WorldWideScience

Sample records for bound ground motions

  1. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L H; Foxall, W; Rambo, J; Wagoner, J L

    2005-03-09

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  2. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L J; Foxall, W; Rambo, J; Wagoner, J L

    2005-02-14

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  3. Mechanism and bounding of earthquake energy input to building structure on surface ground subjected to engineering bedrock motion

    OpenAIRE

    Kojima, K; Sakaguchi, K; Takewaki, I.

    2015-01-01

    The mechanism of earthquake energy input to building structures is clarified by considering the surface ground amplification and soil–structure interaction. The earthquake input energies to superstructures, soil–foundation systems and total swaying–rocking system are obtained by taking the corresponding appropriate free bodies into account and defining the energy transfer functions. It has been made clear that, when the ground surface motion is white, the input energy to the swaying–rocking m...

  4. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  5. Ground motion effects

    International Nuclear Information System (INIS)

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  6. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    International Nuclear Information System (INIS)

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  7. Modeling and synthesis of strong ground motion

    Indian Academy of Sciences (India)

    S T G Raghu Kanth

    2008-11-01

    Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.

  8. Advances in ground motion studies in China

    Institute of Scientific and Technical Information of China (English)

    许力生; 俞言祥; 陈运泰

    2003-01-01

    This paper briefly summarizes the works in the processing of strong ground motion data, the factors affecting strong ground motion, the modeling of strong ground motion and the calculating of broad-band response spectrum which have been done recent years by engineering seismologists and seismologists of China. In addition, we think back to the international cooperation in strong ground motion of the recent years and make some expectations for the future.

  9. The factorization method and ground state energy bounds

    Science.gov (United States)

    Schmutz, M.

    1985-04-01

    We discuss the relationship between the factorization method and the Barnsley bound to the ground state energy. The latter method is extended in such a way that both lower and upper analytic bounds can be obtained.

  10. Examining Rotational Ground Motion Induced by Tornados

    Science.gov (United States)

    Kessler, Elijah; Dunn, Robert

    2016-03-01

    Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.

  11. Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  12. Recording ground motions where people live

    Science.gov (United States)

    Cranswick, E.; Gardner, B.; Hammond, S.; Banfill, R.

    The 1989 Loma Prieta, Calif., earthquake caused spectacular damage to structures up to 100 km away in the San Francisco Bay sedimentary basin, including the Cypress Street viaduct overpass, the Bay Bridge, and buildings in the San Francisco Marina district. Although the few mainshock ground motions recorded in the northern San Francisco Bay area were “significantly larger … than would be expected from the pre-existing data set,” none were recorded at the sites of these damaged structures [Hanks and Krawinkler, 1991].Loma Prieta aftershocks produced order-of-magnitude variations of ground motions related to sedimentary basin response over distances of 1-2 km and less [Cranswick et al., 1990]. In densely populated neighborhoods, these distances can encompass the residences of thousands of people, but it is very unlikely that these neighborhoods are monitored by even one seismograph. In the last decade, the complexity of computer models used to simulate high-frequency ground motions has increased by several orders of magnitude [e.g., Frankel and Vidale, 1992], but the number of seismograph stations—hence, the spatial density of the sampling of ground motion data—has remained relatively unchanged. Seismologists must therefore infer the nature of the ground motions in the great unknown regions between observation points.

  13. Ground motion: An introduction for accelerator builders

    International Nuclear Information System (INIS)

    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed

  14. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, ML 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, ML 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  15. Compression of ground-motion data

    Energy Technology Data Exchange (ETDEWEB)

    Long, J.W.

    1981-04-01

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  16. Compression of ground-motion data

    International Nuclear Information System (INIS)

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested

  17. Duration of nuclear explosion ground motion

    International Nuclear Information System (INIS)

    This paper evaluates the duration of strong ground shaking that results from nuclear explosions and identifies some of the problems associated with its determination. Knowledge of the duration of horizontal ground shaking is important out to epicentral distances of about 44 km and 135 km, the approximate distances at which the ground shaking level falls to 0.01 g for nuclear explosions having yields of about 100 kt and 1,000 kt, respectively. Evaluation of the strong ground motions recorded from the event STRAIT (M/sub L/ = 5.6) on a linear array of five, broad-band velocity seismographs deployed in the distance range 3.2 to 19.5 km provides information about the characteristics of the duration of ground shaking. The STRAIT data show that: (1) the definition that is used for defining duration is very important; (2) the duration of ground acceleration, as defined in terms of 90% of the integral of the squared time history, increased from about 4 to 26 sec over the approximately 20-km distance range; and (3) the duration of ground velocity and displacement were slightly greater because of the effect of the alluvium layer on the propagating surface waves. Data from other events augment the STRAIT data and show that: (1) duration of shaking is increased by frequency-dependent site effects and (2) duration of shaking, as defined by the integral of the squared time history, does not increase as rapidly with increase in yield as is indicated by other definitions of duration that are stated in terms of an amplitude threshold (e.g., bracketed duration, response envelopes). The available data suggest that the duration of ground acceleration, based on the integral definition, varies from about 4 to 40 sec for a 100-kt range explosion and from about 4 to 105 sec for a megaton range explosion in the epicentral distance range of 0 to 44 km and 0 to 135 km, respectively

  18. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  19. Statistical analysis of earthquake ground motion parameters

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities.

  20. Ground motions and its effects in accelerator design

    International Nuclear Information System (INIS)

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators

  1. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  2. The strong ground motion observation for the Wenchuan aftershock

    Institute of Scientific and Technical Information of China (English)

    Ruizhi Wen; Zhenghua Zhou; Xiaojun Li; Cheng Yang; Yuhuan Wang; Quan Liu; Xiaotao Yin; Mindu Zhou; Jianwen Cui

    2009-01-01

    In this paper, the mobile strong ground motion observation for the destructive earthquake is introduced. Considering the characteristics and its spatial distributions of aftershock, 59 strong ground motion instruments were installed along the Longmenshan fault area, and more than 2 000 records have been accumulated. It shows that it is necessary to perform the mobile strong ground motion observation after the destructive earthquake, and the precious collected data could be applied for further research.

  3. Simulation of earthquake ground motion using a point source models

    International Nuclear Information System (INIS)

    Simulation of earthquake ground motion is necessary for estimating seismic hazard for various nuclear reactor systems. The present work is aimed to simulate the ground motion generated due to earthquake using semi analytical approach. The synthetic time histories are generated by inverting Fourier Amplitude Spectrum (FAS) with random phase angles. FAS of earthquake ground motion is evaluated using two different semi analytical models. These models allow the evaluation of FAS in terms of magnitude and distance. Results are presented for the ground motion of 1999 Chi-Chi earthquake. (author)

  4. Strong ground motion at Bhuj city during the Kutch earthquake

    OpenAIRE

    Iyengar, RN; Kanth, Raghu STG

    2002-01-01

    In the absence of near field strong motion records, the level of ground motion during the devastating 26 January 2001 earthquake has to be found by indirect means. For the city of Bhuj, three broad band velocity time histories have been recorded by India Meteorological Department. In this paper these data are processed to obtain an estimate of strong ground motion at Bhuj. It is estimated that the peak ground acceleration at Bhuj was of the order of 0.38 g. Ground motion in the surrounding re...

  5. Spatial distribution of near-fault ground motion

    Institute of Scientific and Technical Information of China (English)

    刘启方; 袁一凡; 金星

    2004-01-01

    Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates.There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.

  6. Ground motion and its effects in accelerator design

    International Nuclear Information System (INIS)

    The effects of ground motion on accelerator design are discussed. The limitations on performance are discussed for various categories of motion. For example, effects due to ground settlement, tides, seismic disturbances and man-induced disturbances are included in this discussion. 42 figs., 7 tabs

  7. An Improved Approach for Nonstationary Strong Ground Motion Simulation

    Science.gov (United States)

    Li, Yanan; Wang, Guoxin

    2016-05-01

    A new stochastic ground motion model for generating a suite of ground motion time history with both temporal and frequency nonstationarities for specified earthquake and site characteristics is proposed based on the wavelet method. This new model is defined in terms of 6 key parameters that characterize the duration, evolving intensity, predominant frequency, bandwidth and frequency variation of the ground acceleration process. All parameters, except for peak ground acceleration (PGA), are identified manually from a database of 2444 recorded horizontal accelerations. The two-stage regression analysis method is used to investigate the inter- and intra-event residuals. For any given earthquake and site characteristics in terms of the fault mechanism, moment magnitude, Joyner and Boore distance and site shear-wave velocity, sets of the model parameters are generated and used, in turn, by the stochastic model to generate strong ground motion accelerograms, which can capture and properly embody the primary features of real strong ground motions, including the duration, evolving intensity, spectral content, frequency variation and peak values. In addition, it is shown that the characteristics of the simulated and observed response spectra are similar, and the amplitude of the simulated response spectra are in line with the predicted values from the published seismic ground motion prediction equations (SGMPE) after a systematic comparison. The proposed method can be used to estimate the strong ground motions as inputs for structural seismic dynamic analysis in engineering practice in conjunction with or instead of recorded ground motions.

  8. Ground motion input in seismic evaluation studies

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

  9. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  10. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  11. Measurement of ground motion in various sites

    Energy Technology Data Exchange (ETDEWEB)

    Bialowons, W.; Amirikas, R.; Bertolini, A.; Kruecker, D.

    2007-04-15

    Ground vibrations may affect low emittance beam transport in linear colliders, Free Electron Lasers (FEL) and synchrotron radiation facilities. This paper is an overview of a study program to measure ground vibrations in various sites which can be used for site characterization in relation to accelerator design. Commercial broadband seismometers have been used to measure ground vibrations and the resultant database is available to the scientific community. The methodology employed is to use the same equipment and data analysis tools for ease of comparison. This database of ground vibrations taken in 19 sites around the world is first of its kind. (orig.)

  12. Orientation effect on ground motion measurement for Mexican subduction earthquakes

    Institute of Scientific and Technical Information of China (English)

    H.P Hong; A. Pozos-Estrada; R. Gomez

    2009-01-01

    The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.

  13. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  14. Seismic Ground Motion Hazards with 10 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  15. Seismic Ground Motion Hazards with 2 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  16. Insights into Ground-Motion Processes from Intensity Data (Invited)

    Science.gov (United States)

    Atkinson, G. M.

    2009-12-01

    Analysis of intensity data gathered from the on-line “Did You Feel It?” (DYFI) questionnaire program (Wald et al., 1999, Seism. Res. L.) provides new insights into both contemporary and historical ground-motion processes; this is particularly important for sparsely-instrumented regions. The value of the DYFI data lies in their vast quantities and large spatial coverage. With thousands to tens of thousands of respondents providing information on the felt and damage characteristics of widely-felt earthquakes, DYFI intensity data provide surprisingly high resolution of ground-motion features. The large data quantities allow techniques such as binning to be used to bring out these features in a statistically-stable way (Atkinson and Wald, 2007, Seism. Res. L.), while correlations of the statistics of DYFI intensities with instrumental ground motions provide the link between intensity and engineering ground-motion parameters (Wald et al., 1999, Earthquake Spectra). This link is largely independent of region if its dependence on earthquake magnitude and distance is taken into account (Kaka and Atkinson, 2007, BSSA). Thus DYFI data provide a valuable tool with which ground motions can be estimated, if their felt and damage effects have been reported. This is useful both for understanding contemporary events in sparsely-instrumented regions, and for re-evaluating historical events, for which only intensity data are available. By using calibrated intensity observations, a number of ground-motion processes can be investigated based on DYFI and/or historical intensity data. For example, intensity data shed light on source scaling issues, and whether source parameters vary regionally. They can also be used to document regional attenuation features, such as the attenuation rate and its variation with distance (Atkinson and Wald, 2007). A key uncertainty in these investigations concerns the effect of spectral shape on intensity; the spectral shape is influenced by site

  17. Ground motion scenarios for the 1997 Colfiorito, central Italy, earthquake

    OpenAIRE

    M. Cocco; V. Convertito; Pacor, F.; Franceschina, G.; G. Cultrera; A. Emolo; Zollo, A.

    2008-01-01

    In this paper we report the results of several investigations aimed at evaluating ground motion scenarios for the September 26th, 1997 Colfiorito earthquake (Mw 6.0, 09:40 UTC). We model the observed variability of ground motions through synthetic scenarios which simulate an earthquake rupture propagating at constant rupture velocity (2.7 km/s) and the inferred directivity. We discuss the variability of kinematic source parameters, such as the nucleation position and the rupture velocity, and...

  18. Study on simulating strong ground motion by fractal stochastic method

    Institute of Scientific and Technical Information of China (English)

    GUO Meng-qiu; WANG Bin; XU Zhao-yong

    2005-01-01

    @@ The time history of strong ground motion can be synthesized by empirical Green's function (EGF) method.Firstly a large seismic event is discretized into a series of subevents; secondly recordings of earthquakes with proper size and spatial distribution are chosen as time history (EGF) of those subevents; finally the EGFs are summated to get the time history of ground motion caused by the large event.

  19. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Abbas Moustafa

    2010-06-01

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy principle and the dispersion index. These measures are based on the geometric properties of the power spectral density function of the ground acceleration. The application of these measures to quantify the frequency content of random earthquake models is demonstrated first. Subsequently, these measures are used to quantify the frequency content of the ground acceleration for near-field records measured at rock and soil sites, short-duration and long-duration earthquakes.

  20. Comparison of ground motion for NPP design of various countries

    International Nuclear Information System (INIS)

    The probability levels for the peak ground motion parameters for the high level design earthquakes specified by the of Canada, U.S. and Japan were estimated to be in the range of 10-3 to 10-4. Comparison between the design response spectra recommended by various codes indicate that various frequency ranges are covered differently. It was found that the hazard philosophy and approaches of various codes are quite different which lead to different ground motions for design. Associated with these different ground motions are load combinations and different design philosophies for the material. Although all countries use two levels of ground motion inputs, the risk probabilities at each of these levels are not the same. Some codes define a low level earthquake that implies that normal plant operations are not interrupted. A higher level earthquake is defined to imply safe shut down. The highest level earthquake defined by some codes represent the safety margin earthquake. It was found that the ground motion recommended by different codes may result in different structural design due to different associated load combinations and allowable material limits. The effect of different ground motions cannot be compared without considering the implication on the design. Although some of these differences may compensate for one another in the final design, the degree of conservatism varies between various codes. (author)

  1. Soil-structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    For critical nuclear facilities located at soil sites, soil-structure interaction (SSI) analysis is required to develop seismic responses of the structures, systems and components. Such analyses are generally performed using the design motion by assuming a coherent wave field often consisting of vertically propagating shear and P-waves. The wave passage effects can also be considered depending on the seismic setting of the facility. Review of strong ground motion arrays from several dense arrays on soil and rock sites indicates that ground motion coherency reduces as frequency and separation distance of the monitoring points increase. These observations have resulted in several ground motion 'incoherency' models to best represent the observed data. In this paper implementation of the most recent ground motion incoherency model in the Computer Program SASSI2000 is discussed. The results in terms of foundation scattered motion is compared with the fully coherent motion for a rock site and a typical 2000-year design motion for Western US (WUS). The incoherency model was also applied to a nuclear facility on a stiff soil site and the differences in the results are presented and discussed. (authors)

  2. A simple model for strong ground motions and response spectra

    Science.gov (United States)

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  3. Ground Motion in Central Mexico: A Comprehensive Analysis

    Science.gov (United States)

    Ramirez-Guzman, L.; Juarez, A.; Rábade, S.; Aguirre, J.; Bielak, J.

    2015-12-01

    This study presents a detailed analysis of the ground motion in Central Mexico based on numerical simulations, as well as broadband and strong ground motion records. We describe and evaluate a velocity model for Central Mexico derived from noise and regional earthquake cross-correlations, which is used throughout this research to estimate the ground motion in the region. The 3D crustal model includes a geotechnical structure of the Valley of Mexico (VM), subduction zone geometry, and 3D velocity distributions. The latter are based on more than 200 low magnitude (Mw Mexico originating from intra-slab deep events and temblors located along the Pacific coast. Also, we quantify the effects Trans-Mexican Volcanic Belt (TMVB) and the low-velocity deposits on the ground motion. The 3D octree-based finite element wave propagation computations, valid up to 1 Hz, reveal that the inclusion of a basin with a structure as complex as the Valley of Mexico dramatically enhances the regional effects induced by the TMVB. Moreover, the basin not only produces ground motion amplification and anomalous duration, but it also favors the energy focusing into zones of Mexico City where structures typically undergo high levels of damage.

  4. Verifying a computational method for predicting extreme ground motion

    Science.gov (United States)

    Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, B.T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.

    2011-01-01

    In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.

  5. Physical limits on ground motion at Yucca Mountain

    Science.gov (United States)

    Andrews, D.J.; Hanks, T.C.; Whitney, J.W.

    2007-01-01

    Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr-Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.

  6. Simulation of non-stationary ground motion processes (II)

    Institute of Scientific and Technical Information of China (English)

    LIANG Jian-wen

    2005-01-01

    This paper proposes a method for simulation of non-stationary ground motion processes having the identical statistical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simulation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the target power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is verified by simulation of one acceleration record in Landers earthquake.

  7. Strong Ground Motion Estimation During the Kutch, India Earthquake

    Science.gov (United States)

    Iyengar, R. N.; Kanth, S. T. G. Raghu

    2006-01-01

    In the absence of strong motion records, ground motion during the 26th January, 2001 Kutch, India earthquake, has been estimated by analytical methods. A contour map of peak ground acceleration (PGA) values in the near source region is provided. These results are validated by comparing them with spectral response recorder data and field observations. It is found that very near the epicenter, PGA would have exceeded 0.6 g. A set of three aftershock records have been used as empirical Green's functions to simulate ground acceleration time history and 5% damped response spectrum at Bhuj City. It is found that at Bhuj, PGA would have been 0.31 g 0.37 g. It is demonstrated that source mechanism models can be effectively used to understand spatial variability of large-scale ground movements near urban areas due to the rupture of active faults.

  8. Grounding Bottom Damage and Ship Motion over a Rock

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1996-01-01

    A model for prediction of damage to tankers during grounding is presented. The model takes into account the coupling between the external ship dynamics and the local damage process of the hull girder. The model for the local damage is based on a least upper bound solution with kinematic compatibi...

  9. Characteristics of the Ground Motion in Northeastern Italy

    OpenAIRE

    Malagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Akinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Hermann, R. B.; Department of Earth and Atmospheric Sciences; Pino, N. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Scognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia

    2002-01-01

    A large data set of ground-velocity time histories from earthquakes that occurred in Friuli-Venezia Giulia (northeastern Italy) was used to define regional predictive relationships for ground motion, in the 0.25- to 14.0-Hz frequency band. The bulk of the data set was provided by the seismic network run by Centro Ricerche Sismologiche (CRS), a department of the Istituto Nazionale di Oceanografia e Geofisica (OGS). A collection of 17,238 selected recordings from 1753 earthquakes...

  10. On the radial motion of quarks bound by a string

    International Nuclear Information System (INIS)

    It is shown rigorously that quarks cannot move in the radial direction when they are tied together by a straight-line string and the system as a whole rotates with a nonvanishing angular velocity. This implies that in a consistent string model of hadrons the radial motion of quarks cannot be separated from the transverse string excitations. 27 refs

  11. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  12. Ground-motion modeling of Hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground motions

    Science.gov (United States)

    Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.

    2010-01-01

    We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.

  13. Developments in Ground-Motion Modeling in Eastern North America

    Science.gov (United States)

    Atkinson, G. M.; Boore, D. M.

    2012-12-01

    Recent well-recorded earthquakes in Eastern North America (ENA) have led us to re-evaluate concepts that have been "standard fare" in the development of ground-motion prediction equations (GMPEs) for ENA for decades, including all published GMPEs that are used in current practice (e.g. Atkinson and Boore, 2011, 2006, 1995; Pezeshk et al., 2011; Campbell, 2003; Toro et al., 1997, etc.). Assumptions common to all ENA GMPEs that may not be true include the following. (1) Typical ENA stress drops, in the context of a Brune model representation of the source spectrum, are in the range of 150-300 bars, with the exception of occasional high-stress events like the 1988 Saguenay earthquake. (2) Attenuation of ground motions can be modeled with a frequency-independent geometric spreading function, either bilinear or trilinear in shape (e.g. Street and Turcotte, 1975; Herrmann and Kijko, 1983; Atkinson and Mereu, 1992; Atkinson, 2004; Boatwright and Seekins, 2011), and an associated frequency-dependent anelastic attenuation term related to the regional Quality factor. The use of a bilinear or trilinear form models the transition from geometric spreading of body waves at close distances to slower surface-wave-type spreading at regional distances. We use ground-motion recordings from recent ENA events to re-examine these basic tenets of GMPE development, in light of constraints on the problem provided at low frequencies by seismic moment, and at high frequencies by stresses inferred from Empirical Greens Function (EGF) analysis. We find strong evidence, in both ground-motion data and from the constraints, that geometric attenuation may be frequency dependent. Moreover, EGF stress drops may be very high (>500 bars) - but they do not lead to particularly large high-frequency ground motions, at least at distances for which we have observations. More complex models of ENA source and attenuation processes appear to be required in order to reconcile our growing ground-motion database

  14. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    Science.gov (United States)

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel

    2016-05-01

    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  15. Motion parameter estimation of multiple ground moving targets in multi-static passive radar systems

    Science.gov (United States)

    Subedi, Saurav; Zhang, Yimin D.; Amin, Moeness G.; Himed, Braham

    2014-12-01

    Multi-static passive radar (MPR) systems typically use narrowband signals and operate under weak signal conditions, making them difficult to reliably estimate motion parameters of ground moving targets. On the other hand, the availability of multiple spatially separated illuminators of opportunity provides a means to achieve multi-static diversity and overall signal enhancement. In this paper, we consider the problem of estimating motion parameters, including velocity and acceleration, of multiple closely located ground moving targets in a typical MPR platform with focus on weak signal conditions, where traditional time-frequency analysis-based methods become unreliable or infeasible. The underlying problem is reformulated as a sparse signal reconstruction problem in a discretized parameter search space. While the different bistatic links have distinct Doppler signatures, they share the same set of motion parameters of the ground moving targets. Therefore, such motion parameters act as a common sparse support to enable the exploitation of group sparsity-based methods for robust motion parameter estimation. This provides a means of combining signal energy from all available illuminators of opportunity and, thereby, obtaining a reliable estimation even when each individual signal is weak. Because the maximum likelihood (ML) estimation of motion parameters involves a multi-dimensional search and its performance is sensitive to target position errors, we also propose a technique that decouples the target motion parameters, yielding a two-step process that sequentially estimates the acceleration and velocity vectors with a reduced dimensionality of the parameter search space. We compare the performance of the sequential method against the ML estimation with the consideration of imperfect knowledge of the initial target positions. The Cramér-Rao bound (CRB) of the underlying parameter estimation problem is derived for a general multiple-target scenario in an MPR system

  16. Sympathetic cooling of molecular ion motion to the ground state

    OpenAIRE

    Rugango, Rene; Goeders, James E.; Dixon, Thomas H.; John M. Gray; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J.; Brown, Kenneth R.

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm...

  17. Ground Motion Prediction Trends For Eastern North America Based on the Next Generation Attenuation East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2010-12-01

    A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have

  18. Tectonic stability and expected ground motion at Yucca Mountain

    International Nuclear Information System (INIS)

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs

  19. Directivity in NGA earthquake ground motions: Analysis using isochrone theory

    Science.gov (United States)

    Spudich, P.; Chiou, B.S.J.

    2008-01-01

    We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.

  20. Earthquake Ground Motion Simulation using Novel Machine Learning Tools

    OpenAIRE

    Alimoradi, Arzhang

    2011-01-01

    A novel method of model-independent probabilistic seismic hazard analysis(PSHA) and ground motion simulation is presented and verified using previously recorded data and machine learning. The concept of “eigenquakes” is introduced as an orthonormal set of basis vectors that represent characteristic earthquake records in a large database. Our proposed procedure consists of three phases, (1) estimation of the anticipated level of shaking for a scenario earthquake at a site using Gaussian Proces...

  1. Statistical modeling of ground motion relations for seismic hazard analysis

    OpenAIRE

    Raschke, Mathias

    2012-01-01

    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GM...

  2. Guidelines for ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs

  3. Detect ground motion effects on the trajectory at ATF2

    CERN Document Server

    Rénier, Yves; Garcia, Rogelio

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the Beam Delivery System (BDS) of the next linear colliders (ILC and CLIC) as well as to define and to test the tunning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. The magnet displacements induced by ground motion are large enough for CLIC to perturb the beam stability above requirements. It is planned to measure the displacement of the magnets and implement a feed-forward correcting the effects on the beam trajectory with correctors (dipoles). This article studies the possibility to detect ground motion effects on the beam trajectory at ATF2. Characteristics of the ground motion at ATF2 are presented, the effects of the magnet displacements on the beam trajectory are simulated and an algorithm predicting the induced trajectory fluctuations is evaluated. After the estimated...

  4. Guidelines for ground motion definition for the eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-06-01

    Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs.

  5. Terrafirma: A Pan-European Ground Motion Hazard Information Service

    Science.gov (United States)

    Cooksley, Geraint

    2010-12-01

    Supported by the European Space Agency's GMES programme, Terrafirma Stage 3 (TF3) is the continuation of the Terrafirma project, a pan-European ground motion hazard information service. This third stage of the project was launched in December of 2009 and has as its aim the sustainability of the terrain motion service. TF3 features a new focus on several thematic lines for terrain motion analysis: - Tectonics - Flooding - Hydrogeology (ground water issues, landslides & inactive mines) As in previous stages, TF3 services are based on advanced satellite interferometry products (in the main using Persistent Scatterer InSAR methodologies), however they exploit additional data sources, including non-EO, coupled with expert interpretation specific to each thematic line. In addition to the three thematic lines, a wide area terrain motion mapping service will be developed and tested. The project consortium is lead by Altamira Information, with the Dutch Geological Survey (TNO) leading the Flood Theme, the Italian National Institute of Geophysics and Volcanology (INGV) leading the Tectonics Theme, and the University of Florence (UNIFI) leading the Hydrogeology Theme. The Wide Area Mapping task is lead by the German Space Agency (DLR). Its services are delivered to civil protection agencies, disaster management organisms, and coastal, rail and motorway authorities to support the process of risk assessment and mitigation. An overview of the Terrafirma project and the main highlights of the third stage are given.

  6. Seismic ground motion relationships in southern China based on stochastic finite-fault model

    Institute of Scientific and Technical Information of China (English)

    郑斯华; 黄玉龙

    2004-01-01

    The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relationships was then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.

  7. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  8. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  9. Study on Ground Motion Attenuation Relation in Shanghai and Its Adjacent Region

    Institute of Scientific and Technical Information of China (English)

    Shi Shuzhong; Shen Jianwen

    2004-01-01

    Based on intensity data in Shanghai and its adjacent region, the intensity attenuation relation is determined. Selecting the western United States as a reference area where there are rich strong ground motion records and intensity data, and by determining ground motion attenuation relation in an area lacking in strong ground motion data, we obtain the ground motion attenuation relation in Shanghai and its adjacent region.

  10. Strong Ground Motion Database System for the Mexican Seismic Network

    Science.gov (United States)

    Perez-Yanez, C.; Ramirez-Guzman, L.; Ruiz, A. L.; Delgado, R.; Macías, M. A.; Sandoval, H.; Alcántara, L.; Quiroz, A.

    2014-12-01

    A web-based system for strong Mexican ground motion records dissemination and archival is presented. More than 50 years of continuous strong ground motion instrumentation and monitoring in Mexico have provided a fundamental resource -several thousands of accelerograms- for better understanding earthquakes and their effects in the region. Lead by the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM), the engineering strong ground motion monitoring program at IE relies on a continuously growing network, that at present includes more than 100 free-field stations and provides coverage to the seismic zones in the country. Among the stations, approximately 25% send the observed acceleration to a processing center in Mexico City in real-time, and the rest require manual access, remote or in situ, for later processing and cataloguing. As part of a collaboration agreement between UNAM and the National Center for Disaster Prevention, regarding the construction and operation of a unified seismic network, a web system was developed to allow access to UNAM's engineering strong motion archive and host data from other institutions. The system allows data searches under a relational database schema, following a general structure relying on four databases containing the: 1) free-field stations, 2) epicentral location associated with the strong motion records available, 3) strong motion catalogue, and 4) acceleration files -the core of the system. In order to locate and easily access one or several records of the data bank, the web system presents a variety of parameters that can be involved in a query (seismic event, region boundary, station name or ID, radial distance to source or peak acceleration). This homogeneous platform has been designed to facilitate dissemination and processing of the information worldwide. Each file, in a standard format, contains information regarding the recording instrument, the station, the corresponding earthquake

  11. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    International Nuclear Information System (INIS)

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions

  12. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)

  13. Validation and Comparison of One-Dimensional Ground Motion Methodologies

    International Nuclear Information System (INIS)

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively)

  14. SM-ROM-GL (Strong Motion Romania Ground Level Database

    Directory of Open Access Journals (Sweden)

    Ioan Sorin BORCIA

    2015-07-01

    Full Text Available The SM-ROM-GL database includes data obtained by the processing of records performed at ground level by the Romanian seismic networks, namely INCERC, NIEP, NCSRR and ISPH-GEOTEC, during recent seismic events with moment magnitude Mw ≥ 5 and epicenters located in Romania. All the available seismic records were re-processed using the same basic software and the same procedures and options (filtering and baseline correction, in order to obtain a consistent dataset. The database stores computed parameters of seismic motions, i.e. peak values: PGA, PGV, PGD, effective peak values: EPA, EPV, EPD, control periods, spectral values of absolute acceleration, relative velocity and relative displacement, as well as of instrumental intensity (as defined bz Sandi and Borcia in 2011. The fields in the database include: coding of seismic events, stations and records, a number of associated fields (seismic event source parameters, geographical coordinates of seismic stations, links to the corresponding ground motion records, charts of the response spectra of absolute acceleration, relative velocity, relative displacement and instrumental intensity, as well as some other representative parameters of seismic motions. The conception of the SM-ROM-GL database allows for an easy maintenance; such that elementary knowledge of Microsoft Access 2000 is sufficient for its operation.

  15. Mitigating ground-based sensor failures with video motion detection

    Science.gov (United States)

    Macior, Robert E.; Knauth, Jonathan P.; Walter, Sharon M.; Evans, Richard

    2008-10-01

    Unattended Ground Sensor (UGS) systems typically employ distributed sensor nodes utilizing seismic, magnetic or passive IR sensing modalities to alarm if activity is present. The use of an imaging component to verify sensor events is beneficial to create actionable intelligence. Integration of the ground-based images with other ISR data requires that the images contain valid activity and are appropriately formatted, such as prescribed by Standard NATO Agreement (STANAG) 4545 or the National Imagery Transmission Format, version 2.1 (NITF 2.1). Ground activity sensors suffer from false alarms due to meteorological or biological activity. The addition of imaging allows the analyst to differentiate valid threats from nuisance alarms. Images are prescreened based on target size and temperature difference relative to the background. The combination of video motion detection based on thermal imaging with seismic, magnetic or passive IR sensing modalities improves data quality through multi-phenomenon combinatorial logic. The ground-based images having a nominally vertical aspect are transformed to the horizontal geospatial domain for exploitation and correlation of UGS imagery with other ISR data and for efficient archive and retrieval purposes. The description of an UGS system utilized and solutions that were developed and implemented during an experiment to correlate and fuse IR still imagery with ground moving target information, forming real-time, actionable, coalition intelligence, are presented.

  16. Variations of earthquake ground motions with depth and its effect on soil-structure interaction

    International Nuclear Information System (INIS)

    Data from a free-field downhole ground motion array at Lotung, Taiwan indicated that both peak acceleration and response spectra of ground motions varied significantly with depth below the ground surface. Data trends were found to be reasonably consistent with predictions from deconvolution analysis assuming vertically propagating body waves. Soil-structure interaction analyses of a reactor containment model indicated that analyses excluding ground motion variations with depth led to significant overestimation of structural responses. It is concluded that appropriate variations of ground motion with depth should be included in carrying out soil-structure interaction analyses and characterizing foundation input motions for embedded structures

  17. Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field

    Directory of Open Access Journals (Sweden)

    Yingmin Li

    2010-01-01

    Full Text Available The reasonability of artificial multi-point ground motions and the identification of abnormal records in seismic array observations, are two important issues in application and analysis of multi-point ground motion fields. Based on the dynamic time warping (DTW distance method, this paper discusses the application of similarity measurement in the similarity analysis of simulated multi-point ground motions and the actual seismic array records. Analysis results show that the DTW distance method not only can quantitatively reflect the similarity of simulated ground motion field, but also offers advantages in clustering analysis and singularity recognition of actual multi-point ground motion field.

  18. Guidance for construction of three-dimensional underground structure model for evaluation of earthquake ground motions

    International Nuclear Information System (INIS)

    In order to investigate the cause of the amplification in earthquake ground motions, JNES prepared 'three dimensional underground structure model' and using this model analyzed and evaluated the earthquake ground motions. Therefore it was elucidated that the discordance formation of ground and a sudden change in the propagation velocity of ground motion are main causes of the ground motion amplification. Then, JNES collected various physical surveys and examination results in 'Kashiwazaki Vertical Array seismic motion monitoring System' (KAVAS) and developed 'the preparation process of three dimensional underground structure model'. (M.H.)

  19. Influence of constitutive models on ground motion predictions

    International Nuclear Information System (INIS)

    In recent years, the development of mathematical models for the study of ground shock effects in soil, or rock media, or both, has made important progress. Three basic types of advanced models have been studied: (1) elastic ideally plastic models, (2) variable moduli models and (3) elastic nonideally plastic capped models. The ground shock response in the superseismic range of a 1-MT air burst on a homogeneous halfspace of a soil is considered. Each of the three types of models was fitted to laboratory test data and calculations were made for each case. The results from all three models are comparable only when the stress paths in uniaxial strain are comparable for complete load-unload cycles. Otherwise, major differences occur in the lateral motions and stresses. Consequently, material property laboratory data now include the stress path whenever possible for modeling purposes. (U.S.)

  20. A study on the characteristics of strong ground motions in southern Korea

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Chang Eob; Lee, Kie Hwa; Kang, Tae Seob [Seoul National Univ., Seoul (Korea, Republic of)

    2001-12-15

    Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets.

  1. Thunder-induced ground motions: 2. Site characterization

    Science.gov (United States)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Thunder-induced ground motion, near-surface refraction, and Rayleigh wave dispersion measurements were used to constrain near-surface velocity structure at an unconsolidated sediment site. We employed near-surface seismic refraction measurements to first define ranges for site structure parameters. Air-coupled and hammer-generated Rayleigh wave dispersion curves were used to further constrain the site structure by a grid search technique. The acoustic-to-seismic coupling is modeled as an incident plane P wave in a fluid half-space impinging into a solid layered half-space. We found that the infrasound-induced ground motions constrained substrate velocities and the average thickness and velocities of the near-surface layer. The addition of higher-frequency near-surface Rayleigh waves produced tighter constraints on the near-surface velocities. This suggests that natural or controlled airborne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.

  2. Ground-motion signature of dynamic ruptures on rough faults

    Science.gov (United States)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.

    2016-04-01

    Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.

  3. Attenuation of ground-motion spectral amplitudes in southeastern Australia

    Science.gov (United States)

    Allen, T.I.; Cummins, P.R.; Dhu, T.; Schneider, J.F.

    2007-01-01

    A dataset comprising some 1200 weak- and strong-motion records from 84 earthquakes is compiled to develop a regional ground-motion model for southeastern Australia (SEA). Events were recorded from 1993 to 2004 and range in size from moment magnitude 2.0 ??? M ??? 4.7. The decay of vertical-component Fourier spectral amplitudes is modeled by trilinear geometrical spreading. The decay of low-frequency spectral amplitudes can be approximated by the coefficient of R-1.3 (where R is hypocentral distance) within 90 km of the seismic source. From approximately 90 to 160 km, we observe a transition zone in which the seismic coda are affected by postcritical reflections from midcrustal and Moho discontinuities. In this hypocentral distance range, geometrical spreading is approximately R+0.1. Beyond 160 km, low-frequency seismic energy attenuates rapidly with source-receiver distance, having a geometrical spreading coefficient of R-1.6. The associated regional seismic-quality factor can be expressed by the polynomial: log Q(f) = 3.66 - 1.44 log f + 0.768 (log f)2 + 0.058 (log f)3 for frequencies 0.78 ??? f ??? 19.9 Hz. Fourier spectral amplitudes, corrected for geometrical spreading and anelastic attenuation, are regressed with M to obtain quadratic source scaling coefficients. Modeled vertical-component displacement spectra fit the observed data well. Amplitude residuals are, on average, relatively small and do not vary with hypocentral distance. Predicted source spectra (i.e., at R = 1 km) are consistent with eastern North American (ENA) Models at low frequencies (f less than approximately 2 Hz) indicating that moment magnitudes calculated for SEA earthquakes are consistent with moment magnitude scales used in ENA over the observed magnitude range. The models presented represent the first spectral ground-motion prediction equations develooed for the southeastern Australian region. This work provides a useful framework for the development of regional ground-motion relations

  4. Ground-State Entanglement Bound for Quantum Energy Teleportation of General Spin-Chain Models

    CERN Document Server

    Hotta, Masahiro

    2013-01-01

    In protocols of quantum energy teleportation (QET), ground-state entanglement of many-body systems plays a crucial role. For a general class of spin-chain systems, we show analytically that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET

  5. Simulation of non-stationary ground motion processes (I)

    Institute of Scientific and Technical Information of China (English)

    LIANG Jian-wen

    2005-01-01

    This paper presents a spectral representation method for simulation of non-stationary ground motion processes on the basis of Priestley's evolutionary spectral theory. Following this method, sample processes can be generated using a cosine series formula. It is shown that, these sample processes accurately reflect the prescribed characteristics of the evolutionary power spectral density function when the number of the terms in the cosine series is large enough; and the ensemble expected value and the ensemble autocorrelation function approach the corresponding target functions, respectively, as the sample size increases; and these sample processes are asymptotically normal as the number of the terms in the series tends to infinity. Finally, a few special cases of the formula are discussed, one of which is non-stationary white noise process, and other one is reduced to the formula for simulation of stationary stochastic processes.

  6. Ground motion measurements at the LBL Light Source site, the Bevatron and at SLAC

    International Nuclear Information System (INIS)

    This report describes the technique for measuring ground motion at the site of the 1.0 to 2.0 GeV Synchrotron Radiation Facility which was known as the Advanced Light Source (in 1983 when the measurements were taken). The results of ground motion measurements at the Light Source site at Building 6 at LBL are presented. As comparison, ground motion measurements were made at the Byerly Tunnel, the Bevatron, Blackberry Canyon, and SLAC at the Spear Ring. Ground Motion at the Light Source site was measured in a band from 4 to 100 Hz. The measured noise is primarily local in origin and is not easily transported through LBL soils. The background ground motion is for the most part less than 0.1 microns. Localized truck traffic near Building 6 and the operation of the cranes in the building can result in local ground motions of a micron or more for short periods of time. The background motion at Building 6 is between 1 and 2 orders of magnitude higher than ground motion in a quiet seismic tunnel, which is representative of quiet sites worldwide. The magnitude of the ground motions at SLAC and the Bevatron are comparable to ground motions measured at the Building 6 Light Source site. However, the frequency signature of each site is very different

  7. Comparison of Nonlinear Model Results Using Modified Recorded and Synthetic Ground Motions

    Energy Technology Data Exchange (ETDEWEB)

    Robert E. Spears; J. Kevin Wilkins

    2011-11-01

    A study has been performed that compares results of nonlinear model runs using two sets of earthquake ground motion time histories that have been modified to fit the same design response spectra. The time histories include applicable modified recorded earthquake ground motion time histories and synthetic ground motion time histories. The modified recorded earthquake ground motion time histories are modified from time history records that are selected based on consistent magnitude and distance. The synthetic ground motion time histories are generated using appropriate Fourier amplitude spectrums, Arias intensity, and drift correction. All of the time history modification is performed using the same algorithm to fit the design response spectra. The study provides data to demonstrate that properly managed synthetic ground motion time histories are reasonable for use in nonlinear seismic analysis.

  8. Mitigation of ground motion effects in linear accelerators via feed-forward control

    OpenAIRE

    Pfingstner, J.; Artoos, K.; Charrondiere, C.; Janssens, St.; Patecki, M.; Renier, Y.; Schulte, D.; Tomás, R.; Jérémie, A.; Kubo, K; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.

    2014-01-01

    International audience; Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders). Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method bas...

  9. Strong ground motion prediction for southwestern China from small earthquake records

    OpenAIRE

    Tao, Z. R.; X. X. Tao; A. P. Cui

    2015-01-01

    For regions lack of strong ground motion records, a method is developed to predict strong ground motion by small earthquake records from local broadband digital earthquake networks. Sichuan and Yunnan regions, located in southwestern China, are selected as the targets. Five regional source and crustal medium parameters are inversed by micro-Genetic Algorithm. These parameters are adopted to predict strong ground motion for moment magnitude (Mw) 5.0, 6.0 and ...

  10. A coherency function model of ground motion at base rock corresponding to strike-slip fault

    Institute of Scientific and Technical Information of China (English)

    丁海平; 刘启方; 金星; 袁一凡

    2004-01-01

    At present, the method to study spatial variation of ground motions is statistic analysis based on dense array records such as SMART-1 array, etc. For lacking of information of ground motions, there is no coherency function model of base rock and different style site. Spatial variation of ground motions in elastic media is analyzed by deterministic method in this paper. Taking elastic half-space model with dislocation source of fault, near-field ground motions are simulated. This model takes strike-slip fault and earth media into account. A coherency function is proposed for base rock site.

  11. Characteristics of near-fault ground motion containing velocity pulses

    Institute of Scientific and Technical Information of China (English)

    WEI Tao; ZHAO Feng-xin; ZHANG Yu-shan

    2006-01-01

    There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure. However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code.

  12. Ground motions at the outermost limits of seismically triggered landslides

    Science.gov (United States)

    Jibson, Randall W.; Harp, Edwin L.

    2016-01-01

    Over the last few decades, we and our colleagues have conducted field investigations in which we mapped the outermost limits of triggered landslides in four earthquakes: 1987 Whittier Narrows, California (M 5.9), 1987 Superstition Hills, California (M 6.5), 1994 Northridge, California (M 6.7), and 2011 Mineral, Virginia (M 5.8). In an additional two earthquakes, 1976 Guatemala (M 7.5) and 1983 Coalinga, California (M 6.5), we determined limits using high‐resolution aerial‐photographic interpretation in conjunction with more limited ground investigation. Limits in these earthquakes were defined by the locations of the very smallest failures (photographic interpretations was 0.05–0.11g. Although PGA values at landslide limits depend on several factors, including material strength, topographic amplification, and hydrologic conditions, these values provide an empirically useful lower limiting range of PGA needed to trigger the smallest failures on very susceptible slopes. In a well‐recorded earthquake, this PGA range can be used to identify an outer boundary within which we might expect to find landsliding; in earthquakes that are not well recorded, mapping the outermost landslide limits provides a useful clue about ground‐motion levels at the mapped limits.

  13. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  14. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    International Nuclear Information System (INIS)

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage

  15. Engineering characterization of ground motion. Task II. Effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects. Volume 2

    International Nuclear Information System (INIS)

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics on structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5

  16. Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion

    Institute of Scientific and Technical Information of China (English)

    YE Kun; LI Li; FANG Qin-han

    2008-01-01

    An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.

  17. Strong ground motion prediction for southwestern China from small earthquake records

    Directory of Open Access Journals (Sweden)

    Z. R. Tao

    2015-09-01

    Full Text Available For regions lack of strong ground motion records, a method is developed to predict strong ground motion by small earthquake records from local broadband digital earthquake networks. Sichuan and Yunnan regions, located in southwestern China, are selected as the targets. Five regional source and crustal medium parameters are inversed by micro-Genetic Algorithm. These parameters are adopted to predict strong ground motion for moment magnitude (Mw 5.0, 6.0 and 7.0. Strong ground motion data are compared with the results, most of the result pass through ideally the data point plexus, except the case of Mw 7.0 in Sichuan region, which shows an obvious slow attenuation. For further application, this result is adopted in probability seismic hazard assessment (PSHA and near-field strong ground motion synthesis of the Wenchuan Earthquake.

  18. Strong Ground-Motion Prediction in Seismic Hazard Analysis: PEGASOS and Beyond

    Science.gov (United States)

    Scherbaum, F.; Bommer, J. J.; Cotton, F.; Bungum, H.; Sabetta, F.

    2005-12-01

    The SSHAC Level 4 approach to probabilistic seismic hazard analysis (PSHA), which could be considered to define the state-of-the-art in PSHA using multiple expert opinions, has been fully applied only twice, firstly in the multi-year Yucca Mountain study and subsequently (2002-2004) in the PEGASOS project. The authors of this paper participated as ground-motion experts in this latter project, the objective of which was comprehensive seismic hazard analysis for four nuclear power plant sites in Switzerland, considering annual exceedance frequencies down to 1/10000000. Following SSHAC procedure, particular emphasis was put on capturing both the aleatory and epistemic uncertainties. As a consequence, ground motion prediction was performed by combining several empirical ground motion models within a logic tree framework with the weights on each logic tree branch expressing the personal degree-of-belief of each ground-motion expert. In the present paper, we critically review the current state of ground motion prediction methodology in PSHA in particular for regions of low seismicity. One of the toughest lessons from PEGASOS was that in systematically and rigorously applying the laws of uncertainty propagation to all of the required conversions and adjustments of ground motion models, a huge price has to be paid in an ever-growing aleatory variability. Once this path has been followed, these large sigma values will drive the hazard, particularly for low annual frequencies of exceedance. Therefore, from a post-PEGASOS perspective, the key issues in the context of ground-motion prediction for PSHA for the near future are to better understand the aleatory variability of ground motion and to develop suites of ground-motion prediction equations that employ the same parameter definitions. The latter is a global rather than a regional challenge which might be a desirable long-term goal for projects similar to the PEER NGA (Pacific Earthquake Engineering Research Center, Next

  19. Artificial ground motion compatible with specified ground shaking peaks and target response spectrum

    Institute of Scientific and Technical Information of China (English)

    Zhao Fengxin; Zhang Yushan; Lü Hongshan

    2006-01-01

    This article describes a hybrid simulation method to generate artificial ground motion time histories that are compatible with specified peak seismic acceleration, velocity and displacement as well as the target response spectrum of absolute acceleration. First, based on traditional methods that match the target spectrum in the frequency domain, an initial acceleration time history was synthesized to satisfy the specified peak acceleration, target spectral acceleration and intensity envelope. Second, by using the inversion formula of the seismic input to a linear single-degree-of-freedom system and by superimposing a series of narrow-band time histories in the time domain, the initial time history is further modified to allow its peak velocity and displacement to approach the targets and improve its matching precision with the target spectrum.Numerical examples are provided to demonstrate that the proposed method achieves good agreement with the target values.

  20. Earthquake ground motion generation for nuclear power plant with special reference to KAPP-3 and 4

    International Nuclear Information System (INIS)

    The Nuclear Power Plant (NPP) is designed for two levels of earthquake viz., Operating Basis Earthquake (OBE) and Safe Shutdown Earthquake (SSE). The OBE (S1 level ground motion) corresponds to the maximum level of ground motion, which can reasonably be experienced at the site once during the operating life of nuclear power plant with a return period of 100 years. The SSE (S2 level ground motion) represents the maximum level of ground motion to be used for design of safety related structures, systems and equipment (SS and E) of NPP and is based on the maximum earthquake potential of the region, with a return period of 10,000 years. For these two levels of earthquakes, it is required to determine Peak Ground Acceleration (PGA) and thereby, specify the Design Basis Ground Motion (DBGM). In order to determine the PGA, seismotectonic study is of utmost importance. The present paper brings out the procedure for conducting field check study, determination of the ground motion and also a case study of field check carried out and generation of ground motion for KAPP-3 and 4 NPP site

  1. Seismic Safety Program: Ground motion and structural response

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    In 1964, John A. Blume & Associates Research Division (Blume) began a broad-range structural response program to assist the Nevada Operations Office of the US Atomic Energy Commission (AEC) in ensuring the continued safe conduct of underground nuclear detonation testing at the Nevada Test Site (NTS) and elsewhere. Blume`s long experience in earthquake engineering provided a general basis for the program, but much more specialized knowledge was required for the AEC`s purposes. Over the next 24 years Blume conducted a major research program to provide essential understanding of the detailed nature of the response of structures to dynamic loads such as those imposed by seismic wave propagation. The program`s results have been embodied in a prediction technology which has served to provide reliable advanced knowledge of the probable effects of seismic ground motion on all kinds of structures, for use in earthquake engineering and in building codes as well as for the continuing needs of the US Department of Energy`s Nevada Operations Office (DOE/NV). This report is primarily an accounting of the Blume work, beginning with the setting in 1964 and the perception of the program needs as envisioned by Dr. John A. Blume. Subsequent chapters describe the structural response program in detail and the structural prediction procedures which resulted; the intensive data acquisition program which, as is discussed at some length, relied heavily on the contributions of other consultant-contractors in the DOE/NV Seismic Safety Support Program; laboratory and field studies to provide data on building elements and structures subjected to dynamic loads from sources ranging from testing machines to earthquakes; structural response activities undertaken for testing at the NTS and for off-NTS underground nuclear detonations; and concluding with an account of corollary studies including effects of natural forces and of related studies on building response.

  2. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    Energy Technology Data Exchange (ETDEWEB)

    Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.

    2014-04-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  3. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  4. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-04-13

    Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes

  5. Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions.

  6. Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge

    Directory of Open Access Journals (Sweden)

    Swagata Banerjee Basu

    2011-01-01

    Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.

  7. Representation of bidirectional ground motions for design spectra in building codes

    Science.gov (United States)

    Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.

    2011-01-01

    The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.

  8. Synthetic Ground Motions for Engineering Applications and the Role of Nonlinear Site Response

    Science.gov (United States)

    Assimaki, D.; Li, W.

    2008-12-01

    Quantitative criteria are being developed for the efficient integration of site response models in broadband ground motion simulations. For this purpose, downhole array observations and broadband synthetics are combined, and the sensitivity of ground motion and nonlinear structural performance attributed to bias and uncertainty in nonlinear site response models is investigated. Results from medium-to-soft soil sites in Southern California are here presented, subjected to synthetic ground motions estimated for finite-source dynamic rupture scenarios of weak, medium and large magnitude events (M = 3.5~7.5), on a surface station grid of epicentral distances 2km~75km. For each site, elastic and nonlinear site response analyses are evaluated using multiple soil models, and the modeling ground motion variability is estimated by means of the COV (coefficient of variation) of site amplification. For each soil model, the parametric uncertainty of ground motion predictions is next estimated by systematically randomizing selected model parameters. Quantitative measures are developed that may describe the site properties and ground motion characteristics where the nonlinear models show large prediction COV, namely where incremental nonlinear analyses significantly deviate from empirical methodologies. Finally, the role of nonlinear soil response in physics-based seismic hazard predictions is illustrated by subjecting a series of inelastic SDOF (single-degree-of-freedom) oscillators to the ensemble of ground motion predictions, and evaluating the bias and uncertainty introduced as a result, in the structural response predictions. It is shown that the bias and uncertainty introduced in structural performance analyses when nonlinear site effects are not accounted for, strongly correlates with the deviation observed when the assessment of structural response is evaluated using synthetic seismograms from existing methodologies as opposed to real motions. It is concluded that soil

  9. Study on the severest real ground motion for seismic design and analysis

    Institute of Scientific and Technical Information of China (English)

    谢礼立; 翟长海

    2003-01-01

    How to select the adequate real strong earthquake ground motion for seismic analysis and design of structures is an essential problem in earthquake engineering research and practice. In the paper the concept of the severest design ground motion is proposed and a method is developed for comparing the severity of the recorded strong ground motions. By using this method the severest earthquake groundmotions are selected out as seismic inputs to the structures to be designed from a database that consists of more than five thousand significant strong ground motion records collected over the world. The selected severest ground motions are very likely to be able to drive the structures to their critical response and thereby result in the highest damage potential. It is noted that for different structures with different predominant natural periods and at different sites where structures are located the severest design ground motions are usually different. Finally, two examples are illustrated to demonstrate the rationality of the concept and the reliability of the selected design motion.

  10. Next Generation Attenuation of Ground Motions in Ilan, Taiwan: Establishment and Analysis of Attenuation Relations for Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV)

    Science.gov (United States)

    Liu, K.

    2009-12-01

    An evaluation of seismic hazards requires an estimate of the expected ground motion at the site of interest. The most common means of estimating this ground motion in engineering practice is the use of an attenuation relation. A number of developments have arisen recently to suggest that a new generation of attenuation relationships is warranted. The project named Next Generation Attenuation of Ground Motions (NGA) Project was developed by Pacific Earthquake Engineering Research Center (PEER) in response to a core objective: reducing uncertainty in earthquake ground motion estimation. This objective reflects recognition from industry sponsors that improvements in earthquake ground motion estimation will result in significant cost savings and will result in improved system performance in the event of a large earthquake. The Central Weather Bureau has implemented the Taiwan Strong Motion Instrumentation Program (TSMIP) to collect high-quality instrumental recordings of strong earthquake shaking.It is necessary for us to study the strong ground motion characteristics at the Ilan area of northeastern Taiwan. Further analyses using a good quality data base that includes 486 events and 4172 recordings of magnitude greater than 4.0 are required to derive the next generation attenuation of ground motion in Ilan area. In addition, Liu and Tsai (2007) used a catalog of more than 1840 shallow earthquakes with homogenized Mw magnitude ranging from 5.0 to 8.2 in 1900-2007 to estimate the seismic hazard potential in Taiwan. As a result, the PGA and PGV contour patterns of maximum ground motion show that Ilan Plain has high values of 0.2g and 80cm/sec with respect to MMI intensity VII and IX, respectively. Furthermore, from the mean ground motion and the seismic intensity rate analyses, they show that a high annul probability of MMI > VI greater than 35 percents are located at the Chianan area of western Taiwan and Ilan Plain in northeastern Taiwan. However, these results was

  11. On the unsteady motion and stability of a heaving airfoil in ground effect

    Institute of Scientific and Technical Information of China (English)

    Juan Molina; Xin Zhang; David Angland

    2011-01-01

    This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces' behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity.However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.

  12. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YANHai-Qing; TANGChen; LIUMing; ZHANGHao; ZHANGGui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+,X) have beencal culated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  13. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YAN Hai-Qing; TANG Chen; LIU Ming; ZHANG Hao; ZHANG Gui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+, X) have been calculated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  14. Characteristics of ground motion at permafrost sites along the Qinghai-Tibet railway

    Science.gov (United States)

    Wang, L.; Wu, Z.; Sun, Jielun; Liu, Xiuying; Wang, Z.

    2009-01-01

    Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied. ?? 2008 Elsevier Ltd. All rights reserved.

  15. Closed-form critical earthquake response of elastic-plastic structures on compliant ground under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-01-01

    Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  16. On the Testing of Ground--Motion Prediction Equations against Small--Magnitude Data

    CERN Document Server

    Beauval, Céline; Laurendeau, Aurore; Delavaud, Elise; Cotton, Fabrice; Guéguen, Philippe; Kuehn, Nicolas; 10.1785/0120110271

    2012-01-01

    Ground-motion prediction equations (GMPE) are essential in probabilistic seismic hazard studies for estimating the ground motions generated by the seismic sources. In low seismicity regions, only weak motions are available in the lifetime of accelerometric networks, and the equations selected for the probabilistic studies are usually models established from foreign data. Although most ground-motion prediction equations have been developed for magnitudes 5 and above, the minimum magnitude often used in probabilistic studies in low seismicity regions is smaller. Desaggregations have shown that, at return periods of engineering interest, magnitudes lower than 5 can be contributing to the hazard. This paper presents the testing of several GMPEs selected in current international and national probabilistic projects against weak motions recorded in France (191 recordings with source-site distances up to 300km, 3.8\\leqMw\\leq4.5). The method is based on the loglikelihood value proposed by Scherbaum et al. (2009). The ...

  17. Soft Soil Site Characterization on the Coast of Yantai and Its Effect on Ground Motion Parameters

    Institute of Scientific and Technical Information of China (English)

    Lü Yuejun; Tang Rongyu; Peng Yanju

    2005-01-01

    According to the Chinese GB50011-2001 code and the recommended provisions of FEMANEHRP and EUROCODE 8, by using shear wave velocity and borehole data, the site classification is evaluated for a typical soft soil site on the Yantai seacoast. The site seismic ground motion effect is analyzed and the influence of the coastal soil on design ground motion parameters is discussed. The results show that the brief site classification can not represent the real conditions of a soft soil site; the soft soil on the coast has a remarkable impact on the magnitude and spectrum of ground motion acceleration. The magnification on peak acceleration is bigger, however, due to the nonlinear deformation of the soil. The magnification is reduced nonlinearly with the increase of input ground motion; the spectrum is broadened and the characteristic period elongated on the soft soil site.

  18. Ground motion parameters of Shillong plateau: One of the most seismically active zones of northeastern India

    Institute of Scientific and Technical Information of China (English)

    Saurabh Baruah; Santanu Baruah; Naba Kumar Gogoi; Olga Erteleva; Felix Aptikaev; J.R.Kayal

    2009-01-01

    Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.

  19. Ground-state-entanglement bound for quantum energy teleportation of general spin-chain models

    Science.gov (United States)

    Hotta, Masahiro

    2013-03-01

    Many-body quantum systems in the ground states have zero-point energy due to the uncertainty relation. In many cases, the system in the ground state accompanies spatially entangled energy density fluctuation via the noncommutativity of the energy density operators, though the total energy takes a fixed value, i.e., the lowest eigenvalue of the Hamiltonian. Quantum energy teleportation (QET) is a protocol for the extraction of the zero-point energy out of one subsystem using information of a remote measurement of another subsystem. From an operational viewpoint of protocol users, QET can be regarded as an effective rapid energy transportation without breaking all physical laws, including causality and local energy conservation. In the protocol, the ground-state entanglement plays a crucial role. In this paper, we show analytically for a general class of spin-chain systems that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET. The result may also deepen our understanding of the energy density fluctuation in condensed-matter systems from a perspective of quantum information theory.

  20. FINITE FAULT MODELING OF STRONG GROUND MOTIONS USING AN EMPIRICAL GREEN’S FUNCTION APPROACH

    OpenAIRE

    Scognamiglio, Laura; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia

    2005-01-01

    The purpose of this study is to test the ground motion synthesis methodology outlined by Hutchings and Wu (1990) and further developed by Hutchings et al. (1991, 1994), and verify its capacity of being used as a predicting tool in strong ground motion seismology as developed by Hutchings (1991) and Hutchings et al. (1996). The earthquake chosen for this test is the 26 September 1997, 09:40, Mw=6.0 Colfiorito Earthquake (Italy).

  1. Near-fault ground motion bi-normalized pseudo-velocity spectra and its applications

    Institute of Scientific and Technical Information of China (English)

    XU Long-jun; XIE Li-li

    2007-01-01

    Ground motions with forward-directivity effect in the near-fault region are obviously different from ordinary far-field ground motions. Design spectral models for this kind of motions have been proposed by correlating simple pulses with parameters attenuation relationships in a previous study of the authors. To further test the applicability of the established design spectral model, we analyze ground motion pseudo-velocity response spectra (PVS), normalized pseudo-velocity spectra (NPVS) and bi-normalized pseudo-velocity spectra (BNPVS) of 53 typical near-fault forward-directivity ground motions. It is found that BNPVS not only has more salient features to reflect the difference between soil and rock sites, but also has less scattering to reveal the nature of forward-directivity motions. And then, BNPVS is used for prediction of design spectra accounting for the influence of site conditions, and the constructed design spectra are compared with those spectra established previously. It is concluded that site condition can heavily affect ground motions, buildings on rock can be even more dangerous than those on soil sites, in particular for ordinary buildings with short to middle vibration periods. Finally, pulse models are also suggested for structural analyses in the near-fault region.

  2. Near-fault directivity pulse-like ground motion effect on high-speed railway bridge

    Institute of Scientific and Technical Information of China (English)

    陈令坤; 张楠; 蒋丽忠; 曾志平; 陈格威; 国巍

    2014-01-01

    The vehicle-track-bridge (VTB) element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions. Based on the PEER NAG Strong Ground Motion Database, the spatial analysis model of a vehicle-bridge system was developed, the VTB element was derived to simulate the interaction of train and bridge, and the elasto-plastic seismic responses of the bridge were calculated. The calculation results show that girder and pier top displacement, and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes, and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading. The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base, which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve. The results show that there is an amplification of the vertical deflection in the girder’s mid-span owing to the high vertical ground motion. In light of these findings, the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.

  3. Vertical ground motion and historical sea-level records in Dakar (Senegal)

    Science.gov (United States)

    Le Cozannet, Gonéri; Raucoules, Daniel; Wöppelmann, Guy; Garcin, Manuel; Da Sylva, Sylvestre; Meyssignac, Benoit; Gravelle, Médéric; Lavigne, Franck

    2015-08-01

    With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992-2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year-1. Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions.

  4. Vertical ground motion and historical sea-level records in Dakar (Senegal)

    International Nuclear Information System (INIS)

    With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992–2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year−1. Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions. (letter)

  5. Influence of spatial variations in ground motion on earthquake response of arch dams

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, A. [California Univ., Berkeley, CA (United States). Dept. of Civil and Environmental Engineering; Wang, J. [Tsinghua Univ., Beijing (China). Dept. of Hydraulic Engineering

    2010-07-01

    Ground motion recorded at arch dams demonstrate spatial variation or non-uniformity along the dam-foundation interface. Records obtained at two dams demonstrated this phenomena, notably the Pacoima Dam located in California during the magnitude 4.3 earthquake on January 13, 2001, and the magnitude 6.9 Northridge earthquake on January 17, 1994; and the Mauvoisin Dam located in Switzerland during the magnitude 4.6 Valpelline earthquake on March 31, 1996. These spatial variations in ground motion are hardly ever considered in earthquake analysis of arch dams. When they are included, dam-water-interaction is generally oversimplified. This paper discussed the use of the linear analysis procedure, which includes dam-water-foundation rock interaction effects and recognizes the semi-unbounded extent of the rock and impounded water domains in examining the response of the two arch dams to spatially-varying ground motions recorded during earthquakes. Specifically, the paper discussed the Mauvoisin Dam and earthquake records; system and excitation; influence of spatial variations in ground motion; Pacoima Dam and earthquake records; and influence of spatial variations in excitation. It was concluded that spatial variations in ground motion, typically ignored in dam engineering practice, can have profound influence on the earthquake-induced stresses in the dam. This influence depends on the degree to which ground motion varies spatially along the dam-rock interface. 11 refs., 9 figs.

  6. Readying One's Self: A Grounded Theory Investigation of the LatinoJustice PRLDEF LawBound Program Participants

    Science.gov (United States)

    Joseph, Angela Marie Banner

    2011-01-01

    This study was a grounded theory investigation of the LatinoJustice PRLDEF LawBound participants. The research was conducted using the grounded theory method developed by Glaser and Strauss (1967) and Glaser (1978, 1992, 1993, 1996, 1998, 2001, 2003, 2005) to discover an explanatory theory directly from the data. The discovery of the…

  7. Effects of near-fault ground motions on the nonlinear behaviour of reinforced concrete framed buildings

    Science.gov (United States)

    Mazza, Mirko

    2015-07-01

    The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete (r.c.) spatial frames, because only far-fault ground motions are considered in the seismic codes. Strong near-fault earthquakes are characterized by long-duration (horizontal) pulses and high values of the ratio α PGA of the peak value of the vertical acceleration, PGAV, to the analogous value of the horizontal acceleration, PGAH, which can become critical for girders and columns. In this work, six- and twelve-storey r.c. spatial frames are designed according to the provisions of the Italian seismic code, considering the horizontal seismic loads acting (besides the gravity loads) alone or in combination with the vertical ones. The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure. A lumped plasticity model based on the Haar-Kàrmàn principle is adopted to model the inelastic behaviour of the frame members. For the numerical investigation, five near-fault ground motions with high values of the acceleration ratio α PGA are considered. Moreover, following recent seismological studies, which allow the extraction of the largest (horizontal) pulse from a near-fault ground motion, five pulse-type (horizontal) ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted. The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.

  8. Effects of Ground Motion Input on the Derived Fragility Functions: Case study of 2010 Haiti Earthquake

    Science.gov (United States)

    Hancilar, Ufuk; Harmandar, Ebru; Çakti, Eser

    2014-05-01

    Empirical fragility functions are derived by statistical processing of the data on: i) Damaged and undamaged buildings, and ii) Ground motion intensity values at the buildings' locations. This study investigates effects of different ground motion inputs on the derived fragility functions. The previously constructed fragility curves (Hancilar et al. 2013), which rely on specific shaking intensity maps published by the USGS after the 2010 Haiti Earthquake, are compared with the fragility functions computed in the present study. Building data come from field surveys of 6,347 buildings that are grouped with respect to structural material type and number of stories. For damage assessment, the European Macroseismic Scale (EMS-98) damage grades are adopted. The simplest way to account for the variability in ground motion input could have been achieved by employing different ground motion prediction equations (GMPEs) and their standard variations. However, in this work, we prefer to rely on stochastically simulated ground motions of the Haiti earthquake. We employ five different source models available in the literature and calculate the resulting strong ground motion in time domain. In our simulations we also consider the local site effects by published studies on NEHRP site classes and micro-zoning maps of the city of Port-au-Prince. We estimate the regional distributions from the waveforms simulated at the same coordinates that we have damage information from. The estimated spatial distributions of peak ground accelerations and velocities, PGA and PGV respectively, are then used as input to fragility computations. The results show that changing the ground motion input causes significant variability in the resulting fragility functions.

  9. A synthetic GMPE based on deterministic simulated ground motion data obtained from dynamic rupture models

    Science.gov (United States)

    Dalguer, L. A.; Baumann, C.; Cauzzi, C.

    2013-12-01

    Empirical ground motion prediction in the very near-field and for large magnitudes is often based on extrapolation of ground motion prediction equations (GMPEs) outside the range where they are well constrained by recorded data. With empirical GMPEs it is also difficult to capture source-dominated ground motion patterns, such as the effects of velocity pulses induced by subshear and supershear rupture directivity, buried and surface-rupturing, hanging-wall and foot-wall, weak shallow layers, complex geometry faults and stress drop. A way to cope at least in part with these shortcomings is to augment the calibration datasets with synthetic ground motions. To this aim, physics-based dynamic rupture models - where the physical bases involved in the fault rupture are explicitly considered - appear to be a suitable approach to produce synthetic ground motions. In this contribution, we first perform an assessment of a database of synthetic ground motions generated by a suite of dynamic rupture simulations to verify compatibility of the peak ground amplitudes with current GMPEs. The synthetic data-set is composed by 360 earthquake scenarios with moment magnitudes in the range of 5.5-7, for three mechanisms of faulting (reverse, normal and strike-slip) and for both buried faults and surface rupturing faults. Second, we parameterise the synthetic dataset through a GMPE. For this purpose, we identify the basic functional forms by analyzing the variation of the synthetic peak ground motions and spectral ordinates as a function of different explanatory variables related to the earthquake source characteristics, in order to account for some of the source effects listed above. We argue that this study provides basic guidelines for the developments of future GMPEs including data from physics-based numerical simulations.

  10. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    KAUST Repository

    Imperatori, W.

    2012-12-06

    The heterogeneous nature of Earth\\'s crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent

  11. Simulation of near-fault bedrock strong ground-motion field by explicit finite element method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-zhi; HU Jin-jun; XIE Li-li; WANG Hai-yun

    2006-01-01

    Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained.The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.

  12. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.;

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  13. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.;

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  14. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions.

    Science.gov (United States)

    Híjar, Humberto

    2015-02-01

    We study the Brownian motion of a particle bound by a harmonic potential and immersed in a fluid with a uniform shear flow. We describe this problem first in terms of a linear Fokker-Planck equation which is solved to obtain the probability distribution function for finding the particle in a volume element of its associated phase space. We find the explicit form of this distribution in the stationary limit and use this result to show that both the equipartition law and the equation of state of the trapped particle are modified from their equilibrium form by terms increasing as the square of the imposed shear rate. Subsequently, we propose an alternative description of this problem in terms of a generalized Langevin equation that takes into account the effects of hydrodynamic correlations and sound propagation on the dynamics of the trapped particle. We show that these effects produce significant changes, manifested as long-time tails and resonant peaks, in the equilibrium and nonequilibrium correlation functions for the velocity of the Brownian particle. We implement numerical simulations based on molecular dynamics and multiparticle collision dynamics, and observe a very good quantitative agreement between the predictions of the model and the numerical results, thus suggesting that this kind of numerical simulations could be used as complement of current experimental techniques. PMID:25768490

  15. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    International Nuclear Information System (INIS)

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake

  16. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  17. Ground Motion Characteristics Considering Magnitude Dependency and Difference Between Surface and Subsurface Rupture Earthquakes

    Science.gov (United States)

    Kagawa, T.; Irikura, K.; Some, P. G.; Miyake, H.; Sato, T.; Dan, K.; Matsu, S.

    2005-12-01

    We have studied differences in ground motion according to fault rupture types and magnitude. We found that three diffferent earthquake categories have distinct ground motion characteristics. Somerville (2003) and Kagawa et al. (2004) found that the ground motion caused by subsurface rupture in the period range around one second is larger than predicted by empirical spectral attenuation relations (Abrahamson and Silva, 1997) for all earthquakes, but ground motion from earthquakes that rupture the surface is smaller in the same period range. We expand their study to smaller earthquakes and add several recent earthquakes. WWe began by dividing the earthquakes into four categories that are a combination of two classifications, i.e. defined and undefined fault, surface and subsurface rupture earthquakes. Each category is divided into larger and smaller earthquakes than about Mw 6.5. Eventually, we classified the earthquakes into three groups: a) Surface rupture type : Ground motion is smaller than average, especially in the period range around 1 second. b) Larger subsurface rupture type : Ground motion is larger than average, especially in the period range around 1 second. c) Smaller subsurface rupture type : Ground motion is larger than average, especially in the period range around 0.1 second. Subsurface rupture earthquakes with small magnitude occur in the deep portion of the seismogenic zone. Deep and high stress asperities generate large ground motions in the short period range. They do not generate pulse like ground motions, because the asperity is too small and deep to cause forward directivity effects, and because the radiation and propagation of ground motion at short periods may be too incoherent to allow the formation of a pulse. Larger subsurface rupture earthquakes have larger asperities that may span a large part of the width of the seismogenic zone, producing coherent directivity pulses with periods of 1 second or more. Kagawa et al. (2004) pointed out

  18. Specification of ground motion input for SSI analyses

    International Nuclear Information System (INIS)

    The effects of local soil conditions on the characteristics of the earthquake motions to which a structure may be subjected are in part dependent upon the amplitude and frequency content of the seismic motion at the free surface of a soil deposit, before any structure is built, which are functions of the soil properties in the linear elastic and the inelastic ranges. This paper is concerned primarily with this effect, however, some discussion of kinematic interaction effects and the way to model them is presented. This effect is commonly known as soil amplification although the name may be misleading, since there is in fact amplification over certain ranges of frequencies and deamplification over others

  19. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  20. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties

  1. Probabilistic sensitivity analysis of two suspension bridges in Istanbul, Turkey to near- and far-fault ground motion

    OpenAIRE

    Çavdar, Ö.

    2012-01-01

    The aim of this paper is to compare the near-fault and far-fault ground motion effects on the probabilistic sensitivity dynamic responses of two suspension bridges in Istanbul. Two different types of suspension bridges are selected to investigate the near-fault (NF) and far-fault (FF) ground motion effects on the bridge sensitivity responses. NF and FF strong ground motion records, which have approximately identical peak ground accelerations, of the Kocaeli (1999) earthquake are selected for ...

  2. SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.

    Science.gov (United States)

    Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.

    1985-01-01

    Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.

  3. Effects of soil amplification ratio and multiple wave interference for ground motion due to earthquake

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; XU Jiren; Ryuji Kubota

    2004-01-01

    Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interferences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array survey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplification ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a complicated distribution of the maximum amplitudes of acceleration waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak amplitude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplification effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the

  4. Mitigation of ground motion effects in linear accelerators via feed-forward control

    Science.gov (United States)

    Pfingstner, J.; Artoos, K.; Charrondiere, C.; Janssens, St.; Patecki, M.; Renier, Y.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.

    2014-12-01

    Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders). Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems) such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2), ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.

  5. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2015-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.

  6. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    Science.gov (United States)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  7. Three-photon transitions from ground state to bound states in atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thayyullathil, Ramesh Babu [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Radhakrishnan, R [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Seema, M [Department of Physics, Indian Institute of Technology, New Delhi 110 016 (India)

    2003-08-08

    In this paper, we present an efficient alternative method for the evaluation of the three-photon transition matrix element in the dipole approximation from the ground state to bound states in atomic hydrogen. This method is a variation of the Dalgarno-Lewis method for the treatment of the second-order Stark effect in the hydrogen atom. In this approach, the infinite double sum over the complete set of states including the continuum states present in the third-order perturbation theory result is treated exactly. The closed analytical expression obtained for the matrix element, as a function of incident photon energy, clearly displays all singularities present in the original third-order perturbation theory result.

  8. Constraints provided by ground gravity observations on geocentre motions

    Science.gov (United States)

    Rogister, Y.; Mémin, A.; Rosat, S.; Hinderer, J.; Calvo, M.

    2016-08-01

    The geocentre motion is the motion of the centre of mass of the entire Earth, considered an isolated system, in a terrestrial system of reference. We first derive a formula relating the harmonic degree-1 Lagrangian variation of the gravity at a station to both the harmonic degree-1 vertical displacement of the station and the displacement of the whole Earth's centre of mass. The relationship is independent of the nature of the Earth deformation and is valid for any source of deformation. We impose no constraint on the system of reference, except that its origin must initially coincide with the centre of mass of the spherically symmetric Earth model. Next, we consider the geocentre motion caused by surface loading. In a system of reference whose origin is the centre of mass of the solid Earth, we obtain a specific relationship between the gravity variation at the surface, the geocentre displacement and the load Love number h^' }_1, which demands the Earth's structure and rheological behaviour be known. For various networks of real or fictitious stations, we invert synthetic signals of surface gravity variations caused by atmospheric loading to retrieve the degree-1 variation of gravity. We then select six well-distributed stations of the Global Geodynamics Project, which is a world network of superconducting gravimeters, to invert actual gravity data for the degree-1 variations and determine the geocentre displacement between the end of 2004 and the beginning of 2012, assuming it to be due to surface loading. We find annual and semi-annual displacements with amplitude 0.5-2.3 mm.

  9. Constraints provided by ground gravity observations on geocentre motions

    Science.gov (United States)

    Rogister, Y.; Mémin, A.; Rosat, S.; Hinderer, J.; Calvo, M.

    2016-06-01

    The geocentre motion is the motion of the centre of mass of the entire Earth, considered an isolated system, in a terrestrial system of reference. We first derive a formula relating the harmonic degree-1 Lagrangian variation of the gravity at a station to both the harmonic degree-1 vertical displacement of the station and the displacement of the whole Earth's centre of mass. The relationship is independent of the nature of the Earth deformation and is valid for any source of deformation. We impose no constraint on the system of reference, except that its origin must initially coincide with the centre of mass of the spherically-symmetric Earth model. Next, we consider the geocentre motion caused by surface loading. In a system of reference whose origin is the centre of mass of the solid Earth, we obtain a specific relationship between the gravity variation at the surface, the geocentre displacement and the load Love number h^' }_1, which demands the Earth's structure and rheological behaviour be known. For various networks of real or fictitious stations, we invert synthetic signals of surface gravity variations caused by atmospheric loading to retrieve the degree-1 variation of gravity. We then select 6 well distributed stations of the Global Geodynamics Project, which is a world network of superconducting gravimeters, to invert actual gravity data for the degree-1 variations and determine the geocentre displacement between the end of 2004 and the beginning of 2012, assuming it to be due to surface loading. We find annual and semi-annual displacements with amplitude 0.5 to 2.3 mm.

  10. Application and API for Real-time Visualization of Ground-motions and Tsunami

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.

    2015-12-01

    Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are

  11. Attenuation characteristics of ground motions in northern China

    Institute of Scientific and Technical Information of China (English)

    黄玉龙; 赵兴权; 罗奇峰

    2002-01-01

    Four recently developed attenuation models are calibrated by using a very limited amount of strong motion data recorded in China. The research shows that the attenuation characteristics of the earthquake shaking in northern China are similar to those in the western US. The supporting evidence includes Q factors, preliminary results of kappa values, stress drop,shear wave velocity profile in the shallow earth crust, areas enclosed by the isoseismals of Modified Mercalli Intensity V. From these comparisons of different attenuation models, it is recommended that the Crouse and McGuire spectral attenuation model could possibly be used for northern China.

  12. Identification of acceleration pulses in near-fault ground motion using the EMD method

    Institute of Scientific and Technical Information of China (English)

    Zhang Yushan; Hu Yuxian; Zhao Fengxin; Liang Jianwen; Yang Caihong

    2005-01-01

    In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing)and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.

  13. Source, propagation and site effects: impact on mapping strong ground motion in Bucharest area

    International Nuclear Information System (INIS)

    Achievements in the framework of the NATO SfP project 972266 focused on the impact of Vrancea earthquakes on the security of Bucharest urban area are presented. The problem of Bucharest city security to Vrancea earthquakes is discussed in terms of numerical modelling of seismic motion and intermediate term earthquake prediction. A hybrid numerical scheme developed by Faeh et al. (1990; 1993) for frequencies up to 1 Hz is applied for the realistic modelling of the seismic ground motion in Bucharest. The method combines the modal summation for the 1D bedrock model and the finite differences for the 2D local structure model. All the factors controlling the ground motion at the site are considered: source, propagation and site effects, respectively. The input data includes the recent records provided by the digital accelerometer network developed within the Romanian-German CRC461 cooperation programme and CALIXTO'99, VRANCEA'99, VRANCEA2001 experiments. The numerical simulation proves to be a powerful tool in mapping the strong ground motion for realistic structures, reproducing acceptably from engineering point of view the observations. A new model of the Vrancea earthquake scaling is obtained and implications for the determination of the seismic motion parameters are analyzed. The role of the focal mechanism and attenuation properties upon the amplitude and spectral content of the ground motion are outlined. CN algorithm is applied for predicting Vrancea earthquakes. Finally, implications for the disaster management strategy are discussed. (authors)

  14. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz.

  15. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  16. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz

  17. Seismic Analysis of Elevated Water Storage Tanks Subjected to Six Correlated Ground Motion Components

    Directory of Open Access Journals (Sweden)

    L. Kalani Sarokolayi

    2013-01-01

    Full Text Available In this work, rotational components of ground motion acceleration were defined according toimproved method from the corresponding available translational components based on transversely isotropicelastic wave propagation in the soil. With such improvement, it becomes possible to consider frequencydependent wave velocities on rotational components of ground motion. For this purpose, three translationalcomponents of El Centro earthquake (24 January 1951 were adopted to generate their relative rotationalcomponents based on SV and SH wave incidence by Fast Fourier transform with 4096 discrete frequencies.The translational and computed rotational motions were then applied to the concrete elevated water storagetanks with different structural characteristics and water elevations. The finite element method is used for thenonlinear analysis of water storage tanks considering the fluid-structure interaction using Lagrangian-Lagrangian approach and the concrete material nonlinearities have been taken into account through William-Warnke model. The nonlinear response of these structures considering the six components of ground motionshowed that the rotational components of ground motion can increase or decrease the maximum displacementand reaction force of the structure. These variations are depending on the frequency of structure andpredominant frequencies of translational and rotational components of ground motion.

  18. Influence of earthquake ground motion incoherency on multi-support structures

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A linear response history analysis method is used to determine the influence of three factors: geometric incoherency, wave-passage, and local site characteristics on the response of multi-support structures subjected to differential ground motions. A one-span frame and a reduced model of a 24-span bridge, located in Las Vegas, Nevada are studied, in which the influence of each of the three factors and their combinations are analyzed. It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response, which does not exist in structures subjected to uniform excitation. The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.

  19. Dynamic corner frequency in source spectral model for stochastic synthesis of ground motion

    Institute of Scientific and Technical Information of China (English)

    Xiaodan Sun; Xiaxin Tao; Guoxin Wang; Taojun Liu

    2009-01-01

    The static corner frequency and dynamic corner frequency in stochastic synthesis of ground motion from finite-fault modeling are introduced, and conceptual disadvantages of the two are discussed in this paper. Furthermore, the non-uniform radiation of seismic wave on the fault plane, as well as the trend of the larger rupture area, the lower corner frequency, can be described by the source spectral model developed by the authors. A new dynamic corner frequency can be developed directly from the model. The dependence of ground motion on the size of subfault can be eliminated if this source spectral model is adopted in the synthesis. Finally, the approach presented is validated from the comparison between the synthesized and observed ground motions at six rock stations during the Northridge earthquake in 1994.

  20. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    International Nuclear Information System (INIS)

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  1. Seismic reliability assessment of classical columns subjected to near-fault ground motions

    CERN Document Server

    Psycharis, Ioannis; Stefanou, Ioannis

    2013-01-01

    A methodology for the performance-based seismic risk assessment of classical columns is presented. Despite their apparent instability, classical columns are, in general, earthquake resistant, as proven from the fact that many classical monuments have survived many strong earthquakes over the centuries. Nevertheless, the quantitative assessment of their reliability and the understanding of their dynamic behavior are not easy, because of the fundamental nonlinear character and the sensitivity of their response. In this paper, a seismic risk assessment is performed for a multidrum column using Monte Carlo simulation with synthetic ground motions. The ground motions adopted contain a high- and low-frequency component, combining the stochastic method, and a simple analytical pulse model to simulate the directivity pulse contained in near source ground motions. The deterministic model for the numerical analysis of the system is three-dimensional and is based on the Discrete Element Method. Fragility curves are prod...

  2. Analytical approach to calculation of response spectra from seismological models of ground motion

    Science.gov (United States)

    Safak, Erdal

    1988-01-01

    An analytical approach to calculate response spectra from seismological models of ground motion is presented. Seismological models have three major advantages over empirical models: (1) they help in an understanding of the physics of earthquake mechanisms, (2) they can be used to predict ground motions for future earthquakes and (3) they can be extrapolated to cases where there are no data available. As shown with this study, these models also present a convenient form for the calculation of response spectra, by using the methods of random vibration theory, for a given magnitude and site conditions. The first part of the paper reviews the past models for ground motion description, and introduces the available seismological models. Then, the random vibration equations for the spectral response are presented. The nonstationarity, spectral bandwidth and the correlation of the peaks are considered in the calculation of the peak response.

  3. Strong Ground Motion in the 2011 Tohoku Earthquake: a 1Directional - 3Component Modeling

    CERN Document Server

    D'Avila, Maria Paola Santisi; Lenti, Luca

    2013-01-01

    Local wave amplification due to strong seismic motions in surficial multilayered soil is influenced by several parameters such as the wavefield polarization and the dynamic properties and impedance contrast between soil layers. The present research aims at investigating seismic motion amplification in the 2011 Tohoku earthquake through a one-directional three-component (1D-3C) wave propagation model. A 3D nonlinear constitutive relation for dry soils under cyclic loading is implemented in a quadratic line finite element model. The soil rheology is modeled by mean of a multi-surface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan (MPII) type. Its major advantage is that the rheology is characterized by few commonly measured parameters. Ground motions are computed at the surface of soil profiles in the Tohoku area (Japan) by propagating 3C signals recorded at rock outcrops, during the 2011 Tohoku earthquake. Computed surface ground motions are compared to the Tohoku earthquake records at alluvial ...

  4. Simulation of Near-Fault Strong Ground Motion in the Beijing Region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of previous study of the 1679 Sanhe-Pinggu ( M8. 0) earthquake, the biggest event in history ever recorded in Beijing and its adjacent area, we made a 3-D strong ground motion simulation utilizing the staggered-grid finite differences method to study the distributions of peak ground velocity with different earthquake source models in the Beijing region. In the paper, earthquake source models and a transmission medium velocity model are established and the corresponding parameters are given in accordance to the results from a related previous study. Then, using a three-dimensional finite difference computing program of near-fault strong ground motion developed by Graves, the peak ground velocity caused by a destructive earthquake in the Beijing area is simulated. In our computation model, the earthquake source is 3km in depth, and a total number of 21,679 observation points on the ground surface are figured out. The transmission medium velocity model is composed of four stratums which are the Quaternary deposit, the upper crust, the upper part of the middle crust and the lower part of the middle crust. With the minimum grid spacing of 0.15km, a total of 2.28 × 106 grids are generated. Using a time step of 0.02 seconds we calculated the peak ground velocity for a duration of 8 seconds. After the analysis of the simulation results, we observed some basic characteristics of near-fault strong ground motion such as the concentration effect of near-fault peak ground velocity, rupture directivity effect, hanging wall effect, and basin effect. The results from our simulation and analysis suggest that the source and transmitting medium parameters in our model are suitable and the finite difference method is applicable to estimate the distribution of strong ground motion in the study region.

  5. Site response zones and short-period earthquake ground motion projections for the Las Vegas Basin

    Indian Academy of Sciences (India)

    Barbara Luke; Ying Liu

    2008-11-01

    A deterministic seismic hazard analysis was conducted to address the effect of local soil conditions on earthquake-induced strong ground motion in the Las Vegas Basin, Nevada (US). Using a large geological and geotechnical database, two response units were defined: a fine-grained unit, predominantly clay; and a coarse-grained unit, predominantly gravel. A moderate number of high-quality shallow shear wave velocity measurements were collected from which characteristic shear wave velocity profiles were developed for each response unit. An equivalent-linear one-dimensional site response model was used. The model was calibrated using a basin-wide, small-strain ground motion database. Calibration tests showed that ground motion projections become increasingly conservative with increasing ground-motion amplitude. Projections were overconservative for the coarsegrained response unit, likely due to the sparseness of the velocity database. For the earthquake response analyses, historical ground motions were used to model characteristic ‘bedrock’ motion for earthquakes on 10 faults judged to be critical. Response spectral envelopes were generated for each unit through Monte-Carlo simulations. For the fine-grained response unit, 95th percentile peak ground acceleration, peak spectral acceleration and predominant period were 310 cm/s2, 1100cm/s2, and 0.29 s, respectively. With respect to codified design spectra, projections are lower at short periods and higher at long periods. Projections of peak spectral accelerations for the coarsegrained response unit, were more than double that of codified spectra; however, they are believed to be overconservative. Near-fault effects and basin-edge effects, though potentially important, were not considered in these analyses.

  6. Ground-Motion Simulations of Scenario Earthquakes on the Hayward Fault

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Graves, R; Larsen, S; Ma, S; Rodgers, A; Ponce, D; Schwartz, D; Simpson, R; Graymer, R

    2009-03-09

    We compute ground motions in the San Francisco Bay area for 35 Mw 6.7-7.2 scenario earthquake ruptures involving the Hayward fault. The modeled scenarios vary in rupture length, hypocenter, slip distribution, rupture speed, and rise time. This collaborative effort involves five modeling groups, using different wave propagation codes and domains of various sizes and resolutions, computing long-period (T > 1-2 s) or broadband (T > 0.1 s) synthetic ground motions for overlapping subsets of the suite of scenarios. The simulations incorporate 3-D geologic structure and illustrate the dramatic increase in intensity of shaking for Mw 7.05 ruptures of the entire Hayward fault compared with Mw 6.76 ruptures of the southern two-thirds of the fault. The area subjected to shaking stronger than MMI VII increases from about 10% of the San Francisco Bay urban area in the Mw 6.76 events to more than 40% of the urban area for the Mw 7.05 events. Similarly, combined rupture of the Hayward and Rodgers Creek faults in a Mw 7.2 event extends shaking stronger than MMI VII to nearly 50% of the urban area. For a given rupture length, the synthetic ground motions exhibit the greatest sensitivity to the slip distribution and location inside or near the edge of sedimentary basins. The hypocenter also exerts a strong influence on the amplitude of the shaking due to rupture directivity. The synthetic waveforms exhibit a weaker sensitivity to the rupture speed and are relatively insensitive to the rise time. The ground motions from the simulations are generally consistent with Next Generation Attenuation ground-motion prediction models but contain long-period effects, such as rupture directivity and amplification in shallow sedimentary basins that are not fully captured by the ground-motion prediction models.

  7. Machine-Learning Methods for Earthquake Ground Motion Analysis and Simulation

    OpenAIRE

    Alimoradi, Arzhang; Beck, James L.

    2015-01-01

    This paper presents a novel method of data-based probabilistic seismic hazard analysis (PSHA) and ground motion simulation, verified using previously recorded strong-motion data and machine-learning techniques. The procedure consists of three parts: (1) selection of an orthonormal set of basis vectors called eigenquakes to represent characteristic earthquake records; (2) estimation of response spectra for the anticipated level of shaking for a scenario earthquake at a site using Gaussian proc...

  8. Hazard assessment of long-period ground motions for the Nankai Trough earthquakes

    Science.gov (United States)

    Maeda, T.; Morikawa, N.; Aoi, S.; Fujiwara, H.

    2013-12-01

    We evaluate a seismic hazard for long-period ground motions associated with the Nankai Trough earthquakes (M8~9) in southwest Japan. Large interplate earthquakes occurring around the Nankai Trough have caused serious damages due to strong ground motions and tsunami; most recent events were in 1944 and 1946. Such large interplate earthquake potentially causes damages to high-rise and large-scale structures due to long-period ground motions (e.g., 1985 Michoacan earthquake in Mexico, 2003 Tokachi-oki earthquake in Japan). The long-period ground motions are amplified particularly on basins. Because major cities along the Nankai Trough have developed on alluvial plains, it is therefore important to evaluate long-period ground motions as well as strong motions and tsunami for the anticipated Nankai Trough earthquakes. The long-period ground motions are evaluated by the finite difference method (FDM) using 'characterized source models' and the 3-D underground structure model. The 'characterized source model' refers to a source model including the source parameters necessary for reproducing the strong ground motions. The parameters are determined based on a 'recipe' for predicting strong ground motion (Earthquake Research Committee (ERC), 2009). We construct various source models (~100 scenarios) giving the various case of source parameters such as source region, asperity configuration, and hypocenter location. Each source region is determined by 'the long-term evaluation of earthquakes in the Nankai Trough' published by ERC. The asperity configuration and hypocenter location control the rupture directivity effects. These parameters are important because our preliminary simulations are strongly affected by the rupture directivity. We apply the system called GMS (Ground Motion Simulator) for simulating the seismic wave propagation based on 3-D FDM scheme using discontinuous grids (Aoi and Fujiwara, 1999) to our study. The grid spacing for the shallow region is 200 m and

  9. Assessment of potential strong ground motions in the city of Rome

    OpenAIRE

    L. Malagnini; A. Caserta; A. Rovelli; Marra, F

    1994-01-01

    A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to...

  10. An Index for Seismic Landslides Evaluation Extracting from Ground Motion Data

    Science.gov (United States)

    Wang, X.

    2013-12-01

    The Wenchuan Earthquake, occurred on 12th May 2008, induced numerous landslides. Among which, over 100 large scale landslides were triggered. It was fortunately that a great number of ground motion records were obtained from the main shock, which provided the opportunity to study landslides using ground motion data. Therefore, an index is proposed for earthquake-induced landslides evaluation by using a group of data from this dataset. This index combines the characteristics of amplitude, frequency and duration. The index shows good correlation with landslides disasters, which makes it a suitable candidate factor for seismic landslides evaluation in future application.

  11. A cooperative NRC/CEA research project on earthquake ground motion on soil sites

    International Nuclear Information System (INIS)

    This paper provides an overview of a multi-phase experiment. The objective of the experiment is to collect a comprehensive set of data on the propagation of earthquake ground motions vertically through a shallow soil column (on the order of several tens of meters). The data are used to validate several of the available engineering computer codes for modeling earthquake ground motion. The data set are also used to develop an improved understanding of the earthquake source function and the potential for non-linear effects controlling the propagation through the shallow soil column

  12. Existence and Concentration of Ground States of Coupled Nonlinear Schr(o)dinger Equations with Bounded Potentials

    Institute of Scientific and Technical Information of China (English)

    Gongming WEI

    2008-01-01

    A 2-coupled nonlinear Schr(o)dinger equations with bounded varying potentials and strongly attractive interactions is considered.When the attractive interaction is strong enough,the existence of a ground state for sufficiently small Planck constant is proved.As the Planck constant approaches zero,it is proved that one of the components concentrates at a minimum point of the ground state energy function which is defined in Section 4.

  13. Assessment of ground motion variability and its effects on seismic hazard analysis: A case study for Iceland

    OpenAIRE

    Ornthammarath, Teraphan; Douglas, John; Sigbjörnsson, Ragnar; Lai, Carlo

    2011-01-01

    International audience Probabilistic seismic hazard analysis (PSHA) generally relies on the basic assumption that ground motion prediction equations (GMPEs) developed for other similar tectonic regions can be adopted in the considered area. This implies that observed ground motion and its variability at considered sites could be modelled by the selected GMPEs. Until now ground-motion variability has been taken into account in PSHA by integrating over the standard deviation reported in GMPE...

  14. Artificial ground motion compatible with specified peak velocity and target spectrum

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-xin; ZHANG Yu-shan

    2006-01-01

    In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initial acceleration time history a(0)g (t), which satisfies the prescribed peak ground acceleration, the target spectral acceleration ST(ω,ζ ), and the specified intensity envelope, is generated by the traditional method that generates the response-spectrum-compatible artificial ground motion by modifying the Fourier amplitude spectrum in the frequency domain; secondly, a(0)g (t) is further modulated by superimposing narrow-band time histories upon it in the time domain to make its peak velocity, approach the target peak ground velocity, and at the same time to improve its fitting precision to the target spectrum. Numerical examples show that this algorithm boasts high calculation precisions.

  15. Postures and Motions Library Development for Verification of Ground Crew Human Systems Integration Requirements

    Science.gov (United States)

    Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena

    2012-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  16. Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements

    Science.gov (United States)

    Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles

    2013-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  17. Orbits of LMC/SMC with recent ground-based proper motions

    Directory of Open Access Journals (Sweden)

    Růžička A.

    2012-02-01

    Full Text Available In recent years, with new ground-based and HST measurements of proper motions of the Magellanic Clouds being published, a need of a reanalysis of possible orbital history has arisen. As complementary to other studies, we present a partial examination of the parameter space – aimed at exploring the uncertainties in the proper motions of both Clouds, taking into account the updated values of Galactic constants and Solar motion, which kinematically and dynamically influence the orbits of the satellites. In the chosen setup of the study, none of the binding scenarios of this pair could be neglected.

  18. Detection of motional ground state population of a trapped ion using delayed pulses

    CERN Document Server

    Gebert, Florian; Wolf, Fabian; Heip, Jan C; Schmidt, Piet O

    2015-01-01

    Efficient preparation and detection of the motional state of trapped ions is important in many experiments ranging from quantum computation to precision spectroscopy. We investigate the stimulated Raman adiabatic passage (STIRAP) technique for the manipulation of motional states in a trapped ion system. The presented technique uses a Raman coupling between two hyperfine ground states in $^{25}$Mg$^+$, implemented with delayed pulses, which removes a single phonon independent of the initial motional state. We show that for a thermal state the STIRAP population transfer is more efficient than a stimulated Raman Rabi pulse on a motional sideband. In contrast to previous implementations, a large detuning of more than 200 times the natural linewidth of the transition is used. This approach renders STIRAP suitable for atoms in which resonant laser fields would populate fluorescing excited states and thus impede the STIRAP process. We use the technique to measure the wavefunction overlap of excited motional states w...

  19. Revisions to some parameters used in stochastic-method simulations of ground motion

    Science.gov (United States)

    Boore, David; Thompson, Eric M.

    2015-01-01

    The stochastic method of ground‐motion simulation specifies the amplitude spectrum as a function of magnitude (M) and distance (R). The manner in which the amplitude spectrum varies with M and R depends on physical‐based parameters that are often constrained by recorded motions for a particular region (e.g., stress parameter, geometrical spreading, quality factor, and crustal amplifications), which we refer to as the seismological model. The remaining ingredient for the stochastic method is the ground‐motion duration. Although the duration obviously affects the character of the ground motion in the time domain, it also significantly affects the response of a single‐degree‐of‐freedom oscillator. Recently published updates to the stochastic method include a new generalized double‐corner‐frequency source model, a new finite‐fault correction, a new parameterization of duration, and a new duration model for active crustal regions. In this article, we augment these updates with a new crustal amplification model and a new duration model for stable continental regions. Random‐vibration theory (RVT) provides a computationally efficient method to compute the peak oscillator response directly from the ground‐motion amplitude spectrum and duration. Because the correction factor used to account for the nonstationarity of the ground motion depends on the ground‐motion amplitude spectrum and duration, we also present new RVT correction factors for both active and stable regions.

  20. A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta

    Science.gov (United States)

    Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.

    2015-12-01

    Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.

  1. Development of attenuation relation for the near fault ground motion from the characteristic earthquake

    Institute of Scientific and Technical Information of China (English)

    SHI Bao-ping; LIU Bo-yan; ZHANG Jian

    2007-01-01

    A composite source model has been used to simulate a broadband strong ground motion with an associated fault rupture process. A scenario earthquake fault model has been used to generate 1 000 earthquake events with a magnitude of Mw8.0. The simulated results show that, for the characteristic event with a strike-slip faulting, the characteristics of near fault ground motion is strongly dependent on the rupture directivity. If the distance between the sites and fault was given, the ground motion in the forward direction (Site A) is much larger than that in the backward direction (Site C) and that close to the fault (Site B). The SH waves radiated from the fault, which corresponds to the fault-normal component plays a key role in the ground motion amplification. Corresponding to the sites A, B, and C, the statistical analysis shows that the ratio of their aPG is 2.15:1.5:1 and their standard deviations are about 0.12, 0.11, and 0.13, respectively. If these results are applied in the current probabilistic seismic hazard analysis (PSHA), then, for the lower annual frequency of exceedance of peak ground acceleration, the predicted aPG from the hazard curve could reduce by 30% or more compared with the current PSHA model used in the developing of seismic hazard map in the USA. Therefore, with a consideration of near fault ground motion caused by the rupture directivity, the regression model used in the development of the regional attenuation relation should be modified accordingly.

  2. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake

    Science.gov (United States)

    Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.

    1999-01-01

    This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).

  3. Seismic fragility analysis of a CANDU containment structure for near-fault ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Choun, Young Sun; Seo, Jeong Moon; Ahn, Seong Moon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The R. G. 1.60 spectrum used for the seismic design of Korean nuclear power plants provides a generally conservative design basis due to its broadband nature. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near these faults. The probability based scenario earthquakes were identified as near-field earthquakes. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. It is necessary to estimate the near-fault ground motion effects on the nuclear power plant structures and components located near the faults. In this study, the seismic fragility analysis of a CANDU containment structure was performed based on the results of nonlinear dynamic time-history analyses.

  4. The evaluation of a group motion for FBR core subassemblies under the seismic condition over Design Basis Earthquake Ground Motion

    International Nuclear Information System (INIS)

    The seismic Probabilistic Risk Assessment (PRA) for Fast Breeder Reactors (FBRs) has been carried out to confirm that the seismic safety is equivalent to that of Light Water Reactors (LWRs). The seismic response on the reactor structure of FBRs causes seismic reactivity. The group motion of fuel assemblies is one of typical seismic response. So that much attention has been paid on the reactivity insertion mechanism due to the group motion of fuel assemblies and it’s consequence during the earthquake over the Design Basis Ground Motion (DBGM) condition. When the displacement of each subassembly is moving toward the same direction, each gap reduces coherently and the radial core compaction occurs, which results in positive reactivity insertion. We evaluate the gap reduction characteristics at the mid-plane of core by using a correlation coefficient. As a result, the fuel subassemblies are most concentrated when the input seismic motion of about 5Hz frequency and 40m/s2 acceleration is applied. The amount of reactivity insertion is estimated approximately 1$ that corresponds to prompt criticality. (author)

  5. Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake.

    Science.gov (United States)

    Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath

    2016-06-23

    The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.

  6. Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake.

    Science.gov (United States)

    Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath

    2016-01-01

    The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest. PMID:27335317

  7. Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake

    Science.gov (United States)

    Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath

    2016-01-01

    The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest. PMID:27335317

  8. Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground.

    Science.gov (United States)

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2013-08-14

    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)-despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception.

  9. Seismic Ground Motion and Coseismic Displacement Associated with the 26 December 2006 off Pingtung, Taiwan, Earthquake

    Science.gov (United States)

    Chen, H.; Kuo, L.; Yu, S.; Liu, C.

    2007-12-01

    Two sequence earthquakes (ML=6.96 and 6.99) occurred in southern Taiwan off Pingtung, and the main shocks are only at an interval of 8 minutes. These earthquakes caused more than ten centimeters of ground motion, and a few centimeters of coseismic deformation, respectively. All of these displacements have been recorded by the Continuously Observation Recording GPS Stations (CORS), and estimated by two different post-processing methods, namely the kinematic positioning and the daily solution algorithm. Precise evaluation of the capturing instantaneous ground motion and coseismic deformation at a level of just millimeters requires rigorous computational procedures. In this paper, a set of high sampling rate (1Hz) data from the CORS has been used to study simultaneous ground motion during the Pingtung earthquakes. A completely regular algorithm to estimate the crustal deformation in the Taiwan area has been applied to acquire coseismic deformation as a result of the Pingtung earthquakes. Applying beyond 2 weeks of data and 50 stations of the CORS, the coseismic deformation can be precisely estimated. Since the instantaneous ground motion can be computed by continuous GPS observations and the coseismic deformation can be acquired precisely and integrated with seismic data, these results can assist the study of earthquake geodesy.

  10. Vertical motion in the lower ionosphere during a ground industrial explosion

    International Nuclear Information System (INIS)

    Data on the velocities of vertical motions in the D-area of ionosphere during the ground industrial explosion on June 11 1989 in the region of the Toktogul hydroelectric power plant are obtained through the method of radiowave resonance scattering on artificial periodical inhomogeneities

  11. Assessment of potential strong ground motions in the city of Rome

    Directory of Open Access Journals (Sweden)

    L. Malagnini

    1994-06-01

    Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions

  12. Downhole instrumentation for the evaluation of non-linear soil response on ground surface motion

    International Nuclear Information System (INIS)

    A downhole experiment at McGee Creek in eastern central California has shown that, for hard soil deposits, the one-dimensional shear-wave model for the soil constitutive relationship is adequate for use in the computation of ground surface motions. In order to investigate the influence of soil non-linearities on these latter, an alluvial site has been instrumented in southern California, at Garner Valley. This paper presents the characterization of the site and the soil parameters derived from in-site and laboratory-based tests. Preliminary results for the recorded ground motion responses corresponding to small-magnitude earthquakes are compared with computed motions from a one-dimensional shear-wave model. (author)

  13. A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles

    Directory of Open Access Journals (Sweden)

    Chang-sheng Gao

    2016-01-01

    Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.

  14. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  15. Study of the Probability Law Governing Ground Motion Metrics Recorded During the 2004 Parkfield Earthquake

    Science.gov (United States)

    Lavallee, D.

    2007-12-01

    Based on the superposition of seismic waves and the Central Limit Theorem, we developed the basis for a unified picture of earthquake variability from its recording in the ground motions to its inference in source models. According to this theory, the random properties of the ground motions and the source for a single earthquake should be both (approximately) distributed according to the Levy law. Computation of the probability density function (PDF) of the peak ground acceleration (PGA) of the 1999 Chi-Chi, the PDF of the PGA and the PDF of the peak ground velocity (PGV) of the 2004 Parkfield earthquakes confirms this theory. As predicted by the theory, we found that the tails of the PDF, characterizing the slip and the PGA, are attenuated according to power laws with exponents (denoted Levy indexes) that take almost the same values close to 1. Computations of the PDF of the PGA recorded at the surface and the PDF of the PGA recorded in borehole during the 2003 Tokachi-oki earthquake lead to a similar conclusion. The PDF tail measures the frequency at which large events occurred and thus quantifies the probability to observe large acceleration values and large velocity values during an earthquake. We extend our analysis of the random properties to other ground motion metrics. To lessen the dependency due to the source-to-site distance, we consider the ratio of the PGV to the PGA, the ratio of the two horizontal components of the PGA to the vertical component of the PGA, and the ratio of the horizontal components of the PGV to the vertical component of the PGV. In this analysis, we use the ground motions recorded during the 2004 Parkfield earthquake, arguably the best-recorded earthquake in history for the density of near-source data. We select stations located within a closest distance to the rupture surface that varies from 0 to 180 km. To test the effect of the distance on the computed random properties, these stations are divided into several subsets or windows

  16. Ground motions on rocky, cliffed, and sandy shorelines generated by ocean waves

    Science.gov (United States)

    Young, Adam P.; Guza, Robert T.; Dickson, Mark E.; O'Reilly, William C.; Flick, Reinhard E.

    2013-12-01

    We compare ground motions observed within about 100 m of the waterline on eight sites located on shorelines with different morphologies (rock slope, cliff, and sand beaches). At all sites, local ocean waves generated ground motions in the frequency band 0.01-40 Hz. Between about 0.01 and 0.1 Hz, foreshore loading and gravitational attraction from ocean swell and infragravity waves drive coherent, in-phase ground flexing motions mostly oriented cross-shore that decay inland. At higher frequencies between 0.5 and 40 Hz, breaking ocean waves and wave-rock impacts cause ground shaking. Overall, seismic spectral shapes were generally consistent across shoreline sites and usually within a few orders of magnitude despite the diverse range of settings. However, specific site response varied and was influenced by a combination of tide level, incident wave energy, site morphology, ground composition, and signal decay. Flexing and shaking increased with incident wave energy and was often tidally modulated, consistent with a local generation source. Flexing magnitudes were usually larger than shaking, and flexing displacements of several mm were observed during relatively large incident wave conditions (Hs 4-5 m). Comparison with traffic noise and earthquakes illustrate the relative significance of local ocean-generated signals in coastal seismic data. Seismic observations are not a simple proxy for wave-cliff interaction.

  17. Study on inelastic displacement ratio spectra for near-fault pulse-type ground motions

    Institute of Scientific and Technical Information of China (English)

    Zhai Changhai; Li Shuang; Xie Lili; Sun Yamin

    2007-01-01

    In displacement-based seismic design,inelastic displacement ratio spectra(IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum elastic displacement demand of its counterpart linear elastic SDOF system.In this study,the characteristics of IDRS for near-fault pulse-type ground motions are investigated based on a great number of earthquake ground motions.The influence of site conditions,ratio of peak ground velocity (PGV) to peak ground acceleration(PGA),the PGV,and the maximum incremental velocity (MIV) on IDRS are also evaluated.The results indicate that the effect of near-fault ground motions on IDRS are significant only at periods between 0.2 s-1.5 s,where the amplification can approach 20%.The PGV/PGA ratio has the most significant influence on IDRS among the parameters considered.It is also found that site conditions only slightly affect the IDRS.

  18. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  19. Ground motion prediction for the Vienna Basin area using the ambient seismic field

    Science.gov (United States)

    Schippkus, Sven; Zigone, Dimitri; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    The Vienna Basin is one of the most seismically active regions in Austria. Because of the population density and sensitive infrastructure, seismic hazard assessment in this area is of critical importance. An important part of seismic hazard analysis is ground motion prediction, which can in principle be done using either empirical studies to derive ground motion prediction equations (GMPEs) or using a physics-based approach to simulate ground motion by modelling surface wave propagation. Recently a new method has been presented that is based on the emergence of the inter-station Green's function from ambient noise cross-correlations (Denolle et al. 2013), which provides the impulse response of the Earth from a point source at the surface (from the site of one of the two receivers to the other). These impulse responses are dominated by surface waves, which would, in the case of a real earthquake, cause the major damages. The Green's function can in principle be modified to simulate a double couple dislocation at depth, i.e., a virtual earthquake. Using an adapted pre-processing method, the relative amplitudes of the ambient noise records of different inter-station paths are preserved in the correlation functions, and effects like attenuation and amplification of surface waves in sedimentary basins can be studied. This provides more precise information that will help improve seismic hazard evaluations. Here we present a preliminary study of such ground motion prediction for the Vienna Basin using about two dozen broadband stations from available networks in the area, e.g., stations from the University of Vienna (AlpArray) and Vienna Technical University. References Denolle, M. A., E. M. Dunham, G. A. Prieto, and G. C. Beroza (2013), Ground motion prediction of realistic earthquake sources using the ambient seismic field, J. Geophys. Res. Solid Earth, 118, 2102-2118, doi:10.1029/2012JB009603.

  20. Validation of Broadband Ground Motion Simulations for Japanese Crustal Earthquakes by the Recipe

    Science.gov (United States)

    Iwaki, A.; Maeda, T.; Morikawa, N.; Miyake, H.; Fujiwara, H.

    2015-12-01

    The Headquarters for Earthquake Research Promotion (HERP) of Japan has organized the broadband ground motion simulation method into a standard procedure called the "recipe" (HERP, 2009). In the recipe, the source rupture is represented by the characterized source model (Irikura and Miyake, 2011). The broadband ground motion time histories are computed by a hybrid approach: the 3-D finite-difference method (Aoi et al. 2004) and the stochastic Green's function method (Dan and Sato, 1998; Dan et al. 2000) for the long- (> 1 s) and short-period (structure model. As the engineering significance of scenario earthquake ground motion prediction is increasing, thorough verification and validation are required for the simulation methods. This study presents the self-validation of the recipe for two MW6.6 crustal events in Japan, the 2000 Tottori and 2004 Chuetsu (Niigata) earthquakes. We first compare the simulated velocity time series with the observation. Main features of the velocity waveforms, such as the near-fault pulses and the large later phases on deep sediment sites are well reproduced by the simulations. Then we evaluate 5% damped pseudo acceleration spectra (PSA) in the framework of the SCEC Broadband Platform (BBP) validation (Dreger et al. 2015). The validation results are generally acceptable in the period range 0.1 - 10 s, whereas those in the shortest period range (0.01-0.1 s) are less satisfactory. We also evaluate the simulations with the 1-D velocity structure models used in the SCEC BBP validation exercise. Although the goodness-of-fit parameters for PSA do not significantly differ from those for the 3-D velocity structure model, noticeable differences in velocity waveforms are observed. Our results suggest the importance of 1) well-constrained 3-D velocity structure model for broadband ground motion simulations and 2) evaluation of time series of ground motion as well as response spectra.

  1. A Partially Non-Ergodic Ground-Motion Prediction Equation for Europe

    CERN Document Server

    Kuehn, Nicolas M

    2016-01-01

    A partially non-ergodic ground-motion prediction equation is estimated for Europe. Therefore, a hierarchical model is presented that accounts for regional differences. For this purpose, the scaling of ground-motion intensity parameters is assumed to be similar, but not identical in different regions. This is achieved by assuming a hierarchical model, where some coefficients are treated as random variables which are sampled from an underlying global distribution. The coefficients are estimated by Bayesian inference. This allows one to estimate the epistemic uncertainty in the coefficients, and consequently in model predictions, in a principled way. The model is estimated based on peak ground acceleration data from nine different European regions. There are large differences in the amount of earthquakes and records in the different regions. However, due to the hierarchical nature of the model, regions with only few data points borrow strength from other regions with more data. This makes it possible to estimate...

  2. Generation of a mixture model ground-motion prediction equation for Northern Chile

    Science.gov (United States)

    Haendel, A.; Kuehn, N. M.; Scherbaum, F.

    2012-12-01

    In probabilistic seismic hazard analysis (PSHA) empirically derived ground motion prediction equations (GMPEs) are usually applied to estimate the ground motion at a site of interest as a function of source, path and site related predictor variables. Because GMPEs are derived from limited datasets they are not expected to give entirely accurate estimates or to reflect the whole range of possible future ground motion, thus giving rise to epistemic uncertainty in the hazard estimates. This is especially true for regions without an indigenous GMPE where foreign models have to be applied. The choice of appropriate GMPEs can then dominate the overall uncertainty in hazard assessments. In order to quantify this uncertainty, the set of ground motion models used in a modern PSHA has to capture (in SSHAC language) the center, body, and range of the possible ground motion at the site of interest. This was traditionally done within a logic tree framework in which existing (or only slightly modified) GMPEs occupy the branches of the tree and the branch weights describe the degree-of-belief of the analyst in their applicability. This approach invites the problem to combine GMPEs of very different quality and hence to potentially overestimate epistemic uncertainty. Some recent hazard analysis have therefore resorted to using a small number of high quality GMPEs as backbone models from which the full distribution of GMPEs for the logic tree (to capture the full range of possible ground motion uncertainty) where subsequently generated by scaling (in a general sense). In the present study, a new approach is proposed to determine an optimized backbone model as weighted components of a mixture model. In doing so, each GMPE is assumed to reflect the generation mechanism (e. g. in terms of stress drop, propagation properties, etc.) for at least a fraction of possible ground motions in the area of interest. The combination of different models into a mixture model (which is learned from

  3. Characteristics of strong ground motions in the 2014 M s 6.5 Ludian earthquake, Yunnan, China

    Science.gov (United States)

    Hu, J. J.; Zhang, Q.; Jiang, Z. J.; Xie, L. L.; Zhou, B. F.

    2016-01-01

    The 2014 M s 6.5 ( M w6.1) Ludian earthquake occurred in the eastern Sichuan-Yunnan border region of western China. This earthquake caused much more severe engineering damage than the usual earthquakes with the same magnitude in China. The National Strong Motion Network obtained large set of ground motion recordings during the earthquake. To investigate the engineering interested characteristics of ground motion from Ludian earthquake and compare it with the M w 7.9 Wenchuan and the M w 6.6 Lushan earthquakes in western China, studies on the ground motion field, attenuation relationship, distance dependence of significant duration, and site amplification were carried out. Some conclusion is drawn. Specifically, the ground motion field reveals a directional feature, and the distribution characteristics of the two horizontal components are similar. The attenuation relationship for Ludian earthquake is basically consistent with the ground motion prediction equation (GMPE) for western China, except the slight smaller than the GMPE predicted at short periods. The distance dependences of ground motion duration are different in Sichuan and Yunnan regions due to the local physical dispersion and Q value. The site amplification factors are dominated by linear site response for lower reference ground motion, but the nonlinearity becomes notable for higher reference ground motion. This feature is basically consistent with the empirical model for western China. All the results indicate that the spatial distribution of ground motion, the attenuation characteristics, and the site amplification effect should be considered in characterization of near-field ground motion.

  4. 3-D or median map? Earthquake scenario ground-motion maps from physics-based models versus maps from ground-motion prediction equations

    Science.gov (United States)

    Porter, K.

    2015-12-01

    There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.

  5. Validation and modeling of earthquake strong ground motion using a composite source model

    Science.gov (United States)

    Zeng, Y.

    2001-12-01

    Zeng et al. (1994) have proposed a composite source model for synthetic strong ground motion prediction. In that model, the source is taken as a superposition of circular subevents with a constant stress drop. The number of subevents and their radius follows a power law distribution equivalent to the Gutenberg and Richter's magnitude-frequency relation for seismicity. The heterogeneous nature of the composite source model is characterized by its maximum subevent size and subevent stress drop. As rupture propagates through each subevent, it radiates a Brune's pulse or a Sato and Hirasawa's circular crack pulse. The method has been proved to be successful in generating realistic strong motion seismograms in comparison with observations from earthquakes in California, eastern US, Guerrero of Mexico, Turkey and India. The model has since been improved by including scattering waves from small scale heterogeneity structure of the earth, site specific ground motion prediction using weak motion site amplification, and nonlinear soil response using geotechnical engineering models. Last year, I have introduced an asymmetric circular rupture to improve the subevent source radiation and to provide a consistent rupture model between overall fault rupture process and its subevents. In this study, I revisit the Landers, Loma Prieta, Northridge, Imperial Valley and Kobe earthquakes using the improved source model. The results show that the improved subevent ruptures provide an improved effect of rupture directivity compared to our previous studies. Additional validation includes comparison of synthetic strong ground motions to the observed ground accelerations from the Chi-Chi, Taiwan and Izmit, Turkey earthquakes. Since the method has evolved considerably when it was first proposed, I will also compare results between each major modification of the model and demonstrate its backward compatibility to any of its early simulation procedures.

  6. Ground Motion Characteristics of the 2011 Virginia and 1988 Quebec M5.8 Earthquakes

    Science.gov (United States)

    Assatourians, K.; Atkinson, G. M.

    2011-12-01

    The largest two earthquakes in eastern North America (ENA) in the last 50 years are the 2011 Mineral, Virginia and the 1988 Saguenay, Quebec earthquakes, both of moment magnitude (M) 5.8. Both events were relatively well-recorded at regional distances (especially the Virginia earthquake) but have a disappointing lack of instrumental records at distances within 50 km, confounding interpretation of expected near-source motions for moderate-to-large ENA events. At regional distances (200 to 500 km), over frequencies from 0.5 to 10 Hz, the instrumentally-recorded motions from the Virginia and Quebec earthquakes show similar amplitudes and attenuation trends; in both cases the motions agree reasonably well with the trend lines suggested by recent ground-motion prediction equations (GMPEs) such as those of Atkinson and Boore (2011) and Pezeshk et al. (2011). At distances ground motions and attenuation using intensity data; intensity data have the advantage of being available at close distances where instrumental records are sparse. Intensities for the Virginia event were approximately 1 unit lower than those for Saguenay at close distances (bounce effects being seen in a different distance range. Both events had a mean radius for intensity 3 of about 600 km. The observed mean intensity of 3 at 600 km is in agreement with the intensity GMPE of Atkinson and Wald (2007); at close distances, the Virginia intensities are lower than predicted by Atkinson and Wald (2007), whereas the Saguenay intensities are higher.

  7. Accounting for near-fault rupture directivity effects in the development of design ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, P.G.; Smith, N.F.; Graves, R.W. [Woodward-Clyde Federal Services, Pasadena, CA (United States); Abrahamson, N.A. [Abrahamson, (Norman A.), Castro Valley, CA (United States)

    1995-12-01

    The objective of this paper is to describe methods to account for near-fault rupture directivity effects (sometimes referred to as ``fling``) in the development of ground motions for seismic design. These effects, due to propagation of the rupture toward the recording site and to fault slip occurring in the direction toward the site, cause a large long-period pulse of motion in the direction normal to the fault that occurs near the beginning of the record. The ``time compression`` effect of rupture directivity which is partly responsible for the large amplitude of this pulse also causes the motion to have a relatively brief duration compared with that experienced at other locations. Not all near-fault recordings contain forward rupture directivity effects; they only occur when the rupture propagates toward the site and when the fault slip direction is also toward the site. Two kinds of modification to average horizontal response spectral attenuation relations to account for rupture directivity effects are described. The first, developed from an empirical analysis of near-fault data, describes modifications to average horizontal values to obtain fault-normal and fault-parallel components, which differ at periods longer than one second in a manner that is both magnitude and distance-dependent. The second, based on comparison of current empirical attenuation relations with recent data and with simulations of strong ground motions, describes modifications of current empirical attenuation relations for average horizontal motions to account for near-fault effects. In order to facilitate the selection of time histories that represent near-fault ground motion conditions in an appropriate manner, the authors provide a list of near-fault records indicating the nature of the rupture directivity effects that each contains.

  8. Update of the Graizer-Kalkan ground-motion prediction equations for shallow crustal continental earthquakes

    Science.gov (United States)

    Graizer, Vladimir; Kalkan, Erol

    2015-01-01

    A ground-motion prediction equation (GMPE) for computing medians and standard deviations of peak ground acceleration and 5-percent damped pseudo spectral acceleration response ordinates of maximum horizontal component of randomly oriented ground motions was developed by Graizer and Kalkan (2007, 2009) to be used for seismic hazard analyses and engineering applications. This GMPE was derived from the greatly expanded Next Generation of Attenuation (NGA)-West1 database. In this study, Graizer and Kalkan’s GMPE is revised to include (1) an anelastic attenuation term as a function of quality factor (Q0) in order to capture regional differences in large-distance attenuation and (2) a new frequency-dependent sedimentary-basin scaling term as a function of depth to the 1.5-km/s shear-wave velocity isosurface to improve ground-motion predictions for sites on deep sedimentary basins. The new model (GK15), developed to be simple, is applicable to the western United States and other regions with shallow continental crust in active tectonic environments and may be used for earthquakes with moment magnitudes 5.0–8.0, distances 0–250 km, average shear-wave velocities 200–1,300 m/s, and spectral periods 0.01–5 s. Directivity effects are not explicitly modeled but are included through the variability of the data. Our aleatory variability model captures inter-event variability, which decreases with magnitude and increases with distance. The mixed-effects residuals analysis shows that the GK15 reveals no trend with respect to the independent parameters. The GK15 is a significant improvement over Graizer and Kalkan (2007, 2009), and provides a demonstrable, reliable description of ground-motion amplitudes recorded from shallow crustal earthquakes in active tectonic regions over a wide range of magnitudes, distances, and site conditions.

  9. Implementation of the Next Generation Attenuation (NGA) ground-motion prediction equations in Fortran and R

    Science.gov (United States)

    Kaklamanos, James; Boore, David M.; Thompson, Eric M.; Campbell, Kenneth W.

    2010-01-01

    This report presents two methods for implementing the earthquake ground-motion prediction equations released in 2008 as part of the Next Generation Attenuation of Ground Motions (NGA-West, or NGA) project coordinated by the Pacific Earthquake Engineering Research Center (PEER). These models were developed for predicting ground-motion parameters for shallow crustal earthquakes in active tectonic regions (such as California). Of the five ground-motion prediction equations (GMPEs) developed during the NGA project, four models are implemented: the GMPEs of Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008a); these models are abbreviated as AS08, BA08, CB08, and CY08, respectively. Since site response is widely recognized as an important influence of ground motions, engineering applications typically require that such effects be modeled. The model of Idriss (2008) is not implemented in our programs because it does not explicitly include site response, whereas the other four models include site response and use the same variable to describe the site condition (VS30). We do not intend to discourage the use of the Idriss (2008) model, but we have chosen to implement the other four NGA models in our programs for those users who require ground-motion estimates for various site conditions. We have implemented the NGA models by using two separate programming languages: Fortran and R (R Development Core Team, 2010). Fortran, a compiled programming language, has been used in the scientific community for decades. R is an object-oriented language and environment for statistical computing that is gaining popularity in the statistical and scientific community. Derived from the S language and environment developed at Bell Laboratories, R is an open-source language that is freely available at http://www.r-project.org/ (last accessed 11 January 2011). In R, the functions for computing the NGA equations can be loaded as an

  10. Ground ice and hydrothermal ground motions on aufeis plots of river valleys

    Directory of Open Access Journals (Sweden)

    V. R. Alekseev

    2015-01-01

    Full Text Available Localized groundwater outflow and layered freezing of them in forms of large ice clusters on the surface creates specific conditions for energy and mass exchange in the «atmosphere–soil–lithosphere» system. In winter, the soil temperature profile is essentially deformed due to heat emission by the aufeis layer of water at its freezing that forms a specific thermocline layer. Deformation of the temperature profile, gradually decreasing, moves down the cross-section and disappearing at the interface between frozen and thawed rocks. Magnitude and number of the temperature deviations from a «normal» state depends on the heat storage of the aufeis-forming waters and on the number of outflows at a given point. The thermocline formation changes conditions of freezing for underlying ground layers together with mechanism of ice saturation of them, and that results in formation of two-layer ice-ground complexes (IGC which differ drastically from cryogenic features in adjacent parts of the valley. Analysis of genetic characteristics and relation of components of the surface and subsurface layers allowed identification of seven types of the aufeis IGC: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressureinjection, and fissure-vein. Yearly formation and destruction of aufeises and subsurface ices is accompanied by a sequence of particularly hazardous geodynamical phenomena, among which the most important are winter flooding of territories, layered freezing of water, ground heaving, thermokarst, and thermoerosion. Combination of these processes may cause a rapid (often unexpected reconfiguration of channels of both surface and subsurface runoff, abrupt uplifts and subsidences of the surface, and decompaction and «shaking-up» of seasonally thawing and seasonally freezing rocks, which may create exceptionally unfavorable conditions for construction and operation of engineering structures. Aufeis plots

  11. Efficient sympathetic motional ground-state cooling of a molecular ion

    CERN Document Server

    Wan, Yong; Wolf, Fabian; Schmidt, Piet O

    2015-01-01

    Cold molecular ions are promising candidates in various fields ranging from precision spectroscopy and test of fundamental physics to ultra-cold chemistry. Control of internal and external degrees of freedom is a prerequisite for many of these applications. Motional ground state cooling represents the starting point for quantum logic-assisted internal state preparation, detection, and spectroscopy protocols. Robust and fast cooling is crucial to maximize the fraction of time available for the actual experiment. We optimize the cooling rate of ground state cooling schemes for single $^{25}\\mathrm{Mg}^{+}$ ions and sympathetic ground state cooling of $^{24}\\mathrm{MgH}^{+}$. In particular, we show that robust cooling is achieved by combining pulsed Raman sideband cooling with continuous quench cooling. Furthermore, we experimentally demonstrate an efficient strategy for ground state cooling outside the Lamb-Dicke regime.

  12. Correlation study between ground motion intensity measure parameters and deformation demands for bilinear SDOF systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients ρ. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.

  13. REDUCTION OF GROUND MOTION INTENSITY CAUSED BY BLASTING ON STONE QUARRIES"HERCEGOVAC" AND "MAX-STOJA"

    Directory of Open Access Journals (Sweden)

    Marin Petrov

    1993-12-01

    Full Text Available Ground motion intensity caused by deep-hole blasting on the stone quarries »Hercegovac« and »Max-Stoja« was determined by measuring of ground vibrations magnitudes and by interpretation of measuring results under world damage criteria for structures. Reduction of ground motion intensity was realized on the basis of calculation of permissible charge quantity per ignition level (the paper is published in Croatian.

  14. Limb preference in the gallop of dogs and the half-bound of pikas on flat ground

    CERN Document Server

    Hackert, Rémi; Herbin, Marc; Abourachid, Anick; Libourel, P A

    2008-01-01

    During fast locomotion - gallop, half bound - of quadruped mammals, the ground contact of the limbs in each pair do not alternate symmetrically. Animals using such asymmetrical gait thus choose whether the left or the right limb will contact the ground first, and this gives rise to limb preference. Here, we report that dogs (Mammalia, Carnivora) and pikas (Mammalia, Lagomorpha) prefer one forelimb as trailing limb and use it as such almost twice as often as the other. We also show that this choice depends on the individual and is not a characteristic of the species, and that the strength of the preference was not dependent on the animal's running speed.

  15. Prediction of near-field strong ground motions for scenario earthquakes on active fault

    Institute of Scientific and Technical Information of China (English)

    Wang Haiyun; Xie Lili; Tao Xiaxin; Li Jie

    2006-01-01

    A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First,macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width,rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws.Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic corner frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.

  16. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice

    Science.gov (United States)

    Kaklamanos, James; Baise, Laurie G.; Boore, David M.

    2011-01-01

    The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which some of the required input parameters are unknown. In this paper, we present a framework for estimating the unknown source, path, and site parameters when implementing the NGA models in engineering practice, and we derive geometrically-based equations relating the three distance measures found in the NGA models. Our intent is for the content of this paper not only to make the NGA models more accessible, but also to help with the implementation of other present or future GMPEs.

  17. Mitigation of ground motion effects via feedback systems in the Compact Linear Collider

    CERN Document Server

    Pfingstner, Jürgen; Schmickler, Hermann; Schulte, Daniel

    The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate ...

  18. Instantaneous spectrum estimation of earthquake ground motions based on unscented Kalman filter method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.

  19. Critical input and response of elastic-plastic structures under long-duration earthquake ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2015-09-01

    Full Text Available The multiple impulse input is introduced as a substitute of the long-duration earthquake ground motion, mostly expressed in terms of harmonic waves, and a closed-form solution is derived of the elastic-plastic response of a single-degree-of-freedom structure under the ‘critical multiple impulse input’. Since only the free-vibration appears under such multiple impulse input, the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response. It is shown that the critical inelastic deformation and the corresponding critical input frequency can be captured depending on the input level by the substituted multiple impulse input in the form of original and modified input sequence. The validity and accuracy of the proposed theory are investigated through the comparison with the response analysis to the corresponding sinusoidal input as a representative of the long-duration earthquake ground motion.

  20. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  1. Characteristics of Earthquake Ground Motion in Tapachula, Chiapas (mexico) from Empirical and Theorical Methods

    Science.gov (United States)

    Vidal, F.; Alguacil, G.; Rodríguez, L.; Navarro, M.; Ruiz, A.; Aguirre, J.; Acosta, M.; Gonzalez, R.; Mora, J.; Reyes, M.

    2013-05-01

    The high seismic hazard level of Tapachula city (Chiapas, Mexico) requires a better understanding of the characteristics of earthquake ground motion to implement risk reduction policies in this urban area. A map of ground predominant period estimated with Nakamura technique already shows four different zones: the largest one in the downtown with 0.2-0.4s, two small zones (concentric to the previous one) of 0.4-0.7s and 0.7-0.9 s, respectively, and the smallest zone (on the edge of the city) with the higher values 0.9-1.1s. During 44 days more than 220 events were recorded by a temporal seismic network installed by the UNAM at 6 sites distributed in Tapachula. The magnitude Mw and hypocentral distance of the events were reassessed and range from 3.3 to 4.5 and 60 to 190 km, respectively. After selecting the accelerograms with the best signal/noise ratio, a set of key engineering ground-motion parameters such as peak values of strong motion, acceleration and velocity response spectra, Arias intensity, cumulative absolute velocity, relative significant duration, the Housner spectrum-intensity, the energy input spectrum and H/V spectral ratio were calculated for the selected events. The ground-motion prediction equations (GMPE) of each parameter as function of magnitude and distance were also estimated. On the other hand, synthetic seismic traces were obtained at each station site after modeling a seismic source of magnitude 7.2 by using the empirical Green's function method. Thus, a shake-map scenario was generated for an earthquake similar to that of the September 10, 1993. The parameters here obtained show different shake levels and frequency content at each site. All sites present amplification for 0.25 and 0.5 s. TACA, TAPP y TATC stations, located near the two rivers bordering Tapachula, are those with the largest ground amplification. The characteristics of strong ground motion obtained from synthetic accelerograms are in agreement with those from the empirical

  2. Ground-motion scenarios consistent with PSH deaggregation for Tehran, capital city of Iran

    OpenAIRE

    F. Abdi; N. Mirzaei; E. Shabani

    2013-01-01

    This study presents the results of probabilistic seismic hazard (PSH) deaggregation for 5%-damped 0.2 and 1.0 s spectral accelerations, corresponding to mean return periods (MRPs) of 50, and 475 yr for Tehran city. The aim of this paper is to quantify the dominant events that have the most contribution on ground-motion exceedance from the above mentioned hazard levels. The scenario earthquakes are characterized by bins of magnitude (M), source-to-site distance (R), and epsil...

  3. Effects of earthquake-rupture shallowness and local soil conditions on simulated ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.

    1982-12-01

    In order to develop site-specific response spectra from strong ground motion recordings appropriate for Eastern United States (EUS) sites, it is necessary to perform extrapolations from response spectra appropriate in other areas due to the scarcity of strong ground motion recordings available in the EUS. Recordings obtained from the more abundant Western United States (WUS) database are typically chosen to perform these extrapolations. The extrapolations require knowledge of how differences in tectonic and geologic conditions between EUS and WUS translate into differences in recorded ground motions. One of the most widely accepted tectonic differences between EUS and WUS is the observed depth of earthquake rupture for magnitudes 4 and greater. This report documents, using sophisticated three-dimensional numerical modeling techniques, how spectral shapes extrapolated from the WUS database must be scaled to account for differences in earthquake rupture shallowness. Using sophisticated three-dimensional numerical modeling techniques, the potential ground motions from small shallow events are estimated and the spectral shapes compared to those calculated for larger magnitude earthquakes occurring at more typical depths in the EUS. The possible effects of local soil conditions on the seismic response spectra are demonstrated. Earthquake ruptures of various magnitudes, site distances and fault types are compared as a function of rupture shallowness for a generic rock site and a generic soil site and do not include the possible effects of site-specific soil properties present in the upper fifty meters. Comparisons are also made among four earth models to demonstrate the effects of local soil conditions on the calculated response spectra.

  4. Comparison between staggered grid finite difference method and stochastic method in simulating strong ground motions

    Institute of Scientific and Technical Information of China (English)

    WANG Man-sheng; JIANG Hui; HU Yu-xian

    2005-01-01

    Strong ground motion of an earthquake is simulated by using both staggered grid finite difference method (FDM)and stochastic method, respectively. The acceleration time histories obtained from the both ways and their response spectra are compared. The result demonstrates that the former is adequate to simulate the low-frequency seismic wave; the latter is adequate to simulate the high-frequency seismic wave. Moreover, the result obtained from FDM can better reflect basin effects.

  5. The 26 January 2001 M 7.6 Bhuj, India, Earthquake: Observed and Predicted Ground Motions

    OpenAIRE

    Hough, Susan E.; Martin, Stacey; Bilham, Roger; Atkinson, Gail M.

    2002-01-01

    Although local and regional instrumental recordings of the devastating 26, January 2001, Bhuj earthquake are sparse, the distribution of macroseismic effects can provide important constraints on the mainshock ground motions. We compiled available news accounts describing damage and other effects and interpreted them to obtain modified Mercalli intensities (MMIs) at >200 locations throughout the Indian subcontinent. These values are then used to map the intensity distribution throughout the su...

  6. Efficient sympathetic motional ground-state cooling of a molecular ion

    OpenAIRE

    Wan, Yong; Gebert, Florian; Wolf, Fabian; Schmidt, Piet O.

    2015-01-01

    Cold molecular ions are promising candidates in various fields ranging from precision spectroscopy and test of fundamental physics to ultra-cold chemistry. Control of internal and external degrees of freedom is a prerequisite for many of these applications. Motional ground state cooling represents the starting point for quantum logic-assisted internal state preparation, detection, and spectroscopy protocols. Robust and fast cooling is crucial to maximize the fraction of time available for the...

  7. Analysis on effect of surface fault to site ground motion using finite element method

    Institute of Scientific and Technical Information of China (English)

    曹炳政; 罗奇峰

    2003-01-01

    Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.

  8. A short note on ground-motion recordings from the M 7.9 Wenchuan, China, earthquake and ground-motion prediction equations in the Central and Eastern United States

    Science.gov (United States)

    Wang, Z.; Lu, M.

    2011-01-01

    The 12 May 2008 Wenchuan earthquake (M 7.9) occurred along the western edge of the eastern China SCR and was well recorded by modern strong-motion instruments: 93 strong-motion stations within 1.4 to 300 km rupture distance recorded the main event. Preliminary comparisons show some similarities between ground-motion attenuation in the Wenchuan region and the central and eastern United States, suggesting that ground motions from the Wenchuan earthquake could be used as a database providing constraints for developing GMPEs for large earthquakes in the central and eastern United States.

  9. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    KAUST Repository

    Bydlon, Samuel A.

    2015-03-21

    ©2015. American Geophysical Union. All Rights Reserved. We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ∼20km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length. Key Points Fault roughness, not material heterogeneity, dominates rupture process Introduce parameter that can be used to quantify near-fault scattering Scattering affects the duration and amplitude of high-frequency ground motions

  10. Guidelines for earthquake ground motion definition for the Eastern United States

    International Nuclear Information System (INIS)

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors

  11. Ground Motion Prediction of Subduction Earthquakes using the Onshore-Offshore Ambient Seismic Field

    Science.gov (United States)

    Viens, L.; Miyake, H.; Koketsu, K.

    2014-12-01

    Seismic waves produced by earthquakes already caused plenty of damages all around the world and are still a real threat to human beings. To reduce seismic risk associated with future earthquakes, accurate ground motion predictions are required, especially for cities located atop sedimentary basins that can trap and amplify these seismic waves. We focus this study on long-period ground motions produced by subduction earthquakes in Japan which have the potential to damage large-scale structures, such as high-rise buildings, bridges, and oil storage tanks. We extracted the impulse response functions from the ambient seismic field recorded by two stations using one as a virtual source, without any preprocessing. This method allows to recover the reliable phases and relative, rather than absolute, amplitudes. To retrieve corresponding Green's functions, the impulse response amplitudes need to be calibrated using observational records of an earthquake which happened close to the virtual source. We show that Green's functions can be extracted between offshore submarine cable-based sea-bottom seismographic observation systems deployed by JMA located atop subduction zones and on-land NIED/Hi-net stations. In contrast with physics-based simulations, this approach has the great advantage to predict ground motions of moderate earthquakes (Mw ~5) at long-periods in highly populated sedimentary basin without the need of any external information about the velocity structure.

  12. Guidelines for earthquake ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab

  13. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    Science.gov (United States)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  14. Ground motion estimation in Delhi from postulated regional and local earthquakes

    Science.gov (United States)

    Mittal, Himanshu; Kumar, Ashok; Kamal

    2013-04-01

    Ground motions are estimated at 55 sites in Delhi, the capital of India from four postulated earthquakes (three regional M w = 7.5, 8.0, and 8.5 and one local). The procedure consists of (1) synthesis of ground motion at a hard reference site (NDI) and (2) estimation of ground motion at other sites in the city via known transfer functions and application of the random vibration theory. This work provides a more extensive coverage than earlier studies (e.g., Singh et al., Bull Seism Soc Am 92:555-569, 2002; Bansal et al., J Seismol 13:89-105, 2009). The Indian code response spectra corresponding to Delhi (zone IV) are found to be conservative at hard soil sites for all postulated earthquakes but found to be deficient for M w = 8.0 and 8.5 earthquakes at soft soil sites. Spectral acceleration maps at four different natural periods are strongly influenced by the shallow geological and soil conditions. Three pockets of high acceleration values are seen. These pockets seem to coincide with the contacts of (a) Aravalli quartzite and recent Yamuna alluvium (towards the East), (b) Aravalli quartzite and older quaternary alluvium (towards the South), and (c) older quaternary alluvium and recent Yamuna alluvium (towards the North).

  15. Response of a transmission tower-line system at a canyon site to spatially varying ground motions

    Institute of Scientific and Technical Information of China (English)

    Hong-nan LI; Feng-long BAI; Li TIAN; Hong HAO

    2011-01-01

    Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan, China. These collapses were partially caused by the pulling forces from the transmission lines generated from out-of-phase responses of the adjacent towers owing to spatially varying earthquake ground motions. In this paper, a 3D finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. The nonlinear responses of the structural system at a canyon site are analyzed subjected to spatially varying ground motions. The spatial variations of ground motion associated with the wave passage, coherency loss, and local site effects are given. The spatially varying ground motions are simulated stochastically based on an empirical coherency loss function and a filtered Tajimi-Kanai power spectral density function. The site effect is considered by a transfer function derived from ID wave propagation theory. Compared with structural responses calculated using the uniform ground motion and delayed excitations, numerical results indicate that seismic responses of transmission towers and power lines are amplified when considering spatially varying ground motions including site effects. Each factor of ground motion spatial variations has a significant effect on the seismic response of the structure, especially for the local site effect. Therefore, neglecting the earthquake ground motion spatial variations may lead to a substantial underestimation of the response of transmission tower-line system during strong earthquakes. Each effect of ground motion spatial variations should be incorporated in seismic analysis of the structural system.

  16. Site-specific Probabilistic Seismic Hazard Map of Himachal Pradesh, India. Part I. Site-specific Ground Motion Relations

    Directory of Open Access Journals (Sweden)

    Muthuganeisan Prabhu

    2016-04-01

    Full Text Available This article presents four regional site-specific ground motion relations developed for the state of Himachal Pradesh in northwest Himalaya, situated in a seismically active region. These relations are developed from synthetic free surface ground motion databases obtained from a calibrated stochastic seismological model considering the characteristic properties of this specific region. The adopted methodology incorporates the site effects characterised through active MASW tests conducted in 22 important cities. The estimated ground motion levels from the developed relations are found to be in reasonable agreement with the recorded data.

  17. Numerical modelling of ground motion in the Taipei Basin: basin and source effects

    Science.gov (United States)

    Miksat, J.; Wen, K.-L.; Wenzel, F.; Sokolov, V.; Chen, C.-T.

    2010-12-01

    The Taipei basin in northern Taiwan is located in a high seismicity region and was affected by several earthquakes in the past (ML = 7.3 on 1909 April 15; ML = 6.8 on 1986 November 15; the Chi-Chi ML = 7.3 earthquake on 1999 September 21 and ML = 6.8 on 2002 March 31). The main characteristic of the Taipei basin is its complex shape with a deep western and shallow eastern part. The uppermost Sungshan formation with its low shear wave velocities (90-200ms-1) is also a distinct feature of the basin. Based on the large data base of earthquake records obtained from the Taiwan Strong Motion Instrumentation Program network, many studies on ground motion within the Taipei basin exist. However, the influence of the various subsurface structures on the observed ground motions as well as the variability of ground motion with respect to earthquake location is not fully understood. We apply a 3-D finite-difference method to simulate wave propagation up to 1Hz for a small earthquake close to the basin in order to resolve these open questions. By varying source and structural parameters, we explore the variability of ground motion. Our study includes a subsurface model that is based on recent studies on the basin structure and on the crustal structure of Taiwan. From our simulations we find a good fit between simulated and observed waveforms and peak ground accelerations for the considered small earthquake near the basin. We also explore the influence of fault plane orientation, hypocentre location, deep basin structure and soft soil surface layers of the Sungshan formation by varying the subsurface structure and earthquake position. Our studies reveal that the basin structure produces an amplification factor of about 4 compared to hard rock conditions. Additionally, the soft soil Sungshan formation produce amplification of a factor of 2. This results in a maximum amplification of the basin structure of about 8, which is in good comparison with amplification values larger than 5

  18. Seismic microzoning from synthetic ground motion parameters: Case study, Santiago de Cuba

    International Nuclear Information System (INIS)

    Synthetic seismograms (P - SV and SH waves) have been calculated along 6 profiles in Santiago de Cuba basin, with a cutoff frequency of 5 Hz, by using the hybrid approach (modal summation for a regional (ID) structure plus finite differences for a local (2D) structure embedded in the first). They correspond to a scenario earthquake of MS = 7 that may occur in Oriente fault zone, directly south of the city. As initial data for a seismic microzoning, the characterisation of earthquake effects has been made considering several relative (2D/1D) quantities (PGDR, PGVR, PGAR, DGAR, IAR etc.) and functions representative of the ground motion behaviour in soil (2D) with respect to bedrock (ID). The functions are the response spectra ratio RSR(f), already routinely used in this kind of work, and the elastic energy input ratio EIR(f), defined, for the first time, in this paper. These data, sampled at 105 sites within all the profiles have been classified in two steps, using logical combinatory algorithms: connected sets and compact sets. In the first step, from the original ground motion parameters or functions extracted from the synthetic seismograms, 9 sets have been classified and the partial results show the spatial distribution of the soil behaviour as function of the component of motion. In the second step, the results of the classification of the 9 sets have been used as input for a further classification that shows a spatial distribution of sites with a quasi-homogeneous integral ground motion behaviour. By adding the available geological surface data, a microzoning scheme of Santiago de Cuba basin has been obtained. (author)

  19. Long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks

    Institute of Scientific and Technical Information of China (English)

    LI Chun-feng; ZHANG Yang; ZHAO Jin-bao; TANG Hui

    2006-01-01

    This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches the importance to the variation of strength of the long-period ground motion with the magnitude, distance, and site condition. In the meantime, the near-fault long-period ground motion characteristic is analyzed. The result shows that the shape of the long-period response spectrum is mainly controlled by site condition and magnitude (the spectrum of class D+E is wider than that of class B+C, and the spectrum of larger magnitude is wider than that of smaller magnitude), and the effect of fault distance on the shape is not evident. And near-fault long-period ground motion characteristic depends on fault activity apparently, that is to say, the long-term ground motion in the hanger is stronger than that in the footwall, and the long-term ground motion in the north is stronger than that in the south.

  20. Spatial variation of earthquake ground motion for application to soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamson, N. (Bechtel Civil, Inc., San Francisco, CA (United States))

    1992-03-01

    The spatial variation of strong ground motion from fifteen earthquakes recorded by the Lotung LSST strong motion array is analyzed. The earthquakes range in magnitude from 3.7 to 7.8 and in source distance from 4 to 80 km. In all a total of 533 station pairs are used with station separations ranging from 60 to 85 meters. The spatial variation of ground motion is divided into two parts: variation in the fourier phase (coherence), and variation in the Fourier amplitude. Empirical functions describing the frequency and separation distance dependence of the coherency and amplitude variation appropriate for use in engineering analyses are derived. Taken together, the spatial variation functions given in this study provide a complete description of the statistical properties of the horizontal components of the seismic wavefield assuming plane wave propagation for the S-wave window. Since the S-waves generally cause the largest shaking, these spatial variation functions are appropriate for use in engineering analyses of large structures.

  1. Spatial variation of earthquake ground motion for application to soil-structure interaction

    International Nuclear Information System (INIS)

    The spatial variation of strong ground motion from fifteen earthquakes recorded by the Lotung LSST strong motion array is analyzed. The earthquakes range in magnitude from 3.7 to 7.8 and in source distance from 4 to 80 km. In all a total of 533 station pairs are used with station separations ranging from 60 to 85 meters. The spatial variation of ground motion is divided into two parts: variation in the fourier phase (coherence), and variation in the Fourier amplitude. Empirical functions describing the frequency and separation distance dependence of the coherency and amplitude variation appropriate for use in engineering analyses are derived. Taken together, the spatial variation functions given in this study provide a complete description of the statistical properties of the horizontal components of the seismic wavefield assuming plane wave propagation for the S-wave window. Since the S-waves generally cause the largest shaking, these spatial variation functions are appropriate for use in engineering analyses of large structures

  2. Measurement of six degree-of-freedom ground motion by using eight accelerometers

    Institute of Scientific and Technical Information of China (English)

    Yang Zhenyu; Shen Yi; Liu Zhiyan

    2005-01-01

    A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual translational acceleration components without gyroscopes. In the proposed measuring system, the relationship between the output from eight force-balance accelerometer and the six DOF motion of the measuring system under an earthquake are described by differential equations. These equations are derived from the positions and directions of the eight force-balance accelerometers in the measuring system. The third-order Runge-Kutta algorithm is used to guarantee the accuracy of the numerical calculation. All the algorithms used to compute the six DOF components of the ground motion are implemented in a real-time in Digital Signal Processor (DSP). The distortion of the measured results caused by position and direction errors of the accelerometers in the measuring system are reduced by multiplying a compensation coefficient C to the output and subtracting static zero drift from the measured results, respectively.

  3. Enhancement of long period components of recorded and synthetic ground motions using InSAR

    Science.gov (United States)

    Abell, J.A.; Carlos de la Llera, J.; Wicks, C.W.

    2011-01-01

    Tall buildings and flexible structures require a better characterization of long period ground motion spectra than the one provided by current seismic building codes. Motivated by that, a methodology is proposed and tested to improve recorded and synthetic ground motions which are consistent with the observed co-seismic displacement field obtained from interferometric synthetic aperture radar (InSAR) analysis of image data for the Tocopilla 2007 earthquake (Mw=7.7) in Northern Chile. A methodology is proposed to correct the observed motions such that, after double integration, they are coherent with the local value of the residual displacement. Synthetic records are generated by using a stochastic finite-fault model coupled with a long period pulse to capture the long period fling effect. It is observed that the proposed co-seismic correction yields records with more accurate long-period spectral components as compared with regular correction schemes such as acausal filtering. These signals provide an estimate for the velocity and displacement spectra, which are essential for tall-building design. Furthermore, hints are provided as to the shape of long-period spectra for seismic zones prone to large co-seismic displacements such as the Nazca-South American zone. ?? 2011 Elsevier Ltd.

  4. A Bayesian and Physics-Based Ground Motion Parameters Map Generation System

    Science.gov (United States)

    Ramirez-Guzman, L.; Quiroz, A.; Sandoval, H.; Perez-Yanez, C.; Ruiz, A. L.; Delgado, R.; Macias, M. A.; Alcántara, L.

    2014-12-01

    We present the Ground Motion Parameters Map Generation (GMPMG) system developed by the Institute of Engineering at the National Autonomous University of Mexico (UNAM). The system delivers estimates of information associated with the social impact of earthquakes, engineering ground motion parameters (gmp), and macroseismic intensity maps. The gmp calculated are peak ground acceleration and velocity (pga and pgv) and response spectral acceleration (SA). The GMPMG relies on real-time data received from strong ground motion stations belonging to UNAM's networks throughout Mexico. Data are gathered via satellite and internet service providers, and managed with the data acquisition software Earthworm. The system is self-contained and can perform all calculations required for estimating gmp and intensity maps due to earthquakes, automatically or manually. An initial data processing, by baseline correcting and removing records containing glitches or low signal-to-noise ratio, is performed. The system then assigns a hypocentral location using first arrivals and a simplified 3D model, followed by a moment tensor inversion, which is performed using a pre-calculated Receiver Green's Tensors (RGT) database for a realistic 3D model of Mexico. A backup system to compute epicentral location and magnitude is in place. A Bayesian Kriging is employed to combine recorded values with grids of computed gmp. The latter are obtained by using appropriate ground motion prediction equations (for pgv, pga and SA with T=0.3, 0.5, 1 and 1.5 s ) and numerical simulations performed in real time, using the aforementioned RGT database (for SA with T=2, 2.5 and 3 s). Estimated intensity maps are then computed using SA(T=2S) to Modified Mercalli Intensity correlations derived for central Mexico. The maps are made available to the institutions in charge of the disaster prevention systems. In order to analyze the accuracy of the maps, we compare them against observations not considered in the

  5. Engineering characteristics of near-fault vertical ground motions and their effect on the seismic response of bridges

    Institute of Scientific and Technical Information of China (English)

    Li Xinle; Dou Huijuan; Zhu Xi

    2007-01-01

    A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion,focusing on the effect of earthquake magnitude,site conditions,pulse duration,and statistical component.The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes,and the relationship between the vertical and horizontal ground motions is comparatively intricate.In addition,the effect of the near-fault ground motions on bridge performance is analyzed,considering both the material nonlinear characteristics and the P~△ effect.

  6. Disaggregation of probabilistic ground motions in two cities of Western Iran, Kermanshah and Sanandaj

    Directory of Open Access Journals (Sweden)

    Elham Shabani

    2014-01-01

    Full Text Available This article presents the results of disaggregation of ground motion hazard obtained for two of Iran’s urban centers, Kermanshah and Sanandaj. Disaggregation of peak ground acceleration (PGA and spectral acceleration hazard corresponding to mean return periods of 475 and 50 years is performed. 12 area seismic sources in the study region as well as 15 area seismic sources in a 150-km distance from the region are delineated. The scenario earthquakes are characterized by bins of magnitude, M, source-to-site distance, R, and number of standard deviations, ε, that the ground-motion parameter is away from its median value for that M-R pair as estimated by a prediction equation. In most cases, the sources closer to the site dominate. Larger, more distant earthquakes contribute more significantly to hazard for longer periods than for shorter periods. Disaggregation plots can provide useful information on the distance and magnitude of predominant sources, which can be used to generate scenario earthquakes and select corresponding time histories for seismic design.

  7. Simulation of spatially varying ground motions including incoherence, wave‐passage and differential site‐response effects

    DEFF Research Database (Denmark)

    Konakli, Katerina; Der Kiureghian, Armen

    2012-01-01

    A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....... In the first, simulated motions are consistent with the power spectral densities of a segmented recorded motion and are characterized by uniform variability at all locations. Uniform variability in the array of ground motions is essential when synthetic motions are used for statistical analysis of the response...... alternatives for modeling the local soil response: i) idealizing each soil‐column as a single‐degree‐of‐freedom oscillator, and ii) employing the theory of vertical wave propagation in a single soil layer over bedrock. The selection of parameters in the simulation procedure and their effects...

  8. Semi-Empirical Characterization of Ground Motions Including Source, Path and Nonlinear Site Effects

    Science.gov (United States)

    Seyhan, Emel

    The objective of this thesis is to improve the physical understanding of earthquake ground motion characteristics related to source, path and nonlinear site effects and our ability to model those effects with engineering models. Site database work was performed within the context of the NGA-West 2 project. Starting with the site database from original (2008) NGA project (last edited in 2006), we provided site classifications for 2538 new sites and re-classifications of previous sites. The principal site parameter is the time-averaged shear wave velocity in the upper 30 m (Vs30 ), which is characterized using measurements where available, and proxy-based relationships otherwise. We improved the documentation and consistency of site descriptors used as proxies for the estimation of Vs30, developed evidence-based protocols for Vs30 estimation from available proxies, and augmented estimates of various basin depth parameters. Site factors typically have a small-strain site amplification that captures impedance and resonance effects coupled with nonlinear components. Site factors in current NEHRP Provisions are empirically-derived at relatively small ground motion levels and feature simulation-based nonlinearity. We show that current NEHRP site factors have discrepancies with respect to the site terms in the original NGA GMPEs both in the linear site amplification (especially for Classes B, C, D, and E) and the degree of nonlinearity (Classes C and D). We analyzed the NGA-West 2 dataset and simulation-based models for site amplification to develop a new model. The model has linear and nonlinear additive components. The linear component is fully empirical, being derived from worldwide ground motion data (regional effects were examined but found to not be sufficiently important to be included in the model). The model features linear Vs30-scaling in a log-log sense below a corner velocity (Vc), and no Vs30-scaling for velocities faster than Vc. The nonlinear component is

  9. Generation of synthetic strong earthquake ground motions using a composite source model and synthetic green's functions

    International Nuclear Information System (INIS)

    We describe a model that generates realistic synthetic records of plausible strong ground motions, specific to the fault - station geometry. We model the slip as a superposition of randomly located sub-events. Since this source includes random parameters, we generate multiple realizations to investigate the uncertainties. In the context of the Representation Theorem, the motion is transferred to the site using synthetic Green's functions generated for a flat-layered Earth model. The Green's functions are generated using the regional velocity model, and can be modified with shallow layers to match the local site conditions. Source parameters are related energy and effective stress. Thus the parameters in the model are mostly constrained by either geological or geophysical observations. This paper also reviews several applications. The purpose of this paper is to review the method that we have been using to generate the synthetic seismograms, illustrate some applications, and discuss future directions for these studies

  10. ARMA models for earthquake ground motions. Seismic safety margins research program

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.; Oliver, R. M.; Pister, K. S.

    1981-02-01

    Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulating earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.

  11. ARMA models for earthquake ground motions. Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    This report contains an analysis of four major California earthquake records using a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It has been possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters and test the residuals generated by these models. It has also been possible to show the connections, similarities and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed in this report is suitable for simulating earthquake ground motions in the time domain and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. (author)

  12. On the coherence of ground motion in the San Fernando valley

    Science.gov (United States)

    Hough, S.E.; Field, E.H.

    1996-01-01

    We present an analysis of the coherence of seismic ground motion recorded on alluvial sediments in the San Fernando Valley, California. Using aftershocks of the 17 January 1994 Mw6.7 earthquake recorded at a quasi-dense array of portable stations, we analyze the coherence of three well-recorded magnitude 3.7 to 4.0 events over the frequency range 0.5 to 15 Hz and a distance range of 0.5 to 5.3 km. All stations are located at sites with broadly similar near-site geology, characterized by medium to fine-grain Quaternary alluvial sediments. On average, relatively high values of coherence are observed for distances up to 3 to 4 km and frequencies up to 2 to 3 Hz; coherence drops sharply at frequencies near and above 3 Hz. Although average coherence functions are described reasonably well by a log-linear relationship with frequency, the curves at all distances exhibit a flattening at low frequencies that is not consistent with previous observations of coherence at hardrock sites. The distance decay of coherence is also markedly less strong, with high coherence values observed over station separations corresponding to multiple wavelengths. This may reflect fundamental differences in shallow-wave propagation in the two environments, with high-frequency scattering relatively more dominant in regions of hard-rock near-surface geology. Within a sedimentary basin or valley, the site response itself generally reflects a resonance phenomenon that may tend to give rise to more uniform ground motions. However, previous studies have demonstrated the existence of pathological focusing and amplification effects within complex sedimentary basin environments such as the greater Los Angeles region; our results undoubtedly do not quantify the full range of ground-motion variability at all sites, but rather represent the level of that variability that can be expected, and quantified, for typical source/receiver paths.

  13. By How Much Can Physics-Based Earthquake Simulations Reduce the Uncertainties in Ground Motion Predictions?

    Science.gov (United States)

    Jordan, T. H.; Wang, F.

    2014-12-01

    Probabilistic seismic hazard analysis (PSHA) is the scientific basis for many engineering and social applications: performance-based design, seismic retrofitting, resilience engineering, insurance-rate setting, disaster preparation, emergency response, and public education. The uncertainties in PSHA predictions can be expressed as an aleatory variability that describes the randomness of the earthquake system, conditional on a system representation, and an epistemic uncertainty that characterizes errors in the system representation. Standard PSHA models use empirical ground motion prediction equations (GMPEs) that have a high aleatory variability, primarily because they do not account for the effects of crustal heterogeneities, which scatter seismic wavefields and cause local amplifications in strong ground motions that can exceed an order of magnitude. We show how much this variance can be lowered by simulating seismic wave propagation through 3D crustal models derived from waveform tomography. Our basic analysis tool is the new technique of averaging-based factorization (ABF), which uses a well-specified seismological hierarchy to decompose exactly and uniquely the logarithmic excitation functional into a series of uncorrelated terms that include unbiased averages of the site, path, hypocenter, and source-complexity effects (Feng & Jordan, Bull. Seismol. Soc. Am., 2014, doi:10.1785/0120130263). We apply ABF to characterize the differences in ground motion predictions between the standard GMPEs employed by the National Seismic Hazard Maps and the simulation-based CyberShake hazard model of the Southern California Earthquake Center. The ABF analysis indicates that, at low seismic frequencies (impact on the prioritization and economic costs of earthquake risk-reduction strategies.

  14. Non-Linear Wavelet Regression and Branch & Bound Optimization for the Full Identification of Bivariate Operator Fractional Brownian Motion

    Science.gov (United States)

    Frecon, Jordan; Didier, Gustavo; Pustelnik, Nelly; Abry, Patrice

    2016-08-01

    Self-similarity is widely considered the reference framework for modeling the scaling properties of real-world data. However, most theoretical studies and their practical use have remained univariate. Operator Fractional Brownian Motion (OfBm) was recently proposed as a multivariate model for self-similarity. Yet it has remained seldom used in applications because of serious issues that appear in the joint estimation of its numerous parameters. While the univariate fractional Brownian motion requires the estimation of two parameters only, its mere bivariate extension already involves 7 parameters which are very different in nature. The present contribution proposes a method for the full identification of bivariate OfBm (i.e., the joint estimation of all parameters) through an original formulation as a non-linear wavelet regression coupled with a custom-made Branch & Bound numerical scheme. The estimation performance (consistency and asymptotic normality) is mathematically established and numerically assessed by means of Monte Carlo experiments. The impact of the parameters defining OfBm on the estimation performance as well as the associated computational costs are also thoroughly investigated.

  15. A modifying method of recorded earthquake ground motion for matching design response spectrum and peak ground displacement in nuclear power plants

    International Nuclear Information System (INIS)

    A modification method of recorded earthquake ground motion was proposed for matching the design pseudo velocity response spectrum and target peak ground displacement in nuclear power plants. The method applies the second cardinal B-spline wavelet to decompose the recorded real records into the finite wavelet components. Then the wavelet components which mostly affect the peak ground displacement and peak ground acceleration can be searched out, By improving the wavelet-based modifying method and wavelet synthesis method, the earthquake ground motions have been modified to match the target response spectrum and target peak values of displacement and acceleration. The results of the numerical examples demonstrate that the proposed algorithms boast high precision. (authors)

  16. Hydrostatic Level Sensors as High Precision Ground Motion Instrumentation for Tevatron and Other Energy Frontier Accelerators

    International Nuclear Information System (INIS)

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  17. Hydrostatic level sensors as high precision ground motion instrumentation for Tevatron and other energy frontier accelerators

    International Nuclear Information System (INIS)

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  18. Seismic Response of Base-Isolated Structures under Multi-component Ground Motion Excitation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square response of the system is obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored.

  19. S2-Project: Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Faccioli, E.; Stupazzini, M.; Galadini, F.; Gori, S.

    2008-12-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems" , the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and

  20. Hybrid Slip Model for Near-Field Ground Motion Estimation Based on Uncertainty of Source Parameters

    Institute of Scientific and Technical Information of China (English)

    孙晓丹; 陶夏新; 汤爱平; 路建波

    2010-01-01

    The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...

  1. Ground-Motion Scaling in the Kachchh Basin, India, Deduced from

    OpenAIRE

    Malagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Bodin, P.; Center for Earthquake Research and Information University of Memphis; Akinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia

    2004-01-01

    We studied the excitation, propagation, and site effects in the Kachchh basin of India by using ground-motion recordings from a temporary seismograph network deployed to study aftershocks of the Mw 7.6 Bhuj earthquake of 26 January 2001. The Kachchh basin has been proposed as a useful analog region for studying hazard in other earthquake-prone but slowly deforming regions, such as the central United States. The earthquakes we studied ranged in size from about M 2 to M 5.2, a...

  2. Ground motion attenuation relation for small to moderate earthquakes in Fujian region, China

    Institute of Scientific and Technical Information of China (English)

    JIN Xing; KANG Lan-chi; OU Yi-ping

    2008-01-01

    We collect 1974 broad-band velocity records of 94 earthquakes (ML=2.8-4.9, △=13~462 km) from seven stations of the Fujian Seismic Network from March 1999 to March 2007. Using real-time simulation, we obtain the corre-sponding acceleration and then adopt different models to analyze the seismic data. As a result, a new attenuation relationship between PGA and PGV of the small and moderate earthquakes on bedrock site in Fujian region is established. The Yongchun earthquake occurred recently verifies the attenuation relationship well. This paper pro-vides a new approach for studying the ground motion attenuation relationship using velocity records.

  3. Evaluation of upper and lower bounds to energy eigenvalues in Shoenberg's perturbation-theory ground state by means of partitioning technique

    International Nuclear Information System (INIS)

    Upper and lower bounds for the energy eigenvalues is Schoenberg's perturbation-theory ground state are studied. After a review of the characteristic features of the partitioning techniques the perturbative expansion proposed by Schoenberg is generated from an exact operator equation. The upper and lower bounds for the ground state eigenvalue are derived by using reaction and wave operators concepts, the bracketing function and operator inequalities. (Author)

  4. Ground motion prediction and earthquake scenarios in the volcanic region of Mt. Etna (Southern Italy

    Science.gov (United States)

    Langer, Horst; Tusa, Giuseppina; Luciano, Scarfi; Azzaro, Raffaela

    2013-04-01

    One of the principal issues in the assessment of seismic hazard is the prediction of relevant ground motion parameters, e. g., peak ground acceleration, radiated seismic energy, response spectra, at some distance from the source. Here we first present ground motion prediction equations (GMPE) for horizontal components for the area of Mt. Etna and adjacent zones. Our analysis is based on 4878 three component seismograms related to 129 seismic events with local magnitudes ranging from 3.0 to 4.8, hypocentral distances up to 200 km, and focal depth shallower than 30 km. Accounting for the specific seismotectonic and geological conditions of the considered area we have divided our data set into three sub-groups: (i) Shallow Mt. Etna Events (SEE), i.e., typically volcano-tectonic events in the area of Mt. Etna having a focal depth less than 5 km; (ii) Deep Mt. Etna Events (DEE), i.e., events in the volcanic region, but with a depth greater than 5 km; (iii) Extra Mt. Etna Events (EEE), i.e., purely tectonic events falling outside the area of Mt. Etna. The predicted PGAs for the SEE are lower than those predicted for the DEE and the EEE, reflecting their lower high-frequency energy content. We explain this observation as due to the lower stress drops. The attenuation relationships are compared to the ones most commonly used, such as by Sabetta and Pugliese (1987)for Italy, or Ambraseys et al. (1996) for Europe. Whereas our GMPEs are based on small earthquakes, the magnitudes covered by the two above mentioned attenuation relationships regard moderate to large magnitudes (up to 6.8 and 7.9, respectively). We show that the extrapolation of our GMPEs to magnitues beyond the range covered by the data is misleading; at the same time also the afore mentioned relationships fail to predict ground motion parameters for our data set. Despite of these discrepancies, we can exploit our data for setting up scenarios for strong earthquakes for which no instrumental recordings are

  5. A lower bound for the energy of the ground state of bosons moving in one dimension

    International Nuclear Information System (INIS)

    It is shown that the gound state energy of N bosons of mass m moving in one ddimension is greater than E = - m/16h/2π2 N2(N-1)]∫ sup(+ infinite) sub(- infinite) V(x)dx] where V(x) is the two-body potential. It is conjectured that E = - m/24h/2π2N(N2-1)]∫ sup(+ infinite) sup(infinite) V(x)dx]2 provides a lower bound. (Author)

  6. Kinematic source model for simulation of near-fault ground motion field using explicit finite element method

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaozhi; Hu Jinjun; Xie Lili; Wang Haiyun

    2006-01-01

    This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.

  7. Ground Motion Data Profile of Western Turkey with Intelligent Hybrid Processing

    Science.gov (United States)

    Korkmaz, Kasim A.; Demir, Fuat

    2016-09-01

    The recent earthquakes caused severe damages on the existing buildings. By this motivation, an important amount of research work has been conducted to determine the seismic risk of seismically active regions. For an accurate seismic risk assessment, processing of ground motions would provide an advantage. Using the current technology, it is not possible to precisely predict the future earthquakes. Therefore, most of the current seismic risk assessment methodologies are based on statistical evaluation by using recurrence and magnitude of the earthquakes hit the specified region. Because of the limited number of records on earthquakes, the quality of definitions is questionable. Fuzzy logic algorithm can be used to improve the quality of the definition. In the present study, ground motion data profile of western Turkey is defined using an intelligent hybrid processing. The approach is given in a practical way for an easier and faster calculation. Earthquake data between 1970 and 1999 from western part of Turkey have been used for training. The results are tested and validated with the earthquake data between 2000 and 2015 of the same region. Enough approximation was validated between calculated values and the earthquake data by using the intelligent hybrid processing.

  8. Synthetic seismograms of ground motion near earthquake fault using simulated Green's function method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; ZHAO Zhao; XU Jiren; Ryuji Kubota

    2006-01-01

    Seismograms near source fault were synthesized using the hybrid empirical Green's function method where he discretely simulated seismic waveforms are used for Green's functions instead of the observed waveforms of small earthquakes. The Green's function seismic waveforms for small earthquake were calculated by solving wave equation using the pseudo-spectral method with the staggered grid real FFT strategy under a detailed 2-D velocity structure in Kobe region. Magnitude and seismic moment of simulated Green's function waveforms were firstly determined by using the relationship between fault length and corner frequency of source spectrum. The simulated Green's function waveforms were employed to synthesize seismograms of strong ground motion near the earthquake fault. The synthetic seismograms of the target earthquake were performed based on the model with multiple source rupture processes. The results suggest that synthesized seismograms coincide well with observed seismic waveforms of the 1995 Hyogo-ken Nanbu earthquake. The simulated Green's function method is very useful for prediction of the strong ground motion in region without observed seismic waveforms.The present technique spreads application field of the empirical Green's function method.

  9. Ground Motion Zoning of Santiago de Cuba: An Approach by SH Waves Modelling

    Science.gov (United States)

    Alvarez, Leonardo; García, Julio; Vaccari, Franco; Panza, Giuliano F.; González, Bertha; Reyes, Carmen; Fernández, Bárbara; Pico, Ramón; Zapata, José A.; Arango, Enrique

    The expected ground motion in Santiago de Cuba basin from earthquakes which occurred in the Oriente fault zone is studied. Synthetic SH-waves seismograms have been calculated along four profiles in the basin by the hybrid approach (modal summation for the path source-profile and finite differences for the profile) for a maximum frequency of 1 Hz. The response spectra ratio (RSR) has been determined in 49 sites, distributed along all considered profiles with a spacing of 900 m. The corresponding RSR versus frequency curves have been classified using a logical-combinatorial algorithm. The results of the classification, in combination with the uppermost geological setting (geotechnical information and geological geometry of the subsoil) are used for the seismic zoning of the city. Three different main zones are identified, and a small sector characterized by major resonance effects, due to the particular structural conditions. Each zone is characterized in terms of its expected ground motion parameters for the most probable strong earthquake (MS=7), and for the maximum possible (MS=8).

  10. Ground motions around a semicircular canyon with a dipping edge under SH plane wave incidence

    Science.gov (United States)

    Chang, Kao-Hao; Tsaur, Deng-How; Wang, Jeen-Hwa

    2016-01-01

    In order to explore the spatial distribution and temporal variation of ground motions near a semicircular canyon with a dipping edge, a simplified mathematical model is constructed. Based on the region-matching technique, a Fourier-Bessel series solution for the plane SH-wave excitation is derived and then applied to theoretically simulate the seismic response of the canyon. The use of the adequate wavefunctions and a newly derived Graf's addition formula can solve the unknown expansion coefficients. Parametric analyses with respect to the frequency of input motion, angle of incidence, and canyon geometry are illustrated. Both frequency- and time-domain computations are presented. The canonical case, a completed semicircular canyon, which has the exact analytical solution, and the horizontally truncated case analyzed in previous works are considered as particular cases of the proposed general model. Comparisons with boundary-element solutions show good agreement. Steady-state results show that the phenomenon of wave focusing tends to be significant when the incident angle bends toward the horizontal ground surface. Propagation and attenuation of scattered waves that originated from the surficial anomaly are exhibited in transient-state simulations.

  11. UC Berkeley Seismic Guidelines, Appendix II: Ground Motion TimeHistories for the UC Berkeley Campus

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2003-06-03

    Three sets of ten time histories each were developed to represent the ground motions for each of the three return periods. All of the time histories are provided as pairs of fault-normal and fault-parallel components. The ground motion time histories are provided in two forms: unmodified, and spectrally modified to match the probabilistic response spectra. The unmodified time histories can be scaled to match the probabilistic response spectra at a specified period, such as the first mode period of the structure being analyzed, while leaving the shape of the response spectrum unmodified. This approach preserves the particular characteristics of the individual time history, together with the peaks and troughs of its response spectrum. These individual characteristics are modified in the spectrally matched time histories, resulting in a suite of ten time histories (for a given return period) that all have the same response spectrum for a given component (fault normal or fault parallel) that follows the smooth shape of the probabilistic response spectrum.

  12. UC Berkeley Seismic Guidelines, Appendix II: Ground Motion Time Histories for the UC Berkeley Campus

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    2003-06-03

    Three sets of ten time histories each were developed to represent the ground motions for each of the three return periods. All of the time histories are provided as pairs of fault-normal and fault-parallel components. The ground motion time histories are provided in two forms: unmodified, and spectrally modified to match the probabilistic response spectra. The unmodified time histories can be scaled to match the probabilistic response spectra at a specified period, such as the first mode period of the structure being analyzed, while leaving the shape of the response spectrum unmodified. This approach preserves the particular characteristics of the individual time history, together with the peaks and troughs of its response spectrum. These individual characteristics are modified in the spectrally matched time histories, resulting in a suite of ten time histories (for a given return period) that all have the same response spectrum for a given component (fault normal or fault parallel) that follows the smooth shape of the probabilistic response spectrum.

  13. Time evolution of ground motion-dependent depolarisation at linear colliders

    CERN Document Server

    Bailey, I; Beckmann, M; Hartin, A; Helebrant, C; Kaefer, D; List, J; Moortgat-Pick, G

    2011-01-01

    Future linear colliders plan to collide polarised beams and the planned physics reach requires knowledge of the state of polarisation as precisely as possible. The polarised beams can undergo depolarisation due to various mechanisms. In order to quantify the uncertainty due to depolarisation, spin tracking simulations in the International Linear Collider (ILC) Beam Delivery System (BDS) and at the Interaction Point (IP) have been performed. Spin tracking in the BDS was achieved using the BMAD subroutine library, and the CAIN program was used to do spin tracking through the beam-beam collision. Assuming initially aligned beamline elements in the BDS, a ground motion model was applied to obtain realistic random misalignments over various time scales. Depolarisation at the level of 0.1% occurs within a day of ground motion at a noisy site. Depolarisation at the IP also exceeds 0.1% for the nominal parameter sets for both the ILC and for the Compact Linear Collider (CLIC). Theoretical work is underway to include ...

  14. Attenuation of strong ground motion and site specific seismicity in peninsular India

    International Nuclear Information System (INIS)

    Earthquakes in India occur in the plate boundary region of the Himalayas as well as in the intraplate region of Peninsular India (PI). Devastating events have occurred in PI in the recent past, which is a warning about the possibility of such earthquakes in the future also. But very limited recorded data, if any, is available about ground motion in PI for engineers to rely upon. The present paper, after a review of all data, proposes a new attenuation relationship applicable for PI. This has been obtained by combining SMA, SRR and MMI data. In the absence of near source records for past earthquakes, development of a composite database is the only rational alternative till more SMA records become available in PI. It is observed that attenuation of ground motion with distance is slower in PI than in other intraplate regions of the world. It is demonstrated that for a specific fault and a region, attenuation of PGA can also be obtained by analytical methods. (author)

  15. Review of seismicity and ground motion studies related to development of seismic design at SRS

    International Nuclear Information System (INIS)

    The NRC response spectra developed in Reg. Guide 1.60 is being used in the studies related to restarting of the existing Savannah River Site (SRS) reactors. Because it envelopes all the other site specific spectra which have been developed for SRS, it provides significant conservatism in the design and analysis of the reactor systems for ground motions of this value or with these probability levels. This spectral shape is also the shape used for the design of the recently licensed Vogtle Nuclear Station, located south of the Savannah River from the SRS. This report provides a summary of the data base used to develop the design basis earthquake. This includes the seismicity, rates of occurrence, magnitudes, and attenuation relationships. A summary is provided for the studies performed and methodologies used to establish the design basis earthquake for SRS. The ground motion response spectra developed from the various studies are also summarized. The seismic hazard and PGA's developed for other critical facilities in the region are discussed, and the SRS seismic instrumentation is presented. The programs for resolving outstanding issues are discussed and conclusions are presented

  16. The January 26, 2001 Mw7.6 Bhuj, India, Earthquake: Observed and Predicted Ground Motions

    Science.gov (United States)

    Hough, S. E.; Martin, S.; Bilham, R.; Atkinson, G. M.

    2001-12-01

    It is unclear whether or not the 26 January, 2001, Bhuj earthquake occurred in an intraplate or interplate setting. However, to understand the damage caused by this earthquake, and the hazard posed by future similar earthquakes, one must consider not only the source setting but propagation issues as well. Although local and regional instrumental recordings of the devastating January 26, 2001, Bhuj earthquake are sparse, the distribution of macroseismic effects can provide constraints on the ground motions. We compiled news accounts describing damage and other effects and interpreted them to obtain modified Mercalli intensities at over 300 locations throughout the Indian subcontinent. These values are used to map the intensity distribution using a simple mathematical interpolation method. These maps reveal several interesting features. Significant sediment-induced amplification is suggested at a number of locations around the Gulf of Kachchh and in other areas along rivers, within deltas, or on coastal alluvium. The overall distribution of intensities also reveals extremely efficient wave propagation throughout the subcontinent: the earthquake was felt at distances as large as 2400 km and caused light damage at distances upwards of 700 km. This is consistent with earlier theoretical and observational results suggesting that higher mode surface waves (Lg waves) will propagate efficiently in intraplate crust, which forms a relatively uniform, high-Q waveguide. We use fault rupture parameters inferred from teleseismic data to predict ground motions at distances of 0-1000 km. We convert the predicted peak ground acceleration (PGA) values to MMI using a relationship between MMI and PGA that assigns MMI based on the average effects in a region. The predicted MMI's are typically lower by 1-2 units than the estimated values. We discuss two factors that probably account for this discrepancy: 1) a tendency for media accounts to focus on the most dramatic damage, rather than

  17. VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES

    Institute of Scientific and Technical Information of China (English)

    WANG ZHUANG-BING; WU FU-LI; CHEN QING-HU; JIAO ZHENG-KUAN

    2001-01-01

    Within the framework of Feynman path-integral variational theory, we calculate the ground-state energy of a polaron in parabolic quantum wires in the presence of a Coulomb potential. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter,and it increases monotonically with decreasing effective wire radius. Moreover, compared to the results obtained by Feynman Haken variational path-integral theory, we obtain better results within the Feynman path-integral variational approach (FV approach). Applying our calculation to several polar semiconductor quantum wires, we find that the polaronic correction can be considerably large.

  18. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    Science.gov (United States)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  19. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion

    Science.gov (United States)

    Hirata, N.; Sato, H.; Koketsu, K.; Umeda, Y.; Iwata, T.; Kasahara, K.

    2003-12-01

    Introduction: After the 1995 Kobe earthquake, the Japanese government increased its focus and funding of earthquake hazards evaluation, studies of man-made structures integrity, and emergency response planning in the major urban centers. A new agency, the Ministry of Education, Science, Sports and Culture (MEXT) has started a five-year program titled as Special Project for Earthquake Disaster Mitigation in Urban Areas (abbreviated to Dai-dai-toku in Japanese) since 2002. The project includes four programs: I. Regional characterization of the crust in metropolitan areas for prediction of strong ground motion. II. Significant improvement of seismic performance of structure. III. Advanced disaster management system. IV. Investigation of earthquake disaster mitigation research results. We will present the results from the first program conducted in 2002 and 2003. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion: A long-term goal is to produce map of reliable estimations of strong ground motion. This requires accurate determination of ground motion response, which includes a source process, an effect of propagation path, and near surface response. The new five-year project was aimed to characterize the "source" and "propagation path" in the Kanto (Tokyo) region and Kinki (Osaka) region. The 1923 Kanto Earthquake is one of the important targets to be addressed in the project. The proximity of the Pacific and Philippine Sea subducting plates requires study of the relationship between earthquakes and regional tectonics. This project focuses on identification and geometry of: 1) Source faults, 2) Subducting plates and mega-thrust faults, 3) Crustal structure, 4) Seismogenic zone, 5) Sedimentary basins, 6) 3D velocity properties We have conducted a series of seismic reflection and refraction experiment in the Kanto region. In 2002 we have completed to deploy seismic profiling lines in the Boso peninsula (112 km) and the

  20. Characterizing long period (1--10 sec) ground motions for base isolated structures located in sedimentary basins

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.W.; Somerville, P.G. [Woodward-Clyde Federal Services, Pasadena, CA (United States)

    1995-12-01

    Many urban regions, including Los Angeles, Portland and Seattle in the United States and Tokyo in Japan, are located above deep sedimentary basins. The conventional approach of estimating ground motions in these environments is to assume that the geology can be characterized by a horizontally stratified medium, and that only the shallowest few tens of meters influence the ground motion characteristics. However, the trapping and amplification of long period (1-10 sec) waves by sedimentary basins can generate amplitudes that are significantly larger than those calculated from simple 1D models of site resonance. This may be of particular concern for base isolated structures which are most sensitive to ground motions in this period range. The recent development of efficient computational methods for modeling seismic wave, propagation in laterally varying geological structure enable the authors to model the effects of sedimentary basins on earthquake generated ground motions. They are now applying this calculation procedure to characterize the ground motions that may be generated in the Puget Trough and the Portland Basin due to large earthquakes on the Cascadia subduction zone, and in the Los Angeles region due to large earthquakes on blind thrust faults beneath the Los Angeles basin.

  1. Dynamic Response and Ground-Motion Effects of Building Clusters During Large Earthquakes

    Science.gov (United States)

    Isbiliroglu, Y. D.; Taborda, R.; Bielak, J.

    2012-12-01

    The objective of this study is to analyze the response of building clusters during earthquakes, the effect that they have on the ground motion, and how individual buildings interact with the surrounding soil and with each other. We conduct a series of large-scale, physics-based simulations that synthesize the earthquake source and the response of entire building inventories. The configuration of the clusters, defined by the total number of buildings, their number of stories, dynamic properties, and spatial distribution and separation, is varied for each simulation. In order to perform these simulations efficiently while recurrently modifying these characteristics without redoing the entire "source to building structure" simulation every time, we use the Domain Reduction Method (DRM). The DRM is a modular two-step finite-element methodology for modeling wave propagation problems in regions with localized features. It allows one to store and reuse the background motion excitation of subdomains without loss of information. Buildings are included in the second step of the DRM. Each building is represented by a block model composed of additional finite-elements in full contact with the ground. These models are adjusted to emulate the general geometric and dynamic properties of real buildings. We conduct our study in the greater Los Angeles basin, using the main shock of the 1994 Northridge earthquake for frequencies up to 5Hz. In the first step of the DRM we use a domain of 82 km x 82 km x 41 km. Then, for the second step, we use a smaller sub-domain of 5.12 km x 5.12 km x 1.28 km, with the buildings. The results suggest that site-city interaction effects are more prominent for building clusters in soft-soil areas. These effects consist in changes in the amplitude of the ground motion and dynamic response of the buildings. The simulations are done using Hercules, the parallel octree-based finite-element earthquake simulator developed by the Quake Group at Carnegie

  2. Dependency of supershear transition and ground motion on the autocorrelation of initial stress

    Science.gov (United States)

    Schmedes, Jan; Archuleta, Ralph J.; Lavallée, Daniel

    2010-10-01

    Theoretical and observational studies show that earthquakes on strike-slip faults can have rupture speeds exceeding the shear wave speed. Due to the close relationship between the rupture velocity and the radiated wave field, it is important to understand the conditions leading to supershear ruptures and their effect on the resulting ground motion. We compute dynamic strike slip ruptures in a 3D elastic half space using heterogeneous frictional properties on faults that are 60 km long. We use a grid spacing of 60 m allowing us to compute ground motion for frequencies from 0 to 5 Hz. We analyze the resulting ground motion using isochrones to explain phenomena we observe. We model the amplitudes of the initial shear stress as a self-similar random field with Cauchy distributed amplitudes. The wavenumber amplitude spectrum of initial stress decays as a power law with exponent ν that controls the decay and the spatial correlation of the initial stress. The faster the decay (corresponding to larger value of ν), the more correlated is the stress on the fault, i.e., the stress field appears spatially smoother. The strength on the fault is computed under the assumption of a constant S-factor, where S is the ratio of strength excess over stress drop. On a fault with uniform strength and stress drop the S-factor has to be less than a critical value for the supershear transition to occur. For models with heterogeneous initial stress we find that both the S-factor and the value of the spectral decay constant ν affect the occurrence of supershear rupture. We observe that for a given, but small enough, S-factor a smooth model ( ν ≥ 2) can run at supershear speed while a rough model ( ν ˜ 1) will rupture at subshear speeds for the same S-factor. Based on the theory of fracture, a non-dimensional number κ was introduced to quantify the condition when a transition to supershear rupture velocity can occur during an earthquake. Transition will occur when κ exceeds a

  3. Ground Motion Scaling in Kachchh: a Preliminary Assessment from Aftershocks of the 2001 Bhuj, India, Earthquake

    Science.gov (United States)

    Bodin, P.; Malagnini, L.; Akinci, A.

    2002-12-01

    Considerable controversy surrounds the issues of how much and how systematically source and propagation characteristics of earthquakes that take place in relatively "stable" continental settings differ from those of earthquakes in more mobile crust. The 2001 Mw 7.7 Bhuj, India, earthquake may have been the largest such earthquake in more than 100 years. We are analyzing ground motions from aftershocks of the Bhuj earthquake recorded on a temporary network deployed within 100 km of the mainshock epicenter. Our goal is to determine the source and propagation characteristics in the region, taking into account site effects at our network sites, to facilitate comparison with similar studies in other tectonic environments. To date we have used data from about 1100 earthquakes ranging in magnitude from about 2 to about 5 1/2. We model peak amplitudes as a function of source-receiver distance for bandpass-filtered time series and the spectral amplitudes of time-windowed seismograms. Because the earthquakes occurred over a wide depth range, we have analyzed the data in two overlapping depth subsets-shallower than 25 km and deeper than 20 km. We find that propagation is well-modeled by a frequency-dependent quality factor Q = 680f0.48 combined with a rather simple geometric spreading function that varies only slightly between the deep and shallow data subsets. We modeled the source terms with an w2 single corner (Brune) model with a magnitude dependent stress drop. The larger earthquakes had stress drops of about 160 bars. Extrapolating our source and propagation values using Random Vibration Theory to an Mw 7.5 earthquake yields ground motion estimates that coincide closely with similar current estimates for eastern North America (ENA) earthquakes. Our preliminary assessment is that, from a ground motion perspective, the Bhuj earthquake presents an important opportunity to study an earthquake that (a) differs significantly from earthquakes in mobile crust, and (b) resembles

  4. Report of Earthquake Drills with Experiences of Ground Motion in Childcare for Young Children, Japan

    Science.gov (United States)

    Yamada, N.

    2013-12-01

    After the Great East Japan Earthquake of 2011, this disaster has become one of the opportunities to raise awareness of earthquake and tsunami disaster prevention, and the improvement of disaster prevention education is to be emphasized. The influences of these bring the extension to the spatial axis in Japan, and also, it is important to make a development of the education with continuous to the expansion of time axes. Although fire or earthquake drills as the disaster prevention education are often found in Japan, the children and teachers only go from school building to outside. Besides, only the shortness of the time to spend for the drill often attracts attention. The complementary practice education by the cooperation with experts such as the firefighting is practiced, but the verification of the effects is not enough, and it is the present conditions that do not advance to the study either. Although it is expected that improvement and development of the disaster prevention educations are accomplished in future, there are a lot of the problems. Our target is construction and utilization of material contributing to the education about "During the strong motion" in case of the earthquake which may experience even if wherever of Japan. One of the our productions is the handicraft shaking table to utilize as teaching tools of the education to protect the body which is not hurt at the time of strong motion. This made much of simplicity than high reproduction of the earthquake ground motions. We aimed to helping the disaster prevention education including not only the education for young children but also for the school staff and their parents. In this report, the focusing on a way of the non-injured during the time of the earthquake ground motion, and adopting activity of the play, we are going to show the example of the framework of earthquake disaster prevention childcare through the virtual experience. This presentation has a discussion as a practice study with

  5. Analysis of the strong motion records obtained from the 2007 Niigataken Chuetsuoki earthquake and determination of the design basis ground motions at the Kashiwazaki Kariwa Nuclear Power Plant. Part 3. Determination of the design basis ground motions considering findings from the earthquake

    International Nuclear Information System (INIS)

    In the presentation, the new design basis ground motion on the basis of the factors that magnified the earthquake ground motion at the Kashiwazaki Kariwa nuclear power plant in the Niigataken Chuetsu-oki earthquake, which were examined in the part 1 and the part 2 is determined

  6. Ground-motion Attenuation Relation from Strong-motion Records of the 2001 Mw 7.7 Bhuj Earthquake Sequence (2001-2006), Gujarat, India

    Science.gov (United States)

    Mandal, Prantik; Kumar, N.; Satyamurthy, C.; Raju, I. P.

    2009-03-01

    Predictive relations are developed for peak ground acceleration (PGA) from the engineering seismoscope (SRR) records of the 2001 Mw 7.7 Bhuj earthquake and 239 strong-motion records of 32 significant aftershocks of 3.1 ≤ Mw ≤ 5.6 at epicentral distances of 1 ≤ R ≤ 288 km. We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relation for peak horizontal acceleration in the Kachchh seismic zone, Gujarat. This new analysis uses the Joyner-Boore’s method for a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. The resulting attenuation equation is, eqalign{ ln ({Y}) = -7.9527 + 1.4043 {M}_{{W}} - ln left( {{r}_{{jb}}2 + 19.822} right)^{1/2} - 0.0682 {S} ŗ{for} 3.1 { data recorded at short distances (0-50 km) from the source. The relation is in demonstrable agreement with the recorded strong-ground motion data from earthquakes of Mw 3.5, 4.1, 4.5, 5.6, and 7.7. There are insufficient data from the Kachchh region to adequately judge the relation for the magnitude range 5.7 ≤ Mw ≤ 7.7. But, our ground-motion prediction model shows a reasonable correlation with the PGA data of the 29 March, 1999 Chamoli main shock (Mw 6.5), validating our ground-motion attenuation model for an Mw6.5 event. However, our ground-motion prediction shows no correlation with the PGA data of the 10 December, 1967 Koyna main shock (Mw 6.3). Our ground-motion predictions show more scatter in estimated residual for the distance range (0-30 km), which could be due to the amplification/noise at near stations situated in the Kachchh sedimentary basin. We also noticed smaller residuals for the distance range (30-300 km), which could be due to less amplification/noise at sites distant from the Kachchh basin. However, the observed less residuals for the longer distance range (100-300 km) are less reliable due to the lack of available PGA values in the same distance

  7. 2.5D Simulation of basin-edge effects on the ground motion characteristics

    Indian Academy of Sciences (India)

    J P Narayan

    2003-09-01

    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated using 2.5D modeling. One of the most significant advantages of the 2.5D simulation is that 3D radiation pattern can be generated in a 2D numerical grid using double-couple shear dislocation source. Further, 2.5D numerical modeling avoids the extensive computational cost of 3D modeling. The responses of basin-edge model using different soil velocities revealed that surface waves were generated near the edge of the basin and propagated normal to the edge, towards the basin. Further, the results depict increase of amplification, duration and surface wave generation with the decrease in soil velocity.

  8. Evaluation of seismic source, ground motion, tsunami based on the Tohoku earthquake

    International Nuclear Information System (INIS)

    Our source models for the Mw9.0 Tohoku earthquake either inferred using tsunami data or from seismic data are featured with large slip along the Japan Trench. Our results indicated that the tsunami water levels at the Fukushima Daiichi and Daini NPPs were dominated by the large slip along the Japan Trench. Our analysis suggested that the difference in water levels at these two sites were caused by the waveform overlap effects due to delays of rupture starting times and wave propagation time. It also follows that the short period ground motions recorded during such an Mw9.0 mega thrust earthquake were comparable with those of an Mw8.0 earthquake. (author)

  9. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  10. Response of concrete gravity dams to spatially varying earthquake ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Zerva, A.; Huang, J. [Drexel Univ., Philadelphia, PA (United States). Dept. of Civil, Architectural and Environmental Engineering

    2010-07-01

    Nonlinear finite element analysis is used to investigate the effect of the spatial variation of seismic ground motions on the response of concrete gravity dams. This paper presented a sensitivity analysis of the response of concrete gravity dams subjected to spatially variable seismic excitations incorporating wave passage effects. The Koyna Dam was idealized as a two-dimensional finite element model incorporating nonlinearities in the concrete and rock masses, and interactions between the dam, the reservoir, the sediments and the foundation. The paper discussed the numerical formulation, including dam-reservoir-sediment-foundation system; modeling of the fluid domain and its boundaries; modeling of the solid domains and their boundaries; and coupling of the fluid and solid domains. The paper also discussed the earthquake input mechanism and sensitivity analysis of wave passage effects, such as the numerical model of the Koyna Dam; description of input excitation; and seismic response evaluation of the Koyna Dam. The study showed that while the results for the higher propagation velocities appear to be similar, a trend of increasing structural response with decreasing propagation velocity is observed, with the slower propagating excitations yielding the highest response and the most severe damage patterns in the structure. Hence, the assumption of uniform motions as input excitations at the base of the structures does not lead to a conservative response for concrete gravity dams. 9 refs., 8 figs.

  11. Path durations for use in the stochastic‐method simulation of ground motions

    Science.gov (United States)

    Boore, David M.; Thompson, Eric M.

    2014-01-01

    The stochastic method of ground‐motion simulation assumes that the energy in a target spectrum is spread over a duration DT. DT is generally decomposed into the duration due to source effects (DS) and to path effects (DP). For the most commonly used source, seismological theory directly relates DS to the source corner frequency, accounting for the magnitude scaling of DT. In contrast, DP is related to propagation effects that are more difficult to represent by analytic equations based on the physics of the process. We are primarily motivated to revisit DT because the function currently employed by many implementations of the stochastic method for active tectonic regions underpredicts observed durations, leading to an overprediction of ground motions for a given target spectrum. Further, there is some inconsistency in the literature regarding which empirical duration corresponds to DT. Thus, we begin by clarifying the relationship between empirical durations and DT as used in the first author’s implementation of the stochastic method, and then we develop a new DP relationship. The new DP function gives significantly longer durations than in the previous DP function, but the relative contribution of DP to DT still diminishes with increasing magnitude. Thus, this correction is more important for small events or subfaults of larger events modeled with the stochastic finite‐fault method.

  12. A new method for the realistic estimation of seismic ground motion in megacities: The case of Rome

    International Nuclear Information System (INIS)

    A hybrid technique, based on mode summation and finite differences, is used to simulate the ground motion induced in the city of Rome by the January 13, 1915, Fucino (Italy) earthquake (M=6.9). The technique allows us to take into consideration source, path, and local soil effects. The results of the numerical simulations are used for a comparison between the observed distribution of damage in Rome, and certain quantities related to the computed ground motion. These quantities are those commonly used for engineering purposes, e.g. the peak ground acceleration, the maximum response of a simple oscillator, and the so-called ''total energy of ground motion'' which is related to the Arias Intensity. Integral quantities of the computed time-series, such as the total energy of ground motion, are in good agreement with the observed distribution of damage and turn out to give a good representation of the ground motion. From the computation of spectral ratios, it has been recognised that the presence of a near-surface layer of rigid material is not sufficient to classify a location as a ''hard-rock site'' when the rigid material has a sedimentary complex below it. This is because the underlying sedimentary complex causes amplifications due to resonances. Within sedimentary basins, incident energy in certain frequency bands can also be shifted from the vertical, into the radial component of motion. This phenomenon is very localized, both in frequency and space, and closely neighboring sites can be characterized by very large differences in the seismic response, even if the lateral variations of local soil conditions are relatively smooth. (author). Refs, 12 figs, 1 tab

  13. Physically-Based Ground Motion Prediction and Validation A Case Study: Mid-sized Marmara Sea Earthquakes

    Science.gov (United States)

    Mert, A.

    2015-12-01

    In this study we have two main purposes. The first one is to simulate five midsize earthquakes (Mw≈5.0) recorded in the Marmara region, which has a geologically complex and heterogeneous crustal structure. We synthesize ground motion for the full wave train on three components, and applied a 'physics based' solution of earthquake rupture. The simulation methodology is based on the studies by Hutchings et al. (2007), Scognamiglio and Hutchings (2009). For each earthquake, we synthesized seismograms using by 500 different rupture scenarios that were generated by Monte Carlo selection of parameters within the range. Synthetic ground motion is a major challenge for seismic hazard assessment studies. Especially after the adoption of performance-based design approach with the Earthquake resistant design of engineering structures. To compute realistic time histories for different locations around Marmara region can be helpful for engineering design, retrofitting the existing structures, hazard and risk management studies and developing new seismic codes and standards.The second purpose is to validate synthetic seismograms with real seismograms. We follow the methodology presented by Anderson (2003) for validation. This methodology proposes a similarity score based on averages of the quality of fit measuring ground motion characteristics and uses a suite of measurements. Namely, the synthetics are compared to real data by ten representative ground motion criteria. The applicability of Empirical Green's functions methodology and physics based solution of earthquake rupture had been assessed in terms of modeling in complex geologic structure. Because the methodology produces source and site specific synthetic ground motion time histories and goodness-of-fit scores of obtained synthetics is between 'fair' to 'good' range based on Anderson's score, we concluded that it can be tried to produce ground motion that has not previously been recorded during catastrophic earthquake

  14. Long-Period Ground Motion in the Arabian Gulf from Earthquakes in the Zagros Mountains Thrust Belt

    Science.gov (United States)

    Pitarka, Arben; Al-Amri, Abdullah; Pasyanos, Michael E.; Rodgers, Arthur J.; Mellors, Robert J.

    2015-10-01

    The Arabian Gulf is adjacent to the Zagros Mountains, one of the most seismically active regions in the world. We observe that broadband seismic records of Zagros earthquakes recorded on the Arabian side of the Gulf display long-duration surface waves. While shorter periods (10 km) of the Gulf basin, the long-period energy is enhanced and transmitted efficiently. Consequently, large earthquakes in the Zagros could result in amplified ground motions at long periods (2-10 s) relative to average behavior. Such ground motions are of concern for large engineered structures, such as tall buildings and long bridges with resonant periods in the same period range. Here we present results of investigations of the characteristics of ground motions recorded on the western shore of the Gulf from selected earthquakes in the Zagros Mountains region. Exceptionally, long-duration seismic waves, as compared with standard models, are shown to occur with periods of 2-10 s. This may be due to waveguide effects in the deep sedimentary basin structure of the Arabian Platform. In addition to analyzing recorded ground motion we performed 3D wave propagation simulations using a finite difference method and experimental velocity models of the Gulf, with different shallow sedimentary layers structures. The simulation results confirm our hypothesis that long-period waves with extremely long duration and relatively large amplitudes are caused by the geometry of the basin sedimentary layers and, to some extent, by shallow earthquake depths. Combined effects of basin edge geometry with sharp velocity contrasts and shallow sources (<10 km) on the eastern side of the Arabian Gulf can cause large long-period ground motion on the western side of the Gulf. In contrast, the short-period content of ground motion (<2 s) at long distances is relatively weak. This is mainly due to wave propagation scattering and attenuation in the shallow sedimentary layers of the Gulf basin.

  15. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  16. Seismic ground motion analysis of Shanghai Pudong Airport site considering the effects of spatial correlation and irregular topography

    Institute of Scientific and Technical Information of China (English)

    JIANG Tong; CHEN Laiyun; XING Hailing; L(U) Xilin

    2007-01-01

    The terminal No.Ⅱ of Shanghai Pudong International Airport is located at Pudong District of Shanghai City near shore of East China Sea,and the area of the long-span terminal is 400 m × 200 m.The construction site of the terminal locates on the irregular topography,and its alluvium achieves about 300 m in thickness.The spatial correlation of seismic ground motion,as well as the amplification of soft alluvium and the effect of irregular topography,should be considered.This paper uses a simplified method to obtain the response spectrum of the engineering bedrock under the irregular topography.The spectrum is used to generate the sets of spatially correlative horizontal and vertical seismic motions.The surface ground motion was calculated under incidence of the spatially correlative seismic motion by 2D finite element method (FEM) model considering nonlinear properties of the soil by means of the equivalent linear method.In order to compare the effect of 2D irregular topography,the seismic response analysis of 1D model is carried out by using the equivalent linear method.For indicating the effect of the spatial correlation of input motions,the horizontal uniform inputs,as well as the horizontal and vertical uniform input are carried out for the seismic response analysis of the site.Finally,some characteristics of seismic ground motion calculated for previously mentioned cases are compared.

  17. Ground Motion Prediction Equations for the Central and Eastern United States

    Science.gov (United States)

    Seber, D.; Graizer, V.

    2015-12-01

    New ground motion prediction equations (GMPE) G15 model for the Central and Eastern United States (CEUS) is presented. It is based on the modular filter based approach developed by Graizer and Kalkan (2007, 2009) for active tectonic environment in the Western US (WUS). The G15 model is based on the NGA-East database for the horizontal peak ground acceleration and 5%-damped pseudo spectral acceleration RotD50 component (Goulet et al., 2014). In contrast to active tectonic environment the database for the CEUS is not sufficient for creating purely empirical GMPE covering the range of magnitudes and distances required for seismic hazard assessments. Recordings in NGA-East database are sparse and cover mostly range of Mindustry (Vs=2800 m/s). The number of model predictors is limited to a few measurable parameters: moment magnitude M, closest distance to fault rupture plane R, average shear-wave velocity in the upper 30 m of the geological profile VS30, and anelastic attenuation factor Q0. Incorporating anelastic attenuation Q0 as an input parameter allows adjustments based on the regional crustal properties. The model covers the range of magnitudes 4.010 Hz) and is within the range of other models for frequencies lower than 2.5 Hz

  18. Modeling of Ground Motion at Napoli for the 1688 Scenario Earthquake

    Science.gov (United States)

    Nunziata, C.; Sacco, C.; Panza, G. F.

    2011-03-01

    The Sannio seismogenic area turns out to be responsible for the highest peak ground accelerations (PGA) and seismic response spectra (SRS) at Napoli. The 1688 earthquake is considered representative of the area, and realistic synthetic seismograms have been computed for this scenario earthquake at the historical center and the eastern sector of Napoli. The use of a hybrid technique based on mode summation and finite-difference methods is fully justified by the available detailed knowledge about the geological and geophysical properties of the Neapolitan subsoil. This modeling makes it possible to recognize that amplifications of ~2 for PGA and >3 for SRS are to be expected because of the pyroclastic soil cover. Based on the information contained in the available catalogs, different magnitudes have been considered. Taking into account the correlation, valid for the Italian territory, between synthetic PGA and observed intensities, it turns out that the most probable magnitude ( M) of the 1688 earthquake is 6.7, while M = 7.3 should be assigned to a conservative scenario earthquake. Comparison of the computed response spectra for the 1688 scenario earthquake with the Italian seismic building code shows that the code is adequate with respect to the expected effects at the historical center of Napoli, but that it underestimates the possible ground motion at the eastern sector, in particular at the newly developed area built after the 1980 earthquake.

  19. Probabilistic sensitivity analysis of two suspension bridges in Istanbul, Turkey to near- and far-fault ground motion

    Directory of Open Access Journals (Sweden)

    Ö. Çavdar

    2012-02-01

    Full Text Available The aim of this paper is to compare the near-fault and far-fault ground motion effects on the probabilistic sensitivity dynamic responses of two suspension bridges in Istanbul. Two different types of suspension bridges are selected to investigate the near-fault (NF and far-fault (FF ground motion effects on the bridge sensitivity responses. NF and FF strong ground motion records, which have approximately identical peak ground accelerations, of the Kocaeli (1999 earthquake are selected for the analyses. Displacements and internal forces are determined using the probabilistic sensitivity method (PSM, which is one type of stochastic finite element method. The efficiency and accuracy of the proposed algorithm are validated by comparison with results of the Monte Carlo Simulation (MCS method. The displacements and internal forces obtained from the analyses of suspension bridges subjected to each fault effect are compared with each other. It is clearly seen that there is more seismic demand on displacements and internal forces when suspension bridges are subjected to NF and FF ground motion.

  20. Geophysical assessment of near-field ground motion and the implications for the design of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.L.

    1977-09-30

    This paper gives an in-depth discussion on the various methodologies currently available to predict the near-field ground motion from an earthquake. The limitations of the various methods are discussed in some detail in light of recently available data. It is shown that, (at least for California earthquakes) for an earthquake with a given magnitude a wide variation in the peak ground motion can occur. The change in the spectral content of the ground motion is given as a function of earthquake magnitude and peak ground acceleration. It is shown that the large g values associated with small earthquakes are relatively unimportant in the design provided the structures have a modest amount of ductility. Data recently obtained from the Friuli earthquake are also examined. Although not all the geophysical data are currently available, the provisional conclusion is reached that the relation between the strong ground motion from this earthquake and its source parameters is the same as for the western United States.

  1. Prediction of ground motion parameters for the volcanic area of Mount Etna

    Science.gov (United States)

    Tusa, Giuseppina; Langer, Horst

    2016-01-01

    Ground motion prediction equations (GMPEs) have been derived for peak ground acceleration (PGA), velocity (PGV), and 5 % damped spectral acceleration (PSA) at frequencies between 0.1 and 10 Hz for the volcanic area of Mt. Etna. The dataset consists of 91 earthquakes with epicentral distances between 0.5 and 100 km. Given the specific characteristics of the area, we divided our data set into two groups: shallow events (SE, focal depth 5 km). The range of magnitude covered by the SE and the DE is 3.0 ≤ M L ≤ 4.3 and 3.0 ≤ M L ≤ 4.8, respectively. Signals of DE typically have more high frequencies than those of SE. These differences are clearly reflected in the empirical GMPEs of the two event groups. Empirical GMPEs were estimated considering several functional forms: Sabetta and Pugliese (Bull Seism Soc Am 77:1491-1513, 1987) (SP87), Ambraseys et al. (Earth Eng Struct Dyn 25:371-400, 1996) (AMB96), and Boore and Atkinson (Earth Spectra 24:99-138, 2008) (BA2008). From ANOVA, we learn that most of the errors in our GMPEs can be attributed to unmodeled site effects, whereas errors related to event parameters are limited. For DE, BA2008 outperforms the simpler models SP87 or AMB96. For SE, the simple SP87 is preferable considering the Bayesian Information Criterion since it proves more stable with respect to confidence and gives very similar or even lower prediction errors during cross-validation than the BA2008 model. We compared our results to relationships derived for Italy (ITA10, Bindi et al. Bull Earth Eng 99:2471-2488, 2011). For SE, the main differences are observed for distances greater than about 5 km for both horizontal and vertical PGAs. Conversely, for DE the ITA10 heavily overestimates the peak ground parameters for short distances.

  2. A Stochastic Estimate of Ground Motion at Oceano, California, for the M6.5 December 22, 2003, San Simeon Earthquake, Derived from Aftershock Recordings

    Science.gov (United States)

    di Alessandro, C.; Boatwright, J.

    2004-12-01

    The U.S. Geological Survey deployed a digital seismic station in Oceano, California, in February 2004, to investigate the cause of damage and liquefaction from the 22 December 2003 M6.5 San Simeon earthquake. This station recorded 11 M\\> 2.8 aftershocks in almost eight weeks. We use these recordings, together with recordings of the main shock and the same aftershocks obtained from nearby stations in Park Hill and San Luis Obispo, to estimate the mainshock ground motion in Oceano. We estimate the Fourier amplitude spectrum using a generalized spectral ratio analysis that averages the spectral ratios from both stations for all the co-recorded aftershocks. We test three aftershocks as Green's functions by comparing simulated and recorded acceleration amplitude spectra for the main shock at Park Hill and San Luis Obispo. Instead of deconvolving the aftershock recordings from the mainshock recordings to estimate a source-time function, we convolve the aftershock accelerograms with a stochastic operator to simulate the duration and phase of the mainshock accelerograms. These stochastic operators are determined as sets of delta functions whose delays are randomly generated from a gamma distribution with a shape parameter of 1. We choose the scale parameter by fitting Husid plots of the Park Hill and San Luis Obsipo mainshock accelerograms. This stochastic approach allows us to extend the range of aftershocks that can be used as Green's functions to events nearly three magnitude units smaller than the main shock. Our realizations for the mainshock accelerogram at Oceano yield PGAs distributed as 28±4% g. We interpret these realizations as upper bounds for the actual ground motion because our analysis assumes that the ground behaved linearly, while the liquefaction and lateral spreading indicates that the ground behaved non-linearly. Geotechnical analysis of the site indicates that a PGA of 25% g would have initiated the liquefaction.

  3. Effects of mechanical property variability in lead rubber bearings on the response of seismic isolation system for different ground motions

    International Nuclear Information System (INIS)

    The effects of variability of the mechanical properties of lead rubber bearings on the response of a seismic isolation system are investigated. Material variability in manufacturing, aging, and operation temperature is assumed, and two variation models of an isolation system are considered. To evaluate the effect of ground motion characteristics on the response, 27 earthquake record sets with different peak A/V ratios were selected, and three components of ground motions were used for a seismic response analysis. The response in an isolation system and a superstructure increases significantly for ground motions with low A/V ratios. The variation in the mechanical properties of isolators results in a significant influence on the shear strains of the isolators and the acceleration response of the superstructure. The variation provisions in the ASCE-4 are reasonable, but more strict variation limits should be given to isolation systems subjected to ground motions having low A/V ratios. For application of seismic isolation systems to safety-related nuclear structures, the variation in the material and mechanical properties of the isolation system should be properly controlled during the manufacturing and aging processes. In addition, special consideration should be given to minimize the accidental torsion caused by the dissimilarity in the stiffness variations of the isolators.

  4. Closed-form dynamic stability criterion for elastic-plastic structures under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-03-01

    Full Text Available A dynamic stability criterion for elastic-plastic structures under near-fault ground motions is derived in closed-form. A negative post-yield stiffness is treated in order to consider the P-delta effect. The double impulse is used as a substitute of the fling-step near-fault ground motion. Since only the free-vibration appears under such double impulse, the energy approach plays a critical role in the derivation of the closed-form solution of a complicated elastic-plastic response of structures with the P-delta effect. It is remarkable that no iteration is needed in the derivation of the closed-form dynamic stability criterion on the critical elastic-plastic response. It is shown via the closed-form expression that several patterns of unstable behaviors exist depending on the ratio of the input level of the double impulse to the structural strength and on the ratio of the negative post-yield stiffness to the initial elastic stiffness. The validity of the proposed dynamic stability criterion is investigated by the numerical response analysis for structures under double impulses with stable or unstable parameters. Furthermore the reliability of the proposed theory is tested through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  5. Ground motion-simulations of 1811-1812 New Madrid earthquakes, central United States

    Science.gov (United States)

    Ramirez-Guzman, L.; Graves, Robert; Olsen, Kim B.; Boyd, Oliver; Cramer, Chris H.; Hartzell, Stephen; Ni, Sidao; Somerville, Paul G.; Williams, Robert; Zhong, Jinquan

    2015-01-01

    We performed a suite of numerical simulations based on the 1811–1812 New Madrid seismic zone (NMSZ) earthquakes, which demonstrate the importance of 3D geologic structure and rupture directivity on the ground‐motion response throughout a broad region of the central United States (CUS) for these events. Our simulation set consists of 20 hypothetical earthquakes located along two faults associated with the current seismicity trends in the NMSZ. The hypothetical scenarios range in magnitude from M 7.0 to 7.7 and consider various epicenters, slip distributions, and rupture characterization approaches. The low‐frequency component of our simulations was computed deterministically up to a frequency of 1 Hz using a regional 3D seismic velocity model and was combined with higher‐frequency motions calculated for a 1D medium to generate broadband synthetics (0–40 Hz in some cases). For strike‐slip earthquakes located on the southwest–northeast‐striking NMSZ axial arm of seismicity, our simulations show 2–10 s period energy channeling along the trend of the Reelfoot rift and focusing strong shaking northeast toward Paducah, Kentucky, and Evansville, Indiana, and southwest toward Little Rock, Arkansas. These waveguide effects are further accentuated by rupture directivity such that an event with a western epicenter creates strong amplification toward the northeast, whereas an eastern epicenter creates strong amplification toward the southwest. These effects are not as prevalent for simulations on the reverse‐mechanism Reelfoot fault, and large peak ground velocities (>40  cm/s) are typically confined to the near‐source region along the up‐dip projection of the fault. Nonetheless, these basin response and rupture directivity effects have a significant impact on the pattern and level of the estimated intensities, which leads to additional uncertainty not previously considered in magnitude estimates of the 1811–1812 sequence based only on historical

  6. SMSIM--Fortran programs for simulating ground motions from earthquakes: Version 2.0.--a revision of OFR 96-80-A

    Science.gov (United States)

    Boore, David M.

    2000-01-01

    A simple and powerful method for simulating ground motions is based on the assumption that the amplitude of ground motion at a site can be specified in a deterministic way, with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to distance from the source. This method of simulating ground motions often goes by the name "the stochastic method." It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers, and it is widely used to predict ground motions for regions of the world in which recordings of motion from damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms that can be used to predict ground motions. SMSIM is a set of programs for simulating ground motions based on the stochastic method. This Open-File Report is a revision of an earlier report (Boore, 1996) describing a set of programs for simulating ground motions from earthquakes. The programs are based on modifications I have made to the stochastic method first introduced by Hanks and McGuire (1981). The report contains source codes, written in Fortran, and executables that can be used on a PC. Programs are included both for time-domain and for random vibration simulations. In addition, programs are included to produce Fourier amplitude spectra for the models used in the simulations and to convert shear velocity vs. depth into frequency-dependent amplification. The revision to the previous report is needed because the input and output files have changed significantly, and a number of new programs have been included in the set.

  7. Motion

    CERN Document Server

    Graybill, George

    2007-01-01

    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  8. Seismic soil-structure interaction with consideration of spatial incoherence of seismic ground motions: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Wen S., E-mail: wen.tseng@rizzoassoc.com [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Lilhanand, Kiat; Hamasaki, Don; Garcia, Julio A. [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Srinivasan, Ram [AREVA, NP, Inc., 6399 San Ignacio Avenue, San Jose, CA 95119 (United States)

    2014-04-01

    This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially

  9. Seismic soil-structure interaction with consideration of spatial incoherence of seismic ground motions: A case study

    International Nuclear Information System (INIS)

    This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially

  10. Significance of rotating ground motions on nonlinear behavior of symmetric and asymmetric buildings in near fault sites

    Science.gov (United States)

    Kalkan, Erol; ,

    2012-01-01

    Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.

  11. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.

    2012-03-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  12. Simulated ground motion in Santa Clara Valley, California, and vicinity from M≥6.7 scenario earthquakes

    Science.gov (United States)

    Harmsen, Stephen C.; Hartzell, Stephen

    2008-01-01

    Models of the Santa Clara Valley (SCV) 3D velocity structure and 3D finite-difference software are used to predict ground motions from scenario earthquakes on the San Andreas (SAF), Monte Vista/Shannon, South Hayward, and Calaveras faults. Twenty different scenario ruptures are considered that explore different source models with alternative hypocenters, fault dimensions, and rupture velocities and three different velocity models. Ground motion from the full wave field up to 1 Hz is exhibited as maps of peak horizontal velocity and pseudospectral acceleration at periods of 1, 3, and 5 sec. Basin edge effects and amplification in sedimentary basins of the SCV are observed that exhibit effects from shallow sediments with relatively low shear-wave velocity (330 m/sec). Scenario earthquakes have been simulated for events with the following magnitudes: (1) M 6.8–7.4 Calaveras sources, (2) M 6.7–6.9 South Hayward sources, (3) M 6.7 Monte Vista/Shannon sources, and (4) M 7.1–7.2 Peninsula segment of the SAF sources. Ground motions are strongly influenced by source parameters such as rupture velocity, rise time, maximum depth of rupture, hypocenter, and source directivity. Cenozoic basins also exert a strong influence on ground motion. For example, the Evergreen Basin on the northeastern side of the SCV is especially responsive to 3–5-sec energy from most scenario earthquakes. The Cupertino Basin on the southwestern edge of the SCV tends to be highly excited by many Peninsula and Monte Vista fault scenarios. Sites over the interior of the Evergreen Basin can have long-duration coda that reflect the trapping of seismic energy within this basin. Plausible scenarios produce predominantly 5-sec wave trains with greater than 30 cm/sec sustained ground-motion amplitude with greater than 30 sec duration within the Evergreen Basin.

  13. Ground motion amplification at Hotel Montana during the M7.0 2010 Haiti Earthquake: Topography Effects?

    Science.gov (United States)

    Assimaki, D.; Jeong, S.

    2011-12-01

    Unusually severe structural damage was reported during the 2010 M7.0 Haiti earthquake in the vicinity of Hotel Montana, located on top of a ridge in the district of Pétionville. Prompted by the observations, USGS seismic stations were deployed, and aftershock recordings indicated ground motion amplification on the top of the hill compared to adjacent stations on reference site conditions. The presence of topographic relief has been shown to significantly aggravate the consequences of strong ground motion during past events, and topographic amplification was therefore brought forward to justify the observations. We here investigate the role of ground surface geometry in the recorded ground motions and corresponding damage concentration atop the foothill ridge of Hotel Montana by first conducting site-specific simulations that integrate Digital Elevation Maps (DEM) and shear wave velocity profiles collected at the site. Our analyses show that neither topography nor site amplification predictions alone sufficiently explain the ground motion amplification at the site estimated via aftershock recordings. We next conduct simulations of the foothill ridge response with soil layering, and qualitatively demonstrate that the recorded amplification can be attributed to coupling of site and topography effects. This effect, referred to as topography-modified site amplification, describes seismic waves trapped in the soft soil layers of the near surface and simultaneously subjected to sediment-induced reverberations as well as diffraction and scattering. Parametric investigations of the topography-soil amplification coupling effects are then conducted, and results show that when accounting for a soil-bedrock interface at 100m depth, predictions are in excellent quantitative agreement with the observed motion.

  14. How sensitive is earthquake ground motion to source parameters? Insights from a numerical study in the Mygdonian basin

    Science.gov (United States)

    Chaljub, Emmanuel; Maufroy, Emeline; deMartin, Florent; Hollender, Fabrice; Guyonnet-Benaize, Cédric; Manakou, Maria; Savvaidis, Alexandros; Kiratzi, Anastasia; Roumelioti, Zaferia; Theodoulidis, Nikos

    2014-05-01

    Understanding the origin of the variability of earthquake ground motion is critical for seismic hazard assessment. Here we present the results of a numerical analysis of the sensitivity of earthquake ground motion to seismic source parameters, focusing on the Mygdonian basin near Thessaloniki (Greece). We use an extended model of the basin (65 km [EW] x 50 km [NS]) which has been elaborated during the Euroseistest Verification and Validation Project. The numerical simulations are performed with two independent codes, both implementing the Spectral Element Method. They rely on a robust, semi-automated, mesh design strategy together with a simple homogenization procedure to define a smooth velocity model of the basin. Our simulations are accurate up to 4 Hz, and include the effects of surface topography and of intrinsic attenuation. Two kinds of simulations are performed: (1) direct simulations of the surface ground motion for real regional events having various back azimuth with respect to the center of the basin; (2) reciprocity-based calculations where the ground motion due to 980 different seismic sources is computed at a few stations in the basin. In the reciprocity-based calculations, we consider epicentral distances varying from 2.5 km to 40 km, source depths from 1 km to 15 km and we span the range of possible back-azimuths with a 10 degree bin. We will present some results showing (1) the sensitivity of ground motion parameters to the location and focal mechanism of the seismic sources; and (2) the variability of the amplification caused by site effects, as measured by standard spectral ratios, to the source characteristics

  15. On the calculation of quantum mechanical ground states from classical geodesic motion on certain spaces of constant negative curvature

    International Nuclear Information System (INIS)

    We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are recurrent in both directions of the time evolution t → +∞, t → -∞ a fractal limit set is associated whose Hausdorff dimension is intimately connected with the quantum mechanical energy ground state, determined by the Schroedinger operator on the manifold. We give a rather detailed and pictorial description of the hyperbolic spaces we have in mind, discuss various aspects of classical and quantum mechanical motion on them as far as they are needed to establish the connection between energy ground state and Hausdorff dimension and give finally some examples of ground state calculations in terms of Hausdorff dimensions of limit sets of classical trajectories. (orig.)

  16. Seismic microzoning from synthetic ground motion parameters Case study, Santiago de Cuba

    CERN Document Server

    Alvarez, L; Pico, R; Vaccari, F

    2003-01-01

    Synthetic seismograms (P - SV and SH waves) have been calculated along 6 profiles in Santiago de Cuba basin, with a cutoff frequency of 5 Hz, by using the hybrid approach (modal summation for a regional (ID) structure plus finite differences for a local (2D) structure embedded in the first). They correspond to a scenario earthquake of M sub S = 7 that may occur in Oriente fault zone, directly south of the city. As initial data for a seismic microzoning, the characterisation of earthquake effects has been made considering several relative (2D/1D) quantities (PGDR, PGVR, PGAR, DGAR, I sub A R etc.) and functions representative of the ground motion behaviour in soil (2D) with respect to bedrock (ID). The functions are the response spectra ratio RSR(f), already routinely used in this kind of work, and the elastic energy input ratio E sub I R(f), defined, for the first time, in this paper. These data, sampled at 105 sites within all the profiles have been classified in two steps, using logical combinatory algorith...

  17. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    Science.gov (United States)

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  18. Selecting ground-motion models developed for induced seismicity in geothermal areas

    Science.gov (United States)

    Edwards, Benjamin; Douglas, John

    2013-11-01

    We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysis.

  19. City of Bingöl in May 2003: Assessment of strong ground motion records

    Indian Academy of Sciences (India)

    U Çeken; G Beyhan; H H Selim

    2014-03-01

    The main shock of Bingöl earthquake ( = 6.4) recorded by six accelerometers in the area occurred at 03:27 local time on May 1, 2003. The largest acceleration value of north–south component was recorded as 545.5 cm/s2 at the nearest station which is 12 km away from the epicenter of earthquake. Especially, 0.15 s short period was observed when high spectral acceleration value occurred. An acceleration value greater than 50 gal was recorded at the BNG (Bingöl) station and structural damage occurred within 6.5 s was very important for the near source and strong ground motion seismology. The recorded peak acceleration values were greater than the estimated empirical acceleration values. However, the structural damage was not as high and widespread as expected. This occurrence was explained by considering the factors of earthquake source, frequency content, effective duration, effective acceleration value, local soil conditions, rupture direction and attenuation.

  20. Amplification and Increased Duration of Earthquake Motion on Uneven Stress-Free Ground

    CERN Document Server

    Wirgin, A; Wirgin, Armand; Groby, Jean-Philippe

    2006-01-01

    When a flat stress-free surface (i.e., the ground in seismological applications) separating air from a isotropic, homogeneous or horizontally-layered, solid substratum is solicited by a SH plane body wave incident in the substratum, the response in the substratum is a single specularly-reflected body wave. When the stress-free condition, equivalent to vanishing impedance, is relaxed by the introduction of a spatially-modulated, non-vanishing impedance, the response turns out to take the form of a spectrum of plane body waves and surface waves. It is shown that, in a great variety of situations, resonances are produced at the frequencies of which one or several surface wave amplitudes can become large. Furthermore, at resonance, the amplitude of the motion on the surface is shown to be amplified with respect to the situation in which the surface impedance vanishes. A subsidiary, but all-important, effect of this resonant response is that, when the solicitation is pulse-like, the peak value of the time history ...

  1. Lower bounds for distribution of suprema of Brownian increments and Brownian motion normalized by the corresponding modulus functions

    OpenAIRE

    Dobric, Vladimir; Marano, Lisa

    2014-01-01

    The L\\'evy-Ciesielski Construction of Brownian motion is used to determine non-asymptotic estimates for the maximal deviation of increments of a Brownian motion process $(W_{t})_{t\\in \\left[ 0,T\\right] }$ normalized by the global modulus function, for all positive $\\varepsilon $ and $\\delta $. Additionally, uniform results over $\\delta $ are obtained. Using the same method, non-asymptotic estimates for the distribution function for the standard Brownian motion normalized by its local modulus ...

  2. Source Process of the 2003 Bam, Iran, Earthquake: Subsurface Rupture that Generated Extreme Ground Motion

    Science.gov (United States)

    Poiata, N.; Miyake, H.; Koketsu, K.; Hikima, K.

    2008-12-01

    The Bam earthquake occurred on December 26, 2003 in southeast Iran. This moderate size event (Mw 6.5) caused heavy damage in the city of Bam and killed about 26,000 people. According to previous studies of geodetic data (e.g., Talebian et al., 2004; Wang et al., 2004) and aftershock distribution (Nakamura et al., 2005), the earthquake was caused by a rupture on a previously unknown strike-slip fault. The strong-motion station located inside the heavily damaged area of the city of Bam in vicinity of the fault recorded a PGA of 988 gal in the UD component and two pulses with a dominant frequency of 1 Hz in the horizontal components. This large PGA and the proportion of damage due to this event might be explained by the combination of source directivity effect and large speed of the rupture front over the fault (Bouchon et al., 2005). To estimate the slip pattern in the source rupture area, precise hypocentral depth, and rupture velocity along the fault, we applied the moment tensor analysis as well as the source inversion method developed by Kikuchi and Kanamori (1991) and Kikuchi et al. (2003) to the IRIS broadband teleseismic data. The result of the source inversion shows the slip distribution that confirms a single asperity, as suggested by Yamanaka (2003), with the rupture propagating in S-N direction along an almost vertical strike-slip fault with dimensions of 25 km in length by 20 km in width. The hypocentral depth for the best fit model is estimated to be 8 km. The maximum slip occurred around the hypocenter at depths of 4-10 km; no slip is associated at a shallower depth. This agrees with the result of subsurface rupture and 'shallow slip deficit' obtained from geodetic data by Fialko et al. (2005) and might explain the extreme ground motion observed at the Bam station as being the result of the subsurface faulting on the immature fault. We also determined the rupture velocity that minimizes the residuals between observed and synthetic waveforms to be 2.8 km

  3. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M and O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes

  4. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  5. Ground motion simulation for the 23 August 2011, Mineral, Virginia earthquake using physics-based and stochastic broadband methods

    Science.gov (United States)

    Sun, Xiaodan; Hartzell, Stephen; Rezaeian, Sanaz

    2015-01-01

    Three broadband simulation methods are used to generate synthetic ground motions for the 2011 Mineral, Virginia, earthquake and compare with observed motions. The methods include a physics‐based model by Hartzell et al. (1999, 2005), a stochastic source‐based model by Boore (2009), and a stochastic site‐based model by Rezaeian and Der Kiureghian (2010, 2012). The ground‐motion dataset consists of 40 stations within 600 km of the epicenter. Several metrics are used to validate the simulations: (1) overall bias of response spectra and Fourier spectra (from 0.1 to 10 Hz); (2) spatial distribution of residuals for GMRotI50 peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration (PSA) at various periods; (3) comparison with ground‐motion prediction equations (GMPEs) for the eastern United States. Our results show that (1) the physics‐based model provides satisfactory overall bias from 0.1 to 10 Hz and produces more realistic synthetic waveforms; (2) the stochastic site‐based model also yields more realistic synthetic waveforms and performs superiorly for frequencies greater than about 1 Hz; (3) the stochastic source‐based model has larger bias at lower frequencies (physics‐based and stochastic site‐based models, and systematic lower amplitudes for the stochastic source‐based model at lower frequencies (<0.5  Hz).

  6. Simulation of Strong Ground Motion for the 7.6Mw Kashmir Earthquake Occurred on 8 Oct 2005

    Science.gov (United States)

    Naveed, A.; Muhammad sohail, K.

    2015-12-01

    The Mw 7.6 Kashmir earthquake which struck the northern area of Pakistan , the Kashmir region on 8 October 2005.The epicenter was located 18km north-northeast of Muzaffarabad, with a focal depth of 26km and it occurred in the Hazara-kashmir syntaxial bend near Main Mantle Thrust (MMT). This is one of the most devastating earthquakes occurred along Himalayan Arc and brought more than 80,000 deaths and more than 5.2 billion USD economical loss. The earthquake had duration of 25s and 75km rupture length along the surface. In order to investigate the strong motion caused by this earthquake, we simulate the Kashmir earthquake by the Curved grid finite difference method (CG-FDM). The finite-fault rupture, real topography variations and modified crustal model are considered. Simulated results are compared with available records, showing good mutual agreement between the synthetic and observed ground motions. According to the Pakistan Meteorological Department (PMD), the intensity of four observed points had reached scale IX, whereas our simulated results show those points are located in the regions with our predicted intensity scale IX or VIII. Peak Ground Acceleration (PGA) and Peak ground velocity (PGV) are most important parameters for hazard analysis, and our results are sufficiently coincide with their observed values. Finally, we also discuss the significant effect of surface topography on ground motion resulting by the Earthquake.

  7. Hybrid broadband Ground Motion simulation based on a dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake.

    Science.gov (United States)

    Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.

    2015-12-01

    The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian

  8. A Test of a Strong Ground Motion Prediction Methodology for the 7 September 1999, Mw=6.0 Athens Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L; Ioannidou, E; Voulgaris, N; Kalogeras, I; Savy, J; Foxall, W; Stavrakakis, G

    2004-08-06

    We test a methodology to predict the range of ground-motion hazard for a fixed magnitude earthquake along a specific fault or within a specific source volume, and we demonstrate how to incorporate this into probabilistic seismic hazard analyses (PSHA). We modeled ground motion with empirical Green's functions. We tested our methodology with the 7 September 1999, Mw=6.0 Athens earthquake, we: (1) developed constraints on rupture parameters based on prior knowledge of earthquake rupture processes and sources in the region; (2) generated impulsive point shear source empirical Green's functions by deconvolving out the source contribution of M < 4.0 aftershocks; (3) used aftershocks that occurred throughout the area and not necessarily along the fault to be modeled; (4) ran a sufficient number of scenario earthquakes to span the full variability of ground motion possible; (5) found that our distribution of synthesized ground motions span what actually occurred and their distribution is realistically narrow; (6) determined that one of our source models generates records that match observed time histories well; (7) found that certain combinations of rupture parameters produced ''extreme'' ground motions at some stations; (8) identified that the ''best fitting'' rupture models occurred in the vicinity of 38.05{sup o} N 23.60{sup o} W with center of rupture near 12 km, and near unilateral rupture towards the areas of high damage, and this is consistent with independent investigations; and (9) synthesized strong motion records in high damage areas for which records from the earthquake were not recorded. We then developed a demonstration PSHA for a source region near Athens utilizing synthesized ground motion rather that traditional attenuation. We synthesized 500 earthquakes distributed throughout the source zone likely to have Mw=6.0 earthquakes near Athens. We assumed an average return period of 1000 years for this

  9. Precise ground motion measurements to support multi-hazard analysis in Jakarta

    Science.gov (United States)

    Koudogbo, Fifamè; Duro, Javier; Garcia Robles, Javier; Abidin, Hasanuddin Z.

    2015-04-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. Flood events have been increasing in severity during the past decade. The February 2007 event inundated 235 Km2 (about 36%) of the city, by up to seven meters in some areas. This event affected more than 2.6 million people; the estimated financial and economic losses from this event amounted to US900 million [1][2]. Inundations continue to occur under any sustained rainfall conditions. Flood events in Jakarta are expected to become more frequent in coming years, with a shift from previously slow natural processes with low frequency to a high frequency process resulting in severe socio-economic damage. Land subsidence in Jakarta results in increased vulnerability to flooding due to the reduced gravitational capacity to channel storm flows to the sea and an increased risk of tidal flooding. It continues at increasingly alarming rates, principally caused by intensive deep groundwater abstraction [3]. Recent studies have found typical subsidence rates of 7.5-10 cm a year. In localized areas of north Jakarta subsidence in the range 15-25 cm a year is occurring which, if sustained, would result in them sinking to 4-5 m below sea level by 2025 [3]. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion measurements with millimetric precision and high accuracy [4]. Within the RASOR (Rapid Analysis and Spatialisation and Of Risk) project, ALTAMIRA INFORMATION will apply GlobalSARTM to assess recent land subsidence in Jakarta, based on the processing of Very High

  10. An Arduino project to record ground motion and to learn on earthquake hazard at high school

    Science.gov (United States)

    Saraò, Angela; Barnaba, Carla; Clocchiatti, Marco; Zuliani, David

    2015-04-01

    Through a multidisciplinary work that integrates Technology education with Earth Sciences, we implemented an educational program to raise the students' awareness of seismic hazard and to disseminate good practices of earthquake safety. Using free software and low-cost open hardware, the students of a senior class of the high school Liceo Paschini in Tolmezzo (NE Italy) implemented a seismograph using the Arduino open-source electronics platform and the ADXL345 sensors to emulate a low cost seismometer (e.g. O-NAVI sensor of the Quake-Catcher Network, http://qcn.stanford.edu). To accomplish their task the students were addressed to use the web resources for technical support and troubleshooting. Shell scripts, running on local computers under Linux OS, controlled the process of recording and display data. The main part of the experiment was documented using the DokuWiki style. Some propaedeutic lessons in computer sciences and electronics were needed to build up the necessary skills of the students and to fill in the gap of their background knowledge. In addition lectures by seismologists and laboratory activity allowed the class to exploit different aspects of the physics of the earthquake and particularly of the seismic waves, and to become familiar with the topics of seismic hazard through an inquiry-based learning. The Arduino seismograph achieved can be used for educational purposes and it can display tremors on the local network of the school. For sure it can record the ground motion due to a seismic event that can occur in the area, but further improvements are necessary for a quantitative analysis of the recorded signals.

  11. Moment tensor inversion of ground motion from mining-induced earthquakes, Trail Mountain, Utah

    Science.gov (United States)

    Fletcher, Joe B.; McGarr, A.

    2005-01-01

    A seismic network was operated in the vicinity of the Trail Mountain mine, central Utah, from the summer of 2000 to the spring of 2001 to investigate the seismic hazard to a local dam from mining-induced events that we expect to be triggered by future coal mining in this area. In support of efforts to develop groundmotion prediction relations for this situation, we inverted ground-motion recordings for six mining-induced events to determine seismic moment tensors and then to estimate moment magnitudes M for comparison with the network coda magnitudes Mc. Six components of the tensor were determined, for an assumed point source, following the inversion method of McGarr (1992a), which uses key measurements of amplitude from obvious features of the displacement waveforms. When the resulting moment tensors were decomposed into implosive and deviatoric components, we found that four of the six events showed a substantial volume reduction, presumably due to coseismic closure of the adjacent mine openings. For these four events, the volume reduction ranges from 27% to 55% of the shear component (fault area times average slip). Radiated seismic energy, computed from attenuation-corrected body-wave spectra, ranged from 2.4 ?? 105 to 2.4 ?? 106 J for events with M from 1.3 to 1.8, yielding apparent stresses from 0.02 to 0.06 MPa. The energy released for each event, approximated as the product of volume reduction and overburden stress, when compared with the corresponding seismic energies, revealed seismic efficiencies ranging from 0.5% to 7%. The low apparent stresses are consistent with the shallow focal depths of 0.2 to 0.6 km and rupture in a low stress/low strength regime compared with typical earthquake source regions at midcrustal depths.

  12. Procedure to predict the storey where plastic drift dominates in two-storey building under strong ground motion

    DEFF Research Database (Denmark)

    Hibino, Y.; Ichinose, T.; Costa, J.L.D.;

    2009-01-01

    A procedure is presented to predict the storey where plastic drift dominates in two-storey buildings under strong ground motion. The procedure utilizes the yield strength and the mass of each storey as well as the peak ground acceleration. The procedure is based on two different assumptions: (1......) the seismic force distribution is of inverted triangular form and (2) the rigid-plastic model represents the system. The first and the second assumptions, respectively, lead to lower and upper estimates of the base shear coefficient under which the drift of the first storey exceeds that of the second...

  13. Traveling wave effect on the seismic response of a steel arch bridge subjected to near fault ground motions

    Institute of Scientific and Technical Information of China (English)

    Xu Yan; George C Lee

    2007-01-01

    In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.

  14. Coupling of Pore Pressure and Ground Motion: Further Studies using Data Recorded at the NEES@UCSB Wildlife Station

    Science.gov (United States)

    Seale, S. H.; Lavallee, D.; Archuleta, R. J.; Steidl, J. H.

    2012-12-01

    Pore pressure built up during an earthquake and the hazard associated with soil liquefaction present a major challenge for our society, as has been dramatically illustrated by recent large events (e.g. the 2011 Tohoku-oki, Japan, earthquake). There is consensus among scientists that a better assessment of the liquefaction risk requires a better understanding of the coupling between pore pressure and ground motion time histories. There is a basic need to investigate coupling as a function of the frequency content of the ground motion. The 2010 M7.2 El Mayor-Cucapah event has provided a remarkable opportunity to investigate and model the coupling. The event was well recorded at the NEES@UCSB Wildlife station located 110 km from the hypocenter. The station is equipped with three-component strong-motion accelerometers at the surface and in boreholes at various depths and with pore pressure transducers located in a saturated, liquefiable layer. The recorded pore pressure and ground motion time histories both have frequency content that is a function of time. We have applied a wavelet decomposition technique to the El Mayor ground motion and pore pressure data, looking for a linear relationship between the signals. The analysis shows that the early P-wave accelerations (vertical component) initiate pore pressure response. However, the pore pressure records contain a low-frequency component that dominates the signal with no corresponding low-frequency component in the ground motion signals recorded near-by. Although uncommon, a similar behavior has been also reported in the literature for pore pressure signals recoded during the 1980 Mammoth Lakes, California, earthquake. We have extended this work to the analysis of 4 other seismic events that have induced an increase in pore pressure at WLA. As the response of pore pressure is potentially a local phenomenon, we have restricted our analysis to recordings from the same site. These events include the M5.8 Ocotillo

  15. Using 1 -D and 2-D modelling of ground motion for seismic zonation criteria: results for the city of Rome

    OpenAIRE

    A. Caserta; L. Malagnini; A. Rovelli; Marra, F

    1995-01-01

    The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves) produced in the different areas of the city by a large (M ? 7) potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineerin...

  16. A novel model and estimation method for the individual random component of earthquake ground-motion relations

    OpenAIRE

    Raschke, Mathias

    2015-01-01

    In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The paramete...

  17. Identification of ground motion features for high-tech facility under far field seismic waves using wavelet packet transform

    Science.gov (United States)

    Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun

    2016-04-01

    Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.

  18. Hybrid Simulations of the Broadband Ground Motions for the 2008 MS8.0 Wenchuan, China, Earthquake

    Science.gov (United States)

    Yu, X.; Zhang, W.

    2012-12-01

    The Ms8.0 Wenchuan earthquake occurred on 12 May 2008 at 14:28 Beijing Time. It is the largest event happened in the mainland of China since the 1976, Mw7.6, Tangshan earthquake. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and "quake lakes" which formed by landslide-induced reservoirs. These resulted in tremendous losses of life and property. Casualties numbered more than 80,000 people, and there were major economic losses. However, this earthquake is the first Ms 8 intraplate earthquake with good close fault strong motion coverage. Over four hundred strong motion stations of the National Strong Motion Observation Network System (NSMONS) recorded the mainshock. Twelve of them located within 20 km of the fault traces and another 33 stations located within 100 km. These observations, accompanying with the hundreds of GPS vectors and multiple ALOS INSAR images, provide an unprecedented opportunity to study the rupture process of such a great intraplate earthquake. In this study, we calculate broadband near-field ground motion synthetic waveforms of this great earthquake using a hybrid broadband ground-motion simulation methodology, which combines a deterministic approach at low frequencies (f Green's function calculation approach at high frequency ( ~ 10.0 Hz). The fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time that were obtained by an inversion kinematic source model. At the same time, based on the aftershock data, we analyze the site effects for the near-field stations. Frequency-dependent site-amplification values for each station are calculated using genetic algorithms. For the calculation of the synthetic waveforms, at first, we carry out simulations using the hybrid methodology for the frequency up to 10.0 Hz. Then, we consider for the soil site simulations

  19. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion.

    Science.gov (United States)

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-01-01

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals. PMID:26884136

  20. 3D simulation of near-fault strong ground motion:comparison between surface rupture fault and buried fault

    Institute of Scientific and Technical Information of China (English)

    Liu Qifang; Yuan Yifan; Jin Xing

    2007-01-01

    In this paper,near-fault strong ground motions caused by a surface rupture fault(SRF)and a buried fault(BF) are numerically simulated and compared by using a time-space-decoupled,explicit finite element method combined with a multi-transmitting formula(MTF) of an artificial boundary.Prior to the comparison,verification of the explicit element method and the MTF is conducted.The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane.The maximum final dislocation occurs on the fault upper line for the SRF;however,for the BF,the maximum final dislocation is located on the fault central part.Meanwhile,the PGA,PGV and PGD of long period ground motions(≤1 Hz)generated by the SRF are much higher than those of the BF in the near-fault region.The peak value of the velocity pulse generated by the SRF is also higher than the BF.Furthermore,it is found that in a very narrow region along the fault trace,ground motions caused by the SRF are much higher than by the BF.These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.

  1. On the generation of ground motion accelerogram compatible with a specified response spectrum and a fourier amplitude spectrum

    International Nuclear Information System (INIS)

    The design basis for earthquake ground motion is given by the peak ground acceleration, response spectrfal shapes for various damping values and the time history of ground motion in horizontal and vertical directions. The time history is required to be compatible with a specified design response spectrum. The course of having treated this problem in the past is outlined. Power spectral density functions (PSDF) require the explicit definition of the duration of motion, but fourier amplitude spectrum (FAS) treat the data as such. Whatever way the target PSDF or FAS was arrived at, its consistency with the specified response spectrum should be assured. Accordingly, it appears prudent to select a suitable data base and derive the target response spectrum and the FAS. In this paper, an algorithm for generating the accelerograms compatible with a specified response spectrum and a FAS is described. The compatibility criteria, the methods of generating algorithms based on response spectrum conpatibility, the inversion of FAS and the combination of response spectrum compatibility and the inversion of FAS, and the numerical results are reported. (K.I.)

  2. Ground Motion Characteristics of the 2015 Gorkha Earthquake, Survey of Damage to Stone Masonry Structures and Structural Field Tests

    Directory of Open Access Journals (Sweden)

    Rishi Ram Parajuli

    2015-11-01

    Full Text Available On April 25, 2015, a M7.8 earthquake rattled central Nepal; ground motion recorded in Kantipath, Kathmandu, 76.86 km east of the epicenter suggested that the low frequency component was dominant. We consider data from eight aftershocks following the Gorkha earthquake and analyze ground motion characteristics; we found that most of the ground motion records are dominated by low frequencies for events with a moment magnitude greater than 6. The Gorkha earthquake devastated hundreds of thousands of structures. In the countryside, and especially in rural mountainous areas, most of the buildings that collapsed were stone masonry constructions. Detailed damage assessments of stone masonry buildings in Harmi Gorkha had done, with an epicentral distance of about 17 km. Structures were categorized as large, medium and small depending on their plinth area size and number of stories. Most of the structures in the area were damaged; interestingly, all ridge-line structures were heavily damaged. Moreover, Schmidt hammer tests were undertaken to determine the compressive strength of stone masonry, brick masonry with mud mortar for normal buildings and historical monuments. The compressive strengths of stone and brick masonry were found to be 12.38 and 18.75 MPa, respectively. Historical structures constructed with special bricks had a compressive strength of 29.50 MPa. Pullout tests were also conducted to determine the stone masonry-mud mortar bond strength. The cohesive strength of mud mortar and the coefficient of friction were determined.

  3. Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data

    Science.gov (United States)

    Bonì, R.; Cigna, F.; Bricker, S.; Meisina, C.; McCormack, H.

    2016-09-01

    In this paper, Persistent Scatterer Interferometry was applied to ERS-1/2 and ENVISAT satellite data covering 1992-2000 and 2002-2010 respectively, to analyse the relationship between ground motion and hydraulic head changes in the London Basin, United Kingdom. The integration of observed groundwater levels provided by the Environment Agency and satellite-derived displacement time series allowed the estimation of the spatio-temporal variations of the Chalk aquifer storage coefficient and compressibility over an area of ∼1360 km2. The average storage coefficient of the aquifer reaches values of 1 × 10-3 and the estimated average aquifer compressibility is 7.7 × 10-10 Pa-1 and 1.2 × 10-9 Pa-1 for the periods 1992-2000 and 2002-2010, respectively. Derived storage coefficient values appear to be correlated with the hydrogeological setting, where confined by the London Clay the storage coefficient is typically an order of magnitude lower than where the chalk is overlain by the Lambeth Group. PSI-derived storage coefficient estimates agree with the values obtained from pumping tests in the same area. A simplified one-dimensional model is applied to simulate the ground motion response to hydraulic heads changes at nine piezometers. The comparison between simulated and satellite-observed ground motion changes reveals good agreement, with errors ranging between 1.4 and 6.9 mm, and being 3.2 mm on average.

  4. Inversion of ground-motion data from a seismometer array for rotation using a modification of Jaeger's method

    Science.gov (United States)

    Chi, W.-C.; Lee, W.H.K.; Aston, J.A.D.; Lin, C.J.; Liu, C.-C.

    2011-01-01

    We develop a new way to invert 2D translational waveforms using Jaeger's (1969) formula to derive rotational ground motions about one axis and estimate the errors in them using techniques from statistical multivariate analysis. This procedure can be used to derive rotational ground motions and strains using arrayed translational data, thus providing an efficient way to calibrate the performance of rotational sensors. This approach does not require a priori information about the noise level of the translational data and elastic properties of the media. This new procedure also provides estimates of the standard deviations of the derived rotations and strains. In this study, we validated this code using synthetic translational waveforms from a seismic array. The results after the inversion of the synthetics for rotations were almost identical with the results derived using a well-tested inversion procedure by Spudich and Fletcher (2009). This new 2D procedure can be applied three times to obtain the full, three-component rotations. Additional modifications can be implemented to the code in the future to study different features of the rotational ground motions and strains induced by the passage of seismic waves.

  5. Methodology for Detection and Interpretation of Ground Motion Areas with the A-DInSAR Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Roberta Bonì

    2016-08-01

    Full Text Available Recent improvement to Advanced Differential Interferometric SAR (A-DInSAR time series quality enhances the knowledge of various geohazards. Ground motion studies need an appropriate methodology to exploit the great potential contained in the A-DInSAR time series. Here, we propose a methodology to analyze multi-sensors and multi-temporal A-DInSAR data for the geological interpretation of areas affected by land subsidence/uplift and seasonal movements. The methodology was applied in the plain area of the Oltrepo Pavese (Po Plain, Italy using ERS-1/2 and Radarsat data, processed using the SqueeSAR™ algorithm, and covering time spans, respectively, from 1992 to 2000 and from 2003 to 2010. The test area is a representative site of the Po Plain, affected by various geohazards and characterized by moderate rates of motion, ranging from −10 to 4 mm/yr. Different components of motion were recognized: linear, non-linear, and seasonal deformational behaviors. Natural and man-induced processes were identified such as swelling/shrinkage of clayey soils, land subsidence due to load of new buildings, moderate tectonic uplift, and seasonal ground motion due to seasonal groundwater level variations.

  6. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    Science.gov (United States)

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion. PMID:26724085

  7. The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability

    KAUST Repository

    Imperatori, W.

    2015-07-28

    The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken

  8. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  9. Magnetic field and temperature dependence of the properties of the ground state of the strong-coupling bound magnetopolaron in quantum rods with hydrogenic impurity

    Institute of Scientific and Technical Information of China (English)

    Xin Wei; Zhao Yuwei; Han Chao; Eerdunchaolu

    2013-01-01

    Magnetic field and temperature dependence of the properties of the ground state of the strong-couplingbound magnetopolaron in quantum rods (QRs) with hydrogenic impurity is studied by means of the Huybrechts-Lee-Low-Pines transformation method and the quantum statistical theory.The expressions for the ground-state energy and the mean number ofphonons of the magnetopolaron are derived.Results of the numerical calculations show that the bound state of the magnetopolaron cannot be formed when the value of the aspect ratio of the QR,the dielectric constant ratio,the electron-phonon coupling strength or the temperature parameter is small.The larger the deviation of the value of aspect ratio e' from 1 is,the more it is unfavorable to the stability of the ground state of the magnetopolaron.When the magnetopolaron is in the bound state,the absolute value of its ground-state energy and its mean number ofphonons increase with an increase of the dielectric constant ratio and confinement strength of QRs,but decrease with an increase in the cyclotron frequency of the external magnetic field and the temperature.The absolute value of the ground-state energy and the mean number of phonons of the magnetopolaron decrease with decreasing e' when e' < 1,but decrease with increasing e' when e' > 1.They get the maximum value at e'=1.

  10. Distribution of Ground Motions for the 2008 Mw5.4 Chino Hills Earthquake

    Science.gov (United States)

    Yong, A.; Hough, S. E.; Wills, C. J.; Wald, D. J.

    2008-12-01

    The 29 July 2008 Mw5.4 Chino Hills earthquake was widely felt throughout the greater Los Angeles region. Over 40,000 people filled out the Community Internet Intensity Map (CIIM), also known as the "Did You Feel It?" questionnaire, and the ShakeMap for the event is constrained by amplitudes from over 500 stations. The CIIM responses provide Modified Mercalli Intensity (MMI) values for 802 Zip codes. Due to the dense population of the greater Los Angeles region, intensity values averaged within Zip codes provide good spatial correlation to the location of the actual reporting sites. We use a least-squares approach to fit the average MMI to a standard functional form, MMI = A - Br - C log r (where r represents distance from the observation site to the epicenter and A, B and C are constants), and calculate the residuals. The distribution of average intensities clusters closely around the curve of the equation, corroborating the conclusion (e.g., Atkinson and Wald, SRL, 2006) that CIIM intensities provide a consistent measure of earthquake ground motions. A comparison of CIIM intensities and instrumentally determined ShakeMap intensities reveals generally good correspondence, but suggests a tendency for ShakeMap intensities to be higher at basin sites. We conclude that the ShakeMap intensities reflect long-period amplification, whereas observed intensities were more controlled by higher frequency accelerations. Where both the CIIM map and ShakeMap show systematic variations, the distributions show a strong correlation with near-surface geological structure, as well as with basin depth. Our preliminary conclusions are: 1) as expected, intensities are lower at hard rock sites; 2) intensities are systematically higher in the deepest parts of the basin and significantly lower in shallow regions. Intensities are systematically lower to the west of the Newport-Inglewood fault correlating with subtle topographic relief and shallower basin depths; 3) there is a suggestion that

  11. Clastic Pipes: Proxies of High Water Tables and Strong Ground Motion, Jurassic Carmel Formation, Southern Utah

    Science.gov (United States)

    Wheatley, David; Chan, Marjorie

    2015-04-01

    Multiple soft sediment deformation features from bed-scale to basin-scale are well preserved within the Jurassic Carmel Formation of Southern Utah. Field mapping reveals thousands of small-scale clastic injectite pipes (10 cm to 10 m diameter, up to 20 m tall) in extremely high densities (up to 500+ pipes per 0.075 square kilometers). The pipes weather out in positive relief from the surrounding host strata of massive sandstone (sabkha) and crossbedded sands with minor conglomerate and shale (fluvial) deposits. The host rock shows both brittle and ductile deformation. Reverse, normal, and antithetical faulting is common with increased frequency, including ring faults, surrounding the pipes. The pipes formed from liquefaction and subsequent fluidization induced by strong ground motion. Down-dropped, graben blocks and ring faults surrounding pipes indicate initial sediment volume increase during pipe emplacement followed by sediment volume decrease during dewatering. Complex crosscutting relationships indicate several injection events where some pipe events reached the surface as sand blows. Multiple ash layers provide excellent stratigraphic and temporal constraints for the pipe system with the host strata deposited between 166 and 164 Ma. Common volcanic fragments and rounded volcanic cobbles occur within sandstone and conglomerate beds, and pipes. Isolated volcanic clasts in massive sandstone indicate explosive volcanic events that could have been the exogenic trigger for earthquakes. The distribution of pipes are roughly parallel to the Middle Jurassic paleoshoreline located in marginal environments between the shallow epicontinental Sundance Sea and continental dryland. At the vertical stratigraphic facies change from dominantly fluvial sediments to dominantly massive sabkha sediments, there is a 1-2 m-thick floodplain mudstone that was a likely seal for underlying, overpressurized sediments. The combination of loose porous sediment at a critical depth of water

  12. Multi-Hazard Analysis for the Estimation of Ground Motion Induced by Landslides and Tectonics

    Science.gov (United States)

    Iglesias, Rubén; Koudogbo, Fifame; Ardizzone, Francesca; Mondini, Alessandro; Bignami, Christian

    2016-04-01

    Space-borne synthetic aperture radar (SAR) sensors allow obtaining all-day all-weather terrain complex reflectivity images which can be processed by means of Persistent Scatterer Interferometry (PSI) for the monitoring of displacement episodes with extremely high accuracy. In the work presented, different PSI strategies to measure ground surface displacements for multi-scale multi-hazard mapping are proposed in the context of landslides and tectonic applications. This work is developed in the framework of ESA General Studies Programme (GSP). The present project, called Multi Scale and Multi Hazard Mapping Space based Solutions (MEMpHIS), investigates new Earth Observation (EO) methods and new Information and Communications Technology (ICT) solutions to improve the understanding and management of disasters, with special focus on Disaster Risk Reduction rather than Rapid Mapping. In this paper, the results of the investigation on the key processing steps for measuring large-scale ground surface displacements (like the ones originated by plate tectonics or active faults) as well as local displacements at high resolution (like the ones related with active slopes) will be presented. The core of the proposed approaches is based on the Stable Point Network (SPN) algorithm, which is the advanced PSI processing chain developed by ALTAMIRA INFORMATION. Regarding tectonic applications, the accurate displacement estimation over large-scale areas characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. In this context, a low-resolution approach based in the integration of differential phase increments of velocity and topographic error (obtained through the fitting of a linear model adjustment function to data) will be evaluated. Data from the default mode of Sentinel-1, the Interferometric Wide Swath Mode, will be considered for this application. Regarding landslides

  13. Terahertz-induced depletion of the ground-state population of neutral donors in GaAs measured by resonant elastic light scattering from donor-bound excitons

    CERN Document Server

    Allen, D G; Sherwin, M S

    2005-01-01

    Strong resonant elastic light scattering (RELS) from the donor-bound exciton transition in GaAs (1.514eV) occurs at neutral donors in the ground (1S) state, but not at neutral donors in excited hydrogenic states. When 1.6 THz radiation is incident on an ensemble of neutral donors, we observe up to a 30% decrease in the RELS, corresponding to a decrease in the population of neutral donors in their ground states. This optical detection method is similar to quantum nondemolition measurement techniques used for readout of ion trap quantum computers and diamond nitrogen-vacancy centers. In this scheme, Auger recombination of the bound exciton, which changes the state of the donor during measurement, limits the measurement fidelity and maximum NIR excitation intensity.

  14. Reliable selection of earthquake ground motions for performance-based design

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sextos, A.G.

    2016-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Prequalified code-compatible suites of seismic motions are provided through a multi-criterion approach to satisfy prescribed reduced variability...... of the method, by being subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv-sc) and the conventional index (δconv), already used by most existing code-based earthquake records selection and scaling procedures. The findings reveal the superiority...

  15. Identifying the unique ground motion signatures of supershear earthquakes - The one-two punch effect on high-rise buildings

    Science.gov (United States)

    Rosakis, A.; Mello, M.; Bhat, H.; Krishnan, S.; Kanamori, H.

    2011-12-01

    Directly studying earthquakes presents a host of insurmountable difficulties, the least of which is our inability to trigger earthquakes of various magnitudes at will and the lack of means of scrutinizing the behavior at depth while the quake propagates. We have developed techniques to produce miniature (or surrogate) laboratory earthquakes and follow their progress with high-speed imaging tools. Our laboratory quakes mimic actual ones, and have allowed us to demonstrate the existence of ruptures of super-shear or intersonic rupture speeds. The propagating fronts of such supershear ruptures feature a Mach-cone of shear shock waves similar to that of supersonic aircraft. For earthquake ruptures transitioning from sub-Rayleigh to supershear rupture speeds, this unusual shear Mach cone feature is also followed by a trailing Rayleigh disturbance which is all that remains of the old sub-Rayleigh rupture after transition is complete. Each propagating disturbance contributes to the unique ground motion signature in the near field. We refer to this as a one-two punch scenario. In particular, ground motion associated with passage of the shear Mach features a dominant fault-parallel velocity component while ground motion from the trailing Rayleigh field is characterized by a dominant fault-normal velocity component (characteristic of common, sub-shear earthquake ruptures). Appropriate scaling of the laboratory ground velocity measurements are used to shake 3-D numerical models of high-rise buildings (located in near fault locations) with hypothetical supershear and sub-Rayleigh earthquakes with unexpected implication to building safety and seismic hazard analysis.

  16. Broadband simulations for Mw 7.8 southern san andreas earthquakes: Ground motion sensitivity to rupture speed

    Science.gov (United States)

    Graves, R.W.; Aagaard, B.T.; Hudnut, K.W.; Star, L.M.; Stewart, J.P.; Jordan, T.H.

    2008-01-01

    Using the high-performance computing resources of the Southern California Earthquake Center, we simulate broadband (0-10 Hz) ground motions for three Mw 7.8 rupture scenarios of the southern San Andreas fault. The scenarios incorporate a kinematic rupture description with the average rupture speed along the large slip portions of the fault set at 0.96, 0.89, and 0.84 times the local shear wave velocity. Consistent with previous simulations, a southern hypocenter efficiently channels energy into the Los Angeles region along the string of basins south of the San Gabriel Mountains. However, we find the basin ground motion levels are quite sensitive to the prescribed rupture speed, with peak ground velocities at some sites varying by over a factor of two for variations in average rupture speed of about 15%. These results have important implications for estimating seismic hazards in Southern California and emphasize the need for improved understanding of earthquake rupture processes. Copyright 2008 by the American Geophysical Union.

  17. A novel model and estimation method for the individual random component of earthquake ground-motion relations

    Science.gov (United States)

    Raschke, Mathias

    2016-06-01

    In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke J Seismol 17(4):1157-1182, (2013a), with the sample of random difference ξ = ln(Y 1 )-ln(Y 2 ), in which Y 1 and Y 2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure, the distribution of difference ξ was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference ξ of the sample of peak ground accelerations, and the variance of the individual random components was considerably smaller than that of conventional GMRs. In addition, the dependence of variance on the epicentre distance was considered; however, a dependence of variance on the magnitude was not detected. Finally, the influence of the novel model and the corresponding approximations on PSHA was researched. The applied approximations of distribution of the individual random component were satisfactory for the researched example of PSHA.

  18. Observations from Integrated Ground Motion Using EarthScope's USArray Transportable Array

    Science.gov (United States)

    West, J. D.; Fouch, M. J.

    2012-12-01

    Integrated Ground Motion (IGM) is a new method for visualizing and investigating long-term changes in seismic background levels. These new time series present an opportunity to evaluate variations in background seismic levels on intermediate time scales longer than those usually considered in processing seismic event data, but shorter than the time scales typically utilized when measuring the power spectral density (PSD) function of a seismic channel or instrument. Example uses for this new method include determining relationships between weather and seismic noise, detection of uncataloged small seismic and slow slip events, detection and characterization of remotely triggered seismicity, detection and monitoring of induced seismicity and detection of non-seismic signals. Here we apply the IGM processing method to broadband seismic data from the EarthScope USArray Transportable Array (TA) [www.usarray.org], and present some preliminary observations of the observed patterns in seismicity. We generate IGM time series from raw broadband seismic data by filtering and evaluating the envelope of a sliding time window. We further process the resulting IGM time series to remove peaks from short-duration seismic events by clipping the series at the 95th percentile value and normalizing each resulting series on a 0-1 scale. For this initial evaluation, we process IGM from overlapping 15-minute windows sampled every 5 minutes from four weeks of TA data for the western US in early 2008, bandpass filtering over four different ranges: 7-19 Hz, 1-8 Hz, 1-20 sec, and 20-100 sec. We create a series of animations overlaying the IGM values on a map of the western US and compressing the time scale to 2 hours/second. We observe that IGM in the 7-19 Hz and 1-8 Hz bands is primarily influenced by diurnal variations in background seismic levels, which generally overwhelm the signals from small (Msignal sources which appear to move at ~200 m/s and are visible over only a few stations; we

  19. Effect Of Long-Period Earthquake Ground Motions On Nonlinear Vibration Of Shells With Variable Thickness

    Science.gov (United States)

    Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers

    2010-12-01

    Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The

  20. A test of a physically-based strong ground motion prediction methodology with the 26 September 1997, Mw = 6.0 Colfiorito (Umbria-Marche sequence), Italy earthquake.

    OpenAIRE

    Scognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Hutchings, L.; Lawrence Berkeley National Laboratory

    2009-01-01

    We test the physically-based ground motion hazard prediction methodology of Hutchings et al. [Hutchings, L., Ioannidou, E., Kalogeras, I., Voulgaris, N., Savy, J., Foxall, W., Scognamiglio, L., and Stavrakakis, G., (2007). A physically-based strong ground motion prediction methodology; Application to PSHA and the 1999 M = 6.0 Athens Earthquake. Geophys. J. Int. 168, 569–680.] through an a posteriori prediction of the 26 September 1997, Mw 6.0 Colfiorito (Umbria–Marche, Italy) earthquake at fo...

  1. A physically based strong ground-motion prediction methodology; application to PSHA and the 1999 Mw = 6.0 Athens earthquake

    OpenAIRE

    Hutchings, L.; Lawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.; Ioannidou, E.; Department of Geophysics-Geothermics, University of Athens, Athens 15783, Greece; Foxall, W.; Lawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.; Voulgaris, N.; Department of Geophysics-Geothermics, University of Athens, Athens 15783, Greece; Savy, J.; Lawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.; Kalogeras, I.; Institute of Geodynamics, National Observatory of Athens, Athens, Greece; Scognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Stavrakakis, G.; Institute of Geodynamics, National Observatory of Athens, Athens, Greece

    2007-01-01

    We present a physically based methodology to predict the range of ground-motion hazard for earthquakes along specific faults or within specific source volumes, and we demonstrate how to incorporate this methodology into probabilistic seismic hazard analyses (PSHA). By ‘physically based,’ we refer to ground-motion syntheses derived from physics and an understanding of the earthquake process. This approach replaces the aleatory uncertainty that current PSHA studies estimate by re...

  2. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    Science.gov (United States)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range

  3. Effectiveness of modified pushover analysis procedure for the estimation of seismic demands of buildings subjected to near-fault ground motions having fling step

    OpenAIRE

    A. Mortezaei; H. R. Ronagh

    2013-01-01

    Near-fault ground motions with long-period pulses have been identified as being critical in the design of structures. These motions, which have caused severe damage in recent disastrous earthquakes, are characterized by a short-duration impulsive motion that transmits large amounts of energy into the structures at the beginning of the earthquake. In nearly all of the past near-fault earthquakes, significant higher mode contributions have been evident in building structures near the fault rupt...

  4. Estimation of strong ground motions in Mexico City expected for large earthquakes in the Guerrero seismic gap

    OpenAIRE

    Kanamori, Hiroo; Jennings, Paul C.; Singh, Shri Krishna; Astiz, Luciana

    1993-01-01

    We performed simulations of ground motions in Mexico City expected for large earthquakes in the Guerrero seismic gap in Mexico. The simulation method uses as empirical Green's functions the accelerograms recorded in Mexico City during four small to moderate earthquakes (8 Feb. 1988, M_s = 5.8; 25 April 1989, M_w = 6.9; 11 May 1990, M_w = 5.5; and 31 May 1990, M_w = 6.0) in the Guerrero gap. Because these events occurred in the Guerrero gap, and have typical thrust mechanisms, the propagation ...

  5. Long-Period Ground Motion Prediction Equations for Relative, Pseudo-Relative and Absolute Velocity Response Spectra in Japan

    Science.gov (United States)

    Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.

    2014-12-01

    Many of the empirical ground motion prediction equations (GMPE) also known as attenuation relations have been developed for absolute acceleration or pseudo relative velocity response spectra. For a small damping, pseudo and absolute acceleration response spectra are nearly identical and hence interchangeable. It is generally known that the relative and pseudo relative velocity response spectra differ considerably at very short or very long periods, and the two are often considered similar at intermediate periods. However, observations show that the period range at which the two spectra become comparable is different from site to site. Also, the relationship of the above two types of velocity response spectra with absolute velocity response spectra are not discussed well in literature. The absolute velocity response spectra are the peak values of time histories obtained by adding the ground velocities to relative velocity response time histories at individual natural periods. There exists many tall buildings on huge and deep sedimentary basins such as the Kanto basin, and the number of such buildings is growing. Recently, Japan Meteorological Agency (JMA) has proposed four classes of long-period ground motion intensity (http://www.data.jma.go.jp/svd/eew/data/ltpgm/) based on absolute velocity response spectra, which correlate to the difficulty of movement of people in tall buildings. As the researchers are using various types of response spectra for long-period ground motions, it is important to understand the relationships between them to take appropriate measures for disaster prevention applications. In this paper, we, therefore, obtain and discuss the empirical attenuation relationships using the same functional forms for the three types of velocity response spectra computed from observed strong motion records from moderate to large earthquakes in relation to JMA magnitude, hypocentral distance, sediment depths, and AVS30 as predictor variables at periods between

  6. Slepian simulation of plastic displacement distributions for shear frame excited by filtered Gaussian white noise ground motion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Lazarov, Boyan Stefanov

    2003-01-01

    single story shear frame excited by stationary Gaussian ground motion defined by the output of a Clough-Penzien filter with Gaussian white noise input. This is equivalent to considering an artificial three story elasto-plastic shear frame with possible yielding solely in the third column connection, and...... with no force feed back from any of the three masses to masses situated below it. The first mass from the ground is force excited by stationary Gaussian white noise as specified in the Clough-Penzien filter definition. The study includes comparisons between plastic displacement results for the same...... frame. A suitable number of the lower floors has been considered to represent the soil both as a filter of a white noise base rock excitation and as a simplified model for soil structure interaction. In the present paper the Slepian model is applied to obtain plastic displacement distributions for a...

  7. Using 1 -D and 2-D modelling of ground motion for seismic zonation criteria: results for the city of Rome

    Directory of Open Access Journals (Sweden)

    A. Caserta

    1995-06-01

    Full Text Available The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves produced in the different areas of the city by a large (M ? 7 potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineering parameters (peak ground acceleration and velocity, Arias intensity, energy flux, response spectra whose spatial variations are consistent with the damage distribution caused by the strongest earthquakes felt in Rome during its long history. Based on the macroseismic inforination and the results of the numerical simulations, general criteria for seismic zonation of the city of Rome are proposed.

  8. Geological and seismological survey for new design-basis earthquake ground motion of Kashiwazaki-Kariwa NPS

    Science.gov (United States)

    Takao, M.; Mizutani, H.

    2009-05-01

    At about 10:13 on July 16, 2007, a strong earthquake named 'Niigata-ken Chuetsu-oki Earthquake' of Mj6.8 on Japan Meteorological Agencyfs scale occurred offshore Niigata prefecture in Japan. However, all of the nuclear reactors at Kashiwazaki-Kariwa Nuclear Power Station (KKNPS) in Niigata prefecture operated by Tokyo Electric Power Company shut down safely. In other words, automatic safety function composed of shutdown, cooling and containment worked as designed immediately after the earthquake. During the earthquake, the peak acceleration of the ground motion exceeded the design-basis ground motion (DBGM), but the force due to the earthquake applied to safety-significant facilities was about the same as or less than the design basis taken into account as static seismic force. In order to assess anew the safety of nuclear power plants, we have evaluated a new DBGM after conducting geomorphological, geological, geophysical, seismological survey and analyses. [Geomorphological, Geological and Geophysical survey] In the land area, aerial photograph interpretation was performed at least within the 30km radius to extract geographies that could possibly be tectonic reliefs as a geomorphological survey. After that, geological reconnaissance was conducted to confirm whether the extracted landforms are tectonic reliefs or not. Especially we carefully investigated Nagaoka Plain Western Boundary Fault Zone (NPWBFZ), which consists of Kakuda-Yahiko fault, Kihinomiya fault and Katakai fault, because NPWBFZ is the one of the active faults which have potential of Mj8 class in Japan. In addition to the geological survey, seismic reflection prospecting of approximate 120km in total length was completed to evaluate the geological structure of the faults and to assess the consecutiveness of the component faults of NPWBFZ. As a result of geomorphological, geological and geophysical surveys, we evaluated that the three component faults of NPWBFZ are independent to each other from the

  9. Ground-Motion Recordings from the June 18, 2002, Darmstadt, Indiana, Earthquake

    Science.gov (United States)

    Wang, Z.; Woolery, E. W.; Schaefer, J. A.

    2002-12-01

    A minor earthquake with a magnitude of Mb5.0 (Mw4.5) occurred at 1:37 Eastern Daylight Time (EDT) on June 18, 2002, about 9 km (6 mi) west of Darmstadt, Ind. Minor damage consisting of broken windows, cracked chimneys, and objects thrown from shelves was reported from the epicentral area. The earthquake was felt in parts of Illinois, Indiana, Kentucky, Missouri, Ohio, and Tennessee. Some strong-motion stations of the Kentucky Seismic and Strong-Motion Network (KSSMN) and the U.S. Army Corps of Engineers' strong-motion network recorded the earthquake. Two free-field strong-motion stations of KSSMN, one in Hickman, Ky. (HIKY) and one in Ridgely, Tenn. (RIDG), recorded the event. The epicentral distances are about 200 and 245 km from HIKY and RIDG, respectively. The NEHRP soil classifications at HIKY and RIDG are C and D, respectively. The strong-motion instruments installed on three locks and dams along the Ohio River and its tributaries by the U.S. Army Corps of Engineers also recorded the event. These three sites are the J.T. Myers Lock and Dam, Newburgh Lock and Dam, and Patoka Dam. J.T. Myers and Newburgh are concrete rock-founded structures and Patoka is a dam with a clay core and random rock-fill shells. The epicentral distances to J.T. Myers Lock and Dam, Newburgh Lock and Dam, and Patoka Dam are about 30, 35, and 110 km, respectively. All instruments were installed on structures. Compared to the current attenuation relationships, the data set from the June 18, 2002, earthquake has higher PGA values recorded on the locks and dams probably due to structural effects. The free-field PGA values are also high.

  10. Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB) Isolator Devices Subjected to Near-Fault (NF) Ground Motions

    OpenAIRE

    Jong Wan Hu

    2014-01-01

    Base isolation has been used as one of the most wildly accepted seismic protection systems that should substantially dissociate a superstructure from its substructure resting on a shaking ground, thereby sustainably preserving entire structures against earthquake forces as well as inside non-structural integrities. Base isolation devices can operate very effectively against near-fault (NF) ground motions with large velocity pulses and permanent ground displacements. In this study, comparative...

  11. Three-Dimensional Finite Difference Simulation of Ground Motions from the August 24, 2014 South Napa Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.

  12. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J

    2008-02-11

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.

  13. A novel model and estimation method for the individual random component of earthquake ground-motion relations

    CERN Document Server

    Raschke, Mathias

    2015-01-01

    In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke (2013a), with the sample of random difference xi=ln(Y1)-ln(Y2), in which Y1 and Y2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure the distribution of difference xi was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference xi of the sample o...

  14. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and

  15. The 2001 Mw7.7 Bhuj, India Earthquake and Eastern North American Ground-Motion Attenuation Relations: Seismic Hazard Implications

    Science.gov (United States)

    Cramer, C. H.; Bhattacharya, S. N.; Kumar, A.

    2002-12-01

    It has been suggested that the Mw7.7 2001 Bhuj, India earthquake occurred in a stable continental region with ground-motion attenuation properties similar to eastern North America (ENA). No strong motion recordings for M7 or greater earthquakes have been recorded in ENA, so, if the two regions share similar properties, then observations from the Bhuj earthquake provide important information for hazard assessments in ENA as well as India. This thesis can be tested using seismic data for the Bhuj mainshock. The Indian Meteorological Department recorded accelerograph and broadband seismograph data at distances of 500 to 1800 km. Accelerograph and engineering seismoscope data were recorded at distances of 40 to 1100 km by the Department of Earthquake Engineering at the Indian Institute of Technology, Roorkee. We have processed the accelerograph and broadband data for response spectral accelerations and corrected them to a common NEHRP site class using Joyner and Boore (2000) site factors. The geologic conditions at each recording site were determined using the geologic map of India and categorized as Quaternary sediments, Tertiary sediments, or hard rock. Comparisons were then made to available ENA ground-motion attenuation relations. For peak ground acceleration (PGA) and 1.0 s spectral acceleration (Sa), the geologically-corrected Bhuj data generally fall among the ENA ground-motion attenuation relations. The Bhuj mainshock ground-motion data agree with the collective predictions of the ENA relations given the random uncertainty in ground-motion measurements of a factor of two or more plus the ground-motion attenuation relation modeling uncertainty. From an engineering perspective, this comparison supports the thesis that seismic-wave attenuation in stable continental India is similar to eastern North America.

  16. Modelling duality between bound and resonant meson spectra by means of free quantum motions on the de Sitter space time dS4

    CERN Document Server

    Kirchbach, M

    2016-01-01

    We seek for a pair of a well and barrier potentials such that the real parts of the complex energies of the resonances transmitted through the barrier equal the energies of the states bound within the well and find the hyperbolic Poeschl-Teller barrier, ~sech^2\\rho, and the trigonometric Scarf well, ~ \\sec^2\\chi. The potentials are shown to be conformally symmetric by the aid of the de Sitter space time, dS4, related to flat conformal space time by a conformal map. Namely, we transform the quantum mechanical wave equations with the above potentials to free quantum motions on the respective open time like hyperbolic and the closed space like hyper spherical, S3, geodesics of dS4, the former by itself is related to Minkowski space time by a conformal map.We formulate a conformal symmetry respecting classification scheme for mesons seen either as resonances in scattering, or as states bound within a potential, according to trajectories in which the total spin of the meson, l-depends linearly on the first power o...

  17. High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase.

    Science.gov (United States)

    Kitahara, R; Sareth, S; Yamada, H; Ohmae, E; Gekko, K; Akasaka, K

    2000-10-24

    A high-pressure (15)N/(1)H two-dimensional NMR study has been carried out on folate-bound dihydrofolate reductase (DHFR) from Escherichia coli in the pressure range between 30 and 2000 bar. Several cross-peaks in the (15)N/(1)H HSQC spectrum are split into two with increasing pressure, showing the presence of a second conformer in equilibrium with the first. Thermodynamic analysis of the pressure and temperature dependencies indicates that the second conformer is characterized by a smaller partial molar volume (DeltaV = -25 mL/mol at 15 degrees C) and smaller enthalpy and entropy values, suggesting that the second conformer is more open and hydrated than the first. The splittings of the cross-peaks (by approximately 1 ppm on (15)N axis at 2000 bar) arise from the hinges of the M20 loop, the C-helix, and the F-helix, all of which constitute the major binding site for the cofactor NADPH, suggesting that major differences in conformation occur in the orientations of the NADPH binding units. The Gibbs free energy of the second, open conformer is 5.2 kJ/mol above that of the first at 1 bar, giving an equilibrium population of about 10%. The second, open conformer is considered to be crucial for NADPH binding, and the NMR line width indicates that the upper limit for the rate of opening is 20 s(-)(1) at 2000 bar. These experiments show that high pressure NMR is a generally useful tool for detecting and analyzing "open" structures of a protein that may be directly involved in function.

  18. Surface level ground motion estimation for 1869 Cachar earthquake (Mw 7.5) at Imphal city

    International Nuclear Information System (INIS)

    In this paper, the seismic susceptibility of Imphal city with respect to ten synthetically generated samples of the historic 1869 Cachar (Mw 7.5) earthquake that occurred in the Kopili fault is presented based on the finite-fault seismological model in conjunction with nonlinear site response analyses. For all the synthetic sample earthquake events, the mean and standard deviation of surface level spectral ground acceleration at peak ground acceleration (PGA) and natural periods of 0.3 and 1 s have been reported in the form of contour maps. These contour maps can serve as guidelines for engineers and planners to identify vulnerable areas for possible seismic disaster mitigation of Imphal city

  19. Estimation of seismic ground motions using deterministic approach for major cities of Gujarat

    OpenAIRE

    Shukla, J.; Choudhury, D.

    2012-01-01

    A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh) of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA) and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental...

  20. The Influence of Earth Temperature on the Dynamic Characteristics of Frozen Soil and the Parameters of Ground Motion on Sites of Permafrost

    Institute of Scientific and Technical Information of China (English)

    Wang Lanmin; Zhang Dongli; Wu Zhijian; Ma Wei; Li Xiaojun

    2004-01-01

    Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.

  1. Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization

    CERN Document Server

    D'Avila, Maria Paola Santisi; Semblat, Jean-François

    2013-01-01

    Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in th...

  2. Ground state and excitations of a Bose-Einstein condensate of atoms and their diatomic bound states

    International Nuclear Information System (INIS)

    We study theoretically a many-body system of spinless atoms and their diatomic bound states (or molecules) which form a single Bose-Einstein condensate at zero temperature. The equilibrium states of such a system and its dynamics are analyzed within the Gross-Pitaevskii approach. It is shown that the system exhibits two phases depending on binding energy value: it can be in the states with atomic-molecular condensate or molecular condensate. The basic thermodynamic characteristics of the two phases and their stability conditions are obtained. Both phases are characterized by two branches of collective excitations. The first branch is acoustic mode and the second one is gapfull

  3. Source model for strong ground motion generation in the frequency range 0.1-10 Hz during the 2011 Tohoku earthquake

    Science.gov (United States)

    Asano, Kimiyuki; Iwata, Tomotaka

    2012-12-01

    The source model of the 2011 Tohoku earthquake, which is composed of four strong motion generation areas (SMGAs), is estimated based on the broadband strong ground motion simulations in the frequency range 0.1-10 Hz using the empirical Green's function method. Two strong motion generation areas are identified in the Miyagi-oki region west of the hypocenter. Another two strong motion generation areas are located in the Fukushima-oki region southwest of the hypocenter. The strong ground motions in the frequency range 0.1-10 Hz along the Pacific coast are mainly controlled by these SMGAs. All the strong motion generation areas exist in the deeper portion of the source fault plane. The stress drops of the four SMGAs range from 6.6 to 27.8 MPa, which are similar to estimations for past M 7-class events occurring in this region. Compared with the slip models and aftershock distributions of past interplate earthquakes in the Miyagi-oki and Fukushima-oki regions since the 1930s, the SMGAs of the 2011 Tohoku earthquake spatially correspond to the asperities of M 7-class events in 1930s. In terms of broadband strong ground motions, the 2011 Tohoku earthquake is not only a tsunamigenic event with a huge coseismic slip near the trench but is also a complex event simultaneously rupturing pre-existing asperities.

  4. Amplification of seismic ground motion in the Tunis basin: Numerical BEM simulations vs experimental evidences

    CERN Document Server

    Kham, Marc; Bouden-Romdhane, Nejla

    2013-01-01

    This paper aims at the analysis of seismic wave amplification in a deep alluvial basin in the city of Tunis in Tunisia. This sedimentary basin is 3000m wide and 350m deep. Since the seismic hazard is significant in this area, the depth of the basin and the strong impedance ratio raise the need for an accurate estimation of seismic motion amplification. Various experimental investigations were performed in previous studies to characterize site effects. The Boundary Element Method is considered herein to assess the parameter sensitivity of the amplification process and analyse the prevailing phenomena. The various frequencies of maximum amplification are correctly estimated by the BEM simulations. The maximum amplification level observed in the field is also well retrieved by the numerical simulations but, due to the sensitivity of the location of maximum amplification in space, the overall maximum amplification has to be considered. The influence of the wave-field incidence and material damping is also discuss...

  5. Compilation, assessment and expansion of the strong earthquake ground motion data base. Seismic Safety Margins Research Program (SSMRP)

    International Nuclear Information System (INIS)

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications. (author)

  6. Stochastic finite element analysis of long-span bridges with CFRP cables under earthquake ground motion

    Indian Academy of Sciences (India)

    Özlem Çavdar; Alemdar Bayraktar; Süleyman Adanur; Hasan Basri Başaǧa

    2010-06-01

    Stochastic seismic analysis of long-span bridges with Carbon fibre reinforced polymer (CFRP) cables are presented in this study through combination of the advantages of the perturbation based stochastic finite element method (SFEM) and Monte Carlo simulation (MCS) method. Jindo cable-stayed and Fatih Sultan Mehmet (Second Bosporus) suspension bridges are chosen as an example. Carbon fibre reinforced polymer cable (CFRP) and steel cables are used separately, in which the cable’s cross sectional area is determined by the principle equivalent axial stiffness. Geometric nonlinear effects are considered in the analysis. Uncertainties in the material are taken into account and Kocaeli earthquake in 1999 is chosen as a ground motion. The efficiency and accuracy of the proposed algorithm are validated by comparing with results of MCS method. It can be stated that using of CFRP cables in long-span bridges subjected to earthquake forces is feasible.

  7. EFFECTS OF FATIGUE ON FRONTAL PLANE KNEE MOTION, MUSCLE ACTIVITY, AND GROUND REACTION FORCES IN MEN AND WOMEN DURING LANDING

    Directory of Open Access Journals (Sweden)

    Michael P. Smith

    2009-09-01

    Full Text Available Women tear their Anterior Cruciate Ligament (ACL 2-8 times more frequently than men. Frontal plane knee motion can produce a pathological load in the ACL. During a state of fatigue the muscles surrounding the knee joint may lose the ability to protect the joint during sudden deceleration while landing. The purpose of this study was to investigate the effects of fatigue and gender on frontal plane knee motion, EMG amplitudes, and GRF magnitudes during drop- jump landing. Pretest-posttest comparison group design was used. Twenty-six volunteers (14 women; 12 Men; Mean ± standard deviation age = 24.5 ± 2.7 yrs; height = 1.73 ± 0.09 m; mass = 74.3 ± 11.8 kg participated in the study. Knee frontal plane ranges of motion and positions, ground reaction force peak magnitudes, and surface EMG RMS amplitudes from five lower extremity muscles (vastus medialis, vastus lateralis, medial hamstring, lateral hamstring, and lateral gastrocnemius were obtained during the landing phase of a drop-jump. MANOVA and ANOVA indicated that peak GRF significantly (p < 0.05; 2.50 ± 0.75 BW vs. 2.06 ± 0.93 BW decreased during fatigued landings. No other variables exhibited a fatigue main effect, although there was a significant (p < 0.05 fatigue by gender interaction for the frontal plane range of motion from initial contact to max knee flexion variable. Follow-up analyses failed to reveal significant gender differences at the different levels of fatigue for this variable. Additionally, no variables exhibited a significant gender main effect. Single subject analysis indicated that fatigue significantly altered frontal plane knee motion, peak GRF, and EMG in some subjects and the direction of differences varied by individual. Fatigue altered some aspects of landing performance in both men and women, but there were no gender differences. Additionally, both group and single subject analyses provided valuable but different information about factors representing

  8. Analytical investigations of seismic responses for reinforced concrete bridge columns subjected to strong near-fault ground motion

    Institute of Scientific and Technical Information of China (English)

    Chin-Kuo Su; Yu-Chi Sung; Shuenn-Yih Chang; Chao-Hsun Huang

    2007-01-01

    Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocitywave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC)bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake.Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However; the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member.FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns.They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear loaddeformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach,the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.

  9. Characterization of the dynamic response of structures to damaging pulse-type near-fault ground motions

    International Nuclear Information System (INIS)

    The presence of long-period pulses in near-fault records can be considered as an important factor in causing damage due to the transmission of large amounts of energy to the structures in a very short time. Under such circumstances high-energy dissipation demands usually occur, which are likely to concentrate in the weakest parts of the structure. The maximum nonlinear response or collapse often happens at the onset of directivity pulse and fling, and this time is not predicted by the natural structural vibration periods. Nonlinear response leading to collapse may in most cases occur only during one large amplitude pulse of displacement. From the study of the response of both linear and nonlinear SDOF systems, the effects of these distinctive long-period pulses have been assessed by means of: (i) synthetic parameters directly derived from the strong ground motion records, and (ii) elastic and inelastic spectra of both conventional and energy-based seismic demand parameters. SDOF systems have first been subjected to records obtained during recent earthquakes in near-fault areas in forward directivity conditions. The results indicate that long duration pulses strongly affect the inelastic response, with very high energy and displacement demands which may be several times larger than the limit values specified by the majority of codes. In addition, from the recognition of the fundamental importance of velocity and energy-based parameters in the characterization of near-fault signals, idealized pulses equivalent to near-fault signals have been defined on account of such parameters. Equivalent pulses are capable of representing the salient observed features of the response to near-fault recorded ground motions. (author)

  10. Lower bound on the four-point dynamical susceptibility: Direct experimental test on a granular packing

    OpenAIRE

    Lechenault, F.; Dauchot, O.; Biroli, G.; Bouchaud, J.P.

    2007-01-01

    We track the motion of a horizontally vibrated amorphous assembly of bidisperse hard disks, for densities ranging across the jamming transition. We derive on very general grounds a bound on the dynamical susceptibility in terms of the response of the dynamics to a change in density. This generalizes a similar bound recently derived for equilibrium liquids. We find that in our experimental system the bound is tight and reproduces the non-monotonic behavior of the dynamical susceptibility both ...

  11. Ground motions around a semi-circular valley partially filled with an inclined alluvial layer under SH-polarized excitation

    Science.gov (United States)

    Chang, Kao-Hao; Tsaur, Deng-How; Wang, Jeen-Hwa

    2014-12-01

    A simplified mathematical model, composed of a semi-circular valley partially filled with an inclined alluvial layer under plane SH-wave incidence, is presented. To evaluate the site response theoretically, a rigorous series solution is derived via the region-matching technique. For angular wavefunctions constrained by an inclined free surface, the original form of Graf's addition formula is recast to arbitrarily shift the local coordinate system. The valley geometry, filling material, angle of incidence, and wave frequency are taken as significant parameters in exploring the site effect on ground motions. Also included are the frequency- and time-domain computations. Two canonical cases, the semi-circular vacant canyon and the fully filled semi-circular alluvial valley, with exact analytical solutions, and the partly horizontally filled case previously studied, are taken to be particular cases of the proposed general model. Steady-state results show that the peak amplitudes of motion may increase at low frequencies when the filling layer inclines to the illuminated region. At low-grazing incidence, the phenomenon of wave focusing becomes evident on the shadow side of the filling layer. Transient-state simulations elucidate how a sequence of surface waves travel on the topmost alluvium along opposite directions and interfere with multiple reflected waves within the filling layer.

  12. The Las Vegas Valley Seismic Response Project: Ground Motions in Las Vegas Valley from Nuclear Explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Tkalcic, H; McCallen, D

    2005-03-18

    Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recorded at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV

  13. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Zhirui Wang

    2016-03-01

    Full Text Available To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR, a road-aided ground moving target indication (GMTI algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target’s position on the road as well as its radial velocity can be determined according to the target’s offset distance and traffic rules. Furthermore, the target’s azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  14. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    Science.gov (United States)

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-01-01

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm. PMID:26999140

  15. Evaluation of building fundamental periods and effects of local geology on ground motion parameters in the Siracusa area, Italy

    Science.gov (United States)

    Panzera, Francesco; D'Amico, Sebastiano; Lombardo, Giuseppe; Longo, Emanuela

    2016-07-01

    The Siracusa area, located in the southeastern coast of Sicily (Italy), is mainly characterized by the outcropping of a limestone formation. This lithotype, which is overlain by soft sediments such as sandy clays and detritus, can be considered as the local bedrock. Records of ambient noise, processed through spectral ratio techniques, were used to assess the dynamic properties of a sample survey of both reinforced concrete and masonry buildings. The results show that experimental periods of existing buildings are always lower than those proposed by the European seismic code. This disagreement could be related to the role played by stiff masonry infills, as well as the influence of adjacent buildings, especially in downtown Siracusa. Numerical modeling was also used to study the effect of local geology on the seismic site response of the Siracusa area. Seismic urban scenarios were simulated considering a moderate magnitude earthquake (December 13th, 1990) to assess the shaking level of the different outcropping formations. Spectral acceleration at different periods, peak ground acceleration, and velocity were obtained through a stochastic approach adopting an extended source model code. Seismic ground motion scenario highlighted that amplification mainly occurs in the sedimentary deposits that are widespread to the south of the study area as well as on some spot areas where coarse detritus and sandy clay outcrop. On the other hand, the level of shaking appears moderate in all zones with outcropping limestone and volcanics.

  16. The SCEC-USGS Dynamic Earthquake Rupture Code Comparison Exercise - Simulations of Large Earthquakes and Strong Ground Motions

    Science.gov (United States)

    Harris, R.

    2015-12-01

    I summarize the progress by the Southern California Earthquake Center (SCEC) and U.S. Geological Survey (USGS) Dynamic Rupture Code Comparison Group, that examines if the results produced by multiple researchers' earthquake simulation codes agree with each other when computing benchmark scenarios of dynamically propagating earthquake ruptures. These types of computer simulations have no analytical solutions with which to compare, so we use qualitative and quantitative inter-code comparisons to check if they are operating satisfactorily. To date we have tested the codes against benchmark exercises that incorporate a range of features, including single and multiple planar faults, single rough faults, slip-weakening, rate-state, and thermal pressurization friction, elastic and visco-plastic off-fault behavior, complete stress drops that lead to extreme ground motion, heterogeneous initial stresses, and heterogeneous material (rock) structure. Our goal is reproducibility, and we focus on the types of earthquake-simulation assumptions that have been or will be used in basic studies of earthquake physics, or in direct applications to specific earthquake hazard problems. Our group's goals are to make sure that when our earthquake-simulation codes simulate these types of earthquake scenarios along with the resulting simulated strong ground shaking, that the codes are operating as expected. For more introductory information about our group and our work, please see our group's overview papers, Harris et al., Seismological Research Letters, 2009, and Harris et al., Seismological Research Letters, 2011, along with our website, scecdata.usc.edu/cvws.

  17. Ground-motion amplification at the Colle di Roio ridge, central Italy: a combined effect of stratigraphy and topography

    Science.gov (United States)

    Hailemikael, S.; Lenti, L.; Martino, S.; Paciello, A.; Rossi, D.; Mugnozza, G. Scarascia

    2016-07-01

    Following the Mw 6.3 L'Aquila Earthquake of 2009 April 6, the Colle di Roio village, central Italy, suffered severe building damages. The village is located on top of an elongated carbonate ridge characterized by a complex subsurface structure, a condition prone to seismic amplification due to topographic and stratigraphic effects. We address the role of the subsurface structure and topography in the ground-motion amplification observed at the ridge top. To characterize the subsurface structure of the ridge we performed geological investigations and ambient vibration measurements in single-station as well as 2-D-array configuration. Geological investigations pointed out that the ridge top is characterized by the presence of fractured rock material as a consequence of its anticlinal fold structure. Horizontal-to-vertical spectral ratio (HVSR) processing of ambient vibration records showed a broad peak in the HVSR functions in the frequency range 4-6 Hz and 2-D-array data demonstrated that locally the subsurface structure at the ridge top cannot be considered homogeneous. In summer 2009, we further installed one accelerometric station on the ridge top to experimentally evaluate the site amplification. By means of HVSR analysis of a sample of 18 weak-motion records (H/V), we found that ground-motion amplification occurs in a narrow frequency range centred around 4 Hz with mean ratio amplitude of 6. We also analysed the dependence of seismic amplification on the azimuth by calculating H/V ratios for horizontal components rotated into a range of azimuths. This analysis showed that the higher level of horizontal amplification occurs in the direction perpendicular to the ridge trending direction. With the aim of evaluating the contribution of the topography and the local subsurface structure on the observed seismic amplification, we performed 2-D finite-difference modelling of wave propagation through the ridge, adopting both homogeneous and heterogeneous models. We were

  18. Broadband Strong Ground Motion Simulation For a Potential Mw 7.1 Earthquake on The Enriquillo Fault in Haiti

    Science.gov (United States)

    Douilly, R.; Mavroeidis, G. P.; Calais, E.

    2015-12-01

    The devastating 2010 Haiti earthquake showed the need to be more vigilant toward mitigation for future earthquakes in the region. Previous studies have shown that this earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown Léogâne transpressional fault. Slip on that fault has increased stresses on the Enriquillo Fault mostly in the region closer to Port-au-Prince, the most populated city of the country. Here we investigate the ground shaking level in this region if a rupture similar to the Mw 7.0 2010 Haiti earthquake occurred on the Enriquillo fault. We use a finite element method and assumptions on regional stress to simulate low frequency dynamic rupture propagation for a 53 km long segment. We introduce some heterogeneity by creating two slip patches with shear traction 10% greater than the initial shear traction on the fault. The final slip distribution is similar in distribution and magnitude to previous finite fault inversions for the 2010 Haiti earthquake. The high-frequency ground motion components are calculated using the specific barrier model, and the hybrid synthetics are obtained by combining the low-frequencies (f 1Hz) from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. The average horizontal peak ground acceleration, computed at several sites of interest through Port-au-Prince, has a value of 0.35g. We also compute response spectra at those sites and compare them to the spectra from the microzonation study.

  19. Modelling duality between bound and resonant meson spectra by means of free quantum motions on the de Sitter space-time dS4

    Science.gov (United States)

    Kirchbach, M.; Compean, C. B.

    2016-07-01

    The real parts of the complex squared energies defined by the resonance poles of the transfer matrix of the Pöschl-Teller barrier, are shown to equal the squared energies of the levels bound within the trigonometric Scarf well potential. By transforming these potentials into parts of the Laplacians describing free quantum motions on the mutually orthogonal open-time-like hyperbolic-, and closed-space-like spherical geodesics on the conformally invariant de Sitter space-time, dS4, the conformal symmetries of these interactions are revealed. On dS4 the potentials under consideration naturally relate to interactions within colorless two-body systems and to cusped Wilson loops. In effect, with the aid of the dS4 space-time as unifying geometry, a conformal symmetry based bijective correspondence (duality) between bound and resonant meson spectra is established at the quantum mechanics level and related to confinement understood as color charge neutrality. The correspondence allows to link the interpretation of mesons as resonance poles of a scattering matrix with their complementary description as states bound by an instantaneous quark interaction and to introduce a conformal symmetry based classification scheme of mesons. As examples representative of such a duality we organize in good agreement with data 71 of the reported light flavor mesons with masses below ˜ 2350 MeV into four conformal families of particles placed on linear f0, π , η , and a0 resonance trajectories, plotted on the ℓ/ M plane. Upon extending the sec2 χ by a properly constructed conformal color dipole potential, shaped after a tangent function, we predict the masses of 12 "missing" mesons. We furthermore notice that the f0 and π trajectories can be viewed as chiral partners, same as the η and a0 trajectories, an indication that chiral symmetry for mesons is likely to be realized in terms of parity doubled conformal multiplets rather than, as usually assumed, only in terms of parity

  20. Source parameters of the 2013, Ms 7.0, Lushan earthquake and the characteristics of the near-fault strong ground motion

    Science.gov (United States)

    Zhao, Fengfan; Meng, Lingyuan

    2016-04-01

    The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).

  1. Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershocks

    Science.gov (United States)

    Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki

    2016-04-01

    Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large

  2. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.

    2013-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband

  3. Analysis of K-net and Kik-net data: implications for ground motion prediction - acceleration time histories, response spectra and nonlinear site response

    International Nuclear Information System (INIS)

    This thesis intends to characterize ground motion during earthquake. This work is based on two Japanese networks. It deals with databases of shallow events, depth less than 25 km, with magnitude between 4.0 and 7.3. The analysis of K-net allows to compute a spectral ground motion prediction equation and to review the shape of the Eurocode 8 design spectra. We show the larger amplification at short period for Japanese data and bring in light the soil amplification that takes place at large period. In addition, we develop a new empirical model for simulating synthetic stochastic nonstationary acceleration time histories. By specifying magnitude, distance and site effect, this model allows to produce many time histories, that a seismic event is liable to produce at the place of interest. Furthermore, the study of near-field borehole records of the Kik-net allows to explore the validity domain of predictive equations and to explain what occurs by extrapolating ground motion predictions. Finally, we show that nonlinearity reduces the dispersion of ground motion at the surface. (author)

  4. Earth modeling and estimation of the local seismic ground motion due to site geology in complex volcanoclastic areas

    Directory of Open Access Journals (Sweden)

    V. Di Fiore

    2002-06-01

    Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response

  5. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results

  6. Real-time prediction of seismic ground motion (I) : real-time estimation of seismic wavefield using data assimilation technique and time evolutional prediction using Kirchhoff integral

    Science.gov (United States)

    Hoshiba, M.

    2013-05-01

    In this presentation, I propose a new approach for real-time prediction of seismic ground motion which is applicable to Earthquake Early Waning (EEW), in which hypocentral location and magnitude are not required. . Many methods of EEW are based on a network method in which hypocenter and magnitude (source parameters) are quickly determined, and then the ground motions are predicted, and warnings are issued depending on the strength of the predicted ground motion. In this method, it is necessary to determine the hypocenter and magnitude at first, and error of the source parameters leads directly to the error of the prediction. It is not easy to take the effects of rupture directivity and source extent into account, and it is impossible to fully reproduce the current wavefield from the interpreted source parameters. Time evolutional prediction is a method in which future wavefield is iteratively predicted from the wavefield at the certain time, that is u(x, t+Δt)=P(u(x, t)), where u is the wave motion at location x at lapse time t, and P is the prediction operator. Future wave motion, u(x, t+Δt), is predicted from the distribution of the current wave motion u(x, t) using P. For P, finite difference technique or boundary integral equation method, such as Kirchhoff integral, is used. Kirchhoff integral is qualitatively approximated by Huygens principle. The real time monitoring of wavefield are important for this method, but it is possible to predict ground motion without a hypocentral location and magnitude. In the time evolutional prediction, determination of detailed distribution of current wavefield is an important key, so that dense seismic observation network is required. Data assimilation is a technique to produce artificially denser network, which is widely used for numerical weather forecast and oceanography. Distribution of current wave motion is estimated from not only the current real observation of u(xi, t) where xi is the location of the i-th site, but

  7. Ground-based structure from motion - multi view stereo (SFM-MVS) for upland soil erosion assessment.

    Science.gov (United States)

    McShane, Gareth; James, Mike; Quniton, John; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Morgan, David; Evans, Martin; Anderson, Karen; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Timothy; Benaud, Pia; Brazier, Richard

    2016-04-01

    In upland environments, quantifying soil loss through erosion processes at a high resolution can be time consuming, costly and logistically difficult. In this pilot study 'A cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we evaluate the use of annually repeated ground-based photography surveys, processed using structure-from-motion and multi-view stereo (SfM-MVS) 3-D reconstruction software (Agisoft Photoscan). The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, in order to quantify dynamic processes, such as erosion and mass movement. The evaluation of the SfM-MVS technique is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. We present results from 5 upland sites across the UK, acquired over a 2-year period. Erosion features of varying width (3 m to 35 m) and length (20 m to 60 m), representing a range of spatial scales (from 100 m2 to 1000 m2) were surveyed, in upland habitats including bogs, peatland, upland grassland and moorland. For each feature, around 150 to 600 ground-based photographs were taken at oblique angles over a 10 to 20 minute period, using an uncalibrated Canon 600D SLR camera with a 28 mm lens (focal length set to infinity). Camera settings varied based upon light conditions (exposure 100-400 ISO, aperture F4.5 to F8, shutter speed 1/100 to 1/250 second). For inter-survey comparisons, models were geo-referenced using 20 to 30 ground control points (numbered black markers with a white target) placed around and within the feature, with their co-ordinates measured by survey-grade differential GNSS (Trimble R4). Volumetric estimates of soil loss were quantified using digital surface models (DSMs) derived from the repeat survey data and subtracted from a

  8. Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2015-01-01

    Full Text Available This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced frame structure, these self-centering friction damping brace members make the best use of their representative characteristics to minimize residual deformations and to withstand earthquake loads without member replacement. The configuration and response mechanism of self-centering friction damping brace systems are firstly described in this study, and then parametric investigations are conducted through nonlinear time-history analyses performed on numerical single degree-of-freedom spring models. After observing analysis results, adequate design methodologies that optimally account for recentering capability and energy dissipation according to their comparative parameters are intended to be suggested in order to take advantage of energy capacity and to minimize residual deformation simultaneously.

  9. Non-Gaussian Stochastic Equivalent Linearization Method for Inelastic Nonlinear Systems with Softening Behaviour, under Seismic Ground Motions

    Directory of Open Access Journals (Sweden)

    Francisco L. Silva-González

    2014-01-01

    Full Text Available A non-Gaussian stochastic equivalent linearization (NSEL method for estimating the non-Gaussian response of inelastic non-linear structural systems subjected to seismic ground motions represented as nonstationary random processes is presented. Based on a model that represents the time evolution of the joint probability density function (PDF of the structural response, mathematical expressions of equivalent linearization coefficients are derived. The displacement and velocity are assumed jointly Gaussian and the marginal PDF of the hysteretic component of the displacement is modeled by a mixed PDF which is Gaussian when the structural behavior is linear and turns into a bimodal PDF when the structural behavior is hysteretic. The proposed NSEL method is applied to calculate the response of hysteretic single-degree-of-freedom systems with different vibration periods and different design displacement ductility values. The results corresponding to the proposed method are compared with those calculated by means of Monte Carlo simulation, as well as by a Gaussian equivalent linearization method. It is verified that the NSEL approach proposed herein leads to maximum structural response standard deviations similar to those obtained with Monte Carlo technique. In addition, a brief discussion about the extension of the method to muti-degree-of-freedom systems is presented.

  10. Response analysis of a nuclear containment structure with nonlinear soil-structure interaction under bi-directional ground motion

    Science.gov (United States)

    Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar

    2015-06-01

    Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.

  11. Hybrid Broadband Ground-Motion Simulations: Combining Long-Period Deterministic Synthetics with High-Frequency Multiple S-to-S Backscattering

    KAUST Repository

    Mai, Paul Martin

    2010-09-20

    We present a new approach for computing broadband (0-10 Hz) synthetic seismograms by combining high-frequency (HF) scattering with low-frequency (LF) deterministic seismograms, considering finite-fault earthquake rupture models embedded in 3D earth structure. Site-specific HF-scattering Green\\'s functions for a heterogeneous medium with uniformly distributed random isotropic scatterers are convolved with a source-time function that characterizes the temporal evolution of the rupture process. These scatterograms are then reconciled with the LF-deterministic waveforms using a frequency-domain optimization to match both amplitude and phase spectra around the target intersection frequency. The scattering parameters of the medium, scattering attenuation ηs, intrinsic attenuation ηi, and site-kappa, as well as frequency-dependent attenuation, determine waveform and spectral character of the HF-synthetics and thus affect the hybrid broadband seismograms. Applying our methodology to the 1994 Northridge earthquake and validating against near-field recordings at 24 sites, we find that our technique provides realistic broadband waveforms and consistently reproduces LF ground-motion intensities for two independent source descriptions. The least biased results, compared to recorded strong-motion data, are obtained after applying a frequency-dependent site-amplification factor to the broadband simulations. This innovative hybrid ground-motion simulation approach, applicable to any arbitrarily complex earthquake source model, is well suited for seismic hazard analysis and ground-motion estimation.

  12. Real-time prediction of earthquake ground motion: application of data assimilation and real-time correction of site amplification factors

    Science.gov (United States)

    Hoshiba, M.

    2013-12-01

    In this presentation, I explain the data assimilation technique and real-time correction of frequency-dependent site amplification factor for time evolutional prediction of seismic ground motion (waveforms) which is applicable to Earthquake Early Warning (EEW). At present, many methods of EEW determine hypocenter and magnitude (source parameters) rapidly at first, and then ground motion is predicted using the hypocenter and magnitude. The warnings are issued depending on the strength of the predicted ground motion. In this method, however, it is not easy to take source extent and the effects of rupture directivity into account. Although S-wave arrival does not necessary means the start of the strong motion for large earthquakes as experienced during the 2011 Tohoku earthquake (Mw9.0), it is hard to predict the time evolution of ground motion strength. In general, wave motion is predictable when boundary condition and initial condition are given. Time evolutional prediction is a method based on this approach using the current wavefield as an initial condition, that is u(x, t+Δt)=P(u(x, t)), where u is the wave motion at location x at lapse time t, and P is the prediction operator. Future wave motion, u(x, t+Δt), is predicted using P from the distribution of the current wavefield, u(x, t). For P, finite difference technique or boundary integral equation method, such as Kirchhoff integral, is used. The time evolutional prediction enables us to predict the time evolution of ground motion strength. In the time evolutional prediction, determination of detailed distribution of current wave motion is a key, so that dense seismic observation network is required. Data assimilation is a technique to produce artificially denser network, which is widely used for numerical weather forecast and oceanography. Distribution of current wave motion is estimated from not only the current actual observation of u(x, t), but also the prediction of one step before, P(u(x, t

  13. Comparison of ground motions estimated from prediction equations and from observed damage during the M = 4.6 1983 Liège earthquake (Belgium

    Directory of Open Access Journals (Sweden)

    D. García Moreno

    2013-08-01

    Full Text Available On 8 November 1983 an earthquake of magnitude 4.6 damaged more than 16 000 buildings in the region of Liège (Belgium. The extraordinary damage produced by this earthquake, considering its moderate magnitude, is extremely well documented, giving the opportunity to compare the consequences of a recent moderate earthquake in a typical old city of Western Europe with scenarios obtained by combining strong ground motions and vulnerability modelling. The present study compares 0.3 s spectral accelerations estimated from ground motion prediction equations typically used in Western Europe with those obtained locally by applying the statistical distribution of damaged masonry buildings to two fragility curves, one derived from the HAZUS programme of FEMA (FEMA, 1999 and another developed for high-vulnerability buildings by Lang and Bachmann (2004, and to a method proposed by Faccioli et al. (1999 relating the seismic vulnerability of buildings to the damage and ground motions. The results of this comparison reveal good agreement between maxima spectral accelerations calculated from these vulnerability and fragility curves and those predicted from attenuation law equations, suggesting peak ground accelerations for the epicentral area of the 1983 earthquake of 0.13–0.20 g (g: gravitational acceleration.

  14. Source and ground-motion parameters of the 2011 Lorca earthquake; Parametros de la fuente y del movimiento del suelo del terremoto de Lorca de 2011

    Energy Technology Data Exchange (ETDEWEB)

    Alguacil de la Blanca, G.; Vidal Sanchez, F.; Stich, D.; Mancilla Perez, F. L.; Lopez Comino, J. A.; Morales Soto, J.; Navarro Bernal, M.

    2012-07-01

    113 events of the Lorca seismic series has been relocated by using Double difference algorithm and data from both temporary and permanent seismic networks. Relocations yield shallow hypo central distribution of aftershocks with a {approx}5 km long, NE-SW trending, placed SW of the mainshock, suggesting a SW propagating rupture along the Alhama de Murcia fault. Similar oblique reverse faulting mechanism has been obtained for three largest events. Source parameters of these three earthquakes have been estimated. Horizontal ground motion was estimated at 11 city points whose local structure was known by SPAC experiments. A set of ground motion parameters (PGA, PGV, AI, CAV, SI, SA and SV) here calculated, have higher values at these points respect to the ones at LOR station. All parameter values are also above the expected values for Euro -Mediterranean earthquakes with local intensity VIII (EMS). Nevertheless, SD values are unusually short and less than the reference ones. Higher values of the response spectra of acceleration and velocity are given for periods of less than 0.7 s, with maximum spectral acceleration at 0.15 s and velocity at 0.5 s. The elastic input energy spectrum is well connected to the shake destructiveness in each place. Equivalent velocity > 60 cm/s is found in almost all sites and > 100 cm/s (for periods 0.3 to 0.6 s) in someone. Factors such as proximity, and focal mechanism and ground response characteristics explain the high ground motion parameter values obtained in Lorca sites and show the great influence of the source and site conditions on the characteristics of strong ground motion in the vicinity of the rupture. (Author) 68 refs.

  15. Dynamic Interaction Behavior between Jumbo Container Crane and Pile-Supported Wharf under NearField and Far-Field Ground Motions

    Directory of Open Access Journals (Sweden)

    J. R. LI

    2016-02-01

    Full Text Available Playing an important role in local and national seaport activities, container wharves are susceptible to structural failure and damage during earthquake events. Therefore, factors that affect the seismic response of crane–wharf structures under different types of earthquake ground motions should be elucidated. In this paper, 3D finite element models were established to investigate the differences of natural vibration characteristics between the wharf and crane–wharf structures. The dynamic response of a typical pile-supported wharf structure and the interaction behavior of a crane and wharf structural system under seismic actions of near-field and far-field ground motions were studied by performing numerical simulation and time-history response analysis. Axial force–moment relation curves were adopted to analyze the elastic–plastic limit state of the wharf structure under different ground motions. Results showed that the consideration of the container crane increased the natural vibration period of the pile-supported wharf structure and affected the dynamic characteristics of the structure. Compared with the far-field earthquake ground motion, the nearfield earthquake exerted a more significant impact on the structural dynamic response that controlled the elastic–plastic limit state. With the presence of a crane, the moment and shear force of the pile-top decreased and the location of the extreme value moved down obviously. The findings demonstrated that considering the crane changed the failure mechanism of the wharf structure, and the eccentric effect of the crane may amplify the dynamic response as the peak ground acceleration increases. The results provide reference for the seismic design and the evaluation of the seismic response of container wharves.

  16. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone

    Science.gov (United States)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis

    2015-04-01

    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the

  17. A comparison of accuracy and precision of 5 gait-event detection algorithms from motion capture in horses during over ground walk

    DEFF Research Database (Denmark)

    Olsen, Emil; Boye, Jenny Katrine; Pfau, Thilo;

    2012-01-01

    Motion capture is frequently used over ground in equine locomotion science to study kinematics. Determination of gait events (hoof-on/off and stance) without force plates is essential to cut the data into strides. The lack of comparative evidence emphasise the need to compare existing algorithms...... and use robust and validated algorithms. It is the objective of this study to compare accuracy (bias) and precision (SD) for five published human and equine motion capture foot-on/off and stance phase detection algorithms during walk. Six horses were walked over 8 seamlessly embedded force plates...

  18. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment

    Science.gov (United States)

    James, Mike R.; Robson, Stuart; d'Oleire-Oltmanns, Sebastian; Niethammer, Uwe

    2016-04-01

    Structure-from-motion (SfM) algorithms are greatly facilitating the production of detailed topographic models based on images collected by unmanned aerial vehicles (UAVs). However, SfM-based software does not generally provide the rigorous photogrammetric analysis required to fully understand survey quality. Consequently, error related to problems in control point data or the distribution of control points can remain undiscovered. Even if these errors are not large in magnitude, they can be systematic, and thus have strong implications for the use of products such as digital elevation models (DEMs) and orthophotos. Here, we develop a Monte Carlo approach to (1) improve the accuracy of products when SfM-based processing is used and (2) reduce the associated field effort by identifying suitable lower density deployments of ground control points. The method highlights over-parameterisation during camera self-calibration and provides enhanced insight into control point performance when rigorous error metrics are not available. Processing was implemented using commonly-used SfM-based software (Agisoft PhotoScan), which we augment with semi-automated and automated GCPs image measurement. We apply the Monte Carlo method to two contrasting case studies - an erosion gully survey (Taurodont, Morocco) carried out with an fixed-wing UAV, and an active landslide survey (Super-Sauze, France), acquired using a manually controlled quadcopter. The results highlight the differences in the control requirements for the two sites, and we explore the implications for future surveys. We illustrate DEM sensitivity to critical processing parameters and show how the use of appropriate parameter values increases DEM repeatability and reduces the spatial variability of error due to processing artefacts.

  19. Ground-motion modeling of Hayward fault scenario earthquakes, part I: Construction of the suite of scenarios

    Science.gov (United States)

    Aagaard, Brad T.; Graves, Robert W.; Schwartz, David P.; Ponce, David A.; Graymer, Russell W.

    2010-01-01

    We construct kinematic earthquake rupture models for a suite of 39 Mw 6.6-7.2 scenario earthquakes involving the Hayward, Calaveras, and Rodgers Creek faults. We use these rupture models in 3D ground-motion simulations as discussed in Part II (Aagaard et al., 2010) to provide detailed estimates of the shaking for each scenario. We employ both geophysical constraints and empirical relations to provide realistic variation in the rupture dimensions, slip heterogeneity, hypocenters, rupture speeds, and rise times. The five rupture lengths include portions of the Hayward fault as well as combined rupture of the Hayward and Rodgers Creek faults and the Hayward and Calaveras faults. We vary rupture directivity using multiple hypocenters, typically three per rupture length, yielding north-to-south rupture, bilateral rupture, and south-to-north rupture. For each rupture length and hypocenter, we consider multiple random distributions of slip. We use two approaches to account for how aseismic creep might reduce coseismic slip. For one subset of scenarios, we follow the slip-predictable approach and reduce the nominal slip in creeping regions according to the creep rate and time since the most recent earthquake, whereas for another subset of scenarios we apply a vertical gradient to the nominal slip in creeping regions. The rupture models include local variations in rupture speed and use a ray-tracing algorithm to propagate the rupture front. Although we are not attempting to simulate the 1868 Hayward fault earthquake in detail, a few of the scenarios are designed to have source parameters that might be similar to this historical event.

  20. Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB Isolator Devices Subjected to Near-Fault (NF Ground Motions

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2014-12-01

    Full Text Available Base isolation has been used as one of the most wildly accepted seismic protection systems that should substantially dissociate a superstructure from its substructure resting on a shaking ground, thereby sustainably preserving entire structures against earthquake forces as well as inside non-structural integrities. Base isolation devices can operate very effectively against near-fault (NF ground motions with large velocity pulses and permanent ground displacements. In this study, comparative advantages for using lead-rubber bearing (LRB isolation systems are mainly investigated by performing nonlinear dynamic time-history analyses with NF ground motions. The seismic responses with respects to base shears and inter-story drifts are compared according to the installation of LRB isolation systems in the frame building. The main function of the base LRB isolator is to extend the period of structural vibration by increasing lateral flexibility in the frame structure, and thus ground accelerations transferred into the superstructure can dramatically decrease. Therefore, these base isolation systems are able to achieve notable mitigation in the base shear. In addition, they make a significant contribution to reducing inter-story drifts distributed over the upper floors. Finally, the fact that seismic performance can be improved by installing isolation devices in the frame structure is emphasized herein through the results of nonlinear dynamic analyses.

  1. The CMS Experiment: on and under Ground Motions of Structures Due to the Magnetic Field Forces as Observed by the Link Alignment System

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, J.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Brochero, J.; Calderon, A.; Fernandez, M. G.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Ribero, C.; Matorras, F.; Rodrigo, T.; Rui-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.; Fernandez, J.

    2010-05-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test (at SX5 on ground Hall) and the CRAFT08 and 09 periods data taking in the point P5 (UX5), 100 m underground. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed motions are studied as functions of the magnetic fi eld intensity. Comparisons between recorded data on and under ground are made. (Author) 23 refs.

  2. An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-12-01

    Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.

  3. Real-time prediction of earthquake ground motion: time evolutional prediction using data assimilation and real-time correction of site amplification factors

    Science.gov (United States)

    Hoshiba, M.

    2012-12-01

    In this presentation, I propose a new approach for real-time prediction of seismic ground motion which is applicable to Earthquake Early Waning (EEW). Many methods of EEW are based on a network method in which hypocenter and magnitude (source parameters) are quickly determined (that is, interpretation of current wavefield), and then the ground motions are predicted, and warnings are issued depending on the strength of the predicted ground motion. In this method, though we can predict ground motions using a few parameters (location of hypocenter, magnitude, site factors) at any points, it is necessary to determine the hypocenter and magnitude at first, and error of the source parameters leads directly to the error of the prediction. It is not easy to take the effects of rupture directivity and source extent into account, and it is impossible to fully reproduce the current wavefield from the interpreted source parameters. In general, wave motion is predictable when boundary condition and initial condition are given. Time evolutional prediction is a method based on this approach using the current wavefield as an initial condition, that is u(x, t+Δt)=H(u(x, t)), where u is the wave motion at location x at lapse time t, and H is the prediction operator. Future wave motion, u(x, t+Δt), is predicted from the distribution of the current wave motion u(x, t) using H. For H, finite difference technique or boundary integral equation method, such as Kirchhoff integral, is used. In the time evolutional prediction, determination of detailed distribution of current wave motion is a key, so that dense seismic observation network is required. Data assimilation is a technique to produce artificially denser network, which is widely used for numerical weather prediction and oceanography. Distribution of current wave motion is estimated from not only the current real observation of u(x, t), but also the prediction of one step before, H(u(x, t-Δt)). Combination of them produces denser

  4. Physically based probabilistic seismic hazard analysis using broadband ground motion simulation: a case study for the Prince Islands Fault, Marmara Sea

    Science.gov (United States)

    Mert, Aydin; Fahjan, Yasin M.; Hutchings, Lawrence J.; Pınar, Ali

    2016-08-01

    The main motivation for this study was the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in the Marmara Sea and the disaster risk around the Marmara region, especially in Istanbul. This study provides the results of a physically based probabilistic seismic hazard analysis (PSHA) methodology, using broadband strong ground motion simulations, for sites within the Marmara region, Turkey, that may be vulnerable to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We included the effects of all considerable-magnitude earthquakes. To generate the high-frequency (0.5-20 Hz) part of the broadband earthquake simulation, real, small-magnitude earthquakes recorded by a local seismic array were used as empirical Green's functions. For the frequencies below 0.5 Hz, the simulations were obtained by using synthetic Green's functions, which are synthetic seismograms calculated by an explicit 2D /3D elastic finite difference wave propagation routine. By using a range of rupture scenarios for all considerable-magnitude earthquakes throughout the PIF segments, we produced a hazard calculation for frequencies of 0.1-20 Hz. The physically based PSHA used here followed the same procedure as conventional PSHA, except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes, and this approach utilizes the full rupture of earthquakes along faults. Furthermore, conventional PSHA predicts ground motion parameters by using empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitudes of earthquakes to obtain ground motion parameters. PSHA results were produced for 2, 10, and 50 % hazards for all sites studied in the Marmara region.

  5. SPE-5 Ground-Motion Prediction at Far-Field Geophone and Accelerometer Array Sites and SPE-5 Moment and Corner-Frequency Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patton, Howard John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-25

    This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.

  6. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy)

    KAUST Repository

    Imperatori, W.

    2012-03-01

    In this paper, we investigate ground-motion variability due to different faulting approximations and crustal-model parametrizations in the Messina Straits area (Southern Italy). Considering three 1-D velocity models proposed for this region and a total of 72 different source realizations, we compute broad-band (0-10 Hz) synthetics for Mw 7.0 events using a fault plane geometry recently proposed. We explore source complexity in terms of classic kinematic (constant rise-time and rupture speed) and pseudo-dynamic models (variable rise-time and rupture speed). Heterogeneous slip distributions are generated using a Von Karman autocorrelation function. Rise-time variability is related to slip, whereas rupture speed variations are connected to static stress drop. Boxcar, triangle and modified Yoffe are the adopted source time functions. We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.

  7. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  8. A comparative study of a stochastic and deterministic simulation of strong ground motion applied to the Kozani-Grevena (NW Greece 1995 sequence

    Directory of Open Access Journals (Sweden)

    C. Papaioannou

    2000-06-01

    Full Text Available We present the results of a comparative study of two intrinsically different methodologies, a stochastic one and a deterministic one, performed to simulate strong ground motion in the Kozani area (NW Greece. Source parameters were calculated from empirical relations in order to check their reliability, in combination with the applied methodologies, to simulate future events. Strong ground motion from the Kozani mainshock (13 May, 1995, M w = 6.5 was synthesized by using both the stochastic method for finite-fault cases and the empirical Green’s function method. The latter method was also applied to simulate a Mw = 5.1 aftershock (19 May, 1995. The results of the two simulations computed for the mainshock are quite satisfactory for both methodologies at the frequencies of engineering interest (> ~ 2 Hz. This strengthens the idea of incorporating proper empirical relations for the estimation of source parameters in a priori simulations of strong ground motion from future earthquakes. Nevertheless, the results of the simulation of the smaller earthquake point out the need for further investigation of regional or local, if possible, relations for estimating source parameters at smaller magnitude ranges

  9. Microtremor Array Measurement Survey and Strong Ground Motion Observation Activities of The MarDiM (SATREPS) Project

    Science.gov (United States)

    Ozgur Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Aksahin, Bengi; Arslan, Safa; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2015-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul and Tekirdag province at about 81 sites on October 2013 and September 2014. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A2) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A2) consist of three servo

  10. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 2-

    Science.gov (United States)

    Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Arslan, Safa; Aksahin, Bengi; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2016-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 109 sites on October 2013, September 2014 and 2015. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374

  11. Decay of ground motion peak values is faster for smaller magnitude events: investigation of the role played by the attenuation and the scattering effects

    Science.gov (United States)

    Dujardin, A.; Courboulex, F.; Causse, M.; Traversa, P.

    2013-12-01

    The decay of ground motion peak values (PGA, PGV ...) with distance is a parameter of great importance in the prediction of ground motion for seismic hazard assessment. This decay appears to be dependent on the size of the earthquakes: faster for small than for large earthquakes. This has been observed many times in real databases and is now included in most of the Ground Motion Prediction Equations (GMPEs). Nevertheless, the physical causes of these differences have never been clearly identified. In order to understand and quantify this effect we explore the influence two of major processes: the anelastic attenuation and the scattering effects. We first performed synthetic tests using the stochastic simulation program SMSIM (Boore 2003) and we generate temporal series at different distances and different magnitudes for different values of the quality factor (Q(f)) which describe the anelastic attenuation. We observe that the decay of ground motion peak values (especially PGA and PGV) is strongly dependent on the spectral shape of the Fourier spectrum. Due to the fact that the small earthquakes have higher frequency content, they are more affected by attenuation than larger earthquakes, and therefore the decay of PGA with distance is faster. We propose an analytical formulation that predicts this effect with a given stress drop and a Q factor value and assuming an omega square spectrum for the source. We then test the influence of the combination of source and path effects (i.e. interactions between Green and source functions) and the generation of constructive and destructive interferences in complex medium. We realized simulations by means of the discrete wave number technique in a 1D layered medium. If the medium is complex enough, interactions between Green's and source function lead to constructive interferences. This effect is more important when the source duration is longer (i.e. the magnitude is important), and we show that even without anelastic

  12. A Comparison Between Seismogeodetic and Baseline Corrected Estimates of Ground Motion: Example Applications for the 2011 Mw9.0 Tohoku-oki Earthquake

    Science.gov (United States)

    Saunders, J. K.; Melgar, D.; Bock, Y.; Sanchez, D.; Crowell, B. W.; Haase, J. S.; Geng, J.; Goldberg, D.

    2014-12-01

    Automated baseline correction of strong motion data is of broad interest for regional earthquake source modeling and for rapid earthquake response. Strong motion data are typically high pass filtered before inverting for source properties, thereby eliminating any information on static deformation. High-rate (1 Hz) GPS data preserve the long period information, particularly the static offset, but the data are much noisier at higher frequencies. Through a Kalman filter algorithm we demonstrate that, when available, collocated GPS sensors provide sufficient information for suitable baseline corrections to the strong motion data; we call this the seismogeodetic solution. We discuss in detail the superior recovery of low frequency information using the seismogeodetic approach when compared to baseline corrected accelerometer waveforms. The GPS/accelerometer combination provides broadband motions from the Nyquist frequency of the accelerometer down to the static offset. Because Kalman filtering is a real time operation that does not require operator interaction, we conclude that this approach could provide input for broadband source modeling that could potentially be calculated shortly after large events. To illustrate the performance and usefulness of this algorithm, we conduct a kinematic slip inversion of the seismogeodetic data from collocated GPS/strong motion pairs in Japan for the 2011 Mw9 Tohoku-oki earthquake using three-component Kalman filtered displacements and velocities for a total of 288 waveforms. Such source models are key to understanding the earthquake rupture process and for guiding rapid response, especially for large events such as this one. We quantify the differences between the inversion results using seismogeodetic data compared to those using conventional approaches by assessing the fit to ground motions at independent stations in Japan. In addition, we compare tsunami inundation levels predicted by the different models with actual field

  13. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, J J; Walter, W R; Rodgers, A J; Richards, P; Pasyanos, M E; Myers, S C; Lay, T; Harris, D; Antoun, T

    2008-11-19

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags

  14. Ground motions recorded in Rome during the April 2009 L’Aquila seismic sequence: site response and comparison with ground‐motion predictions based on a global dataset

    Science.gov (United States)

    Caserta, Arrigo; Boore, David; Rovelli, Antonio; Govoni, Aladino; Marra, Fabrizio; Monica, Gieseppe Della; Boschi, Enzo

    2013-01-01

    The mainshock and moderate‐magnitude aftershocks of the 6 April 2009 M 6.3 L’Aquila seismic sequence, about 90 km northeast of Rome, provided the first earthquake ground‐motion recordings in the urban area of Rome. Before those recordings were obtained, the assessments of the seismic hazard in Rome were based on intensity observations and theoretical considerations. The L’Aquila recordings offer an unprecedented opportunity to calibrate the city response to central Apennine earthquakes—earthquakes that have been responsible for the largest damage to Rome in historical times. Using the data recorded in Rome in April 2009, we show that (1) published theoretical predictions of a 1 s resonance in the Tiber valley are confirmed by observations showing a significant amplitude increase in response spectra at that period, (2) the empirical soil‐transfer functions inferred from spectral ratios are satisfactorily fit through 1D models using the available geological, geophysical, and laboratory data, but local variability can be large for individual events, (3) response spectra for the motions recorded in Rome from the L’Aquila earthquakes are significantly amplified in the radial component at periods near 1 s, even at a firm site on volcanic rocks, and (4) short‐period response spectra are smaller than expected when compared to ground‐motion predictions from equations based on a global dataset, whereas the observed response spectra are higher than expected for periods near 1 s.

  15. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure

    Science.gov (United States)

    Cavalié, O.; Doin, M.-P.; Lasserre, C.; Briole, P.

    2007-03-01

    We measure ground motion around the Lake Mead, Nevada, using synthetic aperture radar interferometry. The lake water level has fluctuated through time since impoundment in 1935. To quantify the deformation due to water level variations over the past decade, and to constrain the crust and mantle rheological parameters in the lake area, we analyze 241 interferograms based on 43 ERS images acquired between 1992 and 2002. All interferograms have a high coherence due to arid conditions. Most of them show strong atmospheric artefacts. Tropospheric phase delays are estimated and corrected for each interferogram by analyzing the phase/elevation correlation. Corrections are validated using data from the ERA40 global atmospheric reanalysis. Corrected interferograms are inverted pixel by pixel to solve for the time series of ground motion in the lake area. Temporal smoothing is added to reduce random atmospheric artefacts. The observed deformation is nonlinear in time and spreads over a 50 × 50 km2 area. We observe a 16 mm subsidence between 1995 and 1998 due to an 11 m water level increase, followed by an uplift due to the water level drop after 2000. We model the deformation, taking into account the loading history of the lake since 1935. A simple elastic model with parameters constrained by seismic wave velocities does not explain the amplitude of the observed motion. The two-layer viscoelastic model proposed by Kaufmann and Amelung (2000), with a mantle viscosity of 1018 Pa s, adjusts well the data amplitude and its spatiotemporal shape.

  16. Deployment and design of bi-directional corner reflectors for op-timal ground motion monitoring using InSAR

    NARCIS (Netherlands)

    Caro Cuenca, M.; Dheenathayalan, P.; Rossum, W.L. van; Hoogeboom, P.

    2014-01-01

    SAR interferometry (InSAR) requires coherent radar reflections to measure ground displacements. Howev-er, natural coherent reflectors are not always available due to changes in the scattering properties of the ground, e.g., growing vegetation. Furthermore, the opportunistic nature of InSAR measureme

  17. Visualizing how Seismic Waves Propagate Across Seismic Arrays using the IRIS DMS Ground Motion Visualization (GMV) Products and Codes

    Science.gov (United States)

    Taber, J.; Bahavar, M.; Bravo, T. K.; Butler, R. F.; Kilb, D. L.; Trabant, C.; Woodward, R.; Ammon, C. J.

    2011-12-01

    Data from dense seismic arrays can be used to visualize the propagation of seismic waves, resulting in animations effective for teaching both general and advanced audiences. One of the first visualizations of this type was developed using Objective C code and EarthScope/USArray data, which was then modified and ported to the Matlab platform and has now been standardized and automated as an IRIS Data Management System (IRIS-DMS) data product. These iterative code developments and improvements were completed by C. Ammon, R. Woodward and M. Bahavar, respectively. Currently, an automated script creates Ground Motion Visualizations (GMVs) for all global earthquakes over magnitude 6 recorded by EarthScope's USArray Transportable Array (USArray TA) network. The USArray TA network is a rolling array of 400 broadband stations deployed on a uniform 70-km grid. These near real-time GMV visualizations are typically available for download within 4 hours or less of their occurrence (see: www.iris.edu/dms/products/usarraygmv/). The IRIS-DMS group has recently added a feature that allows users to highlight key elements within the GMVs, by providing an online tool for creating customized GMVs. This new interface allows users to select the stations, channels, and time window of interest, adjust the mapped areal extent of the view, and specify high and low pass filters. An online tutorial available from the IRIS Education and Public Outreach (IRIS-EPO) website, listed below, steps through a teaching sequence that can be used to explain the basic features of the GMVs. For example, they can be used to demonstrate simple concepts such as relative P, S and surface wave velocities and corresponding wavelengths for middle-school students, or more advanced concepts such as the influence of focal mechanism on waveforms, or how seismic waves converge at an earthquake's antipode. For those who desire a greater level of customization, including the ability to use the GMV framework with data

  18. Depth-dependent Vertical-to-Horizontal (V/H) Ratios of Free-Field Ground Motion Response Spectra for Deeply Embedded Nuclear Structures

    Energy Technology Data Exchange (ETDEWEB)

    Wei X.; Braverman J.; Miranda, M.; Rosario, M.E.; Costantino, C.J.

    2015-02-25

    This report documents the results of a study to determine the depth-dependent V/H ratios of ground motion response spectra in the free field. The V/H ratios reported herein were developed from a worldwide database of surface and downhole acceleration recordings obtained from 45 vertical array stations. This database was specifically compiled for this project, and includes information from a diversity of active tectonic regions (California, Alaska, Taiwan, Japan), site conditions (rock to soft soil), ground motion intensity levels (PGAs between 0.01 g and 0.50 g), magnitudes (between ML 2.78 and JMA 8.1), epicentral distances (between 3.2 km and 812 km), and source depths (between 1.2 km and 112 km), as well as sensors at surface and at a wide range of depths relevant to the project. To study the significance of the depth effect, V/H ratios from all the records were sorted into a number of depth bins relevant to the project, and statistics (average, standard deviation, coefficient of variation, 16th, 50th, and 84th percentiles) of the V/H ratios within each bin were computed. Similar analyses were repeated, controlling for different site conditions, ground motion intensity levels, array locations, and source depths, to study their relative effect on the V/H ratios. Our findings confirm the importance of the depth effect on the V/H ratios. The research findings in this report can be used to provide guidance on the significance of the depth effect, and the extent to which this effect should be considered in the seismic design of deeply embedded SMR structures and NPP structures in general.

  19. Stochastic finite-fault simulation of ground motion from the August 11, 2012, M w 6.4 Ahar earthquake, northwestern Iran

    Science.gov (United States)

    Heidari, Reza

    2016-04-01

    In this study, the 11 August 2012 M w 6.4 Ahar earthquake is investigated using the ground motion simulation based on the stochastic finite-fault model. The earthquake occurred in northwestern Iran and causing extensive damage in the city of Ahar and surrounding areas. A network consisting of 58 acceleration stations recorded the earthquake within 8-217 km of the epicenter. Strong ground motion records from six significant well-recorded stations close to the epicenter have been simulated. These stations are installed in areas which experienced significant structural damage and humanity loss during the earthquake. The simulation is carried out using the dynamic corner frequency model of rupture propagation by extended fault simulation program (EXSIM). For this purpose, the propagation features of shear-wave including {Q}_s value, kappa value {k}_0 , and soil amplification coefficients at each site are required. The kappa values are obtained from the slope of smoothed amplitude of Fourier spectra of acceleration at higher frequencies. The determined kappa values for vertical and horizontal components are 0.02 and 0.05 s, respectively. Furthermore, an anelastic attenuation parameter is derived from energy decay of a seismic wave by using continuous wavelet transform (CWT) for each station. The average frequency-dependent relation estimated for the region is Q=(122± 38){f}^{(1.40± 0.16)}. Moreover, the horizontal to vertical spectral ratio H/V is applied to estimate the site effects at stations. Spectral analysis of the data indicates that the best match between the observed and simulated spectra occurs for an average stress drop of 70 bars. Finally, the simulated and observed results are compared with pseudo acceleration spectra and peak ground motions. The comparison of time series spectra shows good agreement between the observed and the simulated waveforms at frequencies of engineering interest.

  20. Effectiveness of modified pushover analysis procedure for the estimation of seismic demands of buildings subjected to near-fault ground motions having fling step

    Science.gov (United States)

    Mortezaei, A.; Ronagh, H. R.

    2013-06-01

    Near-fault ground motions with long-period pulses have been identified as being critical in the design of structures. These motions, which have caused severe damage in recent disastrous earthquakes, are characterized by a short-duration impulsive motion that transmits large amounts of energy into the structures at the beginning of the earthquake. In nearly all of the past near-fault earthquakes, significant higher mode contributions have been evident in building structures near the fault rupture, resulting in the migration of dynamic demands (i.e. drifts) from the lower to the upper stories. Due to this, the static nonlinear pushover analysis (which utilizes a load pattern proportional to the shape of the fundamental mode of vibration) may not produce accurate results when used in the analysis of structures subjected to near-fault ground motions. The objective of this paper is to improve the accuracy of the pushover method in these situations by introducing a new load pattern into the common pushover procedure. Several pushover analyses are performed for six existing reinforced concrete buildings that possess a variety of natural periods. Then, a comparison is made between the pushover analyses' results (with four new load patterns) and those of FEMA (Federal Emergency Management Agency)-356 with reference to nonlinear dynamic time-history analyses. The comparison shows that, generally, the proposed pushover method yields better results than all FEMA-356 pushover analysis procedures for all investigated response quantities and is a closer match to the nonlinear time-history responses. In general, the method is able to reproduce the essential response features providing a reasonable measure of the likely contribution of higher modes in all phases of the response.

  1. Effectiveness of modified pushover analysis procedure for the estimation of seismic demands of buildings subjected to near-fault ground motions having fling step

    Directory of Open Access Journals (Sweden)

    A. Mortezaei

    2013-06-01

    Full Text Available Near-fault ground motions with long-period pulses have been identified as being critical in the design of structures. These motions, which have caused severe damage in recent disastrous earthquakes, are characterized by a short-duration impulsive motion that transmits large amounts of energy into the structures at the beginning of the earthquake. In nearly all of the past near-fault earthquakes, significant higher mode contributions have been evident in building structures near the fault rupture, resulting in the migration of dynamic demands (i.e. drifts from the lower to the upper stories. Due to this, the static nonlinear pushover analysis (which utilizes a load pattern proportional to the shape of the fundamental mode of vibration may not produce accurate results when used in the analysis of structures subjected to near-fault ground motions. The objective of this paper is to improve the accuracy of the pushover method in these situations by introducing a new load pattern into the common pushover procedure. Several pushover analyses are performed for six existing reinforced concrete buildings that possess a variety of natural periods. Then, a comparison is made between the pushover analyses' results (with four new load patterns and those of FEMA (Federal Emergency Management Agency-356 with reference to nonlinear dynamic time-history analyses. The comparison shows that, generally, the proposed pushover method yields better results than all FEMA-356 pushover analysis procedures for all investigated response quantities and is a closer match to the nonlinear time-history responses. In general, the method is able to reproduce the essential response features providing a reasonable measure of the likely contribution of higher modes in all phases of the response.

  2. Bounded Earthquakes

    OpenAIRE

    Saric, Dragomir

    2006-01-01

    We give a short proof of the fact that bounded earthquakes of the unit disk induce quasisymmetric maps of the unit circle. By a similar method, we show that symmetric maps are induced by bounded earthquakes with asymptotically trivial measures.

  3. 3D crustal structure and long-period ground motions from a M9.0 megathrust earthquake in the Pacific Northwest region

    Science.gov (United States)

    Olsen, Kim B.; Stephenson, William J.; Geisselmeyer, Andreas

    2008-04-01

    We have developed a community velocity model for the Pacific Northwest region from northern California to southern Canada and carried out the first 3D simulation of a Mw 9.0 megathrust earthquake rupturing along the Cascadia subduction zone using a parallel supercomputer. A long-period (Olympia, Vancouver, and Portland areas. Combined with an extended duration of the shaking up to 5 min, these long-period ground motions may inflict significant damage on the built environment, in particular on the highrises in downtown Seattle.

  4. 3D crustal structure and long-period ground motions from a M9.0 megathrust earthquake in the Pacific Northwest region

    Science.gov (United States)

    Olsen, K.B.; Stephenson, W.J.; Geisselmeyer, A.

    2008-01-01

    We have developed a community velocity model for the Pacific Northwest region from northern California to southern Canada and carried out the first 3D simulation of a Mw 9.0 megathrust earthquake rupturing along the Cascadia subduction zone using a parallel supercomputer. A long-period (<0.5 Hz) source model was designed by mapping the inversion results for the December 26, 2004 Sumatra–Andaman earthquake (Han et al., Science 313(5787):658–662, 2006) onto the Cascadia subduction zone. Representative peak ground velocities for the metropolitan centers of the region include 42 cm/s in the Seattle area and 8–20 cm/s in the Tacoma, Olympia, Vancouver, and Portland areas. Combined with an extended duration of the shaking up to 5 min, these long-period ground motions may inflict significant damage on the built environment, in particular on the highrises in downtown Seattle.

  5. Three-dimensional crustal structure influences on wave propagation and generation of strong ground motion in the greater San Francisco Bay region

    Science.gov (United States)

    Stidham, Christiane Wilson

    Recent development of three-dimensional finite-difference codes allows simulation of earthquakes using realistic three-dimensional earth models. These and other developments have shifted emphasis in seismology from earthquake prediction to estimation of location and magnitude of damage in future earthquakes. The accurate calculation of ground motions for future large earthquakes depends upon detailed knowledge of three-dimensional (3D) geologic structure and the earthquake source process, as well as sufficient computational resources. Knowledge of subsurface geologic structure in the San Francisco Bay Area is quite good relative to many areas, and this knowledge has been incorporated into a 3D velocity model of the Bay Area. With access to a 3D finite-difference code (E3D) developed by Shawn Larsen at Lawrence Livermore National Laboratory and use of super-computing resources at Livermore, we are able to complete calculations for simulations of a number of San Francisco Bay Area earthquakes. These include a small 1993 Rodgers Creek event recorded at Berkeley Seismological Laboratory, the 1989 Loma Prieta event recorded on the U.S. Geological Survey and Calif. Div. of Mines and Geology network of strong motion stations, and a number of small South Bay events (including the 8/12/98 San Juan Bautista EQ) recorded on a temporary USGS/UCB/PASSCAL Santa Clara array. In each of these cases, comparison of synthetic results (synthetic seismograms and plots of maximum horizontal ground velocity) from E3D to recorded data from the event gives an excellent opportunity to both judge the usefulness and the constraints necessary in using finite-difference modeling and the validity of the velocity model as it is now constructed. Results show that 3D finite-difference modeling produces waveforms that are often quite comparable to recorded data, and that fit the data considerably better than synthetics waveforms derived with a 1D velocity model. It is also possible to explore the

  6. Bound entanglement and entanglement bounds

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)

    2008-07-01

    We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.

  7. Bound analysis of target displacement for seismic performance assessment of buildings

    Institute of Scientific and Technical Information of China (English)

    JIA Li-zhe; DUAN Zhong-dong; LU Qin-nian

    2008-01-01

    The earthquake demand spectrum is often assumed as the average spectrum in the seismic design code or based upon probabilistic models to take into account the uncertainties of ground motion. The average spectrum can not deal with the uncertainty of earthquake excitation. Furthermore, results of probabilistic analy-sis are suspicious when information describing the uncertainty is inadequate. Considering the uncertainties of peak acceleration of ground motion and characteristic period of response spectra using a double bounded convex set model, the bounds of the design spectrum and the demand spectrum were obtained based on Chinese seismiccode. Then the convex analysis method was integrated into the capacity spectrum procedure to study the bound characteristics of target displacement. Finally, the target displacement was derived with an interval, and it is more objective and robust with respect to probabilistic perspective.

  8. 2D ground motion at a soft viscoelastic layer/hard substratum site in response to SH cylindrical seismic waves radiated by deep and shallow line sources

    CERN Document Server

    Wirgin, A; Wirgin, Armand

    2004-01-01

    We show, essentially by theoretical means, that for a site with the chosen simple geometry and mechanical properties (horizontal, homogeneous, soft viscoelastic layer of infinite lateral extent overlying, and in welded contact with, a homogeneous, hard elastic substratum of half-infinite radial extent, shear-horizontal motion): 1) coupling to Love modes is all the weaker the farther the seismic source (modeled as a line, assumed to lie in the substratum) is from the lower boundary of the soft layer, 2) for a line source close to the lower boundary of the soft layer, the ground response is characterized by possible beating phenomena, and is of significantly-longer duration than for excitation by cylindrical waves radiated by deep sources. Numerical applications of the theory show, for instance, that a line source, located 40m below the lower boundary of a 60m thick soft layer in a hypothetical Mexico City-like site, radiating a SH pulse of 4s duration, produces substantial ground motion during 200s, with marke...

  9. DESIGN AND APPLICATION OF GROUND MOTION FIELD BASED ON ARCENGINE%基于ArcEngine的地震动影响场的设计与应用

    Institute of Scientific and Technical Information of China (English)

    宋一玲; 王国新

    2012-01-01

    Variation of ground motion field represents the affection of earthquake distribution in space,which can be shown on screen by a series of programming with Visual Basic based on ArcEngine.Such ground motion fields can be estimated by different design scenarios and then are utilized in fast disaster evaluation and prediction.%地震动影响场反映了地震动参数的空间变化情况。本文以ArcEngine技术在Visual Basic开发环境下编程实现地震动影响场的勾画为示例,根据设定地震参数,探讨如何在城市震害预测,地震应急和地震灾害损失快速评估系统中的地震动影响场估计提供更直观、便捷的技术手段。

  10. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar

    OpenAIRE

    Zhirui Wang; Jia Xu; Zuzhen Huang; Xudong Zhang; Xiang-Gen Xia; Teng Long; Qian Bao

    2016-01-01

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target’s position on the road as well as its radial...

  11. Experimental Investigation of Droplet Evaporation of Water with Ground Admixtures while Motion in a Flame of Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Dmitriyenko Margarita A.

    2016-01-01

    Full Text Available The evaporation features for the atomized flow of suspension on the base of water with ground admixtures in an area of high-temperature combustion products of liquid flammable substance (acetone were investigated experimentally by the optical methods of gas flow diagnostic and the high-speed video recording. The scales of influence of clay and silt concentration in droplets of atomized flow on the intensity of its evaporation were determined. The approximation dependences describing a decrease in typical size of suspension droplets at various values of ground admixtures were obtained.

  12. Estimation of S-wave velocity structure of deep sedimentary layers using geophysical data and earthquake ground motion records

    International Nuclear Information System (INIS)

    The preliminary results with an outline of array observation for micro-tremor and natural earthquakes around the NIIT site were explained. Phase velocity estimated from a horizontal array of strong motion observation agrees with that from the micro-tremor survey. Estimation results are consistent with other literature, such as PS-logging data and gravity maps. Further improvement of the three-dimensional modeling by using micro-tremor surveys and horizontal array observation is planned for the future. (author)

  13. Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A.D.

    Science.gov (United States)

    Obermeier, S.F.; Dickenson, S.E.

    2000-01-01

    During the past decade, paleoseismic studies done by many researchers in the coastal regions of the Pacific Northwest have shown that regional downdropping and subsequent tsunami inundation occurred in response to a major earthquake along the Cascadia subduction zone. This earthquake occurred almost certainly in 1700 A.D., and is believed by many to have been of M 8.5-9 or perhaps larger. In order to characterize the severity of ground motions from this earthquake, we report on a field search and analysis of seismically induced liquefaction features. The search was conducted chiefly along the banks of islands in the lowermost Columbia River of Oregon and Washington and in stream banks along smaller rivers throughout southwestern Washington. To a lesser extent, the investigation included rivers in central Oregon. Numerous small- to moderate-sized liquefaction features from the earthquake of 1700 A.D. were found in some regions, but there was a notable lack of liquefaction features in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors in different field settings near the coast. Our use of widely different field settings, each in which we independently assess the strength of shaking and arrive at the same conclusion, enhances the credibility of our interpretations. Our regional inventory of liquefaction features and preliminary geotechnical analysis of liquefaction potential provide substantial evidence for only moderate levels of ground shaking in coastal Washington and Oregon during the subduction earthquake of 1700 A.D. Additionally, it appears that a similar conclusion can be reached for an earlier subduction earthquake that occurred within the past 1100 years, which also has been characterized by others as being M 8 or greater. On the basis of more limited data for older events collected in our regional study, it appears that seismic shaking has been no stronger throughout Holocene time. Our

  14. How Much Can the Total Aleatory Variability of Empirical Ground Motion Prediction Equations Be Reduced Using Physics-Based Earthquake Simulations?

    Science.gov (United States)

    Jordan, T. H.; Wang, F.; Graves, R. W.; Callaghan, S.; Olsen, K. B.; Cui, Y.; Milner, K. R.; Juve, G.; Vahi, K.; Yu, J.; Deelman, E.; Gill, D.; Maechling, P. J.

    2015-12-01

    Ground motion prediction equations (GMPEs) in common use predict the logarithmic intensity of ground shaking, lnY, as a deterministic value, lnYpred(x), conditioned on a set of explanatory variables x plus a normally distributed random variable with a standard deviation σT. The latter accounts for the unexplained variability in the ground motion data used to calibrate the GMPE and is typically 0.5-0.7 in natural log units. Reducing this residual or "aleatory" variability is a high priority for seismic hazard analysis, because the probabilities of exceedance at high Y values go up rapidly with σT. adding costs to the seismic design of critical facilities to account for the prediction uncertainty. However, attempts to decrease σT by incorporating more explanatory variables to the GMPEs have been largely unsuccessful (e.g., Strasser et al., SRL, 2009). An alternative is to employ physics-based earthquake simulations that properly account for source directivity, basin effects, directivity-basin coupling, and other 3D complexities. We have explored the theoretical limits of this approach through an analysis of large (> 108) ensembles of 3D synthetic seismograms generated for the Los Angeles region by SCEC's CyberShake project using the new tool of averaging-based factorization (ABF, Wang & Jordan, BSSA, 2014). The residual variance obtained by applying GMPEs to the CyberShake dataset matches the frequency-dependence of σT obtained for the GMPE calibration dataset. The ABF analysis allows us to partition this variance into uncorrelated components representing source, path, and site effects. We show that simulations can potentially reduce σT by about one-third, which could lower the exceedance probabilities for high hazard levels at fixed x by orders of magnitude. Realizing this gain in forecasting probability would have a broad impact on risk-reduction strategies, especially for critical facilities such as large dams, nuclear power plants, and energy transportation

  15. Ground Motion Measurement in the Lake Mead Area (Nevada, USA), by DinSAR Time Series Analysis : Probing of the Lithosphere Rheological Structure

    Science.gov (United States)

    Doin, M.; Cavalié, O.; Laserre, C.; Briole, P.

    2006-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier study, based on leveling measurements, has shown that the load associated with lake impoundement induced a subsidence of 17 centimeters. This relaxation process has been argued as analogous to the postglacial rebound, but at a smaller spatial scale and with a much lower viscous relaxation scale. To quantify the deformation and thus constrain the crust and mantle rheological parameters in the lake area, we analyze multiple interferograms (241) based on 43 ERS images acquired between 1992 and 2001. With baselines smaller than 300 m, all interferograms have a very good coherence due to the desert region. Most of interferograms show strong atmospheric artefacts that are partly due to the variation of water vapor vertical stratification between two satellite passes. This tropospheric delay is computed for each interferogram and then inverted for each date of SAR images before interferogram correction. These corrections are validated using data from global atmospheric models (ERA40). Corrected interferograms are then inverted to solve for the time series of ground motion in the lake Mead area. The linear inversion treats each pixel independently from its neighbours and uses the data redundancy to reduce errors such as local decorrelations. Additionnal constraints such as temporal smoothing allow to reduce the local atmospheric artefacts. We obtain a time series of the deformation in the lake Mead area with a millimetric accuracy. The deformation is non linear in time and spreads over a large spatial scale. In particular, we observe a subsidence of up to 16 mm between 1995 and 1998 due to a 10 meters water level increase, followed by an uplift due to the drop of the water level after 2000. The deformation

  16. Identifying the origin of differences between 3D numerical simulations of ground motion in sedimentary basins: lessons from stringent canonical test models in the E2VP framework

    Science.gov (United States)

    Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves

    2013-04-01

    Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of

  17. Modelling of Seismic Ground Motion in Santiago de Cuba City from Earthquakes in Oriente Fault Seismic Zone

    Science.gov (United States)

    Alvarez, L.; Panza, G. F.; Vaccari, F.; González, B. E.

    We present the results of complete P-SV and SH waves modelling, up to a maximum frequency of 1Hz, along two profiles in Santiago de Cuba city. The seismic sources are located in the depth range from 10 to 40km on the Oriente fault zone at distances of several tens of kilometres from the city. The calculation has been made by a hybrid method: Modal summation in the regional anelastic model (one-dimensional) where the source is buried, and finite differences in the local sedimentary anelastic models (two-dimensional). The analysis of the influence of the depth and of the distance of the source on the site effects shows that standard traditional methods, based on the deconvolution analysis of the rock outcrop motion, can lead to erroneous results.

  18. COASTAL RISK IN THE ALGIERS REGION (ALGERIA: INSIGHTS FROM TSUNAMI VELOCITIES, SEISMIC GROUND MOTION AND REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    L. A. Amir

    2015-07-01

    Full Text Available The Algiers region (Algeria is exposed to destructive earthquakes that sometimes trigger tsunamis. In this paper, we present an interdisciplinary approach that identifies the locations prone to related induced damage for a worst-case scenario off Algiers. Firstly, a tsunami modeling for a 7.6 earthquake in the Khair Al Din Bank is computed with the Geoclaw package. The simulation indicates that the maximum values for the surface heights are about 1.5 meters and 40 to 60 m/s for the flow velocities. Seismic shaking maps are computed as well using the OpenSHA application for the same earthquake scenario. The results show that the peak ground accelerations and peak ground velocities are the highest in the Algiers massif, which means that this area is the most exposed to a high level of infrastructural damage. Finally, the use of remote sensing and GIS applications helped to generate a susceptibility to flooding hazard map for the bay of Algiers. This approach showed that the central and the eastern part of the bay have the higher susceptibility degree to flooding.

  19. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  20. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    Science.gov (United States)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  1. Study of underground structure of Osaka basin and seismic ground motions; Osaka bonchi no chika kozo chosa to Hyogoken nanbu jishin ni yoru jishindo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Y. [Geo-Research Institute, Osaka, Osaka (Japan)

    1996-05-01

    This paper describes the following matters on the study of underground structure of Osaka Basin and seismic ground motions caused by the Hyogoken-Nanbu Earthquake. Elastic wave investigations using reflections intended for deep structures were carried out in the Hyogo prefectural area and the Osaka bay area by an association of the Geological Survey Institute, Hyogo Prefectural Government, Kobe Municipality and Universities. Reflection investigations were conducted in the Osaka land areas using the east-west traverse line along Yamato River (by the Geological Survey Institute), the south-north traverse line along the Naniwa street in the city of Osaka, and the east-west traverse line at the south end of the Uemachi fault. In addition, investigations using shallow bed reflections were performed in the Osaka bay area by the Hydrographic Office. Results of the active fault investigations using the reflection method may not agree with positions of faults which are estimated topographically. An existing structure model of the Osaka basin (something like of a primary approximation) and the result of inverse analysis on epicenter faults in the Hyogoken-Nanbu Earthquake were used as the base for calculating seismic motions in the Abeno area in Osaka City. The result agreed relatively well with observations if the calculation is intended for waves having cycles longer than about two seconds. 6 figs.

  2. Measurements for monitoring ground motion resulting from mining operations in the Rhenish brown coal district; Messungen zur Ueberwachung von bergbaubedingten Bodenbewegungen im rheinischen Braunkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Duddek, H.; Schaefer, W. [Rheinbraun AG, Koeln (Germany)

    1996-12-31

    Coal mining in the Rhenish brown coal district resulted in loose rock slopes with a total height of more than 350 m. Mining operations caused ground motion in open-cast mines, in the slopes and in the region ahead of the face. Internal dumping caused motions of the floors, the overburden tip and te slopes of the open-cast mines. The deformations were measured by different methods, and the evaluations are presented here. As examples, permanent monitoring of a slope using the GEOROBOT measuring system and continuous subsidence measurements in an overburdan dump by means of hydrostatic measuring systems are presented. GEOROBOT ensures quasi-continuous measurements of slope motion with an error of 5-7 mm. Hydrostatic measuring systems on the basis of pressure sensors were developed for measurements of single overburden dump strata and the overburden dump basis during dumping. (orig.) [Deutsch] In den rheinischen Braunkohlentagebauen entstehen Lockergesteinsboeschungen mit Gesamthoehen von mehr als 350 m. Die Gewinnungstaetigkeiten verursachen Entlastungsbewegungen im Tagebau, in den Boeschungen und im Tagebauvorfeld. Die Innenverkippung fuehrt erneut zu Bodenbewegungen im Liegenden, im Kippenkoerper und im Bereich der Tagebauraender. Die auftretenden Deformationen werden mit verschiedenen Messverfahren erfasst, ausgewertet und dargestellt. Beispielhaft werden die permanente Ueberwachung einer Boeschung mittels des automatischen Messsystems GEOROBOT und kontinuierliche Setzungsmessungen in einer Tagebaukippe mit hydrostatischen Messsystemen vorgestellt. Mit GEOROBOT werden quasi kontinuierlich Boeschungsbewegungsmessungen mit einer Genauigkeit von {+-}5 bis 7 mm durchgefuehrt. Auf der Basis von Drucksensoren wurden hydrostatische Messsysteme konzipiert, mit denen Setzungen einzelner Kippscheiben und der Kippenbasis waehrend des Kippenaufbaues ermittelt werden. (orig.)

  3. Bounding the $\

    CERN Document Server

    Gutiérrez-Rodríguez, A

    2003-01-01

    A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).

  4. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, Julian Arndt

    2012-12-11

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  5. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory.

    Science.gov (United States)

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263

  6. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory

    Science.gov (United States)

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263

  7. Analysis of terrain effect on the properties of ground motion%凸起地形对地震动特性的影响

    Institute of Scientific and Technical Information of China (English)

    郝明辉; 张郁山

    2014-01-01

    采用基于ABAQUS平台的显式有限元动力学分析方法,结合人工黏弹性边界理论,研究了局部凸起地形对地震动特性(包括反应谱、峰值加速度、峰值速度和峰值位移等)的影响,分析了台地宽度对地形放大效应的影响.结果表明:凸起地形平台段空间点地震动受地形效应影响较大,在零阻尼条件下,其谱比曲线呈双峰特点,即在0.8-0.9 s 的中长周期段谱比达到一个较大值1.6,在0.08-0.09 s 的高频段谱比超过2.0,且最大值出现在平台中点;对于凸起地形斜坡段,在大部分周期点处,顶点的谱比高于其它斜坡点,而且在周期超过0.4 s的频段,斜坡段观测点的谱比表现出较明显的规律性,即越靠近顶点的观测点,其谱比值越大;坡底段地表不同观测点的谱比基本在脚点与计算边界点(人工边界点)对应的谱比值之间变化,在不同的频段均表现出较明显的规律性.凸起地形平台段宽度对地震动高频成分的放大效应具有较大影响,但只局限在一定的宽度范围内,随着宽度的增大,其对地形放大效应的影响逐渐减弱.此外,台地宽度的变化对地震动峰值加速度的放大效应有一定的影响,而对峰值速度、峰值位移的放大效应的影响则不明显.%The explicit finite element analysis method combined with the artifi-cial viscous-elastic boundary theory based on the platform ABAQUS is per-formed to evaluate the terrain effects on ground motion (such as the response spectrum,peak acceleration,peak velocity and peak displacement),and the in-fluence of the terrain width on its amplification effects is studied.The results show that the ground motions on the platform are affected most seriously by the topography;in the zero damping conditions,the spectral ratio curves present the characteristics of double peaks,with their values being a higher value of 1 .6

  8. 拟合D-V-A联合谱及峰值速度的地震动调整方法%An adjusting method of ground motions for fitting D-V-A joint spectrum and peak velocity

    Institute of Scientific and Technical Information of China (English)

    盛涛; 施卫星; 谢异同; 袁俊

    2011-01-01

    基于Mallat算法,将地震动加速度时程采用2阶基数B-样条小波分解,以寻找对峰值速度及峰值加速度影响最大的小波分量,并在此基础上,通过改进调整地震动的时频小波分析法与时域叠加小波函数法,以实现对D-V-A联合谱、峰值加速度(PGA)及峰值速度(PGV)的拟合.算例结果表明,该方法具有很高的拟合精度.%By discomposed real recorded earthquake ground motion into a finite number of wavelet components which represent different frequency bands through Mallat algorithm, the wavelet component which affects mostly the peak ground motion velocity(PGV) and peak ground motion acceleration (PGA)can be identified. And by improving the Time-Frequency wavelet analysis method ( TFWA ) and Time domain synthesizing wavelet method ( TDSW ), a new adjusting method of ground motion was proposed to match the target D-V-A combined spectra and PGA, PGV simultaneously. The results of the numerical example show this algorithm has high calculation precision.

  9. Seismic response analysis of long-period SDOF system under typical ground motions%典型地震动作用下长周期单自由度体系地震反应分析

    Institute of Scientific and Technical Information of China (English)

    王博; 白国良; 代慧娟

    2013-01-01

    Pseudo-resonance and transient effects of long-period structures were investigated based on the analysis of seismic response of SDOF (single degree of freedom) system.Far-field harmonic-like ground motions and near-fault pulse-like ground motions are two types of long-period ground motions which can lead to pseudo-resonance of long-period structures.Based on the contrast analysis on predominant frequency and energy distribution coefficient,characteristics of time-frequency energy distribution of long-period ground motions were analyzed.The results show that:the energy of two types of long-period ground motions are concentrated in lower frequency bands,especially far-field harmonic-like ground motions; in time domain,the energy distributions of near-fault pulse-like ground motions and ordinary ground motions are more concentrated than that of far-field harmonic-like ground motions.The elastic response spectra were comparatively analyzed and the results show that:in long-period bands,the magnitudes of response spectra corresponding to far-field harmonic-like ground motions and near-fault pulse-like ground motions are greater than that corresponding to ordinary ground motions,especially the velocity response spectrum,displacement response spectrum and input energy spectrum;all kinds of reactions for far-field harmonic-like ground motions are much greater than those of near-fault ones and the attenuation of the former is much more slowly.The concept of transient effect was put forward,and transient effects of actual ground motions were analyzed.The results show that:transient effects are natural attributes of high-frequency components of ground motions,which couldn't cause transient deflection damage of long-period structures.In long-period structural seismic design,it is necessary to consider the pseudo-resonance caused by two types of long-period ground motions,while it is unnecessary to consider transient effects.%通过单自由度体系典型地震反应分析探

  10. Linking ground motion measurements and macro-seismic observations in France: A case study based on the RAP (accelerometric) and BCSF (macro-seismic) databases

    International Nuclear Information System (INIS)

    Comparison between accelerometric and macro-seismic observations is made for three mw∼4.5 earthquakes of eastern France between 2003 and 2005. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 km and 180 km from the epicentres. Macro-seismic data are based on the French internet reports. In addition to the individual macro-seismic intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions, bearing different physical meanings: 1) 'vibratory motions of small objects', 2) 'displacement and fall of objects', 3) 'acoustic noise', and 4) 'personal feelings'. Best correlations between macro-seismic and instrumental observations are obtained when the macro-seismic parameters are averaged over 10 km radius circles around each station. macro-seismic intensities predicted by published pgv-intensity relationships quite agree with the observed intensities, contrary to those based on pga. The correlations between the macro-seismic and instrumental data, for intensities between ii and v (ems-98), show that pgv is the instrumental parameter presenting the best correlation with all macro-seismic parameters. The correlation with response spectra, exhibits clear frequency dependence over a limited frequency range [0.5-33 hz]. Horizontal and vertical components are significantly correlated with macro-seismic parameters between 1 and 10 hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 hz, a clear lack of correlation between macro-seismic and instrumental data is observed, while beyond 25 hz the correlation coefficient increases, approaching that of the PGA correlation level. (author)

  11. Fast Identification of Near-Trench Earthquakes Along the Mexican Subduction Zone Based on Characteristics of Ground Motion in Mexico City

    Science.gov (United States)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Rodríguez, Q.; Iglesias, A.

    2015-12-01

    The disastrous 1985 Michoacan earthquake gave rise to a seismic alert system for Mexico City which became operational in 1991. Initially limited to earthquakes along the Guerrero coast, the system now has a much wider coverage. Also, the 2004 Sumatra earthquake exposed the need for a tsunami early warning along the Mexican subduction zone. A fast identification of near-trench earthquakes along this zone may be useful in issuing a reliable early tsunami alert. The confusion caused by low PGA for the magnitude of an earthquake, leading to "missed" seismic alert, would be averted if its near-trench origin can be quickly established. It may also help reveal the spatial extent and degree of seismic coupling on the near-trench portion of the plate interface. This would lead to a better understanding of tsunami potential and seismic hazard along the Mexican subduction zone. We explore three methods for quick detection of near-trench earthquakes, testing them on recordings of 65 earthquakes at station CU in Mexico City (4.8 ≤Mw≤8.0; 270≤R≤615 km). The first method is based on the ratio of total to high-frequency energy, ER (Shapiro et al., 1998). The second method is based on parameter Sa*(6) which is the pseudo-acceleration response spectrum with 5% damping, Sa, at 6 s normalized by the PGA. The third parameter is the PGA residual, RESN, at CU, with respect to a newly-derived ground motion prediction equation at CU for coastal shallow-dipping thrust earthquakes following a bayesian approach. Since the near-trench earthquakes are relatively deficient in high-frequency radiation, we expect ER and Sa*(6) to be relatively large and RESN to be negative for such events. Tests on CU recordings show that if ER ≥ 100 and/or Sa*(6) ≥ 0.70, then the earthquake is near trench; for these events RESN ≤ 0. Such an event has greater tsunami potential. Few misidentifications and missed events are most probably a consequence of poor location, although unusual depth and source

  12. Study on earthquake ground motion input for seismic analysis of dams%大坝抗震分析中地震动输入方式研究

    Institute of Scientific and Technical Information of China (English)

    林皋

    2014-01-01

    大坝、核电厂结构、桥梁等重要建(构)筑物的地震响应分析均要考虑结构和无限地基的动力相互作用问题。对一般文献中常用的3类地震输入模式的合理性进行了讨论,即等价惯性力地震动输入模型、基础边界地震动输入模型、与上部结构互动的地震动输入模型。研究结果表明,前两个模型忽略的条件较多,应用范围及受到一定的局限,准确性受到一定影响;而后一种模型既考虑了建坝对原自由场地震动的影响,又考虑了坝与无限地基动力相互作用的空间耦合及时间耦合的影响,具有较好的适用性及准确性。%The effect of dynamic structure and unbounded foundation interaction should be considered in the seismic analysis of critical structures such as dams, nuclear power plant structures, bridges, so on. The rationality of three typical modes of earth-quake ground motion inputs in literatures, input model of equivalent inertial force, earthquake input model at foundation bounda-ry, input model with interaction of upper structure, is reviewed and discussed. The analysis results show that the first two models have some application restrictions as they ignore some conditions, and the last one has better rationality as it not only considers influence from dam construction on ground motion of free field, but also give consideration to dynamic interaction between dam structure and infinite foundation.

  13. Rotational Motions in Seismology

    OpenAIRE

    Suryanto, Wiwit

    2006-01-01

    The seismic waves that spread out from the earthquake source to the entire Earth are usually measured at the ground surface by a seismometer which consists of three orthogonal components (Z (vertical), N (north-south), and E (east-west) or R (radial), T (transversal), and Z (vertical)). However, a complete representation of the ground motion induced by earthquakes consists not only of those three components of translational motion, but also three components of rotational motion plus six compo...

  14. Strain and ground-motion monitoring at magmatic areas: ultra-long and ultra-dense networks using fibre optic sensing systems

    Science.gov (United States)

    Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond

    2016-04-01

    crust subsurface with dense acquisition of the ground motion, both in space and in time and over a broad band frequency range.

  15. GPS derived ground motions (2005-2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame

    Science.gov (United States)

    Yu, J.; Wang, G.

    2015-11-01

    This study investigates current ground motions derived from the GPS geodesy infrastructure in the Gulf of Mexico region. The positions and velocity vectors of 161 continuous GPS (CGPS) stations are presented with respect to a newly established local reference frame, the Stable Gulf of Mexico Reference Frame (SGOMRF). Thirteen long-term (> 5 years) CGPS are used to realize the local reference frame. The root-mean-square (RMS) of the velocities of the 13 SGOMRF reference stations achieves 0.2 mm yr-1 in the horizontal and 0.3 mm yr-1 in the vertical directions. GPS observations presented in this study indicate significant land subsidence in the coastal area of southeastern Louisiana, the greater Houston metropolitan area, and two cities in Mexico (Aguascalientes and Mexico City). The most rapid subsidence is recorded at the Mexico City International airport, which is up to 26.6 cm yr-1 (2008-2014). Significant spatial variation of subsidence rates is observed in both Mexico City and the Houston area. The overall subsidence rate in the Houston area is decreasing. GPS observations in southeastern Louisiana indicate minor (4.0-6.0 mm yr-1) but consistent subsidence over time and space. This poses a potential threat to the safety of costal infrastructure in the long-term.

  16. Seismic Behavior of RNC-Isolated Bridges: A Comparative Study under Near-Fault, Long-Period, and Pulse-Like Ground Motions

    Directory of Open Access Journals (Sweden)

    Mohammed Ismail

    2016-01-01

    Full Text Available This paper introduces a recent seismic isolation system, named Roll-in-Cage (RNC isolator, for efficient protection of bridges against destructive earthquakes. The RNC isolator is a rolling-based isolation system with several integrated features in a single unit providing all the necessary functions of vertical rigid support, horizontal flexibility, full stability, hysteretic energy dissipation, and resistance to minor vibration loads. Besides, it is distinguished by a self-stopping (buffer mechanism to limit the peak bearing displacement under abrupt severe excitations, a linear gravity-based self-recentering mechanism to prevent permanent dislocations after excitations, and a notable resistance to axial tension. A three-span box-girder prestressed concrete bridge is investigated under a set of different destructive real and synthetic earthquakes including near-fault, long-period, and pulse-like ground motions. As a performance measure, the responses of isolated and nonisolated cases are compared. In addition, the RNC isolator’s behavior is then compared with those of other isolation systems including HDB, FPS, and LRB. The results confirmed that the RNC isolator has a superior behavior in achieving a balance between the peak displacements and accelerations of the isolated deck, relative other isolation systems, besides being the most (relatively efficient isolator in the great majority of studies performed.

  17. Hartree–Fock variational bounds for ground state energy of chargeless fermions with finite magnetic moment in the presence of a hard core potential: A stable ferromagnetic state

    Indian Academy of Sciences (India)

    Sudhanshu S Jha; S D Mahanti

    2007-05-01

    We use different determinantal Hartree–Fock (HF) wave functions to calculate true variational upper bounds for the ground state energy of spin-half fermions in volume 0, with mass , electric charge zero, and magnetic moment , interacting through magnetic dipole–dipole interaction. We find that at high densities when the average interparticle distance 0 becomes small compared to the magnetic length m ≡ 22/ħ2, a ferromagnetic state with spheroidal occupation function ↑ $(\\vec{k})$, involving quadrupolar deformation, gives a lower upper bound compared to the variational energy for the uniform paramagnetic state or for the state with dipolar deformation. This system is unstable towards infinite density collapse, but we show explicitly that a suitable short-range repulsive (hard core) interaction of strength 0 and range a can stop this collapse. The existence of a stable equilibrium high density ferromagnetic state with spheroidal occupation function is possible as long as the ratio of coupling constants cm ≡ (03/2) is not very smallcompared to 1.

  18. Ground motion analysis of OSSY

    International Nuclear Information System (INIS)

    The On Site Seismic Yield experiment, OSSY, was performed to investigate the viability of a high-explosive technique to help estimate the yield of nuclear explosions. We have analyzed recorded data and conducted numerical simulations of the 100-pound OSSY experiments performed in hole UE-10 ITS No. 3 at the Nevada Test Site. Particle velocity wave forms from these experiments show a distinct dual-pulse structure in the close-in and far-field regions, with the amplitude of the second pulse being as large as or larger than the first pulse. To gain some insight into the cause of the dual-pulse feature, we examine how the explosion-induced close-in response is affected by (1) certain features of inelastic rock/soil constitutive models applied in the near-field region, (2) the large length-to-diameter charge ratio of 8, (3) the charge and gauge package emplacement, and (4) geology (e.g., layering) in the vicinity of the explosion. Our results from 1-D and 2-D simulations show the following: (a) the response, measured by accelerometers located above the charges, is significantly influenced by the charge length-to-diameter ratio out to a distance of 8 m. (b) the grout emplacement of the charge has very little effect on the response. (c) the geologic layering serves mainly to phase the arrival of the pulses. (d) the second pulse can be best accounted for by applying a dilatant feature that allows for pore recovery during unloading. Other material property variations do not provide any contribution to the formation of a second pulse

  19. Ground motion analysis of OSSY

    Energy Technology Data Exchange (ETDEWEB)

    Swift, R.P.; Snell, C.M. [Los Alamos National Lab., NM (United States)

    1993-11-01

    The On Site Seismic Yield experiment, OSSY, was performed to investigate the viability of a high-explosive technique to help estimate the yield of nuclear explosions. We have analyzed recorded data and conducted numerical simulations of the 100-pound OSSY experiments performed in hole UE-10 ITS No. 3 at the Nevada Test Site. Particle velocity wave forms from these experiments show a distinct dual-pulse structure in the close-in and far-field regions, with the amplitude of the second pulse being as large as or larger than the first pulse. To gain some insight into the cause of the dual-pulse feature, we examine how the explosion-induced close-in response is affected by (1) certain features of inelastic rock/soil constitutive models applied in the near-field region, (2) the large length-to-diameter charge ratio of 8, (3) the charge and gauge package emplacement, and (4) geology (e.g., layering) in the vicinity of the explosion. Our results from 1-D and 2-D simulations show the following: (a) the response, measured by accelerometers located above the charges, is significantly influenced by the charge length-to-diameter ratio out to a distance of 8 m. (b) the grout emplacement of the charge has very little effect on the response. (c) the geologic layering serves mainly to phase the arrival of the pulses. (d) the second pulse can be best accounted for by applying a dilatant feature that allows for pore recovery during unloading. Other material property variations do not provide any contribution to the formation of a second pulse.

  20. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  1. SEISMIC RESPONSE OF LARGE CROSSING TRANSMISSION TOWER-LINE SYSTEM SUBJECTED TO NEAR-FAULT GROUND MOTIONS%大跨越输电塔-线体系的近场脉冲型地震反应分析

    Institute of Scientific and Technical Information of China (English)

    武钢; 翟长海; 李爽; 谢礼立

    2013-01-01

    分析了大跨越输电塔-线体系的动力特性,对比了大跨越输电塔-线体系的近-远场地震反应,研究了大跨越塔-线体系的近场脉冲地震反应规律.结果表明在同幅值的近场脉冲型地震动作用下,大跨越输电塔-线体系的动力反应远大于其在一般地震动下的反应,大跨越输电塔-线体系的近场脉冲型地震反应幅值随地震动脉冲周期增大而增大.将等效脉冲模型引入大跨越输电塔-线体系近场响应分析,结果表明:塔-线体系在等效脉冲作用下的响应与实际地震动相近,将等效脉冲用于分析大跨越输电塔-线体系的地震响应能够弥补实际近场脉冲型地震动数目过少的不足.%Dynamic characteristics of a large crossing transmission tower-line system (LCTTL) are analyzed.The seismic responses of a large crossing transmission tower-line system subjected to near-fault pulse-like ground motions and ordinary ground motions are compared.The characteristics of responses caused by near-fault pulse-like ground motions are presented.It is shown that the seismic responses of LCTL induced by near-fault pulse-like ground motions are severer than the responses subjected to ordinary ground motions.The amplitude of seismic responses increases with the pulse period of near-fault pulse-like ground motions.An equivalent pulse model is introduced to seismic response evaluation of LCTL.The results demonstrate that the equivalent pulse model can capture the important response characteristics of the near-fault records.The application of equivalent pulse model in seismic responses analysis of LCTL can augment the number of near-fault record set.

  2. Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry

    Directory of Open Access Journals (Sweden)

    Toby N. Tonkin

    2016-09-01

    Full Text Available The use of small UAV (Unmanned Aerial Vehicle and Structure-from-Motion (SfM with Multi-View Stereopsis (MVS for acquiring survey datasets is now commonplace, however, aspects of the SfM-MVS workflow require further validation. This work aims to provide guidance for scientists seeking to adopt this aerial survey method by investigating aerial survey data quality in relation to the application of ground control points (GCPs at a site of undulating topography (Ennerdale, Lake District, UK. Sixteen digital surface models (DSMs were produced from a UAV survey using a varying number of GCPs (3-101. These DSMs were compared to 530 dGPS spot heights to calculate vertical error. All DSMs produced reasonable surface reconstructions (vertical root-mean-square-error (RMSE of <0.2 m, however, an improvement in DSM quality was found where four or more GCPs (up to 101 GCPs were applied, with errors falling to within the suggested point quality range of the survey equipment used for GCP acquisition (e.g., vertical RMSE of <0.09 m. The influence of a poor GCP distribution was also investigated by producing a DSM using an evenly distributed network of GCPs, and comparing it to a DSM produced using a clustered network of GCPs. The results accord with existing findings, where vertical error was found to increase with distance from the GCP cluster. Specifically vertical error and distance to the nearest GCP followed a strong polynomial trend (R2 = 0.792. These findings contribute to our understanding of the sources of error when conducting a UAV-SfM survey and provide guidance on the collection of GCPs. Evidence-driven UAV-SfM survey designs are essential for practitioners seeking reproducible, high quality topographic datasets for detecting surface change.

  3. Tectonic stability and expected ground motion at Yucca Mountain. Final report. Revision 1. August 7-8, 1984-January 25-26, 1985

    International Nuclear Information System (INIS)

    The historic seismic record at Yucca Mountain is too brief and incomplete to provide an accurate assessment of the frequency/magnitude relationship of the quality required to extrapolate future seismicity. The present northwest-southwest extension rate in the general area of Yucca Mountain appears to be of the same order as that across that entire southern Great Basin averaged over the last 15 million years. Thus, Quaternary tectonic activity can be used as a rough indicator of future activity. In situ stress measurements indicate that failure is possible along favorably oriented faults in the Yucca Mountain region. However, no quantitative statements about earthquake probability and magnitude (M) associated with the failure can be determined from in situ data alone. Both weapons tests at the Nevada Test Site (NTS) and impoundment of water at Lake Mead near Las Vegas have induced or triggered earthquakes of magnitudes as high as 4 or 5 within 14 kilometers of