochronological studies point to a significant mechanical instability of the shield areas, wherein large volumes of 'stable' rocks actually can become saturated with fractures and brittle faults soon after regional cooling exhumes them to below c. 300-350° C. How cold, rigid and therefore strong shields respond to applied stresses remains, however, still poorly investigated and understood. This in turn precludes a better definition of the shallow rheological properties of large, old crystalline blocks. In particular, we do not yet have good constraints on the mechanisms of mechanical reactivation that control the partial (if not total) accommodation of new deformational episodes by preexisting structures, which remains a key to untangle brittle histories lasting several hundred Myr. In our analysis, we use the Svecofennian Shield (SS) as an example of a supposedly 'stable' region with Archean nucleii and Paleoproterozoic cratonic areas to show how it is possible to unravel the details of brittle histories spanning more than 1.5 Gyr. New structural and geochronological results from Finland are integrated with a review of existing data from Sweden to explore how the effects of far-field stresses are partitioned within a shield, which was growing
Stable approximate evaluation of unbounded operators
Groetsch, Charles W
2007-01-01
Spectral theory of bounded linear operators teams up with von Neumann’s theory of unbounded operators in this monograph to provide a general framework for the study of stable methods for the evaluation of unbounded operators. An introductory chapter provides numerous illustrations of unbounded linear operators that arise in various inverse problems of mathematical physics. Before the general theory of stabilization methods is developed, an extensive exposition of the necessary background material from the theory of operators on Hilbert space is provided. Several specific stabilization methods are studied in detail, with particular attention to the Tikhonov-Morozov method and its iterated version.
Valence-bound and diffuse-bound anions of 5-azauracil.
Corzo, H H; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V
2014-08-28
Structures, isomerization energies, and electron binding energies of 5-azauracil and its anions have been calculated ab initio with perturbative, coupled-cluster, and electron-propagator methods. Tautomeric structures, including those produced by proton transfer to a CH group, have been considered. Dyson orbitals and pole strengths from electron-propagator calculations validated a simple, molecular-orbital picture of anion formation. In one case, an electron may enter a delocalized π orbital, yielding a valence-bound (VB) anion with a puckered ring structure. The corresponding electron affinity is 0.27 eV; the vertical electron detachment energy (VEDE) of this anion 1.05 eV. An electron also may enter a molecular orbital that lies outside the nuclear framework, resulting in a diffuse-bound (DB) anion. In the latter case, the electron affinity is 0.06 eV and the VEDE of the DB anion is 0.09 eV. Another VB isomer that is only 0.02 eV more stable than the neutral molecule has a VEDE of 2.0 eV. PMID:25102270
Bounded Delay Packet Scheduling in a Bounded Buffer
Fung, Stanley P Y
2009-01-01
We study the problem of buffer management in QoS-enabled network switches in the bounded delay model where each packet is associated with a weight and a deadline. We consider the more realistic situation where the network switch has a finite buffer size. A 9.82-competitive algorithm is known for the case of multiple buffers (Azar and Levy, SWAT'06). Recently, for the case of a single buffer, a 3-competitive deterministic algorithm and a 2.618-competitive randomized algorithm was known (Li, INFOCOM'09). In this paper we give a simple deterministic 2-competitive algorithm for the case of a single buffer.
Energy Technology Data Exchange (ETDEWEB)
Ringle, R., E-mail: ringle@nscl.msu.edu; Bachelet, C.; Barquest, B. R.; Block, M.; Bollen, G.; Campbell, C. M.; Facina, M.; Ferrer, R.; III, C. M. Folden; Guenaut, C.; Kwan, E.; Kwiatkowski, A. A.; Lincoln, D. L.; Morrissey, D. J.; Pang, G. K.; Prinke, A. M.; Savory, J.; Schury, P.; Schwarz, S.; Sumithrarachchi, C. S. [National Superconducting Cyclotron Laboratory (United States)
2011-07-15
Rare isotope beams of many elements can be difficult or impossible to obtain at ISOL facilities due to their high melting points or chemical reactivity, but they are easily produced by projectile fragmentation and in-flight separation, a technique that rapidly produces fragments lighter than the projectile in a chemistry-free manner. Until recently, such high-energy projectile fragments could not be reduced to the thermal energies necessary for precision mass measurements in Penning traps. The Low Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory (NSCL) has demonstrated that projectile fragment beams can be thermalized and measured in a high-precision Penning trap. Since 2005, over 30 isotopes have been measured with LEBIT, including several isotopes of elements which are difficult for ISOL facilities to produce, such as Fe, Co, Si, Br, and S. These measurements have contributed to our understanding of nuclear structure, nuclear astrophysics, and fundamental symmetries. Some recent highlights include the discovery of an isomeric state in {sup 65}Fe, testing the Isobaric Mass Multiplet Equation (IMME) with the A = 32, T = 2 quintet with a measurement of {sup 32}Si, probing out to the proton dripline with {sup 70m}Br, and studying the N = 28 shell closure with measurements of {sup 40 - 44}S. Results of these measurements will be discussed, along with the technical developments which made them possible.
Directory of Open Access Journals (Sweden)
Nityananda Nayak
2013-07-01
Full Text Available Ballistic impact response of ceramic- composite armor, consisting of zirconia toughened alumina (ZTA ceramic front and aramid laminated composite as backing, against 7.62 mm armor piercing (AP projectiles has been studied. Two types of backing composite laminates i.e. Twaron-epoxy and Twaron-polypropylene (PP of 10 mm and 15 mm thickness were used with a ceramic face of 4mm thick ZTA. The ceramic- faced and the stand alone composite laminates were subjected to ballistic impact of steel core 7.62 mm AP projectiles with varying impact velocities and their V50 ballistic limit (BL was determined. A sharp rise in BL was observed due to addition of ceramic front layer as compared to stand alone ones. The impact energy was absorbed during penetration primarily by fracture of ceramic, deformation and fracture of projectile and elastic-plastic deformation of flexible backing composite layer. The breaking of ceramic tiles were only limited to impact area and did not spread to whole surface and projectile shattering above BL and blunting on impact below BL was observed. The ceramic- faced composites showed higher BL with Twaron-PP as backing than Twaron-epoxy laminate of same thickness. This combination of ceramic-composite laminates exhibited better multi-hit resistance capability; ideal for light weight armor.Defence Science Journal, 2013, 63(4, pp.369-375, DOI:http://dx.doi.org/10.14429/dsj.63.2616
Kovács, S. T. S.; Herczku, P.; Juhász, Z.; Sarkadi, L.; Gulyás, L.; Sulik, B.
2016-07-01
We report the energy and angular distribution of ejected electrons from C H4 and H2O molecules impacted by 1 MeV H+, H e+ , and 650 keV N+ ions. Spectra were measured at different observation angles, from 2 to 2000 eV. The obtained absolute double-differential electron-emission cross sections (DDCSs) were compared with the results of classical trajectory Monte Carlo (CTMC) and continuum distorted wave, eikonal initial state (CDW-EIS) calculations. For the bare H+ projectile both theories show remarkable agreement with the experiment at all observed angles and energies. The CTMC results are in similarly good agreement with the DDCS spectra obtained for impact by dressed H e+ and N+ ions, where screening effects and electron loss from the projectile gain importance. The CDW-EIS calculations slightly overestimate the electron loss for 1 MeV H e+ impact, and overestimate both the target and projectile ionization at low emitted electron energies for 650 keV N+ impact. The contribution of multiple electron scattering by the projectile and target centers (Fermi shuttle) dominates the N+-impact spectra at higher electron energies, and it is well reproduced by the nonperturbative CTMC calculations. The contributions of different processes in medium-velocity collisions of dressed ions with molecules are determined.
Behaviour of Thin Aluminium Plates Subjected to Impact by Ogive-nosed Projectiles
Directory of Open Access Journals (Sweden)
M.A. Iqbal
2006-11-01
Full Text Available A pneumatic gas gun has been used to fire ogive-nosed projectiles on aluminium plates(1mm at varying impact velocities above the ballistic limit. Impact and residual velocities havebeen measured. Deformation of the target plate was studied. Experimental results formed thebasis of a subsequent finite element analysis of the problem using the ABAQUS 6.3 code. TheJohnson-Cook plastic flow and fracture model available in the code were utilised. Explicit finiteelement analysis has been performed to model the perforation phenomenon. Numerical resultswere significantly improved by reducing the element size up to a certain level beyond which nosignificant variation in the results was observed. Adaptive meshing has been found to be usefulin obtaining the accurate results and avoiding the problem of premature termination of theprogram due to excessive element distortion. Experimental and numerical results are comparedand a good agreement between the two has been found.
Multiple-laser flash shadowgraphy system for terminal studies of small-caliber projectiles
Kalonia, R. C.; Mitra, Gautam; Singh, G. S.; Varma, R. K.; Singh, Manpreet; Singh, Manjit; Sethi, V. S.; Yadav, M. S.
2010-06-01
A multiple-laser flash shadowgraphy system has been innovatively designed and developed to study the terminal effects of projectiles. The system has been designed based on modulated laser diodes operated at low voltage and current. In order to study the ballistics effects of small arms, an exposure time of the order of a few hundreds ns and a delay time of the order of a few tens of μs are needed. An ultrashort pulse generator has been developed to provide the exposure and delay time pulses. The developed system has been integrated with a field lens assembly and camera assembly. To record the shadowgraphs, a target is placed near the center of the field lens and a bullet is fired from a fixed gun. The system is described, and experimental results and conclusions are reported.
Total Fragmentation Cross Section of 158A GeV Lead Projectiles in Cu Target
Institute of Scientific and Technical Information of China (English)
Mukhtar Ahmed Rana; Shahid Manzoor
2008-01-01
Total fragmentation cross section for the reaction 158A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63 ≤Z≤83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σz achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented.
Institute of Scientific and Technical Information of China (English)
张伟; 管公顺; 庞宝君; 李强; 张永强
2004-01-01
All long-duration spacecraft in low-earth-orbit are subject to high velocity impacts by meteoroids and space debris. Such impacts are expected to occur at non-normal incidence angles and can cause severe damage to the spacecraft and its external flight-critical systems and possibly lead to catastrophic failure of the spacecraft.In order to ensure crew safety and proper function of internal and external spacecraft systems, the characteristics of a debris cloud generated by such impacts must be known. An analytical model is therefore developed for the characterization of the penetration and ricochet debris clouds created by the hypervelocity impact of an aluminum spherical projectile on an aluminum plate. This model employs normal and oblique shock wave theory to characterize the penetration and ricochet processes. The prediction results of center-of-mass trajectory and leading velocity of penetration and ricochet debris clouds are obtained and compared with numerical and experimental results in figures.
Numerical simulation of three-dimensional transonic turbulent projectile aerodynamics by TVD schemes
Shiau, Nae-Haur; Hsu, Chen-Chi; Chyu, Wei-Jao
1989-01-01
The two-dimensional symmetric TVD scheme proposed by Yee has been extended to and investigated for three-dimensional thin-layer Navier-Stokes simulation of complex aerodynamic problems. An existing three-dimensional Navier-stokes code based on the beam and warming algorithm is modified to provide an option of using the TVD algorithm and the flow problem considered is a transonic turbulent flow past a projectile with sting at ten-degree angle of attack. Numerical experiments conducted for three flow cases, free-stream Mach numbers of 0.91, 0.96 and 1.20 show that the symmetric TVD algorithm can provide surface pressure distribution in excellent agreement with measured data; moreover, the rate of convergence to attain a steady state solution is about two times faster than the original beam and warming algorithm.
LX-04 VIOLENCE MEASUREMENTS- STEVEN TESTS IMPACTED BY PROJECTILES SHOT FROM A HOWITZER GUN
International Nuclear Information System (INIS)
Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04 has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence
International Nuclear Information System (INIS)
The possibility for projectile fragmentation with intermediate energy heavy ions (20< E<90MeV/u) to be a powerful 100l for producing new exotic species is illustrated here. The existing methods using heavy ions are first reviewed briefly. The mechanism responsible for fragment production at the Ganil energies is then described. The main features which are of interest as far as the production of n-rich nuclides is concerned will be emphasized. This will allow some predictions for the production rates of n-rich isotopes. The LISE spectrometer is then described and finally the results of the first experiment using the reaction Ar+Ta at 1,8 GeV where the neutron drip line has been reached for some light nuclei are presented
2002-01-01
% EMU19 \\\\ \\\\ The collisions of heavy ions at relativistic energies have been studied to explore a number of questions related with hot and dense nuclear matter in order to extend our knowledge of nuclear equation-of-state. There are other aspects of these interactions which are studied to expound the process of projectile and/or target disintegrations. The disintegrations in question could be simply binary fissions or more complex processes leading to spallation or complete fragmentation. These important aspects of nuclear reactions are prone to investigations with nuclear track detectors. \\\\ \\\\One of the comparatively new track detector materials, CR-39, is sensitive enough to record particles of Z~$\\geq$~6 with almost 100\\% efficiency up to highly relativistic energies. The wide angle acceptance and exclusive measurements possible with plastic track detectors offer an opportunity to use them in a variety of situations in which high energy charged fragments are produced. The off-line nature of measuring tra...
Special features of isomeric ratios in nuclear reactions induced by various projectile particles
Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Martirosyan, G. V.
2016-05-01
Calculations for ( p, n) and (α, p3 n) reactions were performed with the aid of the TALYS-1.4 code. Reactions in which the mass numbers of target and product nuclei were identical were examined in the range of A = 44-124. Excitation functions were obtained for product nuclei in ground and isomeric states, and isomeric ratios were calculated. The calculated data reflect well the dependence of the isomeric ratios on the projectile type. A comparison of the calculated and experimental data reveals, that, for some nuclei in a high-spin state, the calculated data fall greatly short of their experimental counterparts. These discrepancies may be due to the presence of high-spin yrast states and rotational bands in these nuclei. Calculations involving various level-density models included in the TALYS-1.4 code with allowance for the enhancement of collective effects do not remove the discrepancies in the majority of cases.
Projectiles Impact Assessment of Aircraft Wing Structures with Real Dynamic Load
Han, Lu; Han, Qing; Wang, Changlin
2015-07-01
This paper presents an analysis to achieve the impact damage of the wing structure under real dynamic load. MPCCI tools are utilized to convert wing aerodynamic load into structural Finite Element Method (FEM) node load. The ANSYS/LS-DYNA code is also used to simulate the dynamic loading effects of the wing structure hit by several projectiles, including both active damage mechanism and common damage mechanism. In addition, structural node force on the leading edge and the midline is compared to the aerodynamic load separately. Furthermore, the statistical analysis of the penetrating size and the stress concentration around the damage holes indicates that under the same load situation, the structural damage efficiency of active damage mechanism is significantly higher than the one of common damage mechanism.
Modeling of Normal Perforation of Reinforced Concrete Slabs by a Rigid Projectile
Institute of Scientific and Technical Information of China (English)
CHEN Xiaowei; LI Xiaoli
2006-01-01
An analytical model on the normal perforation of reinforced concrete slabs is constructed.The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering,tunnelling and shear plugging.Besides three dimensionless numbers,i.e.,the impact function /,the geometry function of projectile N and the dimensionless thickness of concrete target χ,which are employed to predict the ballistic performance of perforation of concrete slabs,the reinforcement ratio ρs of concrete and the tensile strength fs of reinforcing bars are considered as the other main factors influencing the perforation process.Simpler solutions of ballistic performances of normal perforation of reinforced concrete slabs are formulated.Theoretical predictions agree well with individual published experimental data.
Institute of Scientific and Technical Information of China (English)
ZHANG Wei; DENG Yun-fei; CAO Zong-sheng
2012-01-01
The ballistic performance of monolithic and multi-layered steel plates impacted by ogival-nosed projectiles was investigated by using a gas gun experimentally.The total thickness of in-contact multi-layered target was equally to that of monolithic target.The results show that,for the high strength targets,the monolithic targets have greater ballistic limit velocities than multi-layered targets,and also the ballistic limit velocities of targets decrease with the increase of the number of layers.However,for the low strength targets,the monolithic targets have lower ballistic limit velocities than multi-layered targets.The differences in target capacity between various impact conditions can be related to the transitions of perforation mechanisms and failure models.
Global optical-model potentials for the elastic scattering of sup(6,7)Li projectiles
International Nuclear Information System (INIS)
Simultaneous fits have been made to 44 6Li data sets covering the mass range 24-208 and the energy range 13-156 MeV in order to determine an average ('global') optical-model potential for 6Li scattering. A similar study has been made for 25 7Li data sets over the same mass range and an energy range of 28-88 MeV to find an average 7Li potential. With Saxon-Woods factors, constant values may be used for all parameters except for the depth of the imaginary potential which decreases in magnitude with increasing mass. The necessity of energy dependence, Coulomb correction and (for 7Li) a symmetry term is investigated. The variation of the integral properties of the potentials is discussed, and also a comparison is made for the two projectiles. Application of the global potentials is made to inelastic scattering and single-nucleon transfer reactions. (orig.)
Determination of absolute transition probabilities in 128Xe via projectile Coulomb excitation
International Nuclear Information System (INIS)
Recently, lifetimes of low-lying excited states in 128Xe were measured using the plunger technique after projectile Coulomb excitation. This experiment was performed at the JYFL, Jyvaeskylae using the JUROGAM Ge-detector array and the Cologne coincidence plunger device equipped with an array of 32 small Si-detectors. The Si-detectors were used to measure the reaction kinematics by registering target-like nuclei scattered in forward direction. In order to cross-check the results obtained from the recoil distance Doppler shift analysis an evaluation of the measured excitation cross-sections was performed with the computer code GOSIA. In addition deorientation effects were investigated and effort was made to extract absolute quadrupole moments. Details of the experiment and the calculations are presented.
Projectile X-ray emission in relativistic ion-atom collisions
Energy Technology Data Exchange (ETDEWEB)
Salem, Shadi Mohammad Ibrahim
2010-03-16
This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two
International Nuclear Information System (INIS)
Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB)
A Monolithic High-G SOI-MEMS Accelerometer for Measuring Projectile Launch and Flight Accelerations
Directory of Open Access Journals (Sweden)
Bradford S. Davis
2006-01-01
Full Text Available Analog Devices (ADI has designed and fabricated a monolithic high-g acceleration sensor (ADXSTC3-HG fabricated with the ADI silicon-on-insulator micro-electro-mechanical system (SOI-MEMS process. The SOI-MEMS sensor structure has a thickness of 10 um, allowing for the design of inertial sensors with excellent cross-axis rejection. The high-g accelerometer discussed in this paper was designed to measure in-plane acceleration to 10,000 g while subjected to 100,000 g in the orthogonal axes. These requirements were intended to meet Army munition applications. The monolithic sensor was packaged in an 8-pin leadless chip carrier (LCC-8 and was successfully demonstrated by the US Army Research Laboratory (ARL as part of an inertial measurement unit during an instrumented flight experiment of artillery projectiles launched at 15,000 g.
LX-04 VIOLENCE MEASUREMENTS- STEVEN TESTS IMPACTED BY PROJECTILES SHOT FROM A HOWITZER GUN
Energy Technology Data Exchange (ETDEWEB)
Chidester, S K; Vandersall, K S; Switzer, L L; Tarver, C M
2005-07-18
Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04 has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence.
Stable generalized complex structures
Cavalcanti, Gil R
2015-01-01
A stable generalized complex structure is one that is generically symplectic but degenerates along a real codimension two submanifold, where it defines a generalized Calabi-Yau structure. We introduce a Lie algebroid which allows us to view such structures as symplectic forms. This allows us to construct new examples of stable structures, and also to define period maps for their deformations in which the background three-form flux is either fixed or not, proving the unobstructedness of both deformation problems. We then use the same tools to establish local normal forms for the degeneracy locus and for Lagrangian branes. Applying our normal forms to the four-dimensional case, we prove that any compact stable generalized complex 4-manifold has a symplectic completion, in the sense that it can be modified near its degeneracy locus to produce a compact symplectic 4-manifold.
Calcium stable isotope geochemistry
Energy Technology Data Exchange (ETDEWEB)
Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark
2016-08-01
This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.
Damage visualization and deformation measurement in glass laminates during projectile penetration
Directory of Open Access Journals (Sweden)
Elmar Strassburger
2014-06-01
Full Text Available Transparent armor consists of glass-polymer laminates in most cases. The formation and propagation of damage in the different glass layers has a strong influence on the ballistic resistance of such laminates. In order to clarify the course of events during projectile penetration, an experimental technique was developed, which allows visualizing the onset and propagation of damage in each single layer of the laminate. A telecentric objective lens was used together with a microsecond video camera that allows recording 100 frames at a maximum rate of 1 MHz in a backlit photography set-up. With this technique, the damage evolution could be visualized in glass laminates consisting of four glass layers with lateral dimensions 500 mm × 500 mm. Damage evolution was recorded during penetration of 7.62 mm AP projectiles with tungsten carbide core and a total mass of 11.1 g in the impact velocity range from 800 to 880 m/s. In order to measure the deformation of single glass plates within the laminates, a piece of reflecting tape was attached to the corresponding glass plate, and photonic Doppler velocimetry (PDV was applied. With the photonic Doppler velocimeter, an infrared laser is used to illuminate an object to be measured and the Doppler-shifted light is superimposed to a reference light beam at the detector. The simultaneous visualization and PDV measurement of the glass deformation allow determining the deformation at the time of the onset of fracture. The analysis of the experimental data was supported by numerical simulations, using the AUTODYN commercial hydro-code.
Pilling, Sergio; Duarte, Eduardo Seperuelo; Domaracka, Alicja; Rothard, Hermann; Boduch, Philippe; da Silveira, Enio F
2011-09-21
An experimental study of the interaction of highly charged, energetic ions (52 MeV (58)Ni(13+) and 15.7 MeV (16)O(5+)) with mixed H(2)O : C(18)O(2) astrophysical ice analogs at two different temperatures is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by cosmic rays inside dense, cold astrophysical environments, such as molecular clouds or protostellar clouds as well at the surface of outer solar system bodies. The measurements were performed at the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a CsI substrate at 13 K and 80 K. In situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross section at 13 K of both H(2)O and CO(2) is about 3-4 times smaller when O ions are employed. The ice temperature seems to affect differently each species when the same projectile was employed. The formation cross section at 13 K of molecules such as C(18)O, CO (with oxygen from water), and H(2)O(2) increases when Ni ions are employed. The formation of organic compounds seems to be enhanced by the oxygen projectiles and at lower temperatures. In addition, because the organic production at 13 K is at least 4 times higher than the value at 80 K, we also expect that interstellar ices are more organic-rich than the surfaces of outer solar system bodies.
Damage visualization and deformation measurement in glass laminates during projectile penetration
Institute of Scientific and Technical Information of China (English)
Elmar STRASSBURGER; Steffen BAUER; Gregor POPKO
2014-01-01
Transparent armor consists of glass-polymer laminates in most cases. The formation and propagation of damage in the different glass layers has a strong influence on the ballistic resistance of such laminates. In order to clarify the course of events during projectile penetration, an experimental technique was developed, which allows visualizing the onset and propagation of damage in each single layer of the laminate. A telecentric objective lens was used together with a microsecond video camera that allows recording 100 frames at a maximum rate of 1 MHz in a backlit photography set-up. With this technique, the damage evolution could be visualized in glass laminates consisting of four glass layers with lateral dimensions 500 mm ? 500 mm. Damage evolution was recorded during penetration of 7.62 mm AP projectiles with tungsten carbide core and a total mass of 11.1 g in the impact velocity range from 800 to 880 m/s. In order to measure the deformation of single glass plates within the laminates, a piece of reflecting tape was attached to the corresponding glass plate, and photonic Doppler velocimetry (PDV) was applied. With the photonic Doppler velocimeter, an infrared laser is used to illuminate an object to be measured and the Doppler-shifted light is superimposed to a reference light beam at the detector. The simultaneous visualization and PDV measurement of the glass deformation allow determining the deformation at the time of the onset of fracture. The analysis of the experimental data was supported by numerical simulations, using the AUTODYN commercial hydro-code.
Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns.
Yiu, Billy Y S; Lai, Simon S M; Yu, Alfred C H
2014-09-01
Achieving non-invasive, accurate and time-resolved imaging of vascular flow with spatiotemporal fluctuations is well acknowledged to be an ongoing challenge. In this article, we present a new ultrasound-based framework called vector projectile imaging (VPI) that can dynamically render complex flow patterns over an imaging view at millisecond time resolution. VPI is founded on three principles: (i) high-frame-rate broad-view data acquisition (based on steered plane wave firings); (ii) flow vector estimation derived from multi-angle Doppler analysis (coupled with data regularization and least-squares fitting); (iii) dynamic visualization of color-encoded vector projectiles (with flow speckles displayed as adjunct). Calibration results indicated that by using three transmit angles and three receive angles (-10°, 0°, +10° for both), VPI can consistently compute flow vectors in a multi-vessel phantom with three tubes positioned at different depths (1.5, 4, 6 cm), oriented at different angles (-10°, 0°, +10°) and of different sizes (dilated diameter: 2.2, 4.4 and 6.3 mm; steady flow rate: 2.5 mL/s). The practical merit of VPI was further illustrated through an anthropomorphic flow phantom investigation that considered both healthy and stenosed carotid bifurcation geometries. For the healthy bifurcation with 1.2-Hz carotid flow pulses, VPI was able to render multi-directional and spatiotemporally varying flow patterns (using a nominal frame rate of 416 fps or 2.4-ms time resolution). In the case of stenosed bifurcations (50% eccentric narrowing), VPI enabled dynamic visualization of flow jet and recirculation zones. These findings suggest that VPI holds promise as a new tool for complex flow analysis.
Pilling, Sergio; Duarte, Eduardo Seperuelo; Domaracka, Alicja; Rothard, Hermann; Boduch, Philippe; da Silveira, Enio F
2011-09-21
An experimental study of the interaction of highly charged, energetic ions (52 MeV (58)Ni(13+) and 15.7 MeV (16)O(5+)) with mixed H(2)O : C(18)O(2) astrophysical ice analogs at two different temperatures is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by cosmic rays inside dense, cold astrophysical environments, such as molecular clouds or protostellar clouds as well at the surface of outer solar system bodies. The measurements were performed at the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a CsI substrate at 13 K and 80 K. In situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross section at 13 K of both H(2)O and CO(2) is about 3-4 times smaller when O ions are employed. The ice temperature seems to affect differently each species when the same projectile was employed. The formation cross section at 13 K of molecules such as C(18)O, CO (with oxygen from water), and H(2)O(2) increases when Ni ions are employed. The formation of organic compounds seems to be enhanced by the oxygen projectiles and at lower temperatures. In addition, because the organic production at 13 K is at least 4 times higher than the value at 80 K, we also expect that interstellar ices are more organic-rich than the surfaces of outer solar system bodies. PMID:21647477
Directory of Open Access Journals (Sweden)
Danilo V. Ćuk
2010-01-01
Full Text Available U radu su prikazane metode korekcije putanje žiroskopski stabilisanih projektila primenom proporcionalne navigacije. Sekcija upravljanja tipa 'patka' ugrađena je na klasični projektil radi generisanja aerodinamičke sile. Efikasnost projektila sa korekcijom putanje prikazana je pomoću rezultata numeričke simulacije leta, primenom proporcionalne navigacije sa i bez kompenzacije poremećaja zbog gravitacionog i tangentnog ubrzanja. Analizirani su, takođe, uticaji početnog ugla elevacije i odstupanja ravni upravljanja od ravni praćenja cilja na promašaj projektila. Pokazano je da se precesioni oblik oscilovanja ugaonog kretanja projektila prenosi na ugaonu brzinu linije viziranja cilja koju treba filtrirati kako bi se otklonila pojava rezonantne nestabilnosti leta projektila. / This paper presents the methods of the trajectory correction of gyroscopic stabilized projectiles using different modifications of proportional navigation. The canard section is built into the conventional projectile to generate aerodynamic force. The effectiveness of the trajectory correctable projectile is shown by the results of a flight numerical simulation using proportional navigation with and without the compensation of the disturbance due to gravitational and tangent acceleration. The paper also analyzes the effects of the initial elevation angle and the deflection of the control plane from the target tracking one on the miss distance. It is shown that the precessional mode of the projectile angular motion is transferred to the line of sight rate which should be filtered to prevent the phenomenon of resonance instability of the projectile flight.
Bounds for State Degeneracies in 2D Conformal Field Theory
Hellerman, Simeon
2010-01-01
In this note we explore the application of modular invariance in 2-dimensional CFT to derive universal bounds for quantities describing certain state degeneracies, such as the thermodynamic entropy, or the number of marginal operators. We show that the entropy at inverse temperature 2 pi satisfies a universal lower bound, and we enumerate the principal obstacles to deriving upper bounds on entropies or quantum mechanical degeneracies for fully general CFTs. We then restrict our attention to infrared stable CFT with moderately low central charge, in addition to the usual assumptions of modular invariance, unitarity and discrete operator spectrum. For CFT in the range c_left + c_right < 48 with no relevant operators, we are able to prove an upper bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same conditions we also prove that a CFT can have a number of marginal deformations no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.
Bound Polaron Pair Formation in Poly (phenylenevinylenes)
Rothberg, Lewis
The following sections are included: * INTRODUCTION * PHOTOGENERATED YIELD OF SINGLET EXCITONS * AGGREGRATION EFFECTS ON EXCITED STATE PHOTO-GENERATION * ASSIGNMENT TO BOUND POLARON PAIRS AND DISCUSSION * PROBLEMS WITH THE BOUND POLARON PAIR PICTURE AND CONCLUSION * REFERENCES
An Exponential Bound for Cox Regression☆
Kosorok, M. R.
2012-01-01
We present an asymptotic exponential bound for the deviation of the survival function estimator of the Cox model. We show that the bound holds even when the proportional hazards assumption does not hold. PMID:23565013
An Exponential Bound for Cox Regression.
Goldberg, Y; Kosorok, M R
2012-07-01
We present an asymptotic exponential bound for the deviation of the survival function estimator of the Cox model. We show that the bound holds even when the proportional hazards assumption does not hold.
Monotonicity of the quantum linear programming bound
Eric M. Rains
1998-01-01
The most powerful technique known at present for bounding the size of quantum codes of prescribed minimum distance is the quantum linear programming bound. Unlike the classical linear programming bound, it is not immediately obvious that if the quantum linear programming constraints are satisfiable for dimension K, that the constraints can be satisfied for all lower dimensions. We show that the quantum linear programming bound is indeed monotonic in this sense, and give an explicitly monotoni...
A Converse Sum of Squares Lyapunov Result with a Degree Bound
Peet, Matthew M
2012-01-01
Sum of Squares programming has been used extensively over the past decade for the stability analysis of nonlinear systems but several questions remain unanswered. In this paper, we show that exponential stability of a polynomial vector field on a bounded set implies the existence of a Lyapunov function which is a sum-of-squares of polynomials. In particular, the main result states that if a system is exponentially stable on a bounded nonempty set, then there exists an SOS Lyapunov function which is exponentially decreasing on that bounded set. The proof is constructive and uses the Picard iteration. A bound on the degree of this converse Lyapunov function is also given. This result implies that semidefinite programming can be used to answer the question of stability of a polynomial vector field with a bound on complexity.
Thermodynamically Stable Pickering Emulsions
Sacanna, S.; Kegel, W.K.; Philipse, A.P.
2007-01-01
We show that under appropriate conditions, mixtures of oil, water, and nanoparticles form thermodynamically stable oil-in-water emulsions with monodisperse droplet diameters in the range of 30–150 nm. This observation challenges current wisdom that so-called Pickering emulsions are at most metastabl
Energy Technology Data Exchange (ETDEWEB)
Ishida, T.
1992-01-01
The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.
Heaton, Tim B.; Albrecht, Stan L.
1991-01-01
Examined prevalence and determinants of stable unhappy marriage using data from national survey. Results indicated age, lack of prior marital experience, commitment to marriage as an institution, low social activity, lack of control over one's life, and belief that divorce would detract from happiness were all predictive of stability in unhappy…
Aganagic, Mina
2016-01-01
We construct stable envelopes in equivariant elliptic cohomology of Nakajima quiver varieties. In particular, this gives an elliptic generalization of the results of arXiv:1211.1287. We apply them to the computation of the monodromy of $q$-difference equations arising the enumerative K-theory of rational curves in Nakajima varieties, including the quantum Knizhnik-Zamolodchikov equations.
Normal modified stable processes
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2002-01-01
Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process...
2005 Economy: Stable Development
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
@@ 2005 is the fifth year of China's Tenth Five-Year Plan, it is an important year to implement commitment for entering into WTO as well as a key year for deepening macro-control. With further deepening of macro control and development of regional economy, Chinese economy will operate in a more healthy and stable way.
2005 Economy: Stable Development
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
2005 is the fifth year of China's Tenth Five-Year Plan, it is an important year to implement commitment for entering into WTO as well as a key year for deepening macro-control. With further deepening of macro control and development of regional economy, Chinese economy will operate in a more healthy and stable way.……
Kearney, M. Kate
2013-01-01
The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.
International Nuclear Information System (INIS)
The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs
Bound entangled states invariant under Ux
Institute of Scientific and Technical Information of China (English)
Wang Zhen; Wang Zhi-Xi
2008-01-01
This paper obtains an entangled condition for isotropic-like states by using an atomic map. It constructs a class of bound entangled states from the entangled condition and shows that the partial transposition of the state from the constructed bound entangled class is an edge bound entangled state by using range criterion.
Bounded rationality and heterogeneous expectations in macroeconomics
D. Massaro
2012-01-01
This thesis studies the effect of individual bounded rationality on aggregate macroeconomic dynamics. Boundedly rational agents are specified as using simple heuristics in their decision making. An important aspect of the type of bounded rationality described in this thesis is that the population of
Upper Bounds on Numerical Approximation Errors
DEFF Research Database (Denmark)
Raahauge, Peter
2004-01-01
This paper suggests a method for determining rigorous upper bounds on approximationerrors of numerical solutions to infinite horizon dynamic programming models.Bounds are provided for approximations of the value function and the policyfunction as well as the derivatives of the value function...... to approximations of a standard (strictly concave)growth model.KEYWORDS: Numerical approximation errors, Bellman contractions, Error bounds...
Counting Young Tableaux of Bounded Height
Bergeron, Francois; Gascon, Francis
2000-03-01
We show that formulas of Gessel, for the generating functions for Young standard tableaux of height bounded by k (see [2]), satisfy linear differential equations, with polynomial coefficients, equivalent to P-recurrences conjectured by Favreau, Krob and the first author (see [1]) for the number of bounded height tableaux and pairs of bounded height tableaux.
Tsujido, Sayaka; Arakawa, Masahiko; Suzuki, Ayako I.; Yasui, Minami
2015-12-01
In order to clarify the effects of projectile density on ejecta velocity distributions for a granular target, impact cratering experiments on a quartz sand target were conducted by using eight types of projectiles with different densities ranging from 11 g cm-3 to 1.1 g cm-3, which were launched at about 200 m s-1 from a vertical gas gun at Kobe University. The scaling law of crater size, the ejection angle of ejecta grains, and the angle of the ejecta curtain were also investigated. The ejecta velocity distribution obtained from each projectile was well described by the π-scaling theory of v0/√{gR} =k2(x0/R)-1/μ, where v0, g, R and x0 are the ejection velocity, gravitational acceleration, crater radius and ejection position, respectively, and k2 and μ are constants mostly depending on target material properties (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856-875). The value of k2 was found to be almost constant at 0.7 for all projectiles except for the nylon projectile, while μ increased with the projectile density, from 0.43 for the low-density projectile to 0.6-0.7 for the high-density projectile. On the other hand, the π-scaling theory for crater size gave a μ value of 0.57, which was close to the average of the μ values obtained from ejecta velocity distributions. The ejection angle, θ, of each grain decreased slightly with distance, from higher than 45° near the impact point to 30-40° at 0.6 R. The ejecta curtain angle is controlled by the two elementary processes of ejecta velocity distribution and ejection angle; it gradually increased from 52° to 63° with the increase of the projectile density. The comparison of our experimental results with the theoretical model of the crater excavation flow known as the Z-model revealed that the relationship between μ and θ obtained by our experiments could not be described by the Z-model (Maxwell, D.E. [1977]. In: Roddy, D.J., Pepin, R.O., Merrill, R.B. (Eds.), Impact and Explosion Cratering
Higgs mass bounds from the functional RG
International Nuclear Information System (INIS)
We investigate a Top-Yukawa toy model to study Higgs mass bounds in the framework of the functional renormalization group (RG). Starting the calculations with a quartic ultraviolet (UV) potential we get a finite range of values for the Higgs mass in the infrared for a given cutoff. The bounds appear in a natural way as a consequence of the RG flow. The lower mass bound is approached for a vanishing UV quartic coupling. Furthermore, we study the influence of higher-dimensional operators on the lower Higgs mass bound. We find that even seemingly RG irrelevant interactions can take a substantial influence on the lower bound for the Higgs mass.
Are there compact heavy four-quark bound states?
Vijande, Javier; Weissman, E.; Valcarce, A.; Barnea, N.
2007-01-01
We present an exact method to study four-quark systems based on the hyperspherical harmonics formalism. We apply it to several physical systems of interest containing two heavy and two light quarks using different quark-quark potentials. Our conclusions mark the boundaries for the possible existence of compact, nonmolecular, four-quark bound states. While QQ (n) over bar(n) over bar states may be stable in nature, the stability of Q (Q) over barn (n) over bar states would imply the existence ...
Stieltjes electrostatic model interpretation for bound state problems
Indian Academy of Sciences (India)
K V S Shiv Chaitanya
2014-07-01
In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges $i\\hbar$, which are placed in between the two fixed imaginary charges arising due to the classical turning points of the potential. The interaction potential between unit moving imaginary charges $i\\hbar$ is given by the logarithm of the wave function. For an exactly solvable potential, this system attains stable equilibrium position at the zeros of the orthogonal polynomials depending upon the interval of the classical turning points.
Capacity Bounds for Parallel Optical Wireless Channels
Chaaban, Anas
2016-01-01
A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.
Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)
1996-12-31
Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.
Stable local oscillator module.
Energy Technology Data Exchange (ETDEWEB)
Brocato, Robert Wesley
2007-11-01
This report gives a description of the development of a Stable Local Oscillator (StaLO) multi-chip module (MCM). It is a follow-on report to SAND2006-6414, Stable Local Oscillator Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. This report describes the development of an MCM-based version of the complete StaLO, fabricated on an alumina thick film hybrid substrate.
Antibaryon-nucleus bound states
Hrtánková, J
2014-01-01
We calculated antibaryon ($\\bar{B}$ = $\\bar{p}$, $\\bar{\\Lambda}$, $\\bar{\\Sigma}$, $\\bar{\\Xi}$) bound states in selected nuclei within the relativistic mean-field (RMF) model. The G-parity motivated $\\bar{B}$-meson coupling constants were scaled to yield corresponding potentials consistent with available experimental data. Large polarization of the nuclear core caused by $\\bar{B}$ was confirmed. The $\\bar{p}$ annihilation in the nuclear medium was incorporated by including a phenomenological imaginary part of the optical potential. The calculations using a complex $\\bar{p}$-nucleus potential were performed fully self-consistently. The $\\bar{p}$ widths significantly decrease when the phase space reduction is considered for $\\bar{p}$ annihilation products, but they still remain sizeable for potentials consistent with $\\bar{p}$-atom data.
Hsu, Chia Wei; Zhen, Bo; Stone, A. Douglas; Joannopoulos, John D.; Soljačić, Marin
2016-09-01
Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.
Performance Bounds of Quaternion Estimators.
Xia, Yili; Jahanchahi, Cyrus; Nitta, Tohru; Mandic, Danilo P
2015-12-01
The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed. PMID:25643416
Towards Bounded Infeasible Code Detection
Christ, Jürgen; Schäf, Martin
2012-01-01
A first step towards more reliable software is to execute each statement and each control-flow path in a method once. In this paper, we present a formal method to automatically compute test cases for this purpose based on the idea of a bounded infeasible code detection. The method first unwinds all loops in a program finitely often and then encodes all feasible executions of the loop-free programs in a logical formula. Helper variables are introduced such that a theorem prover can reconstruct the control-flow path of a feasible execution from a satisfying valuation of this formula. Based on this formula, we present one algorithm that computes a feasible path cover and one algorithm that computes a feasible statement cover. We show that the algorithms are complete for loop-free programs and that they can be implemented efficiently. We further provide a sound algorithm to compute procedure summaries which makes the method scalable to larger programs.
Spectral computations for bounded operators
Ahues, Mario; Limaye, Balmohan
2001-01-01
Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...
VORONOI DIAGRAMS WITHOUT BOUNDING BOXES
Directory of Open Access Journals (Sweden)
E. T. K. Sang
2015-10-01
Full Text Available We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010 and Nerbonne et al (2011.
Information bounds for Gaussian copulas
Hoff, Peter D; Wellner, Jon A
2011-01-01
Often of primary interest in the analysis of multivariate data are the copula parameters describing the dependence among the variables, rather than the univariate marginal distributions. Since the ranks of a multivariate dataset are invariant to changes in the univariate marginal distributions, rank-based procedures are natural candidates as semiparametric estimators of copula parameters. Asymptotic information bounds for such estimators can be obtained from an asymptotic analysis of the rank likelihood, i.e. the probability of the multivariate ranks. In this article, we obtain limiting normal distributions of the rank likelihood for Gaussian copula models. Our results cover models with structured correlation matrices, such as exchangeable, autoregressive and circular correlation, as well as unstructured correlation matrices. For all Gaussian copula models, the limiting distribution of the rank likelihood ratio is shown to be equal to that of a parametric likelihood ratio for an appropriately chosen multivari...
Forensic Stable Isotope Biogeochemistry
Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.
2016-06-01
Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.
Robust chaos synchronization using input-to-state stable control
Indian Academy of Sciences (India)
Choon Ki Ahn
2010-05-01
In this paper, we propose a new input-to-state stable (ISS) synchronization method for a general class of chaotic systems with disturbances. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented not only to guarantee the asymptotic synchronization but also to achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies are presented to demonstrate the effectiveness of the proposed ISS synchronization scheme.
Optical Production of Stable Ultracold $^{88}$Sr$_2$ Molecules
Reinaudi, G; McDonald, M; Kotochigova, S; Zelevinsky, T
2012-01-01
We have produced large samples of ultracold $^{88}$Sr$_2$ molecules in the electronic ground state in an optical lattice. The molecules are bound by 0.05 cm$^{-1}$ and are stable for several milliseconds. The fast, all-optical method of molecule creation via intercombination line photoassociation relies on a near-unity Franck-Condon factor. The detection uses a weakly bound vibrational level corresponding to a very large dimer. This is the first of two steps needed to create Sr$_2$ in the absolute ground quantum state. Lattice-trapped Sr$_2$ is of interest to frequency metrology and ultracold chemistry.
Optical Production of Stable Ultracold $^{88}$Sr$_2$ Molecules
Reinaudi, G.; Osborn, C. B.; McDonald, M.; Kotochigova, S.; Zelevinsky, T.
2012-01-01
We have produced large samples of ultracold $^{88}$Sr$_2$ molecules in the electronic ground state in an optical lattice. The molecules are bound by 0.05 cm$^{-1}$ and are stable for several milliseconds. The fast, all-optical method of molecule creation via intercombination line photoassociation relies on a near-unity Franck-Condon factor. The detection uses a weakly bound vibrational level corresponding to a very large dimer. This is the first of two steps needed to create Sr$_2$ in the abs...
Optical production of stable ultracold (88)Sr(2) molecules.
Reinaudi, G; Osborn, C B; McDonald, M; Kotochigova, S; Zelevinsky, T
2012-09-14
We have produced large samples of stable ultracold (88)Sr(2) molecules in the electronic ground state in an optical lattice. The fast, all-optical method of molecule creation involves a near-intercombination-line photoassociation pulse followed by spontaneous emission with a near-unity Franck-Condon factor. The detection uses excitation to a weakly bound electronically excited vibrational level corresponding to a very large dimer and yields a high-Q molecular vibronic resonance. This is the first of two steps needed to create deeply bound (88)Sr(2) for frequency metrology and ultracold chemistry. PMID:23005643
平抛运动演示仪的改进%Improvement of horizontal projectile device
Institute of Scientific and Technical Information of China (English)
李燕秋; 代伟; 罗微; 马兰; 黄军
2015-01-01
Some improvements were introduced to overcome the shortages of the experiment de‐vice of demonstrating horizontal projectile motion in teaching materials .In horizontal direction ,an e‐lectromagnet was used to make two balls move at the same time .After passing through glass tubes with same bending ,one ball was horizontally projected ,the other was in uniform motion .Finally , two balls would collide with each other .This showed that horizontal projection of horizontal projectile motion is uniform motion .In vertical direction ,a time‐delay circuit was designed using single chip mi‐croprocessor .When the horizontally projected ball and the free‐falling ball landed ,LEDs would emit red light and green light ,respectively ,enabled one to judge if the two balls fell to the ground simulta‐neously ,namely one could judge if a horizontally projected object moves like a free‐falling body in the vertical direction .%针对高中物理教科版教材中平抛运动的演示实验装置存在的不足，对平抛运动演示仪进行了改进。该演示仪在水平方向上，利用电磁铁控制2个小球开始运动时间，当小球通过弯度相同的2个玻璃管后，一个做平抛运动，一个做匀速直线运动，最后会相碰，由此说明平抛运动的在水平方向上是匀速直线运动。在竖直方向上，利用单片机自制了延时电路，当做平抛运动的小球和做自由落体运动的小球落地时，发光二极管会分别发出红光和绿光，通过2个二极管的发光情况可以判断出两小球同时落地，即可以判断出平抛运动的竖直方向上是自由落体运动。
Behavior of steel fiber high strength concrete under impact of projectiles
Directory of Open Access Journals (Sweden)
Cánovas, M. F.
2012-09-01
Full Text Available This paper presents the results of the investigation carried out by the authors about the behavior of 80 MPa characteristic compression strength concrete reinforced with different amount of high carbon content steel fiber, submit to impact of different caliber projectiles, determining the thickness of this type of concrete walls needs to prevent no perforation, as well as the maximum penetration to reach into them, so that in the event of no perforation and only penetration, "scabbing" phenomena does not take place on the rear surface of the wall. Prior to ballistic testing was necessary to design the high-strength concrete with specific mechanical properties, especially those related to ductility, since these special concrete must absorb the high energy of projectiles and also the shock waves that accompany them.Este trabajo presenta los resultados de la investigación llevada a cabo por los autores sobre el comportamiento de hormigón de 80 MPa de resistencia característica a compresión reforzado con diferentes cuantías de fibras de acero de alto contenido en carbono sometido al impacto de proyectiles de distintos calibres, determinando el espesor de muros de este tipo de hormigón que sería preciso disponer para impedir su perforación por dichos proyectiles, así como los valores máximos de penetración, para que en el caso de no producirse perforación y sólo penetración, no se genera cráter, “scabbing”, en el trasdós de los mismos. Previamente a los ensayos balísticos fue preciso diseñar los hormigones para que, presentaran determinadas características mecánicas, especialmente las relacionadas con la ductilidad, dado que estos hormigones especiales deben absorber la elevada energía que le transmiten los proyectiles y las ondas de choque que los acompañan.
Wilder, Michael C.; Reda, Daniel C.
2004-01-01
times as short as 2 ns. The infrared camera uses an Indium Antimonide (InSb) sensor in the 3 to 5 micron band and is capable of integration times as short as 500 ns. The projectiles are imaged nearly head-on using expendable mirrors offset slightly from the flight path. The proposed paper will discuss the application of high-speed digital imaging systems in the NASA-Ames hypersonic ballistic range, and the challenges encountered when applying these systems. Example images of the thermal radiation from the blunt nose of projectiles flying at nearly 14 times the speed of sound will be given.
Observation of wounding characteristics in dogs wounded by super velocity projectile
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Objective: To understand wounding characteristics in dogs woundedby super velocity projectile with a purpose of providing a basis for prevention and treatment of such wounds.Methods: A specially-made explosive gun was used to shoot aluminium bullet weighing 3.0 g and 1.4 g to injure both legs of dogs at velocities of 2 330 m/s, 3 200 m/s and 4 250 m/s, respectively, and the soap specially made was also shot. At the same time, steel ball of 1.03 g was shot with a Type 53 smooth chamber gun at a speed of 1 280 m/s. Within 30 min after wounding, debridement and pathological anatomy were performed and specimens were taken for light microscope observation.Results: When the dogs were wounded by the 3 g bullet at speed of 2 330 m/s, the entrance of the left leg was penetrated explosively with a defect area of 225 cm2, and the femur trunk was also injured and the residual femur had comminution fracture. The exit of the right leg was blindly wounded with a defect area of 63 cm2, but only the skin was not penetrated. Both testes and part pelvis were injured too. Under light microscope, degenerative myofibers and bleeding of the spatium between the myofibers could be found at the place 4 cm away from the wounding track. Furthermore, serious bleeding of the bladder and blood vessels of the brain could be observed. The lungs showed changes of blast injury. Vacuolar change was presented in the cytoplasm of hepatocytes. Injuries of the animals in other two experimental groups were similar to those described above, but the defect area of the wounded track was 124 cm2 in the group of 4 250 m/s. Injuries caused by the steel ball were milder than caused by the explosive gun. The volume of the residual cavity in the soap was 5 000 ml.Conclusions: The super-velocity projectile causes destructive damage to the local tissues and multi-organ injuries. Therefore, the practical medical care needs not only amputation but also management of multi-organ injuries.
Zhang, Xianfeng; Zhang, Niansong; Li, Yongchi
Numerical studies were conducted on the ballistic performance of alumina ceramic (AD95) tiles based on depth of penetration method, when subjected to normal impact of tungsten long rod projectiles at velocities ranging from 1100 to 2000 ms-1. The residual depth on after-effect target was derived in each case, and the ballistic efficiency factor was determined using the corresponding penetration depth on medium carbon steel. Anti-penetration experiment study of the AD95 ceramic tiles to tungsten long rod projectiles has been carried out to verify the accuracy of numerical simulation model. The result shows that numerical simulation results agree well with the corresponding experiment results and AD95 ceramic has excellent ballistic performance than medium carbon steel. The ballistic efficiency factor increases with velocity increasing when impact velocity lower than 1300 ms-1, and when it was higher than 1300 ms-1 the ballistic efficiency factor has almost no difference.
Poole, S. R.
1984-09-01
Advanced Ramjet Munitions Technology (ARMT) is an ongoing DARPA project to research ramjet munitions. The ARMT eight inch projectile uses ramjet thrust for a boosted trajectory, but operates on a thrust drag balance concept to create pseudovacuum trajectory during powered flight. The trajectory was analyzed using an IBM-370 computer simulation for three and five degrees of freedom. Work was also done to adapt the Ballistics Research Laboratories six degrees of freedom program to the IBM system. Projectile aerodynamic and mass properties were obtained from the Norden Systems Wind Tunnel Data. Dispersion from the vaccuum trajectory due to wind prior to ramjet burnout proved minor. Dispersion due to constant thrust errors under 5% was within a 600 radius at terminal guidance over a range of 33 miles.
Mukeru, B.; Lekala, M. L.
2016-08-01
In this paper we analyze the effects of the projectile resonances on the total, Coulomb, and nuclear breakup cross sections as well as on the Coulomb-nuclear interferences at different arbitrary incident energies. It is found that these resonances have non-negligible effects on the total, Coulomb, and nuclear breakup cross sections. Qualitatively, they have no effects on the constructiveness or destructiveness of the Coulomb-nuclear interferences. Quantitatively, we obtained that these resonances increase by 7.38%, 7.58%, and 20.30% the integrated total, Coulomb, and nuclear breakup cross sections, respectively at Elab=35 MeV . This shows that the nuclear breakup cross sections are more affected by the effects of the projectile resonances than their total and Coulomb breakup counterparts. We also obtain that the effects of the resonances on the total, Coulomb, and nuclear breakup cross sections decrease as the incident energy increases.
Fragmentation of a 500 MeV/nucleon 86Kr beam, investigated at the GSI projectile fragment separator
International Nuclear Information System (INIS)
Production cross-sections and longitudinal momentum distributions have been investigated for reactions between a 500 MeV/nucleon 86Kr beam and beryllium, copper and tantalum targets. Fragments in a wide A/Z range were studied at the projectile-fragment separator FRS at GSI. The experimental production cross-sections have been used for testing the predictions obtained from a semi-empirical parameterization, a statistical abrasion model and an intranuclear-cascade model. The present study allows to extrapolate the production cross-sections towards very neutron-rich isotopes such as the doubly magic nucleus 78Ni. For fragments close to the projectile the measured longitudinal momentum distributions agrees qualitatively with a semi-empirical parameterization, which is based on the two-step picture of the fragmentation process. The momentum widths of lighter fragments, however, show deviations from this simple picture. (orig.)
Poelchau, Michael H.; Kenkmann, Thomas; Hoerth, Tobias; Schäfer, Frank; Rudolf, Michael; Thoma, Klaus
2014-11-01
Impact cratering experiments were performed on quartzite, tuff, and dry and water-saturated sandstones in the framework of the MEMIN research unit. 2.5-12 mm diameter projectiles were accelerated to ∼5 km/s. Evaluation of the resulting craters shows that crater volumes and crater efficiencies of large-scale experiments are greater than predicted by strength scaling laws. A method to approximate the transient crater volume shows that this effect is largely due to an increase in spallation. Strength scaling laws are used to determine the reduction of tensile strength in large-scale experiments and show a decrease by a factor of 1.8-3.6. This strength reduction can be correlated with a decrease in strain rate for larger projectiles, and with the Weibull theory of strength reduction for larger rock sample sizes. Further variations in spallation are observed between different target materials; a decrease in spall is suggested to be controlled by increased porosity.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Using multi-color fluorescence in situ hybridization (FISH), we localized transferred barnase-ps1 and pHctinG DNA sequences onto chromosomes of two transgenic rice plants, named Q12 and Q13, both of which were produced by micro-projectile bombardment. In both Q12 and Q13, each detected cell showed 2-3 signal spots on their chromosomes respectively. The signals of both barnase-ps1 and pHctinG were mostly detected in the adjacent chromosomal sites in which their signals were overlapped and could be recognized by the signal color on the metaphase chromosomes. Fiber FISH further demonstrated that the multiple copies in each of the two DNA sequences distributed adjacently on the DNA fiber in Q13. Combined with the results of Southern hybridization, the possible integration patterns in transgenic rice co-transformed by micro-projectile bombardment have been discussed.
Charge correlations in the breakup of gold projectiles in reactions at E/A=600 MeV
International Nuclear Information System (INIS)
In the present thesis the charge correlations in the breakup of gold projectiles in heavy ion collisions at an incident energy of E/A=600 MeV were studied. Thereby it has been proved that the sum of the charges from the projectile source under exclusion of the protons (Zbound) is saliently suited for the classification of the nuclear reactions. At large values of Zbound we fins fission and spallation reactions. For smaller values of Zbound we observe events with an increasing number of medium-heavy fragments. Thereby the multifragment events appear in the Dalitz diagrams as a continuation of more symmetric becoming spallation events. In reactions with Zbound ≅ 35 the conditions for the formation of medium-heavy fragments are optimal and the multifragment events represent the dominating exit channel. A mean multiplicity of the medium-heavy fragments of ≅ 4 is reached. (orig./HSI)
Energy Technology Data Exchange (ETDEWEB)
Rahim, Magda A., E-mail: dr.magda2006@hotmail.co [Physics Department, Faculty of Science, Sana' s University (Yemen); Fakhraddin, S., E-mail: sakinafa1@hotmail.co [Physics Department, Faculty of Science, Sana' s University (Yemen)
2009-12-01
This work is devoted to study two types of events. Type (a): events with no target fragments, the incident nucleus is dissociated in emulsion accompanied with the pions. Type (b): events with no projectile fragments, total break-up of the two colliding nuclei into relatively small fragments. Case of central collisions. The main characteristics of these reactions, that is multiplicity distributions of projectile and target fragments have been studied and compared for interactions of {sup 4}He, {sup 12}C, {sup 16}O, {sup 22}Ne and {sup 28}Si nuclei with emulsion at almost same momentum. The dependence of the mean multiplicity of different PFs on the projectile mass is investigated. Also the percentage of occurrence of these two events for different projectiles are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Hawke, R.S.
1979-07-06
The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is studied. The analysis revealed that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, single- and multistage accelerators were designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities.
International Nuclear Information System (INIS)
The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is studied. The analysis revealed that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, single- and multistage accelerators were designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities
International Nuclear Information System (INIS)
Projectiles penetrating a gelatin block were simultaneously measured by a high speed movie camera, Dynafax, and by a sequential, orthogonal, flash x-ray system. The eight orthogonal views of the x-ray system provided position and orientation of the projectiles vs. time. From onset of tumble in the gelatin, owing to gyroscopic instability, the growth of yaw was the same for each round in a replicated set. This phenomenon provided a legitimate procedure for pooling the x-ray data, giving well determined curves of velocity decay and yaw growth. The movie camera observed the progress of the cavity formed by the projectile. The resulting velocity decay of the cavity tip was compared to that of the projectile as measured by the x-ray technique. (author)
Helium projectile fragment emission in interactions of 197Au with emulsion at 10.7A GeV
International Nuclear Information System (INIS)
The total and partial production cross-sections of the multiple helium fragments emitted in 10.7A GeV 197Au–emulsion interactions are reported and compared with those obtained from different projectiles at high energies. The multiplicity distributions of the helium fragments exhibit a KNO scaling. The dependence of Cq moments and
Energy Technology Data Exchange (ETDEWEB)
Kumari, Anju; Kharab, Rajesh, E-mail: kharabrajesh@rediffmail.com
2015-09-15
The influence of projectile breakup on fusion cross section for {sup 6}He + {sup 209}Bi, {sup 6}He + {sup 64}Zn, {sup 6}Li + {sup 209}Bi and {sup 6}Li + {sup 64}Zn reactions at near barrier energies is studied within the framework of quantum diffusion approach. The breakup does not affect the fusion induced by {sup 6}He, whereas a significant suppression for {sup 6}Li induced reaction is observed in below barrier energy region.
Mahmoud Rashad; XiaoBing Zhang; Hazem El Sadek
2014-01-01
Transient complex phenomena take place in a gun during interior ballistic cycle. Understanding these phenomena clearly and describing the mathematical models accurately are crucial to predict the behavior of gun system considering firing safety and performance. A mathematical model based on Eulerian-Eulerian approach for reactive gas-solid flow arising during interior ballistic cycle inside large caliber naval gun guided projectile system was developed. The model included the governing equati...
Robbiano, Lorenzo
2011-01-01
A complete intersection of n polynomials in n indeterminates has only a finite number of zeros. In this paper we address the following question: how do the zeros change when the coefficients of the polynomials are perturbed? In the first part we show how to construct semi-algebraic sets in the parameter space over which all the complete intersection ideals share the same number of isolated real zeros. In the second part we show how to modify the complete intersection and get a new one which generates the same ideal but whose real zeros are more stable with respect to perturbations of the coefficients.
Large-scale 3D modeling of projectile impact damage in brittle plates
Seagraves, A.; Radovitzky, R.
2015-10-01
The damage and failure of brittle plates subjected to projectile impact is investigated through large-scale three-dimensional simulation using the DG/CZM approach introduced by Radovitzky et al. [Comput. Methods Appl. Mech. Eng. 2011; 200(1-4), 326-344]. Two standard experimental setups are considered: first, we simulate edge-on impact experiments on Al2O3 tiles by Strassburger and Senf [Technical Report ARL-CR-214, Army Research Laboratory, 1995]. Qualitative and quantitative validation of the simulation results is pursued by direct comparison of simulations with experiments at different loading rates and good agreement is obtained. In the second example considered, we investigate the fracture patterns in normal impact of spheres on thin, unconfined ceramic plates over a wide range of loading rates. For both the edge-on and normal impact configurations, the full field description provided by the simulations is used to interpret the mechanisms underlying the crack propagation patterns and their strong dependence on loading rate.
Sensitivity of N/Z ratio in projectile break-up of isobaric systems
Directory of Open Access Journals (Sweden)
De Filippo E.
2016-01-01
Full Text Available The binary break-up of projectile-like fragments in non central heavy-ion collisions follows different decay patterns, from equilibrated emission towards dynamical (prompt fission. Recently, comparing two systems with different N/Z in the entrance channel, it has been shown that the dynamical emission cross-section is enhanced for the most neutron rich system while the statistical emission cross-section is independent from the isotopic composition. In order to understand this dependence and disentangle it from the initial size of the nuclei, we have studied the two isobaric systems 124Xe+64 Zn and 124Xe+64 Ni at 35 A MeV (InKiIsSy experiment, in comparison with the previous studied reactions (124Sn +64 Ni and 112Sn +58 Ni at the same bombarding energy. We present the first results evidencing a striking similar effect in the dynamical decay as a function of the N/Z of the target for equal size systems.
Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile.
Xia, Kang; Zhan, Haifei; Hu, De'an; Gu, Yuantong
2016-01-01
The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989
Progress in spheromaks for power amplification and transfer to hypervelocity projectiles
International Nuclear Information System (INIS)
The goal of the spheromak program at Los Alamos is to develop a new scheme to accelerate material objects to hypervelocities (velocities above a few kilometers per second). This capability would provide a valuable tool to other research programs, such as weapons lethality tests, studies of the properties of materials at extremely high pressures, and magnetically-insulated impact fusion. In the authors' scheme, the magnetized spheromak plasma, confined by a metallic wall, would act as an energy storage and transfer medium. As high explosives (HE) compress part of the metallic wall against the spheromak magnetic field, the spheromak stores energy. Once the spheromak reaches a critical dimension, the MHD equilibrium is expected to switch (much faster than the compression time) to a new configuration, which is the minimum-energy state of the new geometry. This witching action would result in the spheromak magnetic field imparting a sudden, strong pressure to a small section of the wall, which would then break away as an accelerated projectile. The scheme, including the basis for the spheromak switching effect, are described
Simulation and Experiment of Projectile Penetrate into Steel Target Acceleration Signal Processing
Directory of Open Access Journals (Sweden)
Wen Feng
2011-03-01
Full Text Available For a comprehensive and objective understanding of the dynamic overload character of projectile penetrate into a steel target, using the simulating software ANSYS/LS-DYNA, adopting of the corresponding ammunition and target model, and the process of the ammunition penetrate the steel target was simulated and computed, the stress distribution map, mode and some results were got, using ball cartridge experiment, the original overload curves and high speed camera results were got. In this paper, the acceleration signals, which are obtained by the embedded high-overload electronic solid recorder at the experiment of armor-piercing bullet penetrating steel target, was done of wave filtering and integral analysis and so on in time domain, power spectrum was got through FFT in frequency-domain, as well as Wigner-Ville analysis and wavelet analysis in timefrequency. The characteristic signal when armor-piercing bullet penetrates steel target under certain conditions was obtained. Through signal processing and comprehensive analysis, a kind of signal processing method was provided to engineers, by which concerned parameters can be got.
Protection of Cities from Small Rockets, Missiles, Projectiles and Mortar Shells
Bolonkin, Alexander
2008-01-01
The authors suggest a low cost closed AB-Dome, which may protect small cities such as Sederot from rockets, mortar shells, chemical and biological weapons. The offered AB-Dome is also very useful in peacetime because it protects the city from outside weather (violent storms, hail) and creates a fine climate within the Dome. The roughly hemispherical AB-Dome is a gigantic inflated thin transparent film, located at altitude up to 1 - 5 kilometers, which converts the city into a closed-loop air system. The film may be armored with a basalt or steel grille or cloth pocket-retained stones that destroy (by collision or detonation) incoming rockets, shells and other projectiles. Such an AB-Dome would even protect the city in case of a third-party nuclear war involving temporary poisoning of the Earth atmosphere by radioactive dust. The building of the offered dome is easy; the film spreads on the ground, the fan engines turn on and the cover rises to the needed altitude and is supported there by a small internal ove...
Gharaei, R.; Sheibani, J.
2016-05-01
In this article we propose a pocket formula for fusion barriers calculated by three versions of the proximity formalism, namely AW 95, Bass 80 and Prox. 2010 potentials, for fusion reactions involving the collisions of the proton and helium projectiles with different targets in mass ranges 51≤ AT ≤ 130 and 40≤ AT ≤ 233 , respectively. For the first type of the colliding systems, it is shown that the proposed pocket formulas are able to predict the actual values of RB and VB within accuracies of ±0.4% and ±0.45% , respectively. Moreover, for the second type of the selected reactions, these accuracies are obtained ±0.24% and ±0.36% , respectively. In this study, the ability of the present pocket formulas is also demonstrated to predict the exact values of the fusion cross sections for our selected mass ranges. A comparison with the results of the previous pocket formulas reveals that our parameterized forms are more successful to reproduce the empirical data of the barrier height and position in the proton- and helium-induced reactions.
Energy loss of /sup 12/C projectiles in different carbon modifications
International Nuclear Information System (INIS)
The stopping cross sections of the three carbon modifications diamond, graphite, and glassy carbon are investigated for carbon projectiles of intermediate velocity. The inverted Doppler-shift attenuation method was used as the experimental technique, and it enabled us to measure the ratios of the three stopping cross sections precisely over a wide energy range. For velocities between 3 and 4 times Bohr's velocity the stopping cross sections of graphite and glassy carbon are found to be 1.036 and 1.072 times larger than that of diamond, respectively. These differences are attributed to binding effects. To understand these effects, we have evaluated the mean ionization potentials utilizing the local-plasma approximation for the inner-shell electrons and the dielectric response function for the valence electrons. The theoretical ratios calculated by inserting these potentials into the Bethe-Bloch stopping-power formula agree well with our experimental results. Furthermore, we have obtained a value of 53.3 +- 4.1 fs for the lifetime of the first excited state of the /sup 12/C nucleus
Study of Relativistic Nucleus-nucleus Coll.Induced by 16O Projectiles
2002-01-01
A double experiment in which two detector systems (Streamer Chamber, Plastic Ball Calorimeter), running concurrently via a beam split (West Area H3, X5), search for quark matter formation in violent collisions of |1|6O or |2|0Ne with target nuclei between |4|0Ca and |2|0|6Pb. The acceleration of |1|6O will be facilitated by a high charge state injector, consisting of an ECR source and an RFQ pre-accelerator, installed by GSI and LBL at the PS Linac 1. Experimental equipment will be a streamer chamber installed in the Vertex Magnet of experiment WA75 together with beam hodoscopes and a downstream trigger calorimeter selecting violent events by the absence of energy flow to the projectile fragmentation region. Observed particles will be p, @p, K|0, @L and @L. In addition there will be the Plastic Ball, 800-fold @DE-E particle identifier system, covering the target fragmentation and backward fireball regions. Together with a multisegmented large solid angle (@+~9|0 of beam) energy calorimeter and a trigger calor...
Correlations with projectile-like fragments and emission order of light charged particles
Kohley, Z.; Bonasera, A.; Galanopoulos, S.; Hagel, K.; May, L. W.; McIntosh, A. B.; Stein, B. C.; Souliotis, G. A.; Tripathi, R.; Wuenschel, S.; Yennello, S. J.
2012-10-01
Correlations of midrapidity light charged particles (LCPs) and intermediate mass fragments (IMFs) with projectile-like fragments (PLFs) have been examined from the 35 MeV/u 70Zn+70Zn, 64Zn+64Zn, and 64Ni+64Ni reaction systems. A new method was developed to examine the flow of the particles with respect to the PLF. The invariant PLF-scaled flow allowed for the dynamics of the midrapidity Z=1-4 particles to be studied. Strong differences in the PLF-scaled flow were observed between the different isotopes. In particular, the most n-rich LCPs exhibited a negative PLF-scaled flow in comparison to the other LCPs. A classical molecular dynamics model and a three-body Coulomb trajectory simulation were both used to show that the PLF-scaled flow observable could be connected to the average order of emission of the LCPs. The experimental results suggest that the midrapidity region is preferentially populated with neutron-rich LCPs and Z=3-4 IMFs at a relatively early stage in the collision. The deuteron and 3He particles are emitted later followed, lastly, by protons and alphas. The average order of emission of the midrapidity LCPs was extracted from the constrained molecular dynamics simulations and showed good agreement with the emission order suggested by the experimental PLF-scaled flow results.
Energy Technology Data Exchange (ETDEWEB)
Gharaei, R. [Hakim Sabzevari University, Department of Physics, Sciences Faculty, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Sheibani, J. [University of Birjand, Department of Physics, Ferdows Faculty of Engineering, Ferdows (Iran, Islamic Republic of)
2016-05-15
In this article we propose a pocket formula for fusion barriers calculated by three versions of the proximity formalism, namely AW 95, Bass 80 and Prox. 2010 potentials, for fusion reactions involving the collisions of the proton and helium projectiles with different targets in mass ranges 51≤ A{sub T}≤130 and 40≤A{sub T}≤233, respectively. For the first type of the colliding systems, it is shown that the proposed pocket formulas are able to predict the actual values of R{sub B} and V{sub B} within accuracies of ±0.4% and ±0.45%, respectively. Moreover, for the second type of the selected reactions, these accuracies are obtained ±0.24% and ±0.36%, respectively. In this study, the ability of the present pocket formulas is also demonstrated to predict the exact values of the fusion cross sections for our selected mass ranges. A comparison with the results of the previous pocket formulas reveals that our parameterized forms are more successful to reproduce the empirical data of the barrier height and position in the proton- and helium-induced reactions. (orig.)
International Nuclear Information System (INIS)
From an analysis of 1460 projectile fragment collisions in nuclear research emulsion exposed to 2.1 A GeV 16O and 1.9 A GeV 56Fe at the Bevalac, evidence is presented for the existence of an anomalously short interaction mean free path of projectile fragments for the first several cm after emission. The result is significant to beyond the 3 standard deviation confidence level
Bounds on double-diffusive convection
Balmforth, Neil J.; Ghadge, Shilpa A.; Kettapun, Atichart; Mandre, Shreyas D.
2006-12-01
We consider double-diffusive convection between two parallel plates and compute bounds on the flux of the unstably stratified species using the background method. The bound on the heat flux for Rayleigh Bénard convection also serves as a bound on the double-diffusive problem (with the thermal Rayleigh number equal to that of the unstably stratified component). In order to incorporate a dependence of the bound on the stably stratified component, an additional constraint must be included, like that used by Joseph (Stability of Fluid Motion, 1976, Springer) to improve the energy stability analysis of this system. Our bound extends Joseph's result beyond his energy stability boundary. At large Rayleigh number, the bound is found to behave like R_T(1/2) for fixed ratio R_S/R_T, where R_T and R_S are the Rayleigh numbers of the unstably and stably stratified components, respectively.
Instanton bound states in ABJM theory
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.
Process expression of bounded Petri nets
Institute of Scientific and Technical Information of China (English)
吴哲辉
1996-01-01
The concept of process expression of bounded Petri nets is presented.Moreover,an algorithm to find the process expression for a bounded Petri net is given.A process expression of a bounded Petri net is a regular expression whose every alphabet symbol represents a basic subprocess of the net.The regular set expressed by the regular expression is the set of all surjective processes of a bounded Petri net.A surjective process of a bounded Petri net is a process of this net in which every s-cut corresponds to a reachable marking of the net.Therefore,all surjective processes of a bounded Petri net can be obtained as long as its process expression and the basic subprocess represented by the alphabet symbols of the process expression are given.