Energy Technology Data Exchange (ETDEWEB)
Hutchings, L H; Foxall, W; Rambo, J; Wagoner, J L
2005-03-09
Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L J; Foxall, W; Rambo, J; Wagoner, J L
2005-02-14
Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.
Stochastic ground motion simulation
Rezaeian, Sanaz; Xiaodan, Sun
2014-01-01
Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.
International Nuclear Information System (INIS)
Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)
International Nuclear Information System (INIS)
Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)
International Nuclear Information System (INIS)
This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems
Spin and relativistic motion of bound states
JÃ€rvinen, Matti
2007-01-01
The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state suc...
Compensation for incoherent ground motion
International Nuclear Information System (INIS)
The power spectrum density and coherence function for ground motions are studied for the construction of the next generation electron-positron linear collider. It should provide a center of mass energy between 500 GeV-1 TeV with luminosity as high as 1033 to 1034 cm-2 sec-1. Since the linear collider has a relatively slow repetition rate, large number of particles and small sizes of the beam should be generated and preserved in the machine to obtain the required high luminosity. One of the most critical parameters is the extremely small vertical beam size at the interaction point, thus a proper alignment system for the focusing and accelerating elements of the machine is necessary to achieve the luminosity. We describe recent observed incoherent ground motions and an alignment system to compensate the distortion by the ground motions. (authors)
Naderyan, Vahid; Hickey, Craig J.; Raspet, Richard
2016-02-01
Wind noise is a problem in seismic surveys and can mask the seismic signals at low frequency. This research investigates ground motions caused by wind pressure and shear stress perturbations on the ground surface. A prediction of the ground displacement spectra using the measured ground properties and predicted pressure and shear stress at the ground surface is developed. Field measurements are conducted at a site having a flat terrain and low ambient seismic noise. Triaxial geophones are deployed at different depths to study the wind-induced ground vibrations as a function of depth and wind velocity. Comparison of the predicted to the measured wind-induced ground displacement spectra shows good agreement for the vertical component but significant underprediction for the horizontal components. To validate the theoretical model, a test experiment is designed to exert controlled normal pressure and shear stress on the ground using a vertical and a horizontal mass-spring apparatus. This experiment verifies the linear elastic rheology and the quasi-static displacements assumptions of the model. The results indicate that the existing surface shear stress models significantly underestimate the wind shear stress at the ground surface and the amplitude of the fluctuation shear stress must be of the same order of magnitude as the normal pressure. Measurement results show that mounting the geophones flush with the ground provides a significant reduction in wind noise on all three components of the geophone. Further reduction in wind noise with depth of burial is small for depths up to 40 cm.
Estimation of strong ground motion
International Nuclear Information System (INIS)
Fault model has been developed to estimate a strong ground motion in consideration of characteristics of seismic source and propagation path of seismic waves. There are two different approaches in the model. The first one is a theoretical approach, while the second approach is a semi-empirical approach. Though the latter is more practical than the former to be applied to the estimation of input motions, it needs at least the small-event records, the value of the seismic moment of the small event and the fault model of the large event
Modeling and synthesis of strong ground motion
Indian Academy of Sciences (India)
S T G Raghu Kanth
2008-11-01
Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.
Advances in ground motion studies in China
Institute of Scientific and Technical Information of China (English)
许力生; 俞言祥; 陈运泰
2003-01-01
This paper briefly summarizes the works in the processing of strong ground motion data, the factors affecting strong ground motion, the modeling of strong ground motion and the calculating of broad-band response spectrum which have been done recent years by engineering seismologists and seismologists of China. In addition, we think back to the international cooperation in strong ground motion of the recent years and make some expectations for the future.
Recent ground motion studies at Fermilab
Energy Technology Data Exchange (ETDEWEB)
Shiltsev, V.; Volk, J.; /Fermilab; Singatulin, S.; /Novosibirsk, IYF
2009-04-01
Understanding slow and fast ground motion is important for the successful operation and design for present and future colliders. Since 2000 there have been several studies of ground motion at Fermilab. Several different types of HLS (hydro static level sensors) have been used to study slow ground motion (less than 1 hertz) seismometers have been used for fast (greater than 1 hertz) motions. Data have been taken at the surface and at locations 100 meters below the surface. Data of recent slow ground motion measurements with HLSs, many years of alignment data and results of the ATL-analysis are presented and discussed.
The Motion Of A Deformable Body In - Bounded Fluid
International Nuclear Information System (INIS)
The Hamiltonian formalism for the motion of a deformable body in an inviscid irrotational fluid is generalized for the case of the motion in a bounded fluid. We found that the presence of the boundaries in a liquid leads to the chaotization of the body's motion. The ('memory' effect connected with a free surface boundary condition is also accounted for
Examining Rotational Ground Motion Induced by Tornados
Kessler, Elijah; Dunn, Robert
2016-03-01
Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.
Preliminary results of ground-motion characteristics
Directory of Open Access Journals (Sweden)
Francesca Bozzoni
2012-10-01
Full Text Available The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.
Ground motion: An introduction for accelerator builders
International Nuclear Information System (INIS)
In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed
Strong seismic ground motion propagation
International Nuclear Information System (INIS)
At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, ML 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, ML 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials
Ground motion measurements at the SSC
International Nuclear Information System (INIS)
The results of measurements of seismic vibrations in the Exploratory Shaft (at the tunnel depth) and in the ASST building (on the surface) of the Superconducting Super Collider (SSC) site are presented. Spectral and correlation analysis of the data obtained in the frequency band 0.05--1500 Hz is performed. It is found that amplitudes of ambient ground motion are lower than collider requirements, but cultural vibrations are unacceptably large and will cause fast growth of transverse emittance of the SSC beams. The issues of uncorrelated slow ground motion governed by the ''ATL law'' are also discussed on the example of the SSC collider. copyright 1995 American Institute of Physics
Compression of ground-motion data
International Nuclear Information System (INIS)
Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested
Compression of ground-motion data
Energy Technology Data Exchange (ETDEWEB)
Long, J.W.
1981-04-01
Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.
Duration of nuclear explosion ground motion
International Nuclear Information System (INIS)
This paper evaluates the duration of strong ground shaking that results from nuclear explosions and identifies some of the problems associated with its determination. Knowledge of the duration of horizontal ground shaking is important out to epicentral distances of about 44 km and 135 km, the approximate distances at which the ground shaking level falls to 0.01 g for nuclear explosions having yields of about 100 kt and 1,000 kt, respectively. Evaluation of the strong ground motions recorded from the event STRAIT (M/sub L/ = 5.6) on a linear array of five, broad-band velocity seismographs deployed in the distance range 3.2 to 19.5 km provides information about the characteristics of the duration of ground shaking. The STRAIT data show that: (1) the definition that is used for defining duration is very important; (2) the duration of ground acceleration, as defined in terms of 90% of the integral of the squared time history, increased from about 4 to 26 sec over the approximately 20-km distance range; and (3) the duration of ground velocity and displacement were slightly greater because of the effect of the alluvium layer on the propagating surface waves. Data from other events augment the STRAIT data and show that: (1) duration of shaking is increased by frequency-dependent site effects and (2) duration of shaking, as defined by the integral of the squared time history, does not increase as rapidly with increase in yield as is indicated by other definitions of duration that are stated in terms of an amplitude threshold (e.g., bracketed duration, response envelopes). The available data suggest that the duration of ground acceleration, based on the integral definition, varies from about 4 to 40 sec for a 100-kt range explosion and from about 4 to 105 sec for a megaton range explosion in the epicentral distance range of 0 to 44 km and 0 to 135 km, respectively
Prediction of ground motion from nuclear weapons tests at NTS
International Nuclear Information System (INIS)
Ground motion data from underground nuclear detonations during FY78 were added to data from earlier detonations; the data were used to formulate a tentative equation for predicting ground motion at the Nevada Test Site. Additional measurements to explore an unexplained seismic anomaly in Jackass Flats are described. Methods used in automatic processing of ground motion data are explained
Synthetic strong ground motions for engineering design utilizing empirical Green`s functions
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L.J.; Jarpe, S.P.; Kasameyer, P.W.; Foxall, W.
1996-04-11
We present a methodology for developing realistic synthetic strong ground motions for specific sites from specific earthquakes. We analyzed the possible ground motion resulting from a M = 7.25 earthquake that ruptures 82 km of the Hayward fault for a site 1.4 km from the fault in the eastern San Francisco Bay area. We developed a suite of 100 rupture scenarios for the Hayward fault earthquake and computed the corresponding strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the statistical distribution of engineering parameters, we introduce a probabilistic component into the deterministic hazard calculation. Engineering parameters of synthesized ground motions agree with those recorded from the 1995 Kobe, Japan and the 1992 Landers, California earthquakes at similar distances and site geologies.
Statistical analysis of earthquake ground motion parameters
International Nuclear Information System (INIS)
Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities
Statistical analysis of earthquake ground motion parameters
Energy Technology Data Exchange (ETDEWEB)
1979-12-01
Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities.
Regional differences in subduction ground motions
Beauval, Céline; Abrahamson, N; Theodulidis, N; Delavaud, E; Rodriguez, L; Scherbaum, F; Haendel, A
2012-01-01
A few ground-motion prediction models have been published in the last years, for predicting ground motions produced by interface and intraslab earthquakes. When one must carry out a probabilistic seismic hazard analysis in a region including a subduction zone, GMPEs must be selected to feed a logic tree. In the present study, the aim is to identify which models provide the best fit to the dataset M6+, global or local models. The subduction regions considered are Japan, Taiwan, Central and South America, and Greece. Most of the data comes from the database built to develop the new BCHydro subduction global GMPE (Abrahamson et al., submitted). We show that this model is among best-fitting models in all cases, followed closely by Zhao et al. (2006), whereas the local Lin and Lee (2008) is well predicting the data in Taiwan and also in Greece. The Scherbaum et al. (2009) LLH method prove to be efficient in providing one number quantifying the overall fit, but additional analysis on the between-event and within-ev...
Ground motions and its effects in accelerator design
International Nuclear Information System (INIS)
This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators
Ground motions and its effects in accelerator design
Energy Technology Data Exchange (ETDEWEB)
Fischer, G.E.
1984-07-01
This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)
Strong ground motion at Bhuj city during the Kutch earthquake
Iyengar, RN; Kanth, Raghu STG
2002-01-01
In the absence of near field strong motion records, the level of ground motion during the devastating 26 January 2001 earthquake has to be found by indirect means. For the city of Bhuj, three broad band velocity time histories have been recorded by India Meteorological Department. In this paper these data are processed to obtain an estimate of strong ground motion at Bhuj. It is estimated that the peak ground acceleration at Bhuj was of the order of 0.38 g. Ground motion in the surrounding re...
Simulation of earthquake ground motion using a point source models
International Nuclear Information System (INIS)
Simulation of earthquake ground motion is necessary for estimating seismic hazard for various nuclear reactor systems. The present work is aimed to simulate the ground motion generated due to earthquake using semi analytical approach. The synthetic time histories are generated by inverting Fourier Amplitude Spectrum (FAS) with random phase angles. FAS of earthquake ground motion is evaluated using two different semi analytical models. These models allow the evaluation of FAS in terms of magnitude and distance. Results are presented for the ground motion of 1999 Chi-Chi earthquake. (author)
An estimate of maximum ground surface motion for non zero surface velocity
Pecker, Alain
2004-09-01
The increasing need for probability seismic hazard assessment (PSHA) of critical facilities sometimes leads to unrealistic earthquake scenarios with very high induced ground motions. From a physical standpoint these high motions cannot exist because of the limiting resistance capacity of the soil strata through which the seismic waves travel. A simple analytical model is proposed to bound the maximum ground surface acceleration that any soil deposit can transfer. This model is an extension to non zero ground surface velocity of a previously presented model. To cite this article: A. Pecker, C. R. Mecanique 332 (2004).
Spatial distribution of near-fault ground motion
Institute of Scientific and Technical Information of China (English)
刘启方; 袁一凡; 金星
2004-01-01
Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates.There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.
Ground motion and its effects in accelerator design
International Nuclear Information System (INIS)
The effects of ground motion on accelerator design are discussed. The limitations on performance are discussed for various categories of motion. For example, effects due to ground settlement, tides, seismic disturbances and man-induced disturbances are included in this discussion. 42 figs., 7 tabs
Description of ground motion data processing codes: Volume 3
International Nuclear Information System (INIS)
Data processing codes developed to process ground motion at the Nevada Test Site for the Weapons Test Seismic Investigations Project are used today as part of the program to process ground motion records for the Nevada Nuclear Waste Storage Investigations Project. The work contained in this report documents and lists codes and verifies the ''PSRV'' code. 39 figs
An Improved Approach for Nonstationary Strong Ground Motion Simulation
Li, Yanan; Wang, Guoxin
2016-05-01
A new stochastic ground motion model for generating a suite of ground motion time history with both temporal and frequency nonstationarities for specified earthquake and site characteristics is proposed based on the wavelet method. This new model is defined in terms of 6 key parameters that characterize the duration, evolving intensity, predominant frequency, bandwidth and frequency variation of the ground acceleration process. All parameters, except for peak ground acceleration (PGA), are identified manually from a database of 2444 recorded horizontal accelerations. The two-stage regression analysis method is used to investigate the inter- and intra-event residuals. For any given earthquake and site characteristics in terms of the fault mechanism, moment magnitude, Joyner and Boore distance and site shear-wave velocity, sets of the model parameters are generated and used, in turn, by the stochastic model to generate strong ground motion accelerograms, which can capture and properly embody the primary features of real strong ground motions, including the duration, evolving intensity, spectral content, frequency variation and peak values. In addition, it is shown that the characteristics of the simulated and observed response spectra are similar, and the amplitude of the simulated response spectra are in line with the predicted values from the published seismic ground motion prediction equations (SGMPE) after a systematic comparison. The proposed method can be used to estimate the strong ground motions as inputs for structural seismic dynamic analysis in engineering practice in conjunction with or instead of recorded ground motions.
Ground motion input in seismic evaluation studies
Energy Technology Data Exchange (ETDEWEB)
Sewell, R.T.; Wu, S.C.
1996-07-01
This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.
Ground motion input in seismic evaluation studies
International Nuclear Information System (INIS)
This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants
Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures
Energy Technology Data Exchange (ETDEWEB)
Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon
2007-03-15
This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.
Free Field Surface Motion at Different Site Types due to Near-Fault Ground Motions
Jagabandhu Dixit; D. M. Dewaikar; R.S. Jangid
2012-01-01
Seismic hazards during many disastrous earthquakes are observed to be aggravating at the sites with the soft soil deposits due to amplification of ground motion. The characteristics of strong ground motion, the site category, depth of the soil column, type of rock strata, and the dynamic soil properties at a particular site significantly influence the free field motion during an earthquake. In this paper, free field surface motion is evaluated via seismic site response analysis that involves ...
Scaling Earthquake Ground Motions in Western Anatolia, Turkey
Akinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; D'Amico, S.; University of Malta; Malagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Mercuri, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
2013-01-01
In this study, we provide a complete description of the ground-motion characteristics of the western Anatolia region of Turkey. The attenuation of ground motions with distance and the variability in excitation with magnitude are parameterized using three-component 0.25-10.0 Hz earthquake ground motions at distances of 15 - 250 km. The data set is comprised of more than 11,600 three-component seismograms from 902 regional earthquakes of local magnitude (ML) 2.5 to 5.8, recorded ...
Orientation effect on ground motion measurement for Mexican subduction earthquakes
Institute of Scientific and Technical Information of China (English)
H.P Hong; A. Pozos-Estrada; R. Gomez
2009-01-01
The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.
Seismic Ground Motion Hazards with 10 Percent Probability
Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...
Seismic Ground Motion Hazards with 2 Percent Probability
Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...
Engineering uses of physics-based ground motion simulations
Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.
2014-01-01
This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.
Insights into Ground-Motion Processes from Intensity Data (Invited)
Atkinson, G. M.
2009-12-01
Analysis of intensity data gathered from the on-line “Did You Feel It?” (DYFI) questionnaire program (Wald et al., 1999, Seism. Res. L.) provides new insights into both contemporary and historical ground-motion processes; this is particularly important for sparsely-instrumented regions. The value of the DYFI data lies in their vast quantities and large spatial coverage. With thousands to tens of thousands of respondents providing information on the felt and damage characteristics of widely-felt earthquakes, DYFI intensity data provide surprisingly high resolution of ground-motion features. The large data quantities allow techniques such as binning to be used to bring out these features in a statistically-stable way (Atkinson and Wald, 2007, Seism. Res. L.), while correlations of the statistics of DYFI intensities with instrumental ground motions provide the link between intensity and engineering ground-motion parameters (Wald et al., 1999, Earthquake Spectra). This link is largely independent of region if its dependence on earthquake magnitude and distance is taken into account (Kaka and Atkinson, 2007, BSSA). Thus DYFI data provide a valuable tool with which ground motions can be estimated, if their felt and damage effects have been reported. This is useful both for understanding contemporary events in sparsely-instrumented regions, and for re-evaluating historical events, for which only intensity data are available. By using calibrated intensity observations, a number of ground-motion processes can be investigated based on DYFI and/or historical intensity data. For example, intensity data shed light on source scaling issues, and whether source parameters vary regionally. They can also be used to document regional attenuation features, such as the attenuation rate and its variation with distance (Atkinson and Wald, 2007). A key uncertainty in these investigations concerns the effect of spectral shape on intensity; the spectral shape is influenced by site
Ground motion scenarios for the 1997 Colfiorito, central Italy, earthquake
M. Cocco; V. Convertito; Pacor, F.; Franceschina, G.; G. Cultrera; A. Emolo; Zollo, A.
2008-01-01
In this paper we report the results of several investigations aimed at evaluating ground motion scenarios for the September 26th, 1997 Colfiorito earthquake (Mw 6.0, 09:40 UTC). We model the observed variability of ground motions through synthetic scenarios which simulate an earthquake rupture propagating at constant rupture velocity (2.7 km/s) and the inferred directivity. We discuss the variability of kinematic source parameters, such as the nucleation position and the rupture velocity, and...
Uncertainty and Spatial Correlation of Earthquake Ground Motion in Taiwan
Vladimir Sokolov; Friedemann Wenzel; Wen-Yu Jean; and Kuo-Liang Wen
2010-01-01
In this work we analyzed characteristics of aleatory variability with regard to intra-event and inter-event components in the prediction of peak ground acceleration in Taiwan and the spatial (site-to-site) correlation of ground motion residuals. The characteristics are very important for an assessment of seismic hazard and loss for regionally located building assets (portfolio) and spatially distributed systems (lifelines) and ShakeMap generation. The strong-motion database collected by the T...
Study on simulating strong ground motion by fractal stochastic method
Institute of Scientific and Technical Information of China (English)
GUO Meng-qiu; WANG Bin; XU Zhao-yong
2005-01-01
@@ The time history of strong ground motion can be synthesized by empirical Green's function (EGF) method.Firstly a large seismic event is discretized into a series of subevents; secondly recordings of earthquakes with proper size and spatial distribution are chosen as time history (EGF) of those subevents; finally the EGFs are summated to get the time history of ground motion caused by the large event.
Identiﬁcation of resonant earthquake ground motion
Indian Academy of Sciences (India)
Abbas Moustafa
2010-06-01
Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy principle and the dispersion index. These measures are based on the geometric properties of the power spectral density function of the ground acceleration. The application of these measures to quantify the frequency content of random earthquake models is demonstrated ﬁrst. Subsequently, these measures are used to quantify the frequency content of the ground acceleration for near-ﬁeld records measured at rock and soil sites, short-duration and long-duration earthquakes.
Comparison of ground motion for NPP design of various countries
International Nuclear Information System (INIS)
The probability levels for the peak ground motion parameters for the high level design earthquakes specified by the of Canada, U.S. and Japan were estimated to be in the range of 10-3 to 10-4. Comparison between the design response spectra recommended by various codes indicate that various frequency ranges are covered differently. It was found that the hazard philosophy and approaches of various codes are quite different which lead to different ground motions for design. Associated with these different ground motions are load combinations and different design philosophies for the material. Although all countries use two levels of ground motion inputs, the risk probabilities at each of these levels are not the same. Some codes define a low level earthquake that implies that normal plant operations are not interrupted. A higher level earthquake is defined to imply safe shut down. The highest level earthquake defined by some codes represent the safety margin earthquake. It was found that the ground motion recommended by different codes may result in different structural design due to different associated load combinations and allowable material limits. The effect of different ground motions cannot be compared without considering the implication on the design. Although some of these differences may compensate for one another in the final design, the degree of conservatism varies between various codes. (author)
Soil-structure interaction analysis including ground motion incoherency effects
International Nuclear Information System (INIS)
For critical nuclear facilities located at soil sites, soil-structure interaction (SSI) analysis is required to develop seismic responses of the structures, systems and components. Such analyses are generally performed using the design motion by assuming a coherent wave field often consisting of vertically propagating shear and P-waves. The wave passage effects can also be considered depending on the seismic setting of the facility. Review of strong ground motion arrays from several dense arrays on soil and rock sites indicates that ground motion coherency reduces as frequency and separation distance of the monitoring points increase. These observations have resulted in several ground motion 'incoherency' models to best represent the observed data. In this paper implementation of the most recent ground motion incoherency model in the Computer Program SASSI2000 is discussed. The results in terms of foundation scattered motion is compared with the fully coherent motion for a rock site and a typical 2000-year design motion for Western US (WUS). The incoherency model was also applied to a nuclear facility on a stiff soil site and the differences in the results are presented and discussed. (authors)
When does fractional Brownian motion not behave as a continuous function with bounded variation?
Azmoodeh, Ehsan; Tikanmäki, Heikki; Valkeila, Esko
2010-01-01
If we compose a smooth function g with fractional Brownian motion B with Hurst index H > 1/2, then the resulting change of variables formula [or It/^o- formula] has the same form as if fractional Brownian motion would be a continuous function with bounded variation. In this note we prove a new integral representation formula for the running maximum of a continuous function with bounded variation. Moreover we show that the analogue to fractional Brownian motion fails.
Verifying a computational method for predicting extreme ground motion
Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, B.T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.
2011-01-01
In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.
Incorporating Uncertainty in Ground Motion into Damage Estimation Calculations
Latchman, S.; Simic, M.
2012-04-01
It is well known that a ground motion prediction equation produces not just a point estimate but a variation around this point estimate. This variation in ground motion is given by a standard deviation and ground motions can be said to be lognormally distributed. When estimating the damage to a property from an earthquake, for a given fixed ground motion intensity of say 0.5g there would be a variation in damage modelled. Therefore, there are two properties varying - the intensity of the earthquake and the vulnerability of the structure. Typically, combining the two probability distributions would be computationally expensive and possibly unrealistic if a large number of locations were being modelled. This paper seeks to investigate theoretically how the two distributions can be combined to give a single probability distribution of damage and we also investigate methods which allow this computation to be speeded up through approximations. Finally the change in mean damage amount and standard deviation after accounting for uncertainty in the ground motion (as opposed to using a point estimate) is also investigated.
New Fennoscandian shield empirical ground motion characterization models
Vuorinen, Tommi; Tiira, Timo; Lund, Björn
2015-04-01
The Fennoscandian shield is a seismically quiet area with a scarcity of strong earthquakes and, consequently, an area lacking strong motion data. This lack of empirical strong motion data and the subsequent lack of advanced stochastic and theoretical models of seismic response limit the ground motion prediction equation (GMPE) development for the region. In order to create GMPEs targeted for the Fennoscandian shield, we take advantage of the comparatively large ground motion database and use a more direct empirical approach which does not rely on pre-existing models and simulations of the Fennoscandian seismicity. We present here the resulting two GMPEs, which were created by applying the empirical ground motion data derived from 2239 earthquakes observed at 88 recording stations to an existing attenuation relationship. The first model developed is an empirical model which relies on an existing predetermined GMPE with the constant coefficients of the model fitted to our regional dataset by using a simple unweighted non-linear least-squares regression. The second model is a so-called referenced empirical model which relies on modifying the ground motion prediction produced by an existing GMPE by multiplying it with a function of certain seismological parameters. Within the magnitude-distance range of the dataset, the resulting equations model the peak ground accelerations (PGA) and spectral accelerations (SA) reasonably well. Residuals of the ground-motion prediction display no clear trend with regards to either magnitude or distance. We further assess the limits of usability of the GMPEs by applying them to an independent regional earthquake and to various external events that have occurred in a similar stable continental area. We also discuss the limitations of the empirical methods used in creating the models and the constraints imposed by the available source data.
Uncertainty and Spatial Correlation of Earthquake Ground Motion in Taiwan
Directory of Open Access Journals (Sweden)
Vladimir Sokolov
2010-01-01
Full Text Available In this work we analyzed characteristics of aleatory variability with regard to intra-event and inter-event components in the prediction of peak ground acceleration in Taiwan and the spatial (site-to-site correlation of ground motion residuals. The characteristics are very important for an assessment of seismic hazard and loss for regionally located building assets (portfolio and spatially distributed systems (lifelines and ShakeMap generation. The strong-motion database collected by the TSMIP network in Taiwan, which includes about 4650 records from 66 shallow earthquakes (ML > 4.5, focal depth < 30 km occurred in 1993 - 2004, was used for this purpose. The results of the analysis show that the ground motion correlation structure is highly dependent on local geology and on peculiarities of the propagation path (azimuth-dependent attenuation. Thus, a single generalized spatial correlation model may not be adequate for all of Taiwan territory or similar large areas.
Simulation of non-stationary ground motion processes (II)
Institute of Scientific and Technical Information of China (English)
LIANG Jian-wen
2005-01-01
This paper proposes a method for simulation of non-stationary ground motion processes having the identical statistical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simulation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the target power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is verified by simulation of one acceleration record in Landers earthquake.
Characterization of near-source ground motions with earthquake simulations
Aagaard, Brad T.; Hall, John F.; Heaton, Thomas H.
2001-01-01
We examine the characteristics of long-period near-source ground motions by conducting a sensitivity study with variations in six earthquake source parameters for both a strike-slip fault (M 7.0-7.1) and a thrust fault (M 6.6-7.0). The directivity of the ruptures creates large displacement and velocity pulses in the forward direction. The dynamic displacements close to the fault are comparable to the average slip. The ground motions exhibit the greatest sensitivity to the fault depth with mod...
Simulation of near-source ground motions with dynamic failure
Aagaard, Brad T.; Hall, John F.; Heaton, Thomas H.
2000-01-01
We simulate long-period near-source ground motions due to hypothetical events on a strike-slip fault (M_w 6.9) and a buried thrust fault (M_w 7.0). We include the dynamics of the rupture process using a model of sliding friction. The directivity of the rupture creates large displacement and velocity pulses in the ground motions in the forward direction. For the strike-slip fault the peak values occur near the tip of the fault, while for the buried thrust fault the peak values o...
Strong Ground Motion Estimation During the Kutch, India Earthquake
Iyengar, R. N.; Kanth, S. T. G. Raghu
2006-01-01
In the absence of strong motion records, ground motion during the 26th January, 2001 Kutch, India earthquake, has been estimated by analytical methods. A contour map of peak ground acceleration (PGA) values in the near source region is provided. These results are validated by comparing them with spectral response recorder data and field observations. It is found that very near the epicenter, PGA would have exceeded 0.6 g. A set of three aftershock records have been used as empirical Green's functions to simulate ground acceleration time history and 5% damped response spectrum at Bhuj City. It is found that at Bhuj, PGA would have been 0.31 g 0.37 g. It is demonstrated that source mechanism models can be effectively used to understand spatial variability of large-scale ground movements near urban areas due to the rupture of active faults.
Grounding Bottom Damage and Ship Motion over a Rock
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
A model for prediction of damage to tankers during grounding is presented. The model takes into account the coupling between the external ship dynamics and the local damage process of the hull girder. The model for the local damage is based on a least upper bound solution with kinematic compatibi...
Characteristics of the Ground Motion in Northeastern Italy
Malagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Akinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Hermann, R. B.; Department of Earth and Atmospheric Sciences; Pino, N. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Scognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia
2002-01-01
A large data set of ground-velocity time histories from earthquakes that occurred in Friuli-Venezia Giulia (northeastern Italy) was used to define regional predictive relationships for ground motion, in the 0.25- to 14.0-Hz frequency band. The bulk of the data set was provided by the seismic network run by Centro Ricerche Sismologiche (CRS), a department of the Istituto Nazionale di Oceanografia e Geofisica (OGS). A collection of 17,238 selected recordings from 1753 earthquakes...
Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.
2010-01-01
We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.
Energy Technology Data Exchange (ETDEWEB)
Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C
2009-11-04
We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.
Grounding Bottom Damage and Ship Motion over a Rock
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1996-01-01
A model for prediction of damage to tankers during grounding is presented. The model takes into account the coupling between the external ship dynamics and the local damage process of the hull girder. The model for the local damage is based on a least upper bound solution with kinematic compatibi...... validated by small scale tests and a large scale test. Application of the theory is illustrated by a study of the grounding damage of a single hull VLCC.......A model for prediction of damage to tankers during grounding is presented. The model takes into account the coupling between the external ship dynamics and the local damage process of the hull girder. The model for the local damage is based on a least upper bound solution with kinematic...
On the radial motion of quarks bound by a string
International Nuclear Information System (INIS)
It is shown rigorously that quarks cannot move in the radial direction when they are tied together by a straight-line string and the system as a whole rotates with a nonvanishing angular velocity. This implies that in a consistent string model of hadrons the radial motion of quarks cannot be separated from the transverse string excitations. 27 refs
Japan Meteorological Agency information on long-period ground motion
Aizawa, K.; Kawazoe, Y.; Uratani, J.; Sakihara, H.; Nakamura, M.
2013-12-01
An earthquake generates seismic waves with various periods, and earthquakes with larger magnitudes generate stronger long-period ground motions. When the natural period of a high-rise building is close to the predominant period of ground motion, resonance happens and the building is severely shaken longer than surface of the Earth. Today, more and more people spend time in high-rise buildings especially in metropolitan areas. If great earthquake occurs, many people in high-rise buildings will be affected by long-period ground motion. During the 2011 Great East Japan Earthquake, high-rise buildings in Osaka City which locates more than 700 km away from the epicenter were shaken severely at higher floors by the long-period ground motion. In a building, maximum acceleration was 34cm/s/s at the ground level, and 130 cm/s/s at the 52nd floors in the same building. Fortunately there was no structural damage in the building, but non-structural elements at higher floors suffered damage: fall of ceiling boards, deformation of partition walls. As near-ground floors of the building were not very shaken severely, building managers on the floors could not be aware of higher floors' disastrous situation. To notify people of such situations and facilitate effective countermeasures, Japan Meteorological Agency(JMA) started to provide information on long-period ground motion from March 28th, 2013. Based on questionnaires to tenants of high-rise buildings, it has become clear that difficulty of people's activities depends on the velocity of floor movement, and we classified the intensity of long-period ground motion into four on the basis of velocity. To get the classification, we use wave forms observed by JMA seismic intensity meters on the surface of the Earth which are automatically sent to the JMA system. To estimate shaking at higher floors from wave forms on the surface of the Earth, we simulate the shaking of buildings by absolute velocity response spectrum of the period
Analysis of strong ground motions to evaluate regional attenuation relationships
Directory of Open Access Journals (Sweden)
V. Montaldo
2002-06-01
Full Text Available Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations.
Ground Motion Relations While TBM Drilling in Unconsolidated Sediments
Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel
2016-05-01
The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.
Sympathetic cooling of molecular ion motion to the ground state
Rugango, Rene; Goeders, James E.; Dixon, Thomas H.; John M. Gray; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J.; Brown, Kenneth R.
2014-01-01
We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm...
Motion parameter estimation of multiple ground moving targets in multi-static passive radar systems
Subedi, Saurav; Zhang, Yimin D.; Amin, Moeness G.; Himed, Braham
2014-12-01
Multi-static passive radar (MPR) systems typically use narrowband signals and operate under weak signal conditions, making them difficult to reliably estimate motion parameters of ground moving targets. On the other hand, the availability of multiple spatially separated illuminators of opportunity provides a means to achieve multi-static diversity and overall signal enhancement. In this paper, we consider the problem of estimating motion parameters, including velocity and acceleration, of multiple closely located ground moving targets in a typical MPR platform with focus on weak signal conditions, where traditional time-frequency analysis-based methods become unreliable or infeasible. The underlying problem is reformulated as a sparse signal reconstruction problem in a discretized parameter search space. While the different bistatic links have distinct Doppler signatures, they share the same set of motion parameters of the ground moving targets. Therefore, such motion parameters act as a common sparse support to enable the exploitation of group sparsity-based methods for robust motion parameter estimation. This provides a means of combining signal energy from all available illuminators of opportunity and, thereby, obtaining a reliable estimation even when each individual signal is weak. Because the maximum likelihood (ML) estimation of motion parameters involves a multi-dimensional search and its performance is sensitive to target position errors, we also propose a technique that decouples the target motion parameters, yielding a two-step process that sequentially estimates the acceleration and velocity vectors with a reduced dimensionality of the parameter search space. We compare the performance of the sequential method against the ML estimation with the consideration of imperfect knowledge of the initial target positions. The Cramér-Rao bound (CRB) of the underlying parameter estimation problem is derived for a general multiple-target scenario in an MPR system
Allen, Trevor I.; Wald, David J.
2009-01-01
Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.
Tectonic stability and expected ground motion at Yucca Mountain
International Nuclear Information System (INIS)
A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs
Directivity in NGA earthquake ground motions: Analysis using isochrone theory
Spudich, P.; Chiou, B.S.J.
2008-01-01
We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.
Long period seismic ground motions for isolation systems
International Nuclear Information System (INIS)
In this paper numerical simulations of long period strong ground motions are calculated based on theoretical seismological models of the seismic source and wave propagation. The method includes both near-field and far-field terms and surface waves as well as body waves which allows valid simulations at both short and large distances. Long period ground motions for magnitude 6.75 and magnitude 8.0 events are computed at distances of 3 to 30 km. The resulting response spectral displacements are compared to the SEAOC 1990 spectrum for base-isolated system. At a period of 2 seconds, the SEAOC spectrum is close to the spectrum for a magnitude 8.0 earthquake. However, at a period of 5 seconds, the SEAOC spectrum is much larger than the simulated notions even for a magnitude 8 event
Realistic modeling of seismic wave ground motion in Beijing City
International Nuclear Information System (INIS)
Advanced algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of the observed macroseismic intensity (1976, Tangshan earthquake). The synthetic 3-component seismograms have been computed in the Xiji area and in Beijing town. The numerical results show that the thick Tertiary and Quaternary sediments are responsible of the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone (Xiji area) associated to the 1976 Tangshan earthquake and with the records in Beijing town, associated to the 1998 Zhangbei earthquake. (author)
Strong Ground Motion Simulations Around Prince Islands Fault
MERT, Aydın; Fahjan, Yasin; Pinar, Ali; HUTCHINGS, Lawrence
2014-01-01
The main objective of this study is to simulate broad-frequency-band strong ground motion waveforms resulting from the rupture of the Prince Island Fault and to provide input accelerograms for linear and non-linear time history analyses for engineering structures. Simulations are performed using Green’s Function methodology developed by Hutchings and Wu (1990) [1]. The methodology considers physical based rupture process and takes into account different source parameters to investigate their ...
Earthquake Ground Motion Simulation using Novel Machine Learning Tools
Alimoradi, Arzhang
2011-01-01
A novel method of model-independent probabilistic seismic hazard analysis(PSHA) and ground motion simulation is presented and verified using previously recorded data and machine learning. The concept of “eigenquakes” is introduced as an orthonormal set of basis vectors that represent characteristic earthquake records in a large database. Our proposed procedure consists of three phases, (1) estimation of the anticipated level of shaking for a scenario earthquake at a site using Gaussian Proces...
Statistical modeling of ground motion relations for seismic hazard analysis
Raschke, Mathias
2012-01-01
We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GM...
Ground motion tolerances for the SSC [Superconducting Super Collider
International Nuclear Information System (INIS)
We attempt in this note to make plausibility arguments regarding the magnitude of tolerable ground motions for the SSC. A complete, general and quantitative treatment of every conceivable effect awaits far more effort than could have been marshalled for this preliminary study. This note is in three parts: a description of the types of motions likely to be encountered on any site and some generally obvious site recommendations; estimates of the consequences of such motions with calculations of only those few types which we consider dominant in the problem (a review of the type and strength of beam position feedback which may be required); and a summary of suggested tolerances resulting from the calculations and assumptions made. 16 refs., 5 figs., 3 tabs
On the prediction of building damage from ground motion
International Nuclear Information System (INIS)
In the planning of a nuclear event it is essential to consider the effects of the expected ground motion on all exposed buildings and other structures. There are various steps and procedures in this process which generally increase in scope and refinement as the preparations advance. Initial, rough estimates, based upon rules-of-thumb and preliminary predictions of ground motion and structural response, may be adequate to show general feasibility of the project. Subsequent work is done in both the field and analysis phases, to estimate the total structure exposure, to isolate special hazards, and to make damage cost estimates. Finally, specific analyses are made of special buildings or structures to identify safety problems and to make recommendations for safety measures during the proposed event. Because the ground motion and the structural response both involve many random variables and therefore some uncertainties in prediction, the probabilistic aspects must be considered, both on a broad statistical basis and for specific safety considerations. Decisions must be made as to the acceptability or non-acceptability of the risks and any indicated procedures before and during the event to reduce or to eliminate the risks. The paper discusses various techniques involved in these operations including the Spectral Matrix Method of damage prediction, the Threshold Evaluation Scale for specific building analysis, and the inelastic and probabilistic aspects of the problem. (author)
Guidelines for ground motion definition for the eastern United States
Energy Technology Data Exchange (ETDEWEB)
Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.
1985-06-01
Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs.
Guidelines for ground motion definition for the eastern United States
International Nuclear Information System (INIS)
Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs
Terrafirma: A Pan-European Ground Motion Hazard Information Service
Cooksley, Geraint
2010-12-01
Supported by the European Space Agency's GMES programme, Terrafirma Stage 3 (TF3) is the continuation of the Terrafirma project, a pan-European ground motion hazard information service. This third stage of the project was launched in December of 2009 and has as its aim the sustainability of the terrain motion service. TF3 features a new focus on several thematic lines for terrain motion analysis: - Tectonics - Flooding - Hydrogeology (ground water issues, landslides & inactive mines) As in previous stages, TF3 services are based on advanced satellite interferometry products (in the main using Persistent Scatterer InSAR methodologies), however they exploit additional data sources, including non-EO, coupled with expert interpretation specific to each thematic line. In addition to the three thematic lines, a wide area terrain motion mapping service will be developed and tested. The project consortium is lead by Altamira Information, with the Dutch Geological Survey (TNO) leading the Flood Theme, the Italian National Institute of Geophysics and Volcanology (INGV) leading the Tectonics Theme, and the University of Florence (UNIFI) leading the Hydrogeology Theme. The Wide Area Mapping task is lead by the German Space Agency (DLR). Its services are delivered to civil protection agencies, disaster management organisms, and coastal, rail and motorway authorities to support the process of risk assessment and mitigation. An overview of the Terrafirma project and the main highlights of the third stage are given.
Subterranean ground motion studies for the Einstein Telescope
International Nuclear Information System (INIS)
Seismic motion limits the low-frequency sensitivity of ground-based gravitational wave detectors. A conceptual design study into the feasibility of a future-generation gravitational wave observatory, coined the Einstein Telescope, has been completed. As part of this design phase, we performed a ground motion study to determine the seismic noise characteristics at various sites across the globe. This investigation focused on underground sites and encompassed a variety of geologies, including clay, salt, and hard rock, at 15 locations in nine European countries, the USA, and Japan. In addition, we analyzed data from the Virtual European Broadband Seismograph Network to characterize European seismic motion. We show that, in the region of interest for future-generation gravitational wave detectors (1–10 Hz), seismic motion is dominated by activity from anthropogenic sources. A number of sites were found that exhibited a reduction in seismic power of several orders of magnitude with respect to current detector sites, thus making it possible to set requirements for the Einstein Telescope seismic noise environment. (paper)
A differential method for bounding the ground state energy
Mouchet, A
2005-01-01
For a wide class of Hamiltonians, a novel method to obtain lower and upper bounds for the lowest energy is presented. Unlike perturbative or variational techniques, this method does not involve the computation of any integral (a normalisation factor or a matrix element). It just requires the determination of the absolute minimum and maximum in the whole configuration space of the local energy associated with a normalisable trial function (the calculation of the norm is not needed). After a general introduction, the method is applied to three non-integrable systems: the asymmetric annular billiard, the many-body spinless Coulombian problem, the hydrogen atom in a constant and uniform magnetic field. Being more sensitive than the variational methods to any local perturbation of the trial function, this method can used to systematically improve the energy bounds with a local skilled analysis; an algorithm relying on this method can therefore be constructed and an explicit example for a one-dimensional problem is...
Seismic ground motion relationships in southern China based on stochastic finite-fault model
Institute of Scientific and Technical Information of China (English)
郑斯华; 黄玉龙
2004-01-01
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relationships was then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.
Energy Technology Data Exchange (ETDEWEB)
Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L
2007-02-09
We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.
Energy Technology Data Exchange (ETDEWEB)
Rodgers, A
2008-01-16
In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.
Study on Ground Motion Attenuation Relation in Shanghai and Its Adjacent Region
Institute of Scientific and Technical Information of China (English)
Shi Shuzhong; Shen Jianwen
2004-01-01
Based on intensity data in Shanghai and its adjacent region, the intensity attenuation relation is determined. Selecting the western United States as a reference area where there are rich strong ground motion records and intensity data, and by determining ground motion attenuation relation in an area lacking in strong ground motion data, we obtain the ground motion attenuation relation in Shanghai and its adjacent region.
Strong Ground Motion Database System for the Mexican Seismic Network
Perez-Yanez, C.; Ramirez-Guzman, L.; Ruiz, A. L.; Delgado, R.; Macías, M. A.; Sandoval, H.; Alcántara, L.; Quiroz, A.
2014-12-01
A web-based system for strong Mexican ground motion records dissemination and archival is presented. More than 50 years of continuous strong ground motion instrumentation and monitoring in Mexico have provided a fundamental resource -several thousands of accelerograms- for better understanding earthquakes and their effects in the region. Lead by the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM), the engineering strong ground motion monitoring program at IE relies on a continuously growing network, that at present includes more than 100 free-field stations and provides coverage to the seismic zones in the country. Among the stations, approximately 25% send the observed acceleration to a processing center in Mexico City in real-time, and the rest require manual access, remote or in situ, for later processing and cataloguing. As part of a collaboration agreement between UNAM and the National Center for Disaster Prevention, regarding the construction and operation of a unified seismic network, a web system was developed to allow access to UNAM's engineering strong motion archive and host data from other institutions. The system allows data searches under a relational database schema, following a general structure relying on four databases containing the: 1) free-field stations, 2) epicentral location associated with the strong motion records available, 3) strong motion catalogue, and 4) acceleration files -the core of the system. In order to locate and easily access one or several records of the data bank, the web system presents a variety of parameters that can be involved in a query (seismic event, region boundary, station name or ID, radial distance to source or peak acceleration). This homogeneous platform has been designed to facilitate dissemination and processing of the information worldwide. Each file, in a standard format, contains information regarding the recording instrument, the station, the corresponding earthquake
SM-ROM-GL (Strong Motion Romania Ground Level Database
Directory of Open Access Journals (Sweden)
Ioan Sorin BORCIA
2015-07-01
Full Text Available The SM-ROM-GL database includes data obtained by the processing of records performed at ground level by the Romanian seismic networks, namely INCERC, NIEP, NCSRR and ISPH-GEOTEC, during recent seismic events with moment magnitude Mw ≥ 5 and epicenters located in Romania. All the available seismic records were re-processed using the same basic software and the same procedures and options (filtering and baseline correction, in order to obtain a consistent dataset. The database stores computed parameters of seismic motions, i.e. peak values: PGA, PGV, PGD, effective peak values: EPA, EPV, EPD, control periods, spectral values of absolute acceleration, relative velocity and relative displacement, as well as of instrumental intensity (as defined bz Sandi and Borcia in 2011. The fields in the database include: coding of seismic events, stations and records, a number of associated fields (seismic event source parameters, geographical coordinates of seismic stations, links to the corresponding ground motion records, charts of the response spectra of absolute acceleration, relative velocity, relative displacement and instrumental intensity, as well as some other representative parameters of seismic motions. The conception of the SM-ROM-GL database allows for an easy maintenance; such that elementary knowledge of Microsoft Access 2000 is sufficient for its operation.
Validation and Comparison of One-Dimensional Ground Motion Methodologies
International Nuclear Information System (INIS)
Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively)
International Nuclear Information System (INIS)
This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions
Energy Technology Data Exchange (ETDEWEB)
Reddy, D.P.
1983-04-01
This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)
Mitigating ground-based sensor failures with video motion detection
Macior, Robert E.; Knauth, Jonathan P.; Walter, Sharon M.; Evans, Richard
2008-10-01
Unattended Ground Sensor (UGS) systems typically employ distributed sensor nodes utilizing seismic, magnetic or passive IR sensing modalities to alarm if activity is present. The use of an imaging component to verify sensor events is beneficial to create actionable intelligence. Integration of the ground-based images with other ISR data requires that the images contain valid activity and are appropriately formatted, such as prescribed by Standard NATO Agreement (STANAG) 4545 or the National Imagery Transmission Format, version 2.1 (NITF 2.1). Ground activity sensors suffer from false alarms due to meteorological or biological activity. The addition of imaging allows the analyst to differentiate valid threats from nuisance alarms. Images are prescreened based on target size and temperature difference relative to the background. The combination of video motion detection based on thermal imaging with seismic, magnetic or passive IR sensing modalities improves data quality through multi-phenomenon combinatorial logic. The ground-based images having a nominally vertical aspect are transformed to the horizontal geospatial domain for exploitation and correlation of UGS imagery with other ISR data and for efficient archive and retrieval purposes. The description of an UGS system utilized and solutions that were developed and implemented during an experiment to correlate and fuse IR still imagery with ground moving target information, forming real-time, actionable, coalition intelligence, are presented.
Sympathetic cooling of molecular ion motion to the ground state
Rugango, Rene; Dixon, Thomas H; Gray, John M; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J; Brown, Kenneth R
2014-01-01
We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm 0.02$, corresponding to a temperature of $15.36 \\pm 0.01~\\mu$K.
Methods for prediction of strong earthquake ground motion
International Nuclear Information System (INIS)
This report summarizes the work on characteriztion of strong earthquake ground motion for use in seismic risk studies, development in modern standards and regulatory guides, re-evaluation of the existing sites and for the development of site specific criteria for earthquake-resistant design. This work was carried out from 1 October 1977 to 30 September 1978. This is an on-going effort in which certain topics are continued through more than one fiscal year. Consequently, this report summarizes only the current accomplishments. Detailed theoretical analyses, data handling methods, computer programs, and other pertinent background are presented. 207 references, 159 figures, 33 tables
Variations of earthquake ground motions with depth and its effect on soil-structure interaction
International Nuclear Information System (INIS)
Data from a free-field downhole ground motion array at Lotung, Taiwan indicated that both peak acceleration and response spectra of ground motions varied significantly with depth below the ground surface. Data trends were found to be reasonably consistent with predictions from deconvolution analysis assuming vertically propagating body waves. Soil-structure interaction analyses of a reactor containment model indicated that analyses excluding ground motion variations with depth led to significant overestimation of structural responses. It is concluded that appropriate variations of ground motion with depth should be included in carrying out soil-structure interaction analyses and characterizing foundation input motions for embedded structures
International Nuclear Information System (INIS)
In order to investigate the cause of the amplification in earthquake ground motions, JNES prepared 'three dimensional underground structure model' and using this model analyzed and evaluated the earthquake ground motions. Therefore it was elucidated that the discordance formation of ground and a sudden change in the propagation velocity of ground motion are main causes of the ground motion amplification. Then, JNES collected various physical surveys and examination results in 'Kashiwazaki Vertical Array seismic motion monitoring System' (KAVAS) and developed 'the preparation process of three dimensional underground structure model'. (M.H.)
Influence of constitutive models on ground motion predictions
International Nuclear Information System (INIS)
In recent years, the development of mathematical models for the study of ground shock effects in soil, or rock media, or both, has made important progress. Three basic types of advanced models have been studied: (1) elastic ideally plastic models, (2) variable moduli models and (3) elastic nonideally plastic capped models. The ground shock response in the superseismic range of a 1-MT air burst on a homogeneous halfspace of a soil is considered. Each of the three types of models was fitted to laboratory test data and calculations were made for each case. The results from all three models are comparable only when the stress paths in uniaxial strain are comparable for complete load-unload cycles. Otherwise, major differences occur in the lateral motions and stresses. Consequently, material property laboratory data now include the stress path whenever possible for modeling purposes. (U.S.)
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L.; Jarpe, S.; Kasameyer, P.; Foxall, W.
1998-01-01
We model the 1988, M=6.0, Saguenay earthquake. We utilize an approach that has been developed to predict strong ground motion. this approach involves developing a set of rupture scenarios based upon bounds on rupture parameters. rupture parameters include rupture geometry, hypocenter, rupture roughness, rupture velocity, healing velocity (rise times), slip distribution, asperity size and location, and slip vector. Scenario here refers to specific values of these parameters for an hypothesized earthquake. Synthetic strong ground motion are then generated for each rupture scenario. A sufficient number of scenarios are run to span the variability in strong ground motion due to the source uncertainties. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the one standard deviation value of engineering parameters we have introduced a probabilistic component to the deterministic hazard calculation, For this study we developed bounds on rupture scenarios from previous research on this earthquake. The time history closest to the observed ground motion was selected as a model for the Saguenay earthquake.
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L.; Foxall, W.; Kasameyer, P. [Lawrence Livermore National Lab., CA (United States); Wu, F.T. [State Univ. of New York, Buffalo, NY (United States). Dept. of Geological Sciences; Rau, R.-J. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Earth Sciences; Jarpe, S. [California Univ., Santa Barbara, CA (United States). Inst. for Crustal Studies
1997-01-01
We synthesize strong ground motion from a M=7.25 earthquake along the NW-trending Sanyi-Tungshih-Puli seismic zone. This trend extends from Houlong to Taichung and forms a nearly continuous 78 km long seismic zone identified by the occurrence of M<5 events. It extends from a shallow depth all the way down to about 40 km. The entire length of the fault, if activated at one time, can lead to an event comparable to that the 1995 Kobe earthquake. With the improved digital CWBSN data now provided routinely by CWBSN, it becomes possible to use these data as empirical Green`s functions to synthesize potential ground motion for future large earthquakes. We developed a suite of 100 rupture scenarios for the earthquake and computed the commensurate strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. the synthesized ground motions obtained for a fixed magnitude and identifying the hazard to a site from the statistical distribution of engineering parameters, we have introduced a probabilistic component to the deterministic hazard calculation, The time histories suggested for engineering design are the ones that most closely match either the average or one standard deviation absolute acceleration response values.
A study on the characteristics of strong ground motions in southern Korea
International Nuclear Information System (INIS)
Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets
Thunder-induced ground motions: 2. Site characterization
Lin, Ting-L.; Langston, Charles A.
2009-04-01
Thunder-induced ground motion, near-surface refraction, and Rayleigh wave dispersion measurements were used to constrain near-surface velocity structure at an unconsolidated sediment site. We employed near-surface seismic refraction measurements to first define ranges for site structure parameters. Air-coupled and hammer-generated Rayleigh wave dispersion curves were used to further constrain the site structure by a grid search technique. The acoustic-to-seismic coupling is modeled as an incident plane P wave in a fluid half-space impinging into a solid layered half-space. We found that the infrasound-induced ground motions constrained substrate velocities and the average thickness and velocities of the near-surface layer. The addition of higher-frequency near-surface Rayleigh waves produced tighter constraints on the near-surface velocities. This suggests that natural or controlled airborne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.
Attenuation of ground-motion spectral amplitudes in southeastern Australia
Allen, T.I.; Cummins, P.R.; Dhu, T.; Schneider, J.F.
2007-01-01
A dataset comprising some 1200 weak- and strong-motion records from 84 earthquakes is compiled to develop a regional ground-motion model for southeastern Australia (SEA). Events were recorded from 1993 to 2004 and range in size from moment magnitude 2.0 ??? M ??? 4.7. The decay of vertical-component Fourier spectral amplitudes is modeled by trilinear geometrical spreading. The decay of low-frequency spectral amplitudes can be approximated by the coefficient of R-1.3 (where R is hypocentral distance) within 90 km of the seismic source. From approximately 90 to 160 km, we observe a transition zone in which the seismic coda are affected by postcritical reflections from midcrustal and Moho discontinuities. In this hypocentral distance range, geometrical spreading is approximately R+0.1. Beyond 160 km, low-frequency seismic energy attenuates rapidly with source-receiver distance, having a geometrical spreading coefficient of R-1.6. The associated regional seismic-quality factor can be expressed by the polynomial: log Q(f) = 3.66 - 1.44 log f + 0.768 (log f)2 + 0.058 (log f)3 for frequencies 0.78 ??? f ??? 19.9 Hz. Fourier spectral amplitudes, corrected for geometrical spreading and anelastic attenuation, are regressed with M to obtain quadratic source scaling coefficients. Modeled vertical-component displacement spectra fit the observed data well. Amplitude residuals are, on average, relatively small and do not vary with hypocentral distance. Predicted source spectra (i.e., at R = 1 km) are consistent with eastern North American (ENA) Models at low frequencies (f less than approximately 2 Hz) indicating that moment magnitudes calculated for SEA earthquakes are consistent with moment magnitude scales used in ENA over the observed magnitude range. The models presented represent the first spectral ground-motion prediction equations develooed for the southeastern Australian region. This work provides a useful framework for the development of regional ground-motion relations
Ground-State Entanglement Bound for Quantum Energy Teleportation of General Spin-Chain Models
Hotta, Masahiro
2013-01-01
In protocols of quantum energy teleportation (QET), ground-state entanglement of many-body systems plays a crucial role. For a general class of spin-chain systems, we show analytically that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET
Mobility and dynamics modeling for unmanned ground vehicle motion planning
Witus, Gary
1999-07-01
This paper presents an approach to modeling unmanned ground vehicle (UGV) mobility performance and vehicle dynamics for evaluating the feasibility and cost of alternative motion plans. Feasibility constraints include power, traction, and roll stability limits. Sensor stabilization performance is considered in a system-level constraint requiring that the obstacle detection distance exceed the stopping distance. Mission time and power requirements are inputs to a multi- attribute cost function for planning under uncertainty. The modeling approach combines a theoretical first-principles mathematical model with an empirical knowledge-based model. The first-principles model predicts performance in an idealized deterministic environment. On-board vehicle dynamics control, for dynamic load balancing and traction management, legitimize some of the simplifying assumptions. The knowledge- based model uses historical relationships to predict the mean and variance of total system performance accounting for the contributions of unplanned reactive behaviors, local terrain variations, and vehicle response transients.
Simulation of non-stationary ground motion processes (I)
Institute of Scientific and Technical Information of China (English)
LIANG Jian-wen
2005-01-01
This paper presents a spectral representation method for simulation of non-stationary ground motion processes on the basis of Priestley's evolutionary spectral theory. Following this method, sample processes can be generated using a cosine series formula. It is shown that, these sample processes accurately reflect the prescribed characteristics of the evolutionary power spectral density function when the number of the terms in the cosine series is large enough; and the ensemble expected value and the ensemble autocorrelation function approach the corresponding target functions, respectively, as the sample size increases; and these sample processes are asymptotically normal as the number of the terms in the series tends to infinity. Finally, a few special cases of the formula are discussed, one of which is non-stationary white noise process, and other one is reduced to the formula for simulation of stationary stochastic processes.
Ground Motion Mitigation in the Main Linac of CLIC
International Nuclear Information System (INIS)
Full text: The future linear collider CLIC (Compact Linear Collider) is CERN's propose for a successor of the LHC (Large Hadron Collider). The design of CLIC requires ultralow particle beam emittances, which makes the accelerator very sensitive to ground motion. Without countermeasure, the beam quality would be already unacceptable after a few seconds. In our work we present a feedback algorithm, which mitigates the parasitic effects of ground motion in the main linac of CLIC efficiently. We use an adaptive controller, which is composed of two parts: a system identification unit and a SVD control algorithm. The system identification unit calculates on-line estimates of the time changing accelerator behaviour. This precise model, which can adapt to system changes, is used by the control algorithm. If the system identification unit would not be used, drifting accelerator parameter would cause a mismatch between the real accelerator behaviour and the model used by the controller, which would result in a poor controller performance. Standard system identification algorithms cannot be used in an accelerator environment. The indispensable system excitation cause a not tolerable emittance growth, if it is applied thoughtless. Instead a special excitation scheme consisting of interleaved beam bumps was implemented, which keeps the emittance growth at an acceptable level. However, this special excitation has the disadvantage that not the complete system can be identified anymore. To still get an all over model of the system, we use the identification data and interpolate them with the help of a beam oscillation amplitude model, derived for the main linac of CLIC. The control algorithm uses the identified system data, which are the orbit response matrix R. With the help of the SVD decomposition of R, a very efficient filter can be created. This filter reconstructs the ground motion components, which are causing the majority of the emittance growth. At the same time the
Ground motion measurements at the LBL Light Source site, the Bevatron and at SLAC
International Nuclear Information System (INIS)
This report describes the technique for measuring ground motion at the site of the 1.0 to 2.0 GeV Synchrotron Radiation Facility which was known as the Advanced Light Source (in 1983 when the measurements were taken). The results of ground motion measurements at the Light Source site at Building 6 at LBL are presented. As comparison, ground motion measurements were made at the Byerly Tunnel, the Bevatron, Blackberry Canyon, and SLAC at the Spear Ring. Ground Motion at the Light Source site was measured in a band from 4 to 100 Hz. The measured noise is primarily local in origin and is not easily transported through LBL soils. The background ground motion is for the most part less than 0.1 microns. Localized truck traffic near Building 6 and the operation of the cranes in the building can result in local ground motions of a micron or more for short periods of time. The background motion at Building 6 is between 1 and 2 orders of magnitude higher than ground motion in a quiet seismic tunnel, which is representative of quiet sites worldwide. The magnitude of the ground motions at SLAC and the Bevatron are comparable to ground motions measured at the Building 6 Light Source site. However, the frequency signature of each site is very different
Comparison of Nonlinear Model Results Using Modified Recorded and Synthetic Ground Motions
Energy Technology Data Exchange (ETDEWEB)
Robert E. Spears; J. Kevin Wilkins
2011-11-01
A study has been performed that compares results of nonlinear model runs using two sets of earthquake ground motion time histories that have been modified to fit the same design response spectra. The time histories include applicable modified recorded earthquake ground motion time histories and synthetic ground motion time histories. The modified recorded earthquake ground motion time histories are modified from time history records that are selected based on consistent magnitude and distance. The synthetic ground motion time histories are generated using appropriate Fourier amplitude spectrums, Arias intensity, and drift correction. All of the time history modification is performed using the same algorithm to fit the design response spectra. The study provides data to demonstrate that properly managed synthetic ground motion time histories are reasonable for use in nonlinear seismic analysis.
Comparison of Nonlinear Model Results Using Modified Recorded and Synthetic Ground Motions
International Nuclear Information System (INIS)
A study has been performed that compares results of nonlinear model runs using two sets of earthquake ground motion time histories that have been modified to fit the same design response spectra. The time histories include applicable modified recorded earthquake ground motion time histories and synthetic ground motion time histories. The modified recorded earthquake ground motion time histories are modified from time history records that are selected based on consistent magnitude and distance. The synthetic ground motion time histories are generated using appropriate Fourier amplitude spectrums, Arias intensity, and drift correction. All of the time history modification is performed using the same algorithm to fit the design response spectra. The study provides data to demonstrate that properly managed synthetic ground motion time histories are reasonable for use in nonlinear seismic analysis.
Strong ground motions and damage patterns from the 1999 Duzce earthquake in Turkey
Rathje, Ellen M; Stewart, Jonathan P.; Baturay, M. Bora; Bray, Jonathan D; Bardet, J.P.
2006-01-01
The Mw 7.1 Duzce earthquake occurred on 12 November 1999 along the North Anatolian Fault in northwestern Turkey. This paper documents observations from a field reconnaissance team, addressing two principal aspects of this significant earthquake: the recorded ground motions and the distribution and severity of the earthquake effects on the built environment. In general, the recorded ground motions from this earthquake were smaller than predicted by ground motion predictive equations available ...
Strong ground motion prediction for southwestern China from small earthquake records
Tao, Z. R.; X. X. Tao; A. P. Cui
2015-01-01
For regions lack of strong ground motion records, a method is developed to predict strong ground motion by small earthquake records from local broadband digital earthquake networks. Sichuan and Yunnan regions, located in southwestern China, are selected as the targets. Five regional source and crustal medium parameters are inversed by micro-Genetic Algorithm. These parameters are adopted to predict strong ground motion for moment magnitude (Mw) 5.0, 6.0 and ...
Detection of Ground Motion effects on the beam trajectory at ATF2
Renier, Y; Tomas, R; Schulte, D
2012-01-01
The ATF2 experiment is currently demonstrating the feasibility of the beam delivery system for the future linear collider. The orbit feedback is very critical to obtain the nanometer vertical beam size at the interaction point and in the case of CLIC, ground motion effects on the beam must be corrected. In this respect, as a proof of principle of a ground motion feed forward, the ground motion effects on the beam trajectory are extracted from the beam position monitor readings.
Detailed modelling of strong ground motion in Trieste
International Nuclear Information System (INIS)
Trieste has been included in category IV by the new Italian seismic code. This corresponds to a horizontal acceleration of 0.05g for the anchoring of the elastic response spectrum. A detailed modelling of the ground motion in Trieste has been done for some scenario earthquakes, compatible with the seismotectonic regime of the region. Three-component synthetic seismograms (displacements, velocities and accelerations) have been analyzed to obtain significant parameters of engineering interest. The definition of the seismic input, derived from a comprehensive set of seismograms analyzed in the time and frequency domains, represents a powerful and convenient tool for seismic microzoning. In the specific case of Palazzo Carciotti, depending on the azimuth of the incoming wavefield, an increase of one degree in intensity may be expected due to different amplification patterns, while a nice stability can be seen in the periods corresponding to the peak values, with amplifications around 1 and 2 Hz. For Palazzo Carciotti, the most dangerous scenario considered, for an event of M=6.5 at an epicentral distance of 21 km, modelled taking into account source finiteness and directivity, leads to a peak ground acceleration value of 0.2 g. The seismic code, being based on a probabilistic approach, can be considered representative of the average seismic shaking for the province of Trieste, and can slightly underestimate the seismic input due the seismogenic potential (obtained from the historical seismicity and seismotectonics). Furthermore, relevant local site effects are mostly neglected. Both modelling and observations show that site conditions in the centre of Trieste can amplify the ground motion at the bedrock by a factor of five, in the frequency range of engineering interest. We may therefore expect macroseismic intensities as high as IX (MCS) corresponding to VIII (MSK). Spectral amplifications obtained for the considered scenario earthquakes are strongly event
A coherency function model of ground motion at base rock corresponding to strike-slip fault
Institute of Scientific and Technical Information of China (English)
丁海平; 刘启方; 金星; 袁一凡
2004-01-01
At present, the method to study spatial variation of ground motions is statistic analysis based on dense array records such as SMART-1 array, etc. For lacking of information of ground motions, there is no coherency function model of base rock and different style site. Spatial variation of ground motions in elastic media is analyzed by deterministic method in this paper. Taking elastic half-space model with dislocation source of fault, near-field ground motions are simulated. This model takes strike-slip fault and earth media into account. A coherency function is proposed for base rock site.
International Nuclear Information System (INIS)
The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, Vs30, etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)
Peak ground motion distribution in Romania due to Vrancea earthquakes
International Nuclear Information System (INIS)
Vrancea is a particular seismic region situated at the SE-Carpathians bend (Romania). It is characterized by persistent seismicity in a concentrated focal volume, at depths of 60-200 km, with 2 to 3 major earthquakes per century (MW>7). The purpose of our study is to investigate in detail the ground motion patterns for small and moderate Vrancea events (MW = 3.5 to 5.3) occurred during 1999, taking advantage of the unique data set offered by the Calixto'99 Project and the permanent Vrancea-K2 network (150 stations). The observed patterns are compared with available macroseismic maps of large Vrancea earthquakes, showing similar general patterns elongated in the NE-SW direction which mimic the S-waves source radiation, but patches with pronounced maxima are also evidenced rather far from the epicenter, at the NE and SW edges of the Focsani sedimentary basin, as shown firstly by Atanasiu (1961). This feature is also visible on instrumental data of strong events (Mandrescu and Radulian, 1999) as well as for moderate events recently recorded by digital K2 network (Bonjer et al., 2001) and correlates with the distribution of predominant response frequencies of shallow sedimentary layers. The influence of the local structure and/or focussing effects, caused by deeper lithospheric structure, on the observed site effects and the implications on the seismic hazard assessment for Vrancea earthquakes are discussed. (authors)
Characteristics of near-fault ground motion containing velocity pulses
Institute of Scientific and Technical Information of China (English)
WEI Tao; ZHAO Feng-xin; ZHANG Yu-shan
2006-01-01
There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure. However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code.
Energy Technology Data Exchange (ETDEWEB)
Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.
1984-05-01
This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.
International Nuclear Information System (INIS)
This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage
Analytic model for surface ground motion with spall induced by underground nuclear tests
International Nuclear Information System (INIS)
This report provides a detailed presentation and critique of a model used to characterize the surface ground motion following a contained, spalling underground nuclear explosion intended for calculation of the resulting atmospheric acoustic pulse. Some examples of its use are included. Some discussion of the general approach of ground motion model parameter extraction, not dependent on the specific model, is also presented
International Nuclear Information System (INIS)
This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics on structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5
Examination of earthquake Ground Motion in the deep underground environment of Japan
International Nuclear Information System (INIS)
Among the possible impacts of earthquakes on the geological disposal system, ground motion is not included in the criteria for selecting a candidate repository site because, in general, ground motion deep underground is considered to be smaller than at the surface. Also, after backfilling/closure, the repository moves together with the surrounding rock. We have carried out a detailed examination of earthquake ground motion deep underground using extensive data from recent observation networks to support the above assumption. As a result, it has been reconfirmed that earthquake ground motion deep underground is relatively smaller than at the surface. Through detailed analysis of data, we have identified the following important parameters for evaluating earthquake ground motion deep underground: depth and velocity distribution of the rock formations of interest, the intensity of the short period component of earthquakes and incident angle of seismic waves to the rock formations. (authors)
Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion
Institute of Scientific and Technical Information of China (English)
YE Kun; LI Li; FANG Qin-han
2008-01-01
An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.
Strong ground motion prediction for southwestern China from small earthquake records
Directory of Open Access Journals (Sweden)
Z. R. Tao
2015-09-01
Full Text Available For regions lack of strong ground motion records, a method is developed to predict strong ground motion by small earthquake records from local broadband digital earthquake networks. Sichuan and Yunnan regions, located in southwestern China, are selected as the targets. Five regional source and crustal medium parameters are inversed by micro-Genetic Algorithm. These parameters are adopted to predict strong ground motion for moment magnitude (Mw 5.0, 6.0 and 7.0. Strong ground motion data are compared with the results, most of the result pass through ideally the data point plexus, except the case of Mw 7.0 in Sichuan region, which shows an obvious slow attenuation. For further application, this result is adopted in probability seismic hazard assessment (PSHA and near-field strong ground motion synthesis of the Wenchuan Earthquake.
Strong Ground-Motion Prediction in Seismic Hazard Analysis: PEGASOS and Beyond
Scherbaum, F.; Bommer, J. J.; Cotton, F.; Bungum, H.; Sabetta, F.
2005-12-01
The SSHAC Level 4 approach to probabilistic seismic hazard analysis (PSHA), which could be considered to define the state-of-the-art in PSHA using multiple expert opinions, has been fully applied only twice, firstly in the multi-year Yucca Mountain study and subsequently (2002-2004) in the PEGASOS project. The authors of this paper participated as ground-motion experts in this latter project, the objective of which was comprehensive seismic hazard analysis for four nuclear power plant sites in Switzerland, considering annual exceedance frequencies down to 1/10000000. Following SSHAC procedure, particular emphasis was put on capturing both the aleatory and epistemic uncertainties. As a consequence, ground motion prediction was performed by combining several empirical ground motion models within a logic tree framework with the weights on each logic tree branch expressing the personal degree-of-belief of each ground-motion expert. In the present paper, we critically review the current state of ground motion prediction methodology in PSHA in particular for regions of low seismicity. One of the toughest lessons from PEGASOS was that in systematically and rigorously applying the laws of uncertainty propagation to all of the required conversions and adjustments of ground motion models, a huge price has to be paid in an ever-growing aleatory variability. Once this path has been followed, these large sigma values will drive the hazard, particularly for low annual frequencies of exceedance. Therefore, from a post-PEGASOS perspective, the key issues in the context of ground-motion prediction for PSHA for the near future are to better understand the aleatory variability of ground motion and to develop suites of ground-motion prediction equations that employ the same parameter definitions. The latter is a global rather than a regional challenge which might be a desirable long-term goal for projects similar to the PEER NGA (Pacific Earthquake Engineering Research Center, Next
Artificial ground motion compatible with specified ground shaking peaks and target response spectrum
Institute of Scientific and Technical Information of China (English)
Zhao Fengxin; Zhang Yushan; Lü Hongshan
2006-01-01
This article describes a hybrid simulation method to generate artificial ground motion time histories that are compatible with specified peak seismic acceleration, velocity and displacement as well as the target response spectrum of absolute acceleration. First, based on traditional methods that match the target spectrum in the frequency domain, an initial acceleration time history was synthesized to satisfy the specified peak acceleration, target spectral acceleration and intensity envelope. Second, by using the inversion formula of the seismic input to a linear single-degree-of-freedom system and by superimposing a series of narrow-band time histories in the time domain, the initial time history is further modified to allow its peak velocity and displacement to approach the targets and improve its matching precision with the target spectrum.Numerical examples are provided to demonstrate that the proposed method achieves good agreement with the target values.
Seismic Safety Program: Ground motion and structural response
Energy Technology Data Exchange (ETDEWEB)
1993-05-01
In 1964, John A. Blume & Associates Research Division (Blume) began a broad-range structural response program to assist the Nevada Operations Office of the US Atomic Energy Commission (AEC) in ensuring the continued safe conduct of underground nuclear detonation testing at the Nevada Test Site (NTS) and elsewhere. Blume`s long experience in earthquake engineering provided a general basis for the program, but much more specialized knowledge was required for the AEC`s purposes. Over the next 24 years Blume conducted a major research program to provide essential understanding of the detailed nature of the response of structures to dynamic loads such as those imposed by seismic wave propagation. The program`s results have been embodied in a prediction technology which has served to provide reliable advanced knowledge of the probable effects of seismic ground motion on all kinds of structures, for use in earthquake engineering and in building codes as well as for the continuing needs of the US Department of Energy`s Nevada Operations Office (DOE/NV). This report is primarily an accounting of the Blume work, beginning with the setting in 1964 and the perception of the program needs as envisioned by Dr. John A. Blume. Subsequent chapters describe the structural response program in detail and the structural prediction procedures which resulted; the intensive data acquisition program which, as is discussed at some length, relied heavily on the contributions of other consultant-contractors in the DOE/NV Seismic Safety Support Program; laboratory and field studies to provide data on building elements and structures subjected to dynamic loads from sources ranging from testing machines to earthquakes; structural response activities undertaken for testing at the NTS and for off-NTS underground nuclear detonations; and concluding with an account of corollary studies including effects of natural forces and of related studies on building response.
Earthquake ground motion generation for nuclear power plant with special reference to KAPP-3 and 4
International Nuclear Information System (INIS)
The Nuclear Power Plant (NPP) is designed for two levels of earthquake viz., Operating Basis Earthquake (OBE) and Safe Shutdown Earthquake (SSE). The OBE (S1 level ground motion) corresponds to the maximum level of ground motion, which can reasonably be experienced at the site once during the operating life of nuclear power plant with a return period of 100 years. The SSE (S2 level ground motion) represents the maximum level of ground motion to be used for design of safety related structures, systems and equipment (SS and E) of NPP and is based on the maximum earthquake potential of the region, with a return period of 10,000 years. For these two levels of earthquakes, it is required to determine Peak Ground Acceleration (PGA) and thereby, specify the Design Basis Ground Motion (DBGM). In order to determine the PGA, seismotectonic study is of utmost importance. The present paper brings out the procedure for conducting field check study, determination of the ground motion and also a case study of field check carried out and generation of ground motion for KAPP-3 and 4 NPP site
Energy Technology Data Exchange (ETDEWEB)
Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.
2014-04-01
Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock
International Nuclear Information System (INIS)
Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock
Source Scaling and Ground Motion of the 2008 Wells, Nevada, earthquake sequence
Yoo, S.; Dreger, D. S.; Mayeda, K. M.; Walter, W. R.
2011-12-01
Dynamic source parameters, such as a corner frequency, stress drop, and radiated energy, are one of the most critical factors controlling ground motions at higher-frequencies (generally greater than 1 Hz), which may cause damage to nearby surface structures. Hence, scaling relation of these parameters can play an important role in assessing the seismic hazard for regions in which records of ground motions from potentially damaging earthquakes are not available. On February 21, 2008 at 14:16 (UTC), a magnitude 6 earthquake occurred near Wells, Nevada, where characterized by low rate of seismicity. For their aftershocks, a marked discrepancy between the observed and predicted ground motions from empirical ground motion prediction equation was reported (Petersen et al., 2011). To evaluate and understand these observed ground motions, we investigate the dynamic source parameters and their scaling relation for this earthquake sequence. We estimate the source parameters of the earthquakes using the coda spectral ratio method (Mayeda et al., 2007) and examine the estimates with the observed spectral accelerations at higher frequencies. From the derived source parameters and scaling relation, we compute synthetic ground motions of the earthquakes using fractal composite source model (e.g., Zeng et al., 1994) and compare these synthetic ground motions with the observed ground motions and synthetic ground motions obtained from self-similar source scaling relation. In our preliminary results, we find the stress drops of the aftershocks are systematically 2-5 times lower than a stress drop of the mainshock. This agrees well with systematic overestimation of the predicted ground motions for the aftershocks. The simulated ground motions from the coda-derived scaling relation better explains the observed both weak and strong ground motions than that of from the size independent stress drop scaling relation. Assuming that the scale dependent stress drop is real, at least in some
Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area
Reshi, Owais A.
2016-04-13
Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes
Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge
Directory of Open Access Journals (Sweden)
Swagata Banerjee Basu
2011-01-01
Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.
Representation of bidirectional ground motions for design spectra in building codes
Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.
2011-01-01
The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.
Le Cozannet, Gonéri; Raucoules, Daniel; Wöppelmann, Guy; Garcin, Manuel; Da Sylva, Sylvestre; Meyssignac, Benoit; Gravelle, Médéric; Lavigne, Franck
2015-01-01
With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level change...
Study on the severest real ground motion for seismic design and analysis
Institute of Scientific and Technical Information of China (English)
谢礼立; 翟长海
2003-01-01
How to select the adequate real strong earthquake ground motion for seismic analysis and design of structures is an essential problem in earthquake engineering research and practice. In the paper the concept of the severest design ground motion is proposed and a method is developed for comparing the severity of the recorded strong ground motions. By using this method the severest earthquake groundmotions are selected out as seismic inputs to the structures to be designed from a database that consists of more than five thousand significant strong ground motion records collected over the world. The selected severest ground motions are very likely to be able to drive the structures to their critical response and thereby result in the highest damage potential. It is noted that for different structures with different predominant natural periods and at different sites where structures are located the severest design ground motions are usually different. Finally, two examples are illustrated to demonstrate the rationality of the concept and the reliability of the selected design motion.
International Nuclear Information System (INIS)
The sloshing behavior of a tank is very sensitive to the characteristics of input motions, as well as the configuration of the tank-liquid system. Nevertheless, most of the past studies focused only on the configuration of tanks and the dynamic properties of the fluid motion. Therefore, the sloshing response in liquid storage tanks for earthquake excitation has not been properly predicted in many cases until now. As one useful parameter to characterize the significant frequency content of input earthquake motions, the peak ground acceleration to velocity (A/V) ratio is utilized. The ground motions, exhibiting a large amplitude, and very high frequency content in the strong-motion phase, generally result in high A/V ratios and very large spectral acceleration values in short periods, whereas the ground motions, containing intense, long-duration acceleration pulses, would generally lead to low A/V ratios and pronounced spectral acceleration values for a moderate or long period. Normal ground motions with significant energy content over a broad range of frequencies and exhibiting a highly irregular acceleration pattern would generally have medium A/V ratios and acceleration spectra similar to the standard design spectrum. In this study, the sloshing response in rigid rectangular tanks subjected to various earthquake ground motions with different peak A/V ratios is investigated
Liu, K.
2009-12-01
An evaluation of seismic hazards requires an estimate of the expected ground motion at the site of interest. The most common means of estimating this ground motion in engineering practice is the use of an attenuation relation. A number of developments have arisen recently to suggest that a new generation of attenuation relationships is warranted. The project named Next Generation Attenuation of Ground Motions (NGA) Project was developed by Pacific Earthquake Engineering Research Center (PEER) in response to a core objective: reducing uncertainty in earthquake ground motion estimation. This objective reflects recognition from industry sponsors that improvements in earthquake ground motion estimation will result in significant cost savings and will result in improved system performance in the event of a large earthquake. The Central Weather Bureau has implemented the Taiwan Strong Motion Instrumentation Program (TSMIP) to collect high-quality instrumental recordings of strong earthquake shaking.It is necessary for us to study the strong ground motion characteristics at the Ilan area of northeastern Taiwan. Further analyses using a good quality data base that includes 486 events and 4172 recordings of magnitude greater than 4.0 are required to derive the next generation attenuation of ground motion in Ilan area. In addition, Liu and Tsai (2007) used a catalog of more than 1840 shallow earthquakes with homogenized Mw magnitude ranging from 5.0 to 8.2 in 1900-2007 to estimate the seismic hazard potential in Taiwan. As a result, the PGA and PGV contour patterns of maximum ground motion show that Ilan Plain has high values of 0.2g and 80cm/sec with respect to MMI intensity VII and IX, respectively. Furthermore, from the mean ground motion and the seismic intensity rate analyses, they show that a high annul probability of MMI > VI greater than 35 percents are located at the Chianan area of western Taiwan and Ilan Plain in northeastern Taiwan. However, these results was
On the unsteady motion and stability of a heaving airfoil in ground effect
Institute of Scientific and Technical Information of China (English)
Juan Molina; Xin Zhang; David Angland
2011-01-01
This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces' behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity.However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.
Characteristics of ground motion at permafrost sites along the Qinghai-Tibet railway
Wang, L.; Wu, Z.; Sun, Jielun; Liu, Xiuying; Wang, Z.
2009-01-01
Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied. ?? 2008 Elsevier Ltd. All rights reserved.
On the Testing of Ground--Motion Prediction Equations against Small--Magnitude Data
Beauval, Céline; Laurendeau, Aurore; Delavaud, Elise; Cotton, Fabrice; Guéguen, Philippe; Kuehn, Nicolas; 10.1785/0120110271
2012-01-01
Ground-motion prediction equations (GMPE) are essential in probabilistic seismic hazard studies for estimating the ground motions generated by the seismic sources. In low seismicity regions, only weak motions are available in the lifetime of accelerometric networks, and the equations selected for the probabilistic studies are usually models established from foreign data. Although most ground-motion prediction equations have been developed for magnitudes 5 and above, the minimum magnitude often used in probabilistic studies in low seismicity regions is smaller. Desaggregations have shown that, at return periods of engineering interest, magnitudes lower than 5 can be contributing to the hazard. This paper presents the testing of several GMPEs selected in current international and national probabilistic projects against weak motions recorded in France (191 recordings with source-site distances up to 300km, 3.8\\leqMw\\leq4.5). The method is based on the loglikelihood value proposed by Scherbaum et al. (2009). The ...
Soft Soil Site Characterization on the Coast of Yantai and Its Effect on Ground Motion Parameters
Institute of Scientific and Technical Information of China (English)
Lü Yuejun; Tang Rongyu; Peng Yanju
2005-01-01
According to the Chinese GB50011-2001 code and the recommended provisions of FEMANEHRP and EUROCODE 8, by using shear wave velocity and borehole data, the site classification is evaluated for a typical soft soil site on the Yantai seacoast. The site seismic ground motion effect is analyzed and the influence of the coastal soil on design ground motion parameters is discussed. The results show that the brief site classification can not represent the real conditions of a soft soil site; the soft soil on the coast has a remarkable impact on the magnitude and spectrum of ground motion acceleration. The magnification on peak acceleration is bigger, however, due to the nonlinear deformation of the soil. The magnification is reduced nonlinearly with the increase of input ground motion; the spectrum is broadened and the characteristic period elongated on the soft soil site.
Institute of Scientific and Technical Information of China (English)
Saurabh Baruah; Santanu Baruah; Naba Kumar Gogoi; Olga Erteleva; Felix Aptikaev; J.R.Kayal
2009-01-01
Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.
Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors
Institute of Scientific and Technical Information of China (English)
YAN Hai-Qing; TANG Chen; LIU Ming; ZHANG Hao; ZHANG Gui-Min
2004-01-01
We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+, X) have been calculated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.
Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors
Institute of Scientific and Technical Information of China (English)
YANHai-Qing; TANGChen; LIUMing; ZHANGHao; ZHANGGui-Min
2004-01-01
We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+,X) have beencal culated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.
Effect of estimated torsional ground motion on lateral and rotational floor response spectra
International Nuclear Information System (INIS)
The purpose is to describe the mathematical formulation used in computing the seismic response of equipment (the secondary system) located within an asymmetric building (the primary system) subjected to lateral and rotational base ground motions and to illustrate the influence of an estimated rotational ground motion on the response of the secondary system. The equipment response is represented by the floor response spectra. A rotational time history ground motion is generated to act in conjunction with the recorded lateral component. These two time history motions, are used as input motions applied at the base of an asymmetric building structure. The coupled lateral-torsional floor responses are determined. The resulting lateral floor motion of the structure is applied to a series of simple oscillators, each having an assumed damping ratio, and their maximum responses are plotted as a function of their natural periods. These plots represent the unsmoothed damped lateral floor response spectra obtained by a time history analysis. In a similar manner, rotational floor response spectra are obtained by applying the rotational floor motion to a series of torsional single-degree-of-freedom oscillators and plotting their maximum rotational responses as a function of their natural periods for a particular level of damping. The response results are analyzed to study the influence of the estimated torsional ground motion on both the lateral and rotational floor response spectra of such a structure. By comparing the results, one may conclude that the estimated rotational ground motion has a significant effect on the torsional floor response spectra. As a result, the edge lateral floor spectra are also affected significantly, both due to the direct torsional response of the building and also due to the direct transmission of the rotational ground motion throughout the entire frequency range. (orig./HP)
FINITE FAULT MODELING OF STRONG GROUND MOTIONS USING AN EMPIRICAL GREEN’S FUNCTION APPROACH
Scognamiglio, Laura; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia
2005-01-01
The purpose of this study is to test the ground motion synthesis methodology outlined by Hutchings and Wu (1990) and further developed by Hutchings et al. (1991, 1994), and verify its capacity of being used as a predicting tool in strong ground motion seismology as developed by Hutchings (1991) and Hutchings et al. (1996). The earthquake chosen for this test is the 26 September 1997, 09:40, Mw=6.0 Colfiorito Earthquake (Italy).
International Nuclear Information System (INIS)
This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart
Orientation dependence of ground motion and structural response of reinforced concrete space frames
Ghazizadeh, S. A.; Grant, D; Rossetto, T
2013-01-01
Horizontal seismic demand is represented in seismic design codes by a single elastic response spectrum. Using a single spectrum conceals the difference between ground motions that are highly polarised and those for which the demand does not depend significantly on the orientation. In this study, two suites of ground motion were developed using the program RspMatchBi, with each suite characterised by different orientation dependence and seismic demand. Reinforced concrete space frames with var...
Dabaghi, Mayssa
2014-01-01
A comprehensive parameterized stochastic model of near-fault ground motions in two orthogonal horizontal directions is developed. The proposed model uniquely combines several existing and new sub-models to represent major characteristics of recorded near-fault ground motions. These characteristics include near-fault effects of directivity and fling step; temporal and spectral non-stationarity; intensity, duration and frequency content characteristics; directionality of components, as well as ...
Response of linear-elastic structures to near-fault ground motions
Kristján Ingvi Ólason 1981
2012-01-01
Recorded earthquake ground motions in the near-fault regions have different and peculiar characteristics compared to that in the far-fault region. The main difference is a strong long period pulse in the velocity record due to forward directivity effects. This phenomenon can cause severe damage to flexible structures like high rise buildings. Seismic design codes are based on far-fault ground motion data and provisions for structures in near-fault regions are inadequate. In this study the mai...
International Nuclear Information System (INIS)
This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies
Near-fault ground motion bi-normalized pseudo-velocity spectra and its applications
Institute of Scientific and Technical Information of China (English)
XU Long-jun; XIE Li-li
2007-01-01
Ground motions with forward-directivity effect in the near-fault region are obviously different from ordinary far-field ground motions. Design spectral models for this kind of motions have been proposed by correlating simple pulses with parameters attenuation relationships in a previous study of the authors. To further test the applicability of the established design spectral model, we analyze ground motion pseudo-velocity response spectra (PVS), normalized pseudo-velocity spectra (NPVS) and bi-normalized pseudo-velocity spectra (BNPVS) of 53 typical near-fault forward-directivity ground motions. It is found that BNPVS not only has more salient features to reflect the difference between soil and rock sites, but also has less scattering to reveal the nature of forward-directivity motions. And then, BNPVS is used for prediction of design spectra accounting for the influence of site conditions, and the constructed design spectra are compared with those spectra established previously. It is concluded that site condition can heavily affect ground motions, buildings on rock can be even more dangerous than those on soil sites, in particular for ordinary buildings with short to middle vibration periods. Finally, pulse models are also suggested for structural analyses in the near-fault region.
Ground-state-entanglement bound for quantum energy teleportation of general spin-chain models
Hotta, Masahiro
2013-03-01
Many-body quantum systems in the ground states have zero-point energy due to the uncertainty relation. In many cases, the system in the ground state accompanies spatially entangled energy density fluctuation via the noncommutativity of the energy density operators, though the total energy takes a fixed value, i.e., the lowest eigenvalue of the Hamiltonian. Quantum energy teleportation (QET) is a protocol for the extraction of the zero-point energy out of one subsystem using information of a remote measurement of another subsystem. From an operational viewpoint of protocol users, QET can be regarded as an effective rapid energy transportation without breaking all physical laws, including causality and local energy conservation. In the protocol, the ground-state entanglement plays a crucial role. In this paper, we show analytically for a general class of spin-chain systems that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET. The result may also deepen our understanding of the energy density fluctuation in condensed-matter systems from a perspective of quantum information theory.
Vertical ground motion and historical sea-level records in Dakar (Senegal)
International Nuclear Information System (INIS)
With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992–2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year−1. Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions. (letter)
Near-fault directivity pulse-like ground motion effect on high-speed railway bridge
Institute of Scientific and Technical Information of China (English)
陈令坤; 张楠; 蒋丽忠; 曾志平; 陈格威; 国巍
2014-01-01
The vehicle-track-bridge (VTB) element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions. Based on the PEER NAG Strong Ground Motion Database, the spatial analysis model of a vehicle-bridge system was developed, the VTB element was derived to simulate the interaction of train and bridge, and the elasto-plastic seismic responses of the bridge were calculated. The calculation results show that girder and pier top displacement, and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes, and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading. The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base, which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve. The results show that there is an amplification of the vertical deflection in the girder’s mid-span owing to the high vertical ground motion. In light of these findings, the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.
Vertical ground motion and historical sea-level records in Dakar (Senegal)
Le Cozannet, Gonéri; Raucoules, Daniel; Wöppelmann, Guy; Garcin, Manuel; Da Sylva, Sylvestre; Meyssignac, Benoit; Gravelle, Médéric; Lavigne, Franck
2015-08-01
With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992-2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year-1. Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions.
Broad-band near-field ground motion simulations in 3-dimensional scattering media
Imperatori, W.
2012-12-06
The heterogeneous nature of Earth\\'s crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent
Dalguer, L. A.; Baumann, C.; Cauzzi, C.
2013-12-01
Empirical ground motion prediction in the very near-field and for large magnitudes is often based on extrapolation of ground motion prediction equations (GMPEs) outside the range where they are well constrained by recorded data. With empirical GMPEs it is also difficult to capture source-dominated ground motion patterns, such as the effects of velocity pulses induced by subshear and supershear rupture directivity, buried and surface-rupturing, hanging-wall and foot-wall, weak shallow layers, complex geometry faults and stress drop. A way to cope at least in part with these shortcomings is to augment the calibration datasets with synthetic ground motions. To this aim, physics-based dynamic rupture models - where the physical bases involved in the fault rupture are explicitly considered - appear to be a suitable approach to produce synthetic ground motions. In this contribution, we first perform an assessment of a database of synthetic ground motions generated by a suite of dynamic rupture simulations to verify compatibility of the peak ground amplitudes with current GMPEs. The synthetic data-set is composed by 360 earthquake scenarios with moment magnitudes in the range of 5.5-7, for three mechanisms of faulting (reverse, normal and strike-slip) and for both buried faults and surface rupturing faults. Second, we parameterise the synthetic dataset through a GMPE. For this purpose, we identify the basic functional forms by analyzing the variation of the synthetic peak ground motions and spectral ordinates as a function of different explanatory variables related to the earthquake source characteristics, in order to account for some of the source effects listed above. We argue that this study provides basic guidelines for the developments of future GMPEs including data from physics-based numerical simulations.
Hancilar, Ufuk; Harmandar, Ebru; Çakti, Eser
2014-05-01
Empirical fragility functions are derived by statistical processing of the data on: i) Damaged and undamaged buildings, and ii) Ground motion intensity values at the buildings' locations. This study investigates effects of different ground motion inputs on the derived fragility functions. The previously constructed fragility curves (Hancilar et al. 2013), which rely on specific shaking intensity maps published by the USGS after the 2010 Haiti Earthquake, are compared with the fragility functions computed in the present study. Building data come from field surveys of 6,347 buildings that are grouped with respect to structural material type and number of stories. For damage assessment, the European Macroseismic Scale (EMS-98) damage grades are adopted. The simplest way to account for the variability in ground motion input could have been achieved by employing different ground motion prediction equations (GMPEs) and their standard variations. However, in this work, we prefer to rely on stochastically simulated ground motions of the Haiti earthquake. We employ five different source models available in the literature and calculate the resulting strong ground motion in time domain. In our simulations we also consider the local site effects by published studies on NEHRP site classes and micro-zoning maps of the city of Port-au-Prince. We estimate the regional distributions from the waveforms simulated at the same coordinates that we have damage information from. The estimated spatial distributions of peak ground accelerations and velocities, PGA and PGV respectively, are then used as input to fragility computations. The results show that changing the ground motion input causes significant variability in the resulting fragility functions.
Joseph, Angela Marie Banner
2011-01-01
This study was a grounded theory investigation of the LatinoJustice PRLDEF LawBound participants. The research was conducted using the grounded theory method developed by Glaser and Strauss (1967) and Glaser (1978, 1992, 1993, 1996, 1998, 2001, 2003, 2005) to discover an explanatory theory directly from the data. The discovery of the…
Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion
DEFF Research Database (Denmark)
Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.;
1997-01-01
This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour is of...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation...
Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion
DEFF Research Database (Denmark)
Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.;
This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour is of...... an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....
International Nuclear Information System (INIS)
In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake
Energy Technology Data Exchange (ETDEWEB)
Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)
2015-04-24
In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.
Kagawa, T.; Irikura, K.; Some, P. G.; Miyake, H.; Sato, T.; Dan, K.; Matsu, S.
2005-12-01
We have studied differences in ground motion according to fault rupture types and magnitude. We found that three diffferent earthquake categories have distinct ground motion characteristics. Somerville (2003) and Kagawa et al. (2004) found that the ground motion caused by subsurface rupture in the period range around one second is larger than predicted by empirical spectral attenuation relations (Abrahamson and Silva, 1997) for all earthquakes, but ground motion from earthquakes that rupture the surface is smaller in the same period range. We expand their study to smaller earthquakes and add several recent earthquakes. WWe began by dividing the earthquakes into four categories that are a combination of two classifications, i.e. defined and undefined fault, surface and subsurface rupture earthquakes. Each category is divided into larger and smaller earthquakes than about Mw 6.5. Eventually, we classified the earthquakes into three groups: a) Surface rupture type : Ground motion is smaller than average, especially in the period range around 1 second. b) Larger subsurface rupture type : Ground motion is larger than average, especially in the period range around 1 second. c) Smaller subsurface rupture type : Ground motion is larger than average, especially in the period range around 0.1 second. Subsurface rupture earthquakes with small magnitude occur in the deep portion of the seismogenic zone. Deep and high stress asperities generate large ground motions in the short period range. They do not generate pulse like ground motions, because the asperity is too small and deep to cause forward directivity effects, and because the radiation and propagation of ground motion at short periods may be too incoherent to allow the formation of a pulse. Larger subsurface rupture earthquakes have larger asperities that may span a large part of the width of the seismogenic zone, producing coherent directivity pulses with periods of 1 second or more. Kagawa et al. (2004) pointed out
Specification of ground motion input for SSI analyses
International Nuclear Information System (INIS)
The effects of local soil conditions on the characteristics of the earthquake motions to which a structure may be subjected are in part dependent upon the amplitude and frequency content of the seismic motion at the free surface of a soil deposit, before any structure is built, which are functions of the soil properties in the linear elastic and the inelastic ranges. This paper is concerned primarily with this effect, however, some discussion of kinematic interaction effects and the way to model them is presented. This effect is commonly known as soil amplification although the name may be misleading, since there is in fact amplification over certain ranges of frequencies and deamplification over others
Pei, Shiling; van de Lindt, John W.; Hartzell, Stephen; Luco, Nicolas
2014-01-01
Earthquake damage to light-frame wood buildings is a major concern for North America because of the volume of this construction type. In order to estimate wood building damage using synthetic ground motions, we need to verify the ability of synthetically generated ground motions to simulate realistic damage for this structure type. Through a calibrated damage potential indicator, four different synthetic ground motion models are compared with the historically recorded ground motions at corresponding sites. We conclude that damage for sites farther from the fault (>20 km) is under-predicted on average and damage at closer sites is sometimes over-predicted.
New French basic safety rule on seismic input ground motions
International Nuclear Information System (INIS)
French regulatory practice requires that the main safety functions of a land-based major nuclear facility, in particular in accordance with its specific characteristics, safe shutdown, cooling and containment of radioactive substances, be assured during and/or after earthquake events that can plausibly occur at the site where the installation is located. This rule specifies an acceptable method for determining the seismic motion to be taken into account when designing a facility to address the seismic risk. In regions where deformation factors are low, such as in metropolitan France, the intervals between strong earthquakes are long and it can be difficult to associate some earthquakes with known faults. In addition, despite substantial progress in recent years, it is difficult, given the French seismotectonic situation, to identify potentially seismogenic faults and determine the characteristics of the earthquakes that are liable to occur. Therefore, the approach proposed in this Basic Safety Rule is intended to avoid this difficulty by allowing for all direct and indirect influences that can play a role in the occurrence of earthquakes, as well as all seismic knowledge. Furthermore, as concerns calculation of seismic motion, the low number of records of strong motion in metropolitan France makes it necessary to use data from other regions of the world
Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions
International Nuclear Information System (INIS)
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties
Energy Technology Data Exchange (ETDEWEB)
1993-03-18
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.
Çavdar, Ö.
2012-01-01
The aim of this paper is to compare the near-fault and far-fault ground motion effects on the probabilistic sensitivity dynamic responses of two suspension bridges in Istanbul. Two different types of suspension bridges are selected to investigate the near-fault (NF) and far-fault (FF) ground motion effects on the bridge sensitivity responses. NF and FF strong ground motion records, which have approximately identical peak ground accelerations, of the Kocaeli (1999) earthquake are selected for ...
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2015-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.
Institute of Scientific and Technical Information of China (English)
ZHAO Zhixin; XU Jiren; Ryuji Kubota
2004-01-01
Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interferences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array survey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplification ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a complicated distribution of the maximum amplitudes of acceleration waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak amplitude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplification effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the
Singh, R. P.; Ahmad, R.
2015-12-01
A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.
Híjar, Humberto
2015-02-01
We study the Brownian motion of a particle bound by a harmonic potential and immersed in a fluid with a uniform shear flow. We describe this problem first in terms of a linear Fokker-Planck equation which is solved to obtain the probability distribution function for finding the particle in a volume element of its associated phase space. We find the explicit form of this distribution in the stationary limit and use this result to show that both the equipartition law and the equation of state of the trapped particle are modified from their equilibrium form by terms increasing as the square of the imposed shear rate. Subsequently, we propose an alternative description of this problem in terms of a generalized Langevin equation that takes into account the effects of hydrodynamic correlations and sound propagation on the dynamics of the trapped particle. We show that these effects produce significant changes, manifested as long-time tails and resonant peaks, in the equilibrium and nonequilibrium correlation functions for the velocity of the Brownian particle. We implement numerical simulations based on molecular dynamics and multiparticle collision dynamics, and observe a very good quantitative agreement between the predictions of the model and the numerical results, thus suggesting that this kind of numerical simulations could be used as complement of current experimental techniques. PMID:25768490
Constraints provided by ground gravity observations on geocentre motions
Rogister, Y.; Mémin, A.; Rosat, S.; Hinderer, J.; Calvo, M.
2016-08-01
The geocentre motion is the motion of the centre of mass of the entire Earth, considered an isolated system, in a terrestrial system of reference. We first derive a formula relating the harmonic degree-1 Lagrangian variation of the gravity at a station to both the harmonic degree-1 vertical displacement of the station and the displacement of the whole Earth's centre of mass. The relationship is independent of the nature of the Earth deformation and is valid for any source of deformation. We impose no constraint on the system of reference, except that its origin must initially coincide with the centre of mass of the spherically symmetric Earth model. Next, we consider the geocentre motion caused by surface loading. In a system of reference whose origin is the centre of mass of the solid Earth, we obtain a specific relationship between the gravity variation at the surface, the geocentre displacement and the load Love number h^' }_1, which demands the Earth's structure and rheological behaviour be known. For various networks of real or fictitious stations, we invert synthetic signals of surface gravity variations caused by atmospheric loading to retrieve the degree-1 variation of gravity. We then select six well-distributed stations of the Global Geodynamics Project, which is a world network of superconducting gravimeters, to invert actual gravity data for the degree-1 variations and determine the geocentre displacement between the end of 2004 and the beginning of 2012, assuming it to be due to surface loading. We find annual and semi-annual displacements with amplitude 0.5-2.3 mm.
Constraints provided by ground gravity observations on geocentre motions
Rogister, Y.; Mémin, A.; Rosat, S.; Hinderer, J.; Calvo, M.
2016-06-01
The geocentre motion is the motion of the centre of mass of the entire Earth, considered an isolated system, in a terrestrial system of reference. We first derive a formula relating the harmonic degree-1 Lagrangian variation of the gravity at a station to both the harmonic degree-1 vertical displacement of the station and the displacement of the whole Earth's centre of mass. The relationship is independent of the nature of the Earth deformation and is valid for any source of deformation. We impose no constraint on the system of reference, except that its origin must initially coincide with the centre of mass of the spherically-symmetric Earth model. Next, we consider the geocentre motion caused by surface loading. In a system of reference whose origin is the centre of mass of the solid Earth, we obtain a specific relationship between the gravity variation at the surface, the geocentre displacement and the load Love number h^' }_1, which demands the Earth's structure and rheological behaviour be known. For various networks of real or fictitious stations, we invert synthetic signals of surface gravity variations caused by atmospheric loading to retrieve the degree-1 variation of gravity. We then select 6 well distributed stations of the Global Geodynamics Project, which is a world network of superconducting gravimeters, to invert actual gravity data for the degree-1 variations and determine the geocentre displacement between the end of 2004 and the beginning of 2012, assuming it to be due to surface loading. We find annual and semi-annual displacements with amplitude 0.5 to 2.3 mm.
SM-ROM-GL (Strong Motion Romania Ground Level) Database
Ioan Sorin BORCIA; Iolanda-Gabriela CRAIFALEANU; Elena-Andreea CALARASU; Nicoleta-Florenta TANASE; Ioan Constantin PRAUN
2015-01-01
The SM-ROM-GL database includes data obtained by the processing of records performed at ground level by the Romanian seismic networks, namely INCERC, NIEP, NCSRR and ISPH-GEOTEC, during recent seismic events with moment magnitude Mw ≥ 5 and epicenters located in Romania. All the available seismic records were re-processed using the same basic software and the same procedures and options (filtering and baseline correction), in order to obtain a consistent dataset. The database stores computed ...
Application and API for Real-time Visualization of Ground-motions and Tsunami
Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.
2015-12-01
Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are
Source, propagation and site effects: impact on mapping strong ground motion in Bucharest area
International Nuclear Information System (INIS)
Achievements in the framework of the NATO SfP project 972266 focused on the impact of Vrancea earthquakes on the security of Bucharest urban area are presented. The problem of Bucharest city security to Vrancea earthquakes is discussed in terms of numerical modelling of seismic motion and intermediate term earthquake prediction. A hybrid numerical scheme developed by Faeh et al. (1990; 1993) for frequencies up to 1 Hz is applied for the realistic modelling of the seismic ground motion in Bucharest. The method combines the modal summation for the 1D bedrock model and the finite differences for the 2D local structure model. All the factors controlling the ground motion at the site are considered: source, propagation and site effects, respectively. The input data includes the recent records provided by the digital accelerometer network developed within the Romanian-German CRC461 cooperation programme and CALIXTO'99, VRANCEA'99, VRANCEA2001 experiments. The numerical simulation proves to be a powerful tool in mapping the strong ground motion for realistic structures, reproducing acceptably from engineering point of view the observations. A new model of the Vrancea earthquake scaling is obtained and implications for the determination of the seismic motion parameters are analyzed. The role of the focal mechanism and attenuation properties upon the amplitude and spectral content of the ground motion are outlined. CN algorithm is applied for predicting Vrancea earthquakes. Finally, implications for the disaster management strategy are discussed. (authors)
Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions
International Nuclear Information System (INIS)
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz
Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions
International Nuclear Information System (INIS)
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz. This document, Volume III, provides Appendix 8.A of this report, Field Investigations of Reference Sites
Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions
International Nuclear Information System (INIS)
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz. This document, Volume IV, provides Appendix 8.B, Laboratory Investigations of Dynamic Properties of Reference Sites
Directory of Open Access Journals (Sweden)
L. Kalani Sarokolayi
2013-01-01
Full Text Available In this work, rotational components of ground motion acceleration were defined according toimproved method from the corresponding available translational components based on transversely isotropicelastic wave propagation in the soil. With such improvement, it becomes possible to consider frequencydependent wave velocities on rotational components of ground motion. For this purpose, three translationalcomponents of El Centro earthquake (24 January 1951 were adopted to generate their relative rotationalcomponents based on SV and SH wave incidence by Fast Fourier transform with 4096 discrete frequencies.The translational and computed rotational motions were then applied to the concrete elevated water storagetanks with different structural characteristics and water elevations. The finite element method is used for thenonlinear analysis of water storage tanks considering the fluid-structure interaction using Lagrangian-Lagrangian approach and the concrete material nonlinearities have been taken into account through William-Warnke model. The nonlinear response of these structures considering the six components of ground motionshowed that the rotational components of ground motion can increase or decrease the maximum displacementand reaction force of the structure. These variations are depending on the frequency of structure andpredominant frequencies of translational and rotational components of ground motion.
International Nuclear Information System (INIS)
Attenuation is caused by geometric spreading and absorption. Geometric spreading is almost independent of crustal geology and physiographic region, but absorption depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high frequency waves, absorption does not affect ground motion at distances less than about 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States is similar to that in the western United States. Beyond the near field, differences in ground motion can best be accounted for by differences in attenuation caused by differences in absorption. The stress drop of eastern earthquakes may be higher than for western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. But we believe this factor is of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. The characteristics of strong ground motion in the conterminous United States are discussed in light of these considerations, and estimates are made of the epicentral ground motions in the central and eastern United States. (author)
Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions
International Nuclear Information System (INIS)
The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)
Energy Technology Data Exchange (ETDEWEB)
1993-03-18
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz.
Impact of ground motion characterization on conservatism and variability in seismic risk estimates
International Nuclear Information System (INIS)
This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates
Dynamic corner frequency in source spectral model for stochastic synthesis of ground motion
Institute of Scientific and Technical Information of China (English)
Xiaodan Sun; Xiaxin Tao; Guoxin Wang; Taojun Liu
2009-01-01
The static corner frequency and dynamic corner frequency in stochastic synthesis of ground motion from finite-fault modeling are introduced, and conceptual disadvantages of the two are discussed in this paper. Furthermore, the non-uniform radiation of seismic wave on the fault plane, as well as the trend of the larger rupture area, the lower corner frequency, can be described by the source spectral model developed by the authors. A new dynamic corner frequency can be developed directly from the model. The dependence of ground motion on the size of subfault can be eliminated if this source spectral model is adopted in the synthesis. Finally, the approach presented is validated from the comparison between the synthesized and observed ground motions at six rock stations during the Northridge earthquake in 1994.
International Nuclear Information System (INIS)
The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures
Influence of earthquake ground motion incoherency on multi-support structures
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A linear response history analysis method is used to determine the influence of three factors: geometric incoherency, wave-passage, and local site characteristics on the response of multi-support structures subjected to differential ground motions. A one-span frame and a reduced model of a 24-span bridge, located in Las Vegas, Nevada are studied, in which the influence of each of the three factors and their combinations are analyzed. It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response, which does not exist in structures subjected to uniform excitation. The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.
Seismic reliability assessment of classical columns subjected to near-fault ground motions
Psycharis, Ioannis; Stefanou, Ioannis
2013-01-01
A methodology for the performance-based seismic risk assessment of classical columns is presented. Despite their apparent instability, classical columns are, in general, earthquake resistant, as proven from the fact that many classical monuments have survived many strong earthquakes over the centuries. Nevertheless, the quantitative assessment of their reliability and the understanding of their dynamic behavior are not easy, because of the fundamental nonlinear character and the sensitivity of their response. In this paper, a seismic risk assessment is performed for a multidrum column using Monte Carlo simulation with synthetic ground motions. The ground motions adopted contain a high- and low-frequency component, combining the stochastic method, and a simple analytical pulse model to simulate the directivity pulse contained in near source ground motions. The deterministic model for the numerical analysis of the system is three-dimensional and is based on the Discrete Element Method. Fragility curves are prod...
Effects of 3D random correlated velocity perturbations on predicted ground motions
Hartzell, S.; Harmsen, S.; Frankel, A.
2010-01-01
Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.
Kojima, Kotaro; Takewaki, Izuru
2016-01-01
The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic–plastic response of a structure on compliant (flexible) ground by the “critical double impulse” is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free vibration appears under such double impulse and the energy approach plays an important role in the derivation of the cl...
Strong Ground Motion in the 2011 Tohoku Earthquake: a 1Directional - 3Component Modeling
D'Avila, Maria Paola Santisi; Lenti, Luca
2013-01-01
Local wave amplification due to strong seismic motions in surficial multilayered soil is influenced by several parameters such as the wavefield polarization and the dynamic properties and impedance contrast between soil layers. The present research aims at investigating seismic motion amplification in the 2011 Tohoku earthquake through a one-directional three-component (1D-3C) wave propagation model. A 3D nonlinear constitutive relation for dry soils under cyclic loading is implemented in a quadratic line finite element model. The soil rheology is modeled by mean of a multi-surface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan (MPII) type. Its major advantage is that the rheology is characterized by few commonly measured parameters. Ground motions are computed at the surface of soil profiles in the Tohoku area (Japan) by propagating 3C signals recorded at rock outcrops, during the 2011 Tohoku earthquake. Computed surface ground motions are compared to the Tohoku earthquake records at alluvial ...
Simulation of Near-Fault Strong Ground Motion in the Beijing Region
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
On the basis of previous study of the 1679 Sanhe-Pinggu ( M8. 0) earthquake, the biggest event in history ever recorded in Beijing and its adjacent area, we made a 3-D strong ground motion simulation utilizing the staggered-grid finite differences method to study the distributions of peak ground velocity with different earthquake source models in the Beijing region. In the paper, earthquake source models and a transmission medium velocity model are established and the corresponding parameters are given in accordance to the results from a related previous study. Then, using a three-dimensional finite difference computing program of near-fault strong ground motion developed by Graves, the peak ground velocity caused by a destructive earthquake in the Beijing area is simulated. In our computation model, the earthquake source is 3km in depth, and a total number of 21,679 observation points on the ground surface are figured out. The transmission medium velocity model is composed of four stratums which are the Quaternary deposit, the upper crust, the upper part of the middle crust and the lower part of the middle crust. With the minimum grid spacing of 0.15km, a total of 2.28 × 106 grids are generated. Using a time step of 0.02 seconds we calculated the peak ground velocity for a duration of 8 seconds. After the analysis of the simulation results, we observed some basic characteristics of near-fault strong ground motion such as the concentration effect of near-fault peak ground velocity, rupture directivity effect, hanging wall effect, and basin effect. The results from our simulation and analysis suggest that the source and transmitting medium parameters in our model are suitable and the finite difference method is applicable to estimate the distribution of strong ground motion in the study region.
Newtonian noise and ambient ground motion for gravitational wave detectors
International Nuclear Information System (INIS)
Fluctuations of the local gravitational field as a result of seismic and atmospheric displacements will limit the sensitivity of ground based gravitational wave detectors at frequencies below 10 Hz. We discuss the implications of Newtonian noise for future third generation gravitational wave detectors. The relevant seismic wave fields are predominately of human origin and are dependent on local infrastructure and population density. Seismic studies presented here show that considerable seismic noise reduction is possible compared to current detector locations. A realistic seismic amplitude spectral density of a suitably quiet site should not exceed 0.5 nm/√Hz(Hz/f)2 above 1 Hz. Newtonian noise models have been developed both analytically and by finite element analysis. These show that the contribution to Newtonian noise from surface waves due to distance sources significantly reduces with depth. Seismic displacements from local sources and body waves then become the dominant contributors to the Newtonian fluctuations.
Site response zones and short-period earthquake ground motion projections for the Las Vegas Basin
Indian Academy of Sciences (India)
Barbara Luke; Ying Liu
2008-11-01
A deterministic seismic hazard analysis was conducted to address the effect of local soil conditions on earthquake-induced strong ground motion in the Las Vegas Basin, Nevada (US). Using a large geological and geotechnical database, two response units were defined: a fine-grained unit, predominantly clay; and a coarse-grained unit, predominantly gravel. A moderate number of high-quality shallow shear wave velocity measurements were collected from which characteristic shear wave velocity profiles were developed for each response unit. An equivalent-linear one-dimensional site response model was used. The model was calibrated using a basin-wide, small-strain ground motion database. Calibration tests showed that ground motion projections become increasingly conservative with increasing ground-motion amplitude. Projections were overconservative for the coarsegrained response unit, likely due to the sparseness of the velocity database. For the earthquake response analyses, historical ground motions were used to model characteristic ‘bedrock’ motion for earthquakes on 10 faults judged to be critical. Response spectral envelopes were generated for each unit through Monte-Carlo simulations. For the fine-grained response unit, 95th percentile peak ground acceleration, peak spectral acceleration and predominant period were 310 cm/s2, 1100cm/s2, and 0.29 s, respectively. With respect to codified design spectra, projections are lower at short periods and higher at long periods. Projections of peak spectral accelerations for the coarsegrained response unit, were more than double that of codified spectra; however, they are believed to be overconservative. Near-fault effects and basin-edge effects, though potentially important, were not considered in these analyses.
Machine-Learning Methods for Earthquake Ground Motion Analysis and Simulation
Alimoradi, Arzhang; Beck, James L.
2015-01-01
This paper presents a novel method of data-based probabilistic seismic hazard analysis (PSHA) and ground motion simulation, verified using previously recorded strong-motion data and machine-learning techniques. The procedure consists of three parts: (1) selection of an orthonormal set of basis vectors called eigenquakes to represent characteristic earthquake records; (2) estimation of response spectra for the anticipated level of shaking for a scenario earthquake at a site using Gaussian proc...
Preparation and Detection of a Mechanical Resonator Near the Ground State of Motion
Rocheleau, T; Macklin, C; Hertzberg, J B; Clerk, A A; Schwab, K C
2009-01-01
We have cooled the motion of a radio-frequency nanomechanical resonator by parametric coupling to a driven microwave frequency superconducting resonator. Starting from a thermal occupation of 480 quanta, we have observed occupation factors as low as 3.8$\\pm$1.2 and expect the mechanical resonator to be found with probability 0.21 in the quantum ground state of motion. Cooling is limited by random excitation of the microwave resonator and heating of the dissipative mechanical bath.
Hazard assessment of long-period ground motions for the Nankai Trough earthquakes
Maeda, T.; Morikawa, N.; Aoi, S.; Fujiwara, H.
2013-12-01
We evaluate a seismic hazard for long-period ground motions associated with the Nankai Trough earthquakes (M8~9) in southwest Japan. Large interplate earthquakes occurring around the Nankai Trough have caused serious damages due to strong ground motions and tsunami; most recent events were in 1944 and 1946. Such large interplate earthquake potentially causes damages to high-rise and large-scale structures due to long-period ground motions (e.g., 1985 Michoacan earthquake in Mexico, 2003 Tokachi-oki earthquake in Japan). The long-period ground motions are amplified particularly on basins. Because major cities along the Nankai Trough have developed on alluvial plains, it is therefore important to evaluate long-period ground motions as well as strong motions and tsunami for the anticipated Nankai Trough earthquakes. The long-period ground motions are evaluated by the finite difference method (FDM) using 'characterized source models' and the 3-D underground structure model. The 'characterized source model' refers to a source model including the source parameters necessary for reproducing the strong ground motions. The parameters are determined based on a 'recipe' for predicting strong ground motion (Earthquake Research Committee (ERC), 2009). We construct various source models (~100 scenarios) giving the various case of source parameters such as source region, asperity configuration, and hypocenter location. Each source region is determined by 'the long-term evaluation of earthquakes in the Nankai Trough' published by ERC. The asperity configuration and hypocenter location control the rupture directivity effects. These parameters are important because our preliminary simulations are strongly affected by the rupture directivity. We apply the system called GMS (Ground Motion Simulator) for simulating the seismic wave propagation based on 3-D FDM scheme using discontinuous grids (Aoi and Fujiwara, 1999) to our study. The grid spacing for the shallow region is 200 m and
U.S. Regulatory perspective on seismic design ground motion, a uniform reliability spectrum
International Nuclear Information System (INIS)
In 1996, the U.S. Nuclear Regulatory Commission (NRC) amended its regulations to update the criteria used in decisions regarding nuclear power plant siting, including geologic, seismic and earthquake engineering considerations for future applications. As a follow-on to the revised siting regulations, it is necessary to develop state-of-the-art recommendations on the design ground motions commensurate with seismological knowledge and engineering needs. The paper will review the revised seismic and geologic siting criteria, and the scope of the work associated with the development of design ground motion, indicate the direction the recommendations are taking, present preliminary results, and discuss some implications. (author)
A cooperative NRC/CEA research project on earthquake ground motion on soil sites
International Nuclear Information System (INIS)
This paper provides an overview of a multi-phase experiment. The objective of the experiment is to collect a comprehensive set of data on the propagation of earthquake ground motions vertically through a shallow soil column (on the order of several tens of meters). The data are used to validate several of the available engineering computer codes for modeling earthquake ground motion. The data set are also used to develop an improved understanding of the earthquake source function and the potential for non-linear effects controlling the propagation through the shallow soil column
Assessment of potential strong ground motions in the city of Rome
L. Malagnini; A. Caserta; A. Rovelli; Marra, F
1994-01-01
A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to...
Energy Technology Data Exchange (ETDEWEB)
Choun, Young-Sun; Park, Junhee [KAERI, Daejeon (Korea, Republic of)
2015-05-15
The mechanical properties of rubber bearings have inherent variations owing to the variability in rubber materials and manufacturing processes. After installation, the properties of the rubber bearings constantly change due to aging and environmental effects for long-term service life. ASCE-4 restricts the greatest variability in the mechanical properties within 20%, with 95% probability, for seismically isolated, safety-related nuclear structures to account for all variations in material properties during manufacturing, construction, and long-term operation. The effects of the mechanical property variability of rubber bearings on the response of base-isolated structures will be greater during long-period ground motions than short-period ground motions. It is necessary to evaluate the limits of variability in the mechanical properties of rubber bearings when subjected to ground motions with relatively low peak ground acceleration to velocity (A/V) ratios. The variation limits in the mechanical properties of isolation system should be properly determined considering the behavior of isolation system for long-period ground motions.
Artificial ground motion compatible with specified peak velocity and target spectrum
Institute of Scientific and Technical Information of China (English)
ZHAO Feng-xin; ZHANG Yu-shan
2006-01-01
In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initial acceleration time history a(0)g (t), which satisfies the prescribed peak ground acceleration, the target spectral acceleration ST(ω,ζ ), and the specified intensity envelope, is generated by the traditional method that generates the response-spectrum-compatible artificial ground motion by modifying the Fourier amplitude spectrum in the frequency domain; secondly, a(0)g (t) is further modulated by superimposing narrow-band time histories upon it in the time domain to make its peak velocity, approach the target peak ground velocity, and at the same time to improve its fitting precision to the target spectrum. Numerical examples show that this algorithm boasts high calculation precisions.
Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena
2012-01-01
Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.
Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements
Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles
2013-01-01
Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.
Aochi, Hideo; Douglas, John
2006-01-01
This paper is concerned with testing the validity of the ground motions estimated by combining a boundary integral equation method to simulate dynamic rupture along finite faults with a finite difference method to compute the subsequent wave propagation. The validation exercise is conducted by comparing the calculated ground motions at about 100 hypothetical stations surrounding the pure strike-slip and pure reverse faults with those estimated by recent ground motion estimation equations deri...
Ornthammarath, Teraphan; Douglas, John; Sigbjörnsson, Ragnar; Lai, Carlo
2011-01-01
International audience Probabilistic seismic hazard analysis (PSHA) generally relies on the basic assumption that ground motion prediction equations (GMPEs) developed for other similar tectonic regions can be adopted in the considered area. This implies that observed ground motion and its variability at considered sites could be modelled by the selected GMPEs. Until now ground-motion variability has been taken into account in PSHA by integrating over the standard deviation reported in GMPE...
Orbits of LMC/SMC with recent ground-based proper motions
Directory of Open Access Journals (Sweden)
Růžička A.
2012-02-01
Full Text Available In recent years, with new ground-based and HST measurements of proper motions of the Magellanic Clouds being published, a need of a reanalysis of possible orbital history has arisen. As complementary to other studies, we present a partial examination of the parameter space – aimed at exploring the uncertainties in the proper motions of both Clouds, taking into account the updated values of Galactic constants and Solar motion, which kinematically and dynamically influence the orbits of the satellites. In the chosen setup of the study, none of the binding scenarios of this pair could be neglected.
Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments
Mello, M.; Bhat, H. S.; Rosakis, A. J.; Kanamori, H
2010-01-01
The near field ground motion signatures associated with sub-Rayleigh and supershear ruptures are investigated using the laboratory earthquake experiment originally developed by Rosakis and coworkers (Xia et al., 2004, 2005a; Lu et al., 2007; Rosakis et al., 2007). Heterodyne laser interferometers enable continuous, high bandwidth measurements of fault-normal (FN) and fault-parallel (FP) particle velocity “ground motion” records at discrete locations on the surface of a Homalite test specimen ...
International Nuclear Information System (INIS)
The seismic ground motion of the Greater Accra Metropolitan area has been computed and the hazard zones assessed using a deterministic hybrid approach based on the modal summation and finite difference methods. The seismic ground motion along four profiles located in the Greater Accra Metropolitan Area has been modelled using the 1939 earthquake of magnitude 6.5(ML) as the scenario earthquake. Synthetic seismic waveforms from which parameters for engineering design such as peak ground acceleration, velocity and spectral amplifications have been produced along the geological cross sections. From the seismograms computed, the seismic hazard of the metropolis, expressed in terms of peak ground acceleration and peak ground velocity have been estimated. The peak ground acceleration estimated in the study ranges from 0.14 - 0.57 g and the peak ground velocity from 9.2 - 37.1cms-1. The presence of low velocity sediments gave rise to high peak values and amplifications. The maximum peak ground accelerations estimated are located in areas with low velocity formations such as colluvium, continental and marine deposits. Areas in the metropolis underlain by unconsolidated sediments have been classified as the maximum damage potential zone and those underlain by highly consolidated geological materials are classified as low damage potential zone. The results of the numerical simulation have been extended to all areas in the metropolis with similar geological formation. (author)
A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta
Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.
2015-12-01
Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.
Estimation of seismic ground motions using deterministic approach for major cities of Gujarat
Directory of Open Access Journals (Sweden)
J. Shukla
2012-06-01
Full Text Available A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental records of India specifically in the Gujarat region are far from being satisfactory for modeling the seismic hazard using the probabilistic approach, an attempt has been made in this study to accomplish it through the deterministic approach. In this regard, all small and large faults of the Gujarat region were evaluated to obtain major fault systems. The empirical relations suggested by earlier researchers for the estimation of maximum magnitude of earthquake motion with various properties of faults like length, surface area, slip rate, etc. have been applied to those faults to obtain the maximum earthquake magnitude. For the analysis, seven different ground motion attenuation relations (GMARs of strong ground motion have been utilized to calculate the maximum horizontal ground accelerations for each major city of Gujarat. Epistemic uncertainties in the hazard computations are accounted for within a logic-tree framework by considering the controlling parameters like b-value, maximum magnitude and ground motion attenuation relations (GMARs. The corresponding deterministic spectra have been prepared for each major city for the 50th and 84th percentiles of ground motion occurrence. These deterministic spectra are further compared with the specified spectra of Indian design code IS:1893-Part I (2002 to validate them for further practical use. Close examination of the developed spectra reveals that the expected ground motion values become high for the
Energy Technology Data Exchange (ETDEWEB)
Pecker, A. [Ecole Polytechnique, Geodynamique et Structure, 91 - Palaiseau (France); Ecole Polytechnique, Lab. de Mecanique des Solides, 91 - Palaiseau (France)
2004-09-01
The increasing need for probability seismic hazard assessment (PSHA) of critical facilities sometimes leads to unrealistic earthquake scenarios with very high induced ground motions. From a physical standpoint these high motions cannot exist because of the limiting resistance capacity of the soil strata through which the seismic waves travel. A simple analytical model is proposed to bound the maximum ground surface acceleration that any soil deposit can transfer. This model is an extension to non zero ground surface velocity of a previously presented model. (author)
Institute of Scientific and Technical Information of China (English)
SHI Bao-ping; LIU Bo-yan; ZHANG Jian
2007-01-01
A composite source model has been used to simulate a broadband strong ground motion with an associated fault rupture process. A scenario earthquake fault model has been used to generate 1 000 earthquake events with a magnitude of Mw8.0. The simulated results show that, for the characteristic event with a strike-slip faulting, the characteristics of near fault ground motion is strongly dependent on the rupture directivity. If the distance between the sites and fault was given, the ground motion in the forward direction (Site A) is much larger than that in the backward direction (Site C) and that close to the fault (Site B). The SH waves radiated from the fault, which corresponds to the fault-normal component plays a key role in the ground motion amplification. Corresponding to the sites A, B, and C, the statistical analysis shows that the ratio of their aPG is 2.15:1.5:1 and their standard deviations are about 0.12, 0.11, and 0.13, respectively. If these results are applied in the current probabilistic seismic hazard analysis (PSHA), then, for the lower annual frequency of exceedance of peak ground acceleration, the predicted aPG from the hazard curve could reduce by 30% or more compared with the current PSHA model used in the developing of seismic hazard map in the USA. Therefore, with a consideration of near fault ground motion caused by the rupture directivity, the regression model used in the development of the regional attenuation relation should be modified accordingly.
Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.
1999-01-01
This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).
Vertical motion in the lower ionosphere during a ground industrial explosion
International Nuclear Information System (INIS)
Data on the velocities of vertical motions in the D-area of ionosphere during the ground industrial explosion on June 11 1989 in the region of the Toktogul hydroelectric power plant are obtained through the method of radiowave resonance scattering on artificial periodical inhomogeneities
Near-fault earthquake ground motion prediction by a high-performance spectral element numerical code
International Nuclear Information System (INIS)
Near-fault effects have been widely recognised to produce specific features of earthquake ground motion, that cannot be reliably predicted by 1D seismic wave propagation modelling, used as a standard in engineering applications. These features may have a relevant impact on the structural response, especially in the nonlinear range, that is hard to predict and to be put in a design format, due to the scarcity of significant earthquake records and of reliable numerical simulations. In this contribution a pilot study is presented for the evaluation of seismic ground-motions in the near-fault region, based on a high-performance numerical code for 3D seismic wave propagation analyses, including the seismic fault, the wave propagation path and the near-surface geological or topographical irregularity. For this purpose, the software package GeoELSE is adopted, based on the spectral element method. The set-up of the numerical benchmark of 3D ground motion simulation in the valley of Grenoble (French Alps) is chosen to study the effect of the complex interaction between basin geometry and radiation mechanism on the variability of earthquake ground motion
Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath
2016-01-01
The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest. PMID:27335317
Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath
2016-01-01
The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest. PMID:27335317
Assessment of potential strong ground motions in the city of Rome
Directory of Open Access Journals (Sweden)
L. Malagnini
1994-06-01
Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions
International Nuclear Information System (INIS)
The seismic Probabilistic Risk Assessment (PRA) for Fast Breeder Reactors (FBRs) has been carried out to confirm that the seismic safety is equivalent to that of Light Water Reactors (LWRs). The seismic response on the reactor structure of FBRs causes seismic reactivity. The group motion of fuel assemblies is one of typical seismic response. So that much attention has been paid on the reactivity insertion mechanism due to the group motion of fuel assemblies and it’s consequence during the earthquake over the Design Basis Ground Motion (DBGM) condition. When the displacement of each subassembly is moving toward the same direction, each gap reduces coherently and the radial core compaction occurs, which results in positive reactivity insertion. We evaluate the gap reduction characteristics at the mid-plane of core by using a correlation coefficient. As a result, the fuel subassemblies are most concentrated when the input seismic motion of about 5Hz frequency and 40m/s2 acceleration is applied. The amount of reactivity insertion is estimated approximately 1$ that corresponds to prompt criticality. (author)
Nath, Sankar Kumar
2013-12-01
We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.
Downhole instrumentation for the evaluation of non-linear soil response on ground surface motion
International Nuclear Information System (INIS)
A downhole experiment at McGee Creek in eastern central California has shown that, for hard soil deposits, the one-dimensional shear-wave model for the soil constitutive relationship is adequate for use in the computation of ground surface motions. In order to investigate the influence of soil non-linearities on these latter, an alluvial site has been instrumented in southern California, at Garner Valley. This paper presents the characterization of the site and the soil parameters derived from in-site and laboratory-based tests. Preliminary results for the recorded ground motion responses corresponding to small-magnitude earthquakes are compared with computed motions from a one-dimensional shear-wave model. (author)
Study on inelastic displacement ratio spectra for near-fault pulse-type ground motions
Institute of Scientific and Technical Information of China (English)
Zhai Changhai; Li Shuang; Xie Lili; Sun Yamin
2007-01-01
In displacement-based seismic design,inelastic displacement ratio spectra(IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum elastic displacement demand of its counterpart linear elastic SDOF system.In this study,the characteristics of IDRS for near-fault pulse-type ground motions are investigated based on a great number of earthquake ground motions.The influence of site conditions,ratio of peak ground velocity (PGV) to peak ground acceleration(PGA),the PGV,and the maximum incremental velocity (MIV) on IDRS are also evaluated.The results indicate that the effect of near-fault ground motions on IDRS are significant only at periods between 0.2 s-1.5 s,where the amplification can approach 20%.The PGV/PGA ratio has the most significant influence on IDRS among the parameters considered.It is also found that site conditions only slightly affect the IDRS.
International Nuclear Information System (INIS)
This paper proposed an artificial ground motion simulating method, which may be used to generate the artificial seismic ground shaking time history that satisfies both the target absolute acceleration response spectrum and the target peak ground displacement. Firstly, the method utilizes the traditional method, which modifies the Fourier amplitude spectrum in the frequency domain, to generate the initial acceleration time history, a(t), with the given peak ground acceleration (APG), response spectrum ST(ω, ζ), and intensity envelope being prescribed as targets; and then through superimposing the narrow-band time history in the time domain, the method further modulates a(t) to make its peak displacement approach the target peak ground displacement, i.e., DPGT, as well as to improve its fitting precision to the target response spectrum. The numerical examples demonstrates that the results obtained by this proposed algorithm possess are with very high fitting precision. (authors)
Ground motion optimized orbit feedback design for the future linear collider
International Nuclear Information System (INIS)
The future linear collider has strong stability requirements on the position of the beam along the accelerator and at the interaction point (IP). The beam position will be sensitive to dynamic imperfections in particular ground motion. A number of mitigation techniques have been proposed to be deployed in parallel: active and passive quadrupole stabilization and positioning as well as orbit and IP feedback. This paper presents a novel design of the orbit controller in the main linac and beam delivery system. One global feedback controller is proposed based on an SVD-controller (Singular Value Decomposition) that decouples the large multi-input multi-output system into many independent single-input single-output systems. A semi-automatic procedure is proposed for the controller design of the independent systems by exploiting numerical models of ground motion and measurement noise to minimize a target parameter, e.g. luminosity loss. The novel design for the orbit controller is studied for the case of the Compact Linear Collider (CLIC) in integrated simulations, which include all proposed mitigation methods. The impact of the ground motion on the luminosity performance is examined in detail. It is shown that with the proposed orbit controller the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed. The orbit controller design is robust and allows for a relaxed BPM resolution, while still maintaining a strong ground motion suppression performance compared to traditional methods. We believe that the described method could easily be applied to other accelerators and light sources
The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico
Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.
2014-12-01
The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network
A Partially Non-Ergodic Ground-Motion Prediction Equation for Europe
Kuehn, Nicolas M
2016-01-01
A partially non-ergodic ground-motion prediction equation is estimated for Europe. Therefore, a hierarchical model is presented that accounts for regional differences. For this purpose, the scaling of ground-motion intensity parameters is assumed to be similar, but not identical in different regions. This is achieved by assuming a hierarchical model, where some coefficients are treated as random variables which are sampled from an underlying global distribution. The coefficients are estimated by Bayesian inference. This allows one to estimate the epistemic uncertainty in the coefficients, and consequently in model predictions, in a principled way. The model is estimated based on peak ground acceleration data from nine different European regions. There are large differences in the amount of earthquakes and records in the different regions. However, due to the hierarchical nature of the model, regions with only few data points borrow strength from other regions with more data. This makes it possible to estimate...
Generation of a mixture model ground-motion prediction equation for Northern Chile
Haendel, A.; Kuehn, N. M.; Scherbaum, F.
2012-12-01
In probabilistic seismic hazard analysis (PSHA) empirically derived ground motion prediction equations (GMPEs) are usually applied to estimate the ground motion at a site of interest as a function of source, path and site related predictor variables. Because GMPEs are derived from limited datasets they are not expected to give entirely accurate estimates or to reflect the whole range of possible future ground motion, thus giving rise to epistemic uncertainty in the hazard estimates. This is especially true for regions without an indigenous GMPE where foreign models have to be applied. The choice of appropriate GMPEs can then dominate the overall uncertainty in hazard assessments. In order to quantify this uncertainty, the set of ground motion models used in a modern PSHA has to capture (in SSHAC language) the center, body, and range of the possible ground motion at the site of interest. This was traditionally done within a logic tree framework in which existing (or only slightly modified) GMPEs occupy the branches of the tree and the branch weights describe the degree-of-belief of the analyst in their applicability. This approach invites the problem to combine GMPEs of very different quality and hence to potentially overestimate epistemic uncertainty. Some recent hazard analysis have therefore resorted to using a small number of high quality GMPEs as backbone models from which the full distribution of GMPEs for the logic tree (to capture the full range of possible ground motion uncertainty) where subsequently generated by scaling (in a general sense). In the present study, a new approach is proposed to determine an optimized backbone model as weighted components of a mixture model. In doing so, each GMPE is assumed to reflect the generation mechanism (e. g. in terms of stress drop, propagation properties, etc.) for at least a fraction of possible ground motions in the area of interest. The combination of different models into a mixture model (which is learned from
Characteristics of strong ground motions in the 2014 M s 6.5 Ludian earthquake, Yunnan, China
Hu, J. J.; Zhang, Q.; Jiang, Z. J.; Xie, L. L.; Zhou, B. F.
2016-01-01
The 2014 M s 6.5 ( M w6.1) Ludian earthquake occurred in the eastern Sichuan-Yunnan border region of western China. This earthquake caused much more severe engineering damage than the usual earthquakes with the same magnitude in China. The National Strong Motion Network obtained large set of ground motion recordings during the earthquake. To investigate the engineering interested characteristics of ground motion from Ludian earthquake and compare it with the M w 7.9 Wenchuan and the M w 6.6 Lushan earthquakes in western China, studies on the ground motion field, attenuation relationship, distance dependence of significant duration, and site amplification were carried out. Some conclusion is drawn. Specifically, the ground motion field reveals a directional feature, and the distribution characteristics of the two horizontal components are similar. The attenuation relationship for Ludian earthquake is basically consistent with the ground motion prediction equation (GMPE) for western China, except the slight smaller than the GMPE predicted at short periods. The distance dependences of ground motion duration are different in Sichuan and Yunnan regions due to the local physical dispersion and Q value. The site amplification factors are dominated by linear site response for lower reference ground motion, but the nonlinearity becomes notable for higher reference ground motion. This feature is basically consistent with the empirical model for western China. All the results indicate that the spatial distribution of ground motion, the attenuation characteristics, and the site amplification effect should be considered in characterization of near-field ground motion.
Validation and modeling of earthquake strong ground motion using a composite source model
Zeng, Y.
2001-12-01
Zeng et al. (1994) have proposed a composite source model for synthetic strong ground motion prediction. In that model, the source is taken as a superposition of circular subevents with a constant stress drop. The number of subevents and their radius follows a power law distribution equivalent to the Gutenberg and Richter's magnitude-frequency relation for seismicity. The heterogeneous nature of the composite source model is characterized by its maximum subevent size and subevent stress drop. As rupture propagates through each subevent, it radiates a Brune's pulse or a Sato and Hirasawa's circular crack pulse. The method has been proved to be successful in generating realistic strong motion seismograms in comparison with observations from earthquakes in California, eastern US, Guerrero of Mexico, Turkey and India. The model has since been improved by including scattering waves from small scale heterogeneity structure of the earth, site specific ground motion prediction using weak motion site amplification, and nonlinear soil response using geotechnical engineering models. Last year, I have introduced an asymmetric circular rupture to improve the subevent source radiation and to provide a consistent rupture model between overall fault rupture process and its subevents. In this study, I revisit the Landers, Loma Prieta, Northridge, Imperial Valley and Kobe earthquakes using the improved source model. The results show that the improved subevent ruptures provide an improved effect of rupture directivity compared to our previous studies. Additional validation includes comparison of synthetic strong ground motions to the observed ground accelerations from the Chi-Chi, Taiwan and Izmit, Turkey earthquakes. Since the method has evolved considerably when it was first proposed, I will also compare results between each major modification of the model and demonstrate its backward compatibility to any of its early simulation procedures.
Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM
Boore, D.M.
2009-01-01
Comparisons of ground motions from two widely used point-source and finite-source ground-motion simulation programs (SMSIM and EXSIM) show that the following simple modifications in EXSIM will produce agreement in the motions from a small earthquake at a large distance for the two programs: (1) base the scaling of high frequencies on the integral of the squared Fourier acceleration spectrum; (2) do not truncate the time series from each subfault; (3) use the inverse of the subfault corner frequency for the duration of motions from each subfault; and (4) use a filter function to boost spectral amplitudes at frequencies near and less than the subfault corner frequencies. In addition, for SMSIM an effective distance is defined that accounts for geometrical spreading and anelastic attenuation from various parts of a finite fault. With these modifications, the Fourier and response spectra from SMSIM and EXSIM are similar to one another, even close to a large earthquake (M 7), when the motions are averaged over a random distribution of hypocenters. The modifications to EXSIM remove most of the differences in the Fourier spectra from simulations using pulsing and static subfaults; they also essentially eliminate any dependence of the EXSIM simulations on the number of subfaults. Simulations with the revised programs suggest that the results of Atkinson and Boore (2006), computed using an average stress parameter of 140 bars and the original version of EXSIM, are consistent with the revised EXSIM with a stress parameter near 250 bars.
Ground Motion Characteristics of the 2011 Virginia and 1988 Quebec M5.8 Earthquakes
Assatourians, K.; Atkinson, G. M.
2011-12-01
The largest two earthquakes in eastern North America (ENA) in the last 50 years are the 2011 Mineral, Virginia and the 1988 Saguenay, Quebec earthquakes, both of moment magnitude (M) 5.8. Both events were relatively well-recorded at regional distances (especially the Virginia earthquake) but have a disappointing lack of instrumental records at distances within 50 km, confounding interpretation of expected near-source motions for moderate-to-large ENA events. At regional distances (200 to 500 km), over frequencies from 0.5 to 10 Hz, the instrumentally-recorded motions from the Virginia and Quebec earthquakes show similar amplitudes and attenuation trends; in both cases the motions agree reasonably well with the trend lines suggested by recent ground-motion prediction equations (GMPEs) such as those of Atkinson and Boore (2011) and Pezeshk et al. (2011). At distances ground motions and attenuation using intensity data; intensity data have the advantage of being available at close distances where instrumental records are sparse. Intensities for the Virginia event were approximately 1 unit lower than those for Saguenay at close distances (bounce effects being seen in a different distance range. Both events had a mean radius for intensity 3 of about 600 km. The observed mean intensity of 3 at 600 km is in agreement with the intensity GMPE of Atkinson and Wald (2007); at close distances, the Virginia intensities are lower than predicted by Atkinson and Wald (2007), whereas the Saguenay intensities are higher.
Soghrat, M. R.; Ziyaeifar, M.
2016-05-01
Recent studies have shown that the vertical component of ground motion can be quite destructive on a variety of structural systems. Development of response spectrum for design of buildings subjected to vertical component of earthquake needs ground motion prediction equations (GMPEs). The existing GMPEs for northern Iranian plateau are proposed for the horizontal component of earthquake, and there is not any specified GMPE for the vertical component of earthquake in this region. Determination of GMPEs is mostly based on regression analyses on earthquake parameters such as magnitude, site class, distance, and spectral amplitudes. In this study, 325 three-component records of 55 earthquakes with magnitude ranging from M w 4.1 to M w 7.3 are used for estimation on the regression coefficients. Records with distances less than 300 km are selected for analyses in the database. The regression analyses on earthquake parameters results in determination of GMPEs for peak ground acceleration and spectral acceleration for both horizontal and vertical components of the ground motion. The correlation between the models for vertical and horizontal GMPEs is studied in details. These models are later compared with some other available GMPEs. According to the result of this investigation, the proposed GMPEs are in agreement with the other relationships that were developed based on the local and regional data.
Accounting for near-fault rupture directivity effects in the development of design ground motions
Energy Technology Data Exchange (ETDEWEB)
Somerville, P.G.; Smith, N.F.; Graves, R.W. [Woodward-Clyde Federal Services, Pasadena, CA (United States); Abrahamson, N.A. [Abrahamson, (Norman A.), Castro Valley, CA (United States)
1995-12-01
The objective of this paper is to describe methods to account for near-fault rupture directivity effects (sometimes referred to as ``fling``) in the development of ground motions for seismic design. These effects, due to propagation of the rupture toward the recording site and to fault slip occurring in the direction toward the site, cause a large long-period pulse of motion in the direction normal to the fault that occurs near the beginning of the record. The ``time compression`` effect of rupture directivity which is partly responsible for the large amplitude of this pulse also causes the motion to have a relatively brief duration compared with that experienced at other locations. Not all near-fault recordings contain forward rupture directivity effects; they only occur when the rupture propagates toward the site and when the fault slip direction is also toward the site. Two kinds of modification to average horizontal response spectral attenuation relations to account for rupture directivity effects are described. The first, developed from an empirical analysis of near-fault data, describes modifications to average horizontal values to obtain fault-normal and fault-parallel components, which differ at periods longer than one second in a manner that is both magnitude and distance-dependent. The second, based on comparison of current empirical attenuation relations with recent data and with simulations of strong ground motions, describes modifications of current empirical attenuation relations for average horizontal motions to account for near-fault effects. In order to facilitate the selection of time histories that represent near-fault ground motion conditions in an appropriate manner, the authors provide a list of near-fault records indicating the nature of the rupture directivity effects that each contains.
Ground ice and hydrothermal ground motions on aufeis plots of river valleys
Directory of Open Access Journals (Sweden)
V. R. Alekseev
2015-03-01
Full Text Available Localized groundwater outflow and layered freezing of them in forms of large ice clusters on the surface creates specific conditions for energy and mass exchange in the «atmosphere–soil–lithosphere» system. In winter, the soil temperature profile is essentially deformed due to heat emission by the aufeis layer of water at its freezing that forms a specific thermocline layer. Deformation of the temperature profile, gradually decreasing, moves down the cross-section and disappearing at the interface between frozen and thawed rocks. Magnitude and number of the temperature deviations from a «normal» state depends on the heat storage of the aufeis-forming waters and on the number of outflows at a given point. The thermocline formation changes conditions of freezing for underlying ground layers together with mechanism of ice saturation of them, and that results in formation of two-layer ice-ground complexes (IGC which differ drastically from cryogenic features in adjacent parts of the valley. Analysis of genetic characteristics and relation of components of the surface and subsurface layers allowed identification of seven types of the aufeis IGC: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressureinjection, and fissure-vein. Yearly formation and destruction of aufeises and subsurface ices is accompanied by a sequence of particularly hazardous geodynamical phenomena, among which the most important are winter flooding of territories, layered freezing of water, ground heaving, thermokarst, and thermoerosion. Combination of these processes may cause a rapid (often unexpected reconfiguration of channels of both surface and subsurface runoff, abrupt uplifts and subsidences of the surface, and decompaction and «shaking-up» of seasonally thawing and seasonally freezing rocks, which may create exceptionally unfavorable conditions for construction and operation of engineering structures. Aufeis plots
Kaklamanos, James; Boore, David M.; Thompson, Eric M.; Campbell, Kenneth W.
2010-01-01
This report presents two methods for implementing the earthquake ground-motion prediction equations released in 2008 as part of the Next Generation Attenuation of Ground Motions (NGA-West, or NGA) project coordinated by the Pacific Earthquake Engineering Research Center (PEER). These models were developed for predicting ground-motion parameters for shallow crustal earthquakes in active tectonic regions (such as California). Of the five ground-motion prediction equations (GMPEs) developed during the NGA project, four models are implemented: the GMPEs of Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008a); these models are abbreviated as AS08, BA08, CB08, and CY08, respectively. Since site response is widely recognized as an important influence of ground motions, engineering applications typically require that such effects be modeled. The model of Idriss (2008) is not implemented in our programs because it does not explicitly include site response, whereas the other four models include site response and use the same variable to describe the site condition (VS30). We do not intend to discourage the use of the Idriss (2008) model, but we have chosen to implement the other four NGA models in our programs for those users who require ground-motion estimates for various site conditions. We have implemented the NGA models by using two separate programming languages: Fortran and R (R Development Core Team, 2010). Fortran, a compiled programming language, has been used in the scientific community for decades. R is an object-oriented language and environment for statistical computing that is gaining popularity in the statistical and scientific community. Derived from the S language and environment developed at Bell Laboratories, R is an open-source language that is freely available at http://www.r-project.org/ (last accessed 11 January 2011). In R, the functions for computing the NGA equations can be loaded as an
Efficient sympathetic motional ground-state cooling of a molecular ion
Wan, Yong; Wolf, Fabian; Schmidt, Piet O
2015-01-01
Cold molecular ions are promising candidates in various fields ranging from precision spectroscopy and test of fundamental physics to ultra-cold chemistry. Control of internal and external degrees of freedom is a prerequisite for many of these applications. Motional ground state cooling represents the starting point for quantum logic-assisted internal state preparation, detection, and spectroscopy protocols. Robust and fast cooling is crucial to maximize the fraction of time available for the actual experiment. We optimize the cooling rate of ground state cooling schemes for single $^{25}\\mathrm{Mg}^{+}$ ions and sympathetic ground state cooling of $^{24}\\mathrm{MgH}^{+}$. In particular, we show that robust cooling is achieved by combining pulsed Raman sideband cooling with continuous quench cooling. Furthermore, we experimentally demonstrate an efficient strategy for ground state cooling outside the Lamb-Dicke regime.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients ρ. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.
Directory of Open Access Journals (Sweden)
Marin Petrov
1993-12-01
Full Text Available Ground motion intensity caused by deep-hole blasting on the stone quarries »Hercegovac« and »Max-Stoja« was determined by measuring of ground vibrations magnitudes and by interpretation of measuring results under world damage criteria for structures. Reduction of ground motion intensity was realized on the basis of calculation of permissible charge quantity per ignition level (the paper is published in Croatian.
DEFF Research Database (Denmark)
Konakli, Katerina; Der Kiureghian, Armen
2012-01-01
A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....... In the first, simulated motions are consistent with the power spectral densities of a segmented recorded motion and are characterized by uniform variability at all locations. Uniform variability in the array of ground motions is essential when synthetic motions are used for statistical analysis of the response...... of multiply‐supported structures. In the second approach, simulated motions are conditioned on the segmented record itself and exhibit increasing variance with distance from the site of the observation. For both approaches, example simulated motions are presented for an existing bridge model employing two...
International Nuclear Information System (INIS)
The report presents current status of ground motion and seismic response simulations using such large parallel computers as K-computer for efficient use of which it is necessary to develop program with some ten thousand calculation nodes. Such a program combined with a detailed analysis model of the earth crust and the ground (or the foundation) makes structure seismic response simulations with higher time and position resolutions than hitherto available including detailed damage process leading to destruction. Understanding interaction between civil engineering and building structure is expected. (S. Ohno)
Takahashi, Takéo
2003-01-01
In this paper, we study a fluid--rigid-body interaction problem. The motion of the fluid is modeled by the Navier-Stokes equations, written in an unknown bounded domain depending on the displacement of the rigid body. Our main result yields existence and uniqueness of strong solutions. In the two-dimensional case, the solutions are global provided that the rigid body does not touch the boundary. In the three-dimensional case, we obtain local-in-time existence and global existen...
Seismic hazard analysis. Review panel, ground motion panel, and feedback results
International Nuclear Information System (INIS)
The Site Specific Spectra Project (SSSP) was a multi-year study funded by the U.S. Nuclear Regulatory Commission to provide estimates of the seismic hazards at a number of nuclear power plant sites in the Eastern U.S. A key element of our approach was the Peer Review Panel, which we formed in order to ensure that our use of expert opinion was reasonable. We discuss the Peer Review Panel results and provide the complete text of each member's report. In order to improve the ground motion model, an Eastern U.S. Ground Motion Model Panel was formed. In Section 4 we tabulate the responses from the panel members to our feedback questionnaire and discuss the implications of changes introduced by them. We conclude that the net difference in seismic hazard values from those presented in Volume 4 is small and does not warrant a reanalysis. (author)
Prediction of near-field strong ground motions for scenario earthquakes on active fault
Institute of Scientific and Technical Information of China (English)
Wang Haiyun; Xie Lili; Tao Xiaxin; Li Jie
2006-01-01
A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First,macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width,rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws.Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic corner frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.
Kaklamanos, James; Baise, Laurie G.; Boore, David M.
2011-01-01
The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which some of the required input parameters are unknown. In this paper, we present a framework for estimating the unknown source, path, and site parameters when implementing the NGA models in engineering practice, and we derive geometrically-based equations relating the three distance measures found in the NGA models. Our intent is for the content of this paper not only to make the NGA models more accessible, but also to help with the implementation of other present or future GMPEs.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.
Mitigation of ground motion effects via feedback systems in the Compact Linear Collider
Pfingstner, Jürgen; Schmickler, Hermann; Schulte, Daniel
The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate ...
Yaghmaei-Sabegh, Saman
2015-10-01
This paper presents the development of new and simple empirical models for frequency content prediction of ground-motion records to resolve the assumed limitations on the useable magnitude range of previous studies. Three period values are used in the analysis for describing the frequency content of earthquake ground-motions named as the average spectral period ( T avg), the mean period ( T m), and the smoothed spectral predominant period ( T 0). The proposed models could predict these scalar indicators as function of magnitude, closest site-to-source distance and local site condition. Three site classes as rock, stiff soil, and soft soil has been considered in the analysis. The results of the proposed relationships have been compared with those of other published models. It has been found that the resulting regression equations can be used to predict scalar frequency content estimators over a wide range of magnitudes including magnitudes below 5.5.
Directory of Open Access Journals (Sweden)
Kotaro eKojima
2015-09-01
Full Text Available The multiple impulse input is introduced as a substitute of the long-duration earthquake ground motion, mostly expressed in terms of harmonic waves, and a closed-form solution is derived of the elastic-plastic response of a single-degree-of-freedom structure under the ‘critical multiple impulse input’. Since only the free-vibration appears under such multiple impulse input, the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response. It is shown that the critical inelastic deformation and the corresponding critical input frequency can be captured depending on the input level by the substituted multiple impulse input in the form of original and modified input sequence. The validity and accuracy of the proposed theory are investigated through the comparison with the response analysis to the corresponding sinusoidal input as a representative of the long-duration earthquake ground motion.
Limb preference in the gallop of dogs and the half-bound of pikas on flat ground
Hackert, Rémi; Herbin, Marc; Abourachid, Anick; Libourel, P A
2008-01-01
During fast locomotion - gallop, half bound - of quadruped mammals, the ground contact of the limbs in each pair do not alternate symmetrically. Animals using such asymmetrical gait thus choose whether the left or the right limb will contact the ground first, and this gives rise to limb preference. Here, we report that dogs (Mammalia, Carnivora) and pikas (Mammalia, Lagomorpha) prefer one forelimb as trailing limb and use it as such almost twice as often as the other. We also show that this choice depends on the individual and is not a characteristic of the species, and that the strength of the preference was not dependent on the animal's running speed.
A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers
Porter, K.
2014-12-01
Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of
Vidal, F.; Alguacil, G.; Rodríguez, L.; Navarro, M.; Ruiz, A.; Aguirre, J.; Acosta, M.; Gonzalez, R.; Mora, J.; Reyes, M.
2013-05-01
The high seismic hazard level of Tapachula city (Chiapas, Mexico) requires a better understanding of the characteristics of earthquake ground motion to implement risk reduction policies in this urban area. A map of ground predominant period estimated with Nakamura technique already shows four different zones: the largest one in the downtown with 0.2-0.4s, two small zones (concentric to the previous one) of 0.4-0.7s and 0.7-0.9 s, respectively, and the smallest zone (on the edge of the city) with the higher values 0.9-1.1s. During 44 days more than 220 events were recorded by a temporal seismic network installed by the UNAM at 6 sites distributed in Tapachula. The magnitude Mw and hypocentral distance of the events were reassessed and range from 3.3 to 4.5 and 60 to 190 km, respectively. After selecting the accelerograms with the best signal/noise ratio, a set of key engineering ground-motion parameters such as peak values of strong motion, acceleration and velocity response spectra, Arias intensity, cumulative absolute velocity, relative significant duration, the Housner spectrum-intensity, the energy input spectrum and H/V spectral ratio were calculated for the selected events. The ground-motion prediction equations (GMPE) of each parameter as function of magnitude and distance were also estimated. On the other hand, synthetic seismic traces were obtained at each station site after modeling a seismic source of magnitude 7.2 by using the empirical Green's function method. Thus, a shake-map scenario was generated for an earthquake similar to that of the September 10, 1993. The parameters here obtained show different shake levels and frequency content at each site. All sites present amplification for 0.25 and 0.5 s. TACA, TAPP y TATC stations, located near the two rivers bordering Tapachula, are those with the largest ground amplification. The characteristics of strong ground motion obtained from synthetic accelerograms are in agreement with those from the empirical
Efficient sympathetic motional ground-state cooling of a molecular ion
Wan, Yong; Gebert, Florian; Wolf, Fabian; Schmidt, Piet O.
2015-01-01
Cold molecular ions are promising candidates in various fields ranging from precision spectroscopy and test of fundamental physics to ultra-cold chemistry. Control of internal and external degrees of freedom is a prerequisite for many of these applications. Motional ground state cooling represents the starting point for quantum logic-assisted internal state preparation, detection, and spectroscopy protocols. Robust and fast cooling is crucial to maximize the fraction of time available for the...
Real-time modeling of transverse emittance growth due to ground motion
International Nuclear Information System (INIS)
Ground motion noise at frequencies around 1 kHz causes growth of transverse emittance of the Superconducting Super Collider (SSC) collider beams. The effect was quantitatively investigated using real-time signals from seismometers installed at the tunnel depth and on the surface. The SSC beam was modeled as an ensemble of oscillators with a spread of betatron frequencies. The effect of transverse feedback on emittance growth was investigated
Institute of Scientific and Technical Information of China (English)
WANG Man-sheng; JIANG Hui; HU Yu-xian
2005-01-01
Strong ground motion of an earthquake is simulated by using both staggered grid finite difference method (FDM)and stochastic method, respectively. The acceleration time histories obtained from the both ways and their response spectra are compared. The result demonstrates that the former is adequate to simulate the low-frequency seismic wave; the latter is adequate to simulate the high-frequency seismic wave. Moreover, the result obtained from FDM can better reflect basin effects.
The 26 January 2001 M 7.6 Bhuj, India, Earthquake: Observed and Predicted Ground Motions
Hough, Susan E.; Martin, Stacey; Bilham, Roger; Atkinson, Gail M.
2002-01-01
Although local and regional instrumental recordings of the devastating 26, January 2001, Bhuj earthquake are sparse, the distribution of macroseismic effects can provide important constraints on the mainshock ground motions. We compiled available news accounts describing damage and other effects and interpreted them to obtain modified Mercalli intensities (MMIs) at >200 locations throughout the Indian subcontinent. These values are then used to map the intensity distribution throughout the su...
Ground motion observations and simulation for local earthquakes in the Campi Flegrei volcanic area
Galluzzo, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Bianco, F.; La Rocca, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Zonno, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia
2015-01-01
Ground motion produced by low magnitude earthquakes can be used to predict peak values in high seismic risk areas where large earthquakes data are not available. In the present work 20 local earthquakes (MD[[-0.3, 2.2]) occurred in the Campi Flegrei caldera during the last decade were analyzed. We followed this strategy: empirical relations were used to calibrate synthetic modeling, accounting for the source features and wave propagation effects. Once the source and path parame...
Effects of earthquake-rupture shallowness and local soil conditions on simulated ground motions
Energy Technology Data Exchange (ETDEWEB)
Apsel, Randy J.; Hadley, David M.; Hart, Robert S.
1982-12-01
In order to develop site-specific response spectra from strong ground motion recordings appropriate for Eastern United States (EUS) sites, it is necessary to perform extrapolations from response spectra appropriate in other areas due to the scarcity of strong ground motion recordings available in the EUS. Recordings obtained from the more abundant Western United States (WUS) database are typically chosen to perform these extrapolations. The extrapolations require knowledge of how differences in tectonic and geologic conditions between EUS and WUS translate into differences in recorded ground motions. One of the most widely accepted tectonic differences between EUS and WUS is the observed depth of earthquake rupture for magnitudes 4 and greater. This report documents, using sophisticated three-dimensional numerical modeling techniques, how spectral shapes extrapolated from the WUS database must be scaled to account for differences in earthquake rupture shallowness. Using sophisticated three-dimensional numerical modeling techniques, the potential ground motions from small shallow events are estimated and the spectral shapes compared to those calculated for larger magnitude earthquakes occurring at more typical depths in the EUS. The possible effects of local soil conditions on the seismic response spectra are demonstrated. Earthquake ruptures of various magnitudes, site distances and fault types are compared as a function of rupture shallowness for a generic rock site and a generic soil site and do not include the possible effects of site-specific soil properties present in the upper fifty meters. Comparisons are also made among four earth models to demonstrate the effects of local soil conditions on the calculated response spectra.
Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures
Aagaard, Brad T.; Heaton, Thomas H.
2004-01-01
We examine the long-period near-source ground motions from simulations of M 7.4 events on a strike-slip fault using kinematic ruptures with rupture speeds that range from subshear speeds through intersonic speeds to supersonic speeds. The strong along-strike shear-wave directivity present in scenarios with subshear rupture speeds disappears in the scenarios with ruptures propagating faster than the shear-wave speed. Furthermore, the maximum horizontal displacements and velocities rotate from ...
Ground motion scenario based on multi-scale mapping of fault heterogeneity
Aochi, Hideo; Ide, Satoshi
2013-01-01
It has been proposed that earthquake complexity can be described by multi-scale heterogeneity in fracture energy of the fault interface (Ide and Aochi, JGR, 2005). The 2011 Tohoku earthquake revealed us such multi-scalability of the fault heterogeneity, seemingly a cascade-rupture mode (Aochi and Ide, EPS, 2011; Ide and Aochi, accepted in Tectonophysics, 2013). We are then interested in the effect on the ground motion through systematic works on the model parameters. This study presents the g...
Evidence for ground motion polarization on fault zones of mt. etna volcano
Rigano, S.; Dipartimento di Scienze Geologiche, Università di Catania, Catania, Italia; Cara, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Lombardo, G.; Dipartimento di Scienze Geologiche, University of Catania, Italy; Rovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
2008-01-01
During local and regional earthquakes, an evident amplification of horizontal ground motion is observed at two seismological stations near the Tremestieri fault, on the southeastern flank of Mt. Etna volcano. Rotated-component spectral ratios show a narrow spectral peak around 4-Hz along a N40°E direction. A conventional polarization analysis using the eigenvectors of the covariance matrix confirms the very stable directional effect enhancing the approximately NE-SW elongation ...
Ground-motion scenarios consistent with PSH deaggregation for Tehran, capital city of Iran
F. Abdi; N. Mirzaei; E. Shabani
2013-01-01
This study presents the results of probabilistic seismic hazard (PSH) deaggregation for 5%-damped 0.2 and 1.0 s spectral accelerations, corresponding to mean return periods (MRPs) of 50, and 475 yr for Tehran city. The aim of this paper is to quantify the dominant events that have the most contribution on ground-motion exceedance from the above mentioned hazard levels. The scenario earthquakes are characterized by bins of magnitude (M), source-to-site distance (R), and epsil...
Ground motion simulations in Marmara (Turkey) region from 3D finite difference method
Aochi, Hideo; Ulrich, Thomas; Douglas, John
2016-04-01
In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.
Guidelines for earthquake ground motion definition for the eastern United States
International Nuclear Information System (INIS)
Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab
Stochastic ground motion simulation of the 12 October 1992 Dahshour earthquake
Moustafa, Sayed; Takenaka, Hiroshi
2009-09-01
The stochastic method for finite faults is applied to simulate the ground motion of the 12 October 1992, m b = 5.9, Dahshour earthquake. The method includes discritization of the fault plane into certain number of subfaults, and a ω-squared spectrum is assigned to each of them. Contributions from all subfaults are then empirically attenuated to the observation sites, where they are summed to produce the synthetic acceleration time-history. The method is first tested against its ability of reproducing the recording at Kottamya station. The calibrated model is then applied to calculate the synthetics at a large number of grid points covering the area around the fault plane. Simulated peak values are subsequently used to produce the synthetic peak horizontal acceleration map for the area. We compare the peak horizontal acceleration with the attenuation laws proposed for Egypt as well as the macroseismic intensity map of the 1992 Dahshour earthquake. The peak horizontal acceleration contours estimated using the calibrated model are mostly consistent with the observed intensity values and evidences of strong ground motions. Our results encourage the application of the approach as a supplementary tool for site-specific strong ground motion prediction.
Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media
Bydlon, Samuel A.
2015-03-21
©2015. American Geophysical Union. All Rights Reserved. We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ∼20km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length. Key Points Fault roughness, not material heterogeneity, dominates rupture process Introduce parameter that can be used to quantify near-fault scattering Scattering affects the duration and amplitude of high-frequency ground motions
Guidelines for earthquake ground motion definition for the Eastern United States
International Nuclear Information System (INIS)
Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors
Electric field variations generated by ground motion and their application to groundwater research
International Nuclear Information System (INIS)
Complete text of publication follows. Clear examples of electric field variations have been obtained in association with ground motion due to the passage of seismic waves. Such electric field variations have been interpreted mostly in terms of the so-called electrokinetic effect, as well documented in quite a few papers. Recently we found circularly polarized electric fields in association with natural and artificial (blasting) earthquakes in Japan and proposed another mechanism of electric field generation, which we call the seismic dynamo effect. This may be regarded as an extended model of the induction effect. In this model we consider ions motion in pores filled with groundwater, which is driven by ground motion in the Earth's magnetic field. This model is capable of showing the possibility of circular polarization of electric field when the resonance is realized between the frequency of ground velocity and the cyclotron frequency of ion, such as HCO3-, Cl-, Na+, etc. contained in pores, for the Earth's magnetic field at the observation site. Ions with negative charge show the circular polarization with polarity opposite to that for ions with positive charge. In the observations, circular polarizations with opposite polarities have also been found. An application of this model would be possible for groundwater research in relation to environmental researches. Concentration of specific ions in groundwater would be examined if experiments are properly designed in the field.
Explosion-produced ground motion: technical summary with respect to seismic hazards
International Nuclear Information System (INIS)
This paper summarizes the present technical knowledge, experimental and theoretical, of how underground nuclear explosions produce seismic motion that may be a hazard at distances measured in tens of kilometers. The effects of explosion yield and rock properties (at the explosion, along the signal propagation path, and at the site where a hazard may exist) on the ground motion are described in detail, and some consideration is given to the relation between ground motion and damage criteria. The energy released in a nuclear explosion is sufficient to vaporize the explosive and to generate an intense shock wave that is propagated outward into the surrounding rock. Part of the energy transported by the shock wave is dissipated in the shocked material. The shock wave strength decreases with distance from the center of the explosion as a consequence of this energy loss and because of geometric (approximately spherical) divergence. The dissipated energy fraction ranges from over 95% (for competent rocks like granite) to over 99% (for crushable, porous rocks like alluvium) of the explosion yield. Therefore, the energy fraction that is radiated in the form of seismic waves ranges from a few percent down to a few tenths of a percent. This is consistent with the observation that explosions in granite produce more severe ground motion than corresponding explosions in alluvium. The effects of explosion yield and rock properties on the frequency spectrum of the seismic source function are demonstrated by both experimental measurements and theoretical analysis. The characteristics of an ideal elastic medium are such that its frequency response is that of a low-pass filter, with its cutoff frequency being a function of the elastic properties of the material and the radius at which the explosion-produced stress wave becomes elastic. There is further frequency- and distance-dependent attenuation (especially of the higher frequencies) of the seismic waves, because rocks are not
Influence Of Site Classification On Computing Empirical Ground-Motion Prediction Equations In Italy
di Alessandro, C.; Bonilla, L.; Rovelli, A.; Scotti, O.
2008-12-01
In this study, we investigate a site classification method for stations of the Italian Accelerometric Network based on the predominant period of ground motion at the site. The site predominant period is identified from the average horizontal-to-vertical (H/V) spectral ratios of the 5%-damped response spectra of Italian earthquake records. We selected a data-set of 610 three-component analogue and digital recordings from 120 earthquakes recorded at 214 seismic stations within an hypocentral distance of 200 km. Selected events are in the moment-magnitude Mw range of 4.0 to 6.8 and the focal depth ranges from 5 to 40 km. Whenever possible, we classified each site by assigning them to one of six predominant period classes (in the range 0.05 to 2 seconds) that we propose as a modification of the Zhao et al. (2006) procedure. We then investigated the impact of this classification scheme on empirical ground-motion prediction equations. We adopted the same functional form of Fukushima et al. (2007) and we computed a nonlinear period- dependent regression that allowed us to derive site coefficients using the proposed six predominant period classes. We also derived site coefficients for a simplified classification based on the general soil conditions at each site. This classification uses two classes (which we call A-B and C-D, with Vs ≥ 360 m/s and Vs < 360 m/s, respectively) based on the four basic ground categories in the current European (CEN 2004) and Italian seismic codes. Our empirical site classification scheme based on strong-motion data provides the opportunity to explore whether we can decrease the misfit by improving the site characterization of the Italian data set. Comparison of our results with other empirical ground-motion prediction equations (GMPEs) based on conventional site classifications do not display a significant reduction of overall standard deviation. However, our site classification schemes shows promise in reducing the uncertainty in ground-motion
Analysis of the response behaviour of structures subjected to damaging pulse-type ground motions
International Nuclear Information System (INIS)
The presence of long period pulses in near-fault records can be considered as an important factor in causing damage due to the transmission of large energy amounts to the structures in a very short time. Under such circumstances high energy dissipation demands usually occur, which are likely to concentrate in the weakest parts of the structure. From the study of the response of nonlinear oscillators, the effects of these distinctive long period pulses, derived from records obtained during recent earthquakes, have been assessed by means of: 1) synthetic parameters directly derived from the strong ground motion records, such as peak ground acceleration, peak ground velocity, incremental velocity, and 2) elastic and inelastic spectra of input energy, hysteretic energy, displacement, strength. The results indicate that long duration pulses strongly affects the inelastic response, with very high energy and drift demands which may be several times larger than the limit values specified by the majority of codes. (authors)
Directory of Open Access Journals (Sweden)
Muthuganeisan Prabhu
2016-04-01
Full Text Available This article presents four regional site-specific ground motion relations developed for the state of Himachal Pradesh in northwest Himalaya, situated in a seismically active region. These relations are developed from synthetic free surface ground motion databases obtained from a calibrated stochastic seismological model considering the characteristic properties of this specific region. The adopted methodology incorporates the site effects characterised through active MASW tests conducted in 22 important cities. The estimated ground motion levels from the developed relations are found to be in reasonable agreement with the recorded data.
Energy Technology Data Exchange (ETDEWEB)
King, J.L.
1990-04-01
The Department of Energy has proposed a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a quasi-deterministic construct that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations; engineering analyses to ensure safe performance in the unlikely event that the design basis is exceeded are a part of the proposed methodology. 8 refs.
International Nuclear Information System (INIS)
The Department of Energy has proposed a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a quasi-deterministic construct that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations; engineering analyses to ensure safe performance in the unlikely event that the design basis is exceeded are a part of the proposed methodology. 8 refs
Mitigation of ground motion effects via feedback systems for the Compact Linear Collider
International Nuclear Information System (INIS)
The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate expert knowledge, which is used by an optimisation algorithm to minimise the luminosity loss due to ground motion. This approach speeds up the design process significantly, while at the same time improving the orbit feedback performance compared to standard methods. Beside the L-FB, simple but effective designs for the interaction point feedback and cost reduction options for the quadrupole stabilisation are presented. For the design of all these feedback systems models of the ground motion influence on different beam parameters such as beam offset, beam size and luminosity have been derived by adapting and extending existent models. To design, improve and validate the ground motion mitigation methods, a simulation framework was set up, which includes a ground motion generator, beam tracking, beam-beam interaction and all mitigation methods. The simulations show that the ground motion mitigation methods can efficiently preserve the CLIC luminosity. Due to our
Seismic microzoning from synthetic ground motion parameters: Case study, Santiago de Cuba
International Nuclear Information System (INIS)
Synthetic seismograms (P - SV and SH waves) have been calculated along 6 profiles in Santiago de Cuba basin, with a cutoff frequency of 5 Hz, by using the hybrid approach (modal summation for a regional (ID) structure plus finite differences for a local (2D) structure embedded in the first). They correspond to a scenario earthquake of MS = 7 that may occur in Oriente fault zone, directly south of the city. As initial data for a seismic microzoning, the characterisation of earthquake effects has been made considering several relative (2D/1D) quantities (PGDR, PGVR, PGAR, DGAR, IAR etc.) and functions representative of the ground motion behaviour in soil (2D) with respect to bedrock (ID). The functions are the response spectra ratio RSR(f), already routinely used in this kind of work, and the elastic energy input ratio EIR(f), defined, for the first time, in this paper. These data, sampled at 105 sites within all the profiles have been classified in two steps, using logical combinatory algorithms: connected sets and compact sets. In the first step, from the original ground motion parameters or functions extracted from the synthetic seismograms, 9 sets have been classified and the partial results show the spatial distribution of the soil behaviour as function of the component of motion. In the second step, the results of the classification of the 9 sets have been used as input for a further classification that shows a spatial distribution of sites with a quasi-homogeneous integral ground motion behaviour. By adding the available geological surface data, a microzoning scheme of Santiago de Cuba basin has been obtained. (author)
Institute of Scientific and Technical Information of China (English)
LI Chun-feng; ZHANG Yang; ZHAO Jin-bao; TANG Hui
2006-01-01
This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches the importance to the variation of strength of the long-period ground motion with the magnitude, distance, and site condition. In the meantime, the near-fault long-period ground motion characteristic is analyzed. The result shows that the shape of the long-period response spectrum is mainly controlled by site condition and magnitude (the spectrum of class D+E is wider than that of class B+C, and the spectrum of larger magnitude is wider than that of smaller magnitude), and the effect of fault distance on the shape is not evident. And near-fault long-period ground motion characteristic depends on fault activity apparently, that is to say, the long-term ground motion in the hanger is stronger than that in the footwall, and the long-term ground motion in the north is stronger than that in the south.
Choudhury, Pallabee; Chopra, Sumer; Roy, Ketan Singha; Sharma, Jyoti
2016-04-01
In this study, ground motions are estimated for scenario earthquakes of Mw 6.0, 6.5 and 7.0 at 17 sites in Gujarat region using Empirical Green's function technique. The Dholavira earthquake of June 19, 2012 (Mw 5.1) which occurred in the Kachchh region of Gujarat is considered as an element earthquake. We estimated the focal mechanism and source parameters of the element earthquake using standard methodologies. The moment tensor inversion technique is used to determine the fault plane solution (strike = 8°, dip = 51°, and rake = - 7°). The seismic moment and the stress drop are 5.6 × 1016 Nm and 120 bars respectively. The validity of the approach was tested for a smaller earthquake. A few possible directivity scenarios were also tested to find out the effect of directivity on the level of ground motions. Our study reveals that source complexities and site effects play a very important role in deciding the level of ground motions at a site which are difficult to model by GMPEs. Our results shed new light on the expected accelerations in the region and suggest that the Kachchh region can expect maximum acceleration of around 500 cm/s2 at few sites near source and around 200 cm/s2 at most of the sites located within 50 km from the epicentre for a Mw 7.0 earthquake. The estimated ground accelerations can be used by the administrators and planners for providing a guiding framework to undertake mitigation investments and activities in the region.
Effects of repository depth on ground motion: the Pahute Mesa data
International Nuclear Information System (INIS)
Measurements of ground motion from ten Pahute Mesa weapons tests were made at seven locations on the Nevada Test Site. Each location had measurements at the surface and at a depth ranging from 61m to 762m, permitting an assessment of the effect of depth on ground motion. Measurements of vertical, radial and tangential acceleration were made at each location and depth, and the three components of acceleration were used to determine peak vector magnitudes of acceleration, velocity, and displacement. Top-to-bottom ratios of the peak vectors were plotted against depth and an exponential least squares fit made to the curve. Ratios of the largest single peaks, averages of the 5, 10, 15, 20, and 25 largest peaks, and ratios of Pseudo Relative Response Velocity (PSRV) were examined. Fits for the multiple peaks were better than for single peaks, and those for PSRV's better than for multiple peaks as evidenced by improvements in coefficients of determination. While scatter from one event to the next contributes to small coefficients of determination, an even greater effect is produced by differences in geology at the seven locations. Fits to the data can be used as prediction equations. Examination of waveforms of individual components of motion showed influences of topography at two locations
Spatial variation of earthquake ground motion for application to soil-structure interaction
Energy Technology Data Exchange (ETDEWEB)
Abrahamson, N. (Bechtel Civil, Inc., San Francisco, CA (United States))
1992-03-01
The spatial variation of strong ground motion from fifteen earthquakes recorded by the Lotung LSST strong motion array is analyzed. The earthquakes range in magnitude from 3.7 to 7.8 and in source distance from 4 to 80 km. In all a total of 533 station pairs are used with station separations ranging from 60 to 85 meters. The spatial variation of ground motion is divided into two parts: variation in the fourier phase (coherence), and variation in the Fourier amplitude. Empirical functions describing the frequency and separation distance dependence of the coherency and amplitude variation appropriate for use in engineering analyses are derived. Taken together, the spatial variation functions given in this study provide a complete description of the statistical properties of the horizontal components of the seismic wavefield assuming plane wave propagation for the S-wave window. Since the S-waves generally cause the largest shaking, these spatial variation functions are appropriate for use in engineering analyses of large structures.
Spatial variation of earthquake ground motion for application to soil-structure interaction
International Nuclear Information System (INIS)
The spatial variation of strong ground motion from fifteen earthquakes recorded by the Lotung LSST strong motion array is analyzed. The earthquakes range in magnitude from 3.7 to 7.8 and in source distance from 4 to 80 km. In all a total of 533 station pairs are used with station separations ranging from 60 to 85 meters. The spatial variation of ground motion is divided into two parts: variation in the fourier phase (coherence), and variation in the Fourier amplitude. Empirical functions describing the frequency and separation distance dependence of the coherency and amplitude variation appropriate for use in engineering analyses are derived. Taken together, the spatial variation functions given in this study provide a complete description of the statistical properties of the horizontal components of the seismic wavefield assuming plane wave propagation for the S-wave window. Since the S-waves generally cause the largest shaking, these spatial variation functions are appropriate for use in engineering analyses of large structures
Measurement of six degree-of-freedom ground motion by using eight accelerometers
Institute of Scientific and Technical Information of China (English)
Yang Zhenyu; Shen Yi; Liu Zhiyan
2005-01-01
A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual translational acceleration components without gyroscopes. In the proposed measuring system, the relationship between the output from eight force-balance accelerometer and the six DOF motion of the measuring system under an earthquake are described by differential equations. These equations are derived from the positions and directions of the eight force-balance accelerometers in the measuring system. The third-order Runge-Kutta algorithm is used to guarantee the accuracy of the numerical calculation. All the algorithms used to compute the six DOF components of the ground motion are implemented in a real-time in Digital Signal Processor (DSP). The distortion of the measured results caused by position and direction errors of the accelerometers in the measuring system are reduced by multiplying a compensation coefficient C to the output and subtracting static zero drift from the measured results, respectively.
A Bayesian and Physics-Based Ground Motion Parameters Map Generation System
Ramirez-Guzman, L.; Quiroz, A.; Sandoval, H.; Perez-Yanez, C.; Ruiz, A. L.; Delgado, R.; Macias, M. A.; Alcántara, L.
2014-12-01
We present the Ground Motion Parameters Map Generation (GMPMG) system developed by the Institute of Engineering at the National Autonomous University of Mexico (UNAM). The system delivers estimates of information associated with the social impact of earthquakes, engineering ground motion parameters (gmp), and macroseismic intensity maps. The gmp calculated are peak ground acceleration and velocity (pga and pgv) and response spectral acceleration (SA). The GMPMG relies on real-time data received from strong ground motion stations belonging to UNAM's networks throughout Mexico. Data are gathered via satellite and internet service providers, and managed with the data acquisition software Earthworm. The system is self-contained and can perform all calculations required for estimating gmp and intensity maps due to earthquakes, automatically or manually. An initial data processing, by baseline correcting and removing records containing glitches or low signal-to-noise ratio, is performed. The system then assigns a hypocentral location using first arrivals and a simplified 3D model, followed by a moment tensor inversion, which is performed using a pre-calculated Receiver Green's Tensors (RGT) database for a realistic 3D model of Mexico. A backup system to compute epicentral location and magnitude is in place. A Bayesian Kriging is employed to combine recorded values with grids of computed gmp. The latter are obtained by using appropriate ground motion prediction equations (for pgv, pga and SA with T=0.3, 0.5, 1 and 1.5 s ) and numerical simulations performed in real time, using the aforementioned RGT database (for SA with T=2, 2.5 and 3 s). Estimated intensity maps are then computed using SA(T=2S) to Modified Mercalli Intensity correlations derived for central Mexico. The maps are made available to the institutions in charge of the disaster prevention systems. In order to analyze the accuracy of the maps, we compare them against observations not considered in the
Institute of Scientific and Technical Information of China (English)
Li Xinle; Dou Huijuan; Zhu Xi
2007-01-01
A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion,focusing on the effect of earthquake magnitude,site conditions,pulse duration,and statistical component.The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes,and the relationship between the vertical and horizontal ground motions is comparatively intricate.In addition,the effect of the near-fault ground motions on bridge performance is analyzed,considering both the material nonlinear characteristics and the P～△ effect.
Craifaleanu, Iolanda-Gabriela
2013-01-01
The paper presents results from a recent study in progress, involving an extensive analysis, based on several deterministic and stochastic indices, of the frequency content of ground motions recorded during strong Vrancea seismic events. The study, continuing those initiated by Lungu et al. in the early nineties, aims to better reveal the characteristics of the analyzed ground motions. Over 300 accelerograms, recorded during the strong Vrancea seismic events mentioned above and recently re-digitized, are used in the study. Various analytical estimators of the frequency content, such as those based on Fourier spectra, power spectral density, response spectra and peak ground motion values are evaluated and compared. The results are correlated and validated by using the information provided by various spectral bandwidth measures, as the Vanmarcke and the Cartwright and Longuet-Higgins indices. The capacity of the analyzed estimators to describe the frequency content of the analyzed ground motions is assessed com...
Directory of Open Access Journals (Sweden)
Elham Shabani
2014-01-01
Full Text Available This article presents the results of disaggregation of ground motion hazard obtained for two of Iran’s urban centers, Kermanshah and Sanandaj. Disaggregation of peak ground acceleration (PGA and spectral acceleration hazard corresponding to mean return periods of 475 and 50 years is performed. 12 area seismic sources in the study region as well as 15 area seismic sources in a 150-km distance from the region are delineated. The scenario earthquakes are characterized by bins of magnitude, M, source-to-site distance, R, and number of standard deviations, ε, that the ground-motion parameter is away from its median value for that M-R pair as estimated by a prediction equation. In most cases, the sources closer to the site dominate. Larger, more distant earthquakes contribute more significantly to hazard for longer periods than for shorter periods. Disaggregation plots can provide useful information on the distance and magnitude of predominant sources, which can be used to generate scenario earthquakes and select corresponding time histories for seismic design.
Iolanda-Gabriela CRAIFALEANU
2013-01-01
The paper presents results from a recent study in progress, involving an extensive analysis, based on several deterministic and stochastic indices, of the frequency content of ground motions recorded during strong Vrancea seismic events. The study, continuing those initiated by Lungu et al. in the early nineties, aims to better reveal the characteristics of the analyzed ground motions. Over 300 accelerograms, recorded during the strong Vrancea seismic events mentioned above and recently re-di...
K. Hacıefendioğlu
2012-01-01
The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake grou...
ARMA models for earthquake ground motions. Seismic Safety Margins Research Program
International Nuclear Information System (INIS)
This report contains an analysis of four major California earthquake records using a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It has been possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters and test the residuals generated by these models. It has also been possible to show the connections, similarities and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed in this report is suitable for simulating earthquake ground motions in the time domain and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. (author)
International Nuclear Information System (INIS)
We describe a model that generates realistic synthetic records of plausible strong ground motions, specific to the fault - station geometry. We model the slip as a superposition of randomly located sub-events. Since this source includes random parameters, we generate multiple realizations to investigate the uncertainties. In the context of the Representation Theorem, the motion is transferred to the site using synthetic Green's functions generated for a flat-layered Earth model. The Green's functions are generated using the regional velocity model, and can be modified with shallow layers to match the local site conditions. Source parameters are related energy and effective stress. Thus the parameters in the model are mostly constrained by either geological or geophysical observations. This paper also reviews several applications. The purpose of this paper is to review the method that we have been using to generate the synthetic seismograms, illustrate some applications, and discuss future directions for these studies
ARMA models for earthquake ground motions. Seismic safety margins research program
Energy Technology Data Exchange (ETDEWEB)
Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.; Oliver, R. M.; Pister, K. S.
1981-02-01
Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulating earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.
On the coherence of ground motion in the San Fernando valley
Hough, S.E.; Field, E.H.
1996-01-01
We present an analysis of the coherence of seismic ground motion recorded on alluvial sediments in the San Fernando Valley, California. Using aftershocks of the 17 January 1994 Mw6.7 earthquake recorded at a quasi-dense array of portable stations, we analyze the coherence of three well-recorded magnitude 3.7 to 4.0 events over the frequency range 0.5 to 15 Hz and a distance range of 0.5 to 5.3 km. All stations are located at sites with broadly similar near-site geology, characterized by medium to fine-grain Quaternary alluvial sediments. On average, relatively high values of coherence are observed for distances up to 3 to 4 km and frequencies up to 2 to 3 Hz; coherence drops sharply at frequencies near and above 3 Hz. Although average coherence functions are described reasonably well by a log-linear relationship with frequency, the curves at all distances exhibit a flattening at low frequencies that is not consistent with previous observations of coherence at hardrock sites. The distance decay of coherence is also markedly less strong, with high coherence values observed over station separations corresponding to multiple wavelengths. This may reflect fundamental differences in shallow-wave propagation in the two environments, with high-frequency scattering relatively more dominant in regions of hard-rock near-surface geology. Within a sedimentary basin or valley, the site response itself generally reflects a resonance phenomenon that may tend to give rise to more uniform ground motions. However, previous studies have demonstrated the existence of pathological focusing and amplification effects within complex sedimentary basin environments such as the greater Los Angeles region; our results undoubtedly do not quantify the full range of ground-motion variability at all sites, but rather represent the level of that variability that can be expected, and quantified, for typical source/receiver paths.
Jordan, T. H.; Wang, F.
2014-12-01
Probabilistic seismic hazard analysis (PSHA) is the scientific basis for many engineering and social applications: performance-based design, seismic retrofitting, resilience engineering, insurance-rate setting, disaster preparation, emergency response, and public education. The uncertainties in PSHA predictions can be expressed as an aleatory variability that describes the randomness of the earthquake system, conditional on a system representation, and an epistemic uncertainty that characterizes errors in the system representation. Standard PSHA models use empirical ground motion prediction equations (GMPEs) that have a high aleatory variability, primarily because they do not account for the effects of crustal heterogeneities, which scatter seismic wavefields and cause local amplifications in strong ground motions that can exceed an order of magnitude. We show how much this variance can be lowered by simulating seismic wave propagation through 3D crustal models derived from waveform tomography. Our basic analysis tool is the new technique of averaging-based factorization (ABF), which uses a well-specified seismological hierarchy to decompose exactly and uniquely the logarithmic excitation functional into a series of uncorrelated terms that include unbiased averages of the site, path, hypocenter, and source-complexity effects (Feng & Jordan, Bull. Seismol. Soc. Am., 2014, doi:10.1785/0120130263). We apply ABF to characterize the differences in ground motion predictions between the standard GMPEs employed by the National Seismic Hazard Maps and the simulation-based CyberShake hazard model of the Southern California Earthquake Center. The ABF analysis indicates that, at low seismic frequencies (economic costs of earthquake risk-reduction strategies.
International Nuclear Information System (INIS)
A modification method of recorded earthquake ground motion was proposed for matching the design pseudo velocity response spectrum and target peak ground displacement in nuclear power plants. The method applies the second cardinal B-spline wavelet to decompose the recorded real records into the finite wavelet components. Then the wavelet components which mostly affect the peak ground displacement and peak ground acceleration can be searched out, By improving the wavelet-based modifying method and wavelet synthesis method, the earthquake ground motions have been modified to match the target response spectrum and target peak values of displacement and acceleration. The results of the numerical examples demonstrate that the proposed algorithms boast high precision. (authors)
Aazizi, Soufiane
2012-01-01
Let $B$ be a bifractional Brownian motion with parameters $H\\in (0, 1)$ and $K\\in(0,1]$. For any $n\\geq1$, set $Z_n =\\sum_{i=0}^{n-1}\\big[n^{2HK}(B_{(i+1)/n}-B_{i/n})^2-\\E((B_{i+1}-B_{i})^2)\\big]$. We use the Malliavin calculus and the so-called Stein's method on Wiener chaos introduced by Nourdin and Peccati \\cite{NP09} to derive, in the case when $0
International Nuclear Information System (INIS)
Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.
International Nuclear Information System (INIS)
Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.
A class of models for identification and simulation of earthquake ground motions
International Nuclear Information System (INIS)
This paper outlines the use of discrete, autoregressive/moving-average (ARMA) models for identification and estimation of parameters in models derived from analysis of uniformly digitized earthquake ground motion acceleration data. Such models are of equal generality as compared to continuous-time models and have a number of significant advantages for purposes of digital analysis and simulation. The structure of ARMA models is briefly described, their relation to continuous models noted, and results of their application to a number of recorded accelerograms summarized. (orig.)
Hybrid Slip Model for Near-Field Ground Motion Estimation Based on Uncertainty of Source Parameters
Institute of Scientific and Technical Information of China (English)
孙晓丹; 陶夏新; 汤爱平; 路建波
2010-01-01
The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...
Ground-Motion Scaling in the Kachchh Basin, India, Deduced from
Malagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Bodin, P.; Center for Earthquake Research and Information University of Memphis; Akinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
2004-01-01
We studied the excitation, propagation, and site effects in the Kachchh basin of India by using ground-motion recordings from a temporary seismograph network deployed to study aftershocks of the Mw 7.6 Bhuj earthquake of 26 January 2001. The Kachchh basin has been proposed as a useful analog region for studying hazard in other earthquake-prone but slowly deforming regions, such as the central United States. The earthquakes we studied ranged in size from about M 2 to M 5.2, a...
Seismic Response of Base-Isolated Structures under Multi-component Ground Motion Excitation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square response of the system is obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored.
International Nuclear Information System (INIS)
Upper and lower bounds for the energy eigenvalues is Schoenberg's perturbation-theory ground state are studied. After a review of the characteristic features of the partitioning techniques the perturbative expansion proposed by Schoenberg is generated from an exact operator equation. The upper and lower bounds for the ground state eigenvalue are derived by using reaction and wave operators concepts, the bracketing function and operator inequalities. (Author)
Frecon, Jordan; Didier, Gustavo; Pustelnik, Nelly; Abry, Patrice
2016-08-01
Self-similarity is widely considered the reference framework for modeling the scaling properties of real-world data. However, most theoretical studies and their practical use have remained univariate. Operator Fractional Brownian Motion (OfBm) was recently proposed as a multivariate model for self-similarity. Yet it has remained seldom used in applications because of serious issues that appear in the joint estimation of its numerous parameters. While the univariate fractional Brownian motion requires the estimation of two parameters only, its mere bivariate extension already involves 7 parameters which are very different in nature. The present contribution proposes a method for the full identification of bivariate OfBm (i.e., the joint estimation of all parameters) through an original formulation as a non-linear wavelet regression coupled with a custom-made Branch & Bound numerical scheme. The estimation performance (consistency and asymptotic normality) is mathematically established and numerically assessed by means of Monte Carlo experiments. The impact of the parameters defining OfBm on the estimation performance as well as the associated computational costs are also thoroughly investigated.
International Nuclear Information System (INIS)
This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository
Time evolution of ground motion-dependent depolarisation at linear colliders
Bailey, I; Beckmann, M; Hartin, A; Helebrant, C; Kaefer, D; List, J; Moortgat-Pick, G
2011-01-01
Future linear colliders plan to collide polarised beams and the planned physics reach requires knowledge of the state of polarisation as precisely as possible. The polarised beams can undergo depolarisation due to various mechanisms. In order to quantify the uncertainty due to depolarisation, spin tracking simulations in the International Linear Collider (ILC) Beam Delivery System (BDS) and at the Interaction Point (IP) have been performed. Spin tracking in the BDS was achieved using the BMAD subroutine library, and the CAIN program was used to do spin tracking through the beam-beam collision. Assuming initially aligned beamline elements in the BDS, a ground motion model was applied to obtain realistic random misalignments over various time scales. Depolarisation at the level of 0.1% occurs within a day of ground motion at a noisy site. Depolarisation at the IP also exceeds 0.1% for the nominal parameter sets for both the ILC and for the Compact Linear Collider (CLIC). Theoretical work is underway to include ...
Simulation analyses of vibration tests on pile-group effects using blast-induced ground motions
International Nuclear Information System (INIS)
Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site to promote better understanding of the dynamic behavior of pile-supported structures, especially pile-group effects. Two test structures were constructed in an excavated pit. One structure was supported on 25 tubular steel piles and the other on 4. The test pit was backfilled with sand of an appropriate grain size distribution to ensure good compaction. Ground motions induced by large-scale blasting operations were used as excitation forces for the tests. The 3D Finite Element Method (3D FEM)and a Genetic Algorithm (GA) were employed to identify the shear wave velocities and damping factors of the compacted sand, especially of the surface layer. A beam-interaction spring model was employed to simulate the test results of the piles and the pile-supported structures. The superstructure and pile foundation were modeled by a one-stick model comprising lumped masses and beam elements. The pile foundations were modeled just as they were, with lumped masses and beam elements to simulate the test results showing that, for the 25-pile structure, piles at different locations showed different responses. It was confirmed that the analysis methods employed were very useful for evaluating the nonlinear behavior of the soil-pile-structure system, even under severe ground motions. (authors)
Ground motions around a semicircular canyon with a dipping edge under SH plane wave incidence
Chang, Kao-Hao; Tsaur, Deng-How; Wang, Jeen-Hwa
2016-01-01
In order to explore the spatial distribution and temporal variation of ground motions near a semicircular canyon with a dipping edge, a simplified mathematical model is constructed. Based on the region-matching technique, a Fourier-Bessel series solution for the plane SH-wave excitation is derived and then applied to theoretically simulate the seismic response of the canyon. The use of the adequate wavefunctions and a newly derived Graf's addition formula can solve the unknown expansion coefficients. Parametric analyses with respect to the frequency of input motion, angle of incidence, and canyon geometry are illustrated. Both frequency- and time-domain computations are presented. The canonical case, a completed semicircular canyon, which has the exact analytical solution, and the horizontally truncated case analyzed in previous works are considered as particular cases of the proposed general model. Comparisons with boundary-element solutions show good agreement. Steady-state results show that the phenomenon of wave focusing tends to be significant when the incident angle bends toward the horizontal ground surface. Propagation and attenuation of scattered waves that originated from the surficial anomaly are exhibited in transient-state simulations.
Understanding Ground Motion in Las Vegas: Insights from Data Analysis and Two-Dimensional Modeling
Energy Technology Data Exchange (ETDEWEB)
Rodgers, A; Tkalcic, H; McCallen, D
2004-02-05
Seismic ground motions are amplified in low velocity sedimentary basins relative to adjacent sites on high velocity hard rock. We used historical recordings of NTS nuclear explosions and earthquake recordings in Las Vegas Valley to quantify frequency-dependent basin amplification using Standard Spectral Ratios. We show that amplifications, referred to as site response, can reach a factor of 10 in the frequency band 0.4-2.0 Hz. Band-averaged site response between 0.4-2.0 Hz is strongly correlated with basin depth. However, it is also well known that site response is related to shallow shear-wave velocity structure. We simulated low frequency (f<1Hz) ground motion and site response with two-dimensional elastic finite difference simulations. We demonstrate that physically plausible models of the shallow subsurface, including low velocity sedimentary structure, can predict relative amplification as well as some of the complexity in the observed waveforms. This study demonstrates that site response can be modeled without invoking complex and computationally expensive three-dimensional structural models.
Review of seismicity and ground motion studies related to development of seismic design at SRS
International Nuclear Information System (INIS)
The NRC response spectra developed in Reg. Guide 1.60 is being used in the studies related to restarting of the existing Savannah River Site (SRS) reactors. Because it envelopes all the other site specific spectra which have been developed for SRS, it provides significant conservatism in the design and analysis of the reactor systems for ground motions of this value or with these probability levels. This spectral shape is also the shape used for the design of the recently licensed Vogtle Nuclear Station, located south of the Savannah River from the SRS. This report provides a summary of the data base used to develop the design basis earthquake. This includes the seismicity, rates of occurrence, magnitudes, and attenuation relationships. A summary is provided for the studies performed and methodologies used to establish the design basis earthquake for SRS. The ground motion response spectra developed from the various studies are also summarized. The seismic hazard and PGA's developed for other critical facilities in the region are discussed, and the SRS seismic instrumentation is presented. The programs for resolving outstanding issues are discussed and conclusions are presented
Ground motion in the presence of complex topography: Earthquake and ambient noise sources
Hartzell, Stephen; Meremonte, Mark; Ramírez-Guzmán, Leonardo; McNamara, Daniel
2014-01-01
To study the influence of topography on ground motion, eight seismic recorders were deployed for a period of one year over Poverty Ridge on the east side of the San Francisco Bay Area, California. This location is desirable because of its proximity to local earthquake sources and the significant topographic relief of the array (439 m). Topographic amplification is evaluated as a function of frequency using a variety of methods, including reference‐site‐based spectral ratios and single‐station horizontal‐to‐vertical spectral ratios using both shear waves from earthquakes and ambient noise. Field observations are compared with the predicted ground motion from an accurate digital model of the topography and a 3D local velocity model. Amplification factors from the theoretical calculations are consistent with observations. The fundamental resonance of the ridge is prominently observed in the spectra of data and synthetics; however, higher‐frequency peaks are also seen primarily for sources in line with the major axis of the ridge, perhaps indicating higher resonant modes. Excitations of lateral ribs off of the main ridge are also seen at frequencies consistent with their dimensions. The favored directions of resonance are shown to be transverse to the major axes of the topographic features.
Ground Motion Zoning of Santiago de Cuba: An Approach by SH Waves Modelling
Alvarez, Leonardo; García, Julio; Vaccari, Franco; Panza, Giuliano F.; González, Bertha; Reyes, Carmen; Fernández, Bárbara; Pico, Ramón; Zapata, José A.; Arango, Enrique
The expected ground motion in Santiago de Cuba basin from earthquakes which occurred in the Oriente fault zone is studied. Synthetic SH-waves seismograms have been calculated along four profiles in the basin by the hybrid approach (modal summation for the path source-profile and finite differences for the profile) for a maximum frequency of 1 Hz. The response spectra ratio (RSR) has been determined in 49 sites, distributed along all considered profiles with a spacing of 900 m. The corresponding RSR versus frequency curves have been classified using a logical-combinatorial algorithm. The results of the classification, in combination with the uppermost geological setting (geotechnical information and geological geometry of the subsoil) are used for the seismic zoning of the city. Three different main zones are identified, and a small sector characterized by major resonance effects, due to the particular structural conditions. Each zone is characterized in terms of its expected ground motion parameters for the most probable strong earthquake (MS=7), and for the maximum possible (MS=8).
Attenuation of strong ground motion and site specific seismicity in peninsular India
International Nuclear Information System (INIS)
Earthquakes in India occur in the plate boundary region of the Himalayas as well as in the intraplate region of Peninsular India (PI). Devastating events have occurred in PI in the recent past, which is a warning about the possibility of such earthquakes in the future also. But very limited recorded data, if any, is available about ground motion in PI for engineers to rely upon. The present paper, after a review of all data, proposes a new attenuation relationship applicable for PI. This has been obtained by combining SMA, SRR and MMI data. In the absence of near source records for past earthquakes, development of a composite database is the only rational alternative till more SMA records become available in PI. It is observed that attenuation of ground motion with distance is slower in PI than in other intraplate regions of the world. It is demonstrated that for a specific fault and a region, attenuation of PGA can also be obtained by analytical methods. (author)
User manual for the NTS ground motion data base retrieval program: ntsgm
Energy Technology Data Exchange (ETDEWEB)
App, F.N. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.; Tunnell, T.W. [EG and G Energy Measurements, Inc., Los Alamos, NM (United States). Los Alamos Operations
1994-05-01
The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions. This represents about 4,200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and there are some measurements that were acquired by the other test sponsors on their events and provided for inclusion in this data base. Data acquisition, creation of the data base, and development of the data base retrieval program (ntsgm) are the result of work in support of the Los Alamos Field Test Office and the Office of Nonproliferation and Arms Control.
International Nuclear Information System (INIS)
Conservatism and variability in seismic risk estimates are studied: effects of uniform hazard spectrum (UHS) are examined for deriving probabilistic estimates of risk and in-structure demand levels, as compared to the more-exact use of realistic time history inputs (of given probability) that depend explicitly on magnitude and distance. This approach differs from the conventional in its exhaustive treatment of the ground-motion threat and in its more detailed assessment of component responses to that threat. The approximate UH-ISS (in-structure spectrum) obtained based on UHS appear to be very close to the more-exact results directed computed from scenario earthquakes. This conclusion does not depend on site configurations and structural characteristics. Also, UH-ISS has composite shapes and may not correspond to the characteristics possessed a single earthquake. The shape is largely affected by the structural property in most cases and can be derived approximately from the corresponding UHS. Motions with smooth spectra, however, will not have the same damage potential as those of more realistic motions with jagged spectral shapes. As a result, UHS-based analysis may underestimate the real demands in nonlinear structural analyses
The January 26, 2001 Mw7.6 Bhuj, India, Earthquake: Observed and Predicted Ground Motions
Hough, S. E.; Martin, S.; Bilham, R.; Atkinson, G. M.
2001-12-01
It is unclear whether or not the 26 January, 2001, Bhuj earthquake occurred in an intraplate or interplate setting. However, to understand the damage caused by this earthquake, and the hazard posed by future similar earthquakes, one must consider not only the source setting but propagation issues as well. Although local and regional instrumental recordings of the devastating January 26, 2001, Bhuj earthquake are sparse, the distribution of macroseismic effects can provide constraints on the ground motions. We compiled news accounts describing damage and other effects and interpreted them to obtain modified Mercalli intensities at over 300 locations throughout the Indian subcontinent. These values are used to map the intensity distribution using a simple mathematical interpolation method. These maps reveal several interesting features. Significant sediment-induced amplification is suggested at a number of locations around the Gulf of Kachchh and in other areas along rivers, within deltas, or on coastal alluvium. The overall distribution of intensities also reveals extremely efficient wave propagation throughout the subcontinent: the earthquake was felt at distances as large as 2400 km and caused light damage at distances upwards of 700 km. This is consistent with earlier theoretical and observational results suggesting that higher mode surface waves (Lg waves) will propagate efficiently in intraplate crust, which forms a relatively uniform, high-Q waveguide. We use fault rupture parameters inferred from teleseismic data to predict ground motions at distances of 0-1000 km. We convert the predicted peak ground acceleration (PGA) values to MMI using a relationship between MMI and PGA that assigns MMI based on the average effects in a region. The predicted MMI's are typically lower by 1-2 units than the estimated values. We discuss two factors that probably account for this discrepancy: 1) a tendency for media accounts to focus on the most dramatic damage, rather than
Emolo, A.; Pacor, F.; Cultrera, G.; Franceschina, G.; Zollo, A.; Cocco, M.
2003-04-01
We used two different strong ground motion simulation techniques to generate shaking scenarios for the 1997 Colfiorito earthquake (Mw=6.0). This earthquake has been studied in the framework of a Italian research project (supported by Gruppo Nazionale per la Difesa dai Terremoti - INGV, 2002-2003). The project concerns the design of ground shaking scenarios based on the identification of the position, geometry and rupture mechanism of seismogenetic faults and on the characterization of the crustal structure. Both techniques use the high frequency solution (ray theory) to compute the Green functions in a flat-layered velocity model. While one method (ASymptotic Method, ASM) solves numerically the representation integral, the other one (Deterministic-Stochastic Method, DSM) generalizes the point-source stochastic method using a deterministic acceleration envelope for an extended fault. Only the direct S wave field is computed because, in the near source range, it can be considered dominant in amplitude with respect to the P wave field and secondary phases. We computed synthetic time histories at 64 nodes of a grid area (60km x 60km) up to fmax=5 Hz. First of all, we compared the methods for two source models obtained, for the Colfioririto earthquake, by the inversion of geodetic and accelerometric data. Both techniques give similar distribution of PGA and integral ground motion parameters. In particular, peak values are not symmetrically distributed around the fault, but show the largest amplitude values north to the Colfiorito fault, in the directive direction. The reliability of the proposed rupture scenario has been checked for 6 accelerometric stations located at epicentral distances ranging from 5 to 30 Km that recorded the mainshock. We then generated shaking scenarios varying several parameters, such as the nucleation position, the slip distribution and the rupture velocity. Fault geometry, source mechanism and propagation medium are fixed. The results of the
Effects of ground motion of repository depth: the Yucca Flat data
International Nuclear Information System (INIS)
Measurements of ground motion were made at some of seven locations on 28 different underground nuclear weapons tests in Yucca Flat. Each location had measurements at the surface and at a depth ranging from 61 m to 76 m, permitting an assessment of the effect of depth on ground motion. Measurements of vertical, radial, and tangential acceleration were made at each location and depth, and the three components were used to determine peak vector magnitudes of acceleration, velocity, and displacement. Top-to-bottom ratios of the peak vector values were plotted against depth and an exponential least-squares fit made to the data. Ratios of the largest single peaks, averages of the 5, 10, 15, 20, and 25 largest peaks, and ratios of Pseudo Relative Response Velocity (PSRV) were examined. Fits for the multiple peaks were better than for single peaks, as evidenced by improvements in coefficients of determination. Except for acceleration, fits for PSRV's were better than for multiple peaks. While scatter from one event to the next contributes to small coefficients of determination, an even greater effect is produced by differences in geology at the seven locations. Fits to the data can be used as prediction equations. Examination of waveforms of individual components of motion showed influences of topography at two locations. In some cases events detonated in proximity to one another had similar waveforms, and in other cases the waveforms were quite different. Surface displacement of Rainier Mesa showed three distinct relationships between vertical, radial, and tangential amplitudes. There was no correlation with event location within Yucca Flat. Similar measurements were made on Pahute Mesa and reported earlier. The better fit of prediction equations for the Pahute Mesa data could be attributed to the smaller number of events in that data set and to the smaller range of yields of those events
Microzonation and site-specific ground motion modelling for Delhi city
International Nuclear Information System (INIS)
Delhi - the capital of India - lies on a severe earthquake hazard threats not only from the local earthquakes but also from Himalayan events just 200-250 km apart. The seismic ground motion in a part of Delhi City is computed with a hybrid technique based (on the based) on the modal summation and the finite difference scheme for site-specific strong ground motion modelling. Complete realistic SH and P-SV wave seismograms are computed along two geological cross-sections, (1) North-South, from Inter State Bus Terminal (ISBT) to Sewanagar and (2) East- West, from Tilak Bridge to Punjabi Bagh. Two real earthquake sources of July 15, 1720 (MMI=IX, M=7.4) and August 27, 1960 (M=6.0) have been used in the modelling. The response spectra ratio (RSR), i.e. the response spectra computed from the signals synthesized along the laterally varying section normalized by the response spectra computed from the corresponding signals, synthesized for the bedrock reference regional model, have been determined. As expected, the sedimentary cover causes an increase of the signal amplitude particularly in the radial and transverse components. To further check the site-effects, we reversed the source location to the other side of the cross-section and re-computed the site amplifications. There are only a few sites where a large amplification is invariant with respect to the two source locations considered. The RSR ranges between 5 to 10 in the frequency range from 2.8 to 3.7 Hz, for the radial and transverse components of motion along the NS cross-section. Along the EW cross-section RSR varies between 3.5 to 7.5 in the frequency range from 3.5 to 4.1 Hz. The amplification of the vertical component is large at high frequency (>4 Hz) whereas it is negligible in lower frequency range. (author)
A lower bound for the energy of the ground state of bosons moving in one dimension
International Nuclear Information System (INIS)
It is shown that the gound state energy of N bosons of mass m moving in one ddimension is greater than E = - m/16h/2π2 N2(N-1)]∫ sup(+ infinite) sub(- infinite) V(x)dx] where V(x) is the two-body potential. It is conjectured that E = - m/24h/2π2N(N2-1)]∫ sup(+ infinite) sup(infinite) V(x)dx]2 provides a lower bound. (Author)
VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES
Institute of Scientific and Technical Information of China (English)
WANG ZHUANG-BING; WU FU-LI; CHEN QING-HU; JIAO ZHENG-KUAN
2001-01-01
Within the framework of Feynman path-integral variational theory, we calculate the ground-state energy of a polaron in parabolic quantum wires in the presence of a Coulomb potential. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter,and it increases monotonically with decreasing effective wire radius. Moreover, compared to the results obtained by Feynman Haken variational path-integral theory, we obtain better results within the Feynman path-integral variational approach (FV approach). Applying our calculation to several polar semiconductor quantum wires, we find that the polaronic correction can be considerably large.
Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion
Hirata, N.; Sato, H.; Koketsu, K.; Umeda, Y.; Iwata, T.; Kasahara, K.
2003-12-01
Introduction: After the 1995 Kobe earthquake, the Japanese government increased its focus and funding of earthquake hazards evaluation, studies of man-made structures integrity, and emergency response planning in the major urban centers. A new agency, the Ministry of Education, Science, Sports and Culture (MEXT) has started a five-year program titled as Special Project for Earthquake Disaster Mitigation in Urban Areas (abbreviated to Dai-dai-toku in Japanese) since 2002. The project includes four programs: I. Regional characterization of the crust in metropolitan areas for prediction of strong ground motion. II. Significant improvement of seismic performance of structure. III. Advanced disaster management system. IV. Investigation of earthquake disaster mitigation research results. We will present the results from the first program conducted in 2002 and 2003. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion: A long-term goal is to produce map of reliable estimations of strong ground motion. This requires accurate determination of ground motion response, which includes a source process, an effect of propagation path, and near surface response. The new five-year project was aimed to characterize the "source" and "propagation path" in the Kanto (Tokyo) region and Kinki (Osaka) region. The 1923 Kanto Earthquake is one of the important targets to be addressed in the project. The proximity of the Pacific and Philippine Sea subducting plates requires study of the relationship between earthquakes and regional tectonics. This project focuses on identification and geometry of: 1) Source faults, 2) Subducting plates and mega-thrust faults, 3) Crustal structure, 4) Seismogenic zone, 5) Sedimentary basins, 6) 3D velocity properties We have conducted a series of seismic reflection and refraction experiment in the Kanto region. In 2002 we have completed to deploy seismic profiling lines in the Boso peninsula (112 km) and the
Energy Technology Data Exchange (ETDEWEB)
Graves, R.W.; Somerville, P.G. [Woodward-Clyde Federal Services, Pasadena, CA (United States)
1995-12-01
Many urban regions, including Los Angeles, Portland and Seattle in the United States and Tokyo in Japan, are located above deep sedimentary basins. The conventional approach of estimating ground motions in these environments is to assume that the geology can be characterized by a horizontally stratified medium, and that only the shallowest few tens of meters influence the ground motion characteristics. However, the trapping and amplification of long period (1-10 sec) waves by sedimentary basins can generate amplitudes that are significantly larger than those calculated from simple 1D models of site resonance. This may be of particular concern for base isolated structures which are most sensitive to ground motions in this period range. The recent development of efficient computational methods for modeling seismic wave, propagation in laterally varying geological structure enable the authors to model the effects of sedimentary basins on earthquake generated ground motions. They are now applying this calculation procedure to characterize the ground motions that may be generated in the Puget Trough and the Portland Basin due to large earthquakes on the Cascadia subduction zone, and in the Los Angeles region due to large earthquakes on blind thrust faults beneath the Los Angeles basin.
International Nuclear Information System (INIS)
To estimate the ground motion in two-dimensional, laterally heterogeneous, anelastic media, a hybrid technique has been developed which combines modal summation and the finite difference method. In the calculation of the local wavefield due to a seismic event, both for small and large epicentral distances, it is possible to take into account the sources, path and local soil effects. As practical application we have simulated the ground motion in Mexico City caused by the Michoacan earthquake of September 19, 1985. By studying the one-dimensional response of the two sedimentary layers present in Mexico City, it is possible to explain the difference in amplitudes observed between records for receivers inside and outside the lake-bed zone. These simple models show that the sedimentary cover produces the concentration of high-frequency waves (0.2-0.5 Hz) on the horizontal components of motion. The large amplitude coda of ground motion observed inside the lake-bed zone, and the spectral ratios between signals observed inside and outside the lake-bed zone, can only be explained by two-dimensional models of the sedimentary basin. In such models, the ground motion is mainly controlled by the response of the uppermost clay layer. The synthetic signals explain the major characteristics (relative amplitudes, spectral ratios, and frequency content) of the observed ground motion. The large amplitude coda of the ground motion observed in the lake-bed zone can be explained as resonance effects and the excitation of local surface waves in the laterally heterogeneous clay layer. Also, for the 1985 Michoacan event, the energy contributions of the three subevents are important to explain the observed durations. (author). 39 refs, 15 figs, 1 tab
Bodin, P.; Malagnini, L.; Akinci, A.
2002-12-01
Considerable controversy surrounds the issues of how much and how systematically source and propagation characteristics of earthquakes that take place in relatively "stable" continental settings differ from those of earthquakes in more mobile crust. The 2001 Mw 7.7 Bhuj, India, earthquake may have been the largest such earthquake in more than 100 years. We are analyzing ground motions from aftershocks of the Bhuj earthquake recorded on a temporary network deployed within 100 km of the mainshock epicenter. Our goal is to determine the source and propagation characteristics in the region, taking into account site effects at our network sites, to facilitate comparison with similar studies in other tectonic environments. To date we have used data from about 1100 earthquakes ranging in magnitude from about 2 to about 5 1/2. We model peak amplitudes as a function of source-receiver distance for bandpass-filtered time series and the spectral amplitudes of time-windowed seismograms. Because the earthquakes occurred over a wide depth range, we have analyzed the data in two overlapping depth subsets-shallower than 25 km and deeper than 20 km. We find that propagation is well-modeled by a frequency-dependent quality factor Q = 680f0.48 combined with a rather simple geometric spreading function that varies only slightly between the deep and shallow data subsets. We modeled the source terms with an w2 single corner (Brune) model with a magnitude dependent stress drop. The larger earthquakes had stress drops of about 160 bars. Extrapolating our source and propagation values using Random Vibration Theory to an Mw 7.5 earthquake yields ground motion estimates that coincide closely with similar current estimates for eastern North America (ENA) earthquakes. Our preliminary assessment is that, from a ground motion perspective, the Bhuj earthquake presents an important opportunity to study an earthquake that (a) differs significantly from earthquakes in mobile crust, and (b) resembles
International Nuclear Information System (INIS)
The input for the seismic risk analysis can be expressed with a description of 'ground-shaking scenarios', or with probabilistic maps of perhaps relevant parameters. The probabilistic approach, unavoidably based upon rough assumptions and models (e.g. recurrence and attenuation laws), can be misleading, as it cannot take into account, with satisfactory accuracy, some of the most important aspects like rupture process, directivity and site effects. This is evidenced by the comparison of recent recordings with the values predicted by the probabilistic methods. We prefer a scenario-based, deterministic approach in view of the limited seismological data, of the local irregularity of the occurrence of strong earthquakes, and of the multi-scale seismicity model, that is capable to reconcile two apparently conflicting ideas: the Characteristic Earthquake concept and the Self Organized Criticality paradigm. Where the numerical modeling is successfully compared with records, the synthetic seismograms permit the micro-zoning, based upon a set of possible scenario earthquakes. Where no recordings are available the synthetic signals can be used to estimate the ground motion without having to wait for a strong earthquake to occur (pre-disaster micro-zonation). In both cases the use of modeling is necessary since the so-called local site effects can be strongly dependent upon the properties of the seismic source and can be properly defined only by means of envelopes. The point use of reliable synthetic signals and observations permits the computation of advanced hazard indicators (e.g. damaging potential) that take into account local soil properties. The envelope of synthetic elastic energy spectra reproduces the distribution of the energy demand in the most relevant frequency range for seismic engineering. The synthetic accelerograms can be fruitfully used for design and strengthening of structures, also when innovative techniques, like seismic isolation, are employed. For
Report of Earthquake Drills with Experiences of Ground Motion in Childcare for Young Children, Japan
Yamada, N.
2013-12-01
After the Great East Japan Earthquake of 2011, this disaster has become one of the opportunities to raise awareness of earthquake and tsunami disaster prevention, and the improvement of disaster prevention education is to be emphasized. The influences of these bring the extension to the spatial axis in Japan, and also, it is important to make a development of the education with continuous to the expansion of time axes. Although fire or earthquake drills as the disaster prevention education are often found in Japan, the children and teachers only go from school building to outside. Besides, only the shortness of the time to spend for the drill often attracts attention. The complementary practice education by the cooperation with experts such as the firefighting is practiced, but the verification of the effects is not enough, and it is the present conditions that do not advance to the study either. Although it is expected that improvement and development of the disaster prevention educations are accomplished in future, there are a lot of the problems. Our target is construction and utilization of material contributing to the education about "During the strong motion" in case of the earthquake which may experience even if wherever of Japan. One of the our productions is the handicraft shaking table to utilize as teaching tools of the education to protect the body which is not hurt at the time of strong motion. This made much of simplicity than high reproduction of the earthquake ground motions. We aimed to helping the disaster prevention education including not only the education for young children but also for the school staff and their parents. In this report, the focusing on a way of the non-injured during the time of the earthquake ground motion, and adopting activity of the play, we are going to show the example of the framework of earthquake disaster prevention childcare through the virtual experience. This presentation has a discussion as a practice study with
International Nuclear Information System (INIS)
The 1983 Borah Peak, Idaho Earthquake was the largest normal faulting event to occur in the last 20 years. There were no near-field recordings of ground motion during the main shock, however, thirteen accelerographs in a permanent array at the Idaho National Engineering Laboratory (INEL) recorded the event at epicentral distances of 90-110 km. Peak horizontal accelerations (PGA) recorded at accelerographs above ground-floor level range from 0.037 to 0.187 g. Accelerographs at basement and free-field sites recorded as low as 0.022 g and as high as 0.078 g. Peak vertical accelerations range from 0.016 g ground level to 0.059 g above ground floor level. A temporary array of digital seismographs deployed by the US Geological Survey (USGS) in the epicentral area recorded ground motion from six large aftershocks at epicentral distances of 4-45 km; the largest of these aftershocks also triggered four accelerographs in the INEL array. Two separate analyses were used to estimate near-field ground motion. The first analysis uses the attenuation of the aftershock PGA measurements to extrapolate the INEL main shock PGA measurements into the near-field. This estimates an upper limit of 0.8 g for near-field ground motion. In the second analysis, a set of main shock accelerograms were synthesized. Wave propagation effects were determined from aftershock recordings at one of the USGS portable stations and an INEL seismograph station. These effects were removed from one of the INEL main shock acceleration traces. The synthetic accelerograms were derived for a hypothetical station southwest of Mackay, Idaho. The PGA measured from the synthetic accelerograms were 0.08, 0.14, 0.15, 0.23 g. These estimates correlate well with ground motion expected for an area of Intensity VII. 12 references, 8 figures, 1 table
International Nuclear Information System (INIS)
In the presentation, the new design basis ground motion on the basis of the factors that magnified the earthquake ground motion at the Kashiwazaki Kariwa nuclear power plant in the Niigataken Chuetsu-oki earthquake, which were examined in the part 1 and the part 2 is determined
Directory of Open Access Journals (Sweden)
Zhifeng Xu
2015-01-01
Full Text Available Spatially varying seismic ground motions recorded by distributed structural health monitoring systems (SHMS can be used to improve the performances of civil engineering structures, necessitating estimation of the evolutionary power spectral density as an indispensable procedure for utilizing records of SHMS. This paper proposes a method for the estimation of evolutionary power spectral density of a nonstationary process by transforming the correlation functions of its sample time histories. First, the background of the theory of evolutionary power spectral density is reviewed in detail. Relationship between the EPSD and the correlation function of a reference stationary process is then established. Formulas are derived for estimating this correlation function directly from nonstationary sample time histories so that the EPSD can be obtained. The implementation procedure of the proposed method is also detailed. Finally, a numerical example is presented, which validates the proposed method, demonstrates its application for SHMS, and displays its capabilities by comparison with the traditional method.
2.5D Simulation of basin-edge effects on the ground motion characteristics
Indian Academy of Sciences (India)
J P Narayan
2003-09-01
The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated using 2.5D modeling. One of the most significant advantages of the 2.5D simulation is that 3D radiation pattern can be generated in a 2D numerical grid using double-couple shear dislocation source. Further, 2.5D numerical modeling avoids the extensive computational cost of 3D modeling. The responses of basin-edge model using different soil velocities revealed that surface waves were generated near the edge of the basin and propagated normal to the edge, towards the basin. Further, the results depict increase of amplification, duration and surface wave generation with the decrease in soil velocity.
Volk, J; Johnson, T; Jostlein, H; Kiper, T; Shiltsev, V; Chupyra, A; Kondaurov, M; Medvedko, A; Parkhomchuk, V; Singatulin, S; Stetler, L; Van Beek, J; Fratta, D; Roberts, J; Wang, H; 10.1088/1748-0221/7/01/P01004
2012-01-01
Particle accelerators pushed the limits of our knowledge in search of the answers to most fundamental questions about micro-world and our Universe. In these pursuits, accelerators progressed to higher and higher energies and particle beam intensities as well as increasingly smaller and smaller beam sizes. As the result, modern existing and planned energy frontier accelerators demand very tight tolerances on alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the instruments developed for and used in such accelerators as Fermilab's Tevatron (FNAL, Batavia, IL USA) and for the studies toward an International Linear Collider (ILC). The instrumentation includes Hydrostatic Level Sensors (HLS) for very low frequency measurements. We present design features of the sensors, outline their technical parameters, describe test and calibration procedures and discuss different regimes of operation. Experimental results of the ground motion measuremen...
Evaluation of seismic source, ground motion, tsunami based on the Tohoku earthquake
International Nuclear Information System (INIS)
Our source models for the Mw9.0 Tohoku earthquake either inferred using tsunami data or from seismic data are featured with large slip along the Japan Trench. Our results indicated that the tsunami water levels at the Fukushima Daiichi and Daini NPPs were dominated by the large slip along the Japan Trench. Our analysis suggested that the difference in water levels at these two sites were caused by the waveform overlap effects due to delays of rupture starting times and wave propagation time. It also follows that the short period ground motions recorded during such an Mw9.0 mega thrust earthquake were comparable with those of an Mw8.0 earthquake. (author)
Mandal, Prantik; Kumar, N.; Satyamurthy, C.; Raju, I. P.
2009-03-01
Predictive relations are developed for peak ground acceleration (PGA) from the engineering seismoscope (SRR) records of the 2001 Mw 7.7 Bhuj earthquake and 239 strong-motion records of 32 significant aftershocks of 3.1 ≤ Mw ≤ 5.6 at epicentral distances of 1 ≤ R ≤ 288 km. We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relation for peak horizontal acceleration in the Kachchh seismic zone, Gujarat. This new analysis uses the Joyner-Boore’s method for a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. The resulting attenuation equation is, eqalign{ ln ({Y}) = -7.9527 + 1.4043 {M}_{{W}} - ln left( {{r}_{{jb}}2 + 19.822} right)^{1/2} - 0.0682 {S} ŗ{for} 3.1 { data recorded at short distances (0-50 km) from the source. The relation is in demonstrable agreement with the recorded strong-ground motion data from earthquakes of Mw 3.5, 4.1, 4.5, 5.6, and 7.7. There are insufficient data from the Kachchh region to adequately judge the relation for the magnitude range 5.7 ≤ Mw ≤ 7.7. But, our ground-motion prediction model shows a reasonable correlation with the PGA data of the 29 March, 1999 Chamoli main shock (Mw 6.5), validating our ground-motion attenuation model for an Mw6.5 event. However, our ground-motion prediction shows no correlation with the PGA data of the 10 December, 1967 Koyna main shock (Mw 6.3). Our ground-motion predictions show more scatter in estimated residual for the distance range (0-30 km), which could be due to the amplification/noise at near stations situated in the Kachchh sedimentary basin. We also noticed smaller residuals for the distance range (30-300 km), which could be due to less amplification/noise at sites distant from the Kachchh basin. However, the observed less residuals for the longer distance range (100-300 km) are less reliable due to the lack of available PGA values in the same distance
Directory of Open Access Journals (Sweden)
K. Hacıefendioğlu
2012-04-01
Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.
Response of concrete gravity dams to spatially varying earthquake ground motions
Energy Technology Data Exchange (ETDEWEB)
Zerva, A.; Huang, J. [Drexel Univ., Philadelphia, PA (United States). Dept. of Civil, Architectural and Environmental Engineering
2010-07-01
Nonlinear finite element analysis is used to investigate the effect of the spatial variation of seismic ground motions on the response of concrete gravity dams. This paper presented a sensitivity analysis of the response of concrete gravity dams subjected to spatially variable seismic excitations incorporating wave passage effects. The Koyna Dam was idealized as a two-dimensional finite element model incorporating nonlinearities in the concrete and rock masses, and interactions between the dam, the reservoir, the sediments and the foundation. The paper discussed the numerical formulation, including dam-reservoir-sediment-foundation system; modeling of the fluid domain and its boundaries; modeling of the solid domains and their boundaries; and coupling of the fluid and solid domains. The paper also discussed the earthquake input mechanism and sensitivity analysis of wave passage effects, such as the numerical model of the Koyna Dam; description of input excitation; and seismic response evaluation of the Koyna Dam. The study showed that while the results for the higher propagation velocities appear to be similar, a trend of increasing structural response with decreasing propagation velocity is observed, with the slower propagating excitations yielding the highest response and the most severe damage patterns in the structure. Hence, the assumption of uniform motions as input excitations at the base of the structures does not lead to a conservative response for concrete gravity dams. 9 refs., 8 figs.
Mert, A.
2015-12-01
In this study we have two main purposes. The first one is to simulate five midsize earthquakes (Mw≈5.0) recorded in the Marmara region, which has a geologically complex and heterogeneous crustal structure. We synthesize ground motion for the full wave train on three components, and applied a 'physics based' solution of earthquake rupture. The simulation methodology is based on the studies by Hutchings et al. (2007), Scognamiglio and Hutchings (2009). For each earthquake, we synthesized seismograms using by 500 different rupture scenarios that were generated by Monte Carlo selection of parameters within the range. Synthetic ground motion is a major challenge for seismic hazard assessment studies. Especially after the adoption of performance-based design approach with the Earthquake resistant design of engineering structures. To compute realistic time histories for different locations around Marmara region can be helpful for engineering design, retrofitting the existing structures, hazard and risk management studies and developing new seismic codes and standards.The second purpose is to validate synthetic seismograms with real seismograms. We follow the methodology presented by Anderson (2003) for validation. This methodology proposes a similarity score based on averages of the quality of fit measuring ground motion characteristics and uses a suite of measurements. Namely, the synthetics are compared to real data by ten representative ground motion criteria. The applicability of Empirical Green's functions methodology and physics based solution of earthquake rupture had been assessed in terms of modeling in complex geologic structure. Because the methodology produces source and site specific synthetic ground motion time histories and goodness-of-fit scores of obtained synthetics is between 'fair' to 'good' range based on Anderson's score, we concluded that it can be tried to produce ground motion that has not previously been recorded during catastrophic earthquake
A new method for the realistic estimation of seismic ground motion in megacities: The case of Rome
International Nuclear Information System (INIS)
A hybrid technique, based on mode summation and finite differences, is used to simulate the ground motion induced in the city of Rome by the January 13, 1915, Fucino (Italy) earthquake (M=6.9). The technique allows us to take into consideration source, path, and local soil effects. The results of the numerical simulations are used for a comparison between the observed distribution of damage in Rome, and certain quantities related to the computed ground motion. These quantities are those commonly used for engineering purposes, e.g. the peak ground acceleration, the maximum response of a simple oscillator, and the so-called ''total energy of ground motion'' which is related to the Arias Intensity. Integral quantities of the computed time-series, such as the total energy of ground motion, are in good agreement with the observed distribution of damage and turn out to give a good representation of the ground motion. From the computation of spectral ratios, it has been recognised that the presence of a near-surface layer of rigid material is not sufficient to classify a location as a ''hard-rock site'' when the rigid material has a sedimentary complex below it. This is because the underlying sedimentary complex causes amplifications due to resonances. Within sedimentary basins, incident energy in certain frequency bands can also be shifted from the vertical, into the radial component of motion. This phenomenon is very localized, both in frequency and space, and closely neighboring sites can be characterized by very large differences in the seismic response, even if the lateral variations of local soil conditions are relatively smooth. (author). Refs, 12 figs, 1 tab
Long-Period Ground Motion in the Arabian Gulf from Earthquakes in the Zagros Mountains Thrust Belt
Pitarka, Arben; Al-Amri, Abdullah; Pasyanos, Michael E.; Rodgers, Arthur J.; Mellors, Robert J.
2015-10-01
The Arabian Gulf is adjacent to the Zagros Mountains, one of the most seismically active regions in the world. We observe that broadband seismic records of Zagros earthquakes recorded on the Arabian side of the Gulf display long-duration surface waves. While shorter periods (10 km) of the Gulf basin, the long-period energy is enhanced and transmitted efficiently. Consequently, large earthquakes in the Zagros could result in amplified ground motions at long periods (2-10 s) relative to average behavior. Such ground motions are of concern for large engineered structures, such as tall buildings and long bridges with resonant periods in the same period range. Here we present results of investigations of the characteristics of ground motions recorded on the western shore of the Gulf from selected earthquakes in the Zagros Mountains region. Exceptionally, long-duration seismic waves, as compared with standard models, are shown to occur with periods of 2-10 s. This may be due to waveguide effects in the deep sedimentary basin structure of the Arabian Platform. In addition to analyzing recorded ground motion we performed 3D wave propagation simulations using a finite difference method and experimental velocity models of the Gulf, with different shallow sedimentary layers structures. The simulation results confirm our hypothesis that long-period waves with extremely long duration and relatively large amplitudes are caused by the geometry of the basin sedimentary layers and, to some extent, by shallow earthquake depths. Combined effects of basin edge geometry with sharp velocity contrasts and shallow sources (<10 km) on the eastern side of the Arabian Gulf can cause large long-period ground motion on the western side of the Gulf. In contrast, the short-period content of ground motion (<2 s) at long distances is relatively weak. This is mainly due to wave propagation scattering and attenuation in the shallow sedimentary layers of the Gulf basin.
Modeling of Ground Motion at Napoli for the 1688 Scenario Earthquake
Nunziata, C.; Sacco, C.; Panza, G. F.
2011-03-01
The Sannio seismogenic area turns out to be responsible for the highest peak ground accelerations (PGA) and seismic response spectra (SRS) at Napoli. The 1688 earthquake is considered representative of the area, and realistic synthetic seismograms have been computed for this scenario earthquake at the historical center and the eastern sector of Napoli. The use of a hybrid technique based on mode summation and finite-difference methods is fully justified by the available detailed knowledge about the geological and geophysical properties of the Neapolitan subsoil. This modeling makes it possible to recognize that amplifications of ~2 for PGA and >3 for SRS are to be expected because of the pyroclastic soil cover. Based on the information contained in the available catalogs, different magnitudes have been considered. Taking into account the correlation, valid for the Italian territory, between synthetic PGA and observed intensities, it turns out that the most probable magnitude ( M) of the 1688 earthquake is 6.7, while M = 7.3 should be assigned to a conservative scenario earthquake. Comparison of the computed response spectra for the 1688 scenario earthquake with the Italian seismic building code shows that the code is adequate with respect to the expected effects at the historical center of Napoli, but that it underestimates the possible ground motion at the eastern sector, in particular at the newly developed area built after the 1980 earthquake.
Dynamic response of nuclear power plant due to earthquake ground motion and aircraft impact
International Nuclear Information System (INIS)
This paper examines both the indirect effect of aircraft crash and the effect of earthquake ground motions on the dynamic response of a single reactor nuclear island. The effect of gound properties on the dynamic response is investigated by varying the ground stiffness and damping over a range defined by the shear wave velocities 500 to 2000 m/sec. The effect of both the aircraft crash and the earthquake on the reactor plant can be compared directly by computing floor response spectra from the time-history response. The precise shape of the forcing function does significantly affect the response and consequently the floor response spectra. Peak floor response accelerations vary by up to 40% in the case of the MRCA and the effect of a variance on the prescribed aircraft impact forcing function should always be considered. However it is concluded that where nuclear facilities are being designed to ensure a safe shutdown against earthquakes, then provided the primary containment is designed to protect the primary reactor circuit against direct damage from a Multi Role Combat aircraft the reactor plant within the primary containment will have an acceptable response. In the event of a large aircraft such as the Boeing 707 crashing onto the facility, then the design of the reactor plant could be affected depending upon the amount of energy absorbed locally through direct damage
International Nuclear Information System (INIS)
The input for the seismic risk analysis can be expressed with a description of 'roundshaking scenarios', or with probabilistic maps of perhaps relevant parameters. The probabilistic approach, unavoidably based upon rough assumptions and models (e.g. recurrence and attenuation laws), can be misleading, as it cannot take into account, with satisfactory accuracy, some of the most important aspects like rupture process, directivity and site effects. This is evidenced by the comparison of recent recordings with the values predicted by the probabilistic methods. We prefer a scenario-based, deterministic approach in view of the limited seismological data, of the local irregularity of the occurrence of strong earthquakes, and of the multiscale seismicity model, that is capable to reconcile two apparently conflicting ideas: the Characteristic Earthquake concept and the Self Organized Criticality paradigm. Where the numerical modeling is successfully compared with records, the synthetic seismograms permit the microzoning, based upon a set of possible scenario earthquakes. Where no recordings are available the synthetic signals can be used to estimate the ground motion without having to wait for a strong earthquake to occur (pre-disaster microzonation). In both cases the use of modeling is necessary since the so-called local site effects can be strongly dependent upon the properties of the seismic source and can be properly defined only by means of envelopes. The joint use of reliable synthetic signals and observations permits the computation of advanced hazard indicators (e.g. damaging potential) that take into account local soil properties. The envelope of synthetic elastic energy spectra reproduces the distribution of the energy demand in the most relevant frequency range for seismic engineering. The synthetic accelerograms can be fruitfully used for design and strengthening of structures, also when innovative techniques, like seismic isolation, are employed. For these
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-09-01
In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)
Directory of Open Access Journals (Sweden)
Ö. Çavdar
2012-02-01
Full Text Available The aim of this paper is to compare the near-fault and far-fault ground motion effects on the probabilistic sensitivity dynamic responses of two suspension bridges in Istanbul. Two different types of suspension bridges are selected to investigate the near-fault (NF and far-fault (FF ground motion effects on the bridge sensitivity responses. NF and FF strong ground motion records, which have approximately identical peak ground accelerations, of the Kocaeli (1999 earthquake are selected for the analyses. Displacements and internal forces are determined using the probabilistic sensitivity method (PSM, which is one type of stochastic finite element method. The efficiency and accuracy of the proposed algorithm are validated by comparison with results of the Monte Carlo Simulation (MCS method. The displacements and internal forces obtained from the analyses of suspension bridges subjected to each fault effect are compared with each other. It is clearly seen that there is more seismic demand on displacements and internal forces when suspension bridges are subjected to NF and FF ground motion.
Prediction of ground motion parameters for the volcanic area of Mount Etna
Tusa, Giuseppina; Langer, Horst
2016-01-01
Ground motion prediction equations (GMPEs) have been derived for peak ground acceleration (PGA), velocity (PGV), and 5 % damped spectral acceleration (PSA) at frequencies between 0.1 and 10 Hz for the volcanic area of Mt. Etna. The dataset consists of 91 earthquakes with epicentral distances between 0.5 and 100 km. Given the specific characteristics of the area, we divided our data set into two groups: shallow events (SE, focal depth 5 km). The range of magnitude covered by the SE and the DE is 3.0 ≤ M L ≤ 4.3 and 3.0 ≤ M L ≤ 4.8, respectively. Signals of DE typically have more high frequencies than those of SE. These differences are clearly reflected in the empirical GMPEs of the two event groups. Empirical GMPEs were estimated considering several functional forms: Sabetta and Pugliese (Bull Seism Soc Am 77:1491-1513, 1987) (SP87), Ambraseys et al. (Earth Eng Struct Dyn 25:371-400, 1996) (AMB96), and Boore and Atkinson (Earth Spectra 24:99-138, 2008) (BA2008). From ANOVA, we learn that most of the errors in our GMPEs can be attributed to unmodeled site effects, whereas errors related to event parameters are limited. For DE, BA2008 outperforms the simpler models SP87 or AMB96. For SE, the simple SP87 is preferable considering the Bayesian Information Criterion since it proves more stable with respect to confidence and gives very similar or even lower prediction errors during cross-validation than the BA2008 model. We compared our results to relationships derived for Italy (ITA10, Bindi et al. Bull Earth Eng 99:2471-2488, 2011). For SE, the main differences are observed for distances greater than about 5 km for both horizontal and vertical PGAs. Conversely, for DE the ITA10 heavily overestimates the peak ground parameters for short distances.
International Nuclear Information System (INIS)
The effects of variability of the mechanical properties of lead rubber bearings on the response of a seismic isolation system are investigated. Material variability in manufacturing, aging, and operation temperature is assumed, and two variation models of an isolation system are considered. To evaluate the effect of ground motion characteristics on the response, 27 earthquake record sets with different peak A/V ratios were selected, and three components of ground motions were used for a seismic response analysis. The response in an isolation system and a superstructure increases significantly for ground motions with low A/V ratios. The variation in the mechanical properties of isolators results in a significant influence on the shear strains of the isolators and the acceleration response of the superstructure. The variation provisions in the ASCE-4 are reasonable, but more strict variation limits should be given to isolation systems subjected to ground motions having low A/V ratios. For application of seismic isolation systems to safety-related nuclear structures, the variation in the material and mechanical properties of the isolation system should be properly controlled during the manufacturing and aging processes. In addition, special consideration should be given to minimize the accidental torsion caused by the dissimilarity in the stiffness variations of the isolators.
LISA Pathfinder test mass injection in geodesic motion: status of the on-ground testing
International Nuclear Information System (INIS)
The LISA Technology Package (LTP) onboard the LISA Pathfinder mission aims to demonstrate, in orbit, several critical technology milestones for LISA, including the purest geodesic motion ever achieved for a macroscopic body. The gravitational reference sensor in the LTP hosts a heavy test mass (TM) surrounded by electrodes, at a relatively large 'gap' distance of several mm, which are used to measure and control the TM position and attitude. The large gaps--necessary to minimize the force noise acting on the TM--limit the available level of electrostatic actuation force that can be applied to the TM and thus the authority to control its position and velocity. Due to the large mass and gaps, a caging mechanism is required to securely hold the TM during the launch phase, when the whole payload endures large accelerations. Later in orbit, the TM must be injected into its geodesic trajectory, through the release from the caging mechanism and subsequent capture by the electrostatic actuation. During the release phase, the constraining device must limit adhesion forces that exert a net impulse upon rupture, such that the required forces needed to control the TM do not exceed the actuation authority. The TM injection into geodesic motion, and most critically the release phase, constitutes a potential point of failure for the mission. The on-ground verification of this phase is performed by measuring the momentum transferred between TM-representative surfaces and the release device, reproducing the dynamics that will take place in flight. This paper reports on the testing activities performed at the Department of Mechanical and Structural Engineering of the University of Trento.
LISA Pathfinder test mass injection in geodesic motion: status of the on-ground testing
Energy Technology Data Exchange (ETDEWEB)
Bortoluzzi, D; Biral, F; Bosetti, P; Da Lio, M; De Cecco, M [Department of Mechanical and Structural Engineering and INFN, University of Trento, 38050 Trento (Italy); Baglivo, L [Department of Mechanical Engineering, University of Padova, 35122 Padova (Italy); Benedetti, M [Department of Materials Engineering and Industrial Technologies and INFN, University of Trento, 38050 Trento (Italy); Cavalleri, A; Dolesi, R; Weber, W; Vitale, S [Department of Physics and INFN, University of Trento, 38050 Trento (Italy); Lapolla, M, E-mail: daniele.bortoluzzi@ing.unitn.i [Thales Alenia Space Italia, 20090 Milano (Italy)
2009-05-07
The LISA Technology Package (LTP) onboard the LISA Pathfinder mission aims to demonstrate, in orbit, several critical technology milestones for LISA, including the purest geodesic motion ever achieved for a macroscopic body. The gravitational reference sensor in the LTP hosts a heavy test mass (TM) surrounded by electrodes, at a relatively large 'gap' distance of several mm, which are used to measure and control the TM position and attitude. The large gaps--necessary to minimize the force noise acting on the TM--limit the available level of electrostatic actuation force that can be applied to the TM and thus the authority to control its position and velocity. Due to the large mass and gaps, a caging mechanism is required to securely hold the TM during the launch phase, when the whole payload endures large accelerations. Later in orbit, the TM must be injected into its geodesic trajectory, through the release from the caging mechanism and subsequent capture by the electrostatic actuation. During the release phase, the constraining device must limit adhesion forces that exert a net impulse upon rupture, such that the required forces needed to control the TM do not exceed the actuation authority. The TM injection into geodesic motion, and most critically the release phase, constitutes a potential point of failure for the mission. The on-ground verification of this phase is performed by measuring the momentum transferred between TM-representative surfaces and the release device, reproducing the dynamics that will take place in flight. This paper reports on the testing activities performed at the Department of Mechanical and Structural Engineering of the University of Trento.
Boore, David M.
2000-01-01
A simple and powerful method for simulating ground motions is based on the assumption that the amplitude of ground motion at a site can be specified in a deterministic way, with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to distance from the source. This method of simulating ground motions often goes by the name "the stochastic method." It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers, and it is widely used to predict ground motions for regions of the world in which recordings of motion from damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms that can be used to predict ground motions. SMSIM is a set of programs for simulating ground motions based on the stochastic method. This Open-File Report is a revision of an earlier report (Boore, 1996) describing a set of programs for simulating ground motions from earthquakes. The programs are based on modifications I have made to the stochastic method first introduced by Hanks and McGuire (1981). The report contains source codes, written in Fortran, and executables that can be used on a PC. Programs are included both for time-domain and for random vibration simulations. In addition, programs are included to produce Fourier amplitude spectra for the models used in the simulations and to convert shear velocity vs. depth into frequency-dependent amplification. The revision to the previous report is needed because the input and output files have changed significantly, and a number of new programs have been included in the set.
Energy Technology Data Exchange (ETDEWEB)
Tseng, Wen S., E-mail: wen.tseng@rizzoassoc.com [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Lilhanand, Kiat; Hamasaki, Don; Garcia, Julio A. [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Srinivasan, Ram [AREVA, NP, Inc., 6399 San Ignacio Avenue, San Jose, CA 95119 (United States)
2014-04-01
This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially
International Nuclear Information System (INIS)
This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially
Graybill, George
2007-01-01
Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str
Assimaki, D.; Jeong, S.
2011-12-01
Unusually severe structural damage was reported during the 2010 M7.0 Haiti earthquake in the vicinity of Hotel Montana, located on top of a ridge in the district of Pétionville. Prompted by the observations, USGS seismic stations were deployed, and aftershock recordings indicated ground motion amplification on the top of the hill compared to adjacent stations on reference site conditions. The presence of topographic relief has been shown to significantly aggravate the consequences of strong ground motion during past events, and topographic amplification was therefore brought forward to justify the observations. We here investigate the role of ground surface geometry in the recorded ground motions and corresponding damage concentration atop the foothill ridge of Hotel Montana by first conducting site-specific simulations that integrate Digital Elevation Maps (DEM) and shear wave velocity profiles collected at the site. Our analyses show that neither topography nor site amplification predictions alone sufficiently explain the ground motion amplification at the site estimated via aftershock recordings. We next conduct simulations of the foothill ridge response with soil layering, and qualitatively demonstrate that the recorded amplification can be attributed to coupling of site and topography effects. This effect, referred to as topography-modified site amplification, describes seismic waves trapped in the soft soil layers of the near surface and simultaneously subjected to sediment-induced reverberations as well as diffraction and scattering. Parametric investigations of the topography-soil amplification coupling effects are then conducted, and results show that when accounting for a soil-bedrock interface at 100m depth, predictions are in excellent quantitative agreement with the observed motion.
Oglesby, David D.
2012-03-01
Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.
Chaljub, Emmanuel; Maufroy, Emeline; deMartin, Florent; Hollender, Fabrice; Guyonnet-Benaize, Cédric; Manakou, Maria; Savvaidis, Alexandros; Kiratzi, Anastasia; Roumelioti, Zaferia; Theodoulidis, Nikos
2014-05-01
Understanding the origin of the variability of earthquake ground motion is critical for seismic hazard assessment. Here we present the results of a numerical analysis of the sensitivity of earthquake ground motion to seismic source parameters, focusing on the Mygdonian basin near Thessaloniki (Greece). We use an extended model of the basin (65 km [EW] x 50 km [NS]) which has been elaborated during the Euroseistest Verification and Validation Project. The numerical simulations are performed with two independent codes, both implementing the Spectral Element Method. They rely on a robust, semi-automated, mesh design strategy together with a simple homogenization procedure to define a smooth velocity model of the basin. Our simulations are accurate up to 4 Hz, and include the effects of surface topography and of intrinsic attenuation. Two kinds of simulations are performed: (1) direct simulations of the surface ground motion for real regional events having various back azimuth with respect to the center of the basin; (2) reciprocity-based calculations where the ground motion due to 980 different seismic sources is computed at a few stations in the basin. In the reciprocity-based calculations, we consider epicentral distances varying from 2.5 km to 40 km, source depths from 1 km to 15 km and we span the range of possible back-azimuths with a 10 degree bin. We will present some results showing (1) the sensitivity of ground motion parameters to the location and focal mechanism of the seismic sources; and (2) the variability of the amplification caused by site effects, as measured by standard spectral ratios, to the source characteristics
Kalkan, Erol; Juan Carlos Reyes
2012-01-01
Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.
Zaineh, Hussam Eldein; Yamanaka, Hiroaki; Dhakal, Yadab Prasad; Dakkak, Rawaa; Daoud, Mohamad
2013-10-01
The seismic hazard potential for metropolitan of Damascus, Syria is mainly controlled by earthquakes along Serghaya Fault which is a branch of Dead Sea Fault System. In this study, strong ground motion due to the November 1759 Earthquake along the fault of Serghaya was estimated with a numerical simulation technique. In the simulation, the Kostrov-like slip-velocity function was used as an input to the discrete wave number method to simulate the strong ground motions in a broadband frequency range. In order to model the incoherent rupture propagation which can excite large high-frequency waves, random numbers are added to arrival time of circular rupture front. MMI intensities calculated from the synthetic ground motions are compared with the observed values by Ambraseys and Barazangi (J Geophys Res 94:4007-4013, 1989). The calculated intensities are in good agreement with the observed ones at the most sites that validate appropriateness of the proposed source model. The PGA and PGV in the eastern region of Damascus city are higher than those in the western region due to the effects of local site amplification. The simulated high-frequency (1.0-6.0 Hz) ground motions for the sites in the Damascus city are higher than the design requirements defined by the Syrian building code. Furthermore, the simulated high-frequency ground motions for sites in the focal region are bigger than the design requirements in the case of the near-fault factors and are not considered. That demonstrates the appropriateness of considering the near-fault factors for a site near the focal region as introduced by the new building code.
International Nuclear Information System (INIS)
We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are recurrent in both directions of the time evolution t → +∞, t → -∞ a fractal limit set is associated whose Hausdorff dimension is intimately connected with the quantum mechanical energy ground state, determined by the Schroedinger operator on the manifold. We give a rather detailed and pictorial description of the hyperbolic spaces we have in mind, discuss various aspects of classical and quantum mechanical motion on them as far as they are needed to establish the connection between energy ground state and Hausdorff dimension and give finally some examples of ground state calculations in terms of Hausdorff dimensions of limit sets of classical trajectories. (orig.)
International Nuclear Information System (INIS)
The characterization of effective damage potential of the earthquakes implies the identification of structural response parameters which reliably represent the most significant features in development of damage in the real structures. For this purpose, models that adequately describe the seismic response of structures must be adopted. As widely recognized, some significant parameters characterizing the cyclic histories of the seismic response can be selected to represent the damaging process of the structures. Obviously, the effects of structural damage reflect also on damaging non-structural elements and technical devices. The seismic response of multi-story structural systems subjected to severe ground motions should be studied at both global and local levels, as it could be characterized by high demands for inelastic displacement and energy dissipation, often causing concentration of damage in limited zones of the structure. These local effects depend on the type of signal and on the structural characteristics and cannot be predicted by means of SDOF systems. In this research simplified procedures have been adopted for the investigation on the seismic response of multi-story frame structures: inelastic equivalent SDOF systems for the global response of the frame and inelastic equivalent shear-type model for the prediction of local seismic demand in terms of displacements and energy. The results have been also used in estimating the damage imparted to the structures by means of available damage models. (authors)
A global earthquake discrimination scheme to optimize ground-motion prediction equation selection
Garcia, Daniel; Wald, David J.; Hearne, Michael
2012-01-01
We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.
City of Bingöl in May 2003: Assessment of strong ground motion records
Indian Academy of Sciences (India)
U Çeken; G Beyhan; H H Selim
2014-03-01
The main shock of Bingöl earthquake ( = 6.4) recorded by six accelerometers in the area occurred at 03:27 local time on May 1, 2003. The largest acceleration value of north–south component was recorded as 545.5 cm/s2 at the nearest station which is 12 km away from the epicenter of earthquake. Especially, 0.15 s short period was observed when high spectral acceleration value occurred. An acceleration value greater than 50 gal was recorded at the BNG (Bingöl) station and structural damage occurred within 6.5 s was very important for the near source and strong ground motion seismology. The recorded peak acceleration values were greater than the estimated empirical acceleration values. However, the structural damage was not as high and widespread as expected. This occurrence was explained by considering the factors of earthquake source, frequency content, effective duration, effective acceleration value, local soil conditions, rupture direction and attenuation.
Seismic microzoning from synthetic ground motion parameters Case study, Santiago de Cuba
Alvarez, L; Pico, R; Vaccari, F
2003-01-01
Synthetic seismograms (P - SV and SH waves) have been calculated along 6 profiles in Santiago de Cuba basin, with a cutoff frequency of 5 Hz, by using the hybrid approach (modal summation for a regional (ID) structure plus finite differences for a local (2D) structure embedded in the first). They correspond to a scenario earthquake of M sub S = 7 that may occur in Oriente fault zone, directly south of the city. As initial data for a seismic microzoning, the characterisation of earthquake effects has been made considering several relative (2D/1D) quantities (PGDR, PGVR, PGAR, DGAR, I sub A R etc.) and functions representative of the ground motion behaviour in soil (2D) with respect to bedrock (ID). The functions are the response spectra ratio RSR(f), already routinely used in this kind of work, and the elastic energy input ratio E sub I R(f), defined, for the first time, in this paper. These data, sampled at 105 sites within all the profiles have been classified in two steps, using logical combinatory algorith...
International Nuclear Information System (INIS)
The role of the motion of electrons bound in target atoms in electron beam polarization measurements by means of a Moeller polarimeter is discussed. It is shown that this effect can result in an essential overestimate of the value being measured, which exceeds considerably the error of the target polarization determination, and therefore, it should be taken into account in the development of polarimeters. Some recommendations are given to eliminate this systematic error. 8 refs.; 1 fig.; 2 tables. (author)
Energy Technology Data Exchange (ETDEWEB)
I. Wong
2004-11-05
This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.
International Nuclear Information System (INIS)
This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M and O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes
Yen, Y.; Ma, K.; Cheng, C.; Shao, K.; Lin, P.
2011-12-01
For the demand of engineering, the time-history of ground motions which consider the reliability and earthquake physical characters have been provided for earthquake resistant design of important building structures. However, the high frequency portion ( > 1 Hz) of near-fault ground motions was restricted by the insufficient resolution of velocity structure. Considering the relative small events which contain path and site effect in waveforms as Green's functions (i.e. empirical Green's function (EGF) method) can resolve the problem of lack of precise velocity structure to replace the path effect evaluation. Alternatively, a stochastic Green's function (SGF) method can be employed when the EGF is unavailable. Further, the low frequency ( power plant in southern tip of Taiwan was experienced a strong shaking by the 26 December 2006 Pingtung, Taiwan offshore earthquake. The closest strong motion station of the Central Weather Bureau, KAU082, recorded the peak acceleration value (PGA) of 0.24 g. We considered the adjacent stations to be the case study for possibility evaluation of predicting ground motion utilizing the EGF method or SGF method. The possible damage impact toward nuclear power plant for specific sites can be estimated and verified according to the simulation results
Sun, Xiaodan; Hartzell, Stephen; Rezaeian, Sanaz
2015-01-01
Three broadband simulation methods are used to generate synthetic ground motions for the 2011 Mineral, Virginia, earthquake and compare with observed motions. The methods include a physics‐based model by Hartzell et al. (1999, 2005), a stochastic source‐based model by Boore (2009), and a stochastic site‐based model by Rezaeian and Der Kiureghian (2010, 2012). The ground‐motion dataset consists of 40 stations within 600 km of the epicenter. Several metrics are used to validate the simulations: (1) overall bias of response spectra and Fourier spectra (from 0.1 to 10 Hz); (2) spatial distribution of residuals for GMRotI50 peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration (PSA) at various periods; (3) comparison with ground‐motion prediction equations (GMPEs) for the eastern United States. Our results show that (1) the physics‐based model provides satisfactory overall bias from 0.1 to 10 Hz and produces more realistic synthetic waveforms; (2) the stochastic site‐based model also yields more realistic synthetic waveforms and performs superiorly for frequencies greater than about 1 Hz; (3) the stochastic source‐based model has larger bias at lower frequencies (physics‐based and stochastic site‐based models, and systematic lower amplitudes for the stochastic source‐based model at lower frequencies (<0.5 Hz).
Simulation of Strong Ground Motion for the 7.6Mw Kashmir Earthquake Occurred on 8 Oct 2005
Naveed, A.; Muhammad sohail, K.
2015-12-01
The Mw 7.6 Kashmir earthquake which struck the northern area of Pakistan , the Kashmir region on 8 October 2005.The epicenter was located 18km north-northeast of Muzaffarabad, with a focal depth of 26km and it occurred in the Hazara-kashmir syntaxial bend near Main Mantle Thrust (MMT). This is one of the most devastating earthquakes occurred along Himalayan Arc and brought more than 80,000 deaths and more than 5.2 billion USD economical loss. The earthquake had duration of 25s and 75km rupture length along the surface. In order to investigate the strong motion caused by this earthquake, we simulate the Kashmir earthquake by the Curved grid finite difference method (CG-FDM). The finite-fault rupture, real topography variations and modified crustal model are considered. Simulated results are compared with available records, showing good mutual agreement between the synthetic and observed ground motions. According to the Pakistan Meteorological Department (PMD), the intensity of four observed points had reached scale IX, whereas our simulated results show those points are located in the regions with our predicted intensity scale IX or VIII. Peak Ground Acceleration (PGA) and Peak ground velocity (PGV) are most important parameters for hazard analysis, and our results are sufficiently coincide with their observed values. Finally, we also discuss the significant effect of surface topography on ground motion resulting by the Earthquake.
Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.
2015-12-01
The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian
International Nuclear Information System (INIS)
As part of the structural response research program being conducted for ERDA, the response behavior of high-rise buildings in Las Vegas, Nevada, due to ground motion caused by underground nuclear explosions (UNEs) at the Nevada Test Site (NTS) has been measured for the past 12 years. Results obtained include variation in dynamic response properties as a function of amplitude of motion, influence of nonstructural partitions in the building response, and comparison of calculated and measured response. These data for three reinforced concrete high-rise buildings, all designed as moment-resisting space frames are presented
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L; Ioannidou, E; Voulgaris, N; Kalogeras, I; Savy, J; Foxall, W; Stavrakakis, G
2004-08-06
We test a methodology to predict the range of ground-motion hazard for a fixed magnitude earthquake along a specific fault or within a specific source volume, and we demonstrate how to incorporate this into probabilistic seismic hazard analyses (PSHA). We modeled ground motion with empirical Green's functions. We tested our methodology with the 7 September 1999, Mw=6.0 Athens earthquake, we: (1) developed constraints on rupture parameters based on prior knowledge of earthquake rupture processes and sources in the region; (2) generated impulsive point shear source empirical Green's functions by deconvolving out the source contribution of M < 4.0 aftershocks; (3) used aftershocks that occurred throughout the area and not necessarily along the fault to be modeled; (4) ran a sufficient number of scenario earthquakes to span the full variability of ground motion possible; (5) found that our distribution of synthesized ground motions span what actually occurred and their distribution is realistically narrow; (6) determined that one of our source models generates records that match observed time histories well; (7) found that certain combinations of rupture parameters produced ''extreme'' ground motions at some stations; (8) identified that the ''best fitting'' rupture models occurred in the vicinity of 38.05{sup o} N 23.60{sup o} W with center of rupture near 12 km, and near unilateral rupture towards the areas of high damage, and this is consistent with independent investigations; and (9) synthesized strong motion records in high damage areas for which records from the earthquake were not recorded. We then developed a demonstration PSHA for a source region near Athens utilizing synthesized ground motion rather that traditional attenuation. We synthesized 500 earthquakes distributed throughout the source zone likely to have Mw=6.0 earthquakes near Athens. We assumed an average return period of 1000 years for this
Precise ground motion measurements to support multi-hazard analysis in Jakarta
Koudogbo, Fifamè; Duro, Javier; Garcia Robles, Javier; Abidin, Hasanuddin Z.
2015-04-01
Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. Flood events have been increasing in severity during the past decade. The February 2007 event inundated 235 Km2 (about 36%) of the city, by up to seven meters in some areas. This event affected more than 2.6 million people; the estimated financial and economic losses from this event amounted to US900 million [1][2]. Inundations continue to occur under any sustained rainfall conditions. Flood events in Jakarta are expected to become more frequent in coming years, with a shift from previously slow natural processes with low frequency to a high frequency process resulting in severe socio-economic damage. Land subsidence in Jakarta results in increased vulnerability to flooding due to the reduced gravitational capacity to channel storm flows to the sea and an increased risk of tidal flooding. It continues at increasingly alarming rates, principally caused by intensive deep groundwater abstraction [3]. Recent studies have found typical subsidence rates of 7.5-10 cm a year. In localized areas of north Jakarta subsidence in the range 15-25 cm a year is occurring which, if sustained, would result in them sinking to 4-5 m below sea level by 2025 [3]. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion measurements with millimetric precision and high accuracy [4]. Within the RASOR (Rapid Analysis and Spatialisation and Of Risk) project, ALTAMIRA INFORMATION will apply GlobalSARTM to assess recent land subsidence in Jakarta, based on the processing of Very High
An Arduino project to record ground motion and to learn on earthquake hazard at high school
Saraò, Angela; Barnaba, Carla; Clocchiatti, Marco; Zuliani, David
2015-04-01
Through a multidisciplinary work that integrates Technology education with Earth Sciences, we implemented an educational program to raise the students' awareness of seismic hazard and to disseminate good practices of earthquake safety. Using free software and low-cost open hardware, the students of a senior class of the high school Liceo Paschini in Tolmezzo (NE Italy) implemented a seismograph using the Arduino open-source electronics platform and the ADXL345 sensors to emulate a low cost seismometer (e.g. O-NAVI sensor of the Quake-Catcher Network, http://qcn.stanford.edu). To accomplish their task the students were addressed to use the web resources for technical support and troubleshooting. Shell scripts, running on local computers under Linux OS, controlled the process of recording and display data. The main part of the experiment was documented using the DokuWiki style. Some propaedeutic lessons in computer sciences and electronics were needed to build up the necessary skills of the students and to fill in the gap of their background knowledge. In addition lectures by seismologists and laboratory activity allowed the class to exploit different aspects of the physics of the earthquake and particularly of the seismic waves, and to become familiar with the topics of seismic hazard through an inquiry-based learning. The Arduino seismograph achieved can be used for educational purposes and it can display tremors on the local network of the school. For sure it can record the ground motion due to a seismic event that can occur in the area, but further improvements are necessary for a quantitative analysis of the recorded signals.
Estimation of strong ground motion and micro-zonation for the city of Rome
International Nuclear Information System (INIS)
A hybrid technique, based on mode summation and finite differences, is used to simulate the ground motion induced in the city of Rome by possible earthquakes occurring in the main seismogenetic areas surrounding the city: the Central Apennines and the Alban Hills. The results of the numerical simulations are used for a first order seismic micro-zonation in the city of Rome, which can be used for the retrofitting of buildings of special social and cultural value. Rome can be divided into six main zones: (1) the edge and (2) the central part of the alluvial basin of the river Tiber; (3) the edges and (4) the central part of the Paleotiber basin; the areas outside the large basins of the Tiber and Paleotiber, where we distinguish between (5) areas without, and (6) areas with a layer of volcanic rocks close to the surface. The strongest amplification effects have to be expected at the edges of the Tiber basin, with maximum spectral amplification of the order of 5 to 6, and strong amplifications occur inside the entire alluvial basin of the Tiber. The presence of a near-surface layer of rigid material is not sufficient to classify a location as a ''hard-rock site'', when the rigid material covers a sedimentary complex. The reason is that the underlying sedimentary complex causes amplifications at the surface due to resonance effects. This phenomenon can be observed in the Paleotiber basin, where spectral amplifications in the frequency range 0.3-1.0 Hz reach values of the order of 3 to 4. (author). 17 refs, 5 figs, 2 tabs
Interdependence between damage indices and ground motion parameters based on Hilbert–Huang transform
International Nuclear Information System (INIS)
Feature extraction from seismic accelerograms is a key issue in characterization of earthquake damage in structures. Until today, a number of effective classical parameters such as peak ground acceleration (PGA) and Arias intensity have been proposed for analyzing the earthquake motion records. The aim of this paper is to search for new crucial characteristic seismic parameters which provide information pertinent to the damage indicators of the structures. The first proposed parameter is the maximum amplitude (AHHTmax) and the second is the mean amplitude (AHHTmean). Emphasis of our work has been placed on the use of the Hilbert–Huang transform (HHT). A set of 13 natural accelerograms from worldwide well-known sites with strong seismic activity have been used. The HHT has been applied to the nonlinear and non-stationary data (earthquake recordings). Each complex seismic accelerogram is decomposed into several simple components called intrinsic mode functions (IMFs). Using the IMFs a three-dimensional time–frequency distribution of earthquake excitation is computed and two new seismic parameters are proposed and evaluated. After the numerical computation of all the seismic parameters (classical and proposed), nonlinear dynamic analysis is carried out to provide the post-seismic damage status of the structure under study. Two structural damage indices are utilized and the degree of interrelation among them and the seismic parameters is provided by correlation coefficients. Furthermore, two different reinforced concrete structures are examined. Results indicate the high correlation of the new seismic parameters (AHHTmax, AHHTmean) with the damage indices and confirm that HHT is a promising tool for extracting information to characterize damage in structures
DEFF Research Database (Denmark)
Hibino, Y.; Ichinose, T.; Costa, J.L.D.;
2009-01-01
A procedure is presented to predict the storey where plastic drift dominates in two-storey buildings under strong ground motion. The procedure utilizes the yield strength and the mass of each storey as well as the peak ground acceleration. The procedure is based on two different assumptions: (1......) the seismic force distribution is of inverted triangular form and (2) the rigid-plastic model represents the system. The first and the second assumptions, respectively, lead to lower and upper estimates of the base shear coefficient under which the drift of the first storey exceeds that of the second...
International Nuclear Information System (INIS)
Design of any underground nuclear fuel waste disposal repository should take into account strong earthquake ground motion for the purposes of both operational safety and long term waste isolation. Observations of the performance of underground tunnels after earthquakes show considerably less damage compared to the damage at the surface from the same events, indicating that there may be significant reduction of the seismic ground motion underground at a given site. However, pertinent seismic data are limited because seismographs tend to be located either at the surface or underground, but not both. Following are the results from a unique experiment conducted at the underground research facilities in Pinawa, Manitoba where seismic measurements taken from a surface seismograph were compared with those from an identical system at a depth of 420 m below surface. (author)
Institute of Scientific and Technical Information of China (English)
Xu Yan; George C Lee
2007-01-01
In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.
Pavlenko, O. V.
2013-04-01
To estimate the parameters of ground motion in future strong earthquakes, characteristics of radiation and propagation of seismic waves in the Kamchatka region were studied. Regional parameters of radiation and propagation of seismic waves were estimated by comparing simulations of earthquake records with data recorded by stations of the Kamchatka Strong Motion Network. Acceleration time histories of strong earthquakes ( M w = 6.8-7.5, depths 45-55 km) that occurred near the eastern coast of Kamchatka in 1992-1993 were simulated at rock and soil stations located at epicentral distances of 67-195 km. In these calculations, the source spectra and the estimates of frequency-dependent attenuation and geometrical spreading obtained earlier for Kamchatka were used. The local seismic-wave amplification was estimated based on shallow geophysical site investigations and deep crustal seismic explorations, and parameters defining the shapes of the waveforms, the duration, etc. were selected, showing the best-fit to the observations. The estimated parameters of radiation and propagation of seismic waves describe all the studied earthquakes well. Based on the waveforms of the acceleration time histories, models of slip distribution over the fault planes were constructed for the studied earthquakes. Station PET can be considered as a reference rock station having the minimum site effects. The intensity of ground motion at the other studied stations was higher than at PET due to the soil response or other effects, primarily topographic ones. At soil stations INS, AER, and DCH the parameters of soil profiles (homogeneous pyroclastic deposits) were estimated, and nonlinear models of their behavior in the strong motion were constructed. The obtained parameters of radiation and propagation of seismic waves and models of soil behavior can be used for forecasting ground motion in future strong earthquakes in Kamchatka.
Tae-Kyung Hong; Eunseo Choi; Seongjun Park; Jin Soo Shin
2016-01-01
Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korea...
Influence of super-shear on simulated near-source ground motion from the 1999 Izmit earthquake
Aochi, Hideo; Durand, Virginie,; Douglas, John
2011-01-01
We numerically simulate seismic wave propagation from the 1999 Mw7.4 Izmit, Turkey, earthquake, using a 3D finite difference method based on published finite source models obtained by waveform inversions. This earthquake has been reported, based on observations at the near-fault station SKR, as an example of super-shear rupture propagation towards the east. Although the modeled ground motion does show a characteristic Mach wave from the fault plane, it is difficult to identify any particular ...
Raschke, Mathias
2015-01-01
In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The paramete...
A. Caserta; L. Malagnini; A. Rovelli; Marra, F
1995-01-01
The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves) produced in the different areas of the city by a large (M ? 7) potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineerin...
International Nuclear Information System (INIS)
This report presents a summary of an investigation into the applicability of theoretical earthquake source modeling to the definition of design ground motion environments for nuclear power plants located in the near-field of potentially active faults. A variety of theoretical source models are examined to determine the characteristics of near-field ground motion predicted by such models and to isolate the sensitivities of high-frequency radiation characteristics to specific elements of the models. It is concluded that the high frequency ground motions predicted by the models are quite sensitive to particular details of implementation for which data and theory provide rather poor constraints. Examination of dynamic earthquake models suggests guidelines for extrapolation of model parameters to new stress-drops and magnitudes which are contrary to those procedures already in use. Guidelines for future modeling efforts which may better quantify the uncertainties in such procedures are recommended. Also recommended are studies which may offer constraints useful for both empirical and theoretical modeling procedures
Sahar, D.; Narayan, J. P.
2016-01-01
The anomalous damage patterns developed by the focusing of seismic waves due to deep and shallow seated synclinal basement topography were reported during the Northridge earthquake of 1994 and the Nisqually earthquake of 2001, respectively. This paper presents the role of sediment velocity, depth and geometry of the basement topography in basement focusing effects on ground motion characteristics. An increase of amplitude of the mode converted and the diffracted waves with an increase of impedance contrast and curvature of the basement topography was inferred. It is concluded that the basement focusing effect is unaffected by the change of focal length due to the change of either sediment velocity or radius of curvature for a fixed chord length in the absence of sediment damping. Further, under a favourable condition, the focusing of multiples of the transmitted waves may cause much larger amplitude amplification than that caused by the focusing of the transmitted wave itself. Extensive spatial variations in ground motion level were obtained with the change of depth and chord length of the basement topography. A comparative analysis of the responses of semi-spherical basement topography (3D) and semi-cylindrical basement topography (2D) strongly suggests that 1D or 2D response of an area underlain by a 3D depression should not be used in predicting the ground motion.
Directory of Open Access Journals (Sweden)
Rishi Ram Parajuli
2015-11-01
Full Text Available On April 25, 2015, a M7.8 earthquake rattled central Nepal; ground motion recorded in Kantipath, Kathmandu, 76.86 km east of the epicenter suggested that the low frequency component was dominant. We consider data from eight aftershocks following the Gorkha earthquake and analyze ground motion characteristics; we found that most of the ground motion records are dominated by low frequencies for events with a moment magnitude greater than 6. The Gorkha earthquake devastated hundreds of thousands of structures. In the countryside, and especially in rural mountainous areas, most of the buildings that collapsed were stone masonry constructions. Detailed damage assessments of stone masonry buildings in Harmi Gorkha had done, with an epicentral distance of about 17 km. Structures were categorized as large, medium and small depending on their plinth area size and number of stories. Most of the structures in the area were damaged; interestingly, all ridge-line structures were heavily damaged. Moreover, Schmidt hammer tests were undertaken to determine the compressive strength of stone masonry, brick masonry with mud mortar for normal buildings and historical monuments. The compressive strengths of stone and brick masonry were found to be 12.38 and 18.75 MPa, respectively. Historical structures constructed with special bricks had a compressive strength of 29.50 MPa. Pullout tests were also conducted to determine the stone masonry-mud mortar bond strength. The cohesive strength of mud mortar and the coefficient of friction were determined.
Bonì, R.; Cigna, F.; Bricker, S.; Meisina, C.; McCormack, H.
2016-09-01
In this paper, Persistent Scatterer Interferometry was applied to ERS-1/2 and ENVISAT satellite data covering 1992-2000 and 2002-2010 respectively, to analyse the relationship between ground motion and hydraulic head changes in the London Basin, United Kingdom. The integration of observed groundwater levels provided by the Environment Agency and satellite-derived displacement time series allowed the estimation of the spatio-temporal variations of the Chalk aquifer storage coefficient and compressibility over an area of ∼1360 km2. The average storage coefficient of the aquifer reaches values of 1 × 10-3 and the estimated average aquifer compressibility is 7.7 × 10-10 Pa-1 and 1.2 × 10-9 Pa-1 for the periods 1992-2000 and 2002-2010, respectively. Derived storage coefficient values appear to be correlated with the hydrogeological setting, where confined by the London Clay the storage coefficient is typically an order of magnitude lower than where the chalk is overlain by the Lambeth Group. PSI-derived storage coefficient estimates agree with the values obtained from pumping tests in the same area. A simplified one-dimensional model is applied to simulate the ground motion response to hydraulic heads changes at nine piezometers. The comparison between simulated and satellite-observed ground motion changes reveals good agreement, with errors ranging between 1.4 and 6.9 mm, and being 3.2 mm on average.
Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo
2016-02-01
Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s2 in the horizontal direction and 0.0917 m/s2 in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.
International Nuclear Information System (INIS)
The design basis for earthquake ground motion is given by the peak ground acceleration, response spectrfal shapes for various damping values and the time history of ground motion in horizontal and vertical directions. The time history is required to be compatible with a specified design response spectrum. The course of having treated this problem in the past is outlined. Power spectral density functions (PSDF) require the explicit definition of the duration of motion, but fourier amplitude spectrum (FAS) treat the data as such. Whatever way the target PSDF or FAS was arrived at, its consistency with the specified response spectrum should be assured. Accordingly, it appears prudent to select a suitable data base and derive the target response spectrum and the FAS. In this paper, an algorithm for generating the accelerograms compatible with a specified response spectrum and a FAS is described. The compatibility criteria, the methods of generating algorithms based on response spectrum conpatibility, the inversion of FAS and the combination of response spectrum compatibility and the inversion of FAS, and the numerical results are reported. (K.I.)
Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo
2016-01-01
Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals. PMID:26884136
Directory of Open Access Journals (Sweden)
Roberta Bonì
2016-08-01
Full Text Available Recent improvement to Advanced Differential Interferometric SAR (A-DInSAR time series quality enhances the knowledge of various geohazards. Ground motion studies need an appropriate methodology to exploit the great potential contained in the A-DInSAR time series. Here, we propose a methodology to analyze multi-sensors and multi-temporal A-DInSAR data for the geological interpretation of areas affected by land subsidence/uplift and seasonal movements. The methodology was applied in the plain area of the Oltrepo Pavese (Po Plain, Italy using ERS-1/2 and Radarsat data, processed using the SqueeSAR™ algorithm, and covering time spans, respectively, from 1992 to 2000 and from 2003 to 2010. The test area is a representative site of the Po Plain, affected by various geohazards and characterized by moderate rates of motion, ranging from −10 to 4 mm/yr. Different components of motion were recognized: linear, non-linear, and seasonal deformational behaviors. Natural and man-induced processes were identified such as swelling/shrinkage of clayey soils, land subsidence due to load of new buildings, moderate tectonic uplift, and seasonal ground motion due to seasonal groundwater level variations.
Moczo, P.; Kristek, J.; Galis, M.; Pazak, P.
2009-12-01
Numerical prediction of earthquake ground motion in sedimentary basins and valleys often has to account for P-wave to S-wave speed ratios (Vp/Vs) as large as 5 and even larger, mainly in sediments below groundwater level. The ratio can attain values larger than 10 in unconsolidated sediments (e.g. in Ciudad de México). In a process of developing 3D optimally-accurate finite-difference schemes we encountered a serious problem with accuracy in media with large Vp/Vs ratio. This led us to investigate the very fundamental reasons for the inaccuracy. In order to identify the very basic inherent aspects of the numerical schemes responsible for their behavior with varying Vp/Vs ratio, we restricted to the most basic 2nd-order 2D numerical schemes on a uniform grid in a homogeneous medium. Although basic in the specified sense, the schemes comprise the decisive features for accuracy of wide class of numerical schemes. We investigated 6 numerical schemes: finite-difference_displacement_conventional grid (FD_D_CG) finite-element_Lobatto integration (FE_L) finite-element_Gauss integration (FE_G) finite-difference_displacement-stress_partly-staggered grid (FD_DS_PSG) finite-difference_displacement-stress_staggered grid (FD_DS_SG) finite-difference_velocity-stress_staggered grid (FD_VS_SG) We defined and calculated local errors of the schemes in amplitude and polarization. Because different schemes use different time steps, they need different numbers of time levels to calculate solution for a desired time window. Therefore, we normalized errors for a unit time. The normalization allowed for a direct comparison of errors of different schemes. Extensive numerical calculations for wide ranges of values of the Vp/Vs ratio, spatial sampling ratio, stability ratio, and entire range of directions of propagation with respect to the spatial grid led to interesting and surprising findings. Accuracy of FD_D_CG, FE_L and FE_G strongly depends on Vp/Vs ratio. The schemes are not
Distribution of Ground Motions for the 2008 Mw5.4 Chino Hills Earthquake
Yong, A.; Hough, S. E.; Wills, C. J.; Wald, D. J.
2008-12-01
The 29 July 2008 Mw5.4 Chino Hills earthquake was widely felt throughout the greater Los Angeles region. Over 40,000 people filled out the Community Internet Intensity Map (CIIM), also known as the "Did You Feel It?" questionnaire, and the ShakeMap for the event is constrained by amplitudes from over 500 stations. The CIIM responses provide Modified Mercalli Intensity (MMI) values for 802 Zip codes. Due to the dense population of the greater Los Angeles region, intensity values averaged within Zip codes provide good spatial correlation to the location of the actual reporting sites. We use a least-squares approach to fit the average MMI to a standard functional form, MMI = A - Br - C log r (where r represents distance from the observation site to the epicenter and A, B and C are constants), and calculate the residuals. The distribution of average intensities clusters closely around the curve of the equation, corroborating the conclusion (e.g., Atkinson and Wald, SRL, 2006) that CIIM intensities provide a consistent measure of earthquake ground motions. A comparison of CIIM intensities and instrumentally determined ShakeMap intensities reveals generally good correspondence, but suggests a tendency for ShakeMap intensities to be higher at basin sites. We conclude that the ShakeMap intensities reflect long-period amplification, whereas observed intensities were more controlled by higher frequency accelerations. Where both the CIIM map and ShakeMap show systematic variations, the distributions show a strong correlation with near-surface geological structure, as well as with basin depth. Our preliminary conclusions are: 1) as expected, intensities are lower at hard rock sites; 2) intensities are systematically higher in the deepest parts of the basin and significantly lower in shallow regions. Intensities are systematically lower to the west of the Newport-Inglewood fault correlating with subtle topographic relief and shallower basin depths; 3) there is a suggestion that
Probabilistic Seismic Hazard Maps for Seattle, Washington, Based on 3D Ground-Motion Simulations
Frankel, A. D.; Stephenson, W. J.; Carver, D. L.; Williams, R. A.; Odum, J. K.; Rhea, S.
2007-12-01
We have produced probabilistic seismic hazard maps for Seattle using over 500 3D finite-difference simulations of ground motions from earthquakes in the Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep source areas. The maps depict 1 Hz response spectral accelerations with 2, 5, and 10% probabilities of being exceeded in 50 years. The simulations were used to generate site and source dependent amplification factors that are applied to rock-site attenuation relations. The maps incorporate essentially the same fault sources and earthquake recurrence times as the 2002 national seismic hazard maps. The simulations included basin surface waves and basin-edge focusing effects from a 3D model of the Seattle basin. The 3D velocity model was validated by modeling several earthquakes in the region, including the 2001 M6.8 Nisqually earthquake, that were recorded by our Seattle Urban Seismic Network and the Pacific Northwest Seismic Network. The simulations duplicate our observation that earthquakes from the south and southwest typically produce larger amplifications in the Seattle basin than earthquakes from other azimuths, relative to rock sites outside the basin. Finite-fault simulations were run for earthquakes along the Seattle fault zone, with magnitudes ranging from 6.6 to 7.2, so that the effects of rupture directivity were included. Nonlinear amplification factors for soft-soil sites of fill and alluvium were also applied in the maps. For the Cascadia subduction zone, 3D simulations with point sources at different locations along the zone were used to determine amplification factors across Seattle expected for great subduction-zone earthquakes. These new urban seismic hazard maps are based on determinations of hazard for 7236 sites with a spacing of 280 m. The maps show that the highest hazard locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and
Wheatley, David; Chan, Marjorie
2015-04-01
Multiple soft sediment deformation features from bed-scale to basin-scale are well preserved within the Jurassic Carmel Formation of Southern Utah. Field mapping reveals thousands of small-scale clastic injectite pipes (10 cm to 10 m diameter, up to 20 m tall) in extremely high densities (up to 500+ pipes per 0.075 square kilometers). The pipes weather out in positive relief from the surrounding host strata of massive sandstone (sabkha) and crossbedded sands with minor conglomerate and shale (fluvial) deposits. The host rock shows both brittle and ductile deformation. Reverse, normal, and antithetical faulting is common with increased frequency, including ring faults, surrounding the pipes. The pipes formed from liquefaction and subsequent fluidization induced by strong ground motion. Down-dropped, graben blocks and ring faults surrounding pipes indicate initial sediment volume increase during pipe emplacement followed by sediment volume decrease during dewatering. Complex crosscutting relationships indicate several injection events where some pipe events reached the surface as sand blows. Multiple ash layers provide excellent stratigraphic and temporal constraints for the pipe system with the host strata deposited between 166 and 164 Ma. Common volcanic fragments and rounded volcanic cobbles occur within sandstone and conglomerate beds, and pipes. Isolated volcanic clasts in massive sandstone indicate explosive volcanic events that could have been the exogenic trigger for earthquakes. The distribution of pipes are roughly parallel to the Middle Jurassic paleoshoreline located in marginal environments between the shallow epicontinental Sundance Sea and continental dryland. At the vertical stratigraphic facies change from dominantly fluvial sediments to dominantly massive sabkha sediments, there is a 1-2 m-thick floodplain mudstone that was a likely seal for underlying, overpressurized sediments. The combination of loose porous sediment at a critical depth of water
Imperatori, W.
2015-07-28
The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken
Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico
2016-04-01
It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform
Multi-Hazard Analysis for the Estimation of Ground Motion Induced by Landslides and Tectonics
Iglesias, Rubén; Koudogbo, Fifame; Ardizzone, Francesca; Mondini, Alessandro; Bignami, Christian
2016-04-01
Space-borne synthetic aperture radar (SAR) sensors allow obtaining all-day all-weather terrain complex reflectivity images which can be processed by means of Persistent Scatterer Interferometry (PSI) for the monitoring of displacement episodes with extremely high accuracy. In the work presented, different PSI strategies to measure ground surface displacements for multi-scale multi-hazard mapping are proposed in the context of landslides and tectonic applications. This work is developed in the framework of ESA General Studies Programme (GSP). The present project, called Multi Scale and Multi Hazard Mapping Space based Solutions (MEMpHIS), investigates new Earth Observation (EO) methods and new Information and Communications Technology (ICT) solutions to improve the understanding and management of disasters, with special focus on Disaster Risk Reduction rather than Rapid Mapping. In this paper, the results of the investigation on the key processing steps for measuring large-scale ground surface displacements (like the ones originated by plate tectonics or active faults) as well as local displacements at high resolution (like the ones related with active slopes) will be presented. The core of the proposed approaches is based on the Stable Point Network (SPN) algorithm, which is the advanced PSI processing chain developed by ALTAMIRA INFORMATION. Regarding tectonic applications, the accurate displacement estimation over large-scale areas characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. In this context, a low-resolution approach based in the integration of differential phase increments of velocity and topographic error (obtained through the fitting of a linear model adjustment function to data) will be evaluated. Data from the default mode of Sentinel-1, the Interferometric Wide Swath Mode, will be considered for this application. Regarding landslides
Modeling Strong Ground Motion during the February 22 2011 M6.3 Christchurch, New Zealand, Earthquake
Benites, R. A.; Fry, B.; Kaiser, A. E.
2012-12-01
We present a simple, kinematic model of the rupture of the M6.3 February 22 2011 earthquake in the city of Christchurch, New Zealand, that provides insights into the factors influencing observed ground motions. The model is based on a rectangular 8 x 9 km fault dipping 75o, striking 64o and rupturing with a thrust mechanism. The fault is embedded in a velocity model consisting of one layer over a uniform half-space representing the stiffest soil deposit and the bedrock underneath, respectively (Brown, L.J.; Weeber, J.H. 1992). The free-surface of the soil layer is assumed to be flat, however, the bedrock interface (initially at 900 m depth) pinches out as a 3-D cosine shaped free-surface topography up to 250 m high, representing Bank's Peninsula. The base of the topography is elliptical, with principle axes of 9 km and 4.5 km. Numerical modeling of the rupture shows that the observed corresponding strong ground motion is mainly due to two factors: the coherent rupture of a section of the fault, of 25 km2 area, with 116o rake and 3.1 km/s rupture velocity, and the presence of the sediments immediately overlying the fault. The discretization of the whole fault into several subfaults each with prescribed values of slip in the range 0.4-3.0 m, and rise time, allows the parametric study of the ground motion using several rupture scenarios. The model with the coherent rupture described above best reproduces the high (1.2 g -1.8 g) accelerations observed at stations in the footwall of the fault. The incidence upon the topography appears to produce Rayleigh waves propagating away from it. This is in agreement with particle motion surface wave analysis of the measured seismograms that reveals the contribution of Rayleigh wave energy to the observed long-period ground motions. Furthermore, arrival times of the Rayleigh wave energy are consistent with predicted travel times from our basin velocity model. We reproduce prominent near-surface effects at many Christchurch strong
Institute of Scientific and Technical Information of China (English)
Xin Wei; Zhao Yuwei; Han Chao; Eerdunchaolu
2013-01-01
Magnetic field and temperature dependence of the properties of the ground state of the strong-couplingbound magnetopolaron in quantum rods (QRs) with hydrogenic impurity is studied by means of the Huybrechts-Lee-Low-Pines transformation method and the quantum statistical theory.The expressions for the ground-state energy and the mean number ofphonons of the magnetopolaron are derived.Results of the numerical calculations show that the bound state of the magnetopolaron cannot be formed when the value of the aspect ratio of the QR,the dielectric constant ratio,the electron-phonon coupling strength or the temperature parameter is small.The larger the deviation of the value of aspect ratio e' from 1 is,the more it is unfavorable to the stability of the ground state of the magnetopolaron.When the magnetopolaron is in the bound state,the absolute value of its ground-state energy and its mean number ofphonons increase with an increase of the dielectric constant ratio and confinement strength of QRs,but decrease with an increase in the cyclotron frequency of the external magnetic field and the temperature.The absolute value of the ground-state energy and the mean number of phonons of the magnetopolaron decrease with decreasing e' when e' ＜ 1,but decrease with increasing e' when e' ＞ 1.They get the maximum value at e'=1.
Allen, D G; Sherwin, M S
2005-01-01
Strong resonant elastic light scattering (RELS) from the donor-bound exciton transition in GaAs (1.514eV) occurs at neutral donors in the ground (1S) state, but not at neutral donors in excited hydrogenic states. When 1.6 THz radiation is incident on an ensemble of neutral donors, we observe up to a 30% decrease in the RELS, corresponding to a decrease in the population of neutral donors in their ground states. This optical detection method is similar to quantum nondemolition measurement techniques used for readout of ion trap quantum computers and diamond nitrogen-vacancy centers. In this scheme, Auger recombination of the bound exciton, which changes the state of the donor during measurement, limits the measurement fidelity and maximum NIR excitation intensity.
Krishnan, Swaminathan; Muto, Matthew
2013-01-01
The seismic response of two tall steel moment frame buildings and their variants is explored through parametric nonlinear analysis using idealized sawtooth-like ground velocity waveforms, with a characteristic period (T), amplitude (peak ground velocity, PGV), and duration (number of cycles, N). Collapse-level response is induced only by long-period, moderate to large PGV ground excitation. This agrees well with a simple energy balance analysis. The collapse initiation regime expands to lower...
Reliable selection of earthquake ground motions for performance-based design
DEFF Research Database (Denmark)
Katsanos, Evangelos; Sextos, A.G.
2016-01-01
A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Prequalified code-compatible suites of seismic motions are provided through a multi-criterion approach to satisfy prescribed reduced variability...... efficiency of the method, by being subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv-sc) and the conventional index (δconv), already used by most existing code-based earthquake records selection and scaling procedures. The findings reveal the...
Rosakis, A.; Mello, M.; Bhat, H.; Krishnan, S.; Kanamori, H.
2011-12-01
Directly studying earthquakes presents a host of insurmountable difficulties, the least of which is our inability to trigger earthquakes of various magnitudes at will and the lack of means of scrutinizing the behavior at depth while the quake propagates. We have developed techniques to produce miniature (or surrogate) laboratory earthquakes and follow their progress with high-speed imaging tools. Our laboratory quakes mimic actual ones, and have allowed us to demonstrate the existence of ruptures of super-shear or intersonic rupture speeds. The propagating fronts of such supershear ruptures feature a Mach-cone of shear shock waves similar to that of supersonic aircraft. For earthquake ruptures transitioning from sub-Rayleigh to supershear rupture speeds, this unusual shear Mach cone feature is also followed by a trailing Rayleigh disturbance which is all that remains of the old sub-Rayleigh rupture after transition is complete. Each propagating disturbance contributes to the unique ground motion signature in the near field. We refer to this as a one-two punch scenario. In particular, ground motion associated with passage of the shear Mach features a dominant fault-parallel velocity component while ground motion from the trailing Rayleigh field is characterized by a dominant fault-normal velocity component (characteristic of common, sub-shear earthquake ruptures). Appropriate scaling of the laboratory ground velocity measurements are used to shake 3-D numerical models of high-rise buildings (located in near fault locations) with hypothetical supershear and sub-Rayleigh earthquakes with unexpected implication to building safety and seismic hazard analysis.
Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng
2015-12-01
We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion. PMID:26724085
Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng
2015-12-01
We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.
Seismic fragility analysis of typical pre-1990 bridges due to near- and far-field ground motions
Mosleh, Araliya; Razzaghi, Mehran S.; Jara, José; Varum, Humberto
2016-03-01
Bridge damages during the past earthquakes caused several physical and economic impacts to transportation systems. Many of the existing bridges in earthquake prone areas are pre-1990 bridges and were designed with out of date regulation codes. The occurrences of strong motions in different parts of the world show every year the vulnerability of these structures. Nonlinear dynamic time history analyses were conducted to assess the seismic vulnerability of typical pre-1990 bridges. A family of existing concrete bridge representative of the most common bridges in the highway system in Iran is studied. The seismic demand consists in a set of far-field and near-field strong motions to evaluate the likelihood of exceeding the seismic capacity of the mentioned bridges. The peak ground accelerations (PGAs) were scaled and applied incrementally to the 3D models to evaluate the seismic performance of the bridges. The superstructure was assumed to remain elastic and the nonlinear behavior in piers was modeled by assigning plastic hinges in columns. In this study the displacement ductility and the PGA are selected as a seismic performance indicator and intensity measure, respectively. The results show that pre-1990 bridges subjected to near-fault ground motions reach minor and moderate damage states.
Graves, R.W.; Aagaard, B.T.; Hudnut, K.W.; Star, L.M.; Stewart, J.P.; Jordan, T.H.
2008-01-01
Using the high-performance computing resources of the Southern California Earthquake Center, we simulate broadband (0-10 Hz) ground motions for three Mw 7.8 rupture scenarios of the southern San Andreas fault. The scenarios incorporate a kinematic rupture description with the average rupture speed along the large slip portions of the fault set at 0.96, 0.89, and 0.84 times the local shear wave velocity. Consistent with previous simulations, a southern hypocenter efficiently channels energy into the Los Angeles region along the string of basins south of the San Gabriel Mountains. However, we find the basin ground motion levels are quite sensitive to the prescribed rupture speed, with peak ground velocities at some sites varying by over a factor of two for variations in average rupture speed of about 15%. These results have important implications for estimating seismic hazards in Southern California and emphasize the need for improved understanding of earthquake rupture processes. Copyright 2008 by the American Geophysical Union.
International Nuclear Information System (INIS)
Ground motion amplification in sedimentary basins has been observed in some moderate or large earthquakes, such as the 1994 Northridge and 1999 Chi-Chi event. Many numerical studies with simplified 2D models have shown significant effects of the vertical velocity gradient of sediment on basin amplification. However, we need to consider a more realistic 3D model and solve wave equations with 3D numerical methods in order to improve our understanding of basin amplification. In this study, we extend a 2D pseudospectral and finite difference hybrid method to a 3D case and investigate the effects of the vertical velocity gradient for a 3D basin model. Numerical simulations were performed for four basin models with increasing vertical velocity gradients on a PC cluster using 64 processors for 67 108 864 discretized grids. The results show that the vertical velocity gradient enhances basin amplification through strong secondary surface waves and basin trapped waves. The 3D geometry of the basin causes a wave-front focusing effect that contributes significantly to a localized strong amplification with the maximum peak ground velocity in the basin. The results of this study suggest that it is important to consider the detailed properties of sedimentary basins in seismic ground motion studies. (paper)
Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.
2011-01-01
In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.
Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers
2010-12-01
Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The
Scognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Hutchings, L.; Lawrence Berkeley National Laboratory
2009-01-01
We test the physically-based ground motion hazard prediction methodology of Hutchings et al. [Hutchings, L., Ioannidou, E., Kalogeras, I., Voulgaris, N., Savy, J., Foxall, W., Scognamiglio, L., and Stavrakakis, G., (2007). A physically-based strong ground motion prediction methodology; Application to PSHA and the 1999 M = 6.0 Athens Earthquake. Geophys. J. Int. 168, 569–680.] through an a posteriori prediction of the 26 September 1997, Mw 6.0 Colfiorito (Umbria–Marche, Italy) earthquake at fo...
Hutchings, L.; Lawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.; Ioannidou, E.; Department of Geophysics-Geothermics, University of Athens, Athens 15783, Greece; Foxall, W.; Lawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.; Voulgaris, N.; Department of Geophysics-Geothermics, University of Athens, Athens 15783, Greece; Savy, J.; Lawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.; Kalogeras, I.; Institute of Geodynamics, National Observatory of Athens, Athens, Greece; Scognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Stavrakakis, G.; Institute of Geodynamics, National Observatory of Athens, Athens, Greece
2007-01-01
We present a physically based methodology to predict the range of ground-motion hazard for earthquakes along specific faults or within specific source volumes, and we demonstrate how to incorporate this methodology into probabilistic seismic hazard analyses (PSHA). By ‘physically based,’ we refer to ground-motion syntheses derived from physics and an understanding of the earthquake process. This approach replaces the aleatory uncertainty that current PSHA studies estimate by re...
Miyakoshi, H.; Tsuno, S.
2013-12-01
The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range
Pamela, Roselli; Warner, Marzocchi
2013-04-01
The ground motion prediction equation (GMPE) is a basic component for probabilistic seismic hazard assessment (PSHA). There is a wide variety of GMPEs that are usually obtained by means of inversion techniques of datasets containing ground motion recorded at different stations. Basically, the GMPEs differ in terms of the functional relationship used in the inversion, and in the kind of database used. To date, there is not a commonly accepted procedure to select the 'best' GMPE for a specific case; usually, a set of GMPEs is implemented, more or less arbitrary, in a logic tree structure, where each GMPE is weighted by experts according to gut feeling. Here, we investigate on more objective procedures to score GMPEs taking into account their forecasting performances; these procedures may be also used to create a sort of 'ensemble' GMPE. In particular, information theory and statistical procedures (e.g. Kullback-Leibler distance, Bayesian Model Averaging, etc) provide a general framework to define a consistent and objective model selection process. Here, we apply this processing to the Italian territory. At this stage of the analysis, we use only a limited number of GMPEs, but we aim at incrementing significantly this number in the next future. For the ground motion observation, we use the ITalian ACcelerometric Archive - ITACA. This analysis and the comparison of the results with similar analyses carried out by other groups allow us to test different scientific hypotheses: (i) the importance of the focal mechanism; (ii) the importance of regionalization; (iii) the generalizability of GMPEs in a European context; (iv) the sensitivity of different GMPEs to different site conditions. The final purpose is to get objective scores for each GMPE and to realize an ensemble model for the region of interest.
A. Mortezaei; H. R. Ronagh
2013-01-01
Near-fault ground motions with long-period pulses have been identified as being critical in the design of structures. These motions, which have caused severe damage in recent disastrous earthquakes, are characterized by a short-duration impulsive motion that transmits large amounts of energy into the structures at the beginning of the earthquake. In nearly all of the past near-fault earthquakes, significant higher mode contributions have been evident in building structures near the fault rupt...
International Nuclear Information System (INIS)
in the framework of the PICOREF project, ''CO2 sequestration in geological reservoirs in France'', two main objectives are decided: the characterization of french adapted sites and the redaction of a document to ask for the storage authorization, including a methodology to survey and study the storage site. This report aims to define the unknown ground motion which the impact should present a risk for the surface installations. The project is presented, as the geological context and the proposed methodology. (A.L.B.)
Kanamori, Hiroo; Jennings, Paul C.; Singh, Shri Krishna; Astiz, Luciana
1993-01-01
We performed simulations of ground motions in Mexico City expected for large earthquakes in the Guerrero seismic gap in Mexico. The simulation method uses as empirical Green's functions the accelerograms recorded in Mexico City during four small to moderate earthquakes (8 Feb. 1988, M_s = 5.8; 25 April 1989, M_w = 6.9; 11 May 1990, M_w = 5.5; and 31 May 1990, M_w = 6.0) in the Guerrero gap. Because these events occurred in the Guerrero gap, and have typical thrust mechanisms, the propagation ...
Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.
2014-12-01
Many of the empirical ground motion prediction equations (GMPE) also known as attenuation relations have been developed for absolute acceleration or pseudo relative velocity response spectra. For a small damping, pseudo and absolute acceleration response spectra are nearly identical and hence interchangeable. It is generally known that the relative and pseudo relative velocity response spectra differ considerably at very short or very long periods, and the two are often considered similar at intermediate periods. However, observations show that the period range at which the two spectra become comparable is different from site to site. Also, the relationship of the above two types of velocity response spectra with absolute velocity response spectra are not discussed well in literature. The absolute velocity response spectra are the peak values of time histories obtained by adding the ground velocities to relative velocity response time histories at individual natural periods. There exists many tall buildings on huge and deep sedimentary basins such as the Kanto basin, and the number of such buildings is growing. Recently, Japan Meteorological Agency (JMA) has proposed four classes of long-period ground motion intensity (http://www.data.jma.go.jp/svd/eew/data/ltpgm/) based on absolute velocity response spectra, which correlate to the difficulty of movement of people in tall buildings. As the researchers are using various types of response spectra for long-period ground motions, it is important to understand the relationships between them to take appropriate measures for disaster prevention applications. In this paper, we, therefore, obtain and discuss the empirical attenuation relationships using the same functional forms for the three types of velocity response spectra computed from observed strong motion records from moderate to large earthquakes in relation to JMA magnitude, hypocentral distance, sediment depths, and AVS30 as predictor variables at periods between
Directory of Open Access Journals (Sweden)
A. Caserta
1995-06-01
Full Text Available The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves produced in the different areas of the city by a large (M ? 7 potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineering parameters (peak ground acceleration and velocity, Arias intensity, energy flux, response spectra whose spatial variations are consistent with the damage distribution caused by the strongest earthquakes felt in Rome during its long history. Based on the macroseismic inforination and the results of the numerical simulations, general criteria for seismic zonation of the city of Rome are proposed.
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Lazarov, Boyan Stefanov
2003-01-01
single story shear frame excited by stationary Gaussian ground motion defined by the output of a Clough-Penzien filter with Gaussian white noise input. This is equivalent to considering an artificial three story elasto-plastic shear frame with possible yielding solely in the third column connection, and...... with no force feed back from any of the three masses to masses situated below it. The first mass from the ground is force excited by stationary Gaussian white noise as specified in the Clough-Penzien filter definition. The study includes comparisons between plastic displacement results for the same...... frame. A suitable number of the lower floors has been considered to represent the soil both as a filter of a white noise base rock excitation and as a simplified model for soil structure interaction. In the present paper the Slepian model is applied to obtain plastic displacement distributions for a...
Morikawa, Nobuyuki; Senna, Shigeki; Hayakawa, Yuzuru; Fujiwara, Hiroyuki
2011-03-01
The strong ground motion prediction method "Recipe" was published by the Headquarters for Earthquake Research Promotion (HERP) of Japan. HERP has applied this method to prepare shaking maps for scenario earthquakes in specific active faults. Recently, Recipe was updated following its verification by simulations of strong ground motions associated with the Mw = 6.6 off-shore earthquake west of Fukuoka prefecture in 2005, which occurred in the northwest part of the Kego fault zone located in northern Kyushu, Japan. One of the prominent changes in the upgraded version of Recipe is the inclusion of a procedure to evaluate seismic intensities on the ground surface from waveforms of S-wave velocity of 400 m/s on the engineering bedrock. By applying the upgraded version of Recipe, we have made shaking-maps for earthquakes in the southeast part of the Kego fault zone, which is located directly below the mega-city of Fukuoka. We assume four source models for scenario earthquakes; the locations of the asperities and the hypocenters vary between the models. The results show that in all cases, disastrous seismic intensities can strike a wide area of Fukuoka city. Differences in the distributions of seismic intensities among the four cases can be clearly observed in the area located on the extension of the source fault. Furthermore, we construct a velocity-layer structure model on the engineering bedrock for the central area of Fukuoka city. We assess not only the distribution of seismic intensities but also waveforms on the ground by using an equivalent linear method for the central area of Fukuoka city.
Takao, M.; Mizutani, H.
2009-05-01
At about 10:13 on July 16, 2007, a strong earthquake named 'Niigata-ken Chuetsu-oki Earthquake' of Mj6.8 on Japan Meteorological Agencyfs scale occurred offshore Niigata prefecture in Japan. However, all of the nuclear reactors at Kashiwazaki-Kariwa Nuclear Power Station (KKNPS) in Niigata prefecture operated by Tokyo Electric Power Company shut down safely. In other words, automatic safety function composed of shutdown, cooling and containment worked as designed immediately after the earthquake. During the earthquake, the peak acceleration of the ground motion exceeded the design-basis ground motion (DBGM), but the force due to the earthquake applied to safety-significant facilities was about the same as or less than the design basis taken into account as static seismic force. In order to assess anew the safety of nuclear power plants, we have evaluated a new DBGM after conducting geomorphological, geological, geophysical, seismological survey and analyses. [Geomorphological, Geological and Geophysical survey] In the land area, aerial photograph interpretation was performed at least within the 30km radius to extract geographies that could possibly be tectonic reliefs as a geomorphological survey. After that, geological reconnaissance was conducted to confirm whether the extracted landforms are tectonic reliefs or not. Especially we carefully investigated Nagaoka Plain Western Boundary Fault Zone (NPWBFZ), which consists of Kakuda-Yahiko fault, Kihinomiya fault and Katakai fault, because NPWBFZ is the one of the active faults which have potential of Mj8 class in Japan. In addition to the geological survey, seismic reflection prospecting of approximate 120km in total length was completed to evaluate the geological structure of the faults and to assess the consecutiveness of the component faults of NPWBFZ. As a result of geomorphological, geological and geophysical surveys, we evaluated that the three component faults of NPWBFZ are independent to each other from the
Ground-Motion Recordings from the June 18, 2002, Darmstadt, Indiana, Earthquake
Wang, Z.; Woolery, E. W.; Schaefer, J. A.
2002-12-01
A minor earthquake with a magnitude of Mb5.0 (Mw4.5) occurred at 1:37 Eastern Daylight Time (EDT) on June 18, 2002, about 9 km (6 mi) west of Darmstadt, Ind. Minor damage consisting of broken windows, cracked chimneys, and objects thrown from shelves was reported from the epicentral area. The earthquake was felt in parts of Illinois, Indiana, Kentucky, Missouri, Ohio, and Tennessee. Some strong-motion stations of the Kentucky Seismic and Strong-Motion Network (KSSMN) and the U.S. Army Corps of Engineers' strong-motion network recorded the earthquake. Two free-field strong-motion stations of KSSMN, one in Hickman, Ky. (HIKY) and one in Ridgely, Tenn. (RIDG), recorded the event. The epicentral distances are about 200 and 245 km from HIKY and RIDG, respectively. The NEHRP soil classifications at HIKY and RIDG are C and D, respectively. The strong-motion instruments installed on three locks and dams along the Ohio River and its tributaries by the U.S. Army Corps of Engineers also recorded the event. These three sites are the J.T. Myers Lock and Dam, Newburgh Lock and Dam, and Patoka Dam. J.T. Myers and Newburgh are concrete rock-founded structures and Patoka is a dam with a clay core and random rock-fill shells. The epicentral distances to J.T. Myers Lock and Dam, Newburgh Lock and Dam, and Patoka Dam are about 30, 35, and 110 km, respectively. All instruments were installed on structures. Compared to the current attenuation relationships, the data set from the June 18, 2002, earthquake has higher PGA values recorded on the locks and dams probably due to structural effects. The free-field PGA values are also high.
Aagaard, Brad T.; Hall, John F.; Heaton, Thomas H.
2004-01-01
We study how the fault dip and slip rake angles affect near-source ground velocities and displacements as faulting transitions from strike-slip motion on a vertical fault to thrust motion on a shallow-dipping fault. Ground motions are computed for five fault geometries with different combinations of fault dip and rake angles and common values for the fault area and the average slip. The nature of the shear-wave directivity is the key factor in determining the size and distribution of the peak...
Energy Technology Data Exchange (ETDEWEB)
Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J
2008-02-11
The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.
Raschke, Mathias
2015-01-01
In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke (2013a), with the sample of random difference xi=ln(Y1)-ln(Y2), in which Y1 and Y2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure the distribution of difference xi was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference xi of the sample o...
Energy Technology Data Exchange (ETDEWEB)
Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-06-15
We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.
Jong Wan Hu
2014-01-01
Base isolation has been used as one of the most wildly accepted seismic protection systems that should substantially dissociate a superstructure from its substructure resting on a shaking ground, thereby sustainably preserving entire structures against earthquake forces as well as inside non-structural integrities. Base isolation devices can operate very effectively against near-fault (NF) ground motions with large velocity pulses and permanent ground displacements. In this study, comparative...
Cramer, C. H.; Bhattacharya, S. N.; Kumar, A.
2002-12-01
It has been suggested that the Mw7.7 2001 Bhuj, India earthquake occurred in a stable continental region with ground-motion attenuation properties similar to eastern North America (ENA). No strong motion recordings for M7 or greater earthquakes have been recorded in ENA, so, if the two regions share similar properties, then observations from the Bhuj earthquake provide important information for hazard assessments in ENA as well as India. This thesis can be tested using seismic data for the Bhuj mainshock. The Indian Meteorological Department recorded accelerograph and broadband seismograph data at distances of 500 to 1800 km. Accelerograph and engineering seismoscope data were recorded at distances of 40 to 1100 km by the Department of Earthquake Engineering at the Indian Institute of Technology, Roorkee. We have processed the accelerograph and broadband data for response spectral accelerations and corrected them to a common NEHRP site class using Joyner and Boore (2000) site factors. The geologic conditions at each recording site were determined using the geologic map of India and categorized as Quaternary sediments, Tertiary sediments, or hard rock. Comparisons were then made to available ENA ground-motion attenuation relations. For peak ground acceleration (PGA) and 1.0 s spectral acceleration (Sa), the geologically-corrected Bhuj data generally fall among the ENA ground-motion attenuation relations. The Bhuj mainshock ground-motion data agree with the collective predictions of the ENA relations given the random uncertainty in ground-motion measurements of a factor of two or more plus the ground-motion attenuation relation modeling uncertainty. From an engineering perspective, this comparison supports the thesis that seismic-wave attenuation in stable continental India is similar to eastern North America.
Kubo, Tomohiro; Hisada, Yoshiaki; Horiuchi, Shigeki; Yamamoto, Shunroku
We propose the method of the elevator operation control for the long-period ground motion using Earthquake Early Warning System (EEWS) and apply this method to the elevator operation control system of the 29-story building of Kogakuin University in the downtown Tokyo, Shinjuku, Japan. First, we estimate the velocity of surface wave that travels through the crustal calculated by the theoretical method, and we estimate the long-period ground motion by Green's function and calculate the lumped mass model response by the estimated long-period ground motion. Next we develop the trigger condition stopping the elevator based on above results. When EEWS is received, we reference the trigger condition and stop the elevator. Next, we apply the elevator operation control for the long-period ground motion proposed method to Kogakuin University, which is high-rise building and located at the central of Tokyo. We compare the estimation the long-period ground motion by the wavenumber integration with the observation data. As a result, the estimated waves between 2 sec and 4 sec almost correspond the observed waves, but the estimated waves between 4 sec and 6 sec underestimate the observed waves because of the 3D effects of the Kanto sedimentary basin. Thus, we estimate the long-period ground motion to the estimation on the side of prudence given the assumption of the source model, because EEWS provides only the location and magnitude of an earthquake. We confirm that the proposed method is able to control the elevator for the long-period ground motion.
International Nuclear Information System (INIS)
The estimation of strong ground motions at downtown Adapazari and Goelcuek, where heavy damage was observed, is inevitable to understand the relation between ground motion severity and damage to buildings. For this purpose, we adopted an empirical Green's function method for ground motion synthesis using observed aftershock recordings. First, we estimated the bedrock motion and then convolved the effects of surface sediments taking into account of nonlinear behaviors of soil by an equivalent linear method. We selected five large asperities from the heterogeneous source model determined by Sekiguchi and Iwata (2002) for synthesizing the ground motion from the main shock. The validity of this simulation was confirmed by the comparison of the strong motion records and the synthetics at several stations near the fault. Major damage to buildings and loss of life during the Kocaeli (Izmit), Turkey earthquake, were concentrated near the surface earthquake fault, therefore, the primary reasons for the damage are attributed to near earthquake source effects, leaving aside the quality of buildings. The strong motion records from the Kocaeli earthquake near the fault were successfully recovered by the Earthquake Research Department (ERD, 1999), and the Kandilli Observatory (KOERI, 1999). However, because of a sparse network in Turkey (Celebi et al., 2000), no strong motion record was obtained at severely damaged areas, except Duzce (DZC). The strong contrast of damage ratios between the strong motion observation site, Sakarya (SKR) and downtown Adapazari, and the wide variation of the damage ratios even in the relatively small area of Golcuk (Architectural Institute of Japan Reconnaissance Team et al., 2000) are also similar issues. It is our concerns to estimate the severity of the ground motions at damaged areas. The shallow and intermediate-depth S-wave velocity structures in Adapazari and Golcuk areas were determined by the array observation of micro-tremors (Kudo et al
Surface level ground motion estimation for 1869 Cachar earthquake (Mw 7.5) at Imphal city
International Nuclear Information System (INIS)
In this paper, the seismic susceptibility of Imphal city with respect to ten synthetically generated samples of the historic 1869 Cachar (Mw 7.5) earthquake that occurred in the Kopili fault is presented based on the finite-fault seismological model in conjunction with nonlinear site response analyses. For all the synthetic sample earthquake events, the mean and standard deviation of surface level spectral ground acceleration at peak ground acceleration (PGA) and natural periods of 0.3 and 1 s have been reported in the form of contour maps. These contour maps can serve as guidelines for engineers and planners to identify vulnerable areas for possible seismic disaster mitigation of Imphal city
Estimation of seismic ground motions using deterministic approach for major cities of Gujarat
Shukla, J.; Choudhury, D.
2012-01-01
A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh) of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA) and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental...
Kirchbach, M
2016-01-01
We seek for a pair of a well and barrier potentials such that the real parts of the complex energies of the resonances transmitted through the barrier equal the energies of the states bound within the well and find the hyperbolic Poeschl-Teller barrier, ~sech^2\\rho, and the trigonometric Scarf well, ~ \\sec^2\\chi. The potentials are shown to be conformally symmetric by the aid of the de Sitter space time, dS4, related to flat conformal space time by a conformal map. Namely, we transform the quantum mechanical wave equations with the above potentials to free quantum motions on the respective open time like hyperbolic and the closed space like hyper spherical, S3, geodesics of dS4, the former by itself is related to Minkowski space time by a conformal map.We formulate a conformal symmetry respecting classification scheme for mesons seen either as resonances in scattering, or as states bound within a potential, according to trajectories in which the total spin of the meson, l-depends linearly on the first power o...
Institute of Scientific and Technical Information of China (English)
Wang Lanmin; Zhang Dongli; Wu Zhijian; Ma Wei; Li Xiaojun
2004-01-01
Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.
Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization
D'Avila, Maria Paola Santisi; Semblat, Jean-François
2013-01-01
Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in th...
Kham, Marc; Bouden-Romdhane, Nejla
2013-01-01
This paper aims at the analysis of seismic wave amplification in a deep alluvial basin in the city of Tunis in Tunisia. This sedimentary basin is 3000m wide and 350m deep. Since the seismic hazard is significant in this area, the depth of the basin and the strong impedance ratio raise the need for an accurate estimation of seismic motion amplification. Various experimental investigations were performed in previous studies to characterize site effects. The Boundary Element Method is considered herein to assess the parameter sensitivity of the amplification process and analyse the prevailing phenomena. The various frequencies of maximum amplification are correctly estimated by the BEM simulations. The maximum amplification level observed in the field is also well retrieved by the numerical simulations but, due to the sensitivity of the location of maximum amplification in space, the overall maximum amplification has to be considered. The influence of the wave-field incidence and material damping is also discuss...
Ground state and excitations of a Bose-Einstein condensate of atoms and their diatomic bound states
International Nuclear Information System (INIS)
We study theoretically a many-body system of spinless atoms and their diatomic bound states (or molecules) which form a single Bose-Einstein condensate at zero temperature. The equilibrium states of such a system and its dynamics are analyzed within the Gross-Pitaevskii approach. It is shown that the system exhibits two phases depending on binding energy value: it can be in the states with atomic-molecular condensate or molecular condensate. The basic thermodynamic characteristics of the two phases and their stability conditions are obtained. Both phases are characterized by two branches of collective excitations. The first branch is acoustic mode and the second one is gapfull
International Nuclear Information System (INIS)
A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications. (author)
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Lazarov, Boyan Stefanov
2003-01-01
frame. A suitable number of the lower floors has been considered to represent the soil both as a filter of a white noise base rock excitation and as a simplified model for soil structure interaction. In the present paper the Slepian model is applied to obtain plastic displacement distributions for a...... single story shear frame excited by stationary Gaussian ground motion defined by the output of a Clough-Penzien filter with Gaussian white noise input. This is equivalent to considering an artificial three story elasto-plastic shear frame with possible yielding solely in the third column connection, and...... three story frame with partial or full feed back from the movement of the top mass to the second and the first mass (top soil layer mass and base rock mass, respectively). Keywords: Clough-Penzien filtered white noise excitation, elasto-plastic shear frame oscillator, plastic displacement distributions...
Indian Academy of Sciences (India)
Özlem Çavdar; Alemdar Bayraktar; Süleyman Adanur; Hasan Basri Başaǧa
2010-06-01
Stochastic seismic analysis of long-span bridges with Carbon ﬁbre reinforced polymer (CFRP) cables are presented in this study through combination of the advantages of the perturbation based stochastic ﬁnite element method (SFEM) and Monte Carlo simulation (MCS) method. Jindo cable-stayed and Fatih Sultan Mehmet (Second Bosporus) suspension bridges are chosen as an example. Carbon ﬁbre reinforced polymer cable (CFRP) and steel cables are used separately, in which the cable’s cross sectional area is determined by the principle equivalent axial stiffness. Geometric nonlinear effects are considered in the analysis. Uncertainties in the material are taken into account and Kocaeli earthquake in 1999 is chosen as a ground motion. The efﬁciency and accuracy of the proposed algorithm are validated by comparing with results of MCS method. It can be stated that using of CFRP cables in long-span bridges subjected to earthquake forces is feasible.
International Nuclear Information System (INIS)
The presence of long-period pulses in near-fault records can be considered as an important factor in causing damage due to the transmission of large amounts of energy to the structures in a very short time. Under such circumstances high-energy dissipation demands usually occur, which are likely to concentrate in the weakest parts of the structure. The maximum nonlinear response or collapse often happens at the onset of directivity pulse and fling, and this time is not predicted by the natural structural vibration periods. Nonlinear response leading to collapse may in most cases occur only during one large amplitude pulse of displacement. From the study of the response of both linear and nonlinear SDOF systems, the effects of these distinctive long-period pulses have been assessed by means of: (i) synthetic parameters directly derived from the strong ground motion records, and (ii) elastic and inelastic spectra of both conventional and energy-based seismic demand parameters. SDOF systems have first been subjected to records obtained during recent earthquakes in near-fault areas in forward directivity conditions. The results indicate that long duration pulses strongly affect the inelastic response, with very high energy and displacement demands which may be several times larger than the limit values specified by the majority of codes. In addition, from the recognition of the fundamental importance of velocity and energy-based parameters in the characterization of near-fault signals, idealized pulses equivalent to near-fault signals have been defined on account of such parameters. Equivalent pulses are capable of representing the salient observed features of the response to near-fault recorded ground motions. (author)
Xu, H.; Rodgers, A.; Lomov, I.; Petersson, A.; Sjogreen, B.; Vorobiev, O.; Chipman, V.
2011-12-01
We report research being performed to improve underground nuclear explosion (UNE) monitoring by developing capabilities for hydrodynamic modeling of ground motions. This effort involves work along two thrusts: 1) we are coupling hydrodynamic (non-linear shock) and seismic (linear anelastic) wave propagation codes; and 2) we are investigating the effect of source emplacement conditions on ground motions in the near field due to nonlinearity and comparing with the empirical models. For both thrusts we are modeling explosion motions using GEODYN, a fully three-dimensional Eulerian hydrodynamic code developed at LLNL. This code incorporates many important features for modeling shock waves in geologic materials, including non-linear response (e.g. porosity, tensile failure, yielding), topography, gravity, 3D material heterogeneities and adaptive mesh refinement. The calculation accuracy is well validated with the analytical solutions to the Lamb's problem and to the finite dilatational volume source at depth in a linear elastic medium. In order to propagate full waveform solutions from hydrodynamic simulations to distances where seismic measurements are made we are coupling GEODYN to WPP (LLNL's anelastic finite difference code for seismic wave simulation). Complex motions computed by GEODYN for explosions are recorded on a dense grid spanning the ranges where motions become linear (elastic). These wavefield records are processed and embedded into the WPP domain where they are introduced as a boundary driving source and continue to propagate as elastic waves at much lower numerical cost than with nonlinear GEODYN. The coupling scheme is validated by comparing the analytical, direct GEODYN solutions and WPP solutions to the finite dilatational volume source at depth in a linear elastic medium, and also by comparing the direct GEODYN solutions and WPP solutions to a complex 1kt chemical explosion in nonlinear granite at stations beyond the elastic radius. The excellent
Near-field ground motion of the 2002 Denali fault, Alaska, earthquake recorded at pump station 10
Ellsworth, W.L.; Celebi, M.; Evans, J.R.; Jensen, E.G.; Kayen, R.; Metz, M.C.; Nyman, D.J.; Roddick, J.W.; Spudich, P.; Stephens, C.D.
2004-01-01
A free-field recording of the Denali fault earthquake was obtained by the Alyeska Pipeline Service Company 3 km from the surface rupture of the Denali fault. The instrument, part of the monitoring and control system for the trans-Alaska pipeline, was located at Pump Station 10, approximately 85 km east of the epicenter. After correction for the measured instrument response, we recover a seismogram that includes a permanent displacement of 3.0 m. The recorded ground motion has relatively low peak acceleration (0.36 g) and very high peak velocity (180 cm/s). Nonlinear soil response may have reduced the peak acceleration to this 0.36 g value. Accelerations in excess of 0.1 g lasted for 10 s, with the most intense motion occurring during a 1.5-s interval when the rupture passed the site. The low acceleration and high velocity observed near the fault in this earthquake agree with observations from other recent large-magnitude earthquakes. ?? 2004, Earthquake Engineering Research Institute.
Evaluation of dynamic properties, local site effects and design ground motions: recent advances
International Nuclear Information System (INIS)
Evidences from past earthquakes clearly shows that the damages due to an earthquake and its severity at a site are controlled mainly by three factors i.e., earthquake source and path characteristics, local geological and geotechnical characteristics, structural design and quality of the construction. Seismic ground response at a site is strongly influenced by local geological and soil conditions. The exact information of the geological, geomorphological and geotechnical data along with seismotectonic details are necessary to evaluate the ground response. The geometry of the subsoil structure, the soil type, the lateral discontinuities and the surface topography will also influence the site response at a particular location. In the case of a nuclear power plant, the details obtained from the site investigation will have multiple objectives: (i) for the effective design of the foundation (ii) assessment of site amplification (iii) for liquefaction potential evaluation. Since the seismic effects on the structure depend fully on the site conditions and assessment of site amplification. The first input required in evaluation of geotechnical aspect of seismic hazard is the rock level peak horizontal acceleration (PHA) values. The surface level acceleration values need to be calculated based on the site conditions and site amplification values. This paper discusses various methods for evaluating the site amplification values, dynamic soil properties, different field and laboratory tests required and various site classification schemes. In addition to these aspects, the evaluation of liquefaction potential of the site is also presented. The paper highlights on the latest testing methods to evaluate dynamic properties (shear modulus and damping ratio) of soils and techniques for estimating local site effects. (author)
Panzera, Francesco; D'Amico, Sebastiano; Lombardo, Giuseppe; Longo, Emanuela
2016-07-01
The Siracusa area, located in the southeastern coast of Sicily (Italy), is mainly characterized by the outcropping of a limestone formation. This lithotype, which is overlain by soft sediments such as sandy clays and detritus, can be considered as the local bedrock. Records of ambient noise, processed through spectral ratio techniques, were used to assess the dynamic properties of a sample survey of both reinforced concrete and masonry buildings. The results show that experimental periods of existing buildings are always lower than those proposed by the European seismic code. This disagreement could be related to the role played by stiff masonry infills, as well as the influence of adjacent buildings, especially in downtown Siracusa. Numerical modeling was also used to study the effect of local geology on the seismic site response of the Siracusa area. Seismic urban scenarios were simulated considering a moderate magnitude earthquake (December 13th, 1990) to assess the shaking level of the different outcropping formations. Spectral acceleration at different periods, peak ground acceleration, and velocity were obtained through a stochastic approach adopting an extended source model code. Seismic ground motion scenario highlighted that amplification mainly occurs in the sedimentary deposits that are widespread to the south of the study area as well as on some spot areas where coarse detritus and sandy clay outcrop. On the other hand, the level of shaking appears moderate in all zones with outcropping limestone and volcanics.
Panzera, Francesco; D'Amico, Sebastiano; Lombardo, Giuseppe; Longo, Emanuela
2016-04-01
The Siracusa area, located in the southeastern coast of Sicily (Italy), is mainly characterized by the outcropping of a limestone formation. This lithotype, which is overlain by soft sediments such as sandy clays and detritus, can be considered as the local bedrock. Records of ambient noise, processed through spectral ratio techniques, were used to assess the dynamic properties of a sample survey of both reinforced concrete and masonry buildings. The results show that experimental periods of existing buildings are always lower than those proposed by the European seismic code. This disagreement could be related to the role played by stiff masonry infills, as well as the influence of adjacent buildings, especially in downtown Siracusa. Numerical modeling was also used to study the effect of local geology on the seismic site response of the Siracusa area. Seismic urban scenarios were simulated considering a moderate magnitude earthquake (December 13th, 1990) to assess the shaking level of the different outcropping formations. Spectral acceleration at different periods, peak ground acceleration, and velocity were obtained through a stochastic approach adopting an extended source model code. Seismic ground motion scenario highlighted that amplification mainly occurs in the sedimentary deposits that are widespread to the south of the study area as well as on some spot areas where coarse detritus and sandy clay outcrop. On the other hand, the level of shaking appears moderate in all zones with outcropping limestone and volcanics.
Harris, R.
2015-12-01
I summarize the progress by the Southern California Earthquake Center (SCEC) and U.S. Geological Survey (USGS) Dynamic Rupture Code Comparison Group, that examines if the results produced by multiple researchers' earthquake simulation codes agree with each other when computing benchmark scenarios of dynamically propagating earthquake ruptures. These types of computer simulations have no analytical solutions with which to compare, so we use qualitative and quantitative inter-code comparisons to check if they are operating satisfactorily. To date we have tested the codes against benchmark exercises that incorporate a range of features, including single and multiple planar faults, single rough faults, slip-weakening, rate-state, and thermal pressurization friction, elastic and visco-plastic off-fault behavior, complete stress drops that lead to extreme ground motion, heterogeneous initial stresses, and heterogeneous material (rock) structure. Our goal is reproducibility, and we focus on the types of earthquake-simulation assumptions that have been or will be used in basic studies of earthquake physics, or in direct applications to specific earthquake hazard problems. Our group's goals are to make sure that when our earthquake-simulation codes simulate these types of earthquake scenarios along with the resulting simulated strong ground shaking, that the codes are operating as expected. For more introductory information about our group and our work, please see our group's overview papers, Harris et al., Seismological Research Letters, 2009, and Harris et al., Seismological Research Letters, 2011, along with our website, scecdata.usc.edu/cvws.
Directory of Open Access Journals (Sweden)
Zhirui Wang
2016-03-01
Full Text Available To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR, a road-aided ground moving target indication (GMTI algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target’s position on the road as well as its radial velocity can be determined according to the target’s offset distance and traffic rules. Furthermore, the target’s azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.
Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian
2016-01-01
To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm. PMID:26999140
Energy Technology Data Exchange (ETDEWEB)
Rodgers, A; Tkalcic, H; McCallen, D
2005-03-18
Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recorded at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV
Chen Ling-kun; Jiang Li-zhong; Guo Wei; Liu Wen-shuo; Zeng Zhi-ping; Chen Ge-wei
2014-01-01
Based on the Next Generation Attenuation (NGA) project ground motion library, the finite element model of the high-speed railway vehicle-bridge system is established. The model was specifically developed for such system that is subjected to near-fault ground motions. In addition, it accounted for the influence of the rail irregularities. The vehicle-track-bridge (VTB) element is presented to simulate the interaction between train and bridge, in which a train can be modeled as a series of spru...
Hailemikael, S.; Lenti, L.; Martino, S.; Paciello, A.; Rossi, D.; Scarascia Mugnozza, G.
2016-04-01
Following the Mw 6.3 L'Aquila Earthquake of 6th April, 2009, the Colle di Roio village, central Italy, suffered severe building damages. The village is located on top of an elongated carbonate ridge characterized by a complex subsurface structure, a condition prone to seismic amplification due to topographic and stratigraphic effects. We address the role of the subsurface structure and topography in the ground-motion amplification observed at the ridge top. To characterize the subsurface structure of the ridge we performed geological investigations and ambient vibration measurements in single-station as well as 2D-array configuration. Geological investigations pointed out that the ridge top is characterized by the presence of fractured rock material as a consequence of its anticlinal fold structure. Horizontal-to-vertical spectral ratio processing of ambient vibration records (HVSR) showed a broad peak in the HVSR functions in the frequency range 4-6 Hz and 2D-array data demonstrated that locally the subsurface structure at the ridge top cannot be considered homogeneous. In summer 2009, we further installed one accelerometric station on the ridge top to experimentally evaluate the site amplification. By means of Horizontal-to-Vertical spectral ratio analysis of a sample of 18 weak-motion records (H/V), we found that ground-motion amplification occurs in a narrow frequency range centred around 4 Hz with mean ratio amplitude of 6. We also analysed the dependence of seismic amplification on the azimuth by calculating H/V ratios for horizontal components rotated into a range of azimuths. This analysis showed that the higher level of horizontal amplification occurs in the direction perpendicular to the ridge trending direction. With the aim of evaluating the contribution of the topography and the local subsurface structure on the observed seismic amplification, we performed 2D finite difference modelling of wave propagation through the ridge, adopting both homogeneous
Hailemikael, S.; Lenti, L.; Martino, S.; Paciello, A.; Rossi, D.; Mugnozza, G. Scarascia
2016-07-01
Following the Mw 6.3 L'Aquila Earthquake of 2009 April 6, the Colle di Roio village, central Italy, suffered severe building damages. The village is located on top of an elongated carbonate ridge characterized by a complex subsurface structure, a condition prone to seismic amplification due to topographic and stratigraphic effects. We address the role of the subsurface structure and topography in the ground-motion amplification observed at the ridge top. To characterize the subsurface structure of the ridge we performed geological investigations and ambient vibration measurements in single-station as well as 2-D-array configuration. Geological investigations pointed out that the ridge top is characterized by the presence of fractured rock material as a consequence of its anticlinal fold structure. Horizontal-to-vertical spectral ratio (HVSR) processing of ambient vibration records showed a broad peak in the HVSR functions in the frequency range 4-6 Hz and 2-D-array data demonstrated that locally the subsurface structure at the ridge top cannot be considered homogeneous. In summer 2009, we further installed one accelerometric station on the ridge top to experimentally evaluate the site amplification. By means of HVSR analysis of a sample of 18 weak-motion records (H/V), we found that ground-motion amplification occurs in a narrow frequency range centred around 4 Hz with mean ratio amplitude of 6. We also analysed the dependence of seismic amplification on the azimuth by calculating H/V ratios for horizontal components rotated into a range of azimuths. This analysis showed that the higher level of horizontal amplification occurs in the direction perpendicular to the ridge trending direction. With the aim of evaluating the contribution of the topography and the local subsurface structure on the observed seismic amplification, we performed 2-D finite-difference modelling of wave propagation through the ridge, adopting both homogeneous and heterogeneous models. We were
Lechenault, F.; Dauchot, O.; Biroli, G.; Bouchaud, J.P.
2007-01-01
We track the motion of a horizontally vibrated amorphous assembly of bidisperse hard disks, for densities ranging across the jamming transition. We derive on very general grounds a bound on the dynamical susceptibility in terms of the response of the dynamics to a change in density. This generalizes a similar bound recently derived for equilibrium liquids. We find that in our experimental system the bound is tight and reproduces the non-monotonic behavior of the dynamical susceptibility both ...
Design input based on ground motion analysis for the taiwan high speed rail project
International Nuclear Information System (INIS)
The design of structures in seismic regions requires careful consideration of near fault effects. This contribution highlights the facts and figures used to make decisions about the design approach to be used for railway bridges crossing and active fault. The Tuntzuchiao Fault has been classified as a minor active, secondary, right-oblige, strike slip fault. The location of the fault at bedrock is not known sufficiently and its orientation is close to 45 deg. to the longitudinal axis of the bridge. The expression of the fault at the surface is likely to be well defined due to existing site conditions. The fault movement should be expressed over a relatively narrow width. The fault is expected to be able to generate earthquakes with a magnitude of M = 6,5. The expected horizontal fault displacement is a right lateral slip of 150 cm. This can be resolved into 106 cm along the bridge and 106 cm transverse to the bridge axis. The expected vertical fault displacement is a vertical dip of 50 cm. The expected performance objectives are as follows: - Safeguard against major failures and loss of life under type 1 (severe) earthquakes - Ensure adequate service performance under type 2 (moderate) earthquakes When subjected to a type 1 earthquake it is acceptable for the structure to response in the inelastic range, provided the activity demand does not exceed the available ductility. All damage is to be repairable. When subject to a type 2 earthquake no yielding of reinforcement or structural steel is permitted and the displacement of the deck shall be such that trains can break safely to a stop from their full design speed of 350 km/h. The earthquake characteristics are as follows: Type 1 earthquake with a 950 year return period, vertical shaking 2/3 of the horizontal shaking. Type 2 earthquake where the ground acceleration is 1/3 of the type 1 earthquake. The ground type are layers of conglomerates over 30 m thick on mud-stone. The site is classified as an ordinary site
Werner, C. L.; Wiesmann, A.; Kos, A.; Caduff, R.; Strozzi, T.; Wegmüller, U.
2011-12-01
Ground-based radar interferometry is an emerging geodetic imaging technology that has been applied to measurement of landslides, rockfalls, glaciers, and mines. Geo-technical observations have been performed of infrastructure including bridges and dams. Compared with spaceborne radar systems, ground-based observations have advantages with respect to the selection of the imaging geometry to optimize visibility and sensitivity to deformation, shorter repeat intervals for monitoring rapidly moving features, and higher sensitivity to motion along the line-of-sight (LOS) due to the shorter wavelength and potential for averaging of multiple observations. The GPRI instrument developed by Gamma Remote Sensing is an FM-CW radar operating at 17.2 GHz (λ: 17.4 mm) with a range resolution of 90 cm along the line of sight and an operational range from 20 meters to 16 km. The GPRI is a real-aperture instrument using a 2.06 m long waveguide antenna to generate a fan-beam that is 0.4 x 35 degrees. During data acquisition, the radar performs a rotary scan of the scene at a programmable rate between 0.5 and 10 degrees/sec. Azimuth resolution is linearly proportional to slant range with a value of 7m at 1 km distance. Differential motion of 8.71 mm results in 2PI radians of measurable phase between observations. The GPRI incorporates two receivers enabling simultaneous interferometric observation with a vertical baseline variable between 25 and 60 cm. The single transmitting antenna and 2 receiving antennas are mounted parallel to one another on a rigid tower attached to a rotary positioner. An internal GPS receiver provides a time and frequency reference permitting simultaneous operation of multiple GPRI systems. The GPRI operates in four possible data acquisition modes permitting a wide range of applications. The first mode is the simultaneous interferometric mode using the upper and lower receiving antennas. The interferometric phase can be used to derive an elevation model
International Nuclear Information System (INIS)
To help assess the impact of the current U.S. Geological Survey position on the seismic safety of nuclear power plants in the Eastern United States (EUS), several techniques for estimating near-source strong ground motion for a Charleston size earthquake were evaluated. The techniques for estimating the near-source strong ground motion for a 6.6 mb (7.5 MS) in the Eastern United States which were assessed are methods based on site specific analyses, semi-theoretical scaling techniques, and intensity-based estimates. The first involves the statistical analysis of ground motion records from earthquakes and recording stations having the same general characteristics (earthquakes with magnitudes of 7.5 MS or larger, epicentral distances of 25 km or less, and sites of either soil or rock). Some recommendations for source and characterization scaling of the bias resulting primarily from an inadequate sample of near-source recordings from earthquakes of large magnitude are discussed. The second technique evaluated requires that semi-theoretical estimates of peak ground motion parameters for a 6.6 mb (7.5 MS) earthquake be obtained from scaling relations. Each relation uses a theoretical expression between peak acceleration magnitude and distance together with available strong motion data (majority coming from California) to develop a scaling relation appropriate for the Eastern United States. None of the existing ground motion models for the EUS include the potential effects of source or site characteristics. Adjustments to account for fault mechanisms, site topography, site geology, and the size and embedment of buildings are discussed. The final approach used relations between strong ground motion parameters and Modified Mercalli Intensity in conjunction with two methods to estimate peak parameters for a 6.6 ms (7.5 MS) earthquake. As with other techniques, adjustment of peak acceleration estimates are discussed. Each method differently approaches the problem of
Zhao, Fengfan; Meng, Lingyuan
2016-04-01
The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).
Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki
2016-04-01
Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large
Kirchbach, M.; Compean, C. B.
2016-07-01
The real parts of the complex squared energies defined by the resonance poles of the transfer matrix of the Pöschl-Teller barrier, are shown to equal the squared energies of the levels bound within the trigonometric Scarf well potential. By transforming these potentials into parts of the Laplacians describing free quantum motions on the mutually orthogonal open-time-like hyperbolic-, and closed-space-like spherical geodesics on the conformally invariant de Sitter space-time, dS4, the conformal symmetries of these interactions are revealed. On dS4 the potentials under consideration naturally relate to interactions within colorless two-body systems and to cusped Wilson loops. In effect, with the aid of the dS4 space-time as unifying geometry, a conformal symmetry based bijective correspondence (duality) between bound and resonant meson spectra is established at the quantum mechanics level and related to confinement understood as color charge neutrality. The correspondence allows to link the interpretation of mesons as resonance poles of a scattering matrix with their complementary description as states bound by an instantaneous quark interaction and to introduce a conformal symmetry based classification scheme of mesons. As examples representative of such a duality we organize in good agreement with data 71 of the reported light flavor mesons with masses below ˜ 2350 MeV into four conformal families of particles placed on linear f0, π , η , and a0 resonance trajectories, plotted on the ℓ/ M plane. Upon extending the sec2 χ by a properly constructed conformal color dipole potential, shaped after a tangent function, we predict the masses of 12 "missing" mesons. We furthermore notice that the f0 and π trajectories can be viewed as chiral partners, same as the η and a0 trajectories, an indication that chiral symmetry for mesons is likely to be realized in terms of parity doubled conformal multiplets rather than, as usually assumed, only in terms of parity
Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.
2013-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband
Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit
2015-11-01
In the first part of this work, we consider a 3D computational study of the flow of deformable red blood cells in stenosed microvessels. We observe that the apparent viscosity of blood increases by several folds, and the rate of increase with increasing vessel diameter is also higher than that in non-stenosed vessels, implying an enhancement of the well-known Fahraeus-Lindqvist effect. The flow of the red blood cells causes time-dependent fluctuations in the blood flow rate. The RMS of the flow rate oscillations in the stenosed vessel is observed to be significantly higher than that in the non-stenosed vessel. Furthermore, several folds increase in the Eulerian velocity fluctuations and a transient flow reversal upstream the stenosed region are also observed, which would not occur in absence of the cells. In the second part, we consider the adhesive rolling motion of wall-bounded microparticles in presence of flowing red blood cells in microvessels. We observe two contradictory role of the red blood cells: On one hand, the cells facilitate the establishment of the particle-wall contact, and, thereby, initiation of adhesion. On the other hand, they augment the rolling velocity of the particles. Implications of these results on the optimal design of drug carriers are discussed.
International Nuclear Information System (INIS)
This thesis intends to characterize ground motion during earthquake. This work is based on two Japanese networks. It deals with databases of shallow events, depth less than 25 km, with magnitude between 4.0 and 7.3. The analysis of K-net allows to compute a spectral ground motion prediction equation and to review the shape of the Eurocode 8 design spectra. We show the larger amplification at short period for Japanese data and bring in light the soil amplification that takes place at large period. In addition, we develop a new empirical model for simulating synthetic stochastic nonstationary acceleration time histories. By specifying magnitude, distance and site effect, this model allows to produce many time histories, that a seismic event is liable to produce at the place of interest. Furthermore, the study of near-field borehole records of the Kik-net allows to explore the validity domain of predictive equations and to explain what occurs by extrapolating ground motion predictions. Finally, we show that nonlinearity reduces the dispersion of ground motion at the surface. (author)
Ramírez-Gaytán, Alejandro; Jaimes, Miguel A.; Bandy, William L.; Huerfano, Victor M.; Salido-Ruiz, Ricardo A.
2015-10-01
The focal mechanism of the moderate earthquake of 13 August 2006 M w = 5.3, which occurred in the border coastal area between Michoacán and Colima, México, is unusual. As shown by the Global Centroid Moment Tensor (CMT) project and the Servicio Sismológico Nacional de Mexico (SSN), the thrust mechanism is striking almost perpendicularly to the majority of earthquakes occurring along the subduction zone of the Mexican Pacific continental margin which commonly strike nearly parallel to the trench. The purpose of this study is to analyze the observed ground motions of this particular event relative to those of the common events. First, we apply the H/V technique to verify that the stations involved in this study are nearly free of site effects. Then, we compare the observed ground motions with (i) three empirical ground motion prediction equations (GMPEs) appropriate for the region, (ii) ground motions of four real earthquakes with the common mechanism, and (iii) the Fourier spectrum of a selected common event.
Directory of Open Access Journals (Sweden)
V. Di Fiore
2002-06-01
Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response
Chaljub, E. O.; Bard, P.; Tsuno, S.; Kristek, J.; Moczo, P.; Franek, P.; Hollender, F.; Manakou, M.; Raptakis, D.; Pitilakis, K.
2009-12-01
During the last decades, an important effort has been dedicated to develop accurate and computationally efficient numerical methods to predict earthquake ground motion in heterogeneous 3D media. The progress in methods and increasing capability of computers have made it technically feasible to calculate realistic seismograms for frequencies of interest in seismic design applications. In order to foster the use of numerical simulation in practical prediction, it is important to (1) evaluate the accuracy of current numerical methods when applied to realistic 3D applications where no reference solution exists (verification) and (2) quantify the agreement between recorded and numerically simulated earthquake ground motion (validation). Here we report the results of the Euroseistest verification and validation project - an ongoing international collaborative work organized jointly by the Aristotle University of Thessaloniki, Greece, the Cashima research project (supported by the French nuclear agency, CEA, and the Laue-Langevin institute, ILL, Grenoble), and the Joseph Fourier University, Grenoble, France. The project involves more than 10 international teams from Europe, Japan and USA. The teams employ the Finite Difference Method (FDM), the Finite Element Method (FEM), the Global Pseudospectral Method (GPSM), the Spectral Element Method (SEM) and the Discrete Element Method (DEM). The project makes use of a new detailed 3D model of the Mygdonian basin (about 5 km wide, 15 km long, sediments reach about 400 m depth, surface S-wave velocity is 200 m/s). The prime target is to simulate 8 local earthquakes with magnitude from 3 to 5. In the verification, numerical predictions for frequencies up to 4 Hz for a series of models with increasing structural and rheological complexity are analyzed and compared using quantitative time-frequency goodness-of-fit criteria. Predictions obtained by one FDM team and the SEM team are close and different from other predictions
Hoshiba, M.
2013-05-01
In this presentation, I propose a new approach for real-time prediction of seismic ground motion which is applicable to Earthquake Early Waning (EEW), in which hypocentral location and magnitude are not required. . Many methods of EEW are based on a network method in which hypocenter and magnitude (source parameters) are quickly determined, and then the ground motions are predicted, and warnings are issued depending on the strength of the predicted ground motion. In this method, it is necessary to determine the hypocenter and magnitude at first, and error of the source parameters leads directly to the error of the prediction. It is not easy to take the effects of rupture directivity and source extent into account, and it is impossible to fully reproduce the current wavefield from the interpreted source parameters. Time evolutional prediction is a method in which future wavefield is iteratively predicted from the wavefield at the certain time, that is u(x, t+Δt)=P(u(x, t)), where u is the wave motion at location x at lapse time t, and P is the prediction operator. Future wave motion, u(x, t+Δt), is predicted from the distribution of the current wave motion u(x, t) using P. For P, finite difference technique or boundary integral equation method, such as Kirchhoff integral, is used. Kirchhoff integral is qualitatively approximated by Huygens principle. The real time monitoring of wavefield are important for this method, but it is possible to predict ground motion without a hypocentral location and magnitude. In the time evolutional prediction, determination of detailed distribution of current wavefield is an important key, so that dense seismic observation network is required. Data assimilation is a technique to produce artificially denser network, which is widely used for numerical weather forecast and oceanography. Distribution of current wave motion is estimated from not only the current real observation of u(xi, t) where xi is the location of the i-th site, but
Directory of Open Access Journals (Sweden)
Junwon Seo
2016-01-01
Full Text Available This paper mainly treats the seismic behavior of lead-rubber bearing (LRB isolation systems with superealstic shape memory alloy (SMA bending bars functioning as damper and self-centering devices. The conventional LRB isolators that are usually installed at the column bases supply extra flexibility to the centrically braced frame (CBF building with a view to elongate its vibration period, and thus make a contribution to mitigating seismic acceleration transferred from ground to structure. However, these base isolation systems are somehow susceptible to shear failure due to the lack of lateral resistance. In the construction site, they have been used to be integrated with displacement control dampers additionally withstanding lateral seismic forces. For this motivation, LRB isolation systems equipped with superelastic SMA bending bars, which possess not only excellent energy dissipation but also outstanding recentering capability, are proposed in this study. These reinforced and recentering LRB base isolators are modeled as nonlinear component springs, and then assigned into the bases of 2D frame models used for numerical simulation. Their seismic performance and capacity in the base-isolated frame building can be evaluated through nonlinear dynamic analyses conducted with historic ground motion data. After comparative study with analyses results, it is clearly shown that 2D frame models with proposed LRB isolators generally have smaller maximum displacements than those with conventional LRB isolators. Furthermore, the LRB isolation systems with superelastic SMA bending bars effectively reduce residual displacement as compared to those with steel bending bars because they provide more flexibility and recentering force to the entire building structure.
Ground-based structure from motion - multi view stereo (SFM-MVS) for upland soil erosion assessment.
McShane, Gareth; James, Mike; Quniton, John; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Morgan, David; Evans, Martin; Anderson, Karen; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Timothy; Benaud, Pia; Brazier, Richard
2016-04-01
In upland environments, quantifying soil loss through erosion processes at a high resolution can be time consuming, costly and logistically difficult. In this pilot study 'A cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we evaluate the use of annually repeated ground-based photography surveys, processed using structure-from-motion and multi-view stereo (SfM-MVS) 3-D reconstruction software (Agisoft Photoscan). The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, in order to quantify dynamic processes, such as erosion and mass movement. The evaluation of the SfM-MVS technique is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. We present results from 5 upland sites across the UK, acquired over a 2-year period. Erosion features of varying width (3 m to 35 m) and length (20 m to 60 m), representing a range of spatial scales (from 100 m2 to 1000 m2) were surveyed, in upland habitats including bogs, peatland, upland grassland and moorland. For each feature, around 150 to 600 ground-based photographs were taken at oblique angles over a 10 to 20 minute period, using an uncalibrated Canon 600D SLR camera with a 28 mm lens (focal length set to infinity). Camera settings varied based upon light conditions (exposure 100-400 ISO, aperture F4.5 to F8, shutter speed 1/100 to 1/250 second). For inter-survey comparisons, models were geo-referenced using 20 to 30 ground control points (numbered black markers with a white target) placed around and within the feature, with their co-ordinates measured by survey-grade differential GNSS (Trimble R4). Volumetric estimates of soil loss were quantified using digital surface models (DSMs) derived from the repeat survey data and subtracted from a
Yagoda-Biran, G.; Hatzor, Y. H.
2013-12-01
Evidence for seismically induced damage are preserved in historic masonry structures below the Old City of Jerusalem at a site known locally as the 'Western Wall Tunnels' complex, possibly one of the most important tourist attractions in the world. In the tunnels, structures dated to 500 BC and up until modern times have been uncovered by recent archeological excavation. One of the interesting findings is a 100 m long bridge, composed of two rows of barrel vaults, believed to have been constructed during the 3rd century AD to allow easy access to the Temple Mount. In one of the vaults a single masonry block is displaced 7 cm downward with respect to its neighbors (see figure below). Since the damage seems seismically driven, back analysis of the damage with the numerical Discontinuous Deformation Analysis (DDA) method was performed, in order to constrain the peak ground acceleration (PGA) that had caused the damage. First the numerical method used for back analysis was verified with an analytical solution for the case of a rocking monolithic column, then validated with experimental results for site response analysis. The verification and validation prove the DDA is capable of handling dynamic and wave propagation problems. Next, the back analysis was performed. Results of the dynamic numerical simulations suggest that the damage observed at the vault was induced by seismic vibrations that must have taken place before the bridge was buried underground, namely when it was still in service. We find that the PGA required for causing the observed damage was high - between 1.5 and 2 g. The PGA calculated for Jerusalem on the basis of established attenuation relationships for historic earthquakes that struck the region during the relevant time period is about one order of magnitude lower: 0.14 and 0.48 g, for the events that took place at 362 and 746 AD, respectively. This discrepancy is explained by local site effects that must have amplified bedrock ground motions by a
Directory of Open Access Journals (Sweden)
Francisco L. Silva-González
2014-01-01
Full Text Available A non-Gaussian stochastic equivalent linearization (NSEL method for estimating the non-Gaussian response of inelastic non-linear structural systems subjected to seismic ground motions represented as nonstationary random processes is presented. Based on a model that represents the time evolution of the joint probability density function (PDF of the structural response, mathematical expressions of equivalent linearization coefficients are derived. The displacement and velocity are assumed jointly Gaussian and the marginal PDF of the hysteretic component of the displacement is modeled by a mixed PDF which is Gaussian when the structural behavior is linear and turns into a bimodal PDF when the structural behavior is hysteretic. The proposed NSEL method is applied to calculate the response of hysteretic single-degree-of-freedom systems with different vibration periods and different design displacement ductility values. The results corresponding to the proposed method are compared with those calculated by means of Monte Carlo simulation, as well as by a Gaussian equivalent linearization method. It is verified that the NSEL approach proposed herein leads to maximum structural response standard deviations similar to those obtained with Monte Carlo technique. In addition, a brief discussion about the extension of the method to muti-degree-of-freedom systems is presented.
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
Irikura, K.; Kagawa, T.; Miyakoshi, K.; Kurahashi, S.
2007-12-01
The Niigataken Chuetsu-Oki earthquake occurred on July 16, 2007, northwest-off Kashiwazaki in Niigata Prefecture, Japan, causing severe damages of ten people dead, about 1300 injured, about 1000 collapsed houses and major lifelines suspended. In particular, strong ground motions from the earthquake struck the Kashiwazaki-Kariwa nuclear power plant (hereafter KKNPP), triggering a fire at an electric transformer and other problems such as leakage of water containing radioactive materials into air and the sea, although the radioactivity levels of the releases are as low as those of the radiation which normal citizens would receive from the natural environment in a year. The source mechanism of this earthquake is a reverse fault, but whether it is the NE-SW strike and NW dip or the SW-NE strike and SE dip are still controversial from the aftershock distribution and geological surveys near the source. Results of the rupture processes inverted by using the GPS and SAR data, tsunami data and teleseismic data so far did not succeed in determining which fault planes moved. Strong ground motions were recorded at about 390 stations by the K-NET of NIED including the stations very close to the source area. There was the KKNPP which is probably one of buildings and facilities closest to the source area. They have their own strong motion network with 22 three-components' accelerographs locating at ground-surface, underground, buildings and basements of reactors. The PGA attenuation-distance relationships made setting the fault plane estimated from the GPS data generally follow the empirical relations in Japan, for example, Fukushima and Tanaka (1990) and Si and Midorikawa (1999), even if either fault plane, SE dip or NW dip, is assumed. However, the strong ground motions in the site of the KKNPP had very large accelerations and velocities more than those expected from the empirical relations. The surface motions there had the PGA of more than 1200 gals and even underground
Mai, Paul Martin
2010-09-20
We present a new approach for computing broadband (0-10 Hz) synthetic seismograms by combining high-frequency (HF) scattering with low-frequency (LF) deterministic seismograms, considering finite-fault earthquake rupture models embedded in 3D earth structure. Site-specific HF-scattering Green\\'s functions for a heterogeneous medium with uniformly distributed random isotropic scatterers are convolved with a source-time function that characterizes the temporal evolution of the rupture process. These scatterograms are then reconciled with the LF-deterministic waveforms using a frequency-domain optimization to match both amplitude and phase spectra around the target intersection frequency. The scattering parameters of the medium, scattering attenuation ηs, intrinsic attenuation ηi, and site-kappa, as well as frequency-dependent attenuation, determine waveform and spectral character of the HF-synthetics and thus affect the hybrid broadband seismograms. Applying our methodology to the 1994 Northridge earthquake and validating against near-field recordings at 24 sites, we find that our technique provides realistic broadband waveforms and consistently reproduces LF ground-motion intensities for two independent source descriptions. The least biased results, compared to recorded strong-motion data, are obtained after applying a frequency-dependent site-amplification factor to the broadband simulations. This innovative hybrid ground-motion simulation approach, applicable to any arbitrarily complex earthquake source model, is well suited for seismic hazard analysis and ground-motion estimation.
Hoshiba, M.
2013-12-01
In this presentation, I explain the data assimilation technique and real-time correction of frequency-dependent site amplification factor for time evolutional prediction of seismic ground motion (waveforms) which is applicable to Earthquake Early Warning (EEW). At present, many methods of EEW determine hypocenter and magnitude (source parameters) rapidly at first, and then ground motion is predicted using the hypocenter and magnitude. The warnings are issued depending on the strength of the predicted ground motion. In this method, however, it is not easy to take source extent and the effects of rupture directivity into account. Although S-wave arrival does not necessary means the start of the strong motion for large earthquakes as experienced during the 2011 Tohoku earthquake (Mw9.0), it is hard to predict the time evolution of ground motion strength. In general, wave motion is predictable when boundary condition and initial condition are given. Time evolutional prediction is a method based on this approach using the current wavefield as an initial condition, that is u(x, t+Δt)=P(u(x, t)), where u is the wave motion at location x at lapse time t, and P is the prediction operator. Future wave motion, u(x, t+Δt), is predicted using P from the distribution of the current wavefield, u(x, t). For P, finite difference technique or boundary integral equation method, such as Kirchhoff integral, is used. The time evolutional prediction enables us to predict the time evolution of ground motion strength. In the time evolutional prediction, determination of detailed distribution of current wave motion is a key, so that dense seismic observation network is required. Data assimilation is a technique to produce artificially denser network, which is widely used for numerical weather forecast and oceanography. Distribution of current wave motion is estimated from not only the current actual observation of u(x, t), but also the prediction of one step before, P(u(x, t
Directory of Open Access Journals (Sweden)
D. García Moreno
2013-08-01
Full Text Available On 8 November 1983 an earthquake of magnitude 4.6 damaged more than 16 000 buildings in the region of Liège (Belgium. The extraordinary damage produced by this earthquake, considering its moderate magnitude, is extremely well documented, giving the opportunity to compare the consequences of a recent moderate earthquake in a typical old city of Western Europe with scenarios obtained by combining strong ground motions and vulnerability modelling. The present study compares 0.3 s spectral accelerations estimated from ground motion prediction equations typically used in Western Europe with those obtained locally by applying the statistical distribution of damaged masonry buildings to two fragility curves, one derived from the HAZUS programme of FEMA (FEMA, 1999 and another developed for high-vulnerability buildings by Lang and Bachmann (2004, and to a method proposed by Faccioli et al. (1999 relating the seismic vulnerability of buildings to the damage and ground motions. The results of this comparison reveal good agreement between maxima spectral accelerations calculated from these vulnerability and fragility curves and those predicted from attenuation law equations, suggesting peak ground accelerations for the epicentral area of the 1983 earthquake of 0.13–0.20 g (g: gravitational acceleration.
Stochastic Finite-Fault Simulations Of Strong Ground Motion For The 2005 Fukuoka Earthquake (Mw6.6)
Ohshima, M.; Moustafa, S.; Takenaka, H.; Kawase, H.
2006-12-01
The Fukuoka earthquake (Mw6.6) occurred on March 20, 2005 under the sea off Fukuoka city at 10:53 a.m.(JST). The rupture propageted toward Fukuoka city from NW direction and strong ground motion with JMA seismic intensity 6 lower was observed in Fukuoka city. We apply stochastic finite-fault simulation to simulate the acceleration records of the earthquake recorded at 27 strong motion stations of K-NET and KiK-net (NIED), whose epicentral distances range from 21km to 92km. We simulate with concentrating on the frequency range between 1 to 20Hz. We use the code by Motazedian and Atkinson(2005) after a little modification. To incorporate accurate site amplification effects, we employ site amplification data extracted from other event records by Kawase and Matsuo(2004) where they got site amplification by using the spectral separation technique. The fault geometry is set based on the aftershock distribution. Simulations are done for two different source models: One is characterized by its constant stress parameter on the whole fault plane with slip weight randomly distributed, the other is characterized by an asperity where stress parameter and slip wight have higher values than the surrounding background region. We determine unknown parameters such as rupture velocity, stress parameter, and pulsing area by a grid search. Rupture velocity is kept constant on the fault plane for both models. The obtained synthetic Fourier amplitude spectra and time series show overall agreement with the observed. In particular, the fitting of the Fourier amplitude spectra are pretty well, mainly owing to Kawase and Matsuo's work, except 9 stations. In those exceptional stations where rather large discrepancy between observed and synthetic spectra is found, the observed site amplifications differ from those we used in the simulation. These facts show the importance of accurate evaluation of site amplification. We could not find out any significant difference between the time series and
Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis
2015-04-01
We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the
Takano, K.; Ito, T.; Masuda, T.; Koketsu, K.; Ramancharla, P. K.; Sangam, R.; Bodige, N.; Dasari, H. C.
2014-12-01
Understanding the vulnerability of built environment in highly seismic areas is an important component of earthquake risk mitigation. As part of Indo-Japan collaborative research project (DISANET) sponsored by JST and JICA, six sets of building vibration sensors have been installed in the Union Territory of Chandigarh, India. The Union Territory of Chandigarh, India is located at South of the Himalayan Frontal Belt (HFT) is in zone IV of the seismic zone map of India (BIS, 2007). In past few decades, this area has experienced several minor earthquakes and a few moderate earthquakes. In spite of being in high seismic zone, most of the buildings in Chandigarh are designed and constructed for gravity loads only disregarding seismic forces. Such kind of buildings may deteriorate in strength even when they are subjected to minor earthquakes. To understand the response of buildings to micro-tremors, vibration sensors were installed in the building of Department of Geology of Panjab University in July 2012. Subsequently 5 more buildings were instrumented by January 2014. For each building, in order to capture the overall vibration of building during earthquake, vibration sensors of 8 or 10 units are installed to the ground floor, top floor and middle floor of the building. These sensors are continuously monitoring the building vibration and recording all data which include the weak ground motion occurring from near to far earthquakes. Through these sensors, over 20 minor ground motions have been recorded during last two years. Even in these weak ground motions, it was possible to confirm the state of the building response caused by earthquakes. In this presentation, we will introduce some building vibration records caused by the weak ground motion of the earthquakes and discuss the important insights drawn from analysis of recorded data.
Directory of Open Access Journals (Sweden)
J. R. LI
2016-02-01
Full Text Available Playing an important role in local and national seaport activities, container wharves are susceptible to structural failure and damage during earthquake events. Therefore, factors that affect the seismic response of crane–wharf structures under different types of earthquake ground motions should be elucidated. In this paper, 3D finite element models were established to investigate the differences of natural vibration characteristics between the wharf and crane–wharf structures. The dynamic response of a typical pile-supported wharf structure and the interaction behavior of a crane and wharf structural system under seismic actions of near-field and far-field ground motions were studied by performing numerical simulation and time-history response analysis. Axial force–moment relation curves were adopted to analyze the elastic–plastic limit state of the wharf structure under different ground motions. Results showed that the consideration of the container crane increased the natural vibration period of the pile-supported wharf structure and affected the dynamic characteristics of the structure. Compared with the far-field earthquake ground motion, the nearfield earthquake exerted a more significant impact on the structural dynamic response that controlled the elastic–plastic limit state. With the presence of a crane, the moment and shear force of the pile-top decreased and the location of the extreme value moved down obviously. The findings demonstrated that considering the crane changed the failure mechanism of the wharf structure, and the eccentric effect of the crane may amplify the dynamic response as the peak ground acceleration increases. The results provide reference for the seismic design and the evaluation of the seismic response of container wharves.
Energy Technology Data Exchange (ETDEWEB)
Alguacil de la Blanca, G.; Vidal Sanchez, F.; Stich, D.; Mancilla Perez, F. L.; Lopez Comino, J. A.; Morales Soto, J.; Navarro Bernal, M.
2012-07-01
113 events of the Lorca seismic series has been relocated by using Double difference algorithm and data from both temporary and permanent seismic networks. Relocations yield shallow hypo central distribution of aftershocks with a {approx}5 km long, NE-SW trending, placed SW of the mainshock, suggesting a SW propagating rupture along the Alhama de Murcia fault. Similar oblique reverse faulting mechanism has been obtained for three largest events. Source parameters of these three earthquakes have been estimated. Horizontal ground motion was estimated at 11 city points whose local structure was known by SPAC experiments. A set of ground motion parameters (PGA, PGV, AI, CAV, SI, SA and SV) here calculated, have higher values at these points respect to the ones at LOR station. All parameter values are also above the expected values for Euro -Mediterranean earthquakes with local intensity VIII (EMS). Nevertheless, SD values are unusually short and less than the reference ones. Higher values of the response spectra of acceleration and velocity are given for periods of less than 0.7 s, with maximum spectral acceleration at 0.15 s and velocity at 0.5 s. The elastic input energy spectrum is well connected to the shake destructiveness in each place. Equivalent velocity > 60 cm/s is found in almost all sites and > 100 cm/s (for periods 0.3 to 0.6 s) in someone. Factors such as proximity, and focal mechanism and ground response characteristics explain the high ground motion parameter values obtained in Lorca sites and show the great influence of the source and site conditions on the characteristics of strong ground motion in the vicinity of the rupture. (Author) 68 refs.
Hartzell, Stephen H.; Heaton, Thomas H.
1983-01-01
A least-squares point-by-point inversion of strong ground motion and teleseismic body waves is used to infer the fault rupture history of the 1979 Imperial Valley, California, earthquake. The Imperial fault is represented by a plane embedded in a half-space where the elastic properties vary with depth. The inversion yields both the spatial and temporal variations in dislocation on the fault plane for both right-lateral strike-slip and normal dip-slip components of motion. Inversions are run f...
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L.
1992-01-01
This report outlines a method of using empirical Green's functions in an earthquake simulation program EMPSYN that provides realistic seismograms from potential earthquakes. The theory for using empirical Green's functions is developed, implementation of the theory in EMPSYN is outlined, and an example is presented where EMPSYN is used to synthesize observed records from the 1971 San Fernando earthquake. To provide useful synthetic ground motion data from potential earthquakes, synthetic seismograms should model frequencies from 0.5 to 15.0 Hz, the full wave-train energy distribution, and absolute amplitudes. However, high-frequency arrivals are stochastically dependent upon the inhomogeneous geologic structure and irregular fault rupture. The fault rupture can be modeled, but the stochastic nature of faulting is largely an unknown factor in the earthquake process. The effect of inhomogeneous geology can readily be incorporated into synthetic seismograms by using small earthquakes to obtain empirical Green's functions. Small earthquakes with source corner frequencies higher than the site recording limit f{sub max}, or much higher than the frequency of interest, effectively have impulsive point-fault dislocation sources, and their recordings are used as empirical Green's functions. Since empirical Green's functions are actual recordings at a site, they include the effects on seismic waves from all geologic inhomogeneities and include all recordable frequencies, absolute amplitudes, and all phases. They scale only in amplitude with differences in seismic moment. They can provide nearly the exact integrand to the representation relation. Furthermore, since their source events have spatial extent, they can be summed to simulate fault rupture without loss of information, thereby potentially computing the exact representation relation for an extended source earthquake.
James, Mike R.; Robson, Stuart; d'Oleire-Oltmanns, Sebastian; Niethammer, Uwe
2016-04-01
Structure-from-motion (SfM) algorithms are greatly facilitating the production of detailed topographic models based on images collected by unmanned aerial vehicles (UAVs). However, SfM-based software does not generally provide the rigorous photogrammetric analysis required to fully understand survey quality. Consequently, error related to problems in control point data or the distribution of control points can remain undiscovered. Even if these errors are not large in magnitude, they can be systematic, and thus have strong implications for the use of products such as digital elevation models (DEMs) and orthophotos. Here, we develop a Monte Carlo approach to (1) improve the accuracy of products when SfM-based processing is used and (2) reduce the associated field effort by identifying suitable lower density deployments of ground control points. The method highlights over-parameterisation during camera self-calibration and provides enhanced insight into control point performance when rigorous error metrics are not available. Processing was implemented using commonly-used SfM-based software (Agisoft PhotoScan), which we augment with semi-automated and automated GCPs image measurement. We apply the Monte Carlo method to two contrasting case studies - an erosion gully survey (Taurodont, Morocco) carried out with an fixed-wing UAV, and an active landslide survey (Super-Sauze, France), acquired using a manually controlled quadcopter. The results highlight the differences in the control requirements for the two sites, and we explore the implications for future surveys. We illustrate DEM sensitivity to critical processing parameters and show how the use of appropriate parameter values increases DEM repeatability and reduces the spatial variability of error due to processing artefacts.
Aagaard, Brad T.; Graves, Robert W.; Schwartz, David P.; Ponce, David A.; Graymer, Russell W.
2010-01-01
We construct kinematic earthquake rupture models for a suite of 39 Mw 6.6-7.2 scenario earthquakes involving the Hayward, Calaveras, and Rodgers Creek faults. We use these rupture models in 3D ground-motion simulations as discussed in Part II (Aagaard et al., 2010) to provide detailed estimates of the shaking for each scenario. We employ both geophysical constraints and empirical relations to provide realistic variation in the rupture dimensions, slip heterogeneity, hypocenters, rupture speeds, and rise times. The five rupture lengths include portions of the Hayward fault as well as combined rupture of the Hayward and Rodgers Creek faults and the Hayward and Calaveras faults. We vary rupture directivity using multiple hypocenters, typically three per rupture length, yielding north-to-south rupture, bilateral rupture, and south-to-north rupture. For each rupture length and hypocenter, we consider multiple random distributions of slip. We use two approaches to account for how aseismic creep might reduce coseismic slip. For one subset of scenarios, we follow the slip-predictable approach and reduce the nominal slip in creeping regions according to the creep rate and time since the most recent earthquake, whereas for another subset of scenarios we apply a vertical gradient to the nominal slip in creeping regions. The rupture models include local variations in rupture speed and use a ray-tracing algorithm to propagate the rupture front. Although we are not attempting to simulate the 1868 Hayward fault earthquake in detail, a few of the scenarios are designed to have source parameters that might be similar to this historical event.
Directory of Open Access Journals (Sweden)
Jong Wan Hu
2014-12-01
Full Text Available Base isolation has been used as one of the most wildly accepted seismic protection systems that should substantially dissociate a superstructure from its substructure resting on a shaking ground, thereby sustainably preserving entire structures against earthquake forces as well as inside non-structural integrities. Base isolation devices can operate very effectively against near-fault (NF ground motions with large velocity pulses and permanent ground displacements. In this study, comparative advantages for using lead-rubber bearing (LRB isolation systems are mainly investigated by performing nonlinear dynamic time-history analyses with NF ground motions. The seismic responses with respects to base shears and inter-story drifts are compared according to the installation of LRB isolation systems in the frame building. The main function of the base LRB isolator is to extend the period of structural vibration by increasing lateral flexibility in the frame structure, and thus ground accelerations transferred into the superstructure can dramatically decrease. Therefore, these base isolation systems are able to achieve notable mitigation in the base shear. In addition, they make a significant contribution to reducing inter-story drifts distributed over the upper floors. Finally, the fact that seismic performance can be improved by installing isolation devices in the frame structure is emphasized herein through the results of nonlinear dynamic analyses.
Energy Technology Data Exchange (ETDEWEB)
Alberdi, J.; Arce, J.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Brochero, J.; Calderon, A.; Fernandez, M. G.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Ribero, C.; Matorras, F.; Rodrigo, T.; Rui-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.; Fernandez, J.
2010-05-01
This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test (at SX5 on ground Hall) and the CRAFT08 and 09 periods data taking in the point P5 (UX5), 100 m underground. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed motions are studied as functions of the magnetic fi eld intensity. Comparisons between recorded data on and under ground are made. (Author) 23 refs.
International Nuclear Information System (INIS)
This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test (at SX5 on ground Hall) and the CRAFT08 and 09 periods data taking in the point P5 (UX5), 100 m underground. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed motions are studied as functions of the magnetic fi eld intensity. Comparisons between recorded data on and under ground are made. (Author) 23 refs.
Directory of Open Access Journals (Sweden)
G-A. Tselentis
2010-12-01
Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.